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Motivated by pricing in ad exchange markets, we consider the problem of robust learning of reserve prices

against strategic buyers in repeated contextual second-price auctions. Buyers’ valuations for an item depend

on the context that describes the item. However, the seller is not aware of the relationship between the

context and buyers’ valuations, i.e., buyers’ preferences. The seller’s goal is to design a learning policy to set

reserve prices via observing the past sales data, and her objective is to minimize her regret for revenue, where

the regret is computed against a clairvoyant policy that knows buyers’ heterogeneous preferences. Given

the seller’s goal, utility-maximizing buyers have the incentive to bid untruthfully in order to manipulate

the seller’s learning policy. We propose learning policies that are robust to such strategic behavior. These

policies use the outcomes of the auctions, rather than the submitted bids, to estimate the preferences while

controlling the long-term effect of the outcome of each auction on the future reserve prices. When the market

noise distribution is known to the seller, we propose a policy called Contextual Robust Pricing (CORP) that

achieves a T-period regret of O(d log(Td) log(T )), where d is the dimension of the contextual information.

When the market noise distribution is unknown to the seller, we propose two policies whose regrets are

sublinear in T .

Key words : pricing, robust learning, strategic buyers repeated second-price auctions, online advertising
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1. Introduction

In many online marketplaces, both sides of the market have access to rich dynamic contextual

information about the products that are being sold over time. On the buying side, such information

can influence the willingness-to-pay of the buyers for the products, potentially in a heterogeneous

way. On the selling side, the information can help the seller differentiate the products and set

contextual and possibly personalized prices. To do so, the seller needs to learn the impact of this

information on buyers’ willingness-to-pay. Such contextual learning can be challenging for the seller

when there are repeated interactions between the buying and the selling sides. With repeated

interactions, the utility-maximizing buyers may have the incentive to act strategically and trick the

learning policy of the seller into lowering their prices. Motivated by this, our key research question

is as follows: How can the seller dynamically optimize (personalized) prices in a robust manner,

taking into account the strategic behavior of the buyers?

One of the online marketplaces that faces this problem is the online advertising market. In this

market, a prevalent approach to sell ads is via running real-time second-price auctions in which

advertisers can use an abundance of detailed contextual information before deciding what to bid. In

this practice, advertisers can target Internet users based on their (heterogeneous) preferences and

targeting criteria. Targeting can create a thin and uncompetitive market in which few advertisers

show interest in each auction. In such a thin market, it is crucial for the ad exchanges to effectively

optimize the reserve prices in order to boost their revenue. However, learning the optimal reserve

prices is rather difficult due to frequent interactions between advertisers and ad exchanges.

Inspired by this environment, we study a model in which a seller runs repeated (lazy) second-

price auctions with reserve over time. In the lazy auction, an item is being sold to the buyer with

the highest submitted bid as long his bid exceeds his reserve.1 The valuation (willingness-to-pay)

1 Another version of the second price auction is called “eager”. In this version, the buyers whose bids are less than

their reserve price are first removed from the auction. Then, the item is allocated to one of the remaining buyers who

has the highest submitted bid.
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of each buyer for the item in period t, which is his private information, depends on an observable

d-dimensional contextual information in that period and his preference vector. We focus on an

important special case of this contextual-based valuation model in which the buyer’s value is a

linear function of his preference vector and contextual information, plus some random noise term,

where the noise models the impact of contexts that are not measured/observed by the seller.2 The

preference vector, which is unknown to the seller and fixed throughout the time horizon, varies

across buyers. Thus, the preference vectors capture heterogeneity in buyers’ valuation.3

The seller’s goal is to design a policy that dynamically learns/optimizes personalized reserve

prices. The buyers are fully aware of the learning policy used by the seller and act strategically

in order to maximize their (time-discounted) cumulative utility. Dealing with such a strategic

population of buyers, the seller aims at extracting as much revenue as the clairvoyant policy that

is cognizant of the preference vectors a priori. These vectors determine the relationship between

the valuation of the buyers and contextual information. Put differently, the seller would like to

minimize her regret where the regret is defined as the difference between the seller’s revenue and

that under the clairvoyant policy. Note that the clairvoyant policy provides a strong benchmark

because the policy posts the optimal personalized reserve prices based on the observed contexts.

As stated earlier, the main hurdles in designing a low-regret learning policy in this setting are

the frequent interactions between the seller and the buyers. Due to such interactions, the strategic

buyers might have the incentive to bid untruthfully. This way, they may sacrifice their short-term

utility in order to deceive the seller, to post them lower future reserve prices. Thus, while a single

shot second-price auction is a truthful mechanism, repeated second-price auctions in which the

seller aims at dynamically learning optimal reserve prices of strategic and utility-maximizing buyers

may not be truthful. The untruthful bidding behavior of the buyers makes it hard for the seller

to learn the optimal reserve prices, and this, in turn, can lead to her revenue loss. This highlights

2 Appendix 8 discusses how our results can be extended to some of the nonlinear valuation models.

3 In Appendix 8, we discuss pricing under the settings where the preference vectors change over time and as a result,

the obtained data is perishable.
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the necessity to design a robust learning policy that reduces buyers’ incentive to follow untruthful

strategy. Beside this hurdle, the availability of the dynamic contextual information requires the

seller to change the reserve prices dynamically over time, based on the contextual information. To

do so, the seller needs to learn how buyers react to such information and based on the reactions,

posts (dynamic) personalized reserve prices. The need to have a personalized reserve price is caused

by heterogeneity in buyers’ preferences.

We consider setting where the seller (firm) is more patient than the buyer. We formalize it by

considering time-discounted utility for the buyers. This is motivated by various applications. For

example, in online advertisement markets, the advertisers (buyers) who retarget Internet users

prefer showing their ads to the users who visited their website sooner rather than later.

In this paper, we propose three learning policies. The first policy, which we call Contextual

Robust Pricing (CORP), is tailored to a setting where the distribution of the noise term in buyers’

valuation is known to the seller. We will refer to this noise as market or valuation noise. By studying

this setting, we can characterize the seller’s revenue loss due to her lack of knowledge about the

buyers’ (heterogeneous) response to contextual information. The second policy, that we call CORP-

II, is a variant of the first policy. This policy lends itself to a setting where the unknown market

noise distribution is fixed throughout the time horizon and belongs to a locationscale family.4 The

third policy, which is called Stable CORP (SCORP), is designed to the setting where the market

noise distribution varies over time and as a result, the seller does not have the intention of learning

the market noise distribution. She instead would like to design a learning policy that is robust to

the uncertainty in the noise distribution.

In the remaining part of the introduction, we briefly discuss the salient characteristics of each

policy separately and defer the formal description to Sections 4 and 5.

4 A locationscale family is a family of probability distributions parametrized by a location parameter and a non-

negative scale parameter. Then, if a probability distribution function of a random variable Y belongs to this family,

the probability distribution function of random variable aY + b also belongs to this family. The location-scale families

are quite broad and contain Normal, Elliptical, Cauchy, Uniform, Logistic, Laplace, and Extreme value distributions,

as examples.
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• CORP Policy: When the market noise distribution is known to the seller, under a log-

concavity assumption on the noise distribution, our CORP policy gets the cumulative T-period

regret of order O
(
Nd
(

log(Td) log(T ) + log2(T )

log2(1/γ)

))
, where the regret is computed against the

clairvoyant policy that knows the preference vectors as well as the market noise distribution.

Here, N is the number of buyers, γ is the buyers’ discount factor, and O
(
Nd log2(T )

log2(1/γ)

)
is

the extra regret due to the strategic behavior of the buyers. The policy works in an episodic

manner where the length of episodes doubles each time. Some of the periods in each episode

are randomly assigned to exploration, and the rest of the periods are dedicated to exploitation.

At the beginning of each episode, CORP updates its estimates of the preference vectors by

running a maximum Likelihood estimator using only the auction outcomes from the previous

episode and then adheres to those estimates throughout the episode. During the exploitation

periods, CORP sets the reserves based on its estimates of the preference vectors and its

knowledge of the noise distribution. As time progresses, the policy becomes more confident

about its estimates and consequently uses those estimate over a longer episode.

We now highlight two important aspects of CORP. As explained earlier, the CORP policy

has an episodic structure and updates its estimate of preference vectors only at the beginning

of each episode. Such design makes the policy robust by restricting the future effect of the

submitted bids. Specifically, bids in an episode are not used in choosing the reserve prices until

the beginning of the next episode. Therefore, there is always a delay until a buyer observes the

effect of a bid on reserves. Then, considering the fact that buyers are impatient and discount

the future, they are more incentivized to bid truthfully.

There is another important aspect of the policy that ensures its robustness: its estimation

method. Rather than using the submitted bids to estimate the preference vectors, the pol-

icy simply uses the outcome of the auctions. Because of this feature of the policy, bidding

untruthfully does not always result in lower reserve prices; instead, it can impact the future

reserve prices of a buyer when it leads to changing the outcome of an auction, i.e., when a
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buyer loses an auction due to underbidding or a buyer wins an auction due to overbidding.

As it becomes more clear later, the CORP-II and SCORP policies are also designed in a way

to enjoy the aforementioned robustness properties.

• CORP-II Policy: We design this policy for the setting where market noise distribution,

which is fixed throughout time horizon, is unknown and belongs to a locationscale family. This

policy obtains a regret in the order of O
(
Nd log(Td)

√
T +N 2d

(
1 + 1

log2(1/γ)

)
log3(T )

)
against

a clairvoyant policy that knows the preference vectors and market noise distribution. Similar

to the CORP policy, CORP-II estimates the preference vectors and parameters of the market

noise distribution using a maximum Likelihood estimator. It also enjoys an episodic structure.

However, due to uncertainty in the market noise distribution, the length of the episodes grows

at a slower rate, compared with that in CORP.

• SCORP Policy: Our SCORP policy is designed for a setting where the time-varying market

noise distribution is unknown to the seller and belongs to an ambiguity set. Then, under the

log-concavity assumption on the noise distribution, our policy that knows the ambiguity set,

obtains the T-period regret of order O
(
N
√
d log(Td) T 2/3 + N

log(1/γ)
log(T ) T 1/3

)
. Here, the

regret is computed against a benchmark called robust ; see Definition 1. The robust benchmark

bears some resemblance to the benchmark used in the regret analysis of CORP; it knows

the true preference vectors and the ambiguity set and based on this knowledge chooses the

reserve prices that work well against the worst distribution in the ambiguity set. In contrast

to the benchmark used in CORP-II, the benchmark here does not intend to learn the noise

distribution, as the distribution of the noise can be time-varying. It instead posts “robust”

reserve prices.

The increase in the regret, compared to CORP-II, is due to the fact that the noise distri-

bution is time-varying and as a result, the seller cannot hope to learn it. Because of this, the

policy spends more time on exploration compared to CORP-II, which leads to its higher regret.

SCORP uses the same episodic structure as CORP-II but dedicates the beginning portion of
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each episode to pure exploration. Concretely, in episode k, with length `k, pure exploration

phase consists of d`2/3k e periods. Spending more time on exploration is not the sole difference

between CORP-II and SCORP. Given that the noise distribution is time-varying, SCORP

uses a least-square estimator to update the estimates of preference vectors, while CORP-II

employs the maximum Likelihood estimator, taking advantage of the fact the market noise

distribution is fixed and belongs to a locationscale family.

The rest of the paper is organized in the following manner. In Section 2, we review the literature

related to our work. Section 3 formally defines our model. We present the CORP in Section 4 and

present CORP-II and SCORP policies in Section 5. Finally, we conclude in Section 6.

This paper has an electronic companion. Appendix 7 reviews lower bounds on regret in different

pricing settings. In Appendix 8, we provide a discussion on (i) extending our policies to a setting

with some non-linear valuation models, and (ii) learning how to price when data is perishable.

Appendices 9, 10, and 11 provide the proof of the regret bound of CORP, CORP-II, and SCORP,

respectively.

2. Related Work

In this section, we briefly discuss the literature related to our work.

Dynamic Pricing with Learning: Our work is related to the growing body of research on dynamic

pricing with learning; see (den Boer 2015) for a survey. (Rothschild 1974, Araman and Caldentey

2009, Farias and Van Roy 2010, Harrison et al. 2012, Cesa-Bianchi et al. 2015, Ferreira et al. 2016,

Cheung et al. 2017) studied dynamic pricing with demand uncertainty in the non-contextual and

Bayesian settings. In contrast, (Broder and Rusmevichientong 2012, den Boer and Zwart 2013,

Besbes and Zeevi 2009) studied this type of problems in the frequentist settings. In these settings,

the parameters of the model, which are unknown (but fixed), are estimated using the maximum

Likelihood (ML) method or other estimation techniques. We note that there are two important

aspects that distinguish our work from this line of literature: the presence of the contextual infor-

mation and strategic behavior of the buyers. In the following, we elaborate on these aspects by

reviewing the related work.
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Contextual Dynamic Pricing with Learning in Non-strategic Environment: Recently, several

works considered the problem of dynamic pricing in a non-strategic setting when the unknown

demand function depends on the customers’ characteristics (aka contextual information). In such

settings, customers are not strategic in a sense that they do not consider the impact of their cur-

rent actions on the future prices they will see. Chen et al. (2015) studied this problem when the

demand function follows the logit model and proposed an ML-based learning algorithm. Leme and

Schneider (2018), Cohen et al. (2016), and Lobel et al. (2016) proposed a learning algorithm based

on the binary search method when the demand function is linear and deterministic. In their mod-

els, buyers have homogenous preference vectors and are non-strategic. Hence, the problem reduces

to a single buyer setting, where the buyer acts myopically, i.e., the buyer does not consider the

impact of the current actions on the future prices. In our setting, however, the seller interacts with

a heterogeneous set of buyers in repeated second-price auctions, rather than the posted-price mech-

anism. Thus, the seller should estimate a preference vector per buyer and use these estimates to

set personalized contextual-based reserve prices. There is also a new line of literature that studied

dynamic pricing with demand learning when the contextual information is high dimensional (but

sparse); see Javanmard and Nazerzadeh (2019), Ban and Keskin (2017). Similar problems have

been investigated in Bastani and Bayati (2015), Javanmard (2017).

As mentioned earlier, in our setting, the seller repeatedly interacts with a small number of strate-

gic and heterogeneous buyers. We note that Edelman and Ostrovsky (2007) presented empirical

evidence that showed buyers in online advertising markets act strategically. There is also a large

body of literature that studied dynamic pricing in a setting where buyers are strategic and the

demand function is known a priori; see, for example, Borgs et al. (2014), Besbes and Lobel (2015),

Golrezaei et al. (2017b).5 This literature highlights the importance of considering the strategic

behavior of buyers in updating prices over time.

5 Very recently, Chen and Keskin (2018) study dynamic pricing with unknown demand. Here, customers have unit-

demand, arrive over time, and time their purchase strategically.
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Pricing with Strategic Buyers and Demand Learning: Amin et al. (2013), Medina and Mohri

(2014), and Kanoria and Nazerzadeh (2017) examined the problem of dynamic pricing with strate-

gic buyers in a non-contextual environment.6 In Amin et al. (2013) and Medina and Mohri (2014),

the seller repeatedly interacts with a single strategic buyer via a posted-price mechanism. Similar to

our setting, the seller is more patient than the buyer in a sense that the buyer discounts his future

utility. Amin et al. (2013) showed that no learning algorithm can obtain a sub-linear regret when

the buyer is as patient as the seller. In addition, via designing learning policies, they demonstrated

that the seller can get a sub-linear regret bound when the buyer is less patient.

Kanoria and Nazerzadeh (2017) studied dynamic pricing when a group of strategic buyers com-

petes with each other in repeated non-contextual second-price auctions. A main difference with

our setting is that in their model, buyers are as patient as the firm and hence there is no time-

discount factor for buyers’ utilities. They designed a near-optimal elegant pricing policy in which

the reserve price of each buyer is computed using the submitted bids of other buyers. Specifically,

for any ε > 0, their policy can be designed to achieve (1−ε) of the expected revenue obtained under

the static Myerson optimal auction for the valuation distribution. Note that this corresponds to

a linear regret bound in our terms. Indeed in the setting that buyers do not discount their future

utilities and buyers are utility-maximizer, it is impossible to get a sub-linear regret (Amin et al.

2013). Further, in (Kanoria and Nazerzadeh 2017) it is assumed that products to be sold are ex-

ante identical, and that buyers are homogenous and their valuations are all drawn from a single

distribution, which is unknown to the seller.

With respect to the homogeneity assumption, we point out that there exists empirical evidence

that buyers are indeed heterogeneous (Guimaraes and Sheedy 2011, Johnson and Myatt 2003,

Golrezaei et al. 2017a). It is not surprising that the heterogeneity in the markets makes the design

of selling mechanisms more difficult. In addition, such difficulties get more severe when the seller

6 Learning with strategic players has been studied very recently in different settings including spread betting markets

(Birge et al. 2018) and multi-armed bandit settings (Braverman et al. 2017).
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needs to design dynamic selling mechanisms for a group of strategic buyers that compete with each

other repeatedly.

Recently, Mahdian et al. (2017) studied a similar problem in a static non-contextual setting

where the seller has access to m (strategic) data points and using these data points, she would like

to design a mechanism that can incentivize the buyers to be truthful in the first place. They show

that when the market power of each buyer is negligible, designing such a mechanism is feasible. To

achieve this result, they apply the technique of differential privacy (McSherry and Talwar 2007).

Closer to the spirit of this paper, Amin et al. (2014) studies the problem of pricing inventory in

a repeated posted-price auction. The authors propose a pricing algorithm whose regret is in the

order of O(
√

logT T 2/3) in a contextual setting, against a strategic buyer. 7 We point out that our

regret result improves upon Amin et al. (2014) in the following directions:

- We allow for market noise in our model, whereas Amin et al. (2014) considers noiseless setting

which posits that buyer’s valuation is given as a linear function of features. Due to this difference,

their algorithm and regret bound obtained for noiseless setting in Amin et al. (2014) cannot

be applied to our noisy setting and vice versa. Nonetheless, by adding the noise component,

we make the model richer. When the noise distribution is known, our CORP policy obtains a

T-period regret of O(d log(Td) log(T )). In addition, when the noise distribution is unknown, our

SCORP policy, which is doubly robust against strategic buyers and the uncertainty in the noise

distribution, obtains a T-period regret of O(d
√

log(Td) T 2/3).

- We consider a market of strategic buyers who participate in a second-price auction at each round,

while Amin et al. (2014), motivated by targeting in online advertising, considers a single buyer

case. Note that in case of a single buyer, there is no notion of bid, as the buyer only needs

to decide if he is willing to purchase the item at the posted price. By contrast, in a market of

buyers, each submitted bid of a buyer can potentially affect the utility of that buyer (instant

and long-term utility), other buyers’ utilities and the seller’s revenue. We note that Section 5

7 Dependency on d is hidden in the big-O notation.
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in Amin et al. (2014) considers an extension to the multiple buyers case but assumes that the

highest valuation in each period t can be written as 〈xt, β〉 for a fixed parameter vector β, and

product feature (context) xt, which we find to be a strong assumption.

Behavior-based Pricing: Our work is also related to the literature on behavior-based pricing where

the seller uses the past behavior of the buyers to update the prices (Hart and Tirole 1988, Schmidt

1993, Fudenberg and Villas-Boas 2006, Acquisti and Varian 2005, Esteves et al. 2009, Bikhchandani

and McCardle 2012). In this literature, it is mostly assumed that the buyer’s valuation, which is

drawn from a publicly known distribution, is fixed throughout the time horizon. Thus, the seller

does not need to learn the valuation distribution; instead, the seller aims at learning the realized

valuation of the buyer. Note that considering a static valuation for a buyer in the online advertising

market is not reasonable, as in this market, buyer’s valuation can depend on the rich contextual

information, which varies over time. We also note that in the behavior-based pricing literature, the

seller and buyer usually get engaged in repeated games, where each of the player responds to other

player’s strategy to form a perfect Bayesian Nash equilibrium.

3. Model

Before we describe the model, we adopt some notation that will be used throughout the paper.

For an integer a, we write [a] = {1,2, . . . , a}. In addition, for a vector v ∈ Rd, we denote its jth

coordinates by vj, for j ∈ [d], and indicate its `2 norm by ‖v‖. For two vectors v,u ∈ Rd, 〈u, v〉=∑d

j=1 ujvj represents their inner product. Finally, I(·) denotes the indicator function: I(A) = 1 when

event A happens, and is zero otherwise.

We consider a firm who runs repeated second-price auctions with personalized reserve over a

finite time horizon with length T . In each period t≥ 1, the firm would like to sell an item to one

of N buyers. The item in period t is represented by an observable feature (context) vector denoted

by xt ∈ Rd. We assume that the features are drawn independently from a fixed distribution D,

with a bounded support X ⊆ Rd. Note that the length of the time horizon T and distribution D

are unknown to the firm. For the sake of normalization and without loss of generality, we assume
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that ‖xt‖ ≤ 1, and hence take X = {x ∈Rd : ‖x‖ ≤ 1}. We let Σx = E[xtx
T
t ] be the second moment

matrix of distribution D, and assume that Σx is a positive definite matrix, where Σx is unknown

to the firm.

For buyers’ valuations, we consider a feature-based model that captures heterogeneity among

the buyers. In the following, we discuss the specifics of the valuation model. Valuation of buyer

i∈ [N ] for an item in period t≥ 1 depends on the feature vector xt and period t and is denoted by

vit(xt). We assume that vit(xt) is a linear function of a preference vector βi and the feature vector

xt. (We relax this assumption in Appendix 8.) That is,

vit(xt) = 〈xt, βi〉+ zit i∈ [N ], t≥ 1 . (1)

Whenever it is clear from the context, we may remove the dependency of valuation vit(xt) on the

feature vector xt and denote it by vit. Here, βi ∈ Rd represents the buyer i’s preference vector,

and for the sake of normalization, we assume that ‖βi‖ ≤ Bp, i ∈ [N ], where Bp is a constant.

The terms zit’s, i ∈ [N ], t ≥ 1, which are independent of the feature vector xt, are idiosyncratic

shocks and are referred to as noise. The noise terms are drawn independently and identically from

a mean zero distribution F : [−Bn,Bn]→ [0,1] with continuous density f : [−Bn,Bn]→R+, where

Bn is a constant.8 We assume that the firm knows the distribution of the noise F . We relax this

assumption later in Section 5. Note that the valuation of buyer i, vit, is not known to the firm, as

the preference vector βi and realization of the noise zit are not observable to her. In addition, by

our normalization, vit(xt)≤B, with B =Bp +Bn.

We make the following assumption on distribution of the noise F .

Assumption 1 (Log-concavity). F (z) and 1−F (z) are log-concave in z ∈ [−Bn,Bn].

Assumption 1, which is prevalent in the economics literature (Bagnoli and Bergstrom 2005),

holds by several common probability distributions including uniform, and (truncated) Laplace,

8 The noise aims at capturing features that are not observed/measured by the firm.



Golrezaei et al.: Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions
13

exponential, and logistic distributions. A few remarks are in order regarding Assumption 1. If dis-

tribution F is log-concave and its density f is symmetric, i.e., f(z) = f(−z), then 1−F (z) = F (−z)

is also log-concave. Moreover, if density f is log-concave, the cumulative distribution function F

and the reliability function 1−F are also log-concave (Bagnoli and Bergstrom 2005). This implies

that Assumption 1 is satisfied when the density f is log-concave. We also point out that if a density

has a monotone hazard rate (MHR), i.e.,
f(z)

1−F (z)
is increasing in z, then 1−F (z) is log-concave.

This point, in turn, shows that all MHR and symmetric densities satisfy Assumption 1.

We next describe the repeated second-price auctions and discuss the firm’s problem. The goal

of the firm is to maximize the cumulative expected revenue in repeated second-price auctions. The

firm tries to achieve this by choosing reserves in a dynamic and personalized manner.

3.1. Second-price Auctions with Dynamic Personalized Reserves

Before defining a second-price auction, we need to establish some notation. For buyer i ∈ [N ] and

period t≥ 1, we let pit be the payment from buyer i in period t. Further, let qit be the allocation

variable: qit = 1 if the item in period t is allocated to buyer i and is zero otherwise. We also let bit

be the bid submitted by buyer i and rit be the reserve price posted by the firm for buyer i in period

t. We define bt = (b1t, . . . , bNt) and r = (r1t, . . . , rNt) as the vectors of bids and reserves in period t,

respectively. Moreover, we denote by Hτ the history set observed by the firm up to period τ . This

set includes buyers’ bids and reserve prices for all t < τ :

Hτ = {(x1,r1,b1), . . . , (xτ−1,rτ−1,bτ−1)} . (2)

Below, we explain the details of the second-price auction with reserve. In period t≥ 1,

• The firm observes the feature vector xt ∼D. In addition, each buyer i∈ [N ] learns his valuation

vit, defined in Equation (1).

• For each buyer, the firm computes reserve price rit, as a function of history set Ht and the

feature vector xt.
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• Each buyer i∈ [N ] submits a bid of bit.

• Let i? = arg maxi∈[N ]{bit}. If bi?t ≥ ri?t, then the item is allocated to buyer i?, and we have

qi?t = 1. In case of a tie, the item is allocated uniformly at random to one of the buyers among

those with the highest bid. For all buyers who do not get the item, we have qit = 0.

• For each buyer i, if he gets the item (qit = 1), then he pays pit = max{rit,maxj 6=i{bjt}}.

Otherwise, pit = 0.

To lighten the notation, we henceforth use the following shorthands. For each period t, we let b+
t

and b−t respectively denote the highest and second highest bids. Likewise, we define v+
t and v−t

as the highest and second highest valuations in period t. We also let r+
t be the reserve price of

the buyer with the highest bid. Therefore, bi?t = b+
t , ri?t = r+

t , and the firm receives a payment of

max{r+
t , b

−
t } if the item gets allocated and zero otherwise. We assume that for all periods t, b+

t ≤M

for some constant M > 0. In words, buyers submit bounded bids.

This version of the second-price auctions is called Lazy auctions (Paes Leme et al. 2016). Here,

the item is allocated to a buyer with the highest submitted bid, as long as the buyer clears his

reserve. In other words, the item will not be allocated to any buyer when the buyer with the highest

submitted bid does not clear his reserve price. As stated in the introduction, there is another

version of second-price auctions called Eager auctions. In Eager auctions, all the buyers that do not

clear their reserve prices are eliminated first, and then the item is allocated to one of the remaining

buyers that has the highest submitted bid. Paes Leme et al. (2016) showed that these two versions

do not dominate each other in terms of their yield revenue. Thus, here we focus on the Lazy

auctions, as reserve prices in these auctions can be optimized effectively; see Proposition 3.1. We

further note that Kanoria and Nazerzadeh (2017) argued that even when buyers are homogeneous,

designing a learning algorithm for eager second-price auctions that can incentivize the buyers to

bid truthfully is very challenging.
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The firm’s decision in any period t ≥ 1 is to find optimal reserve price rit, i ∈ [N ], and her

objective is to maximize her (cumulative) expected revenue. Note that revenue of the firm is the

total payment she collects from the buyers over the length of the time horizon. Let

revt = E
[∑
i∈[N ]

pitqit

]
= E

[
max{b−t , r+

t }I(b+
t ≥ r+

t )
]

(3)

be the expected revenue of the firm in period t ≥ 1, where the expectation is w.r.t. to the noise

distribution F , feature distribution D, and any randomness in the bidding strategy of buyers and

learning policy used by the firm. Then, the total revenue of the firm is given by
∑T

t=1 revt.

Maximizing the firm’s revenue is equivalent to minimizing her regret where the regret is defined

as the difference between the firms’ revenue and the maximum expected revenue that the firm

could earn if she knew the preference vectors {βi}i∈[N ]. In the next section, we will formally define

the firm’s regret.

3.2. Benchmark and Firm’s Regret

As stated earlier, the firm’s objective is to minimize her regret, which is the maximum expected

revenue loss relative to a benchmark policy that knows the preference vectors {βi}i∈[N ] in hindsight.

When the preference vectors and noise distribution F are known, to set the optimal reserves rit, the

benchmark policy does not need any knowledge from the history set Ht. Thus, with the knowledge

of the preference vectors, all buyers are incentivized to bid truthfully against the benchmark policy.

This is the case because single-shot second-price auctions are strategy proof (Myerson 1981).

We next characterize the benchmark policy. Let r?it be the reserve of buyer i in period t posted

by the benchmark policy and following our convention, we denote by r?+t the reserve price of the

buyer with the highest bid.

Proposition 3.1 (Benchmark) If the firm knows the preference vectors {βi}i∈[N ] and (fixed)

noise distribution F , then the optimal reserve price of buyer i ∈ [N ] for a feature vector x ∈ X is

given by

r?i (x) = arg max
y

{
y
(
1−F (y−〈x,βi〉)

)}
i∈ [N ], x∈X , (4)
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and hence r?it = r?i (xt). In addition, in any period t≥ 1, the benchmark expected revenue is given by

rev?t = E
[
max{v−t , r?+t }I(v+

t ≥ r?+t )
]
, (5)

where expectation is w.r.t. to the noise distribution F and the feature distribution D.

We refer to Appendix 12 for the proof of Proposition 3.1. We remark that the benchmark revenue

rev?t is measured against truthful buyers, while the firm’s revenue under our policy is measured

against strategic buyers who may not necessarily follow the truthful strategy.

Observe that the optimal reserve price of buyer i in period t, denoted by r?it, solves the following

optimization problem

r?it = arg max
y
{y ·P (vit(xt)≥ y)} = arg max

y

{
y ·P (〈xt, βi〉+ zit ≥ y)

}
.

This shows that the optimal reserve price of buyer i does not depend on the number of buyers par-

ticipating in the auction or their preference vectors. In other words, in (lazy) second-price auctions,

when the preference vectors are known to the firm and the noise distribution is log-concave, the

problem of optimizing reserve prices can be decoupled.9 Because of this, the benchmark, defined

in Proposition 3.1, has a simple structure: For any feature vector x∈X , the optimal reserve price

of buyer i, r?i (x), only depends on βi and feature x, and is independent of βj, j 6= i.

In fact, the benchmark policy offers the best mapping from the features to reserve prices, where

this mapping does not change with time. This is due to the fact the noise distribution F and the

feature distribution D remain unaltered across time and rev?t is the expected revenue of the firm in

period t, with the expectation taken w.r.t. the context vector xt and valuation noise.

Note that in non-contextual settings, the regret is measured against a policy that posts a single

fixed optimal vector of reserve prices. In our contextual setting, by contrast, we would like to

compare our learning policy with the best mapping from the feature (context) vectors to the vector

of reserve prices. In addition, the benchmark’s optimal mapping depends on the buyer’s preference

9 This is not the case for the eager second-price auctions.
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vector {βi}i∈[N ]; that is, the benchmark offers personalized reserve prices. Competing with such

a strong benchmark that takes into account the impact of contexts as well as the heterogeneity

among buyers is one of the challenges faced by the firm.

Having defined the benchmark, we are now ready to formally define the regret of a firm’s policy

π. Recall that the firm’s decision is to optimize reserve prices. To set the reserve prices optimally,

the firm needs to learn the preference vectors {βi}i∈[N ]. To do so, the firm faces the trade-off

between exploration and exploitation. Such a trade-off is not the only hurdle that the firm is facing:

the buyers can act strategically and interfere with the learning process of the firm by bidding

untruthfully. Let us stress that the buyers’ behavior not only affects the outcome of the current

auction but also can impact the future outcomes. The reason is that the firm can use the history

set in posting reserves. Therefore, in general, each buyer’s bid may have a perpetual effect on the

firm’s revenue. In Section 3.3, we further elaborate on the buyers’ bidding behavior. Thus, the

firm’s goal is to deploy a robust learning policy that limits the long-run effect of each bid and tries

to incentivize the buyers to be truthful.

Consider a policy π that posts a vector of reserve prices rπt = (rπ1t, . . . , r
π
Nt), as a function of

history set Ht observed by the firm. Suppose that the buyers submit bids of bt = (b1t, . . . , bNt),

t≥ 1, where bt may not be equal to the vector of valuations vt = (v1t, . . . , vNt). The submitted bid

of buyer i, bit, can depend on the learning policy used by the firm, context xt, his valuation vit,

and history Hit, where

Hit = {(vi1, bi1, qi1, pi1), . . . , (vi(t−1), bi(t−1), qi(t−1), pi(t−1))}.

Recalling our notation, we write rπ+
t to denote the reserve price, set by policy π, of the buyer

with the highest bid in period t. Then, the expected revenue of the firm under policy π in period

t reads as

revπt = E
[
max{b−t , rπ+

t }I(b+
t ≥ rπ+

t )
]
, (6)
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where expectation is w.r.t. to the noise distribution F , feature distribution D, and any randomness

in bidding strategy of the buyers.

Then, the worst-case cumulative regret of policy π is defined by

Regπ(T ) = max
{ T∑
t=1

(rev?t − revπt ) : ‖βi‖ ≤Bp, for i∈ [N ], supp(D)⊆X
}
. (7)

Note that the regret of the policy π is not a function of the feature distribution D and the fea-

ture vectors {βi}i∈[N ]. That is, we compute the regret of the policy π against the worst feature

distribution D and preference vectors {βi}i∈[N ].

In the next section, we discuss buyers’ bidding behavior.

3.3. Utility-maximizing Buyers

We assume that each buyer i ∈ [N ] is risk neutral and aims at maximizing his (time-discounted)

cumulative expected utility. The utility of buyer i in period t≥ 1 with valuation vit is given by

uit = γt(vitqit− pit) ,

where γ ∈ (0,1) is a discount factor. The discount factor highlights the fact that the firm is more

patient than the buyers. For instance, in online advertising markets, advertisers are willing to show

their ads to the users who just visited their websites.10 As another example, in cloud computing

markets, the consumers would like to access enough capacity whenever they need it (Borgs et al.

2014). Note that through the allocation variables qit, utility uit, depends on the submitted bids of

all the buyers, bt, and their reserve price rt used by the firm.

In any period t, each buyer i would like to maximize his time-discounted cumulative utility that

he will earn in any period τ ≥ t, which is defined as

Uit =
∞∑
τ=t

E[uiτ ] .

We note that Amin et al. (2013) showed that it is impossible to get a sub-linear regret when

buyers are utility-maximizer and do not discount their future utilities. We further remark that the

10 Such a practice is known as retargeting (Amin et al. 2014, Golrezaei et al. 2017a).
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firm does not need to know γ as our policies are oblivious to γ. However, as we show later, our

regret bounds depend on γ.

All buyers fully know the learning policy that the firm is using to set the reserves.11 More precisely,

if the policy involves randomization, the buyers know in advance the policy and not the realization

of the policy. Armed with this knowledge, buyers can potentially increase their future utility they

earn via bidding untruthfully. Particularly, a buyer can underbid (shade) his bid by submitting bid

bit < vit, or he can overbid by submitting bid bit > vit. Both shading and overbidding can potentially

impact the firms’ estimate of preference vectors of the buyers and this, in turn, can hurt the firms’

revenue. However, shading can lead to a utility loss in the current period, as by shading, the buyer

may lose an auction that he would have won by bidding truthfully. Similarly, overbidding can result

in a utility loss in the current period, as by overbidding the buyer might end up paying more than

his valuation.

We next present our robust policy, named CORP, for learning preference vectors {βi}i∈[N ]

through interaction with utility-maximizing buyers in repeated second-price auctions with reserve.

4. CORP: A Contextual Robust Pricing Policy

In this section, we present our learning policy. The description of the policy is provided in Table

1. For reader’s convenience, we also provide a schematic representation of CORP in Figure 1. The

policy works in an episodic manner. It tries to learn the preference vectors by using Maximum

Likelihood Estimation (MLE) and meanwhile sets the reserve prices based on its current estimates

of the preference vectors. Episodes are indexed by k = 1,2, . . ., where the length of each episode,

denoted by `k, is given by 2k−1. Thus, episode k starts in period `k = 2k−1 and ends in period

`k+1− 1 = 2k− 1. Note that the length of episodes increases exponentially with k. Throughout, we

use notation Ek to refer to periods in episode k, i.e., Ek ≡ {`k, . . . , `k+1− 1}.

11 This assumption is inspired by the literature on the behavior-based pricing where it is shown that the firm can

earn more revenue by committing to a pricing strategy (Hart and Tirole 1988, Salant 1989). See also Aviv and Pazgal

(2008), Aviv et al. (2015) for a similar insight.
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Figure 1 Schematic representation of the CORP policy. CORP has an episodic structure and updates its estimates

of buyers’ preference vectors at the beginning of each episode. The estimates are computed via the

maximum log-likelihood method using outcomes of auctions. The dark blue rectangles show the random

exploration periods.

At the beginning of each episode k, we estimate the preference vectors of the buyers using the

outcome of the auctions (qit’s) in the previous episode, i.e., episode k−1, and we do not change our

estimates during episode k. Let β̂ik be the estimated preference vector of buyer i at the beginning

of episode k. Then, β̂ik solves the following optimization problem:

β̂ik = arg min
‖β‖≤Bp

Lik(β), i∈ [N ] , (8)

where

Lik(β) = − 1

`k−1

∑
t∈Ek−1

{
qit log

(
(1−F (max{b+

−it, rit}− 〈xt, β〉))
)

+ (1− qit) log
(
F (max{b+

−it, rit}− 〈xt, β〉)
)}

(9)

is the negative of the log-likelihood function. Here, b+
−it refers to the maximum bids of buyers other

than buyer i, in period t; that is, b+
−it = maxj 6=i bjt. Then, buyer i wins the auction in period t if

and only if bit >max{b+
−it, rit}. Throughout the manuscript, to avoid ties, we make a simplifying

assumption that the submitted bids are distinct. Similarly, we define v+
−it = maxj 6=i vjt. Note

that F (max{b+
−it, rit} − 〈xt, β〉) is the probability of event 〈xt, β〉+ zit ≤ max{b+

−it, rit}, which is

the probability that buyer i does not win the item at time t, upon bidding truthfully.12 The log-

12 Since the noise density f is zero outside the interval [−Bn,Bn], we have F (z) = 0, for z ≤ −Bn and F (z) = 1

for z ≥ Bn. In addition, qit ∈ {0,1}. In computing the negative log-likelihood function, we adopt the convention of

0× (−∞) = 0.
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likelihood function Lik(β) is computed after running the auctions in all the periods of episode Ek−1.

Therefore, the firm has access to the required knowledge to compute the log-likelihood function

Lik(β). Specifically, by the time the firm computes Lik(β), she has access to the submitted bids of

the buyers in periods t∈Ek−1 as well as the reserve prices used in these periods.

Now, one may wonder why CORP does not use a simple mean square error estimator for which

the estimate of preference vector βi at the beginning of episode k is given by arg min
‖β‖≤Bp

∑
t∈Ek−1

(bit−

〈xt, β〉)2. This quadratic estimator, unlike the maximum Likelihood estimator used in CORP, uses

the submitted bids of buyers directly and as a result, it is rather vulnerable to the strategic behavior

of the buyers. This is so because the mean square error estimators are sensitive to outliers and this

undesirable property would be an advantage to strategic buyers to manipulate the seller’s pricing

policy. In light of this observation, to estimate the preference vector of any buyer i, CORP applies

a maximum Likelihood estimator that only uses the outcome of the auctions qit, that we refer to

as “censored bids”, and submitted bids of other buyers expect buyer i; see the definition of the

log-likelihood function in Equation (9). This makes the estimation procedure of the policy robust

to untruthful bidding behavior of the buyers, as untruthful bidding may not necessarily lead to a

different outcome. In addition, due to this feature of the learning policy, the buyers are incentivized

to bid truthfully unless they are interested in changing the outcome of the auction at the expense

of losing their current utility. Later when we outline the proof of the regret bound of CORP, we

further elaborate on this.

After estimating the preference vectors at the beginning of each episode k, the policy proceeds to

use its estimation to set reserve prices. In particular, the reserve price in period t∈Ek, rit, solves

rit = arg max
y

{
y
(
1−F (y−〈xt, β̂ik〉)

)}
. (10)

Note that by Proposition 3.1, if β̂ik = βi, then rit = r?it where r?it is the optimal reserve price of

buyer i in period t.

We now discuss some of the important features of our policy.
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CORP: A Contextual Robust Pricing

Initialization: For any k ∈ Z+, let `k = 2k−1 and Ek = {`k, . . . , `k+1 − 1}. Moreover, we let ri1 = 0

and β̂i1 = 0 for any i∈ [N ].

Updating Preference Vectors: At the start of each episode k= 1,2, . . ., i.e, at the beginning of period

t= `k, estimate the preference vectors, denoted by {β̂ik}i∈[N ], as follows

β̂ik = arg min
‖β‖≤Bp

Lik(β), i∈ [N ] , (11)

where Lik(β) is defined in Equation (9).

Setting Reserves: In each episode k= 1,2, . . ., and for any period t in this episode, i.e., t∈Ek,

- Exploration Phase: With probability 1
`k

, choose one of the N buyers uniformly at random and

offer him the item at price of r∼ uniform(0,B), where uniform(0,B) is the uniform distribution

in the range [0,B]. For other buyers, set their reserve prices to ∞.

- Exploitation Phase: With probability 1− 1
`k

, observe the feature vector xt and set the reserve

of each buyer i∈ [N ] to

rit = arg max
y

{
y
(
1−F (y−〈xt, β̂ik〉)

)}
.

Table 1: CORP Policy

• In each episode k, every period t is assigned to exploitation with probability 1− 1/`k, and is

assigned to exploration with probability 1/`k. In the exploration periods, the firm chooses one

of the buyers at random and allocates the item to him if his submitted bid is above a reserve

price r∼ uniform(0,B) where uniform(0,B) is the uniform distribution in the range [0,B]. In

exploitation periods, the firm exploits her current estimate of the preference vectors to set the

reserve prices where the estimates are obtained by applying the MLE method to the outcomes

of auctions in episode k− 1.

As stated earlier, in the exploration periods, we randomly choose prices. However, the firm

does not crucially use this randomness to identify the best reserve prices. Recall that to set

the reserve prices, the firm uses all the data points in the previous episode, not only the data

points in the exploration periods. The main purpose of setting reserve prices randomly in the

exploration periods is to motivate the buyers to be truthful. Note that the buyer does not
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know if in a given period t, the prices are set randomly. Thus, if he underbids in such a period,

with a positive probability, he loses the opportunity to obtain a positive utility. Considering

this and the fact that the buyers discount the future utilities, the randomized reserve prices

incentivize the buyers to bid truthfully.

• Another important factors that makes the CORP policy robust is its episodic structure and

impatience of buyers. In the CORP policy, submitted bids in episode k are not used in setting

reserve prices until the beginning of the episode (k + 1). Therefore, there is always a delay

until buyers observe the effect of a bid on their reserves. Then, since buyers are impatient

and maximize their discounted cumulative utility, they have less incentive to bid untruthfully.

This is a salient property of the CORP policy that bounds the perpetual effect of each bid

and, as we will see in the analysis, leads to robustness of the learning policy to the strategic

behavior of buyers.

4.1. Regret Bound of the CORP Policy

We now state our main result on the regret of the CORP policy.

Theorem 4.1 (Regret Bound: Known Noise Distribution) Suppose that Assumption 1

holds and the firm knows the market noise distribution F . Then, the T-period worst-case regret

of the CORP policy is at most O
(
Nd
(

log(Td) log(T ) + log2(T )

log2(1/γ)

))
, where the regret is computed

against the benchmark, defined in Proposition 3.1.

The regret bound of CORP presented in Theorem 4.1 consists of two terms O(Nd log(Td) log(T )

and O
(
Nd log2(T )

log2(1/γ)

)
. The first term of the regret bound is due to the estimation error in preference

vectors; that is, this term exists even if buyers were not strategic. The second term is due to the

strategic behavior of the buyers. Observe that the second term decreases as buyers get less patient;

i.e., γ gets smaller.

The proof of Theorem 4.1 is proved in Appendix 9. To bound the regret of our policy, we note

that untruthful bidding has two undesirable effects for the firm. First of all, both overbidding and
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shading increase the estimation errors of the preference vectors and thus, consequently, introduce

errors in the reserve prices set by the firm. Second of all, bidding untruthfully can lower the second

highest submitted bid as well as the reserve price of the winner, and this reduces the firm’s revenue.

By this observation, we divide the policy’s regret into two parts, where each part captures the

negative consequences of one of the aforementioned effects.

To bound the regret associated with the first effect, in Proposition 9.1, we determine to which

extent buyers’ “lies” impact the estimation errors of the preference vectors and the reserve prices.

We say a buyer lies when his untruthful bid changes the outcome of the auction, qit, for this buyer

relative to the truthful bidding. That is, we say buyer i lies in period t if I(vit >max{b+
−it, rit}) 6=

I(bit >max{b+
−it, rit}) holds. Our notion of lies is inspired by our maximum Likelihood estimator

used in CORP. To estimate the preference vector of any buyer i, the maximum Likelihood estimator,

defined in (9), only uses the outcome of the auctions and submitted bids of other buyers expect

buyer i. Thus, untruthful bidding can change our estimate of preference vector of buyer i and

consequently his reserve price only when he “lies”.

Having established the impact of lies, we then show that the number of times that a buyer lies in

each episode is logarithmic in the length of the episode; see Proposition 9.2. This bound is derived

using the property of our estimation method. As stated earlier, to influence the estimation of the

preference vectors and reserve prices, buyers need to change the outcome of the auctions where

such a change is costly for them as it can lead to utility loss. We then make use of the fact that

buyers are utility-maximizer and discount the future to bound the number of lies. Precisely, to get

this bound, we compare the long-term excess utility obtained from a lie with the instant utility loss

that it causes. In particular, we derive a lower bound on the utility loss of the buyers in episode k

by focusing on the random exploration periods. Note that buyers are not aware whether a period

is an exploration period. Thus, with a positive probability, any untruthful bid leads to a utility

loss. We further derive an upper bound on the (future) utility gain of the untruthful bidding in

episode k. Our upper bound is the total discounted utility that any buyer can hope to achieve in
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the next episodes. Thus, the bound includes potential future utility gains that a buyer can enjoy

by manipulating other buyers’ strategy and their reserve prices. Then, by arguing that for any

utility-maximizer buyer, the upper bound on the utility gain should be greater than or equal to the

lower bound on the utility loss, we bound the number of lies of the buyer. By characterizing the

impact of lies in Proposition 9.1 and bounding the number of lies in Proposition 9.2, we are able

to bound the regret associated with the first effect, namely the gap between the posted reserves

and the optimal ones.

To bound the regret associated with the second effect, we quantify the impact of bidding untruth-

fully on the second highest bids and reserve of the winner; see Lemma 3. When buyers bid untruth-

fully, the second highest bid may decrease. Further, the winner of the auction can change and this,

in turn, can lower the reserve price of the winner. Any of these events will hurt the firm’s revenue.

To quantify this impact, we upper bound the amount of underbidding and overbidding from each

buyer using the fact that the buyer is utility-maximizer; see Proposition 9.2. To do so, we employ

a similar argument that we used to bound the number of lies.

After characterizing the regret due to both effects, we bound the total regret during each episode,

and show that the total regret is logarithmic in the length of the episode. The proof is completed

by noting that there are O(logT ) episodes up to time T , as the length of episodes doubles each

time.

5. Knowledge of Market Noise Distribution

In the CORP policy, we assumed that the market noise distribution is known to the seller or can

be estimated sufficiently well from side data. However, we do not always have this commodity in

practice. Ideally, we prefer a pricing policy that uses such knowledge minimally, if at all. To relax

this assumption, we consider setting where the market noise distribution is not fully known, but

is believed to belong to a known ensemble of distributions:

• Unknown (Fixed) Distribution from a Known Location-scale Ensemble: Suppose that the

unknown market noise distribution belongs to a known location-scale family of log-concave
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distributions. To recall, a log-scale family of distribution is a one that for a variable

Y belonging to this family, the distribution function of random variable aY + b also

belongs to this family. Some examples include Normal, Uniform, Exponential, Logistic, and

Extreme value distribution, to name a few. We propose a policy that achieves a regret of

O
(
Nd log(Td)

√
T +N 2d

(
1 + 1

log2(1/γ)

)
log3(T )

)
. (In Appendix 7, we further show that even

when buyers are not strategic, no other policy can have a regret better than Ω(
√
T ).) To

design CORP-II, we adopt the MLE estimator in CORP to also estimate the parameters of

the noise distribution as well as the preference vectors, and in this sense, we follow the path

pursued in (Javanmard and Nazerzadeh 2019) for the case of the single, non-strategic buyer.

We refer to Section 5.1 for the details.

• Unknown (Time-varying) Distribution from a Given Ambiguity Set: This is a more general

setting where the noise distribution is unknown and time-varying, but belongs to a given

ambiguity set of the log-concave distribution. In Section 5.2, we propose the so-called SCORP

policy whose regret is of order O
(
N
√
d log(Td) T 2/3 + N

log(1/γ)
log(T ) T 1/3

)
.

5.1. Unknown Distribution from a Known Location-Scale Ensemble

Consider a location-scale class of distributions F :

F ≡
{
Fm,σ : m∈R, σ ∈ [σ, σ̄], σ > 0, Fm,σ(x) = F ((x−m)/σ)

}
, (12)

where F is a known log-concave distribution with mean zero and variance one. We assume that

the noise distribution is Fm,σ ∈ F , with unknown parameters m, σ, where m and σ2 respectively

corresponds to the mean and the variance of the noise distribution. Without loss of generality, we

can assume that m= 0; otherwise, the mean of the noise term can be absorbed in the features as

an intercept term. As an example, the set F can be class of uniform distribution with the support

of [−a,a] where a∈ [a, ā] is unknown and a, ā > 0. As another example, the set F can be a class of

(truncated) normal distributions with unknown standard deviation from an interval.
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We let α0 ≡ 1/σ and in the model (1), we multiply both sides with α0. This leads to

ṽit = 〈xt, θi〉+ z̃it, i∈ [N ], t≥ 1 , (13)

where ṽit = α0vit, θi = α0βi and z̃it = α0zit. Notably, distribution of z̃it is F . The valuation

model (13) is similar to our previous model where the market noises were drawn from a known

distribution F . For this setting, we propose a pricing policy, named CORP-II which is very similar

to the CORP policy: It has an episodic structure, where the length of episodes grows exponentially,

namely episode k is of length `k = 2k−1. The first d
√
`ke periods of episode k are the pure explo-

ration periods. In each of these period, a buyer is chosen in a round robin fashion (call him i◦t ) and

offer him the item at price of rt ∼ uniform(0,B). For other buyers, we set their reserves to∞. In the

remaining periods of the episode, we set the reserve prices based on the current estimates of the

preference vectors and the scale parameter α0. Specifically, we let Ik be the set of pure exploration

periods in episode k (so |Ik| = d
√
`ke) and form the negative log-likelihood function to estimate

both βi and α0 using the outcomes of auctions in Ik:

L̃ik(θ,α) = −
⌈ N
|Ik|

⌉ ∑
{t∈Ik,i◦t=i}

{
qit log (1−F (αrt−〈xt, θ〉))

+ (1− qit) log (F (αrt−〈xt, θ〉))
}
. (14)

The function L̃ik is indeed the negative log-likelihood for allocation variables qit for t ∈ Ik, condi-

tional on the feature vectors xt, and the events i◦t = i, rit = rt, assuming that buyer i is truthful.

The term dN/|Ik|e comes from the fact that the buyer i◦t is chosen in a round robin fashion and so

for a fixed i, there are 1/N fraction of the periods in Ik contributing to the log-likelihood function

L̃ik.

Let (θ̂ik, α̂0k) solves the following optimization problem:

(θ̂ik, α̂0k) = arg min
‖(θ,α)‖≤B̃p

L̃ik(θ,α), i∈ [N ] , (15)

with B̃p =Bp + 1/σ.
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Figure 2 Schematic representation of the CORP-II policy. CORP-II has an episodic structure and updates its

estimates of buyers’ preference vectors at the beginning of each episode. Each episode k starts with a

pure exploration phase Ik of length d`1/2k e. CORP-II estimates preference vectors βi using MLE applied

to the outcomes of auctions run in the previous pure exploration phase.

In the exploitation phase, the reserve of each buyer i∈ [N ] is set to

rit = arg max
y
{y(1−F (α̂0ky−〈xt, θ̂ik〉)} . (16)

The formal description of CORP-II policy is given in Table 2. We also provide a schematic rep-

resentation of CORP-II in Figure 2. CORP-II has a very similar structure to CORP. The main

difference is that unlike CORP, we have some forced (pure) exploration periods at the beginning

of each episode at which we experiment with random prices to learn both the preference vectors

and the parameters of the noise distribution. The force exploration periods are required because in

the current setting the market noise distribution is not fully known; see lower bound on regret in

Appendix 7. By comparison, in CORP, the market noise distribution F is fully known to the seller

and we have much fewer of exploration periods (recall that in CORP, in each period of episode k,

we do exploration with probability 1/`k and so in expectation, we have only one exploration period

in each episode).

Note that by the decoupling property (as stated in Proposition 3.1), the benchmark policy can

focus on each buyer separately. This leads to the following optimal reserve, which optimizes the

revenue obtained from buyer i:

r?i (x) = arg max
y
{y(1−F (α0y−〈x, θ0〉))} .

Our next theorem characterizes the regret bound of CORP-II policy against a benchmark that

knows the buyers’ preference vectors βi and the true market noise distribution.
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CORP-II: A Contextual Robust Pricing

Initialization: For any k ∈Z+, let `k = 2k−1, Ek = {`k, . . . , `k+1 − 1}, and Ik = {`k, . . . , `k + d
√
`ke}.

Moreover, we let ri1 = 0 and β̂i1 = 0 for any i∈ [N ].

For k= 1,2, . . . , do the following steps:

Pure Exploration Phase: For t∈ Ik, a buyer is chosen in a round robin fashion (call him i◦t ) and offer

him the item at price of rt ∼ uniform(0,B). For other buyers, we set their reserves to ∞.

Updating Estimates: At the end of the exploration phase, update the estimate of the preference

vectors by applying MLE to the previous pure exploration phase:

(θ̂ik, α̂0k) = arg min
‖(θ,α)‖≤B̃p

L̃ik(θ,α), i∈ [N ] , (17)

where L̃ik(θ,α) is given by Equation (14).

Exploitation Phase: For other t∈Ek, observe the feature vector xt and set the reserve of each buyer

i∈ [N ] to

rit = arg max
y

{
y
(
1−F (α̂0ky−〈xt, θ̂ik〉)

)}
. (18)

Table 2: CORP-II Policy

Theorem 5.1 (Regret Bound: Unknown Noise Distribution from a Location-Scale Ensemble)

Consider the valuation model (1) where the market noise zit’s are generated from a distribution

belonging to F , defined in (12). Suppose that F in the definition of F satisfies Assumption 1.

Then, the T-regret worst-case regret of CORP-II policy is at most

O

(
Nd log(Td)

√
T +N 2d

(
1 +

1

log2(1/γ)

)
log3(T )

)
,

where the regret is computed against the clairvoyant that knows the buyers’ preference vectors βi

and the noise distribution.

We refer to Appendix 10 for the proof of Theorem 5.1. Note that the extra regret due of the

strategic behavior of the buyer is in the order of O
(
dN2 log3(T )

log2(1/γ)

)
. Interestingly, the extra regret

scales only poly-logarithmically in T .



Golrezaei et al.: Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions
30

5.2. Unknown Distribution from a Given Ambiguity Set

The CORP policy presented in this paper is assumed to know the market noise distribution F . This

knowledge is used in forming the log-likelihood estimator to learn preference vectors βi’s and also in

setting the reserves for buyers as in (10). Furthermore, we relaxed this assumption in the previous

section by assuming that F is unknown and fixed and belongs to a locationscale family, and for this

setting, we presented CORP-II policy. Nevertheless, in practice, it may very well be the case that

distribution F is unknown and time-varying and as a result, it cannot be well approximated. To

address this problem, we propose a variant of the CORP policy, called Stable Contextual Robust

Pricing (SCORP), which is robust against the lack of knowledge of F . Specifically, we consider

an ambiguity set F of possible probability distributions for the market noise and propose a policy

that works well for every probability distribution in the ambiguity set.

We make the following assumption on the ambiguity set F . This assumption is analogous to

Assumption 1.

Assumption 2 (Log-concavity of the Ambiguity Set F). All functions F ∈ F are log-

concave.

To be fair, in this case, we compare the regret of our policy against a benchmark policy, called

robust, that knows the true preference vectors βi and the ambiguity set F that includes F , but is

oblivious to distribution F itself. The robust benchmark is defined as follows:

Definition 1 (Robust Benchmark). In the robust benchmark, the reserve price of buyer i ∈

[N ] for a feature vector x∈X is given by

r?i (x) = arg max
y

min
F∈F
{y (1−F (y−〈x,βi〉))} , i∈ [N ], x∈X , (19)

and thus r?it = r?i (xt) in this case.

The robust benchmark is motivated by our previous benchmark presented in Proposition 3.1.

In our previous benchmark, we show that given a distribution F and context x, the revenue-

maximizing reserve price for buyer i solves r?i (x) = arg maxy {y (1−F (y−〈x,βi〉))}. In the robust
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benchmark, the posted reserve prices have a similar form. However, the reserve prices which solves

the optimization problem (19), are chosen in a robust way so that the benchmark performs well

despite the uncertainty in the market noise distribution. We will discuss the complexity of opti-

mization problem (19) in Section 5.2.1.

We note from the robust benchmark, as well as our learning policy, that we will present shortly

do not aim at learning the distribution of market noise, as this distribution can vary across periods.

For instance, in online advertising, the distribution of the noise can depend on many different

factors including the time of the day and demographic information of the Internet users. Thus,

instead of trying to learn the market noise distribution, we would like to use reserve prices that

are robust to the uncertainty in the noise distribution.

We are now ready to present our SCORP policy. This policy is a modified version of the CORP-II

policy. For reader’s convenience, we also provide a schematic representation of SCORP in Figure 3.

Similar to the CORP-II policy, SCORP has an episodic theme, with the length of episodes growing

exponentially. As before, we denote the set of periods in episode k by Ek, i.e., Ek = {`k, . . . , `k+1−1},

with `k = 2k−1. Each episode k starts with a pure exploration phase of length d`2/3k e. As before, we

use notation Ik to refer to periods in the pure exploration phase of episode k, i.e., Ik = {`k, . . . , `k +

d`2/3k e}. During each period in Ik, we choose one of the N buyers uniformly at random and offer

him the item at price of r ∼ uniform(0,B). For other buyers, we set their reserve prices to ∞.

Observe that in SCORP, because distribution F is time-varying, we dedicate more periods to

pure exploration than CORP-II. In the remaining periods of the episode (i.e., Ek\Ik), we offer

the reserve prices based on the current estimates of the preference vectors which are obtained by

applying the least-square estimator to the outcomes of auctions in the pure exploration phase, Ik;

see Equations (20) and (22). This is the exploitation phase as we set reserves based on our best

guess of the preference vectors.

We note that the SCORP policy follows a similar structure to the LEAP policy proposed in Amin

et al. (2014). Assuming that the time horizon T is known, the LEAP policy designates the first
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Figure 3 Schematic representation of the SCORP policy. SCORP has an episodic structure and updates its

estimates of buyers’ preference vectors at the beginning of each episode. Each episode k starts with a

pure exploration phase Ik of length d`2/3k e. SCORP estimates preference vectors βi using LSE applied

to the outcomes of auctions run in the previous pure exploration phase.

O(T 2/3) periods to pure exploration and the remaining periods to exploitation. Using the doubling

trick, the LEAP policy is extended to the setting with an unknown time horizon, which then admits

a similar structure to SCORP. In comparison between SCORP and LEAP, it is worth highlighting

a few points: 1) SCORP generalizes LEAP to the case of multi-buyers. 2) LEAP considers a setting

with noiseless valuations while SCORP allows for noise component in the valuation function. As

a consequence, the pricing functions differ in the two policies. SCORP uses (22), which involves

a min-max optimization over the ambiguity set F while in LEAP, the prices in the exploitation

periods are set as pt = 〈x, θ̂〉 − εt, for an appropriate choice of εt. 3) More on the technical part,

SCORP updates its estimate on the preference vectors only at the end of each exploration phase

while LEAP update its estimate at each period by taking a gradient step on the prediction loss.

The formal description of SCORP is given in Table 3.

Having presented our policy, we now highlight few important remarks about the estimation

process of the policy. (i) Since the noise distribution is unknown and time-varying, SCORP employs

the least-square estimator (LSE) rather than the maximum Likelihood method, used in CORP and

CORP-II; compare Equations (9) and (14) with (21). To apply the least-square estimator, similar

to the CORP and CORP-II policies, SCORP uses the outcome of the auctions, not the submitted

bids. In particular, SCORP minimizes the loss function L̃ik(β) where the loss function is designed

in a way to provide an unbiased estimator of the preference vectors under the truthful bidding
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SCORP: Stable Contextual Robust Pricing Policy

Initialization: For any k ∈ Z+, let `k = 2k−1, Ek = {`k, . . . , `k+1 − 1}, and Ik = {`k, . . . , `k + d`2/3k e}.

Moreover, we let ri1 = 0 and β̂i1 = 0 for any i∈ [N ].

For k= 1,2, . . . , do the following steps:

Pure Exploration Phase: For t ∈ Ik, choose one of the N buyers uniformly at random and offer him

the item at price of r∼ uniform(0,B). For other buyers, set their reserve prices to ∞.

Updating Estimates: At the end of the exploration phase, update the estimate of the preference vectors

by applying the least-square estimator to the previous pure exploration phase:

β̂ik = arg min
‖β‖≤Bp

L̃ik(β), i∈ [N ] , (20)

where L̃ik(β) is given by

L̃ik(β) =
1

|Ik|
∑
t∈Ik

(BNqit−〈xt, β〉)2 . (21)

Exploitation Phase: For t ∈ Ek\Ik, observe the feature vector xt and set the reserve of each buyer

i∈ [N ] to

rit = arg max
y

min
F∈F

{
y
(
1−F (y−〈xt, β̂ik〉)

)}
. (22)

Table 3: SCORP Policy

strategy. To see why note that to estimate the preference vectors, we only use the outcome of

the auctions, qit, in the exploration periods Ik where in exploration periods, the prices are chosen

uniformly at random in [0,B]. Then, when buyers are truthful, the expectation of BNqit w.r.t.

the randomness in prices and the noise in the valuations is E[BN 1
N

Pr[vt ≥ rit]|vt] =E[vt] = 〈xt, β〉.

This implies that under the truthful bidding strategy, the expectation of BNqit − 〈xt, β〉 for any

exploration period t ∈ Ik is zero. Put differently, even under truthful bidding, the expectation of

BNqit− 〈xt, β〉 for exploitation periods t /∈ Ik is not zero and as a result, we only use the data in

the exploration periods to estimate the preference vectors, and this, in turn, enforces the SCORP

policy to dedicated O(T 2/3) periods to exploration. This makes SCORP robust to the strategic

behavior of the buyers. (ii) Due to uncertainty in the noise distribution, for estimation, SCORP

only utilizes the auction outcomes in the exploration phase where it does price experimentation.
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This is in contrast to CORP policy where all the auction outcomes in the previous episode are used

to estimate the preference vectors. It is worth noting that in our analysis of the regret, we give

up on the revenue collected during pure exploration phases and only use the outcomes of auctions

in these phases to bound the estimation error of the preference vectors. (iii) So far, we argued

SCORP is designed in a way to ensure robustness against strategic buyers. Importantly, we also

note that the choice of reserve prices in the exploitation phase of SCORP makes this policy robust

against the uncertainty in the noise distribution. Thus, SCORP is indeed doubly robust.

Our next result upper bounds the regret of the SCORP policy.

Theorem 5.2 (Regret Bound: Unknown Noise Distribution from an Ambiguity Set )

Suppose that Assumption 2 holds, and that the market noise distribution is unknown and belongs

to uncertainty set F . Then, the T-period worst-case regret of the SCORP policy is at most

O

(
N
√
d log(Td) T 2/3 +

N

log(1/γ)
log(T ) T 1/3

)
=O(N

√
d log(Td) T 2/3) ,

where the regret is computed against the robust benchmark.

Observe that due to the strategic behavior of the buyers, the firm suffers from an extra regret of

O
(

N
log(1/γ)

log(T ) T 1/3
)

, where this regret shrinks as γ decreases. We note that while the regret of

the CORP-II policy is in the order of O(d log(Td)
√
T ), the regret of SCORP is O(

√
d log(Td)T 2/3).

The higher regret of SCORP is mostly due to the fact that distribution F is time-varying, and

because of this, SCORP cannot make use of the exploratory effect of the noise. Considering this,

the SCORP policy dedicates more periods to exploration This implies that the SCORP policy

learns preference vectors at a slower rate than CORP-II policy. The slower learning rate is the

main reason behind the higher regret of SCORP.

The proof of Theorem 5.2 is provided in Appendix 11.
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Remark 1. SCORP policy provides a very general machinery to design low-regret doubly robust

learning policies, against different benchmarks.13 To make it clear, assume that firm uses a bench-

mark that posts reserve price of r∗i (x) = ρ(〈x,βi〉,F) for buyer i, under context vector x ∈ X .

Here, ρ(〈x,βi〉,F) = arg maxy minF∈F G(y, 〈x,βi〉,F ), where G : R×R×F → R. Then, as long as

ρ(〈x,βi〉,F) is Lipschitz in its first argument, we can design a low-regret doubly robust learning

policies against this benchmark by only changing the exploitation phase of the SCORP policy.

Particularly, in a period t in the exploitation phase of episode k, we set rit = ρ(〈x, β̂ik〉,F); see

Equation (22) for comparison.

5.2.1. Complexity of SCORP In SCORP, in each exploitation period, the optimization

problem (22) needs to be solved to set reserve prices. Here, we discuss several cases where this

optimization problem is rather easy to solve. We start by presenting an example in which the

ambiguity set consists of uniform distributions. For this example, we provide a simple closed form

solution for problem (22). We then discuss the uniform distributions are not exceptions in the sense

that for many classes of distributions, the optimization problem of SCORP is indeed easy to solve.

Example 1 (Uniform Distributions). Assume that the ambiguity set F includes all the uni-

form distributions with support of form [−a,a] where a ∈ [a, ā]. The following theorem presents

the optimal solution of problem (22) for the described F . Before stating the theorem, let us stress

again that in the setting of SCORP, the distribution F ∈ F can change over time. So, for this

example it means that at step t, the market noises are drawn from a uniform distribution F , with

support [−at, at], where at ∈ [a, ā], is unknown and time varying.

13 The firm may care about other objectives apart from her revenue. For instance, the firm might be interested in

maximizing a convex combination of the welfare and revenue, or due to contracts and deals, she might be willing to

prioritize some of the buyers by offering them lower reserve prices.
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Figure 4 Single-crossing property for the uniform distributions.

Theorem 5.3 Suppose that F includes all the uniform distributions with the support of [−a,a]

where a∈ [a, ā]. Then, for any w, we have

arg max
y

min
F∈F

{
y
(
1−F (y−w)

)}
=



w+a

2
if w≤ a;

w if w ∈ (a, ā);

w+ā
2

if w≥ ā.

The proof of the theorem is deferred to the appendix. �

In Example 1, we observe that under uniform distributions, the robust optimization problem

in (22) has a simple and easy-to-compute solution. This stems from the fact that the uniform

distributions enjoy a single-crossing property; see Figure 4. To make it clear, let Fa(·) be the

distribution of the uniform distribution in the range of [−a,a] where a > 0. Then, (i) for any

a, Fa(0) = 1
2
, (ii) for any y > 0 and a > a′, Fa(y) < Fa′(y), and (iii) for any y < 0 and a > a′,

Fa(y) > Fa′(y). That is, for any a,a′, Fa(·) and Fa′(·) cross each other once at (0,1/2). Having

this single-crossing property, the inner optimization problem in (22) is easy to solve and as a

result, problem (22) has a closed form solution. We highlight that uniform distributions are not

the only distributions that enjoy such a property. Consider normal distributions with mean zero

and variance σ2, denoted by Fσ(·). Then, for any σ,σ′, Fσ(·) and Fσ′(·) cross each other once at

(0,1/2). In general, the location-scale families (with fixed location parameter) considered in Section

5.1, namely F ≡ {Fσ : σ ∈ [σ, σ̄], σ > 0, Fσ = F (x/σ)}, satisfy the single-crossing property if F is

strictly increasing.
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6. Conclusion

Motivated by online marketplaces with highly differentiated products, we formulated a dynamic

pricing problem in the contextual setting. In this problem, a firm runs repeated second-price

auctions with reserve and the item to be sold in each period is described by a context (feature)

vector. In our model, contextual information of an item influences buyers’ valuations of that item

in a heterogeneous way, via buyers’ preference vectors. Due to the repeated interaction of buyers

with the firm, buyers have the incentive to game the firm’s policy by bidding untruthfully. We

proposed three pricing policies to set the reserve prices of buyers. These policies aim at learning the

preference vectors of buyers in a robust way against the strategic behavior of buyers and meanwhile

maximize the firm’s collected revenue.

The main insight behind the robustness property of our approach is that by an episodic design,

we limit the long-term effect of each bid on the firm’s estimates of the preference vectors. Further,

instead of using the bids (data) we use only the outcomes of auctions (censored data) in estimat-

ing preference vectors. Interestingly, we show that using this censored data does not hamper the

learning rate while bringing in robustness property. As the granularity of real-time data increases

at an unprecedented rate, we believe the ideas of this work can serve as a starting point for other

complex dynamic contextual learning and decision making problems.
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Regret Lower Bounds, Discussion, and Proof of Statements

7. Regret Lower Bounds

So far, we proposed three pricing policies (CORP, CORP-II, SCORP) for different settings of the

problem (depending on how much information about the market noise distribution F is available a

priori to the seller). Here, we discuss various lower bounds for the regret of any pricing policy under

different settings. This will shed light on the optimality gap of the proposed policies. In doing that,

we focus on the simpler case of non-strategic (truthful) buyers. Nevertheless, we expect the same

lower bounds carry over to the setting with strategic (utility maximizing) buyers because in such

a setting, it would be even more challenging to the seller to design a low regret pricing policy.

7.1. Dependency on Time Horizon T

• Unknown F : Kleinberg and Leighton (2003) studied a single buyer non-contextual setting

where the buyer’s valuation is drawn from an unknown random distribution F , and showed Ω(T 2/3)

lower bound. To show the lower bound, they focus on a family of distributions F = {F T
j , j ∈ [K]},

where K+ 1 is the number of potential valuations and distribution F T
j , j ∈ [K], which depends on

T , is obtained from perturbing the base distribution. Under the base distribution, posting any price

leads to the same expected revenue while under distribution F T
j , posting (j+1)th highest valuation

as a price is optimal. In any period, buyer’s valuation is drawn from distribution F T
j , j ∈ [K], with

probability 1/K; that is, F = F T
j with probability 1/K. For this setting, Ω(T 2/3) lower bound for

the worst-case regret of any pricing policy is established, where the regret is computed against a

clairvoyant policy that knows the realized valuation distribution in any period. We note that the

lower bound obtained by Kleinberg and Leighton (2003) does not exactly fit into our framework.

The reason is that Kleinberg and Leighton considered a benchmark that knows the valuation

distributions while we consider a robust benchmark that hopes to do well for any distribution in

the ambiguity set F . That being said, we believe that this lower bound highlights the challenges

in learning how to set optimal prices where market noise distribution is time varying, which is the

setting we considered for the SCORP policy.
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• Unknown F from a Known Parametric Family: Broder and Rusmevichientong (2012) consider

a single buyer setting, with a general parametric choice model and established Ω(
√
T ) lower bound

for the worst-case regret of any pricing policy. The main idea is to construct specific problem class

with a so-called “uninformative price”. Concretely, an uninformative price is a price such that all

the demand curves (across the model parameters) intersect at that price. Such price impedes the

demand learning because it does not reveal any information about the model parameter. Now,

if the optimal price corresponding to a specific choice of model parameter is uninformative, then

balancing the trade-off between exploration and exploitation results in the Ω(
√
T ) lower bound.

When the optimal price can be uninformative, the policy can try to learn the model parameters

fast by choosing prices that are sufficiently far from the uninformative price, but in doing that a

large regret incurs because the policy is posting prices far from the optimal (an uninformative)

price.

A similar trade-off is also used by Kleinberg and Leighton (2003) to establish lower bound for a

single buyer non-contextual setting where the buyer’s valuation is drawn from an unknown distri-

bution F . When the revenue function, i.e., Rev(y) = y(1−F (y)), has a unique global maximum,

they established Ω(
√
T ) lower bound for the worst-case regret of any pricing policy. We note that

when F and 1−F are log-concave, the revenue function has a unique global maximum. The same

property holds when F is regular. To establish the lower bound, they consider a family of distribu-

tions parametrized by a single parameter such that no single price obtains a low regret with respect

to all the distributions within the considered family. Similar to the setting when uninformative

price exists, they show that to obtain a lower bound of Ω(
√
T ), the policy should post a price that

is far from the optimal price, as by doing so, the learning rate increases.

In the following, we show that when the market noise distribution is known only up to a loca-

tionscale family (similar to the setting in Section 5.1), the uninformative prices do exist, even for

settings with a single buyer, and hence following the same argument of Broder and Rusmevichien-

tong (2012), we have Ω(
√
T ) lower bound for the regret of any pricing policy. To see this, consider
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N = 1 and suppose that the feature vectors xt are drawn i.i.d. from a distribution that always takes

the value of one on the first entry (xt,1 = 1 for all t, denoting the intercept of the model). Let F

be the known location-scale class of distributions given by (12), with m= 0, namely

F ≡
{
Fσ : σ ∈ [σ, σ̄], σ > 0, Fσ = F (x/σ)

}
.

Fix an arbitrary η such that f(η) 6= 0 and define b0 and b1 as

b0 =
1−F (η)

f(η)
, b1 =

1−F (η)

f(η)
− η .

Note that b0 and b1 are fixed. We consider preference vector β = (b,0)∈Rd, with varying coefficient

b ∈ R. Further, consider the scaling parameter σ = (b0 − b1 + b)−1 (see definition of family of

distributions F). Looking at the probability of purchase 1−F ( r
σ
− 〈xt, β〉) = 1−F ( r

σ
− b), we see

that r= 1 is an uninformative price because the demand curves d(r, b) := 1−F ( r
σ
− b) intersect at

1−F (b0− b1) at price r= 1 and hence this price does not give any information about the value of

model coefficient b. On the other side, it is straightforward to see that r = 1 is the optimal price

when b= b1 (i.e, the derivative of the revenue r×d(r, b1) vanishes at r= 1). This shows that under

this setting, we have uninformative prices that are indeed optimal for a specific choice of model

parameters.

Comparing the regret of CORP-II with the Ω(
√
T ) lower bound indicates optimality of its regret

(in terms of T ), up to a logarithmic factor.

• Known Distribution F : In constructing the uninformative prices in the previous case, we used

the fact that the scaling parameter a of the distribution was unknown. (Recall that a depended

on the unknown coefficient b.) When the market noise distribution is fully known to the firm,

then as we saw in the design of CORP, the firm can harness the randomness of the noise and

use it to get free exploration of the demand parameters (by forming the log likelihood function),

without having to actively randomize the prices. In such a setting, one can prove a lower bound of

Ω(d logT ) by using the Van Trees inequality. (This approach is classic and we spare the details. We
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refer the interested reader to Broder and Rusmevichientong (2012) or Goldenshluger and Zeevi

(2013) for further details on this approach.) At a high level, the idea is to first lower bound the

regret in period t in terms of the mismatch between the posted price rit by the policy, and the

optimal price r?it, namely (rit− r?it)2. Then, treating r?it as a function of 〈xt, β〉, i.e., r?it = g(〈xt, βi〉)

with g(y)≡ arg maxy y(1− F (y − 〈xt, β〉)), one can apply the Van Trees inequality to establish a

lower bound of d/t for (rit− r?it)2, which results in a lower bound of Ω(d logT ) for the total regret

incurred on horizon T . This approach has been followed in Broder and Rusmevichientong (2012) for

a low-dimensional model (with single scalar parameter) to prove Ω(logT ) lower bound. However,

this approach can be extended to feature-based models using a multi-dimensional version of Van

Trees inequality (Gill et al. 1995) to get Ω(d logT ) lower bound.

Another approach to achieve the same lower bound of Ω(d logT ) is to relate the regret in each

period to the minimax `2 risk of estimating preference vectors, and then by following the Le Cam’s

method (Tsybakov 2008), relate it to the error in a multi-way hypothesis problem defined over a

packing set of the parameter space. This error, in turn, can be lower bounded using the Fano’s

inequality from information theory. This type of argument to derive lower bound for minimax risks

is quite standard in statistics; see, for example, Raskutti et al. (2011), Zhang et al. (2010), and Loh

(2017). In (Javanmard and Nazerzadeh 2019, Theorem 5), the authors pursued this path for the

setting of a single truthful buyer with sparse preference vector and established a lower bound of

Ω(s0 log(T/s0)), where s0 denotes the number of nonzero entries for the preference vector. Setting

s0 = d, this yields the Ω(d log(T/d)) lower bound for a general (non-sparse) preference vector.

Recall that our proposed CORP policy achieves a regret of O(d log(Td) log(T )). Comparing this

with the above lower bound implies that CORP is optimal up to a logarithmic factor.

7.2. Dependency on Feature Dimension d

When talking about the dependency of the regret on the feature dimension d, we should also

consider its dependency on T . For example, a naive policy that always posts random reserves, will

get a regret of O(T ), without any dependency on the dimension d. The regret bounds we proved
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for CORP and CORP-II scale as O(d logd) in terms of the feature dimension d and the regret of

SCORP scales as O(
√
d logd). Note that a linear dependency on d is inevitable when the regret

scales logarithmically in T . Indeed, as discussed in Section 7.1, we have a lower bound Ω(d logT )

for the case of single truthful buyer and assuming that the market noise distribution F is fully

known to the firm. Somewhat related, Lobel et al. (2016) studied a pricing problem in a single

buyer setting with a contextual and noise-less valuation model, where contexts are chosen by an

adversary. They show a lower bound of Ω(d log(1/ε
√
d)) to obtain prices that are ε away from the

optimal prices.

8. Discussion

In Section 8.1, we discuss how our polices can be extended to a setting with some of the nonlinear

valuation models. We then discuss pricing with perishable data in Section 8.2.

8.1. Beyond the Linear Valuation Model

In this paper, we focused on linear valuation model (1), where a buyer’s valuation of a product is

a linear function of the product feature with an additive noise. The linear feature-based model is

already rich enough to capture interesting interplay between the buyers and the firm and the main

components of the dynamic pricing problem. That said, it is quite straightforward to generalize

our analysis to some of the nonlinear valuation models. Concretely, consider the following model

vit(xt) =ψ(〈φ(xt), βi〉+ zit) i∈ [N ], t≥ 1 . (23)

where φ : Rd 7→ Rd is a feature mapping and ψ : R 7→ R is a general strictly increasing function.

Some examples of such models are: (i) Log-log model (ψ(x) = ex, φ(x) = ln(x)); (ii) Semi-log model

(ψ(x) = ex, φ(x) = x); (iii) Logistic model (ψ(x) = ex/(1 + ex), φ(x) = x).

Note that we can treat x̃t ≡ φ(xt) as new features. Moreover, by the change of variable ṽit =

ψ−1(vit), we arrive at the valuation model ṽit = 〈x̃t, βi〉 + zit, which is the same as the linear
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model (1) studied in this work. Letting b̃it =ψ−1(bit) and r̃it =ψ−1(rit), the negative log-likelihood

function for the preference vector β given the outcome of the auctions qit reads as

Lik(β) = − 1

`k−1

∑
t∈Ek−1

{
qit log

(
(1−F (max{b̃+

−it, r̃it}− 〈x̃t, β〉))
)

+ (1− qit) log
(
F (max{b̃+

−it, r̃it}− 〈x̃t, β〉)
)}
, (24)

with b̃+
−it = maxj 6=i b̃jt.

Hence, in adopting the CORP policy to the nonlinear setting, we estimate preference vectors βi

as

β̂ik = arg min
‖β‖≤Bp

Lik(β), i∈ [N ] , (25)

with Lik(β) given by (24).

To understand the benchmark reserves, note that similar to Proposition 3.1, the decoupling

principle applies and r?it solves the following optimization problem

r?it = arg max
y
{y ·P(vit(xt)≥ y)}= arg max

y
{y ·P(ψ(〈x̃t, βi〉+ zit)≥ y)}

= arg max
y
{y ·P(〈x̃t, βi〉+ zit ≥ψ−1(y))}= arg max

y
y(1−F (ψ−1(y)−〈x̃t, βi〉)) .

Therefore, the exploitation phase of the CORP policy should be modified as follows. Given the

estimated preference vector β̂ik, the reserve price of each buyer i∈ [N ] is set as

rit = arg max
y

y(1−F (ψ−1(y)−〈x̃t, βi〉)) .

With these modifications, our analysis of CORP policy for linear valuation model car-

ries over to the nonlinear model (23), establishing the T -period worst-case regret of

O
(
Nd
(

log(Td) log(T ) + log2(T )

log2(1/γ)

))
.

8.2. Perishability of Data and Varying Coefficient Valuation Model

As discussed in CORP, CORP-II, and SCORP policies, the estimated preference vectors are

updated in an episodic manner with the lengths of episodes growing over time. The rationale is
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that as the policy proceeds, the estimates get more accurate and hence they will be used over a

longer episode.

In practice, however, due to the temporal behavior of buyers, their preference vectors may vary

over time and hence the historical sale data is perished after a while to be used for estimating

buyer’s valuation model. In such applications, it is not wise to stay with an estimated preference

vector for a long time because the true preference vector may change significantly over this time

frame. Time-varying demand environments have also been studied recently in the literature; see

e.g. Keskin and Zeevi (2016) and Javanmard (2017), where they are modeled via varying-coefficient

demand models. For example, Keskin and Zeevi (2016) considers the setting where a firm is selling

one type of product to customers arriving over time. Following a price pt, the firm observes demand

Dt = αt + βtpt + zt, where αt, βt ∈ R are unknown model parameters and zt is the unobserved

demand noise. The authors consider both smooth and bursty changes in a demand environment.

For the case of smooth changes, they propose a weighted least squares estimation procedure that

discounts older observations at an (asymptotically) optimal rate, whereas for the case of bursty

changes, they develop a joint pricing and detection policy that continuously test if there has been

a significant change in the environment.

Closer to the spirit of our work, Javanmard (2017) considers a feature-based valuation model

with varying coefficient model for the case of a single non-strategic buyer. This work proposes a

pricing policy based on projected gradient descent that update its estimate of the model parameters

at every step as the information accrues to keep up with the possible volatility in the model

parameters. The regret of the policy is characterized against a clairvoyant policy that knows the

sequence of the model parameters in advance, and in terms of the time, feature dimension, as well

as the temporal variability of the model parameters.

Extending our setting to the case of time-varying valuation model requires substantially different

algorithms that update the estimates of the model parameters frequently. This is beyond the scope

of the current work and is indeed the subject of a future work.
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9. Proof of Theorem 4.1

The regret of the CORP policy is the sum of its regret across all episodes. Thus, in the following,

we compute the regret incurred during an episode k > 1. (The regret of episode 1 that has a length

of 1 is a constant.)

We start with a definition. Let

lF = inf
|x|≤Bn

{
min

{
− log′′F (x),− log′′(1−F (x))

}}
, (26)

where log′′F (x) = d2

dx2
(log(F (x))) and log′′(1−F (x)) = d2

dx2
(log(1−F (x))). Note that lF is a measure

of “flatness” of function logF . Because of log-concavity of F and 1− F (cf. Assumption 1), we

have lF > 0.

Recall that in the CORP policy, at the beginning of each episode k > 1, the preference vec-

tors βi are estimated via optimizing the log-likelihood function corresponding to the outcomes of

auctions in the previous episode; see Equation (8). Now, consider buyer i that bids untruthfully

in period t ∈ Ek−1. Assume for the moment that bids of other buyers in this period are fixed.

Then, the untruthful bid of buyer i in period t ∈Ek−1 may influence the estimation of his prefer-

ence vector in episode k only when his untruthful bid changes the allocation of the item in this

period, i.e., I(vit > max{b+
−it, rit}) 6= I(bit > max{b+

−it, rit}). This is the case because the prefer-

ence vectors are estimated using the outcome of the auctions and not the submitted bids. When

I(vit > max{b+
−it, rit}) 6= I(bit > max{b+

−it, rit}) holds, we say buyer i “lies” in period t. For each

buyer i∈ [N ], we further define the set of “lies” in episode k− 1, indicated by Lik, as follows:

Lik =
{
t : t∈Ek−1, I(vit >max{b+

−it, rit}) 6= I(bit >max{b+
−it, rit})

}
. (27)

In other words, Lik consists of all the periods in episode k−1 in which buyer i lies. We note that the

set of lies in episode k−1, Lik, depends on the reserve prices rit, t∈Ek−1, where the reserve prices

are (mostly) set using the outcome of the auctions in episode k− 2. Because of this dependency,

Lik may also depend on all the submitted bids in episodes 1,2, . . . , k − 1. However, we will show
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that regardless of the values of rit’s, the size of Lik is logarithmic in the length of episode k−1; see

Proposition 9.2.

Next, we quantify the adverse effect of lies on the firm’s estimates of the preference vectors. In

particular, the next proposition provides an upper bound on the estimation error of β̂ik in terms

of the number of samples used in the log-likelihood function (`k−1), the dimension of the feature

vector (d), and the number of lies (|Lik|). Proof of Proposition 9.1 is deferred to Section 13.

Proposition 9.1 (Impact of Lies on Estimated Preference Vectors) Let β̂ik be the solu-

tion of the optimization problem (8). Then, under Assumption 1, there exist constants c0, c1, and

c2 such that for `k−1 ≥ c0d, with probability at least 1− d−0.5`−1.5
k−1 − 2e−c2`k−1, we have

‖β̂ik−βi‖2 ≤
c1d

2

lF
2

((
|Lik|
`k−1

)2

+
log(`k−1d)

`k−1

)
i∈ [N ] , (28)

where lF is defined in Equation (26).

We note that the estimation error of β̂ik’s affects the firm’s regret, as reserve prices are set based

on these estimates. By Proposition 9.1, to keep our estimation errors small, the buyers should not

have the incentive to lie in too many periods. In the next proposition, we show that for each episode

k, the number of lies from a buyer is at most logarithmic in the length of the episode.

There is another way that bidding untruthfully can impact the firm’s regret. Recall that in each

period t, the firm collects the revenue of max{b−t , r+
t } if the highest buyer clears his reserve. Then,

by bidding untruthfully, the second highest bid b−t may go down. Further, the winner can change,

and this, in turn, can lower reserve price of the winner, r+
t . To bound this impact of untruthful

bidding, in the following proposition we bound the amount of underbidding from buyers who do

not win an auction and the amount of overbidding from buyers who win an auction. Precisely, we

show that the total amount of underbidding from each buyer i, in all periods t ∈Ek that he does

not win the auction, is at most logarithmic in the length of that episode. We further show that the

total amount of overbidding from each buyer i, in all periods t∈Ek that he wins the auction, is at

most logarithmic in the length of that episode.
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Proposition 9.2 (Bounding the Number of Lies) Denote by sit and oit the amount of shad-

ing and overbidding from buyer i ∈ [N ] in period t, i.e., sit = (vit − bit)+, and oit = (bit − vit)+,

where (y)+ is y when y ≥ 0 and zero otherwise. Then, there exist constants c3, c4, . . . , c9
14, such

that for any fixed 0≤ δ≤ 1, with probability at least 1− (δ+ 1)/`k−1, the following holds:

|Lik| ≤ c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)
i∈ [N ] . (29)

Further, we have that with probability at least 1− 1/`k−1,

∑
t∈Ek−1

sit(1− qit) ≤ c6

log(`k−1)

log(1/γ)
+ c7

log(N)

log(1/γ)
i∈ [N ] , (30)

∑
t∈Ek−1

oitqit ≤ c8

log(`k−1)

log(1/γ)
+ c9

log(N)

log(1/γ)
i∈ [N ] . (31)

Proof of Proposition 9.2 is given in Section 14. The main idea of the proof is to compute the

excess utility that a strategic buyer can earn in the next episodes by bidding untruthfully in the

current episode, and compare it with the utility loss that he suffers in the current episode because

of his strategic behavior. The result then follows by using the fact that for a utility-maximizing

buyer, the net excess utility should be nonnegative.

Up to here, we have established the impact of lies on our estimation, bounded the number of

lies and the amount of underbidding from buyers. Next, using these results, we present a lower

bound on the expected revenue of our policy in any period t ∈Ek. We drop the superscript π in

our notation as it is clear from the context.

For each period t, we define a random variable ξt that takes values in {0,1}, with ξt = 1 if the

firm is in the exploitation phase and ξt = 0 otherwise. From the description of our policy, for any

period t in episode k, (t∈Ek), we have P(ξt = 0) = 1/`k. We first lower bound the firm’s expected

revenue in an exploitation period t ∈ Ek. Recall that in an exploitation period, the firm runs a

second-price auction with reserve. Thus, we have

revt ≥ P(ξt = 1)E[max{b−t , r+
t }I(b+

t ≥ r+
t )] , (32)

14 The constants c5, c6, and c7 depend on B. Constants c8 and c9 depend on M . (Recall that M is the bound on

submitted bids.)
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where the expectation is w.r.t. the randomness in the submitted bids. Since in each period t, at

most one of the buyers gets the item, we can rewrite (32) as follows:

revt ≥ P(ξt = 1)
N∑
i=1

E
[
max{b−t , rit}I(bit >max{b−t , rit})

]
=
(
1− 1

`k

) N∑
i=1

E
[
max{b−t , rit}I(bit >max{b−t , rit})

]
.

Next, we compare revt with the expected revenue of the benchmark in period t, rev?t . Recalling (5),

we have

rev?t =
N∑
i=1

E
[
max{v−t , r?it}I(vit >max{v−t , r?it})

]
. (33)

Therefore, the regret of the policy in period t can be upper bounded as

rev?t − revt ≤
( 1

`k

)
rev?t

+
(
1− 1

`k

) N∑
i=1

E
[

max{v−t , r?it}I(vit >max{v−t , r?it})−max{b−t , rit}I(bit >max{b−t , rit})
]

≤
(B
`k

)
+
(
1− 1

`k

) N∑
i=1

E
[

max{v−t , r?it}I(vit >max{v−t , r?it})−max{b−t , rit}I(bit >max{b−t , rit})
]
,

(34)

where in the last equation, we used the fact that rev?t ≤B. We break down the second expression

in (34) into two terms:

∆1,t =
N∑
i=1

[
max{v−t , r?it}I(vit >max{v−t , r?it})−max{v−t , rit}I(vit >max{v−t , rit})

]
, (35)

∆2,t =
N∑
i=1

[
max{v−t , rit}I(vit >max{v−t , rit})−max{b−t , rit}I(bit >max{b−t , rit})

]
. (36)

Using our notation, Equation (34) can be rewritten as:

rev?t − revt ≤
B

`k
+
(
1− 1

`k

)
E[∆1,t + ∆2,t] . (37)

In the sequel, we will bound each term ∆1,t and ∆2,t separately. But before proceeding, let us

pause to explain these terms and the intuition behind their definition. The regret of the firm’s

policy is due to two factors:
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1. Mismatch between βi and β̂ik: The mismatch between the true preference vectors βi and

the estimation β̂ik leads to a difference between the benchmark reserves (r?it) and the posted

reserves by the firm (rit). The term ∆1,t captures this factor and its effect on the regret. We

will use Proposition 9.1 along with our first result in Proposition 9.2 to bound ∆1,t.

2. Mismatch between v−t and b−t and change of the winner: Note that the benchmark

revenue rev?t is measured against truthful buyers, while the firm’s revenue under our policy

is measured against strategic buyers. The strategic behavior of buyers not only affects the

quality of estimates β̂ik (and therefore the reserves rit) but it may also affect the firm’s revenue

via another quite subtle factor. Indeed, due to the strategic behavior of buyers, the second

highest bid might go down or the winner of the auction might change from the case of truthful

buyers and this may decrease the reserve of the winner. The decrease in the second highest

bid or the reserve price of the winner can hurt the firm’s revenue. The term ∆2,t captures

these effects. We will use our second result in Proposition 9.2 to bound ∆2,t.

Bounding ∆1,t: We now move to bounding ∆1,t. Recall that

E[∆1,t] =
N∑
i=1

E
[

max{v−t , r?it}I(vit >max{v−t , r?it})−max{v−t , rit}I(vit >max{v−t , rit})
]
.

Here, the expectation is w.r.t. the randomness in the buyers’ valuations and potential randomness

in reserve prices rit and r?it. Note that the first expression inside the summation denotes the firm’s

revenue when buyer i wins the auction with reserve r?it, while the second expression is the analogous

term when the buyer i’s reserve is rit. Further, conditional on the feature vector xt, reserves r?it

and rit are independent of v−t , and the right-hand side of the last equation can be written in terms

of function Wit(r), defined below:

Wit(r) ≡ E
[

max{v−t , r}I(vit ≥max{v−t , r})
∣∣∣xt] , (38)

where the expectation is with respect to valuation noises, conditional on xt. By the law of iterated

expectation, we can write E[∆1,t] in terms of Wit(r). More specifically, we first take the expectation

conditional on xt and then take the expectation w.r.t. xt.
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Hence,

E[∆1,t] = E[E[∆1,t|xt]]

=
N∑
i=1

E[Wit(r
?
it)−Wit(rit)]

=
N∑
i=1

E
[
W ′
it(r

?
it)(r

?
it− rit)−

1

2
W ′′
it(r)(r

?
it− rit)2

]
, (39)

for some r between rit and r?it.
15 We will make use of the following two lemmas to bound the above

equation. The proof of all technical lemmas in this section are deferred to Section 17.

Lemma 1 (Property of Function Wit). For the benchmark reserve r?it, given by (4), and func-

tion Wit(r), given by (38), we have W ′
it(r

?
it) = 0. Further, for any r between rit and r?it, we have

|W ′′
it(r)| ≤ c, for a constant c > 0.

Lemma 2 (Errors in Reserve Prices). Let t∈Ek with ξt = 1. Then, conditioned on the feature

vector xt and β̂ik, the following holds:

|r?it− rit| ≤ |〈xt, βi− β̂ik〉| , (40)

where r?it and rit are defined in (4) and (10), respectively.

Applying Lemma 1 in Equation (39), we get

E[∆1,t] ≤
c

2

N∑
i=1

E[(r?it− rit)2]

≤ c

2

N∑
i=1

E
[
E
[
(r?it− rit)2

∣∣∣xt, β̂ik]]
≤ c

2

N∑
i=1

E[〈xt, βi− β̂ik〉2] , (41)

where in the last step, we employed Lemma 2. We next further simplify the r.h.s. of the last

equation. By using the fact that our estimate β̂ik is constructed using samples from the previous

episode and consequently is independent from the current feature xt, we get

E[〈xt, βi− β̂ik〉2] = E[〈βi− β̂ik,Σ(βi− β̂ik)〉] ≤
cmax

d
E[‖βi− β̂ik‖2] , (42)

15 This follows from the Remainder theorem for Taylor’s expansion.
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where Σ = E[xtx
T
t ] is the second-moment matrix of features xt, and cmax/d is the bound on the

maximum eigenvalue of covariance Σ. 16 Here, the first inequality follows from taking the expec-

tation w.r.t. xt and using the fact that xt and β̂ik are independent; the second inequality follows

from the definition of the maximum eigenvalue.

Putting Equations (41) and (42) together, we get

E[∆1,t] ≤
c′

d

N∑
i=1

E[‖βi− β̂ik‖2] . (43)

Here, c′ = 1
2
ccmax.

Bounding ∆2,t: We next proceed with bounding ∆2,t. To do so, we use the following preliminary

lemma.

Lemma 3. Let v−t and b−t , respectively, denote the second highest valuation and the second highest

bid submitted by the buyers in the CORP policy. Denote by sit and oit the amount of shading and

overbidding from buyer i∈ [N ] in period t, i.e., sit = (vit− bit)+, and oit = (bit− vit)+. Then,

(v−t − b−t )+ ≤max
{
sit(1− qit) : i∈ [N ]

}
. (44)

Further, for any buyer i with qit = 0, the following holds:

(b+
−it− v+

−it)+ ≤max
{
ojtqjt : j ∈ [N ], j 6= i

}
. (45)

Proof of Lemma 3 is given in Section 17.3.

Note that ∆2,t, given by (36), can be written as

∆2,t =
N∑
i=1

[
max{v−t , rit}I(vit >max{v+

−it, rit})−max{b−t , rit}I(bit >max{b+
−it, rit})

]
. (46)

Define Lk+1 =∪Ni=1Li(k+1), where Li(k+1), given by (27), denotes the set of periods in episode k that

buyer i lies. For t∈ Lk+1, we avail the trivial bound

∆2,t ≤B , (47)

16 Note that by our normalization, the sum of eigenvalues of Σ would be trace(Σ) = E[‖xt‖2]≤ 1, and that is why the

eigenvalues are scaled by 1/d.
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which is true because the revenue of the benchmark in any period t is at most v+
t ≤B. For t /∈ Lk+1,

we have I(bit >max{b+
−it, rit}) = I(vit >max{b+

−it, rit}), for all i∈ [N ]. Therefore, we can write

E[∆2,t I(t /∈ Lk+1)] =

N∑
i=1

E
[

max{v−t , rit}I(vit >max{v+
−it, rit})−max{b−t , rit}I(vit >max{b+

−it, rit})
]
. (48)

To bound the r.h.s of (48), we use the fact that for any two indicators χ1, χ2 and any a, b≥ 0,

we have aχ1 − bχ2 ≤ (a− b)χ2 + aχ1(1− χ2) . Applying this inequality to (48) with χ1 = I(vit >

max{v+
−it, rit}), χ2 = I(vit >max{b+

−it, rit}), a= max{v−t , rit}, and b= max{b−t , rit}, we get

E[∆2,t I(t /∈ Lk+1)]

≤
N∑
i=1

E
[
(max{v−t , rit}−max{b−t , rit})I(vit >max{b+

−it, rit})
]

+
N∑
i=1

E
[
max{v−t , rit}I

(
max{v+

−it, rit}< vit <max{b+
−it, rit}

)]
.

Then, by using the fact that max{a, c}−max{b, c} ≤ (a− b)+, we get

E[∆2,t I(t /∈ Lk+1)]

≤
N∑
i=1

E
[
(v−t − b−t )+I(vit >max{b+

−it, rit})
]

+
N∑
i=1

E
[
max{v−t , rit}I

(
max{v+

−it, rit}< vit <max{b+
−it, rit}

)]
≤E

[
(v−t − b−t )+

N∑
i=1

I(vit >max{b+
−it, rit})

]
+B

N∑
i=1

P
(

max{v+
−it, rit}< vit <max{b+

−it, rit}
)

=E
[
(v−t − b−t )+

N∑
i=1

qit

]
+B

N∑
i=1

P
(

max{v+
−it, rit}< vit <max{b+

−it, rit}
)

≤E[(v−t − b−t )+] +B
N∑
i=1

P
(

max{v+
−it, rit}< vit <max{b+

−it, rit}
)
.

Here, in the second inequality we used max{v−t , rit} ≤B. In the equality thereafter, we used the

fact that t /∈ Lk+1 and hence I(vit >max{b+
−it, rit}) = I(bit >max{b+

−it, rit})≡ qit. The last inequality

holds since the item can be allocated to at most one buyer and hence
∑N

i=1 qit ≤ 1. We next bound

the first term by virtue of Lemma 3 (Equation (44)). Specifically,

(v−t − b−t )+ ≤ max{sit(1− qit) : i∈ [N ]} ≤
N∑
i=1

sit(1− qit) . (49)
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To bound the second term, we again use inequality that max{a, c} −max{b, c} ≤ (a− b)+ with

a= b+
−it, b= v+

−it, and c= rit:

P
(

max{v+
−it, rit} < vit < max{b+

−it, rit}
∣∣b+
−it, v

+
−it
)

≤ P
(

max{b+
−it, rit}− (b+

−it− v+
−it)+ < vit < max{b+

−it, rit}
∣∣b+
−it, v

+
−it
)

= P
(

max{b+
−it, rit}− (b+

−it− v+
−it)+−〈xt, βi〉 < zit < max{b+

−it, rit}− 〈xt, βi〉
∣∣b+
−it, v

+
−it
)

=

∫ max{b+−it,rit}−〈xt,βi〉

max{b+−it,rit}−(b+−it−v
+
−it)+−〈xt,βi〉

f(z)dz < ĉ(b+
−it− v+

−it)+ . (50)

The first equality follows readily by substituting for vit = 〈xt, βi〉+ zit. In addition, in the last

equality, ĉ≡maxv∈[−Bn,Bn] f(v) is the bound on the noise density,17 and this equality holds because

zit is independent of v+
−it, b

+
−it, reserve rit, and the feature vector xt. We point out that when

I(max{v+
−it, rit}< vit <max{b+

−it, rit}) = 1, buyer i does not win the item. To see this, recall that

we compute the probability of I(max{v+
−it, rit}< vit <max{b+

−it, rit}) when t /∈ Lk+1. This implies

that I(bit > max{b+
−it, rit}) = I(vit > max{b+

−it, rit}) and as a result when I(max{v+
−it, rit} < vit <

max{b+
−it, rit}) = 1, buyer i does not win, i.e., qit = 0. The fact qit = 0 enables us to use Lemma 3

(Equation (45)) along with Equation (50) to get

P
(

max{v+
−it, rit}< vit <max{b+

−it, rit}
∣∣b+
−it, v

+
−it
)
≤ ĉmax{ojtqjt : j ∈ [N ], j 6= i} ≤ ĉ

N∑
j=1

ojtqjt . (51)

Putting bounds in Equations (47), (49), (51) together, we have

E[∆2,t] = E[∆2,tI(t∈ Lk+1)] +E[∆2,tI(t /∈ Lk+1)]

≤ BP(t∈ Lk+1) +E
[ N∑
i=1

sit(1− qit) + ĉB
N∑
j=1

ojtqjt

]
. (52)

Combining bounds on ∆1,t and ∆2,t: To summarize, using bounds (43) and (52) in Equa-

tion (37), for all t∈Ek, we have

rev?t − revt ≤
B

`k
+
(
1− 1

`k

)
E[∆1,t + ∆2,t]

≤ B

`k
+
c′

d

N∑
i=1

E[‖βi− β̂ik‖2] +BP(t∈ Lk+1) +E
[ N∑
i=1

sit(1− qit) + ĉB
N∑
i=1

oitqit

]
. (53)

17 Note that the density f is continuous and hence attains its maximum over compact sets.
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We are now ready to bound the total regret of our policy. Since the length of episodes doubles

each time, the number of episodes up to time t would be at most K = blogT c+ 1. We then have

Reg(T ) ≤
K∑
k=1

Regk , (54)

where Regk is the regret of our policy in episode k ∈ [K]. We bound the total regret over each

episode by considering the following two cases: `k−1 ≤ c0d and `k−1 > c0d. Here, c0 is the constant

in the statement of Proposition 9.1.

• Case 1: `k−1 ≤ c0d: In this case, we use the trivial bound rev?t − revt ≤ rev?t ≤ v+
t ≤B. Given that

the length of episode k is `k ≤ 2c0d, the total lengths of all such episodes is at most 4c0d and

therefore, the total regret over such episodes is at most 4c0Bd.

• Case 2: `k−1 > c0d: In that case, we use bound (53) on the regret in each period of episode k:

Regk =
∑
t∈Ek

(rev?t − revt)

≤ B

`k
`k +

c′

d
`k

N∑
i=1

E[‖βi− β̂ik‖2] +BE[|Lk+1|] +
N∑
i=1

E
[∑
t∈Ek

sit(1− qit) + ĉB
∑
t∈Ek

oitqit

]
.

(55)

We treat each term on the right-hand side of (55) separately.

We first bound the second term, i.e., c′`k
∑N

i=1 E[‖βi − β̂ik‖2]. Define the probability event

G, such that event G happens when Equations (28) and (29) hold; that is, the number of lies

satisfies (29) and the estimation errors satisfies (28). By Proposition 9.1 and 9.2, the probability

of complement of event G, denoted by Gc, is given by

P(Gc)≤ δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + 2e−c2`k−1 .

Using these propositions again, we get

E[‖βi− β̂ik‖2] = E[‖βi− β̂ik‖2 I(G)] +E[‖βi− β̂ik‖2 I(Gc)]

≤ c1d
2

lF
2

((
|Lik|
`k−1

)2

+
log(`k−1d)

`k−1

)
+ 4B2P(Gc)

≤ c10

((
d log(T/δ)

`k−1

)2

+

(
d log(T )

`k−1 log(1/γ)

)2

+
d2 log(Td)

`k−1

+
δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + e−c2`k−1

)
,

(56)
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where we absorb various constants into constant c10 and used `k−1 ≤ T and N ≤ T .

Regarding the third term, i.e., BE[|Lk+1|], by Proposition 9.2 we have

E[|Lk+1|] ≤
N∑
i=1

E[|Li,k+1|]

≤ N

(
c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)

)(
1− δ+ 1

`k

)
+N`k

δ+ 1

`k
(57)

where δ and c3 are defined in Proposition 9.2.

Finally, we bound the last term of Equation (55). Invoking Equations (30) and (31), we have

N∑
i=1

E
[∑
t∈Ek

sit(1− qit) + ĉB
∑
t∈Ek

oitqit

]
≤N

(
c6

log(`k−1)

log(1/γ)
+ c7

log(N)

log(1/γ)

)

+ ĉBN

(
c8

log(`k−1)

log(1/γ)
+ c9

log(N)

log(1/γ)

)
. (58)

We employ bounds (57), (56) and (58) in bound (55) and keep only the dominant terms, from

which we get

Regk ≤ c11Nd

(
log2(T )

`k

(
1 +

1

log2(1/γ)

)
+ log(Td)

)
, (59)

for a constant c11 that depends on B and M .

As the final step, we combine our regent bounds for the two cases to find the total regret of our

policy. Recall that K = blogT c+ 1 is the upper bound on the number of episodes up to time T .

Then, by Equation (59), we obtain

Reg(T ) ≤ 4c0Bd+ c11Nd

(
log2(T )

(
1 +

1

log2(1/γ)

) K∑
k=1

1

`k
+K log(Td)

)

= 4c0Bd+ c11Nd

(
log2(T )

(
1 +

1

log2(1/γ)

) K∑
k=1

1

2k−1
+K log(Td)

)

≤ 4c0Bd+ c11Nd

(
log2(T ) +

log2(T )

log2(1/γ)
+ log(Td) log(T )

)
,

which completes the proof.
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10. Proof of Theorem 5.1

The proof follows along the same lines as proof of Theorem 4.1. Here, we list the main steps that

differ from that proof.

For any t ≥ 1 and i ∈ [N ], define x̃t = [−xt; 1√
d
rit], η = (θ,

√
dα), η̂ = (θ̂,

√
dα̂), and η0 =

(θik,
√
dα0). The negative-likelihood function (14) can then be written as

L̃ik(η) = −
⌈ N
|Ik|

⌉ ∑
{t∈Ik,i◦t=i}

{
qit log

(
1−F (〈x̃t, η〉)

)
+ (1− qit) log

(
F (〈x̃t, η〉)

)}
.

Moreover, for {t∈ Ik, ; i◦t = i}, we have rit = rt ∼Uniform(0,B), independent of xt and therefore,

Σ̃≡E[x̃tx̃
T
t ] =

 Σx
−Bµ
2
√
d

−BµT

2
√
d

B2

3d

 , (60)

with µ=E[xt] and Σx =E[xtx
T
t ]. The equation above follows from the definition of x̃t and because

rit = rt, i= i◦t , we have rit drawn uniformly at random from (0,B), independently of xt. Looking

into the Schur complement of Σ̃ (corresponding to block Σx), we have18

B2

3d
− B

2

4d
µTΣ−1

x µ≥ B2

3d
− B

2

4d
≥ B2

12d
.

Here, we used the fact that µTΣ−1
x µ ≤ 1 because if we look at the second moment of the vector

a≡ [xt; 1], we have E[aaT] = [Σx µ;µT 1]� 0. Therefore, by the property of Schur complement,

we have 1−µTΣ−1
x µ≥ 0.

As a result, the singular values of Σ̃ are larger than c̃min/d, with c̃min ≡min(cmin,B
2/12). Hence,

we are in place to apply Proposition 9.1 (noting that the log-likelihood function L̃ik contains |Ik|/N

samples), which gives

‖θ̂ik− θi‖2 + d‖α̂0k−α0‖2 = ‖η̂− η0‖2 ≤
c1d

2

lF
2

((
N |Lik|
|Ik|

)2

+
N log(`k−1d)

|Ik|

)
, i∈ [N ] , (61)

with probability at least 1− d−0.5`−1.5
k−1 − 2e−c2|Ik|/N .

18 For a block matrixM = [A B;C D] , the Schur complement of the block A is D−CA−1B.
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The number of lies |Lik| can be bounded as in Propositions 9.2 (or 11.2), as follows. With

probability at least 1− (δ+ 1)/`k−1,

|Lik| ≤ c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)
i∈ [N ] . (62)

We next bound the errors in reserve prices. Define the function g : R 7→ R+ as

g(z) = arg maxy{y(1−F (y− z))}. We then have for t∈Ek\Ik,

r?it− rit =
1

α0

g(〈xt, θi〉)−
1

α̂0k

g(〈xt, θ̂ik〉)

≤ 1

α0

∣∣∣g(〈xt, θi〉)− g(〈xt, θ̂ik〉)
∣∣∣+ ∣∣∣ 1

α0

− 1

α̂0k

∣∣∣g(〈xt, θ̂ik〉)

≤ 1

α0

∣∣∣〈xt, θi− θ̂ik〉∣∣∣+ 2

α2
0

∣∣∣α0− α̂0k

∣∣∣B
≤ σ̄
∣∣∣〈xt, θi− θ̂ik〉∣∣∣+ 2σ̄2

∣∣∣α0− α̂0k

∣∣∣B , (63)

where in the second inequality, we used the facts that (i) g is 1-Lipschitz, as shown in the proof of

Lemma 2; (ii) g(z)≤ z+Bn since f is supported on [−Bn,Bn] and |z| ≤ ‖xt‖ · ‖θ̂ik‖ ≤Bp. Hence,

g(〈xt, θ̂ik〉)≤Bp +Bn =B; (iii) We have α̂0k ≥ α0
2

using (61).

We are now ready to bound the regret of CORP-II policy. If t is a pure exploration period, we use

the trivial bound rev?t − revt ≤B. For the periods in the exploitation phase, we note that CORP-II

does not use any of the submitted bids during the exploitation phases to update its estimates of

the preference vectors or the scaling parameter of the noise distribution. In addition, since the

second-price auctions are strategy-proof, this means that in these phases, buyers have no incentive

to bid untruthfully. Hence, the term ∆2,t (that captures the effect of untruthfulness in the regret)

becomes superfluous and rewriting Equation (53) (with only ∆1,t) and (41) give

rev?t − revt ≤ E[∆1,t]

≤ c

2

N∑
i=1

E[(r?it− rit)2]

≤ c

2

N∑
i=1

E
[
E
[
(r?it− rit)2

∣∣∣xt, β̂ik]]
≤ cσ̄2

N∑
i=1

(
E[〈xt, θi− θ̂ik〉2] + 4σ̄2B2E[(α0− α̂0k)

2]
)
, (64)
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where we used the same derivation as in (41) along with inequality (63).

Invoking (42), we have

E[〈xt, θi− θ̂ik〉2] = E[〈θi− θ̂ik,Σ(θi− θ̂ik)〉] ≤
cmax

d
E[‖θi− θ̂ik‖2] . (65)

We are now ready to bound the total regret up to time T . Given that the length of episode

doubles each time, letting K = blogT c+ 1, we have Reg(T )≤
∑K

k=1 Regk. Similar to the proof of

Theorem 4.1, we bound the total regret over each episode by considering two cases:

• Case 1: `k−1 ≤ c0d: Here, c0 is the constant in the statement of Proposition 11.1. In this case,

as we argued in the proof of Theorem 4.1, the total regret over such episodes is at most 4c0Bd.

• Case 2: k > c0: Define event G such that event G happens when equations (61) and (62) hold.

We then have

P(Gc) ≤ δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + 2e−c2|Ik|/N .

Therefore, by using (65) and the definition of event G, we obtain

E[〈xt, θi− θ̂ik〉2] = E[〈xt, θi− θ̂ik〉2 I(G)] +E[〈xt, θi− θ̂ik〉2 I(Gc)]

≤ c1cmax

`2F
d

N log(`k−1d)

|Ik|
+N 2

(
c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)

|Ik|

)2
+ 4B2P(Gc)

≤ c6d

(
N log(Td)

|Ik|
+N 2

(
log(T/δ) + log(T )/ log(1/γ)

|Ik|

)2

+
δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + e−c2|Ik|/N

)
,

(66)

where the first inequality follows from the definition of event G and our bound on the probability

of G. Here c6 hides various constants and we used `k−1 ≤ T and N <T . Likewise,

E[(α̂0k−α0)2]≤ c6d

(
N log(Td)

|Ik|
+N 2

(
log(T/δ) + log(T )/ log(1/γ)

|Ik|

)2

+
δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + e−c2|Ik|/N

)
.

(67)

We next employ bounds (66) and (67) in Equation (64). By keeping the dominant terms we get

∑
t∈Ek\Ik

(rev?t − revt)≤ ĉ6d

(
N log(Td)

|Ik|
`k +

(N log(T )(1 + 1/ log(1/γ))

|Ik|

)2

`k

)
, (68)
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for a constant ĉ6 that depends on B and δ. By adding the regret injured in the exploration phase

Ik, we obtain

Regk =
∑
t∈Ik

(rev?t − revt) +
∑

t∈Ek\Ik

(rev?t − revt)

≤B|Ik|+ ĉ6d

(
N log(Td)

|Ik|
`k +

(N log(T )(1 + 1/ log(1/γ))

|Ik|

)2

`k

)
. (69)

Finally, we are ready to bound the cumulative regret up to time T . Recall K = blogT c + 1,

the number of episodes by time T . By combining the above two cases and substituting for |Ik|=

d
√
`ke= 2(k−1)/2, we obtain

Reg(T )≤ 4c0Bd+
K∑
k=1

B|Ik|

+ ĉ6d

(
N log(Td)

|Ik|
`k +

(N log(T )(1 + 1/ log(1/γ))

|Ik|

)2

`k

)
≤ 4c0Bd+B

K∑
k=1

2(k−1)/2

+ ĉ6d

(
N log(Td)

K∑
k=1

2(k−1)/2 +KN2 log2(T )
(

1 +
1

log2(1/γ)

))

≤ 4c0Bd+B
√
T + ĉ6d

(
N log(Td)

√
T +N 2

(
1 +

1

log2(1/γ)

)
log3(T )

)
,

which completes the proof.

11. Proof of Theorem 5.2

The proof, in sprit, is similar to that of Theorem 4.1. We first state an upper bound on the

estimation error of the preference vectors βi. This proposition is analogous to Proposition 9.1,

where instead of log-likelihood estimator, we use the least square estimator.

Proposition 11.1 (Impact of Lies on Estimated Preference Vectors in SCORP)

Suppose that Assumption 2 holds and let β̂ik be the solution of optimization (20). Then, there exist

constants c0, c1, and c2 such that for `k−1 ≥ c0d, with probability at least 1− d−0.5`−1.5
k−1 − 2e−c2|Ik|,

we have

‖β̂ik−βi‖2 ≤ c1d
2

((
|Lik|
|Ik|

)2

+
log(`k−1d)

|Ik|

)
i∈ [N ] , (70)
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where Lik is the set of lies associated to buyer i in episode k, given by (27), and Ik is the set of

pure exploration periods in episode k.

Proof of Proposition 11.1 is given in Section 15. We next proceed to bound the number of lies

|Lik|. We argue that the same bound given in Proposition 9.2 still holds for SCORP.

Proposition 11.2 (Bounding the Number of Lies in SCORP) There exists constant c3, c4,

and c5 such that for any fixed 0 ≤ δ ≤ 1, with probability at least 1− (δ+ 1)/`k−1, the following

holds:

|Lik| ≤ c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)
i∈ [N ] . (71)

Similar to Proposition 9.2, we prove Proposition 11.2 by balancing the utility loss of an untruthful

buyer with his future utility gain. The proof is presented in Section 16.

Our next lemma relates the difference between the reserves rit, set by SCORP policy, and

benchmark reserves r?it, to the estimation error of preference vectors. This lemma is analogous to

Lemma 2.

Lemma 4 (Errors in Reserve Prices). For r?it and rit given by (19) and (22), respectively, con-

ditioned on the feature vector xt and β̂ik, the following holds

|r?it− rit| ≤ |〈xt, βi− β̂ik〉| . (72)

We refer to Section 17 for the proof of Lemma 4.

Having established the preliminary results, we proceed to bound the regret of SCORP. The proof

goes along the same lines of the proof of Theorem 4.1. We fix k ≥ 1 and focus on the total regret

during episode k. For the pure exploration phase, i.e., t∈ Ik, we use the trivial bound rev?t −revt ≤B,

which holds since rev?t ≤ v+
t ≤B.

To bound the regret in periods of the exploitation phase (t∈Ek\Ik), we note that SCORP does

not use any of the submitted bids during the exploitation phases to estimate the preference vectors,

and buyers are cognizant of this point as the seller’s learning policy is fully known to them. In
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addition, since the second-price auctions are strategy-proof, this means that in the exploitation

phase, there is no incentive for buyers to be untruthful. 19. Hence, for t∈Ek\Ik, we have

revt =
N∑
i=1

E
[
max{v−t , rit}I(vit >max{v−t , rit})

]
. (73)

This leads to

rev?t − revt =E

(
N∑
i=1

[
max{v−t , r?it}I(vit >max{v−t , r?it})−max{v−t , rit}I(vit >max{v−t , rit})

])
,

where the expectation is with respect to the true underlying noise distribution, which can vary

over time and is of course, unknown to the firm and the benchmark policy. To bound (rev?t − revt),

we first write it in terms of function Wit(r), defined by (38). By virtue of the mean-value theorem,

we have

rev?t − revt =
N∑
i=1

E[Wit(r
?
it)−Wit(rit)] =

N∑
i=1

E[W ′
it(r)(r

?
it− rit)] , (74)

for some r between rit and r?it. It is worth noting that, in contrast to Equation (39), here we do

not go with Taylor’s expansion of order two. The reason is that here W ′
it(r

?
it) 6= 0, because Wit(r)

is defined based on the true unknown noise distribution, while r?it is the optimal reserve for the

worst-case distribution in ambiguity set F . Similar to Lemma 1, it is straightforward to see that

|W ′
it(r)| ≤ c̃ for some constant c̃ > 0. Therefore, continuing from Equation (74), we have

rev?t − revt ≤ c̃
N∑
i=1

E[|r?it− rit|] = c̃
N∑
i=1

E
[
E
[
|r?it− rit|

∣∣∣xt, β̂ik]]
≤ c̃

N∑
i=1

E[|〈xt, βi− β̂ik〉|] ≤ c̃
N∑
i=1

E[〈xt, βi− β̂ik〉2]1/2

≤ c′√
d

N∑
i=1

E[‖βi− β̂ik‖2]1/2 , (75)

with c′ = c̃
√
cmax. Here, the second inequality holds due to Lemma 4; the third inequality follows

from Cauchy-Schwartz inequality, and the last step is derived as in Equation (42).

19 Indeed, we can make truthful strategy the unique best response strategy in the exploitation phase by tweaking the

mechanism such that with a fixed small probability in each round, all the reserve prices are set to zero, independently.
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We are now ready to bound the total regret up to time T . Given that the length of episodes

double each time, letting K = blogT c+ 1, we have Reg(T )≤
∑K

k=1 Regk. Similar to the proof of

Theorem 4.1, we bound the total regret over each episode by considering two cases:

• Case 1: `k−1 ≤ c0d: Here, c0 is the constant in the statement of Proposition 11.1. In this case,

as we argued in the proof of Theorem 4.1, the total regret over such episodes is at most 4c0Bd.

• Case 2: `k−1 > c0d: Define event G such that event G happens when equations (29) and (61)

hold. By Proposition 11.1 and 11.2, we have

P(Gc) ≤ δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + 2e−c2|Ik| .

Therefore,

E[‖βi− β̂ik‖2] = E[‖βi− β̂ik‖2 I(G)] +E[‖βi− β̂ik‖2 I(Gc)]

≤ c1d
2

 log(`k−1d)

|Ik|
+

(
c3 log(`k−1/δ) + c4

log(`k−1)

log(1/γ)
+ c5

log(N)

log(1/γ)

|Ik|

)2
+ 4B2P(Gc)

≤ c6

(
d2 log(Td)

|Ik|
+

(
d log(T/δ) + log(T )/ log(1/γ)

|Ik|

)2

+
δ+ 1

`k−1

+ d−0.5`−1.5
k−1 + e−c2|Ik|

)
,

(76)

where we absorb various constants into c6 and used `k−1 ≤ T and N <T .

We next employ bound (76) in Equation (75). By keeping the dominant terms and following the

same argument of Equation (59), we get

∑
t∈Ek\Ik

(rev?t − revt)≤ ĉ6N

(
√
d

√
log(Td)

|Ik|
`k +
√
d

log(T )

|Ik|
`k +

log(T )

log(1/γ)|Ik|
`k

)
, (77)

for a constant ĉ6 that depends on B and δ.

Adding the total regret during the pure exploration phase, we obtain

Regk =
∑
t∈Ik

(rev?t − revt) +
∑

t∈Ek\Ik

(rev?t − revt)

≤B|Ik|+ ĉ6

(
√
d

√
log(Td)

|Ik|
`k +
√
d

log(T )

|Ik|
`k +

log(T )

log(1/γ)|Ik|
`k

)
. (78)
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Finally, we are ready to bound the cumulative regret up to time T . Let K1 = blog(c0d)c+ 3.

Reconciling the above two cases into Equation (78), and substituting for |Ik|= d`2/3k e, we obtain

Reg(T )≤ 4c0Bd+
K∑

k=K1

B|Ik|

+ ĉ6N

(√
d log(Td)

K∑
k=K1

`k√
|Ik|

+
√
d log(T )

K∑
k=K1

`k
|Ik|

+
log(T )

log(1/γ)

K∑
k=K1

`k√
|Ik|

)

≤ 4c0Bd+B
K∑

k=K1

2
2(k−1)

3

+ ĉ6N

(√
d log(Td)

K∑
k=K1

2
2(k−1)

3 +
√
d log(T )

K∑
k=K1

2
k−1
3 +

log(T )

log(1/γ)

K∑
k=K1

2
2(k−1)

3

)

≤ 4c0Bd+BT 2/3 + ĉ6N

(√
d log(Td)T 2/3 +

√
d log(T ) T 1/3 +

log(T )

log(1/γ)
T 1/3

)
,

which completes the proof.

12. Proof of Proposition 3.1

We restate the definition of function Wit(r), given by Equation (38):

Wit(r) ≡ E
[

max{v−t , r}I(vit ≥max{v−t , r})
∣∣∣xt]

= E
[

max{v+
−it, r}I(vit ≥max{v+

−it, r})
∣∣∣xt] ,

where the expectation is with respect to valuation noises, conditional on xt, and the equality holds

because v−t = v+
−it when I(vit ≥max{v+

−it, r}) = 1. Note that Wit(r) is the firm’s revenue in period

t, when buyer i wins the auction with reserve price r.

Let Hit be the distribution of v+
−it for fixed xt and denote by hit its density. The specific form of

Hit does not matter for the sake of our proof. We have

Wit(r) = E
[
I(vit > v+

−it > r)v
+
−it + rI(vit > r > v+

−it)
∣∣∣xt]

= E
[
I(〈xt, βi〉+ zit > v

+
−it > r)v

+
−it + rI(〈xt, βi〉+ zit > r > v

+
−it)
∣∣∣xt]

=

∫ ∞
r

vhit(v)(1−F (v−〈xt, βi〉)dv+ rHit(r)(1−F (r−〈xt, βi〉)) . (79)
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By definition, the optimal reserve price of buyer i, denoted by r?it, is the maximizer of Wit(r). By

setting the derivative with respect to r equal to zero, we get

W ′
it(r) = Hit(r)

(
(1−F (r−〈xt, βi〉))− rf(r−〈xt, βi〉)

)
= 0 , (80)

which implies that the optimal price r?it should satisfy

1−F (r−〈xt, βi〉) = rf(r−〈xt, βi〉) . (81)

Now it is easy to see that Equation (81) is also the stationary condition for the function y(1−

F (y−〈xt, βi〉)). Since 1−F is log-concave by Assumption 1, function y 7→ y
(
1−F (y− 〈xt, βi〉) is

also strictly log-concave for y > 0.20 Therefore, the stationary condition for y
(
1− F (y − 〈xt, βi〉)

gives its unique global maximum and the proof is complete.21

13. Proof of Proposition 9.1

Recall that β̂ik ∈Rd is the solution to the optimization problem (11). By the second-order Taylor’s

theorem, expanding around βi, we have

Lik(βi)−Lik(β̂ik) =−〈∇Lik(βi), β̂ik−βi〉−
1

2
〈β̂ik−βi,∇2Lik(β̃)(β̂ik−βik)〉 , (82)

for some β̃ on the segment connecting βi and β̂ik. Throughout, ∇Lik and ∇2Lik respectively denote

the gradient and the Hessian of Lik. In the following, we bound ‖β̂ik−βi‖2 by bounding the gradient

and the Hessian of Lik.

We start with computing the gradient and the Hessian of the loss function Lik(β):

∇Lik(β) =
1

`k−1

∑
t∈Ek−1

µit(β)xt , ∇2Lik(β) =
1

`k−1

∑
t∈Ek−1

ηit(β)xtx
T
t . (83)

20 Note that at a negative value of y, function y 7→ y
(
1−F (y−〈xt, βi〉) is also negative and hence this function cannot

take its maximum at a negative y.

21 If h(y) is strictly log-concave function, then at a stationary point y0 that h′(y0) = 0, we have log′(h(y0)) =

h′(y0)/h(y0) = 0. Given that log(h(y)) is strictly concave, this means that y0 is the unique global maximizer of

log(h(y)) and by strict monotonicity of the logarithm function, this implies that y0 is also the unique global maximizer

of h(y).
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Here, letting wit(β) = max{b+
−it, rit}− 〈xt, β〉, the term µit(β) is given by

µit(β) = qit
f(wit(β))

1−F (wit(β))
− (1− qit)

f(wit(β))

F (wit(β))
(84)

= − qit log′ (1−F (wit(β)))− (1− qit) log′ (F (wit(β))) , (85)

where log′F (y) is the derivative of logF (y) with respect to y.22 Further, the term ηit(β) is given

by

ηit(β) =−qit log′′ (1−F (wit(β)))− (1− qit) log′′ (F (wit(β))) . (86)

We are now ready to provide an upper bound and a lower bound on the gradient and Hessian of

the loss function. These bounds will be used in bounding the estimation error of preference vectors,

which is the main goal of this proposition.

Lemma 5. Define the probability event

E ≡
{
‖∇Lik(βi)‖ ≤ λ0

}
, with λ0 ≡ 2uF

√
log(`k−1d)

`k−1

+ 2uF
|Lik|
`k−1

, (87)

where constant uF is given by

uF ≡ sup
|x|≤Bn

{
max

{
log′F (x),− log′(1−F (x))

}}
. (88)

Then, we have P(E)≥ 1−d−0.5`−1.5
k−1 . Moreover, we have the following lower bound on the Hessian:

∇2Lik(β)� lF

 1

`k−1

∑
t∈Ek−1

xtx
T
t

 , for all ‖β‖ ≤B , (89)

where lF ≥ 0 is given by (26). Here, A�B means A−B is a positive semidefinite matrix.

Lemma 5 is proved in Section 13.1.

By optimality of β̂ik, we have L(β̂ik)≤L(βi) and therefore by (82), we have

1

2
〈β̂ik−βi,∇2Lik(β̃)(β̂ik−βi)〉 ≤−〈∇Lik(βi), β̂ik−βi〉 , (90)

22 Since the density f is zero outside the interval [−Bn,Bn], we have F (z) = 0 for z <−Bn, and F (z) = 1 for z >Bn.

In Equation (84), if wit(β) is outside the interval [−Bn,Bn], we use the convention of 0
0

= 0.
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where the l.h.s. can be bounded as follows

1

2
〈β̂ik−βi,∇2Lik(β̃)(β̂ik−βi)〉 =

1

2
(β̂ik−βi)T∇2Lik(β̃)(β̂ik−βi)

≥ 1

2
(β̂ik−βi)TlF

( 1

`k−1

∑
t∈Ek−1

xtx
T
t

)
(β̂ik−βi)

=
lF

2`k−1

(β̂ik−βi)T
(
XT
kXk

)
(β̂ik−βi)

=
lF

2`k−1

‖Xk(β̂ik−βi)‖2 .

Here, Xk is the matrix of size `k−1 by d whose rows are the feature vectors xt arriving in episode

k−1. Moreover, the inequality follows from Lemma 5. Applying the above bound in Equation (90)

and considering the fact that the l.h.s. of this equation is less than or equal to ‖∇Lik(βi)‖‖β̂ik−βi‖,

we get

1

2`k−1

lF‖Xk(β̂ik−βi)‖2 ≤ ‖∇Lik(βi)‖‖β̂ik−βi‖ .

This implies that on event E , defined in (87), the following holds:

1

2`k−1

lF‖Xk(β̂ik−βi)‖2 ≤ λ0‖β̂ik−βi‖ . (91)

To present a lower bound on the l.h.s. of the above equation, we next lower bound the mini-

mum eigenvalue of Σ̂k ≡ (XT
kXk)/`k−1. Since rows of Xk are bounded (recall that ‖xt‖ ≤ 1 by our

normalization), they are subgaussian. Using (Vershynin 2012, Remark 5.40), there exist universal

constants c and C such that for every m≥ 0, the following holds with probability at least 1−2e−cm
2
:

∥∥∥Σ̂k−Σ
∥∥∥

op
≤ max(δ, δ2) where δ=C

√
d

`k−1

+
m√
`k−1

, (92)

where Σ = E[xtx
T
t ] ∈ Rd×d is the covariance of the feature vectors. Further, ‖A‖op represents the

operator norm of a matrix A and is given by ‖A‖op = inf{c≥ 0 : ‖Av‖ ≤ c‖v‖, for any vector v}. By

our assumption that Σ is positive definite23, we can choose constant 0< cmin < 1 such that λmin(Σ)>

23 A symmetric matrix is said to be positive definite if all of its eigenvalues are strictly positive. In general, if the

distribution of featuresD, is bounded below from zero on an open set around the origin, then its second-moment matrix

is positive definite. This assumption holds for many common distributions such as normal and uniform distributions.
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cmin/d, with λmin(A) denoting the minimum eigenvalue of a matrix A. 24 Set m= cmin

√
`k−1/(4d),

c0 = (4Cd/cmin)2 and c2 = cc2
min/16d2. Then, for `k−1 > c0d with probability at least 1− 2e−c2`k−1 ,

the following is true:

∥∥∥Σ̂k−Σ
∥∥∥

op
≤ 1

2d
cmin . (93)

Denote by G the probability event that (93) holds. Then, on event G ∩E , we have

1

4d
cminlF‖β̂ik−βi‖2 ≤

1

2`k−1

lF‖Xk(β̂ik−βi)‖2 ≤ λ0‖β̂ik−βi‖ , (94)

where the first inequality holds because of Equation (93) and the definition of the operator norm.

This results in

‖β̂ik−βi‖2 ≤
16d2

c2
minlF

2λ
2
0 =
( 8duF
cminlF

)2
(√

log(`k−1d)

`k−1

+
|Lik|
`k−1

)2

≤ 2
( 8duF
cminlF

)2
(

log(`k−1d)

`k−1

+

(
|Lik|
`k−1

)2)
, (95)

where in the last line, we used inequality (a+ b)2 ≤ 2a2 + 2b2.

Note that

P((E ∩G)c)≤ P(Ec) +P(Gc)≤ d−0.5`−1.5
k−1 + 2e−c2`k−1 ,

and hence the result follows readily from (95), by defining c1 ≡ 128(uF/cmin)2.

13.1. Proof of Lemma 5

We first show the first result in the lemma. We start with few definitions. Let q̃it = I(vit >

max{b+
−it, rit}) be the allocation variable as if buyer i was truthful and the highest competing bid

was b+
−it. Then, by definition of set of lies Lik, as per (27), for t /∈ Lik, we have qit = q̃it. Let

µ̃it(β) =−q̃it log′(1−F (wit(β)))− (1− q̃it) log′(F (wit(β))

24 Note that by our normalization, the sum of eigenvalues of Σ would be trace(Σ) = E[‖xt‖2]≤ 1, and that is why the

eigenvalues are scaled by 1/d.
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be the corresponding quantity to µit(β), where we replace qit by q̃it. Note that wit(β) =

max{b+
−it, rit}− 〈xt, β〉 and µit(β) is defined in (85). By definition, µit(β) = µ̃it(β) for t /∈ Lik, and

so we can write

∇Lik(β) = − 1

`k−1

∑
t∈Ek−1

(
µ̃it(β)xt−µit(β)xt

)
+

1

`k−1

∑
t∈Ek−1

µ̃it(β)xt

= − 1

`k−1

∑
t∈Lik

(
µ̃it(β)xt−µit(β)xt

)
+

1

`k−1

∑
t∈Ek−1

µ̃it(β)xt .

To bound the first term on the right hand side of the last equation, we note that

|µit(βi)| ≤ sup
|y|≤Bn

{
max

{
log′F (y),− log′(1−F (y))

}}
= uF , (96)

with uF given by (88). Here, the first inequality follows from definition of µit(βi) as per (85) and

using the fact that functions f and F are zero outside the interval [−Bn,Bn]. Similarly, we have

|µ̃it(βi)| ≤ uF . Then, considering the fact that ‖xt‖ ≤ 1, we get

∥∥∥∇Lik(βi)∥∥∥≤ 2uF
`k−1

|Lik|+
1

`k−1

∥∥∥∥ ∑
t∈Ek−1

µ̃it(βi)xt

∥∥∥∥ . (97)

We next bound the second term on the right hand side of (97). Define Sj =
∑j−1+`k−1

t=`k−1
µ̃it(βi)xt,

j = 1,2, . . . , `k − 1, and set S0 = 0. Note that the second term in (97) is equal to S`k−1. We upper

bound 1
`k−1

∥∥∥S`k−1

∥∥∥ by showing Sj is a vector martingale with bounded differences.

Observe that ‖Sj −Sj−1‖ ≤ uF‖xt‖ ≤ uF . Further, Sj −Sj−1 = µ̃it(βi)xt with t= `k−1 + j− 1,

and

E[µ̃it(βi)|wit(βi)] = P(q̃it = 1)
f(wit(βi))

1−F (wit(βi))
−P(q̃it = 0)

f(wit(βi))

F (wit(βi))

= (1−F (wit(βi))
f(wit(βi))

1−F (wit(βi))
−F (wit(βi))

f(wit(βi))

F (wit(βi))
= 0 ,

where the equation holds because zit is independent of wit(βi). Then, considering the fact that zit

is independent from the history set (2), we also have

E[Sj −Sj−1|S1, . . . , Sj−1] =E[µ̃it(βi)|S1, . . . , Sj−1] = 0 .
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So far, we have established that Sj is a matrix martingale with bounded differences. Then, by

Matrix Freedman inequality (See Appendix 18),

P
(
‖S`k−1

‖ ≥ 2uF
√

log(`k−1d)`k−1

)
≤ (d+ 1)exp−(12/8) log(`k−1d) =

1

d0.5`1.5k−1

. (98)

Then, by Equation (97) and definition of S`k−1
and event E , given in (87), we have P(E) ≥ 1−

d−0.5`−1.5
k−1 . This completes the proof of the first part of the lemma.

We next prove claim (89) on the Hessian ∇2L(β). By characterization (83), it suffices to show

that ηit(β)≥ lF . To see this,

ηit(β) = − qit log′′ (1−F (wit(β)))− (1− qit) log′′ (F (wit(β)))

≥ inf
|y|≤Bn

{
min

{
− log′′F (y),− log′′(1−F (y))

}}
≡ lF ,

where we used the fact that function F is zero outside the interval [−Bn,Bn]. This completes the

proof of the lemma.

14. Proof of Proposition 9.2

Here, we need to show claims (29), (30), and (31). Let oit = (bit− vit)+ and sit = (vit− bit)+ be the

amount of overbidding and shading (underbidding) of buyer i in period t, respectively. As a common

step to show these claims, we upper bound the size of sets Sik ≡ {t : t∈Ek−1, qit = 0, sit ≥ 1/`k−1}

and Oik ≡ {t : t ∈ Ek−1, qit = 1, oit ≥ 1/`k−1}. In words, a period t belongs to Sik, if buyer i has

shaded his bid significantly in this period, i.e., sit ≥ 1/`k−1, and he does not get the item in this

period. Similarly, a period t belongs to Oik, if in this period, buyer i has over-bided by at least

1/`k−1 amount, and he gets the item in this period. We next use the bounds that we establish on

|Sik| and |Oik| to prove the three aforementioned claims.

To bound the size of sets Sik and Oik, we use the fact that buyers are utility-maximizer and

as a result, they aim for balancing the utility loss due to bidding untruthfully with its potential

gain. We define u−it as the utility that buyer i loses in period t∈Ek−1 due to bidding untruthfully,
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relative to the truthful bidding. Precisely, given reserve price rit and the highest competing bid

b+
−it, u

−
it is defined as follows:

u−it = (vit−max{b+
−it, rit}) I(vit >max{b+

−it, rit}) I(bit <max{b+
−it, rit})

− (vit−max{b+
−it, rit}) I(vit <max{b+

−it, rit}) I(bit >max{b+
−it, rit}) .

Note that the first and second terms are the loss due to underbidding and overbidding, respectively.

Our lemma below provides a lower bound on the expected value of u−it.

Lemma 6. For each buyer i∈ [N ] and t∈ [`k−1, `k− 1], we have

E[u−it|sit, oit, qit] ≥
1

2BN`k−1

γts2
it(1− qit) +

1

2BN`k−1

γto2
itqit , (99)

where the expectation is taken w.r.t. to the randomness in reserve prices.

Proof of Lemma 6. Note that in each period, buyers may suffer a utility loss due to bidding

untruthfully. We start with characterizing the impact of underbidding. We then focus on overbid-

ding.

Underbidding: After observing the outcome of auction t, if buyer i receives the item, then

underbidding has no effect on the buyer’s instant utility. But if the buyer does not receive the item,

then there is a chance that is due to the underbidding. To lower bound u−it, note that in each period

t∈Ek−1, with probability 1/`k−1, the firm does not run a second-price auction. Instead, she picks

one of the buyers equally likely and for a reserve price, chosen uniformly at random from [0,B],

allocates the item to that buyer if his bid exceeds the corresponding reserve price. Therefore, if a

buyer i shades his bid by sit, i.e., sit = (vit− bit)+, then the utility loss incurred relative to being

truthful can be lower bounded as follows:

E[u−it|sit, qit, vit] ≥
γt(1− qit)
BN`k−1

∫ vit

vit−sit
(vit− r)dr =

1

2BN`k−1

γts2
it(1− qit) . (100)

Overbidding: After observing the outcome of auction t, if buyer i does not get the item, then

overbidding has no effect on the buyer’s instant utility. But if the buyer receives the item, then
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there is a chance that is due to the overbidding. Then, one can follow a similar argument that we

used for underbidding to show that

E[u−it|oit, qit, vit] ≥
γt(qit)

BN`k−1

∫ vit+oit

vit

(−vit + r)dr =
1

2BN`k−1

γto2
itqit . (101)

Then, the result follows from Equations (100) and (101), and by taking expectation w.r.t vit, from

both sides of these equations, conditioning on qit, sit, and oit.

�

With a slight abuse of notation, let U−i(k−1) be the utility loss of buyer i in episode k − 1 due to

untruthful bidding. That is, U−i(k−1) =
∑

t∈Ek−1
u−it. In contrast to the utility loss U−i(k−1), we define

U+
ik as the total utility gain that buyer i can achieve by being untruthful in episode k− 1. More

precisely, we fix all other buyer’s bidding strategy and consider a reference strategy for buyer i.

The reference strategy is the same as buyer i’s strategy up to episode k− 1, and in episode k− 1,

the reference policy is just the truthful bidding strategy. We define U+
ik as the total excess utility

that buyer i can earn, over the reference strategy. Considering the fact that the bidding strategy

of buyer i in episode k− 1 can only benefit him in the next episodes k, k+ 1, . . . , we have

U+
ik ≤

∞∑
t=`k

γtvit ≤ B
∞∑
t=`k

γt = B
γ`k

1− γ
, (102)

where the second inequality holds because vit ≤B. Indeed, upper bound (102) applies to the total

utility any buyer can hope to collect over periods t≥ `k.

Now, since we are assuming that the strategic buyers are maximizing their cumulative utility, it

must be the case that

E
[
U+
ik −U−i(k−1)

]
≥ 0 .

Using Lemma 6 along with upper bound (102), we obtain

B
γ`k

1− γ
≥E[U+

ik]≥E[U−i(k−1)]

=
∑

t∈Ek−1

E[u−it] =
∑

t∈Ek−1

E[E[u−it|oit, qit, sit]]
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(a)

≥
∑

t∈Sik∪Oik

E
[
E[u−it|oit, qit, sit]I(|Sik ∪Oik| ≥m)

]
(b)

≥
∑

t∈Sik∪Oik

E
[ γt

2BN`3k−1

I(|Sik ∪Oik| ≥m)
]

(c)

≥
`k−1∑

t=`k−|Sik∪Oik|

E
[ γt

2BN`3k−1

I(|Sik ∪Oik| ≥m)
]

=

`k−1∑
t=`k−m

γt

2BN`3k−1

P(|Sik ∪Oik| ≥m)

=
γ`k

2BN`3k−1

γ−m− 1

1− γ
P(|Sik ∪Oik| ≥m) (103)

where the parameter m≥ 0 in (a) is arbitrary but fixed; (b) follows from Lemma 6 and definition

of sets Sik and Oik; (c) holds since γ ∈ (0,1).

By simplifying Equation (103), we have that for any m≥ 0,

(γ−m− 1)P(|Sik ∪Oik| ≥m)≤ 2B2N`3k−1 .

Taking m= log(2B2N`4k−1 + 1)/ log(1/γ) and rearranging the terms, the above inequality yields

P
(
|Sik ∪Oik| ≥

log(2B2N`4k−1 + 1)

log
(

1
γ

) )
≤ 1

`k−1

.

Finally using that Sik and Oik are disjoint, we have that with probability at least 1− 1/`k−1,

|Sik|+ |Oik| ≤
log
(
2B2N`3k−1 + 1

)
log(1/γ)

≤ C1

log(`k−1)

log(1/γ)
+C2

log(N)

log(1/γ)
, (104)

for a constant C1 and constant C2 =C2(B).

So far, we have established an upper bound on |Sik| and |Oik|. We next bound |Lik|. With this

aim, we partition the set of lies Lik into two subsets Lsik and Loik, defined below.

Lsik =
{
t : t∈Ek−1, I(vit >max{b+

−it, rit}) = 1, I(bit >max{b+
−it, rit}) = 0

}
, (105)

Loik =
{
t : t∈Ek−1, I(vit >max{b+

−it, rit}) = 0, I(bit >max{b+
−it, rit}) = 1

}
. (106)

In the following, we bound |Lsik| and |Loik| in order to provide an upper bound on |Lik|.

We start with bounding |Lsik|. Define Scik ≡ {t : t ∈ Ek−1, qit = 1 or sit < 1/`k−1}. Then, |Lsik| ≤

|Sik|+ |Scik ∩ Lsik|. We have already bounded |Sik|. In the following, we bound |Scik ∩ Lsik|.
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By definition (105), we first note that for t ∈ Lsik, qit = 0. Therefore, for t ∈ Scik ∩ Lsik, we have

sit < 1/`k−1. Let Ft ≡ {(xτ , b+
−iτ , riτ ) : 1 ≤ τ ≤ t}. Then, by substituting for bit = vit − sit25 and

vit = 〈xt, βi〉+ zit, we have

P(t∈ Scik ∩ Lsik|Ft) = P
(
zit ∈ [max{b+

−it, rit}− 〈xt, βi〉,max{b+
−it, rit}− 〈xt, βi〉+ sit] and sit ≤

1

`k−1

∣∣∣Ft)
≤ P

(
zit ∈

[
max{b+

−it, rit}− 〈xt, βi〉,max{b+
−it, rit}− 〈xt, βi〉+

1

`k−1

]∣∣∣Ft)
=

∫ max{b+−it,rit}−〈xt,βi〉+1/`k−1

max{b+−it,rit}−〈xt,βi〉
f(z)dz ≤ c

`k−1

, (107)

where the equality holds because zit is independent of Ft. In addition, in the last step, c ≡

maxv∈[−Bn,Bn] f(v) is the bound on the noise density.26

Define ζt ≡ I(t ∈ Scik ∩ Lik) and ωt ≡ P(t ∈ Scik ∩ Lik|Ft). Then, |Scik ∩ Lik| =
∑`k−1

t=`k−1
ζt and

E(ζt−ωt|Ft) = 0. Therefore, by using a multiplicative Azuma inequality (see e.g. (Koufogiannakis

and Young 2014, Lemma 10)), for any ε∈ (0,1) and any η > 0 we have

P
(
|Scik ∩ Lsik| ≥

1 + η

1− ε

`k−1∑
t=`k−1

ωt

)
≤ exp

(
− εη

`k−1∑
t=`k−1

ωt

)
. (108)

We use the shorthand A≡
∑`k−1

t=`k−1
ωt. By setting ε= 1/2, η= (2/A) log(`k−1/δ), the r.h.s of Equa-

tion (108) becomes δ/`k−1. Further, recalling Equation (107), we have A≤ `k−1(c/`k−1) = c. Hence,

rewriting bound (108), we get that with probability at least 1− δ/`k−1,

|Scik ∩ Lsik| =

`k−1∑
t=`k−1

ζt ≤ 2(1 + η)A ≤ 2c+ 4 log(`k−1/δ) .

Combining the above inequality with bound (104), we get

|Lsik| ≤ |Scik ∩ Lsik|+ |Sik| ≤ 2c+ 4 log(`k−1/δ) +C1

log(`k−1)

log(1/γ)
+C2

log(N)

log(1/γ)
.

One can establish a similar bound for |Loik|. Then, claim (29) follows by using the bounds on |Lsik|

and |Loik|.

25 Note that here sit > 0 as t∈ Lsik and consequently bit < vit.

26 Note that the density f is continuous and hence attains its maximum over compact sets.
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To prove claim (30), we write

∑
t∈Ek−1

sit(1− qit) =
∑

t∈Ek−1

sit(1− qit)I(t∈ Sik) +
∑

t∈Ek−1

sit(1− qit)I(t∈ Scik)

≤ B|Sik|+
∑

t∈Ek−1

1

`k−1

≤ B

(
C1

log(`k−1)

log(1/γ)
+C2

log(N)

log(1/γ)

)
+ 1 ,

where we used the fact that (i) sit ≤ vit ≤B, and (ii) for any t∈ Scik, either qit = 1 or sit < 1/`k−1.

This complete the proof of claim (30).

Finally, we show claim (31). Let Ocik ≡ {t : t∈Ek−1, qit = 0 or oit < 1/`k−1}. Then, we write

∑
t∈Ek−1

oitqit =
∑

t∈Ek−1

oitqitI(t∈Oik) +
∑

t∈Ek−1

oitqitI(t∈Ocik)

≤ M |Oik|+
∑

t∈Ek−1

1

`k−1

≤ M

(
C1

log(`k−1)

log(1/γ)
+C2

log(N)

log(1/γ)

)
+ 1 .

Here, we used the fact that (i) oit ≤M , and (ii) for any t∈Ocik, either qit = 0 or oit < 1/`k−1. This

completes the proof of claim (31).

15. Proof of Proposition 11.1

The proposition can be proved by following similar steps used in the proof of Proposition 9.1. For

the quadratic loss function

L̃ik(β) =
1

|Ik|
∑
t∈Ik

(BNqit−〈xt, β〉)2 ,

the gradient and Hessian are given by

∇L̃ik(β) =
1

|Ik|
∑
t∈Ik

µit(β)xt , ∇2L̃ik(β) =
1

|Ik|
∑
t∈Ik

2xtx
T
t , (109)

where with a slight abuse of notation, µit(β) = 2(〈xt, β〉−BNqit).

By the second-order Taylor’s theorem, expanding around βi, we have

L̃ik(βi)−L̃ik(β̂ik) =−〈∇L̃ik(βi), β̂ik−βi〉−
1

2
〈β̂ik−βi,∇2L̃ik(β̃)(β̂ik−βik)〉 , (110)
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for some β̃ on the segment connecting βi and β̂ik.

By optimality of β̂ik, we have L̃(β̂ik)≤ L̃(βi) and therefore by (110), we have

1

2
〈β̂ik−βi,∇2L̃ik(β̃)(β̂ik−βi)〉 ≤−〈∇L̃ik(βi), β̂ik−βi〉 . (111)

Using Equation (109), the r.h.s in the above equation can be written as

1

2
〈β̂ik−βi,∇2L̃ik(β̃)(β̂ik−βi)〉 = (β̂ik−βi)T

( 1

|Ik|
∑

t∈Ek−1

xtx
T
t

)
(β̂ik−βi)

=
1

|Ik|
(β̂ik−βi)T

(
XT
kXk

)
(β̂ik−βi)

=
1

|Ik|
‖Xk(β̂ik−βi)‖2 .

Here, Xk is the matrix of size |Ik| by d, whose rows are the feature vectors xt, with t ∈ Ik (the

exploration phase of episode k). Therefore,

1

|Ik|
‖Xk(β̂ik−βi)‖2 ≤−〈∇L̃ik(βi), β̂ik−βi〉 ≤ ‖∇L̃ik(βi)‖‖β̂ik−βi‖ . (112)

In the next lemma, we bound the gradient of the quadratic loss function. This Lemma is analo-

gous to Lemma 5.

Lemma 7. Consider the quadratic loss (21) and define the probability event

E ≡
{
‖∇L̃ik(βi)‖ ≤ λ0

}
, with λ0 ≡ 4B(N + 1)

√
log(`k−1d)

|Ik|
+ 4B(N + 1)

|Lik|
|Ik|

. (113)

Then, we have P(E)≥ 1− d−0.5`−1.5
k−1 .

Proof of Lemma 7 is given in Section 15.1. Using Lemma 7 in bound (112), we get

1

|Ik|
‖Xk(β̂ik−βi)‖2 ≤ λ0 ‖β̂ik−βi‖ . (114)

The proof of Proposition 11.1 then follows exactly along the lines after Equation (91) in the proof

of its counterpart, Proposition 9.1.
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15.1. Proof of Lemma 7

Let q̃it = I(vit > max{b−t , rit}) be the allocation variables as if buyer i was truthful. Then by

definition of set of lies Lik, as per (27), for t /∈ Lik, we have qit = q̃it. We define µ̃it(β) as the

counterpart of µit(β), where we replace qit by q̃it, i.e.,

µ̃it(β) = 2(〈xt, β〉−BNq̃it) .

Recall that µit(β) = 2(〈xt, β〉−BNqit). Since µit(β) = µ̃it(β) for t /∈ Lik, we can write

∇L̃ik(β) =
1

|Ik|
∑
t∈Ik

µ̃it(β)xt−
1

|Ik|
∑
t∈Ik

{µ̃it(β)xt−µit(β)xt}

=
1

|Ik|
∑
t∈Ik

µ̃it(β)xt−
1

|Ik|
∑

t∈Lik∩Ik

{µ̃it(β)xt−µit(β)xt} . (115)

To bound ∇L̃ik(βi), we start with bounding |µit(βi)| and |µ̃it(βi)|. By our normalization ‖xt‖ ≤ 1.

Further, since ‖βi‖ ≤ Bp < B, we obtain |〈xt, βi〉| ≤ B. This implies that |µit(βi)| = 2|〈xt, βi〉 −

BNqit| ≤ 2B(N + 1). Similarly, we have |µ̃it(βi)| ≤ 2B(N + 1). Therefore, by Equation (115), we

have

∥∥∥∇L̃ik(βi)∥∥∥ ≤ 1

|Ik|

∥∥∥∥∑
t∈Ik

µ̃it(βi)xt

∥∥∥∥+
4B(N + 1)

|Ik|
|Lik| , (116)

where we used that ‖xt‖ ≤ 1. To complete the proof of the first part of the lemma, we bound the first

term on the right hand side of (116) using the Matrix Freedman inequality for bounded martingale

matrices (see Appendix 18). Similar to the proof of Lemma 5, define Sj =
∑j−1+`k

t=`k
µ̃it(βi)xt and

S0 = 0. In order to show that Sj is a vector martingale with bounded differences, we need to show

that E[µ̃it(βi)xt] = 0 and bound ‖µ̃it(βi)xt‖.

Recall that in the pure exploration phase, for a buyer chosen uniformly at random, we set the

reserve r∼ uniform(0,B), and for other buyers we set their reserves to∞. Therefore, for any period

t in the pure exploration phase of episode k, i.e., for any t∈ Ik, we have

P(q̃it = 1|vit, xt) =
vit
BN

.
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As a result, E[q̃it|vit, xt] = vit/(BN), where the expectation is taken w.r.t. to the randomness in

reserve prices. Thus,

E[µ̃it(βi)|xt] = 2E[(BNE[q̃it|vit, xt]−〈xt, βi〉) | xt] = 2E[vit−〈xt, βi〉|xt] = 2E[zit|xt] = 0 .

(117)

This also implies that E[µ̃it(βi)xt] = 0. Further, ‖µ̃it(βi)xt‖ ≤ 2B(N + 1)‖xt‖ ≤ 2B(N + 1). Thus,

by virtue of Matrix Freedman inequality, we have

P
(

1

|Ik|

∥∥∥∥∑
t∈Ik

µ̃it(βi)xt

∥∥∥≥ 4B(N + 1)

√
log(`k−1d)

|Ik|

)
≤ (d+ 1)exp−(12/8) log(`k−1d) =

1

d0.5`1.5k−1

. (118)

Combining Equations (116) and (118) shows that P(E)≥ 1−d−0.5`−1.5
k−1 , where the probability event

E is defined in (113).

16. Proof of Proposition 11.2

The proof is based on comparing the utility loss of an untruthful buyer with his future utility gain

and using the fact that buyers are utility-maximizing. Note that in SCORP, any utility loss due

to untruthful bidding can only happen in the exploration phase of the episodes, as the submitted

bids in the exploitation phase of the episodes are not used in estimating the preference vectors.

Therefore, during the exploitation phase, there is no incentive for buyers to deviate from being

truthful. Hence, to bound the utility loss of a buyer due to untruthful bidding, we only need to

focus on the pure exploration phase.

By focusing on the exploration phase, it is easy to verify that by following similar steps as in

the proof of Lemma 6, we have

E[u−it|sit, oit, qit] ≥
1

2BN
γts2

it(1− qit) +
1

2BN
γto2

itqit , (119)

where the expectation is taken w.r.t. to the randomness in reserve prices.

Observe that this bound is stronger than Lemma 6 in that the factor 1/(2BN`k−1) is replaced by

1/2BN . The reason is that in each period of pure exploration phase, for a randomly chosen buyer

we set his reserve r∼ uniform(0,B) and we set other buyer’s reserves to ∞. This is in contrast to
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the CORP policy (under known distribution F ) that we do such exploration only with probability

1/`k−1 in each period of episode k. We remove the proof of Equation (119), as it is very similar to

the proof of Lemma 6.

By having Equation (119) in place, the rest of the proof is exactly the same as the proof of

Proposition 9.2.

17. Proof of Technical Lemmas

17.1. Proof of Lemma 1

Note that in a second-price auction with truthful buyers, Wit(r) indicates the revenue that firm

earns when buyer i wins the auction and has been posted reserve price r. Therefore by definition

of optimality r?it = arg maxrWit(r). (In Proposition 3.1, it is shown that r?it is the optimal solution

of optimization problem (4).) Therefore, W ′
it(r

?
it) = 0.

Also, by Equation (80), we have

W ′
it(r) = Hit(r)

(
(1−F (r−〈xt, βi〉))− rf(r−〈xt, βi〉)

)
. (120)

Hence,

W ′′
it(r) = hit(r)

(
(1−F (r−〈xt, βi〉))− rf(r−〈xt, βi〉)

)
− 2Hit(r)f(r−〈xt, βi〉)−Hit(r)rf

′(r−〈xt, βi〉) . (121)

Since valuations and bids are bounded by constant B, clearly 0≤ r?it, rit ≤B and given that r is

between them, we also have 0 ≤ r ≤ B. In addition, considering the fact that the market noise

is bounded in [−Bn,Bn] and f and f ′ are continuous, both f and f ′ attain their maximum over

the compact interval [−Bn,Bn]. Let c1 = maxy∈[−Bn,Bn] f(y) and c2 = maxy∈[−Bn,Bn] f
′(y). Further,

since 0 ≤ v−t ≤ B, its density hit is supported in [−B,B] and due to continuity, it attains its

maximum over this interval. Let c3 = maxy∈[−B,B] h(y). Therefore,

|W ′′
it(r)| ≤ c3 + 2c1 +Bc2 .

The result follows by setting c≡ c3 + 2c1 +Bc2.
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17.2. Proof of Lemma 2

We define function g :R 7→R as follows:

g(θ) = arg max
y
{y(1−F (y− θ))} . (122)

By this definition, for any t∈Ek, we have r?it = g(〈xt, βi〉) and rit = g(〈xt, β̂ik〉). Then, by showing

g(·) is 1-Lipschitz function, claim (72) follows. To see this note that

|r?it− rit| = |g(〈xt, βi〉)− g(〈xt, β̂ik〉)| ≤ |〈xt, βi− β̂ik〉| , (123)

where the inequality holds because of 1-Lipschitz property of function g.

By definition (122), g(θ) should satisfy the following stationary condition:

1−F (g(θ)− θ) = g(θ)f(g(θ)− θ) .

Define ϕ(y) ≡ y − 1−F (y)

f(y)
as the virtual valuation function. Then, we can write g(θ) in terms of

virtual valuation function: ϕ(g(θ)− θ) =−θ . Since ϕ is injective, by applying ϕ−1 to both sides,

we can write g(θ) explicitly in terms of virtual valuation function:

g(θ) = θ+ϕ−1(−θ) . (124)

Using characterization (124), we show that g is 1-Lipschitz. To do so, we verify g′(θ) = 1 −

1/ϕ′(ϕ−1(−θ)) is less than one. In particular, g′(θ)≤ 1 because ϕ′(y)≥ 1. To see why this holds note

that ϕ(y) can be written as ϕ(y) = y+ 1
log′(1−F (y))

. Then, by Assumption 1, 1−F is log-concave.

This implies that log′(1− F (y)) is decreasing, and consequently ϕ(y) is increasing. Indeed, this

implies that ϕ′(y)≥ 1.

17.3. Proof of Lemma 3

We first prove Claim (44). Observe that when v−t − b−t < 0, Claim (44) holds, as sit ≥ 0 for any

i ∈ [N ]. Thus, it suffices to show that (v−t − b−t ) ≤ max
{
sit(1 − qit) : i ∈ [N ]

}
. Without loss of
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generality, assume v1t > v2t > . . . > vNt. Then, v−t = v2t. If b−t ≥ b2t, then buyer 2 will not receive

the item, i.e., q2t = 0 and we have

v−t − b−t = v2t− b−t ≤ v2t− b2t = (v2t− b2t)(1− q2t) = s2t(1− q2t) ,

proving the claim in this case. The other case is when b−t < b2t and hence b2t is the highest bid.

This implies that b1t ≤ b−t and we have the following chain of inequalities:

v−t − b−t = v2t− b−t ≤ v2t− b1t < v1t− b1t . (125)

Further, since buyer 2 has the highest bid, q2t = 1 and qit = 0 for all i 6= 2. In particular, q1t = 0.

Combining this with (125), we get

v−t − b−t < (v1t− b1t)(1− q1t) ,

which proves the claim in this case as well.

We next prove Claim (45). Suppose qit = 0 and let buyer j be the winner (qjt = 1 and j 6= i).

Then, by definition b+
−it = bjt and

b+
−it− v+

−it = bjt− v+
−it ≤ bjt− vjt = ojtqjt .

Here, we use that vjt ≤ v+
−it because j 6= i.

17.4. Proof of Lemma 4

Recall that r?it and rit are given by the following equations:

r?it = arg max
r

min
F∈F

r(1−F (r−〈xt, βi〉)) ,

rit = arg max
r

min
F∈F

r(1−F (r−〈xt, β̂ik〉)) .

Let r̃?it = r?it−〈xt, βi〉 and r̃it = rit−〈xt, β̂ik〉. By a change of variable, it is easy to see that r̃?it and

r̃it are the solutions to the following optimization problems:

r̃?it = arg max
r

min
F∈F

{
(r+ 〈xt, βi〉)(1−F (r))

}
,

r̃it = arg max
r

min
F∈F

{
(r+ 〈xt, β̂ik〉)(1−F (r))

}
.
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Define function H :R→R as H(r)≡maxF∈F F (r). Observe that r̃?it + 〈xt, βi〉= r?it > 0 and hence,

r̃?it = arg max
r

min
F∈F

(r+ 〈xt, βi〉)(1−F (r))

= arg max
r

(r+ 〈xt, βi〉) min
F∈F

(1−F (r))

= arg max
r

(r+ 〈xt, βi〉)(1−H(r)) . (126)

Using the change of variable r← r+ 〈xt, βi〉, we obtain

r?it = arg max
r

r(1−H(r−〈xt, βi〉)) . (127)

Likewise,

rit = arg max
r

r(1−H(r−〈xt, β̂ik〉)) . (128)

Now, note that by definition of function H, we have log(1−H(r)) = minF∈F log(1−F (r)). Further,

F is log-concave for all F ∈F , as per Assumption 2. Moreover, using the fact that the (pointwise)

minimum of concave functions is also concave, we have that 1−H is log-concave. By virtue of

characterizations (127) and (128), and log-concavity of 1−H, the claim follows from the same proof

of Lemma 2 and hence is omitted. The only subtle point is that function H, although continuous,

may not be differential at some points. Therefore, in using the argument of Lemma 2, derivative

should be replaced by subgradient.

18. Matrix Freedman Inequality

For readers’ convenience, here we state the Matrix Freedman inequality for martingales.

Theorem 18.1 (Rectangular Matrix Freedman) Consider a matrix martingale {Yk : k =

0,1,2, . . .} whose values are matrices with dimension d1 × d2 and let {Xk : k = 1,2, . . .} be the

difference sequence. Assume that the difference sequence is uniformly bounded:

‖Xk‖op ≤R almost surely for k≥ 1 , (129)
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where ‖ · ‖op denotes the operator norm27, and R is a constant. Define two predictable quadratic

variation processes for this martingale

W1,k ≡
k∑
j=1

E[XjX
T
j |Y1, . . . , Yj−1] ,

W2,k ≡
k∑
j=1

E[XT
j Xj|Y1, . . . , Yj−1] ,

for k ≥ 1. Further, for given σ2 > 0 and t ≥ 0, let event A ≡
{
∃k ≥ 0 : ‖Yk‖op ≥

t, max(‖W1,k‖op,‖W2,k‖op)≤ σ2
}

. Then,

P(A) ≤ (d1 + d2) exp

(
− t2/2

σ2 +RT/3

)
=


(d1 + d2) exp(−3t2/8σ2) t≤ σ2/R ,

(d1 + d2) exp(−3t/8R) t≥ σ2/R .

We refer to (Tropp 2011) for the proof of Theorem 18.1. We next state the result of Matrix Freedman

theorem specialized to the vector case. This corollary is used in the proof of Propositions 13.1

and 15.1.

Corollary 18.2 Consider a vector martingale {uk : k = 0,1,2, . . .} whose values are vector with

dimension d and let {vk : k = 1,2, . . .} be the difference sequence. Assume that the difference

sequence is uniformly bounded:

‖vk‖ ≤R almost surely for k≥ 1 , (130)

Define a predictable quadratic variation processes for this martingale:

wk ≡
k∑
j=1

E
[
‖vj‖2

∣∣∣u1, . . . , uj−1

]
, for k≥ 1 .

Then, for all t≥ 0 and σ2 > 0, we have

P
{
∃k≥ 0 : ‖uk‖ ≥ t and ‖wk‖ ≤ σ2

}
≤ (d+ 1)exp

(
− t2/2

σ2 +Rt/3

)
(131)

=


(d+ 1)exp(−3t2/8σ2) for t≤ σ2/R ,

(d+ 1)exp(−3t/8R) for t≥ σ2/R .

27 For a matrix A, its operator norm is defined as ‖A‖op = inf{c≥ 0 : ‖Av‖ ≤ c‖v‖, for any vector v}. Equivalently,

the operator norm is the largest singular value of a matrix.
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We used Corollary 18.2 in the proof of Lemma 5 to bound the norm of martingale Sj (see below

Equation (97)). Specifically, we used the corollary with uj = Sj, vj = µ̃it(βi)xt (with t= `k−1 +j−1),

R = uF , and σ2 = u2
F `k−1. Then, using bound (131) for S`k−1

with t = 2uF
√

log(`k−1d)`k−1, we

obtain bound (98).

Likewise, we used Corollary 18.2 in the proof of Lemma 7 to bound the norm of martingale Sj

(see below Equation (116)). Here, again we set uj = Sj, vj = µ̃it(βi)xt with t= `k−1 + j − 1 (note

that in this case µ̃it(βi) = 2(〈xt, βi〉−BNq̃it).) We then have R= 2B(N+1) and σ2 = 4B2(N+1)2j.

We then use bound (131) for S`k−1
with t= 4B(N + 1)

√
log(`k−1d)|Ik| to obtain (118).

19. Proof of Theorem 5.3

We first show the result when w ∈ (a, ā). Define Fa(·) as the probability distribution of the uniform

distribution with the support of [−a,a]. To solve the optimization problem given in Theorem 5.3,

we first consider the following optimization problem for any r≥ 0.

min
a∈[a,ā]

(1−Fa(r−w)) . (132)

We will show that

min
a∈[a,ā]

(1−Fa(r−w)) =



ā−(r−w)

2ā
if r <w;

1
2

if r=w;

max(a−(r−w)

2a
,0) if r >w,

where ā−(r−w)

2ā
and ā−(r−w)

2ā
are respectively (1 − Fā(r − w)) and (1 − Fa(r − w)). To do so, we

consider the following three cases:

• Case 1 (r <w): Consider any a∈ [a, ā] such that r−w≤−a. Then, (1−Fa(r−w)) = 1. Now,

consider any a∈ [a, ā] such that −a< r−w< a.28 When −a< r−w< a, we have

(1−Fa(r−w)) = r
a− (r−w)

2a
.

It is easy to see that a−(r−w)

2a
is decreasing in a and as a result, arg mina∈[w−r,ā]

a−(r−w)

2a
= ā.

This shows that arg mina∈[a,ā]
a−(r−w)

2a
= ā, which is the desired result.

28 Observe that r−w cannot exceed a as under case 1, r−w< 0 and a> 0.
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• Case 2 (r=w): This case is simple as for any a∈ [a, ā], we have 1−Fa(r−w) = 1−Fa(0) = 1/2.

• Case 3 (r > w): If a < r − w, then mina∈[a,ā](1− Fa(r − w)) is indeed zero. Otherwise, (1−

Fa(r−w)) is increasing in a and obtains its minimum at a= a.

Next, we solve the following optimization problem:

max
r

min
a∈[a,ā]

r(1−Fa(r−w)) . (133)

To characterize the optimal solution of the aforementioned optimization problem, we consider the

following three regions for w.

• Region 1 (w ∈ [a, ā]): To solve problem (133), we divide this problem into two subproblems.

In the first subproblem, r ≤w, and in the second one, r ≥w. Precisely, the first subproblem

concerns the following optimization problem:

max
r≤w

min
a∈[a,ā]

r(1−Fa(r−w)) = max
r≤w

r
ā− (r−w)

2ā
=
w

2
,

where the first equation follows from case 1 and last equation holds because when r≤w< ā,

r ā−(r−w)

2ā
is increasing in r.

The second subproblem is given by

max
r≥w

min
a∈[a,ā]

r(1−Fa(r−w)) = max
r≥w

(
r max(

a− (r−w)

2a
,0)

)
=
w

2
,

where the first equation follows from case 3 and last equation holds because when w ≥ a,

r a−(r−w)

2ā
is increasing in r. Put these together, the optimal value of problem (133) is w/2,

which happens at r=w.

• Region 2 (w < a): The solution of the first subproblem is the same as that in region 1. But,

the optimal solution of the second subproblem is w+a

2
, which implies that the optimal solution

of problem (133) is w+a

2
.

• Region 3 (w> ā): It is easy to show that in this region, the optimal solution of problem (133)

is w+ā
2

.
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