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Abstract

Expanded use of reduced complexity approaches in epidemiology and environmental justice 

investigations motivates detailed evaluation of these modeling approaches. Chemical transport 

models (CTMs) remain the most complete representation of atmospheric processes but remain 

limited in applications that require large numbers of runs, such as those that evaluate individual 

impacts from large numbers of sources. This limitation motivates comparisons between modern 

CTM-derived techniques and intentionally simpler alternatives. We model population weighted 

PM2.5 source impacts from each of greater than 1,100 coal power plants operating in the United 

States in 2006 and 2011 using three approaches: 1) adjoint PM2.5 sensitivities calculated by the 

GEOS-Chem CTM; 2) a wind field-based Lagrangian model called HyADS; and 3) a simple 

calculation based on emissions and inverse source-receptor distance. Annual individual power 

plants’ nationwide population weighted PM2.5 source impacts calculated by HyADS and the 

inverse distance approach have normalized mean errors between 20% and 28% and root mean 

square error ranges between 0.0003 and 0.0005 μg m−3 compared to adjoint sensitivities. Reduced 

complexity approaches are most similar to the GEOS-Chem adjoint sensitivities nearby and 

downwind of sources, with degrading performance farther from and upwind of sources particularly 

when wind fields are not accounted for.
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1 Introduction

New evidence of harm from exposure to air pollution even at the historically low levels seen 

in the United States motivates identification of the pollution impacts of individual sources1,2. 

Many power plants in the United States continue to burn coal and emit harmful pollutants, 

and targeted air pollution regulations would benefit from evidence that accurately identifies 

which sources contribute disproportionately to the public exposure and health burden.

Recent public health research in epidemiology and environmental justice to these ends has 

employed chemical transport model (CTM) results (often combined with ground and/or 

satellite-based observations) to quantify exposure variability across populations on wide 

spatial scales2–6. Despite gains in computational power and algorithm efficiency, the 

complexity and increasing fidelity of CTMs impedes their application to research questions 

that would require many model runs. Recent air pollution exposure research has relied on 

reduced complexity approaches to quantify exposure variability in space and time7–13. These 

and other epidemiological and environmental justice applications quantify impacts from 

(many) individual sources over specific time periods and/or consider more refined spatial 

scales than commonly available in CTMs. In addition, these analyses are often conducted by 

researchers without the resources to effectively navigate the complexity of CTMs.

Increased use of reduced complexity approaches to quantify spatial-temporal impacts from 

individual sources motivates a need to evaluate their abilities to reproduce application 

relevant features of CTM results14. This manuscript explores how two reduced-complexity 

characterizations of individual source exposure compare to annual GEOS-Chem adjoint 

sensitivities by their abilities to quantify source impact variability in time and space from 

each of greater than 1,100 United States coal-powered electricity generating units. The vast 

effort required to produce the annual GEOS-Chem sensitivity results motivated this 

investigation. Reduced complexity models may be able to reproduce result characteristics 

important in exposure studies—namely, spatial-temporal variability in exposure metrics—

and more readily extend them to other time and distance scales. Knowledge of the extent to 

which relatively simple exposure modeling approaches reproduce point source impacts 

modeled with a full-scale CTM will inform whether such simple calculations could propel 

applied research in directions currently limited by the computational burden of full scale 

CTMs.

2 Methods

We present source impacts calculated in 2006 (2011) for each of 1,256 (1,177) electricity 

generating units comprising 503 (484) facilities with coal as their primary fuel operating in 

the United States. These are calculated using three unique modeling frameworks (Figure 1)

—the GEOS-Chem adjoint model employs a full suite of scientific atmospheric transport 

and chemistry on a 3D grid, the HYSPLIT Average Dispersion (HyADS) model employs the 

HYSPLIT Lagrangian wind field model, and the Inverse Distance Weighted Emissions 

(IDWE) model uses a simple calculation of distance and emissions. All three approaches 

employ coal power plant continuous emissions monitoring data in from the U.S. 

Environmental Protection Agency’s (U.S. EPA) Air Markets Program15.
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A potential limitation of the two reduced complexity models – HyADS and IDWE – is that 

they do not, by default, estimate source impacts in terms of air pollution species or 

physically interpretable concentration units (e.g., μg m−3 or parts per million), and instead 

provide metrics only interpretable in terms of their relative source impacts. While such 

relative characterization has proven relevant in some health-outcomes and environmental 

justice studies8,11,16, here we employ a quantitative post-processing procedure to improve 

the interpretability of the reduced complexity model exposure outputs. This procedure uses 

results from a second full-scale source impacts modeling platform—the CMAQ-DDM 

Hybrid—to build statistical models that convert raw HyADS and IDWE exposure metrics to 

PM2.5 source impacts.

2.1 GEOS-Chem Adjoint Sensitivities

The adjoint of the widely used global GEOS-Chem CTM enables the calculation of source-

oriented sensitivities of model output (e.g. concentrations) to emissions perturbations17. We 

use the sensitivities described and calculated by Dedoussi et al. (2018)18 for the nested 

North American domain for 2006 (using U.S. EPA’s 2005 National Emissions Inventory 

(NEI)) and 2011 (using the U.S EPA’s 2011 NEI)19. The sensitivities have a horizontal 

resolution of 0.5° × 0.666° (~55 km × ~55 km) (latitude × longitude), and a near-surface 

vertical resolution of ~130 m. This resolution has been shown to be adequate for application 

in health impacts assessments20–22.

These adjoint sensitivities quantify state-level, annually averaged PM2.5 population source 

impacts with respect to vertically-resolved emissions perturbations anywhere in the 3D 

domain. By multiplying the sensitivities with the corresponding emissions, we estimate 

population-weighted PM2.5 source impacts (PWSI Adjoint) of annual SO2 emissions from 

each individual power plant (i) on each receptor location P (for the GEOS-Chem adjoint 

runs employed here, P will represent a state or the entire U.S.). While linearity is assumed 

with this multiplication, the individual source perturbations are estimated to be small enough 

for this to have negligible effects. Assessing annual impacts of thousands of individual 

emission sources using a conventional CTM approach is otherwise computationally (and 

likely numerically) impractical.

To distribute each coal unit’s emissions into the horizontal grid, we assume that the 

emissions are contained in the grid column correspondent to the unit’s coordinates. To test 

the hypothesis that various plume rise assumptions would affect the results, we compare 

results from five simple models: a) the average sensitivity within ~650 m above surface (first 

five model layers; referred to hereafter as “Average”), b) the average sensitivity between 

~120 m and ~650 m above surface (layers two to five; “Layers 2–5”), c) the sensitivity at the 

layer of the stack height (“Stack Height”), d) the average sensitivity of the stack height layer 

and the layer above it (“Stack Height +1”), and e) the average sensitivity of the stack height 

layer and the two layers above it (“Stack Height +2”). Where the stack height was not 

available in the emissions data, we use the average of the first five layers. Dedoussi (2018) 

included fully vertically resolved plumes, modelled using the SMOKE model accompanying 

the NEI23, when calculating the adjoint sensitivities.
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Since observation-based ground truths for the source impacts attributable to individual coal 

units cannot be estimated using currently available methods, GEOS-Chem adjoint results are 

taken as the closest available estimate of actual impacts.

2.2 Reduced complexity approaches

As in the GEOS-Chem adjoint modeling, we employ the two reduced complexity models to 

calculate population-weighted source impacts for each coal-fired electricity generating unit. 

For these models, each unit’s impact on a population in location P is:

PW SIP , j
m =

∑i = p
NP PM2.5i, j

m * populationi

∑i = p
P populationi

(1)

Where i = p … NP is the collection of 36 km grid centroids contained in location P and 

PW SIP , j
m  is the population-weighted PM2.5 source impact from source j on location P for 

reduced complexity model m. PM2.5i, jm , the PM2.5 source impact from source j on receptor 

location i, is defined using one of the two reduced complexity models (m ∈ [HyADS, 

IDWE]) described in the subsequent subsections. Annual Intercensal Population Estimates 

for Unites States Counties for 2006 and 2010 were retrieved using the censusapi R package 

(2010 was used as a proxy for 2011) and spatially aggregated to the same 36 km grid24.

2.2.1 HyADS—The HYSPLIT with Average Dispersion (HyADS) model employs the 

HYSPLIT25,26 air parcel transport and dispersion model to identify exposure patterns from 

individual sources. To estimate these, HyADS initiates 100 emitted parcels at each stack 

location four times per day and tracks hourly locations of each parcel for ten days using 

HYSPLIT—ten days approximates a conservative upper bound of sulfur’s atmospheric 

residence time27. Any parcel trajectories that reach a height of zero are assumed to stop 

contributing to exposure thereafter. Monthly parcel locations are spatially aggregated to a 36 

km grid. These are then weighted by each unit’s monthly SO2 emissions, resulting in a 

metric of unit-specific influence on a grid covering the United States. In a given time period, 

exposurei, j
HyADS is a linear combinations of emissions from each source j and the number of 

air parcels originating from that source over a grid cell i:

exposurei, j
HyADS = emissionsj * parcelsi, j (2)

The exposure metric, defined as “HyADS emissions-weighted exposure,” is interpreted as a 

relative metric (i.e., it does not correspond directly to individual air pollutants such as SO2 

or PM2.5). In Henneman et al. (2019), we describe the method in detail and evaluate 

HyADS’s ability to capture annual exposure to coal-fired power plant emissions from all 

U.S. plants and change over time28. We found high annual correlation with observed sulfate 

and PM2.5 coal source impacts modeled with the CMAQ-DDM Hybrid described below. 

Section 2.3 outlines our approach to convert the HyADS metric into PM2.5 source impacts 

used for the calculation in Equation 1.
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2.2.2 Inverse Distance Weighted Emissions—As an even more simplified approach 

with the most simplistic account of pollution transport, we use only distance and annual SO2 

emissions to estimate emissions exposure:

exposurei, j
IDW E = emissionsj * distancei, j−1 (3)

Where emissionsj represents annual or monthly emissions from source j and distancei,j 

represents the distance between each source and centroids of a 36 km grid covering the 

continental United States. We refer to this approach as Inverse Distance Weighted Emissions 

(IDWE); Section 2.3 outlines our approach to convert this relative metric into PM2.5 source 

impacts used for the calculation in Equation 1.

2.3 Post-processing reduced complexity approaches to PM2.5 source impacts

While raw exposure metrics estimated by HyADS and IDWE may be useful for some 

applications, these approaches are inherently limited by their nonphysical units and lack of 

interpretability relative to air quality observations and outputs of standard CTMs. It is useful, 

therefore, to relate the metrics to policy-relevant pollutant concentration in familiar units. By 

assuming that HyADS and IDWE exposure contributed to elevated PM2.5 concentrations 

which is valid in particular because they are based on SO2 emissions—atmospheric SO2 

oxidizes to sulfate, a PM2.5 constituent—we employ an approach that adjusts these fields to 

PM2.5 coal source impacts with units μg m−3.

Calibrating the HyADS and IDWE fields to PM2.5 coal impacts requires a spatially and 

temporally concurrent metric of coal source impacts measured in PM2.5. As one such 

approximate gold standard, we employ results derived from the Community Multiscale Air 

Quality (CMAQ) model with the Direct Decoupled Method (DDM) calculated on a 36 km 

grid over the continental United States. The approach for creating these fields, called the 

CMAQ-DDM Hybrid, is detailed in full by Ivey et al. (2015)29. CMAQ-DDM Hybrid source 

impacts estimate the total PM2.5 source impacts from all coal sources in the United states; 

coal power plants in our database represented 89% of total coal SO2 emissions in 2005. 

While not available for a wide range of time periods, availability of CMAQ-DDM Hybrid 

estimates for 2005 and 2006 presents the opportunity to: a) train the statistical calibrations 

described below on one year’s worth of data from 2005, b) evaluate the trained models using 

2006 data (one of our model evaluation years) and c) use the trained statistical model to 

predict HyADS and IDWE PM2.5 source impacts in 2011, a year in which CMAQ-DDM is 

not available.

For HyADS and IDWE exposure fields to all emissions sources ∑j = 1
J exposurejm , we 

projected raw exposure fields to match the CMAQ-DDM Hybrid grid and trained multiple 

models over the continental United States. The models took the form:

PM2.5
CMAQ − DDM = β0

m + βexp
m ∑j = 1

J exposurejm + βX
m X + βexp, X

m X
* ∑j = 1

J exposurejm + ϵm
(4)
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Where PM2.5
CMAQ − DDM is PM2.5 coal source impacts from CMAQ-DDM Hybrid, X  is the 

vector of meteorological variables and ∈ is assumed iid normal. We employed monthly and 

annual average temperature, accumulated precipitation, relative humidity, and x and y wind 

vectors for meteorological inputs from the North American Regional Reanalysis30. The raw 

meteorology values originally on a ~32 km grid were spatially projected to the same 36 km 

grid as the CMAQ-DDM Hybrid PM2.5 source impacts.

CMAQ-DDM Hybrid results were available in 2005 and 2006. Model (4) was judged the 

best among four different model specification based on training in 2005 and using data from 

2006 as a holdout sample to evaluate prediction error and bias (model variations and 

evaluation presented in Section SI-1). Models for monthly impacts were obtained 

analogously using corresponding months in 2005 for training and 2006 as a holdout 

validation sample.

To calculate each unit’s source impact on location i in terms of the recalibrated PM2.5 

metric, we evaluate the difference between two predictions using the trained version of 

Equation 4 for HyADS and IDWE: 1) a prediction in which ∑j = 1
J exposurei, jm = 0  and 2) a 

prediction in which ∑j = 1
J exposurejm = exposurejm . We repeat this calculation for each source 

in each of 2006 and 2011, and we use the resulting outputs in Equation 1 to calculate 

population-weighted source impacts on locations P PW SIP , j
m .

2.4 Method comparisons

We compare unit-level PWSI’s from HyADS and IDWE with GEOS-Chem adjoint PWSI’s. 

The GEOS-Chem adjoint model runs employed an objective function targeting annual 

average population weighted PM2.5 concentrations in individual states and on the entire 

United States. As such, we first compare the abilities of HyADS and IDWE to simulate 

annual population-weighted exposures attributable to emissions from all units on the entire 

country and on a group of states (Pennsylvania, Georgia, Kentucky, Wisconsin, Texas, 

Colorado, and California) selected to represent a range of proximities to and densities of 

nearby coal-fired power plants. We calculate the average distance of each state’s population-

weighted grid centroid from the emissions-weighted centroid of all power plants (termed 

population-emissions weighted distance; Dpew) as a representative distance for each location 

P from emissions sources:

DP
pew = ∑j = 1

J ∑i = p
P distancei, j * populationi * emissionsj

∑j = 1
J ∑i = p

P populationi * emissionsj
(5)

Where j = 1, …, J comprises all coal units. Dpew exhibits a minimum near Kentucky and a 

maximum in the western United States (Figure SI-5).

2.4.1 Evaluation metrics—We employ various evaluation metrics suggested by Emery 

et al. (2016)31: root mean square error (RMSE), mean bias (MB), normalized mean error 

(NME), normalized mean bias (NMB), and Pearson linear correlation (Pearson R). We add 
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Spearman rank-order correlation (Spearman R) to quantify the ability to estimate relative 

importance of individual units.

2.4.2 Monthly source impacts—Sub-annual meteorology and emissions variability 

contributes to varying source impacts throughout the year. The GEOS-Chem adjoint 

sensitivities provided by Dedoussi (2018) estimate annually averaged exposures with respect 

to emissions perturbations, preventing comparisons at sub-annual scales18. Nonetheless, we 

compare monthly unit-specific HyADS and IDWE population-weighted source impacts to 

compare a reduced complexity approach containing explicit information on pollutant 

transport (HyADS) against one rooted solely in distance and emissions levels.

3 Results and Discussion

In this section, we compare the three exposure models by their abilities to quantify PM2.5 

source impacts from individual coal electricity generating units. The first subsection 

discusses annual impacts across all three metrics (GEOS-Chem adjoint, HyADS, IDWE) 

and the second discusses monthly impacts across HyADS and IDWE. The final sections 

explore limitations and implications.

3.1 Annual power plant impacts

The GEOS-Chem adjoint found the top-ranked units by population-weighted PM2.5 source 

impacts PW SIP = US, j
Adjoint  on the entire United States (US) to be located across the eastern 

United States, with the densest collection of large-impact facilities located in the Ohio River 

Valley, consistent with recent findings that Ohio and Kentucky contribute the greatest cost 

per megawatt-hour on the entire country32 (Figure 2). Between 2006 and 2011, total 

population-weighted exposure on the entire United States from all power plants fell by 37%, 

mirroring emissions reductions from coal-fired power plants of 41%.

For the majority of the comparisons made in Figure 3, correlations, bias, and error between 

GEOS-Chem adjoint and the two reduced complexity approaches were not affected by 

assumptions about the plume injection height in the GEOS-Chem adjoint model. Overall, 

annual average population weighted PM2.5 source impacts on the entire United States varied 

by less than 2.7% for our different plume height injection assumptions.

GEOS-Chem adjoint coal-fired power plant unit population-weighted PM2.5 exposures on 

the entire United States are highly correlated with PW SIP = US, j
HyADS  and PW SIP = US, j

IDW E

population-weighted exposures, with Pearson correlations between 0.86 and 0.98 (Figures 3 

and SI-6). NMB (RMSE) range between 2% and 23% (3.7 × 10−4 and 4.7 × 10−4 μg m−3) 

for PW SIP = US, j
HyADS  and between −26% and −17% (3.0 × 10−4 and 3.4 × 10−4 μg m−3) for 

PW SIP = US, j
IDW E . For individual source impacts on the entire United States, HyADS and 

IDWE tend to be positively and negatively biased, respectively, by similar amounts.

In Pennsylvania (PA), Kentucky (KY), and Georgia (GA)—states which are the easternmost 

and have the lowest characteristic population-emissions weighted distance Dpew— 
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PW SIP , j
Adjoint correlations with PW SIP , j

HyADS and PW SIP , j
IDW E range from 0.62 and 0.98 in 

2006 and 2011 (Figure 3 and SI-5). RMSE’s range between 1.0 × 10−3 and 3.2 × 10−3 μg m
−3 for HyADS and between 1.1 × 10−3 and 3.3 × 10−3 μg m−3 for IDWE; NMB’s range 

between −28% and 29% for HyADS and between −46% and −22% for IDWE. Overall, 

HyADS yields lower magnitude bias in these states, but both approaches yield similar error. 

This means that, on average, PW SIP , j
HyADS is closer to PW SIP , j

Adjoint , but both 

PW SIP , j
HyADS and PW SIP , j

IDW E consistently differ from PW SIP , j
Adjoint by similar 

magnitudes. Evaluation metrics presented in the SI reinforce this narrative (Figure SI-7).

In states farther west (both farther from the largest concentrations of coal-fired power plants 

and more upwind on average), performance of IDWE degrades compared to HyADS. In 

California (CA) and Colorado (CO), PW SIP , j
IDW E yields very low correlation and very 

positive NMB relative to PW SIP , j
Adjoint; the former is likely due to the increased importance 

of physical processes such as atmospheric transport and deposition in transporting pollution 

to these distant states, and the latter is attributable to low overall impacts in these states. 

Indeed, RMSE’s in these states are low (below 1.0 × 10−3 μg m−3) for both models and are 

lower for HyADS than IDWE. This trend of IDWE’s decreasing performance in western 

states is consistent between 2006 and 2011 even with large emissions reductions from coal 

power plants between the years.

While the results show a relationship between population-emissions weighted distance 

(Dpew), this distance does not explain all of the variability in the evaluation metrics between 

GEOS-Chem adjoint results and the reduced complexity models. Dpew values in 

Pennsylvania, Georgia, Kentucky, Wisconsin, and Texas, for example, span a range of more 

than 1,000 km, but correlations between source impacts estimated by HyADS and IDWE 

perform similarly across all of these states. In states further west, the benefits of the HyADS 

model over IDWE become clearer due to its relatively higher correlations and lower bias and 

error.

3.3 Monthly power plant impacts

Monthly unit Pearson normalized mean bias between HyADS and IDWE source impacts on 

the entire United States PW SIP = US, j
HyADS  and PW SIP = US, j

IDW E  22% and 132% with peaks in the 

winter and summer. Correlations range between 0.90 and 0.99 and show little variability 

throughout 2006 and 2011 (Figure SI-8). NMB’s for the entire United States range between 

22% and 132% and both NMB and NME are highest in the summertime for both years and 

winter 2006 (Figures 4 and SI-9), and MB shows a positive bias of about 0.01 μg m−3 in the 

summertime in both years (Figure SI-10).

Similar to the annual results, the three states near high concentrations of coal-fired power 

plants (Pennsylvania, Kentucky, and Georgia) exhibit similar bias, error, and correlations as 

source impacts on the entire United States, with poorer performance in the summer and 

winter than the fall and spring. Monthly NMB’s average 58% in Pennsylvania, 62% in 

Kentucky, and 79% in Georgia (Figure 4), with the evaluation statistics showing that IDWE 
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is positively biased relative to HyADS in these states in most months (Figures SI-9 through 

SI-11).

Farther from large numbers of coal units in the east, bias, error, and correlations in 

Wisconsin, Texas, and Colorado are PW SIP , j
HyADS and PW SIP , j

IDW E are highly variable 

throughout 2006 and 2011 and generally reflect poorer agreement than in the eastern states. 

Monthly variability in performance increases even further west, with no monthly NMB’s 

reaching above 79% in California. NMB and NME are extremely high in Colorado and 

California, though this is primarily a factor of low total impacts in these states.

3.4 Limitations

All three approaches employed here simulate point source emissions impacts using different 

methods that produce unique metrics. The two physical models (GEOS-Chem adjoint and 

HyADS) simulate different physical processes—GEOS-Chem adjoint simulates the annual 

PM2.5 source impacts attributable to SO2 emissions perturbations using the full suite of 

physical and chemical processes in the atmosphere, while HyADS simulates monthly 

exposure to air influenced by such emissions. Atmospheric lifetimes of emitted species as 

dictated by deposition and chemical reactions in the atmosphere are most fully captured by 

the GEOS-Chem adjoint sensitivities; HyADS and IDWE largely ignore these processes, 

potentially explaining decreased performance of the reduced complexity models in western 

states.

The formulations that produce the HyADS and IDWE exposure metrics imply potentially 

differing policy implications but are generally limited by lack of interpretability in their raw 

form. In converting the raw exposure metrics to PM2.5 source impacts, we alter the 

interpretation of the metrics and introduce potential bias in the conversion. The converted 

metrics PW SIP , j
HyADS and PW SIP , j

IDW E are interpretable as PM2.5 source impacts—these 

are correlated, yet distinct, from the raw metrics. Individual source impacts calculated with 

the raw metrics correlate similarly with PW SIP , j
Adjoint  as the converted metrics (Figure 

SI-12). While the raw exposure units produced by HyADS and IDWE by the raw are not 

directly comparable or applicable in health impact assessments that apply existing exposure-

response functions, their variability across time and space may be useful in epidemiological 

and/or exposure variability studies8,11,16.

The results here are not necessarily expected to extrapolate to other emitted species (e.g., 

NOx) that could lead to elevated air pollution concentrations and adverse health impacts, and 

only the GEOS-Chem adjoint sensitivities approach account for chemical transformations 

and interactions of emitted species. More variability is expected in applying these 

approaches to other types of sources, such as ground-based area or mobile sources.

We chose to use a simplified plume approach for the vertical distribution of point source 

emissions in the GEOS-Chem adjoint sensitivities approach. While we originally 

hypothesized that various plume rise assumptions would have an important effect on the 

results, our sensitivity analysis (Figure 3) showed that the plume rise assumption had little 

impact on annual correlations with the reduced complexity approaches.
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3.5 Implications

We present comparisons between three approaches for estimating exposure attributable to 

large numbers of point sources. The results suggest that the HyADS and IDWE reduced 

complexity approaches are able to reproduce state-level PM2.5 impacts from individual 

sources calculated by the GEOS-Chem adjoint sensitivity approach. The reduced complexity 

approaches perform similarly at annual time scales and for nearby, upwind sources. At 

longer distance scales, source impacts become more sensitive to atmospheric processes not 

captured by IDWE, the simplest approach. Recent evidence showing health impacts at even 

low PM2.5 concentrations1,2 suggests that performance even in apparently clean areas has 

important implications on the models’ potential to influence regulatory decision-making.

The monthly evaluation results highlight the importance of characterizing atmospheric 

transport on shorter time scales. Comparisons of the IDWE source impacts to HyADS show 

higher bias and error in summer and winter months than spring and fall. As in the annual 

evaluation, IDWE’s performance degrades substantially in locations further from large 

groups of point sources. Dedoussi and Barrett (2014) showed the importance of monthly 

variability—sensitivity values during the summer months were a factor of ~4 times higher 

than the winter months in their analysis33.

The GEOS-Chem chemical transport model accounts for atmospheric processes including 

advective and diffusive transport, wet deposition, interaction with emissions from other 

sources, and background air constituents. The post-processing of the reduced complexity 

exposure metrics to PM2.5 enabled us to develop, evaluate, and apply statistical 

parameterizations of these processes. One physical parameterization we tested—plume 

injection heights—turned out to have little impact on the eventual comparisons between 

HyADS and IDWE.

Overall, the results suggest three important factors in determining point source exposure 

patterns: emissions amount, source-receptor distance, and directionality relative to average 

transport patterns. These factors contribute to the relatively better performance of IDWE in 

states nearby large numbers of sources. Including information about transport—such as wind 

speed and direction—becomes more important at locations far from and upwind of sources. 

Adjusted to more complex model results that need only be run once, impacts from these 

reduced complexity models can be converted to physically interpretable units.

This work presents evidence that intentionally simpler alternatives to full-scale chemical 

transport models have potential to quantify population exposure to individual point source 

SO2 emissions. Some processes (such as advective transport) were shown to be more 

important for identifying exposed areas than others (such as plume injection height), and the 

importance of invective transport, in particular, was shown to differ with distance and 

direction from source.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic of the three approaches for calculating PM2.5 source impacts. Each of the three 

models calculate individual source impacts on given locations P, here represented by a pink 

rectangular prism.
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Figure 2: 
50 top units in 2006 and 2011 by annual average population-weighted PM2.5 source impacts 

on the entire U.S. using the Average GEOS-Chem Adjoint results. Some co-located unites 

overlap in the plot.
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Figure 3. 
Top: Linear correlation (Pearson R), Normalized Mean Bias (−100% < NMB < +∞) and 

root mean square error (RMSE) evaluations of PW SIP , j
HyADS and PW SIP , j

lDW E source 

impacts evaluated against PW SIP , j
Adjoint in individual states and entire United States (US). 

NMB for PW SIP , j
lDW E in CA and CO are removed because they are many times higher than 

the scale of the results in other states (the removed values range from 1,000% to 1,800%. 

Bottom: Population and emissions weighted distance (Dpew, defined in Equation 5) for 

individual states and the entire United States.
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Figure 4: 

Normalized Mean Bias (−100% < NMB < +∞) of PW SIP , j
IDW E evaluated against 

PW SIP , j
HyADS. The values in Colorado (CO) range up to 18,000% and in California range 

from 700% to greater than 2,000,000%.
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