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ASUMAN OZDAGLAR\ddagger 

Abstract. We study the trade-offs between convergence rate and robustness to gradient errors
in designing a first-order algorithm. We focus on gradient descent and accelerated gradient (AG)
methods for minimizing strongly convex functions when the gradient has random errors in the form
of additive white noise. With gradient errors, the function values of the iterates need not converge
to the optimal value; hence, we define the robustness of an algorithm to noise as the asymptotic
expected suboptimality of the iterate sequence to input noise power. For this robustness measure,
we provide exact expressions for the quadratic case using tools from robust control theory and tight
upper bounds for the smooth strongly convex case using Lyapunov functions certified through matrix
inequalities. We use these characterizations within an optimization problem which selects parameters
of each algorithm to achieve a particular trade-off between rate and robustness. Our results show
that AG can achieve acceleration while being more robust to random gradient errors. This behavior is
quite different than previously reported in the deterministic gradient noise setting. We also establish
some connections between the robustness of an algorithm and how quickly it can converge back to the
optimal solution if it is perturbed from the optimal point with deterministic noise. Our framework
also leads to practical algorithms that can perform better than other state-of-the-art methods in the
presence of random gradient noise.
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1. Introduction. For many large-scale convex optimization and machine learn-
ing problems, first-order methods have been the leading computational approach for
computing low- to medium-accuracy solutions because of their cheap iterations and
mild dependence on the problem dimension and data size. The typical analysis of
first-order methods assumes the availability of exact gradient information and pro-
vides statements on the rate of convergence to the optimal solution as the main perfor-
mance criterion. However, in many applications, the gradient contains deterministic
or stochastic errors either because the gradient is computed by inexactly solving an
auxiliary problem [10, 13], or the method itself involves errors with respect to the
full gradient as in standard incremental gradient, stochastic gradient, and stochastic
approximation methods [4, 5, 39, 41]. When there are persistent errors in gradients,
the iterates do not converge and could oscillate in a neighborhood of the optimal
solution or may even diverge [4, 5, 13, 19]. This makes robustness of the algorithms
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718 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

to gradient errors (in terms of solution accuracy) another important performance
objective [13, 27]. In particular, even though the accelerated gradient (AG) method
proposed by Nesterov converges faster than gradient descent (GD) in the absence
of noise for convex problems [36], it was shown that AG methods are less robust to
errors, i.e., accelerated methods require higher precision gradient information than
GD to achieve the same solution accuracy [10, 13, 19, 43].

In this paper, we study the trade-offs between convergence rate and robustness to
gradient errors in designing a first-order algorithm. We focus on GD and Nesterov's
AG method for minimizing strongly convex smooth functions when the gradient has
stochastic errors and investigate how the parameters of each algorithm should be
set to achieve a particular trade-off between these two performance objectives. To
study this question systematically, we employ tools from control theory whereby we
represent each of the algorithms as a dynamical system. This approach has attracted
recent attention and has already led to a number of insights for the design and analysis
of optimization algorithms [9, 18, 28, 29, 33, 45]. The novelty of our work is to use
this approach to provide explicit characterizations of robustness, which can then be
placed in a computationally tractable optimization problem for selecting the algorithm
parameters to systematically achieve a desired trade-off.

We first focus on problems with a strongly convex quadratic objective function.
For this case, the rate of convergence of any of the two algorithms we study is given
by the spectral radius of the ``state-transition"" matrix in the dynamical system rep-
resentation. To characterize robustness, we consider the asymptotic expected subop-
timality for the centered iterate sequence (output vector of the dynamical system)
per unit noise which is a measure of the asymptotic accuracy of the iterates. For
the quadratic case we show that this limit exists and can be characterized using the
H2 norm of a transformed linear dynamical system. The H2 norm is a fundamental
measure for quantifying robustness of a linear system to noise [46] and admits various
definitions and characterizations. We focus on a particular representation of the H2

norm that requires the solution of a discrete Lyapunov equation. This representation
leads to explicit expressions for robustness of GD and AG.

Using this result, we study the rate and robustness trade-off of the GD method
for minimizing quadratic strongly convex functions. The spectral radius of the state-
transition matrix corresponding to GD dynamics, hence, the rate of convergence for
GD, can be expressed in terms of the smallest and largest eigenvalues of the positive
definite matrix Q defining the Hessian of the strongly convex quadratic objective. We
show that our robustness measure admits a tractable characterization for GD in terms
of the spectrum of Q. We also show a fundamental lower bound on the robustness
level of an algorithm for any achievable convergence rate.

We next consider the AG method defined by two parameters: stepsize \alpha and
momentum parameter \beta . Our first step is to characterize the stability region of the
method, i.e., the set of nonnegative (\alpha , \beta ) for which the spectral radius of the state-
transition matrix is less than or equal to one. Similar to GD, we then provide an
explicit characterization of the H2 norm of the dynamical system representation of
AG. We use these explicit expressions for both GD and AG within an optimization
problem for selecting the parameters to minimize the robustness measure subject to a
given upper bound on the convergence rate. Our results show that AG with properly
selected parameters is superior to GD in the sense that AG can achieve the same rate
with GD while being more robust to noise; similarly, AG can be tuned to be faster
than GD while achieving the same robustness level. This behavior contrasts with the
comparison of GD and AG in the deterministic gradient error setting in [13], which
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ROBUST ACCELERATED GRADIENT METHODS 719

shows GD performance degrades gracefully while AG may accumulate error. These
results show the random and deterministic noise settings have different behavior.

In our second set of results, we extend our analysis to handle minimization of
strongly convex smooth functions, i.e., minx\in \BbbR d f(x). In this setting, the dynamical
system representation of a first-order algorithm will no longer be a linear system due
to the nonlinear gradient map, \nabla f . The analysis in this section is not limited to GD or
AG; in particular, given a first-order optimization algorithm, we use a linear dynamic
system with nonlinear feedback to model the dynamic behavior of the algorithm. For
these systems, we again use a robustness measure that can be seen as a discrete-time
version of a more generalH2 norm for nonlinear systems [20]---see also [44] for a similar
definition given for linear systems with nonlinear feedback. We derive upper bounds
on the robustness measures for GD and AG using Lyapunov functions certified through
matrix inequalities (MIs) and investigate the trade-off between rate and robustness.

In addition to the above cited papers, Devolder's Ph.D. thesis [11] is closely re-
lated to our paper. Chapters 4 and 6 of this thesis consider smooth weakly convex
functions under a deterministic oracle model, whereas Chapter 7 focus on a stochas-
tic oracle model; these general oracles can model inexactness in the gradients as well
as function evaluations. In the deterministic oracle case, Devolder shows that the
primal gradient method (PGM) and the dual gradient method (DGM) on smooth
weakly convex objectives exhibit slow convergence with a rate \scrO (1/k) but without
accumulation of errors (the total effect of errors after k iterations is equal to the indi-
vidual error \delta of each first-order information), whereas AG methods converge faster
with rate \scrO ( 1

k2 ) but suffer from accumulation of errors at a linear rate \scrO (k\delta ). Based
on these observations, Devolder, Glineur, and Nesterov [12] design a novel family of
first-order methods called intermediate gradient methods for solving smooth weakly
convex problems; these methods have an intermediate speed and intermediate sensi-
tivity to gradient errors, i.e., faster than classical gradient methods and more robust
to noise than the AG methods. In the stochastic oracle case, Devolder developed a
class of AG methods for weakly convex functions with decaying stepsize rules and

showed that the expected suboptimality admits the convergence rate \scrO (LR2

k2 + \sigma R\surd 
k
)

as opposed to the \scrO (LR2

k + \sigma R\surd 
k
) rate of PGM and DGM, where R is the distance of

the initial point to the optimal solution, L is the Lipschitz constant for the gradient
of the objective f(x), and \sigma is the level of the stochastic noise [11, Chapter 7]. In
his thesis, Devolder studied also smooth and strongly convex objectives under the
same deterministic oracle model, showing that both PGM and DGM converge with a
rate that is proportional to exp( - k \mu 

L ) without accumulation of errors where \mu is the

strong convexity constant, whereas AG converges faster proportional to exp( - k
\sqrt{} 

\mu 
L )

while the error accumulation behaves like
\sqrt{} 

L
\mu \delta up to a constant [11, Chapter 5].

On the other hand, the smooth and strong convex objectives subject to stochastic
errors were left as future work [11, Chapter 8.1.1], and this is the setting consid-
ered in our paper where we focus on stochastic additive gradient errors for strongly
convex objectives, which arises in a number of problems in machine learning and
large-scale optimization [3, 27, 40]. In this setting, Ghadimi and Lan [23, 24] pro-
pose an accelerated method called AC-SA for solving strongly convex composite opti-
mization problems obtaining an optimal rate matching the lower complexity bounds
for stochastic optimization. Flammarion and Bach [19] considered accelerated ver-
sions of GD for quadratic optimization that attain the optimal rates for both the
bias and variance terms, respectively, in the performance bounds. Michalowsky and
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720 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

Ebenbauer [34] posed the design of deterministic gradient algorithms as a state feed-
back problem and used robust control theory and linear MIs to study them.
Mohammadi, Razaviyayn, and Jovanovi\'c [35] examined the sensitivity of acceler-
ated algorithms to stochastic noise for strongly convex quadratic functions in terms
of the steady-state variance of the optimization variable. Finally, Dvurechensky and
Gasnikov [15] consider composite convex optimization problems with inexact first-
order oracles having both deterministic and stochastic errors; indeed, their inexact
oracle is an extension of the one adopted in [12, 13] to include stochastic errors. For
this setting, Dvurechensky and Gasnikov [15] propose a stochastic version of the inter-
mediate gradient method in [12] and analyze the convergence rate in terms of expected
suboptimality and error accumulation due to inexact oracle; the proposed algorithm
in [12] has complexity bounds matching the optimal lower complexity bounds for
composite convex problems with stochastic inexact oracle as in [23, 24]. Finally, Hu,
Seiler, and Lessard [29] analyze the stochastic gradient method under deterministic
noise and study the effect of the stepsize on the convergence rate and the asymptotic
neighborhood of convergence. These papers focus on the convergence rate of the algo-
rithms, whereas our goal is to define robustness and design algorithms to successfully
trade off different objectives. Furthermore, we make some connections between the
robustness of a first-order method and its behavior when perturbed from the opti-
mal solution and show that AG is more resilient to perturbations in the sense that it
recovers the optimal point with less energy compared to GD for sufficiently small step-
sizes. We will also demonstrate in our numerical experiments that the framework we
propose is competitive in practice with the existing state-of-the-art algorithms from
the literature and can outperform them in some problems, illustrating the potential
of the proposed framework in practice. In fact, in a companion paper, we use our
framework to develop a universally optimal multistage stochastic gradient algorithm
for stochastic optimization [1] which achieves the lower bounds without assuming a
known bound for suboptimality or the variance of the gradient noise.

1.1. Preliminaries and notation. For two functions g, h defined over posi-
tive integers, we say f = \Theta (g) if there exist constants Cl, Cu, and n0 such that
Clg(n) \leq f(n) \leq Cug(n) for every positive integer n \geq n0. For a set I, | I| denotes the
cardinality of the set I. Let \delta [k] denote the Kronecker delta function, i.e., \delta [0] = 1
and \delta [k] = 0 for any integer k \geq 1. The d\times d identity and zero matrices are denoted
by Id and 0d, respectively. We define diag(a1, . . . , ad) or diag([ai]

d
i=1) as the diago-

nal matrix with diagonal entries a1, . . . , ad; similarly, diag([Ai]
d
i=1) denotes a block

diagonal matrix with ith block equal to Ai \in \BbbR ni\times ni for i = 1, . . . , d. For matrix
A \in \BbbR d\times d, Tr(A) denotes the trace of A. We use the superscript \top to denote the
transpose of a vector or a matrix depending on the context. The spectral radius of A
is defined as the largest absolute value of its eigenvalues and is denoted by \rho (A). We
say that a square matrix A is discrete-time stable if all of its eigenvalues lie strictly
inside the unit disc in the complex plane, i.e., if \rho (A) < 1. Throughout this paper,
all vectors are represented as column vectors. Let \BbbS m be the set of all symmetric
m \times m matrices. Similarly, \BbbS m++ (\BbbS m+ ) denotes the set of all symmetric and positive
(semi)definite m \times m matrices. For two matrices A \in \BbbR m\times n and B \in \BbbR p\times q, their
Kronecker product is denoted by A\otimes B. For scalars 0 < \mu \leq L, we define S\mu ,L(\BbbR d) as
the set of continuously differentiable functions f : \BbbR d \rightarrow \BbbR that are strongly convex
with modulus \mu and have Lipschitz-continuous gradients with constant L, i.e.,

L

2
\| x - y\| 2 \geq f(x) - f(y) - \nabla f(y)\top (x - y) \geq \mu 

2
\| x - y\| 2 \forall x, y \in \BbbR d(1.1)
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ROBUST ACCELERATED GRADIENT METHODS 721

(see, e.g., [37]), where the gradient \nabla f is represented as a column vector. The ratio
\kappa \triangleq L

\mu is called the condition number of f . In many places, we also use the following
relation for strongly convex smooth functions.

Lemma 1.1 (Theorem 2.1.12 in [37]). If f \in S\mu ,L(\BbbR d), then for every x, y \in \BbbR d,

(\nabla f(x) - \nabla f(y))\top (x - y) \geq \mu L

\mu + L
\| x - y\| 2 + 1

\mu + L
\| \nabla f(x) - \nabla f(y)\| 2.

For our subsequent analysis, we represent the preceding relation in matrix form:

\biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] \top \biggl[ 
2\mu LId  - (\mu + L)Id

 - (\mu + L)Id 2Id

\biggr] \biggl[ 
x - y

\nabla f(x) - \nabla f(y)

\biggr] 
\leq 0 \forall x, y \in \BbbR d.

(1.2)

2. Optimization algorithms as dynamical systems. Our goal is to design
first-order algorithms with certain rate-robustness balance to solve

f\ast \triangleq min
x\in \BbbR d

f(x), where f \in S\mu ,L(\BbbR d),(2.1)

when the gradient \nabla f is corrupted by random errors in the form of additive white
noise. We denote the unique optimal solution of problem (2.1) by x\ast . We will focus
on GD and AG and show how the parameters of these algorithms can be tuned to
optimize various performance metrics.

Our analysis builds on a dynamical system representation of these algorithms. A
discrete-time dynamical system with a feedback rule \phi can be expressed as

\xi k+1 = A\xi k +Buk, yk = C\xi k +Duk, uk = \phi (yk),(2.2)

for k \geq 0, where \xi k \in \BbbR m is the state, uk \in \BbbR d is the input, and yk \in \BbbR d is the output.
The matrices A,B,C, and D are called the system matrices; they are fixed matrices
with appropriate dimensions. The function \phi : \BbbR d \rightarrow \BbbR d defines the feedback rule
that relates the output of this system to its input.

Consider the GD method for solving problem (2.1). Given x0 \in \BbbR d, the GD
iterations with a constant stepsize \alpha > 0 take the form for k \geq 0

xk+1 = xk  - \alpha \nabla f(xk),(2.3)

which can be cast as (2.2) by setting \xi k = xk, \phi (\cdot ) = \nabla f(\cdot ) and letting

A = Id, B =  - \alpha Id, C = Id, D = 0d.(2.4)

On the other hand, when implemented on (2.1), the AG method with constant stepsize
\alpha > 0 and momentum parameter \beta > 0 generates the iterates as follows for k \geq 0:

yk = (1 + \beta )xk  - \beta xk - 1, xk+1 = yk  - \alpha \nabla f(yk).(2.5)

Setting \phi (\cdot ) = \nabla f(\cdot ) and defining the state vector \xi k = [ x\top 
k x\top 

k - 1 ]\top , AG iterations can
be rewritten as in (2.2) for

A =

\biggl[ 
(1 + \beta )Id  - \beta Id

Id 0d

\biggr] 
, B =

\biggl[ 
 - \alpha Id
0d

\biggr] 
, C =

\bigl[ 
(1 + \beta )Id  - \beta Id

\bigr] 
, D = 0d.

(2.6)
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722 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

For both algorithms, the iterates xk are captured by the state \xi k of the dynamical
system representation.

In this work, we assume that at each iteration k \geq 0, instead of the actual gradient
\nabla f(yk), we have access to a noisy version \nabla f(yk) + wk, where wk \in \BbbR d represents
the additive noise. In the dynamical system representation, the noisy iterations of the
GD and AG algorithms could be written as

\xi k+1 = A\xi k +B(uk + wk), yk = C\xi k, uk = \nabla f(yk),(2.7)

where A, B, C, and D are selected according to (2.4) for GD or (2.6) for AG.1 Except
for section 5, where we study deterministic perturbations, we assume throughout this
paper that the sequence \{ wk\} k of random variables satisfies the following assumption.

Assumption 2.1. For any k \geq 0, the random variable wk in (2.7) is zero mean
and independent from \{ \xi i\} ki=1 and \{ yi\} ki=1. In addition, there exists a scalar \sigma > 0
such that \BbbE (wkw

\top 
k ) = \sigma 2Id for any k \geq 0.

This noise structure arises naturally in stochastic optimization where the full
gradient is approximated from finitely many samples (see, e.g., [39]), in regression
problems [2, 14, 19], as well as in optimization algorithms where the full gradient is
subject to an isotropic noise or uncertainty (see, e.g., [30, 31]). The special case when
wk is Gaussian also appears in algorithms where random noise is intentionally injected
to the gradient to guarantee privacy (e.g., [3]) or to ensure global convergence, as in
the Euler--Mariyama discretization of the overdamped and underdamped Langevin
dynamics [8, 16, 21, 22]. It will be clear from our discussion that our results can be
extended to the structured noise case, i.e., when the covariance matrix \BbbE (wkw

\top 
k ) = S

for some positive definite matrix S.
Consider a first-order algorithm (e.g., GD or AG) subject to additive noise sat-

isfying Assumption 2.1. For this scenario, where the noise is persistent, i.e., it does
not decay over time, it is possible that limk\rightarrow \infty \BbbE [f(xk)] may not exist; therefore, one
natural way of defining robustness of an algorithm to noise is to consider the worst
case limiting suboptimality along all possible subsequences, i.e.,

\scrJ \triangleq lim sup
k\rightarrow \infty 

1

\sigma 2
\BbbE [f(xk) - f\ast ].(2.8)

Clearly, \scrJ depends on the choice of algorithm parameters. Moreover, since the limit
limk\rightarrow \infty f(xk) may not exist when the gradients are perturbed by persistent additive
noise, both notions of ``convergence"" and ``convergence rate"" are vague. To make
these terms more precise in our context, consider the line segment [f\ast , f\ast +\sigma 2\scrJ ]. In
the subsequent sections of the paper, we show that \{ f(xk)\} k\geq 0 sequence converges to
this line segment linearly with a rate depending on the algorithm parameters. Thus,
the aim of this paper is to investigate this trade-off between the robustness and rate
associated with a given first-order algorithm and to understand the dependence of
these key notions of convergence on the choice of algorithm parameters. We believe
that achieving this goal would provide important leverage to decision makers to set
the parameters in such a way that fits the purpose of the application. We focus on the
expected suboptimality \{ \BbbE [f(xk) - f\ast ]\} k in the text since this is typically the object
of study in the literature for quantifying the performance of similar algorithms.

1Although our focus in this paper will be primarily on GD and AG dynamics under noise, it
will be clear from our discussion that our ideas naturally extend to many other algorithms that
admit such a dynamical system representation, including the heavy-ball and the robust momentum
methods [9, 28, 33].
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ROBUST ACCELERATED GRADIENT METHODS 723

It is worth emphasizing that robustness can also be studied in the solution space.
Indeed, let \{ xk\} k\geq 0 be a random iterate sequence corresponding to (2.7) where \{ wk\} k
models the additive noise sequence and satisfies Assumption 2.1. Due to the noise
injected at each step, the sequence \{ xk\} will oscillate around the optimal solution
with a nonzero variance; therefore, another natural metric to measure robustness is
the worst-case limiting distance to the optimal solution x\ast along all possible iterate
subsequences, i.e.,

\scrJ \prime \triangleq lim sup
k\rightarrow \infty 

1

\sigma 2
\BbbE 
\Bigl[ 
\| xk  - x\ast \| 2

\Bigr] 
.(2.9)

Similarly, the convergence rate could be defined to be the linear rate that \{ xk\} k\geq 0

converges to the ball \{ x \in \BbbR d : \| x - x\ast \| 2 \leq \sigma 2\scrJ \prime \} . The quantity \scrJ \prime can be viewed
as the robustness to noise in terms of iterates because it is equal to the ratio of the
power of the iterates to the power of the input noise, measuring how much a system
amplifies input noise. In particular, the smaller this measure is, the more robust a
system is under additive random noise.2 In section 3, we remark that \scrJ \prime is indeed the
H2 norm of the dynamical system in (2.7) with C = I, a notion applicable to both
linear and nonlinear systems [20, 44]. Later in section 5, we will use \scrJ \prime to make some
connections between the robustness of a first-order method with its behavior when
perturbed from the optimal solution.

3. Quadratic functions. In order to understand the effect of noise on the dy-
namics, we find it insightful to first focus on the case where the objective function is
quadratic. Let f \in S\mu ,L(\BbbR d) be a quadratic function given by f(x) = 1

2x
\top Qx - p\top x+r,

where Q is symmetric and positive definite with eigenvalues \{ \lambda i\} di=1 listed in increas-
ing order satisfying 0 < \mu = \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda d = L. The gradient of f is given by

\nabla f(x) = Qx - p = Q(x - x\ast ),(3.1)

where x\ast = Q - 1p is the optimal solution to problem (2.1). Plugging the formula for
the gradient \nabla f(yk) from (3.1) into (2.7), we obtain

\xi k+1 = (A+BQC)\xi k  - BQx\ast +Bwk, yk = C\xi k.(3.2)

With \xi \ast equal to x\ast for GD and [x\ast 
\top 
x\ast 

\top 
]\top for AG, in both cases we have \xi \ast = A\xi \ast and

x\ast = C\xi \ast , where A and C are given in (2.4) and (2.6) for GD and AG, respectively.
Therefore, defining \~yk \triangleq yk  - x\ast and \~\xi k \triangleq \xi k  - \xi \ast , (3.2) yields

\~\xi k+1 = AQ
\~\xi k +Bwk, \~yk = C \~\xi k,(3.3)

where AQ is the state-transition matrix given by AQ = A+BQC.
In the absence of noise (when wk = 0 for all k), if \rho (AQ) is less than one, then

we clearly have \~\xi k \rightarrow 0 and \~yk \rightarrow 0 linearly. As a consequence, the suboptimality,
f(xk)  - f\ast , goes to zero linearly as well. On the other hand, when the gradients
are perturbed by random additive noise, as we shall discuss in the next section,
\BbbE [f(xk) - f\ast ] does not go to zero.

2See Appendix E, provided as a supplementary material, where we derive robustness results
based on \scrJ \prime for both GD and AG.
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724 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

3.1. Performance metrics under gradient noise: Rate and robustness.
In this section, we use the dynamical system representation of the algorithms given
in (3.3) to study the limiting behavior of the expected suboptimality \BbbE [f(xk)  - f\ast ].
We show that this sequence converges, i.e., the limit of the expected suboptimality
exists and it is equal to the limit superior in (2.8). We also provide the associated
convergence rate and present an explicit characterization of the limiting value us-
ing insights from robust control theory. More specifically, consider the shifted state
sequence \{ \~\xi k\} k generated according to (3.3). Since wk is zero mean for all k \geq 0
(Assumption 2.1), by taking the expectation of (3.3), we obtain

\BbbE [\~\xi k] = Ak
Q

\~\xi 0 \forall k \geq 0.(3.4)

Therefore, under the assumption that \rho (AQ) < 1, the sequence \{ \BbbE [\~\xi k]\} k converges to
zero with an asymptotic linear rate \rho (AQ). Note that the state sequence \{ \xi k\} k and
the iterates \{ xk\} k can be related by defining T = Id for GD and T = [Id 0d] for AG
so that xk = T\xi k for all k \geq 0.

Recall the robustness definition given in (2.8). In the next lemma, we focus on
the suboptimality sequence, \{ f(xk) - f\ast \} k for quadratic f and we show that the limit,

\scrJ =
1

\sigma 2
lim
k\rightarrow \infty 

\BbbE [f(xk) - f\ast ],(3.5)

exists; moreover, for some \{ \varepsilon k\} k \subset [0,\infty ) such that limk\rightarrow \infty \varepsilon k = 0, we have\bigm| \bigm| \BbbE [f(xk) - f\ast ] - \sigma 2\scrJ 
\bigm| \bigm| \leq \psi 0

\bigl( 
\rho (AQ) + \varepsilon k

\bigr) 2k \forall k \geq 0,(3.6)

where \rho (AQ) is the spectral radius of AQ, and \psi 0 is a constant that may depend on
the initialization x0. This shows that the sequence \{ \BbbE [f(xk) - f\ast ]\} k converges to an
interval around the origin with radius \sigma 2\scrJ , and the convergence is linear with an
asymptotical rate that is arbitrarily close to \rho (AQ)

2. It is therefore natural to define
the normalized radius, \scrJ , as robustness of the system to gradient noise, i.e., if this
radius is bigger, it means that the asymptotic error of the algorithm in terms of the
function value is larger; hence, the algorithm is less robust to the injected noise.

The limit in (3.5) can be evaluated by using the tools from standard H2 theory
arising in robust control of dynamical systems (see, e.g., [26]) as we shall explain below.
The H2 norm is a well-known fundamental metric for quantifying the robustness of a
linear dynamical system to noise in control engineering and has been widely used in
designing the parameters of control systems subject to noise. Given arbitrary matrices
(A,B,C) and D = 0d, consider a linear system as in (2.2) but without feedback \phi .
Suppose there exists \xi \ast and y\ast such that \xi \ast = A\xi \ast and y\ast = C\xi \ast . The H2 norm of
this linear system, denoted by H2(A,B,C), measures the stationary variance of the
output response \{ yk\} to unit white noise input [46], i.e.,

(3.7) H2
2 (A,B,C) \triangleq lim

k\rightarrow \infty 

1

\sigma 2
\BbbE \| yk  - y\ast \| 2.

TheH2 norm admits alternative definitions, which are all equivalent for linear systems
(see, e.g., [44, 46]). When it is clear from the context, we will remove the dependency
of the H2 norm to the system matrices (A,B,C). The H2 norm can be computed as

H2
2 (A,B,C) = Tr

\bigl( 
CX0C

\top \bigr) ,(3.8)
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ROBUST ACCELERATED GRADIENT METHODS 725

where X0 solves the discrete Lyapunov equation:3

AX0A
\top  - X0 +BB\top = 0(3.9)

(see, e.g., [26, 46]). Moreover, if BB\top is positive definite and A is discrete-time stable
(i.e., \rho (A) < 1), the solution admits the following formula:

X0 =

\infty \sum 
k=0

(A\top )kB\top BAk(3.10)

(see, e.g., [46]). We will show in the following lemma that the limit \scrJ in (3.5) exists
for quadratic objectives. Our proof technique is based on relating \scrJ to the H2 norm of
a transformed linear system as follows. We first rewrite the suboptimality f(xk) - f\ast 

in terms of the iterates xk:

f(xk) - f\ast = 1
2 (xk  - x\ast )\top Q(xk  - x\ast ) = 1

2 (T
\~\xi k)

\top Q(T \~\xi k) = (RT \~\xi k)
\top (RT \~\xi k),(3.11)

where we used the fact that xk = T\xi k, and
1
2Q = R\top R is the Cholesky decomposition

of 1
2Q. If we consider the system defined by matrices (AQ, B,RT ), it follows from the

definition of the H2 norm (3.7) and (3.11) that

(3.12) \scrJ = H2
2 (AQ, B, \~R), where \~R \triangleq RT.

By (3.8) and (3.9), we have \scrJ = Tr( \~RX \~R\top ), where X is the solution to

AQXA
\top 
Q  - X +BB\top = 0.(3.13)

Lemma 3.1. Consider the linear dynamical system (3.3) defined by the matrices
(AQ, B,C). If \rho (AQ) < 1, then the limit in (3.5) exists, i.e., \sigma 2\scrJ = limk\rightarrow \infty \BbbE [f(xk) - 
f\ast ], and there exists a nonnegative sequence \{ \varepsilon k\} k such that limk \varepsilon k = 0 and\bigm| \bigm| \BbbE [f(xk) - f\ast ] - \sigma 2\scrJ 

\bigm| \bigm| \leq \psi 0 (\rho (AQ) + \varepsilon k)
2k \forall k \geq 0

holds for some explicitly given positive constant \psi 0 that depends on the initialization
x0. Furthermore, when AQ is symmetric, \varepsilon k = 0 for every k \geq 0.

Proof. Using (3.11) and \scrJ = Tr( \~RX \~R\top ), we obtain

\BbbE [f(xk) - f\ast ] - \sigma 2H2
2 (AQ, B, \~R) = \BbbE [( \~R\~\xi k)

\top ( \~R\~\xi k)] - \sigma 2 Tr( \~RX \~R\top )

= Tr( \~R\BbbE [\~\xi k \~\xi \top k ] \~R\top ) - \sigma 2 Tr( \~RX \~R\top )(3.14)

= Tr( \~R(Vk  - \sigma 2X) \~R\top ),

where Vk \triangleq \BbbE [\xi k\xi \top k ] for k \geq 0. It follows from (3.3) that

Vk = \BbbE [\~\xi k \~\xi \top k ] = \BbbE [(AQ
\~\xi k - 1 +Bwk - 1)(AQ

\~\xi k - 1 +Bwk - 1)
\top ]

= AQVk - 1A
\top 
Q + \sigma 2BB\top (3.15)

holds for all k \geq 1, where in the last equality we used the fact that the random vector
wk - 1 is zero mean, independent of \xi k - 1, and has covariance matrix \BbbE [wk - 1w

T
k - 1] =

\sigma 2Id. Moreover, by (3.13) we have X = AQXA
T
Q + BBT ; hence, subtracting \sigma 2X

from both sides of (3.15), we obtain

3The value ofH2
2 can also be computed as Tr(B\top \~X0B), where \~X0 solves A\top \~X0A - \~X0+C\top C = 0.
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726 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

Vk  - \sigma 2X = AQ(Vk - 1  - \sigma 2X)A\top 
Q = Ak

Q(V0  - \sigma 2X)(A\top 
Q)

k,(3.16)

where the last equality comes from recursively using the first equality. This implies

| Tr( \~R(Vk  - \sigma 2X) \~R\top )| = | Tr( \~RAk
Q(V0  - \sigma 2X)(A\top 

Q)
k \~R\top )| 

= | Tr((V0  - \sigma 2X)( \~RAk
Q)

\top ( \~RAk
Q))| 

\leq m\| V0  - \sigma 2X\| \| \~RAk
Q\| 2 \leq m\| V0  - \sigma 2X\| \| \~R\| 2\| Ak

Q\| 2,(3.17)

where \| .\| is the spectral norm, and the first inequality in (3.17) follows from the Von
Neumann's trace inequality, which states that for any two m\times m matrices U and V
with singular values | | U\| 2 = u1 \geq \cdot \cdot \cdot \geq um and | | V \| 2 = v1 \geq \cdot \cdot \cdot \geq vm, respectively,
we have| Tr(UV )| \leq 

\sum m
i=1 uivi. Finally, it follows from the Gelfand's formula that

there exists a sequence of nonnegative numbers \{ \varepsilon k\} k such that for every k \geq 0,

\| Ak
Q\| 2 \leq (\rho (AQ) + \varepsilon k)

k
and limk \varepsilon k = 0. Note that when AQ is symmetric, we have

\| Ak
Q\| 2 = \rho (AQ)

k so that we can choose \varepsilon k = 0. Inserting this bound into (3.17), we
obtain the desired result.

It is worth noting that for a strongly convex quadratic function in the form of
f(x) = 1

2x
\top Qx  - p\top x + r, a similar line of argument as in Lemma 3.1 shows that

\scrJ \prime in (2.9) is in fact equal to limk\rightarrow \infty 
1
\sigma 2\BbbE [\| xk  - x\ast \| 2] = H2

2 (AQ, B, T ). Next we
focus on the GD and AG algorithms, discuss the dependence of their convergence
rate and robustness on the parameters (stepsize \alpha and momentum \beta ), and show how
to formulate an optimization problem that systematically trades off convergence rate
and robustness.

3.2. Gradient descent method. The dynamical system representation of GD,
choosing the A,B,C as in (2.4), yields

\BbbE [\xi k+1] = AQ\BbbE [\xi k] with AQ = Id  - \alpha Q.

As shown in Lemma 3.1, the convergence rate of GD is given by \rho (AQ)
2. For GD, we

will suppress the dependence of \rho (AQ) on AQ and use the notation \rho (\alpha ) to highlight
the effect of the stepsize \alpha . Since AQ is symmetric, \rho (\alpha ) can be computed as

\rho (\alpha ) = \rho (AQ) = \| AQ\| = max\{ | 1 - \alpha \mu | , | 1 - \alpha L| \} .(3.18)

\alpha \in (0, 2/L) is a necessary condition for global linear convergence; otherwise, \rho (\alpha ) \geq 
1. In particular, it is well-known that the fastest rate is achieved for the stepsize

(3.19) \=\alpha \triangleq argmin
\alpha \geq 0

\rho (AQ) =
2

\mu + L
,

which leads to a convergence rate of \=\rho = 1 - 2
\kappa +1 . The choice of the stepsize affects not

only the rate (see (3.18)) but also the robustness of the GD algorithm to gradient noise.
The following proposition provides an analytical characterization of the robustness \scrJ 
of the GD method as a function of the stepsize, which we denote by \scrJ (\alpha ) to highlight
its dependence on \alpha .

Proposition 3.2. Let f be a quadratic function of the form f(x) = 1
2x

\top Qx  - 
p\top x+r. Consider the GD iterations given by (2.3) with constant stepsize \alpha \in (0, 2/L).
Then the robustness of the GD method is given by

\scrJ (\alpha ) =

d\sum 
i=1

\alpha 2\lambda i
2(1 - (1 - \alpha \lambda i)2)

= \alpha 

d\sum 
i=1

1

2(2 - \alpha \lambda i)
,(3.20)

where 0 < \mu = \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \lambda d = L are the eigenvalues of Q.
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Proof. We first show that without loss of generality we can assume Q is a diagonal
matrix. Let Q = U\Lambda U\top be the eigenvalue decomposition of Q where U is a unitary
matrix and \Lambda = diag(\lambda 1, . . . , \lambda d) is a diagonal matrix containing the eigenvalues of
Q. Multiplying AQ by U\top and U from left and right leads to

U\top AQU = U\top (Id  - \alpha Q)U = Id  - \alpha \Lambda = A\Lambda ,(3.21)

where A\Lambda \triangleq Id  - \alpha \Lambda is a diagonal matrix. Similarly, we multiply the Lyapunov
equation (3.13) from left and right by U\top and U , which yields U\top AQXA

\top 
QU  - 

U\top XU + \alpha 2Id = 0, where we have used the fact that B =  - \alpha Id for the dynami-
cal system representation of the GD method (see (2.4)). It follows from (3.21) that
AQ = U(Id  - \alpha \Lambda )U\top , which when plugged into the Lyapunov equation above yields
(Id  - \alpha \Lambda )U\top XU(Id  - \alpha \Lambda ) - U\top XU +\alpha 2Id = 0. This means that the matrix U\top XU
solves the Lyapunov equation obtained by replacing AQ by A\Lambda in (3.13). Further-

more, the Cholesky decomposition of 1
2\Lambda is equal to

\sqrt{} 
1
2\Lambda 

1/2; thus, the robustness \scrJ ,

corresponding to H2
2 (A\Lambda , B,

\sqrt{} 
1
2\Lambda 

1/2T ), is equal to

1

2
Tr(\Lambda 1/2TU\top XU(\Lambda 1/2T )\top ) =

1

2
Tr(\Lambda 1/2U\top XU\Lambda 1/2) = Tr( \~RX \~R\top ),

where we used T = Id for GD for the first equality and the fact that the Cholesky

decomposition of 1
2Q is (

\sqrt{} 
1
2\Lambda 

1/2U\top )\top (
\sqrt{} 

1
2\Lambda 

1/2U\top ) to obtain the second equality.

Therefore, robustness \scrJ would be invariant if we were to replace Q by \Lambda and solve
the Lyapunov equation (3.13) for (A\Lambda , B) instead of (AQ, B). With this replace-
ment, it is easy to verify that the solution of the Lyapunov equation is X\Lambda =

diag( \alpha 2

1 - (1 - \alpha \lambda 1)2
, . . . , \alpha 2

1 - (1 - \alpha \lambda d)2
)) as A\Lambda and B are both diagonal. Plugging this so-

lution into 1
2 Tr(\Lambda 

1/2X\Lambda \Lambda 
1/2) implies \scrJ (\alpha ) =

\sum d
i=1

\alpha 2\lambda i

2(1 - (1 - \alpha \lambda i)2)
= \alpha 

\sum d
i=1

1
2(2 - \alpha \lambda i)

,

which completes the proof.

Remark 3.1. Proposition 3.2 also shows that the robustness \scrJ (\alpha ) for the GD
method is an increasing function of \alpha . This means choosing a smaller stepsize leads
to GD being more robust, which has been previously observed in the literature for
both additive and multiplicative deterministic noise [18, 33].

Having explicit expressions for both convergence rate and robustness for GD (see
(3.18) and (3.20)), given an allowable deviation \epsilon > 0 from the optimal convergence
rate \=\rho = 1  - 2

\kappa +1 , a natural approach to account for the trade-off between these
two measures is to choose the stepsize \alpha that results in the most robust algorithm
satisfying the rate constraints, i.e., optimizing

min
\alpha \in (0,2/L)

\scrJ (\alpha ) subject to \rho (\alpha ) \leq (1 + \epsilon )\=\rho .(3.22)

This problem is equivalent to the following convex problem for \epsilon \in [0, 2
\kappa  - 1 ) (which

ensures that the upper bound on the rate is less than one and the optimization problem
(3.22) admits a solution):

min
\alpha \in (0,2/L)

\scrJ (\alpha ) subject to
1

1 - \rho 2(\alpha )
\leq 1

1 - (1 + \epsilon )2\=\rho 2
.(3.23)

Indeed, 1/(1 - \rho 2) is a nondecreasing convex function for \rho \in (0, 1) and \rho (\alpha ) is convex
in \alpha ; therefore, both 1/(1 - \rho (\alpha )2) and \scrJ (\alpha ) in (3.20) are convex for \alpha \in (0, 2

L ) and are
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increasing in \alpha . Moreover, (3.23) satisfies the Slater condition. Thus, strong duality
implies that there exists \tau (which is a function of \epsilon ) such that the above minimization
problem is equivalent to the following unconstrained problem:

\alpha \ast (\tau ) \triangleq argmin
\alpha \in (0,2/L)

F\tau (\alpha ) \triangleq \scrJ (\alpha ) + \tau 
1

1 - \rho 2(\alpha )
.(3.24)

The parameter \tau > 0 determines the trade-off between rate and robustness. For
small \tau , the dominant term in the cost would be \scrJ (\alpha ) so that we expect the optimal
stepsize to be small since \scrJ (\alpha ) is an increasing function of \alpha . On the other hand,
for large enough \tau , the convergence rate is the dominant term in the cost; therefore,
one would expect the optimal stepsize (which solves the problem (3.24)) to be close
to \=\alpha which corresponds to the fastest achievable rate \=\rho (see (3.19)). In order to
get more intuition about the effect of the choice of the stepsize parameter, we next
give an illustrative example in dimension d = 2 to show the behavior of the optimal
\alpha \ast (\tau ) as the trade-off parameter \tau is varied from zero to infinity. For computational
tractability, we consider the unconstrained version of the problem given in (3.24).4

Example 3.2. In dimension d = 2, let \tau = 2 and consider the parameters

(3.25) \mu = \lambda 1 = 0.1 and L = \lambda 2 = 1 with \kappa =
L

\mu 
= 10.

The first-order optimality conditions for (3.24) are derived in Proposition A.1, which
is equivalent to a polynomial root finding problem in \alpha for a polynomial of degree 4.
The roots of polynomials can be found up to arbitrary accuracy by calculating the
eigenvalues of the corresponding companion matrix [17], for instance, using the roots
function in MATLAB. After a careful examination of all the roots, we conclude that
the optimal stepsize \alpha \ast that minimizes the cost F\tau (\alpha ) is \alpha \ast \approx 1.5055, which gives the
rate \rho (\alpha \ast ) \approx 0.8494 and robustness \scrJ (\alpha \ast ) \approx 1.9294. This point is marked on Figure 1,
which shows the robustness level as a function of the optimal convergence rate \rho when
we change \tau from zero (corresponds to the rightmost point in the curve) to infinity
(corresponds to the uppermost point in the curve) for the parameters in (3.25).

The left and middle panels of Figure 1 show the convergence rate and robustness
corresponding to the optimal stepsize \alpha \ast as a function of the trade-off parameter \tau . As
\tau goes to 0, the robustness term is more dominant, which requires a smaller stepsize;

0 5 10 15 20
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0.95

1

C
on

ve
rg

en
ce

 r
at

e 

0 5 10 15 20
0

2

4

6

0.8 0.85 0.9 0.95 1
Convergence rate 
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Standard choice of GD
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=2

Fig. 1. Left and middle: The behaviors of the convergence rate \rho and robustness \scrJ computed
at the optimal stepsize \alpha \ast , as a function of the trade-off parameter \tau . Right: The robustness level
as a function of convergence rate again as \tau varies from zero to infinity.

4In Proposition A.1 of the appendix, we derive the first-order conditions for \alpha \ast (\tau ) that allow it
to be computed up to an arbitrary accuracy.
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therefore, \alpha \ast goes to 0 and \rho (\alpha \ast ) thus goes to 1. As \tau becomes larger, the convergence
rate becomes more important, and the stepsize also becomes larger to ensure faster
convergence. In particular, as \tau goes to infinity, \alpha \ast goes to \=\alpha given in (3.19), leading
to the fastest rate, \=\rho = \kappa  - 1

\kappa +1 \approx 0.8182.
Finally, the rightmost panel of Figure 1 illustrates the trade-off between the rate

and robustness. We see that for small \tau , the optimal stepsize \alpha \ast is smaller, which
implies improved robustness but slower convergence. As \tau grows, we achieve a faster
rate at the expense of being less robust to the additive gradient noise. In addition, the
points corresponding to the fastest rate, i.e., \alpha = 2/(\mu +L), and standard parameter
choice \alpha = 1/L for GD have been marked on this trade-off curve.

We see from Figure 1 that smaller values of \rho (or equivalently smaller values of
1

1 - \rho 2 ) are accompanied by larger values of \scrJ . This suggests that the product \scrJ 1
1 - \rho 2

cannot be too small for any choice of the stepsize \alpha . The next lemma shows that
there are some fundamental limits (lower bounds) on how robust the GD can be.

Proposition 3.3. Let \rho (\alpha ) and \scrJ (\alpha ) be given by (3.18) and (3.20), respectively.

Then, the inequality \scrJ (\alpha ) \geq (1 - \rho 2(\alpha ))
\sum d

i=1
1

8\lambda i
holds for any choice of the stepsize

\alpha > 0.

Proof. It follows from (3.18) that for every i \in \{ 1, . . . , d\} , we have \rho (\alpha ) \geq | 1 - \alpha \lambda i| .
This implies that 1

1 - \rho (\alpha )2 \geq 1
1 - (1 - \alpha \lambda i)2

. Multiplying both sides by \alpha 2\lambda i

2(1 - (1 - \alpha \lambda i)2)
and

summing over all i yields 1
1 - \rho 2

\sum d
i=1

\alpha 2\lambda i

2(1 - (1 - \alpha \lambda i)2)
\geq 
\sum d

i=1
\alpha 2\lambda i

2(1 - (1 - \alpha \lambda i)2)2
. Given the

explicit characterization of \scrJ (\alpha ) in Proposition 3.2 (see (3.20)) we obtain

1

1 - \rho 2
\scrJ (\alpha ) \geq 1

2

d\sum 
i=1

\alpha 2\lambda i
(1 - (1 - \alpha \lambda i)2)2

.(3.26)

The right-hand side of (3.26) admits a lower bound as follows:

1

2

d\sum 
i=1

\alpha 2\lambda i
(1 - (1 - \alpha \lambda i)2)2

=
1

2

d\sum 
i=1

\alpha 2\lambda i
(\alpha \lambda i(2 - \alpha \lambda i))2

=
1

2

d\sum 
i=1

1

\lambda i(2 - \alpha \lambda i)2
\geq 

d\sum 
i=1

1

8\lambda i
,

(3.27)

where the last inequality follows from the fact that | 2  - \alpha \lambda i| \leq 2. Using the lower
bound (3.27) along with (3.26) completes the proof.

3.3. Accelerated gradient method. The dynamical system representation of
AG, given A,B,C in (2.6), leads to

AQ =

\biggl[ 
(1 + \beta )(Id  - \alpha Q)  - \beta (Id  - \alpha Q)

Id 0d

\biggr] 
.(3.28)

We will first formulate an analogous problem to (3.24) for the AG method to design
the parameters (\alpha , \beta ) in a way to find a trade-off between the rate and the robustness.
Because AG has the pair (\alpha , \beta ) as design parameters, the analogue of (3.24) is

(\alpha \ast , \beta \ast ) \triangleq arg min
(\alpha ,\beta )\in \scrS 

F\tau (\alpha , \beta ) \triangleq \scrJ (\alpha , \beta ) + \tau 
1

1 - \rho (\alpha , \beta )2
,(3.29)

where \scrJ (\alpha , \beta ) is the robustness to the noise for the system (3.3), \rho (\alpha , \beta ) is the con-
vergence rate of AG with parameters (\alpha , \beta ), and \scrS is the set of all possible choices of
the tuple (\alpha , \beta ) so that the AG iterations are globally convergent, i.e.,
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730 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

Fig. 2. Left: The stability region \scrS = \scrS 1 \cup \scrS 2 \cup \scrS 3 with parameters \mu = 0.7 and L = 1. Right:
The stability region \scrS = \scrS 1 \cup \scrS 2 with parameters \mu = 0.1 and L = 1.

\scrS = \{ (\alpha , \beta ) : \rho (AQ) < 1, \alpha \geq 0, \beta \geq 0\} \subset \BbbR 2.(3.30)

We call \scrS the stability region of AG, in analogy with the stability region of numerical
methods that arise in the discretization of continuous-time differential equations.

We next provide an explicit characterization for the convergence rate and robust-
ness of AG for any given parameters (\alpha , \beta ) \in \scrS . The convergence rate \rho of the AG
method as a function of \alpha and \beta is well-known. Diagonalizing the AQ matrix using
the eigenvalue decomposition of Q, it can be shown after some computations that the
rate \rho = \rho (\alpha , \beta ) admits the formula

\rho (\alpha , \beta ) = \rho (AQ) = max\{ \rho \mu (\alpha , \beta ), \rho L(\alpha , \beta )\} ,(3.31)

where AQ is defined by (3.28) and \rho \lambda is defined for \lambda \in \{ \mu ,L\} as follows:

\rho \lambda (\alpha , \beta ) =

\Biggl\{ 
1
2 | (1 + \beta )(1 - \alpha \lambda )| + 1

2

\surd 
\Delta \lambda if \Delta \lambda \geq 0,\sqrt{} 

\beta (1 - \alpha \lambda ) otherwise,
(3.32)

\Delta \lambda = (1 + \beta )2(1 - \alpha \lambda )2  - 4\beta (1 - \alpha \lambda )

(see, e.g., [33, Appendix A], [38, section 4.3]). The explicit expression (3.31) for the
rate allows us to characterize the set \scrS in the next proposition, whose proof can be
found in the appendix. We illustrate the set \scrS in Figure 2 for different choices of the
parameters \mu and L.5

Proposition 3.4. Let \scrS be the stability set of Nesterov's accelerated method de-
fined by (3.30). Then its closure is given by the union of the following three sets:

\scrS 1 :=

\biggl\{ 
(\alpha , \beta ) : 0 \leq \alpha \leq 1

L
, 0 \leq \beta (1 - \alpha \mu ) \leq 1

\biggr\} 
,

\scrS 2 :=

\biggl\{ 
(\alpha , \beta ) :

1

L
< \alpha \leq min

\biggl\{ 
2

L
,
1

\mu 

\biggr\} 
, \alpha L - 1 \leq 1

2\beta + 1
, \beta (1 - \alpha \mu ) \leq 1

\biggr\} 
,

\scrS 3 :=

\biggl\{ 
(\alpha , \beta ) :

1

\mu 
\leq \alpha \leq 2

L
,\alpha L - 1 \leq 1

2\beta + 1

\biggr\} 
,

(3.33)

with the convention that \scrS 3 is the empty set if \mu < L
2 .

5We note that the stability region of a second-order difference equation that arises in accelerated
algorithms that are sublinearly convergent for weakly convex quadratic functions has been studied
in [19]; however, these results do not apply to the set \scrS as we do not require the rate to be accelerated
(we consider not only accelerated rates but also any rate \rho less than one) and we consider strongly
convex functions instead of weakly convex functions.
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ROBUST ACCELERATED GRADIENT METHODS 731

The next proposition gives a characterization of the robustness \scrJ (\alpha , \beta ) of AG,
whose proof can be found in Appendix C.

Proposition 3.5. Let f be a quadratic function of the form f(x) = 1
2x

\top Qx  - 
p\top x+r. Consider the AG iterations given by (2.5) with parameters (\alpha , \beta ) \in \scrS . Then
the robustness of the AG method is given by

\scrJ (\alpha , \beta ) =

d\sum 
i=1

u\alpha ,\beta (\lambda i),(3.34)

where \mu = \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda d = L are the eigenvalues of Q and

(3.35) u\alpha ,\beta (\lambda ) \triangleq \alpha 
1 + \beta (1 - \alpha \lambda )

2(1 - \beta (1 - \alpha \lambda ))(2 + 2\beta  - \alpha \lambda (1 + 2\beta ))
.

In the special case, choosing \beta = 0 reduces to the formula (3.20) derived for GD.

Since we have an exact characterization of \scrJ (\alpha , \beta ), we can derive the optimality
conditions for the problem (3.29) by an approach similar to Proposition A.1, where
the optimizer can be characterized as a root of some polynomial. In dimension d =
2, given parameters \mu and L, the optimizer is easy to compute. However, in high
dimensions, this is computationally expensive as it would require determining all the
eigenvalues of Q, which can be as expensive as optimizing the objective function f .
Nevertheless, exploiting the convexity properties of the function u\alpha ,\beta (\lambda ), we develop
a tractable upper bound for \scrJ (\alpha , \beta ) that only depends on \mu and L, hence is tractable.
Moreover, in the numerical experiments section, we present experiments illustrating
that this approach can lead to good performance in terms of trading the speed and
the robustness of an algorithm.

To develop this upper bound, first, we show in Lemma D.1 that the function
u\alpha ,\beta (\lambda ) defined in (3.35) is convex in \lambda \in [\mu ,L] for fixed (\alpha , \beta ) \in \scrS . Therefore, its
maximum is attained at one of the endpoints of this interval, i.e.,

u\alpha ,\beta (\lambda ) \leq \=u\alpha ,\beta \triangleq max [u\alpha ,\beta (\mu ), u\alpha ,\beta (L)] for \lambda \in [\mu ,L].

Substituting this upper bound in (3.34) and (3.29) leads to

\scrJ (\alpha , \beta ) \leq \=\scrJ (\alpha , \beta ) \triangleq d\=u\alpha ,\beta (3.36)

and the relaxed optimization problem is

(\alpha \ast , \beta \ast ) \triangleq arg min
(\alpha ,\beta )\in \scrS 

\=F\tau (\alpha , \beta ) \triangleq \=\scrJ (\alpha , \beta ) + \tau 
1

1 - \rho (\alpha , \beta )2
.(3.37)

This objective only depends on \mu and L and is differentiable everywhere in the interior
of the stability region \scrS except when the first term is not differentiable, i.e., when
u\alpha ,\beta (\mu ) = u\alpha ,\beta (L), or the second term is not differentiable, i.e., when \rho \mu = \rho L
or \Delta \mu = 0 or \Delta L = 0. Furthermore, following a similar approach as in Example
3.2, the first-order optimality conditions with respect to \alpha and \beta result in low-order
polynomials (which are independent of the dimension d) which can be solved efficiently
up to any accuracy. Thus, other than checking the nondifferentiable points of \=F\tau , the
bottleneck in computational complexity is determined by computing the roots of a
polynomial with a small degree (whose degree is independent from the dimension d),
which is easy to compute even in high dimensions.
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732 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

4. Strongly convex functions. In this section, we generalize our analysis to
smooth strongly convex functions f \in S\mu ,L(\BbbR d). Note that we can rewrite (2.7) as

\xi k+1 = A\xi k +B(\nabla f(yk) + wk), yk = C\xi k,(4.1)

where wk \in \BbbR d models the additive noise and satisfies Assumption 2.1. Similar to the
previous section, we define \~yk \triangleq yk  - x\ast and \~\xi k \triangleq \xi k  - \xi \ast , where \xi \ast is equal to x\ast 

for GD and [x\ast 
\top 
x\ast 

\top 
]\top for AG, and in both cases we have \xi \ast = A\xi \ast and x\ast = C\xi \ast ,

where A and C are given in (2.4) and (2.6) for GD and AG, respectively. We use
the equation xk = T\xi k to relate xk and \xi k for any k \geq 0, where T = Id for GD
and T = [Id 0d] for AG. To simplify the notation, we define \=f : \BbbR m \rightarrow \BbbR such that
\=f(\xi ) = f(T\xi ) for all \xi \in \BbbR m, which means \=f(\xi k) = f(xk) for all k \geq 0.

4.1. Rate and robustness. The goal is to extend the definitions of rate and
robustness from the quadratic case to general strongly convex functions. We will use

\scrJ = lim sup
k\rightarrow \infty 

1

\sigma 2
\BbbE [f(xk) - f\ast ](4.2)

(provided also in (2.8)) to define the robustness of an algorithm and study the con-
vergence rate of the expected suboptimality to an interval around zero with radius
\sigma 2\scrJ . For both GD and AG, our main results provide upper bounds of the form

\BbbE [f(xk) - f\ast ] \leq \rho 2k\psi 0 + \sigma 2R \forall k \geq 0,(4.3)

where \psi 0, R, and 0 < \rho < 1 are nonnegative numbers all of which depend on algorithm
parameters and the initial point x0. Clearly, R is an upper bound on \scrJ ; we will show
in this section that our bounds are tight. Moreover, we also recover the fastest known
rates in the literature in the absence of noise (\sigma =0). Our upper bounds only depend
on \mu and L and are computationally tractable and explicit in some cases. With
these upper bounds, one can formulate an optimization problem similar to that of
the previous section to find the algorithm parameters that can achieve a particular
trade-off between rate and robustness.

4.2. Rate and robustness trade-off analysis using Lyapunov functions.
We use a Lyapunov function approach to provide a bound as in (4.3) for both GD and
AG methods. In particular, we consider a family of Lyapunov functions parameterized
by a nonnegative constant c and a positive semidefinite matrix P as

VP,c(\xi ) \triangleq VP (\xi ) + c( \=f(\xi ) - f\ast ),(4.4)

where VP (\xi ) \triangleq (\xi  - \xi \ast )\top P (\xi  - \xi \ast ), and study the change in the Lyapunov function
VP,c(\xi ) along \{ \xi k\} k generated by the dynamical system representation (4.1).

Our first result shows how for some positive semidefinite matrix P and c = 0,
Vp(\xi ) \triangleq VP,0(\xi ) evolves along the iterations and provide a characterization of the
difference \BbbE [VP (\xi k+1)] - \rho 2\BbbE [VP (\xi k)] for any k \geq 0 and \rho \geq 0.

Lemma 4.1. Consider the Lyapunov function VP (\xi ) = (\xi  - \xi \ast )\top P (\xi  - \xi \ast ), where
P \succeq 0. Then, we have

\BbbE [VP (\xi k+1)] = \BbbE 

\Biggl[ \biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \top \biggl[ 
A\top PA A\top PB
B\top PA B\top PB

\biggr] \biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \Biggr] 
+ \sigma 2 Tr(B\top PB).(4.5)
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Proof. Since \xi \ast = A\xi \ast , (4.1) implies \~\xi k+1 = A\~\xi k + B(\nabla f(yk) + wk) for k \geq 0.
Therefore,

\BbbE [VP (\xi k+1)] = \BbbE [\~\xi \top k+1P
\~\xi k+1] = \BbbE [(A\~\xi k +B(\nabla f(yk)+wk))

\top P (A\~\xi k+B(\nabla f(yk)+wk))]

= \BbbE 

\Biggl[ \biggl[ 
\~\xi k

\nabla f(yk)

\biggr] \top \biggl[ 
A\top PA A\top PB
B\top PA B\top PB

\biggr] \biggl[ 
\~\xi k

\nabla f(yk)

\biggr] \Biggr] 
+ \sigma 2 Tr(B\top PB).(4.6)

where we use the fact that wk is zero mean and independent from \~\xi k and yk and the
assumption that \BbbE (wkw

T
k ) = \sigma 2Id to derive (4.6).

Corollary 4.2. For any \rho \in (0, 1) and P \in \BbbS m+ , VP (\xi ) satisfies

\BbbE [VP (\xi k+1)] - \rho 2\BbbE [VP (\xi k)] = \BbbE 

\Biggl[ \biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \top 
\Phi (A,B, P, \rho )

\biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \Biggr] 
+\sigma 2 Tr(B\top PB),

(4.7)

where

\Phi (A,B, P, \rho ) \triangleq 

\biggl[ 
A\top PA - \rho 2P A\top PB

B\top PA B\top PB

\biggr] 
.(4.8)

We next show how to provide upper bounds on the improvement in \BbbE [VP,c(\xi k)] by
imposing MIs. In particular, given A, B, and C defining the first-order algorithm, we
assume there exists a symmetric matrix X \in \BbbS m+d such that

X \succeq \Phi (A,B, P, \rho )(4.9)

for some P \in \BbbS m+ and \rho \in (0, 1). Moreover, we assume that for some nonnegative
constants \Gamma and c, the same \rho and X satisfy

\BbbE 

\Biggl[ \biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \top 
X

\biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \Biggr] 
\leq c(\rho 2\BbbE [ \=f(\xi k) - f\ast ] - \BbbE [ \=f(\xi k+1) - f\ast ] + \sigma 2\Gamma )(4.10)

for every k \geq 0; hence, it follows from (4.9) and (4.10) along with (4.7) that

\rho 2\BbbE [VP,c(\xi k)] + \sigma 2(Tr(B\top PB) + c\Gamma ) \geq \BbbE [VP,c(\xi k+1)] \forall k \geq 0.

Thus, for all k \geq 0, we have

\BbbE [VP,c(\xi k)] \leq \rho 2kVP,c(\xi 0) +
1 - \rho 2k

1 - \rho 2
\sigma 2RP , RP \triangleq Tr(B\top PB) + c\Gamma .(4.11)

This MI-based approach has been used in the literature to study the convergence rate
of first-order methods, e.g., [28, 33]. Here we use it to characterize their rate and
robustness under additive gradient noise.

4.3. Gradient descent method for strongly convex functions. Recall the
GD update rule

xk+1 = xk  - \alpha (\nabla f(xk) + wk),(4.12)

which admits the dynamical system representation in (4.1) with A,B,C as in (2.4).
The next theorem extends the result of Proposition 3.2 to general strongly convex
functions and characterizes the behavior of \{ xk\} k under additive gradient error.
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Proposition 4.3. Let f \in S\mu ,L(\BbbR d), and consider the GD iterations given by
(4.12). Assume there exist \rho \in (0, 1) and p > 0 such that

X0 \succeq \Phi (A,B, P, \rho )(4.13)

holds, where X0 = [
2\mu LId  - (\mu +L)Id

 - (\mu +L)Id 2Id
] and P = pId. Then for all k \geq 0,

\BbbE [\| xk  - x\ast \| 2] \leq \rho 2k \| x0  - x\ast \| 2 + 1 - \rho 2k

1 - \rho 2
\sigma 2\alpha 2d.(4.14)

Proof. Noting that \xi k = yk for GD, it follows from (1.2) with x = \xi k and y = x\ast 

that (4.10) holds for X = X0 and c = 0. Moreover, (4.13) implies that (4.9) holds for
X = X0 and P = p\otimes Id; therefore, (4.11) yields

p\BbbE [\| xk  - x\ast \| 2] \leq \rho 2kp \| x0  - x\ast \| 2 + 1 - \rho 2k

1 - \rho 2
\sigma 2 Tr(B\top PB) \forall k \geq 0.(4.15)

With B =  - \alpha Id for GD, we have Tr(B\top PB) = \alpha 2pd and this completes the proof.

Note that for a fixed \alpha , a smaller \rho makes both terms of (4.14) smaller as 1 - \rho 2k

1 - \rho 2

is an increasing function of \rho . If \alpha \in (0, 2/L), it was shown in [33] that there exist
(p, \rho ) such that the MI in (4.13) holds; moreover, for a given \alpha fixed, the smallest
\rho \in (0, 1) for which such a positive p exists is equal to

\rho GD(\alpha ) = max\{ | 1 - \alpha \mu | , | 1 - \alpha L| \} ,(4.16)

as in (3.18) given for quadratic functions. Using \rho = \rho GD(\alpha ) in (4.14) leads to the
following upper bound for GD.6

Corollary 4.4. Let f \in S\mu ,L(\BbbR d). Consider the GD iterations given by (4.12)
with constant stepsize \alpha \in (0, 2/L). Then, for all k \geq 0,

\BbbE [f(xk) - f\ast ] \leq \rho GD(\alpha )2k \psi 0 +
\Bigl( 
1 - \rho GD(\alpha )2k

\Bigr) 
\sigma 2RGD(\alpha ),

where \psi 0 = L
2 \| x0  - x\ast \| 2 and \rho GD(\alpha ) is given in (4.16). As a consequence,

\scrJ \leq RGD(\alpha ), where RGD(\alpha ) \triangleq 
L\alpha 2d

2(1 - \rho 2GD(\alpha ))
.(4.17)

Proof. Using the fact that f(xk) - f(x\ast ) \leq L
2 \| xk  - x\ast \| 2 for k \geq 0 together with

Proposition 4.3 yields the desired result.

Note that by substituting \rho GD in (4.17), we obtain RGD = \scrO (\alpha d). This bound
is tight, as Proposition 3.2 implies that for quadratic functions \scrJ = \Theta (\alpha d).

4.4. Accelerated gradient method for strongly convex functions. We
next consider the AG algorithm with gradient noise given by

xk+1 = yk  - \alpha (\nabla f(yk) + wk),(4.18a)

yk = (1 + \beta )xk  - \beta xk - 1.(4.18b)

As before, these iterations admit the dynamical system representation in (4.1) with
A,B,C as in (2.6). We use the following result, which extends Lemma 3 in [28] to
the case with noisy gradient.

6Trivially, \scrJ \prime \leq \alpha 2d
1 - \rho GD(\alpha )2

. More details are provided in Appendix E as supplementary material.
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Lemma 4.5. Let f \in S\mu ,L(\BbbR d), and consider the dynamical system representation
of AG with \xi k = [x\top k , x

\top 
k - 1]

\top . Then, for any \rho \in (0, 1),\biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \top \bigl( 
\rho 2X1 + (1 - \rho 2)X2

\bigr) \biggl[ \xi k  - \xi \ast 

\nabla f(yk)

\biggr] 
\leq \rho 2(f(xk) - f\ast ) - (f(xk+1) - f\ast )

+
L\alpha 2

2
\| wk\| 2  - \alpha (1 - L\alpha )\nabla f(yk)\top wk

holds for all k \geq 0, where X1 = \~X1 \otimes Id and X2 = \~X2 \otimes Id with

\~X1 =
1

2

\left[  \beta 2\mu  - \beta 2\mu  - \beta 
 - \beta 2\mu \beta 2\mu \beta 
 - \beta \beta \alpha (2 - L\alpha )

\right]  , \~X2 =
1

2

\left[  (1 + \beta )2\mu  - \beta (1 + \beta )\mu  - (1 + \beta )
 - \beta (1 + \beta )\mu \beta 2\mu \beta 
 - (1 + \beta ) \beta \alpha (2 - L\alpha )

\right]  .
Proof. Setting x = xk and y = yk in the second inequality in (1.1) leads to

f(xk) - f(yk) \geq \nabla f(yk)\top (xk  - yk) +
\mu 

2
\| xk  - yk\| 2.(4.19)

Similarly, setting x = xk+1 = yk  - \alpha \nabla f(yk) - \alpha wk and y = yk in (1.1) yields

f(yk) - f(xk+1) \geq \nabla f(yk)\top (\alpha \nabla f(yk) + \alpha wk) - 
L\alpha 2

2
\| \nabla f(yk) + wk\| 2

=
\alpha 

2
(2 - L\alpha )\| \nabla f(yk)\| 2  - 

L\alpha 2

2
\| wk\| 2 + \alpha (1 - L\alpha )\nabla f(yk)\top wk.

(4.20)

Summing up (4.19) and (4.20) implies

f(xk) - f(xk+1) \geq 
1

2

\biggl[ 
xk  - yk
\nabla f(yk)

\biggr] \top \biggl[ 
\mu Id Id
Id \alpha (2 - L\alpha )Id

\biggr] \biggl[ 
xk  - yk
\nabla f(yk)

\biggr] 
 - L\alpha 2

2
\| wk\| 2 + \alpha (1 - L\alpha )\nabla f(yk)\top wk.

(4.21)

Note that xk  - yk = xk  - ((1 + \beta )xk  - \beta xk - 1) = \beta (xk - 1  - xk); hence, (4.21) implies

f(xk) - f(xk+1)+
L\alpha 2

2
\| wk\| 2 - \alpha (1 - L\alpha )\nabla f(yk)\top wk \geq 

\left[  xk - 1  - x\ast 

xk  - x\ast 

\nabla f(yk)

\right]  \top 

X1

\left[  xk - 1  - x\ast 

xk  - x\ast 

\nabla f(yk)

\right]  .
(4.22)

Next, in a similar way, setting x = x\ast and y = yk in (1.1), and summing the second
inequality with (4.20) leads to

f(x\ast ) - f(xk+1)+
L\alpha 2

2
\| wk\| 2 - \alpha (1 - L\alpha )\nabla f(yk)\top wk \geq 

\left[  xk - 1  - x\ast 

xk  - x\ast 

\nabla f(yk)

\right]  \top 

X2

\left[  xk - 1  - x\ast 

xk  - x\ast 

\nabla f(yk)

\right]  .
(4.23)

Multiplying (4.22) by \rho 2 and (4.23) by 1  - \rho 2, and summing them will lead to the
desired result.
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736 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

Proposition 4.6. Let f \in S\mu ,L(\BbbR d), and consider the AG iterations given by
(4.18). Assume there exist \rho \in (0, 1), P \in \BbbS 2d+ , and c0, c \geq 0 such that

c0X0 + cX(\rho ) \succeq \Phi (A,B, P, \rho ), where(4.24)

X0 =

\biggl[ 
2\mu L C\top C  - (\mu + L)C\top 

 - (\mu + L)C 2Id

\biggr] 
, X(\rho ) = \rho 2X1 + (1 - \rho 2)X2

for X1 and X2 defined in Lemma 4.5. Then the following bounds hold for all k \geq 0:

\BbbE [VP,c(\xi k)] \leq \rho 2kVP,c(\xi 0) +
1 - \rho 2k

1 - \rho 2
\sigma 2\alpha 2

\Bigl( c
2
Ld+Tr(P11)

\Bigr) 
,(4.25)

where P11 \in \BbbS d+ is the submatrix of P formed by its first d rows and d columns.

Proof. Using (1.2) for x = yk and y = x\ast along with the fact yk = C\xi k yields\biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] \top 
X0

\biggl[ 
\xi k  - \xi \ast 

\nabla f(yk)

\biggr] 
\leq 0.(4.26)

This inequality along with Lemma 4.5 implies that (4.10) holds for X = c0X0+cX(\rho )
and \Gamma = 1

2L\alpha 
2d. Moreover, (4.24) implies that (4.9) holds for this X. Therefore,

(4.11) holds and Tr(B\top PB) = \alpha 2 Tr(P11) completes the proof.

As stated in the previous proposition, the MI in (4.24) provides us with (P, \rho )
pairs and through (4.25) we obtain an upper bound on supk \BbbE [VP,c(\xi k)], which leads to
a bound R on \scrJ . However, solving this 2d\times 2dMI becomes intractable as d increases.
To keep this MI invariant of the dimension, we restrict our attention to the case that
P is in the form of \~P \otimes Id, where \~P is a 2\times 2 symmetric positive semidefinite matrix;
hence, (4.24) becomes a 3\times 3 MI. The following corollary shows the robustness bound
when P = \~P \otimes Id for some \~P \in \BbbS 2+.

Corollary 4.7. Let f \in S\mu ,L(\BbbR d), and consider the AG iterations given by

(4.18) with parameters \alpha and \beta . Assume there exist \rho \in (0, 1), \~P \in \BbbS 2+, c0 \geq 0,
and c > 0 such that c0X0 + cX(\rho ) \succeq \Phi (A,B, P, \rho ) with X0 defined in Theorem 4.6,
X1, X2 defined in Lemma 4.5, and P = \~P \otimes Id. Then for all k \geq 0,

\BbbE [f(xk) - f\ast ] \leq \rho 2k \psi 0 +
\Bigl( 
1 - \rho 2k

\Bigr) 
\sigma 2RAG(\alpha , \beta ),(4.27)

RAG(\alpha , \beta ) \triangleq 

\left\{         
L\alpha 2d

2(1 - \rho 2)

cL+ 2 \~P11

cL+ 2( \~P11  - \~P 2
12/

\~P22)
, \~P22 > 0,

L\alpha 2d

2(1 - \rho 2)
, \~P22 = 0,

(4.28)

where \psi 0 = 1
cVP,c(\xi 0). As a consequence, \scrJ \leq RAG(\alpha , \beta ).

Proof. Note that since \~P \in \BbbS 2+, we have \~P22 \geq 0. If \~P22 > 0, then using Schur

complements, \~P can be written as sum of two positive semidefinite matrices:

\~P =

\biggl[ 
\~P11  - \~P 2

12/
\~P22 0

0 0

\biggr] 
+

\biggl[ 
\~P 2
12/

\~P22
\~P12

\~P12
\~P22

\biggr] 
.

Hence, VP (\xi k) \geq ( \~P11  - \~P 2
12/

\~P22)\| xk  - x\ast \| 2. On the other hand, if \~P22 = 0, then
\~P \in \BbbS 2+ implies that \~P12 = 0 as well and we get VP (\xi k) \geq \~P11\| xk  - x\ast \| 2. In either
case, substituting the derived lower bounds on VP (\xi k) in (4.25) and using the facts
that 2

L (f(xk) - f\ast ) \leq \| xk  - x\ast \| 2 and Tr(B\top PB) = Tr(BB\top P ) = \alpha 2 \~P11d completes
the proof.
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ROBUST ACCELERATED GRADIENT METHODS 737

Remark 4.1. Note that for \alpha \in (0, 2
L ), setting \beta = 0 in AG yields GD algorithm

with stepsize \alpha . Selecting c0 = 1, c = 0, and \~P = [ \~p 0
0 0

], we observe that \~p = L2

satisfies (4.24); therefore, Corollary 4.7 implies that \scrJ \leq L\alpha 2d
2(1 - \rho GD(\alpha )2) for GD, and

hence, the result in (4.17) can be derived as a special case of Corollary 4.7.

Using this result, the next corollary characterizes the rate and robustness of the
AG method with a particular parameterization.

Corollary 4.8. Letting f \in S\mu ,L(\BbbR d), consider the AG iterations given by (4.18)

with constant stepsize \alpha \in (0, 1/L] and \beta (\alpha ) =
1 - \surd 

\alpha \mu 

1+
\surd 
\alpha \mu . Then, for all k \geq 0,

\BbbE [f(xk) - f\ast ] \leq \rho AG(\alpha )
2k \psi 0 +

\Bigl( 
1 - \rho AG(\alpha )

2k
\Bigr) 
\sigma 2RAG(\alpha ),

where \psi 0 = VP,1(\xi 0), \rho AG(\alpha ) \triangleq 
\sqrt{} 
1 - \surd 

\alpha \mu , and RAG(\alpha ) \triangleq \alpha d
2(1 - \rho AG(\alpha )2) (1 + \alpha L);

hence, \scrJ \leq RAG(\alpha ) =
\surd 
\alpha d

2
\surd 
\mu (1 + \alpha L).

Proof. [1, Theorem 2.3] guarantees that for any \alpha \in (0, 1/L], the MIX(\rho AG(\alpha )) \succeq 
\Phi (A,B, P (\alpha ), \rho AG(\alpha )) holds for A and B as in (2.6) corresponding to given \alpha and

\beta (\alpha ) =
1 - \surd 

\alpha \mu 

1+
\surd 
\alpha \mu , where P (\alpha ) =

\~P (\alpha )\otimes Id for

\~P (\alpha ) \triangleq 

\left[  \sqrt{} 
1
2\alpha \sqrt{} 

\mu 
2  - 

\sqrt{} 
1
2\alpha 

\right]  \Bigl[ \sqrt{} 1
2\alpha 

\sqrt{} 
\mu 
2  - 

\sqrt{} 
1
2\alpha 

\Bigr] 
.(4.29)

Therefore, the desired result follows from Corollary 4.7.

It is worth noting that although solving c0X0+cX(\rho ) \succeq \Phi (A,B, P, \rho ) considering
only lower-dimensional P = \~P \otimes Id is more restrictive, this small-dimensional MI can

still recover the well-known rate \=\rho AG =

\sqrt{} 
1 - 

\sqrt{} 
1
\kappa for the deterministic case, i.e.,

\sigma = 0, in the literature [37] by setting the stepsize \alpha = 1
L and momentum parameter

\beta (\alpha ) =
\surd 
\kappa  - 1\surd 
\kappa +1

. As shown in [28], this claim can be verified by setting P = \~P (\alpha )\otimes Id
with \alpha = 1/L. In addition, for the case L = \mu , substituting \beta (\alpha ) in the explicit

expression of \scrJ in (3.34) for quadratic functions, we obtain \scrJ (\alpha , \beta (\alpha )) = \Theta (
\surd 
\alpha d\surd 
\mu ),

which implies that RAG is a tight bound for \scrJ in terms of \alpha dependency.
It is worth noting that the best rate known in the literature for general f \in 

S\mu ,L(\BbbR d) is \rho \ast =
\sqrt{} 

1 - 
\surd 
2\kappa  - 1/\kappa provided in [42, Theorem 7]. However, this rate

differs from \=\rho AG just by a constant factor, i.e.,
1 - \rho 2

\ast 
1 - \=\rho 2

AG
\leq 

\surd 
2. Moreover, for the

special case of f \in S\mu ,L(\BbbR d) being a quadratic function, the best linear rate for AG
is 1  - 2/

\surd 
3\kappa + 1 (see [33, Proposition 1] for an asymptotic analysis and [6] for a

non-asymptotic analysis). Therefore, we can conclude that \rho = \scrO (
\sqrt{} 
1 - 1/

\surd 
\kappa ) and

\rho = \scrO (1 - 1/
\surd 
\kappa ) denote the best known \kappa dependency of the rate coefficient for general

and quadratic f \in S\mu ,L(\BbbR d), respectively. That said, since the focus of section 4
is on general strongly convex functions f \in S\mu ,L(\BbbR d), in the following subsection
in order to approximate the rate-robustness trade-off curves for AG, we consider
\=\rho AG =

\sqrt{} 
1 - 1/

\surd 
\kappa as the reference rate as it exhibits the optimal \kappa dependency.

4.5. Approximating the rate and robustness trade-off curve. Similar to
(3.22), (3.23), and (3.24) in section 3, there are several ways of forming an optimization
problem to trade off the rate and robustness. In this section we focus on strongly
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738 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

convex objectives f \in S\mu ,L(\BbbR d), where unlike the quadratic objectives, we have access
to upper bounds for the robustness measure rather than exact expressions. Therefore,
we adopt a formulation similar to (3.22) and vary \epsilon to characterize the rate-robustness
trade-off. In fact, the parameter \epsilon shows how much we desire to lose in terms of
convergence rate to gain robustness.

In the rest, let \=\rho GD \triangleq 1 - 2
\kappa +1 and \=\rho AG \triangleq 

\sqrt{} 
1 - 

\sqrt{} 
1/\kappa denote the linear conver-

gence rates for GD and AG from the literature for f \in S\mu ,L(\BbbR d) [37]. In this section,
we assume \kappa \not = 1, as the \kappa = 1 case is trivial. We also let \scrJ GD,\epsilon and \scrJ AG,\epsilon be the best

robustness value GD and AG can achieve corresponding to rate \rho GD,\epsilon \triangleq (1 + \epsilon )\=\rho GD

and \rho AG,\epsilon \triangleq (1 + \epsilon )\=\rho AG, respectively. In the rest of this section, we discuss method-
ologies to derive tractable upper bounds on \scrJ GD,\epsilon and \scrJ AG,\epsilon .

In particular, for GD, the best robustness level while asking for linear convergence
with rate \rho GD,\epsilon or faster is obtained by solving

argmin
\alpha \in (0,2/L)

RGD(\alpha ) subject to \rho GD(\alpha ) \leq \rho GD,\epsilon ,(4.30)

where \rho GD(\alpha ) is given in (4.16). The function \rho GD(\alpha ) is convex and piecewise linear
in \alpha over the interval [0, 2/L] with a unique minimum at \=\rho GD and it satisfies \rho GD(0) =
\rho GD(2/L) = 1 on the boundary points. Therefore, it follows from this property that,
given \epsilon \in (0, 2

\kappa  - 1 ), there are exactly two \alpha \epsilon > 0 values such that \rho GD(\alpha \epsilon ) = \rho GD,\epsilon 

which we can explicitly compute as \alpha \epsilon = 2 - \epsilon (\kappa  - 1)
L+\mu or \alpha \epsilon = 2+\epsilon (\kappa  - 1)/\kappa 

L+\mu . The former

value is strictly smaller as \varepsilon > 0 and \kappa > 1 here. From the formula (4.17), we have

RGD(\alpha \varepsilon ) =
L\alpha 2

\varepsilon d

2(1 - \rho 2
GD,\epsilon )

. Clearly one should select the smaller \alpha \epsilon value to minimize the

robustness bound, i.e., a choice of \alpha \epsilon =
2 - \epsilon (\kappa  - 1)

L+\mu leads to \rho GD,\epsilon rate with a robustness

bound RGD(\alpha \epsilon ), i.e., \scrJ GD,\epsilon \leq RGD(\alpha \epsilon ).
For AG, we can also write an analogous optimization problem in order to trade

rate with robustness:

argmin
\alpha ,\beta \geq 0, \~P\in \BbbS 2+

\rho ,c0,c\geq 0

\{ RAG(\alpha , \beta ) : \rho \leq \rho AG,\epsilon , c0X0 + cX(\rho ) \succeq \Phi (A,B, \~P \otimes Id, \rho )\} (4.31)

withX0, X(\rho ), RAG defined in Corollary 4.7---since we can scale \~P with c > 0, without
loss of generality, we restrict our attention to the case c = 1 for treating the c > 0
case. This problem is in general nonconvex and not easy to solve. Here, we consider
two different ways to generate rate-robustness trade-off curves.

The first approach is similar to the one we used for GD. In particular, con-

sider Corollary 4.8, for \alpha \in (0, 1/L], choosing \beta =
1 - \surd 

\alpha \mu 

1+
\surd 
\alpha \mu implies that \rho AG(\alpha ) =\sqrt{} 

1 - \surd 
\alpha \mu . We get \rho AG(\alpha \epsilon ) = \rho AG,\epsilon for

\alpha \epsilon = [1 - \rho 2AG,\epsilon ]
2/\mu =

\biggl[ 
1 - (1 + \epsilon )2

\biggl( 
1 - 1\surd 

\kappa 

\biggr) \biggr] 2\Big/ 
\mu ,(4.32)

with \epsilon \in 
\bigl[ 
0,
\sqrt{} \surd 

\kappa \surd 
\kappa  - 1

 - 1
\bigr) 
to make sure the rate is smaller than 1. Thus, choosing

(\alpha , \beta ) = (\alpha \epsilon , \beta \epsilon ) with \beta \epsilon \triangleq 1 - \surd 
\alpha \epsilon \mu 

1+
\surd 
\alpha \epsilon \mu 

guarantees the rate \rho AG,\epsilon . In addition, Corol-

lary 4.8 implies the robustness bound RAG(\alpha \epsilon ) = \scrO (
\surd 
\alpha \epsilon d\surd 
\mu ) for this case.

For the second approach, we first grid the (\alpha , \beta ) \in (0, 2
L ]\times [0, 1] parameter space

and use a numerical approach to find the best parameters for each \epsilon , i.e., we solve
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a low-dimensional (in \BbbR 4) convex semidefinite programming (SDP) problem for each
possible (\alpha , \beta ) value from the grid, and we will pick the best one to determine the
robustness bound. The SDPs arise from a convex approximation to the problem (4.31)
as we now elaborate further. First, we note that RAG(\alpha , \beta ) defined in (4.28) is not
convex in \~P ; therefore, to obtain a tractable problem, we replace RAG(\alpha , \beta ) with a
convex upper bound. In particular, using Proposition 4.6, it is straightforward to see

RAG(\alpha , \beta ) \leq \=RAG(\alpha , \beta ) \triangleq 
\alpha 2d

2(1 - \rho 2)
(L+ 2 \~P11)

whenever there exists \rho \in (0, 1), \~P \in \BbbS 2+ and \=c \geq 0 such that7

\=cX0 +X(\rho ) \succeq \Phi (A,B, \~P \otimes Id, \rho ).(4.33)

Note given \epsilon \in [0,
\sqrt{} \surd 

\kappa \surd 
\kappa  - 1

 - 1), setting \rho = \rho AG,\epsilon within the MI in (4.33), we get a

linear MI in \=c \geq 0 and \~P \in \BbbS 2+ for fixed (\alpha , \beta ). Moreover, \=RAG(\alpha , \beta ) is linear in \~P .
Hence, given the trade-off parameter \epsilon > 0, we will approximately solve

\=\scrR (\epsilon ) \triangleq min
\alpha ,\beta ,\=c\geq 0, \~P\in \BbbS 2+

\{ \=RAG(\alpha , \beta ) : \=cX0 +X(\rho AG,\epsilon ) \succeq \Phi (A,B, \~P \otimes Id, \rho AG,\epsilon )\} (4.34)

with X0 and X(\rho ) defined in Corollary 4.7, and \=RAG as given above. In fact, for a
fixed (\alpha , \beta ), this is a small dimensional convex SDP problem and can be solved easily.

Thus, we first grid the AG parameter space, i.e., \{ (\alpha i1 , \beta i2)\} i1\in \scrI 1,i2\in \scrI 2
, and for

given trade-off parameter \epsilon , we solve | \scrI 1| | \scrI 2| many four-dimensional SDPs, i.e., for
each (i1, i2) \in \scrI 1 \times \scrI 2,

\=\scrR i1,i2(\epsilon ) \triangleq min
\=c\geq 0, \~P\in \BbbS 2+

\=RAG(\alpha i1 , \beta i2) =
\alpha 2
i1
d

2(1 - \rho 2AG,\epsilon )
(L+ 2 \~P11)(4.35)

s.t. \=cX0 +X(\rho AG,\epsilon ) \succeq \Phi (A,B, \~P \otimes Id, \rho AG,\epsilon ).

Clearly, \scrJ AG,\epsilon \leq \=\scrR (\epsilon ) \leq mini1\in \scrI 1,i2\in \scrI 2
\=\scrR i1,i2(\epsilon ), where

\=\scrR (\epsilon ) is as in (4.34). Note

(\alpha , \beta ) = (\alpha \epsilon , \beta \epsilon ), \=c = 0, and \~P = \~P (\alpha \epsilon ) satisfies (4.33) where \alpha \epsilon is given in (4.32),

\beta \epsilon =
1 - \surd 

\alpha \epsilon \mu 

1+
\surd 
\alpha \epsilon \mu 

and \~P (\alpha ) is defined in (4.29). Therefore, for any grid that contains

(\alpha \epsilon , \beta \epsilon ) as one of the grid points, we have

\=\scrR (\epsilon ) \leq \alpha 2
\epsilon d

2
\Bigl( 
1 - \rho 2AG,\epsilon 

\Bigr) \biggl( L+
1

\alpha \epsilon 

\biggr) 
\leq \alpha \epsilon d\Bigl( 

1 - \rho 2AG,\epsilon 

\Bigr) =

\surd 
\alpha \epsilon d\surd 
\mu 
,(4.36)

where the first inequality follows from \~P11 = 1
2\alpha \epsilon 

for \~P = \~P (\alpha \epsilon ) and the second
inequality follows from \alpha \epsilon \in (0, 1/L]. The equality above is a direct consequence of
the identity (4.32). Finally, according to the discussion at the end of the previous

section, for \epsilon > 0 sufficiently close to
\sqrt{} \surd 

\kappa \surd 
\kappa  - 1

 - 1, there exists a quadratic f \in \BbbS \mu ,L
such that \scrJ (\alpha \epsilon , \beta \epsilon ) = \Theta (

\surd 
\alpha \epsilon d\surd 
\mu ), while (4.36) implies that \scrJ AG,\epsilon \leq \=\scrR (\epsilon ) \leq 

\surd 
\alpha \epsilon d\surd 
\mu .

In Figure 3, we consider the rate-robustness trade-off for a strongly convex func-
tion with \mu = 1 and L = 20 using the upper bounds we derived in this section for both
GD and AG (which are applicable to any dimension d), where we report the normal-
ized robustness level \scrJ /d in the y-axis versus the convergence rate in the x-axis---for

7Recall that we put c = 1 in this section.
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0.7 0.8 0.9 1
Rate 

0

0.1

0.2

0.3

0.4

0.5

GD
AG:Explicit upper bound
AG:Grid search
AG:Quadratic case

Fig. 3. Rate-robustness trade-off for GD and AG algorithms using derived upper bounds and
comparing it with the quadratic result.

AG we plotted two curves associated with the two approaches detailed above: the first
one (marked in red) uses the explicit bound and the second one (marked in yellow)
is based on a grid search. We use the solver CVX [25] to solve the four-dimensional
SDPs given in (4.35). We select a grid of size | I1| = | I2| = 30 on the parameter
space for (\alpha , \beta ) determined by Proposition 3.4. We observe that the grid search and
the explicit upper bound approach give similar results on this numerical example for
AG, especially when the rate is close to 1. We also see that the robustness upper
bound for GD obtained from our approach (marked in blue) is worse than the upper
bound we developed for AG. To see how the AG bounds are comparable with the
exact expressions we developed for quadratics, first we note that by Lemma D.1, any
quadratic function f \in S\mu ,L(\BbbR d) admits the robustness upper bound8

\scrJ max(\alpha , \beta ) := (d - 1)max [u\alpha ,\beta (\mu ), u\alpha ,\beta (L)] + min [u\alpha ,\beta (\mu ), u\alpha ,\beta (L)]

and this bound can be achieved for some choices of f . For large d, we have clearly
\scrJ max(\alpha , \beta )/d \approx max [u\alpha ,\beta (\mu ), u\alpha ,\beta (L)]. In Figure 3, we plot the latter quantity versus
the convergence rate (marked in purple) to demonstrate the rate-robustness curve for
AG in the case of quadratic objective functions. We observe from Figure 3 that
our bounds for the quadratic case are tighter than those for general strongly convex
functions as expected.

5. Asymptotic stability of the optimum with respect to perturbations.
Our discussion so far has focused on the robustness of first-order methods with respect
to random noise in the gradients, which we quantify by \scrJ defined in (2.8). Our
robustness measure \scrJ is based on the H2 norm of an associated linear dynamical
system. It is well-known that the H2 norm of a dynamical system is closely related
to the asymptotic stability of the equilibrium (which is characterized by the optimal
solution x\ast to (2.1) in our setup) in the sense that it quantifies how quickly the
system can converge back to the equilibrium if it is unsettled from its equilibrium
in the direction of a coordinate [46]. More specifically, for each i \in \{ 1, . . . , d\} , let
\{ xik\} k\geq 0 be the iterate sequence corresponding to (4.1) whenever \{ wk\} k = \delta [k]ei for
k \geq 0, where ei is the ith basis vector, i.e., we perturb the system from its equilibrium
with an impulse input in the direction of ei. Let

8This is a worst-case bound for a quadratic f \in S\mu ,L(\BbbR d); tighter bounds are available if all
the eigenvalues of its Hessian matrix are known or estimated beyond the eigenvalues \mu and L (see
Proposition 3.5).
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\scrJ \ast :=

d\sum 
i=1

\| xi  - x\ast \| 22,(5.1)

where \| xi  - x\ast \| 2 is the l2 norm of the sequence \{ xik  - x\ast \} k. It is worth noting that
\{ xik\} k is the same as the iterate sequence of the noiseless system (2.2) with initial
state \xi \ast +Bei, D = 0d and \phi (\cdot ) = \nabla f(\cdot ).

We next motivate this definition from another perspective. Recall the alternative
robustness measure \scrJ \prime = lim supk \BbbE [\| xk  - x\ast \| 2] we briefly discussed in section 2; for
a linear system it is known that \scrJ \prime = \scrJ \ast [46]. In other words, our explicit formulas
and bounds for \scrJ \prime , given in Appendix E, translate immediately to \scrJ \ast for optimizing
quadratic functions. The definition in (5.1) also extends to the case when f is not
necessarily quadratic or equivalently when the system (4.1) is nonlinear; however, for
nonlinear systems there is no known explicit formula that relates \scrJ \prime to \scrJ \ast [44]. We
refer to the quantity \scrJ \ast as perturbation stability of the first-order algorithm in con-
sideration; indeed, it measures how sensitive the underlying optimization algorithm is
to the initialization around the optimal solution---it also quantifies how strongly the
iterate sequence is attracted to the optimal solution once they are close.

In particular, given A, B, and C defining the first-order optimization algorithm,
we assume there exists X \in \BbbS m+d such that the MI in (4.9) holds for some P \in \BbbS m+
and \rho \in (0, 1). Moreover, we assume that when \Gamma = 0 and \sigma = 0, there exists a
constant c \geq 0 independent of \xi 0 such that the same \rho and X satisfy the dissipation
inequality in (4.10) for every k \geq 0; hence, it follows from (4.9) and (4.10) along with
(4.7) that

VP,c(\xi k) \leq \rho 2kVP,c(\xi 0) \forall k \geq 0.(5.2)

Since f \in S\mu ,L(\BbbR d), whenever P \in \BbbS m+ and/or c > 0, (5.2) implies that the error signal
\{ \| xik - x\ast \| 2\} k decays geometrically and is therefore summable, and as a consequence,
\scrJ \ast in (5.1) well-defined.

Lemma 5.1. For GD, the following bound holds for all \alpha \in (0, 2/L):

\scrJ \ast (\alpha ) \leq 
\alpha 2d

1 - \rho 2GD(\alpha )
,(5.3)

where \rho GD(\cdot ) is defined in (4.16). Moreover, for AG, given \alpha \in (0, 1/L], setting

\beta (\alpha ) =
1 - \surd 

\alpha \mu 

1+
\surd 
\alpha \mu , the perturbation stability can be bounded as \scrJ \ast (\alpha ) \leq \alpha 2d\surd 

\alpha \mu (1 + \kappa ).

Proof. Recall that \{ xik\} k is the same as the iterate sequence of the noiseless system
(2.2) with initial state \xi \ast +Bei. Hence, Proposition 4.3 with \sigma = 0 implies that\bigm\| \bigm\| xik  - x\ast 

\bigm\| \bigm\| 2 \leq \rho 2k
\bigm\| \bigm\| xi0  - x\ast 

\bigm\| \bigm\| 2 \forall k \geq 0(5.4)

for some \rho \in (0, 1) and for any 1 \leq i \leq d and stepsize \alpha \in (0, 2/L). Thus,\sum \infty 
k=0

\bigm\| \bigm\| xik  - x\ast 
\bigm\| \bigm\| 2 \leq 1

1 - \rho 2

\bigm\| \bigm\| xi0  - x\ast 
\bigm\| \bigm\| 2, which implies

\bigm\| \bigm\| xi  - x\ast 
\bigm\| \bigm\| 2 \leq \alpha 2

1 - \rho 2 for all i =

1, . . . , d since B =  - \alpha Id for GD. Therefore, we have \scrJ \ast (\alpha ) \leq \alpha 2d
1 - \rho 2 . Moreover, given

any stepsize \alpha \in (0, 2/L) for GD, using (4.16), which is the smallest \rho value for which
(5.4) holds, we obtain (5.3). On the other hand, for AG, using Corollary 4.8 with \sigma = 0

and the fact that \mu 
2 \| xk  - x\ast \| 2 \leq f(xk) - f\ast , we get

\bigm\| \bigm\| xik  - x\ast 
\bigm\| \bigm\| 2 \leq \rho 2kAG(

\bigm\| \bigm\| xi0  - x\ast 
\bigm\| \bigm\| 2+

2
\mu (f(x

i
0)  - f\ast )) for k \geq 0 and i = 1, . . . , d, where we used xi0 = xi - 1 = x\ast + Bei for

i = 1, . . . , d. Thus,
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742 AYBAT, FALLAH, G\"URB\"UZBALABAN, AND OZDAGLAR

\scrJ \ast (\alpha ) \leq 
1

1 - \rho 2AG(\alpha )

\Biggl( 
Tr(B\top B) +

d\sum 
i=1

2
\mu (f(x

i
0) - f\ast ))

\Biggr) 

\leq \alpha 2d
\surd 
\alpha \mu 

(1 + \kappa ) \forall \alpha \in (0, 1/L].

For \alpha \in (0, 1/L] since \rho GD(\alpha ) = 1  - \alpha \mu , (5.3) implies that \scrJ \ast (\alpha ) \leq \alpha 2d
\alpha \mu (2 - \alpha \mu ) =

\scrO (\alpha ) for GD. For quadratic f \in S\mu ,L(\BbbR d) such that \mu = L, as we discussed in footnote
6, J \prime (\alpha ) = \alpha d

\mu (2 - \alpha \mu ) . Since J\ast (\alpha ) = J \prime (\alpha ) for quadratics, \scrO (\alpha ) dependence of (5.3) for

\alpha \in (0, 1/L] is tight. We also note that \scrO (\alpha 3/2) bound on \scrJ \ast (\alpha ) for AG implies that
for sufficiently small stepsize \alpha , AG possesses better perturbation stability than GD.

6. Numerical experiments. Our first set of experiments concerns a further
study of Example 3.2 for comparing AG and GD in terms of performance. In the
leftmost plot of Figure 4, we vary the trade-off parameter from \tau = 0 to \tau = \infty 
for AG and plot the robustness level \scrJ (\alpha \ast (\tau ), \beta \ast (\tau )) versus the rate \rho (\alpha \ast (\tau ), \beta \ast (\tau ))
corresponding to the optimal parameters (\alpha \ast (\tau ), \beta \ast (\tau )), we also plot the analogous
curve for GD (the same curve from Figure 1) to compare. We observe that for
the same achievable convergence rate, the optimized AG parameters lead to more
robust algorithms compared to the optimized GD algorithms as AG has an additional
parameter \beta to optimize robustness over. This shows that AG can improve GD in
terms of both convergence rate and robustness at the same time when gradients are
subject to white noise. This result is in contrast with the deterministic gradient
error setting in [13], which shows that GD performance degrades gracefully while AG
may accumulate error. Therefore, our results suggest that AG algorithms can tolerate
random noise better than deterministic noise to preserve their accelerated rates, which
is also in line with the theoretical findings of [7]. Also, it is interesting to note that
the popular choice of parameters (blue and red dots), as well as the parameters that
lead to the optimal (fastest) rate (green and purple dots), lie on curves that trade
robustness with rate in an optimal fashion.

Next, we illustrate the tightness of our upper bound \=\scrJ (\alpha , \beta ) provided in (3.36)
to the (true) robustness level \scrJ (\alpha , \beta ). This upper bound results in a small-scale
optimization problem (3.37) that allows trading off robustness and the convergence
rate in a way that is computationally tractable, even in high dimensions. The middle
plot of Figure 4 shows the convergence rate and robustness obtained by solving (3.29)
versus solving (3.37). The objective is a random quadratic function in dimension d =
100 with parameters \mu = 0.1, L = 1. Our results show that for any trade-off parameter
\tau our upper bound is within a factor of 1.2 of true parameters, illustrating the accuracy

0.6 0.7 0.8 0.9 1
Convergence rate 

0

2

4

6
GD
AG
Standard GD
Optimal GD
Standard AG
Optimal AG

0.7 0.8 0.9 1
Convergence rate 

0

10

20

30

40
AG: accurate formula
AG: upper bound

100 102

Iteration count

100

102

f-
f*

Standard GD
Standard AG
Modified AG

Fig. 4. Left: Robustness \scrJ as a function of the convergence rate for GD and AG. Middle: Com-
parison of the convergence rate and robustness obtained by solving (3.29) versus its approximation
(3.37) for d = 100. Right: Tuned AG can be both faster and more robust than GD.
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Fig. 5. Left: Comparison of the other algorithms with modified AG. Right: Tuned AG for the
regularized logistic regression problem.

of this approximation to the optimal parameters for different levels of robustness, and
especially, the approximation is more accurate when the trade-off parameter is larger
(in which case the convergence rate is closer to 1). We obtain quantitatively similar
results repeating this experiment with other randomly generated quadratic functions.

Next, we illustrate our framework to trade off robustness and convergence rate
on a quadratic optimization problem, similar to the one considered in [27], where it is
shown that AG algorithms with standard choice of parameters have difficulty handling
random gradient noise. We consider the quadratic function f(x) = 1

2x
\top Qx + bTx +

\delta \| x\| 2 in dimension d = 100, where Q is the Laplacian of a cyclic graph, \delta = 0.1 is
a regularization parameter to make the problem strongly convex, and b is a random
vector. As can be seen in the rightmost plot of Figure 4, we show that when properly
modified, AG can be both faster and more robust in comparison with GD.

In the leftmost plot of Figure 5, we compare the tuned AG with other algorithms
such as AC-SA [32] and the Flammarion--Bach algorithm [19]. For this purpose, we
consider the same quadratic test problem from [19] in dimension d = 20, where the
eigenvalues of its Hessian Q are set equal to \lambda i = i2 for i = 1, 2, . . . , 20. Our results
show that modified AG can trade robustness with the convergence rate successfully
and can improve upon AC-SA and the Flammarion--Bach algorithm on this example.

Finally, we validate our results for strongly convex and smooth functions by
choosing function f to be a regularized logistic loss. We synthesize a random ma-
trixM \in \BbbR 2000\times 100 and a random vector w \in \BbbR 100 and compute y = sign(Mw) as the
output of the classifier. The goal is to recover w using regularized logistic regression
when the gradient of the logistic loss is corrupted with additive Gaussian noise. The
plot in the right panel of Figure 5 shows the behavior of tuned AG after solving the
optimization problem (4.31) with three different \epsilon values 0 < \epsilon 1 < \epsilon 2 < \epsilon 3 in com-
parison with standard AG and GD. As predicted by our theory, AG performs better
than GD and the asymptotic suboptimality decreases as \varepsilon gets larger.

7. Conclusion. We consider the gradient descent (GD) and accelerated gradient
(AG) methods for optimizing strongly convex functions. We developed a computa-
tionally tractable framework to design their parameters in a way to trade between
two conflicting performance measures: the convergence rate and the robustness to
additive white noise in the gradient computations measured in terms of final asymp-
totic variance of the algorithm output. For strongly convex quadratics, we show that
this robustness measure is equal to the H2 norm of a dynamical system associated to
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the optimization algorithm and give an explicit characterization of this quantity. Our
results show that for the same achievable rate, AG can always be tuned to be more
robust. Similarly, for the same robustness level, we show that AG can be tuned to
be always faster than GD. We also give fundamental lower bounds on the achievable
robustness level for GD for a given achievable rate. We show how our analysis can
be extended to smooth strongly convex functions and we derive upper bounds on the
robustness measures for GD and AG.

Appendix A. First-order optimality conditions for the objective \bfitF \bfittau (\bfitalpha ).

Proposition A.1. There exists an optimizer \alpha \ast (\tau ) to the minimization problem
(3.24). Furthermore, any optimizer either is \alpha \ast (\tau ) = 2/(\mu +L) or satisfies one of the
following two conditions:\left\{             

\alpha 2

2

d\sum 
i=1

1

(2 - \alpha \lambda i)2
+

\tau (\alpha \mu  - 1)

\mu (2 - \alpha \mu )2
= 0 and | 1 - \alpha \mu | > | 1 - \alpha L| ,(A.1)

\alpha 2

2

d\sum 
i=1

1

(2 - \alpha \lambda i)2
+

\tau (\alpha L - 1)

L(2 - \alpha L)2
= 0 and | 1 - \alpha \mu | < | 1 - \alpha L| .(A.2)

Therefore, by examining the values of F at the points that satisfy these equality and
inequality constraints, we can determine the optimal stepsize \alpha \ast (\tau ).

Proof. To solve (3.24) explicitly, note that

1

1 - \rho 2
=

\Biggl\{ 
1

1 - (1 - \alpha \mu )2 if | 1 - \alpha \mu | > | 1 - \alpha L| ,
1

1 - (1 - \alpha L)2 if | 1 - \alpha \mu | \leq | 1 - \alpha L| .

The optimal \alpha \ast cannot be attained on the boundary points of the interval [0, 2/L] as
F is not finite at these points. Therefore, it suffices to solve the optimization problem
over the open interval (0, 2/L) where F is differentiable with respect to \alpha except when
| 1 - \alpha \mu | = | 1 - \alpha L| , i.e., when \alpha = 2/(\mu + L). For \alpha \ast \not = 2/(\mu + L), we can write the
first-order conditions of optimality \partial F

\partial \alpha = 0, which leads to (A.1) and (A.2).

Appendix B. Proof of Proposition 3.4. In light of the formula (3.31) that
characterizes \rho (AQ), the closure of the stability set \scrS admits the representation \scrS =
\scrS \mu \cap \scrS L where for \lambda \in \{ \mu ,L\} we define

\scrS \lambda = \{ (\alpha , \beta ) : \rho \lambda (\alpha , \beta ) \leq 1, \alpha \geq 0, \beta \geq 0\} \subset \BbbR 2.(B.1)

We first write \scrS \lambda as a union of two disjoint sets depending on the signature of \Delta \lambda :
\scrS \lambda = \scrS \lambda ,1 \cup \scrS \lambda ,2, where

\scrS \lambda ,1 = \scrS \lambda \cap \{ (\alpha , \beta ) : \Delta \lambda \leq 0\} , \scrS \lambda ,2 = \scrS \lambda \cap \{ (\alpha , \beta ) : \Delta \lambda > 0\} .(B.2)

It follows from the definition of \Delta \lambda in (3.32) that \Delta \lambda \leq 0 if and only if 0 \leq 1  - 
\alpha \lambda \leq 4\beta 

(1+\beta )2 , and when this condition holds, \rho \lambda =
\sqrt{} 
\beta (1 - \alpha \lambda ) \leq 1 if and only if

0 \leq 1 - \alpha \lambda \leq 1
\beta . Therefore,

\scrS \lambda ,1 =

\biggl\{ 
(\alpha , \beta ) : 0 \leq 1 - \alpha \lambda \leq min

\biggl\{ 
1

\beta 
,

4\beta 

(1 + \beta )2

\biggr\} \biggr\} 
.(B.3)

We next focus on \scrS \lambda ,2. Note that \Delta \lambda \geq 0 if and only if
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ROBUST ACCELERATED GRADIENT METHODS 745

1 - \alpha \lambda \leq 0 or 1 - \alpha \lambda \geq 4\beta 

(1 + \beta )2
.(B.4)

If (B.4) is satisfied, then \rho \lambda \leq 1 if and only if 1
2 (1+\beta )(1 - \alpha \lambda )sign(1 - \alpha \lambda )+

1
2

\surd 
\Delta \lambda \leq 1.

There are two cases:
(1) \Delta \lambda > 0 and 1 - \alpha \lambda < 0: In this case, \rho \lambda \leq 1 if and only if

\surd 
\Delta \lambda \leq 2 - (1+\beta )c\lambda ,

where c\lambda =  - (1  - \alpha \lambda ) > 0. By squaring both sides, this is if and only if \Delta \lambda \leq (2  - 
(1+\beta )c\lambda )

2 and 2 - (1+\beta )c\lambda \geq 0. The first inequality holds if c\lambda =  - (1 - \alpha \lambda ) \leq 1
2\beta +1 ,

whereas the second inequality holds if c\lambda =  - (1 - \alpha \lambda ) \leq 2
\beta +1 . The first inequality is

more binding; if it holds, the second inequality holds too. Therefore,\biggl\{ 
(\alpha , \beta ) : 0 \leq  - (1 - \alpha \lambda ) \leq 1

2\beta + 1

\biggr\} 
\subset \scrS \lambda ,2.(B.5)

(2) \Delta \lambda > 0 and 1 - \alpha \lambda > 0: In this case, \rho \lambda \leq 1 if and only if
\surd 
\Delta \lambda \leq 2 - (1+\beta )d\lambda ,

where d\lambda :=  - c\lambda = (1 - \alpha \lambda ) > 0. After squaring both sides, this is if and only if

\Delta \lambda \leq (2 - (1 + \beta )d\lambda )
2 and 2 - (1 + \beta )d\lambda \geq 0,(B.6)

where the first inequality simplifies to 1 \geq d\lambda . (B.6) along with (B.4) means 4\beta 
(1+\beta )2 \leq 

1 - \alpha \lambda \leq min\{ 1, 2
1+\beta \} , which implies \beta \leq 1; therefore,\biggl\{ 

(\alpha , \beta ) :
4\beta 

(1 + \beta )2
\leq 1 - \alpha \lambda \leq 2

1 + \beta 

\biggr\} 
\subset \scrS \lambda ,2.(B.7)

Merging (B.3), (B.5), and (B.7) yields

S\lambda =

\biggl\{ 
(\alpha , \beta ) : 1 - \alpha \lambda \in 

\biggl[ 
 - 1

1 + 2\beta 
,min

\biggl\{ 
1

\beta 
,

2

1 + \beta 

\biggr\} \biggr] \biggr\} 
.(B.8)

To complete the proof, due to the representation (B.1), it suffices to compute the
intersection \scrS \mu \cap \scrS L. There are several cases to consider depending on the value of \alpha :

(1) First, consider \alpha \in [0, 1
L ]. In this case 1 - \alpha \mu \geq 1 - \alpha L \geq 0, and hence (B.8)

implies 1 - \alpha \mu \leq 2
1+\beta if \beta \leq 1, whereas 1 - \alpha \mu \leq 1

\beta if \beta \geq 1. Nevertheless, if \beta \leq 1,

then 2
1+\beta \geq 1, so the first case always holds; hence, (1 - \alpha \mu )\beta \leq 1.

(2) Now, assume \alpha \in [ 1L ,min\{ 2
L ,

1
\mu \} ]. Then 1 - \alpha \mu \geq 0 \geq 1 - \alpha L, and thus (B.8)

yields 1  - \alpha L \geq  - 1
1+2\beta , 1  - \alpha \mu \leq min\{ 1

\beta ,
2

1+\beta \} , where the second inequality again

simplifies to (1 - \alpha \mu )\beta \leq 1.
(3) The last possible case happens when \mu \geq L

2 , and so \alpha \in [ 1\mu ,
2
L ] is possible. In

this case 1  - \alpha L \leq 1  - \alpha \mu \leq 0, and so using (B.8), we just need to check 1  - \alpha L \geq 
 - 1

1+2\beta . Considering all these cases along with the fact that (B.8) shows \alpha cannot be

greater than 2
L completes the proof.

Appendix C. Proof of Proposition 3.5. Similar to the analysis for GD, we
can assume without loss of generality that Q is diagonal. The proof is also similar.
Consider U\Lambda U\top be the eigenvalue decomposition of Q. Then AQ in (3.28) can be
written as

AQ = \~UA\Lambda 
\~U\top , where(C.1)

\~U =

\biggl[ 
U 0d
0d U

\biggr] 
, A\Lambda =

\biggl[ 
(1 + \beta )(Id  - \alpha \Lambda )  - \beta (Id  - \alpha \Lambda )

Id 0d

\biggr] 
.(C.2)
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Replacing AQ from (C.1) in Lyapunov equation (3.9) implies

\~UA\Lambda 
\~U\top X \~UA\top 

\Lambda 
\~U\top  - X +BB\top = 0.(C.3)

Multiplying by \~U and \~U\top from right and left, respectively, yields

A\Lambda 
\~U\top X \~UA\top 

\Lambda  - \~U\top X \~U +BB\top = 0,(C.4)

where we used the fact that B in (2.6) has the property that \~U\top BB\top \~U = BB\top .
Equation (C.4) shows that \~U\top X \~U satisfies the Lyapunov equation when AQ is

replaced by A\Lambda . Next, we show that after after substituting Q by \Lambda , the robustness

\scrJ (\alpha , \beta ) would stay the same, i.e., H2
2 (A\Lambda , B,

\sqrt{} 
1
2\Lambda 

1/2T ) = H2
2 (AQ, B,RT ), where

R =
\sqrt{} 

1
2\Lambda 

1/2U\top . To show this, note that from (3.8), we have

H2
2

\Biggl( 
A\Lambda , B,

\sqrt{} 
1

2
\Lambda 1/2T

\Biggr) 
=

1

2
Tr((\Lambda 1/2T ) \~U\top X \~U(\Lambda 1/2T )\top )

=
1

2
Tr((\Lambda 1/2T \~U\top )X(\Lambda 1/2T \~U\top )\top ) = Tr((RT )X(RT )\top ),

where the last equality is true as T \~U\top = U\top T for T and U given in (3.11) and (C.2).
This result completes the proof of our claim that we can assume Q is diagonal. For
simplicity we will continue our analysis with AQ, assuming its a diagonal matrix.

Let P\pi be the permutation matrix associated with the permutation \pi over the
set \{ 1, 2, . . . , 2d\} that satisfies \pi (i) = 2i  - 1 for 1 \leq i \leq d and \pi (i) = 2(i  - d) for
d+1 \leq i \leq 2d. It is well-known that permutation matrices satisfy P - 1

\pi = P\top 
\pi = P\pi  - 1 ;

therefore, multiplying Lyapunov equation (3.9) by P\pi and P\top 
\pi from left and right,

respectively, leads to

(P\pi AQP
\top 
\pi )Y (P\pi A

\top 
QP

\top 
\pi ) - Y + P\pi BB

\top P\top 
\pi = 0,(C.5)

where Y = P\pi XP
\top 
\pi . It follows from (3.28) that

P\pi AQP
\top 
\pi = diag([Ti]

d
i=1) and Ti =

\biggl[ 
(1 + \beta )(1 - \alpha \lambda i)  - \beta (1 - \alpha \lambda i)

1 0

\biggr] 
, i = 1, . . . , d,

and 0 < \mu = \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda d = L are the eigenvalues of Q. Since BBT =
[ \alpha 

2Id 0d
0d 0d

],P\pi BB
\top P\top 

\pi is a 2d by 2d diagonal matrix with \alpha 2 on entries (1, 1), (3, 3), . . . ,

(2d  - 1, 2d  - 1) and zero elsewhere. Hence, Y that solves (C.5) is a block diagonal

matrix in the form Y = diag([Yi]
d
i=1), where Yi = [

yu
i yo

i

yo
i yd

i
] satisfies the equality\biggl[ 

(1 + \beta )(1 - \alpha \lambda i)  - \beta (1 - \alpha \lambda i)
1 0

\biggr] 
Yi

\biggl[ 
(1 + \beta )(1 - \alpha \lambda i) 1
 - \beta (1 - \alpha \lambda i) 0

\biggr] 
 - Yi +

\biggl[ 
\alpha 2 0
0 0

\biggr] 
= 0

for all i = 1, . . . , d. This is equivalent to the linear system\left[  (1 + \beta )2(1 - \alpha \lambda i)
2  - 1  - 2\beta (1 + \beta )(1 - \alpha \lambda i)

2 \beta 2(1 - \alpha \lambda i)
2

(1 + \beta )(1 - \alpha \lambda i)  - 1 - \beta (1 - \alpha \lambda i) 0
1 0  - 1

\right]  \left[  yuiyoi
ydi

\right]  =

\left[   - \alpha 2

0
0

\right]  .
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Solving this system of equations, we obtain

yui = ydi = \alpha 
1 + \beta (1 - \alpha \lambda i)

\lambda i(1 - \beta (1 - \alpha \lambda i))(2 + 2\beta  - \alpha \lambda i(1 + 2\beta ))
,

yoi =
\alpha 2(1 + \beta )(1 - \alpha \lambda i)

\alpha \lambda i(1 - \beta (1 - \alpha \lambda i))(2 + 2\beta  - \alpha \lambda i(1 + 2\beta ))
.

(C.6)

The \scrJ (\alpha , \beta ) can be computed using

Tr

\left(  \Biggl( \sqrt{} 1

2
Q1/2T

\Biggr) 
X

\Biggl( \sqrt{} 
1

2
Q1/2T

\Biggr) \top 
\right)  =

1

2
Tr
\bigl( 
P\pi T

\top QTP\top 
\pi Y

\bigr) 
.(C.7)

The matrix P\pi T
\top QTP\top 

\pi is block diagonal with 2\times 2 matrices [ \lambda i 0
0 0 ] on its diagonal.

Therefore, using (C.6), the robustness measure \scrJ (\alpha , \beta ) is equal to

1

2

d\sum 
i=1

\alpha 
1 + \beta (1 - \alpha \lambda i)

(1 - \beta (1 - \alpha \lambda i))(2 + 2\beta  - \alpha \lambda i(1 + 2\beta ))
.(C.8)

Appendix D. Convexity of \bfitu \bfitalpha ,\bfitbeta (\bfitlambda ). We next show that u\alpha ,\beta (\lambda ) appearing
in the definition of the \scrJ (\alpha , \beta ) for the AG algorithm is convex with respect to \lambda .

Lemma D.1. Let (\alpha , \beta ) \in \scrS where \scrS is the stability region of the dynamical system
representation of AG given by (3.30). The function u\alpha ,\beta (\lambda ) defined by (3.35) is convex
on the interval [\mu ,L].

Proof. The function u\alpha ,\beta (\lambda ) can be written in terms of \~\lambda := \beta (1 - \alpha \lambda ) as follows:

q\lambda (\~\lambda ) =
\alpha 

2

1 + \~\lambda 

(1 - \~\lambda )(1 + \~\lambda \gamma )
,(D.1)

where \gamma := 2 + 1
\beta . It follows from (3.30) that for (\alpha , \beta ) \in \scrS , 1 \geq \~\lambda \geq  - 1

\gamma , and thus

both terms in denominator of (D.1) are positive. Note that \~\lambda is linear, and since the
composition of a convex functions with a linear function is convex, it suffices to show
q\lambda (\~\lambda ) is a convex function of \~\lambda over domain [ - 1

\gamma , 1]. To show this, we simply compute

the second derivative of (D.1) with respect to \~\lambda . After doing some algebra,

d

d\~\lambda 2
q\lambda (\~\lambda ) =

\alpha 

2

\biggl( 
2(\gamma 3  - \gamma 2)

(\gamma + 1)(\gamma \~\lambda + 1)3
+

4

(\gamma + 1)(1 - \~\lambda )3

\biggr) 
,(D.2)

which is nonnegative as \gamma \geq 2 and \~\lambda \in [ - 1
\gamma , 1]. This completes the proof.

Appendix E. Defining rate and robustness based on iterates. In this
supplementary file, we first recall how an alternative robustness measure can be de-
fined based on the distance of the iterates to the optimal solution instead of the
robustness measure \scrJ we introduced in the main text based on the asymptotic ex-
pected suboptimality in function values. Here, we focus on the iterate sequence \{ xk\} k
to characterize the notions of rate and robustness. First we consider the case that f
is a quadratic function in the form of f(x) = 1

2x
\top Qx  - p\top x + r. Using (3.4) along

with the relation xk = T\xi k with T defined in section 3.1, for both GD and AG the
sequence \{ \BbbE [xk]\} k goes to zero with rate \rho (AQ).

However, due to the noise injected at each step, the limit of the sequence \{ xk\} 
will oscillate around the optimal solution with a nonzero variance. Thus, a natural
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metric to measure robustness is then to study the asymptotic normalized variance by
considering the limit \scrJ \prime = limk\rightarrow \infty 

1
\sigma 2\BbbE [\| xk  - x\ast \| 2]. A similar line of argument as

Lemma 3.1 shows that this limit exists and is in fact equal to H2
2 (AQ, B, T ). This

quantity can be viewed as the robustness to noise in terms of iterates because it
is equal to the ratio of the power of the iterates to the power of the input noise,
measuring how much a system amplifies input noise. In particular, the smaller this
measure is, the more robust the system is under additive random noise.

The robustness \scrJ \prime can be evaluated precisely for GD and AG methods just as we
did in section 3 for \scrJ . For the GD method with constant stepsize \alpha \in (0, 2/L), the
robustness to noise in terms of iterates is denoted as \scrJ \prime (\alpha ) to show the dependence
to \alpha . The following proposition, which can be proved similarly to Proposition 3.2,
shows the explicit characterization of \scrJ \prime (\alpha ).

Proposition E.1. Let f be a quadratic function of the form f(x) = 1
2x

\top Qx  - 
p\top x + r. Consider the GD iterations given by (2.3) with constant stepsize \alpha \in 
(0, 2/L). Then the robustness of the GD method in terms of iterates is given by

\scrJ \prime (\alpha ) = \alpha 2
d\sum 

i=1

1

1 - (1 - \alpha \lambda i)2
= \alpha 

d\sum 
i=1

1

\lambda i(2 - \alpha \lambda i)
,(E.1)

where 0 < \mu = \lambda 1 \leq \lambda 2 \leq . . . \lambda d = L are the eigenvalues of Q.

For AG, with constant stepsize \alpha and momentum parameter \beta , we denote the
robustness to noise in terms of iterates as \scrJ \prime (\alpha , \beta ). The following theorem, which
can be proved similarly to Proposition 3.5, provides an explicit formula forJ\prime (\alpha , \beta ) in
terms of the eigenvalues of Q.

Proposition E.2. Let f be a quadratic function of the form f(x) = 1
2x

\top Qx  - 
p\top x+r. Consider the AG iterations given by (2.5) with parameters (\alpha , \beta ) \in \scrS . Then
the robustness of the AG method in terms of iterates is given by

\scrJ \prime (\alpha , \beta ) =

d\sum 
i=1

u\prime \alpha ,\beta (\lambda i),(E.2)

where \mu = \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda d = L are the eigenvalues of Q and

(E.3) u\prime \alpha ,\beta (\lambda ) \triangleq \alpha 
1 + \beta (1 - \alpha \lambda )

\lambda (1 - \beta (1 - \alpha \lambda ))(2 + 2\beta  - \alpha \lambda (1 + 2\beta ))
.

As discussed in section 3, the \scrJ \prime (\alpha , \beta ) admits a tractable upper bound in the
form of \scrJ \prime (\alpha , \beta ) \leq dmax(u\prime \alpha ,\beta (\mu ), u

\prime 
\alpha ,\beta (L)) which only depends on \mu and L.

We can also extend the definitions of rate and robustness in terms of iterates to the
case that f \in S\mu ,L(\BbbR d). Note that in general the sequence \{ xk\} k might not converge to
the optimal solution in expectation (see [14]). Using the family of Lyapunov functions
VP,c(\xi ), it can be shown that, similar to (4.3), the following inequality holds for both
GD and AG with properly chose parameters:

\BbbE [\| xk  - x\ast \| 2] \leq \rho 2k\psi \prime 
0 + \sigma 2R\prime , k \geq 1,(E.4)

where 0 < \rho < 1 is the same \rho as (4.3) and also \psi \prime 
0 and R\prime are nonnegative numbers

and depend on algorithm parameters and initial point x0. For instance, Proposition
4.3 implies that (E.4) holds for GD, i.e., for all k \geq 0,
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\BbbE [\| xk  - x\ast \| 2] \leq \rho (\alpha )2k \| x0  - x\ast \| 2 + \sigma 2R\prime (\alpha ), where(E.5)

R\prime (\alpha ) \triangleq 
\alpha 2d

1 - \rho (\alpha )2
.(E.6)

Similarly, we can derive (E.4) for AG by using Proposition 4.6.
Finally, we show that the R\prime (\alpha ) is a tight bound for \scrJ \prime . For quadratic f \in 

S\mu ,L(\BbbR d), \scrJ \prime can be written in closed form as in (E.1). Note that if \lambda i = \mu = L for
i = 1, . . . , d, then this quantity is equal to R\prime (\alpha ).
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