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How should a firm price a new product for which little is known about demand? We propose a simple

and practical pricing rule for new products where demand information is limited. The rule is simple: Set

price as though the demand curve were linear. Our pricing rule can be used if three conditions hold: the

firm can estimate the maximum price it can charge and still expect to sell some units, the firm need not

plan in advance the quantity it will sell, and marginal cost is known and constant. We show that if the

true demand curve is one of many commonly used demand functions, or even a more complex (randomly

generated) function, the firm can expect its profit to be close to what it would earn if it knew the true demand

curve. We derive analytical performance bounds for a variety of demand functions, calculate expected profit

performance for randomly generated demand curves, and evaluate the welfare implications of our pricing

rule. We show that with limited demand information (maximum price and marginal cost), our simple pricing

rule can be used for new products while often achieving a near-optimal performance. We also discuss the

limitations of our method by identifying cases where our pricing rule does not perform well.

Key words : Pricing, new products, unknown demand, pricing heuristics, linear demand approximation

1. Introduction

Firms that introduce new products must often set a price with little or no knowledge of demand,

and no data from which to estimate elasticities. How should firms set prices in such settings? This

problem has been the subject of a variety of studies, most of which focus on experimentation and

learning, e.g., setting different prices and observing the outcomes (we discuss this literature below).

Experimenting with price, however, is often not feasible or desirable; it is often common for firms

to choose an introductory price and maintain that price for a year or more. We examine a much

simpler approach to this pricing problem that does not involve any price experimentation.

We show that under certain conditions, the firm can use a very simple pricing rule. The conditions

are that (i) the firm’s marginal cost, c, is known and constant, (ii) the firm can estimate the

maximum price Pm it can charge and still expect to sell some units (more precisely, Pm is defined

as the price in which consumers won’t buy, but if the price is slightly reduced, some consumers will
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buy), and (iii) the firm need not know or plan in advance the quantity it will sell. (We partially

relax the second assumption in Section 3.) These conditions will not always hold—but as we will

explain, they do for many new products, particularly those that involve new technologies.

Examples of new product introductions for which these conditions hold include new types of

biochemical drugs introduced by pharmaceutical companies (such as Lilly’s Prozac in 1987, Astra-

Merck’s Prilosec in 1995, AstraZeneca’s Crestor in 2003, or Merck’s Vytorin in 2004), software

products introduced by technology companies (such as Adobe’s Acrobat Distiller in 1993 and

Intuit’s TurboTax in 2001), and digital content delivered via downloads or streaming (such as

Apple setting the price of music downloads when launching its iTunes store in 2002, or Netflix

pricing subscriptions when it launched its movie streaming service in 2007). These conditions can

also hold for companies introducing an existing product in a new and emerging market (such as

P&G launching Pampers in China in 1998). In all of these examples, marginal cost is known and

constant. (It is zero for software downloads and music or video downloads or streaming, close to

zero for most biochemical drugs, and known from experience for diapers.) However, the firms in

these examples knew very little about the demand curves they faced and had no data to estimate

elasticities. They could, however, roughly estimate the maximum price they could charge, and with

the possible exception of Pampers in China, there was no need for them to know in advance how

much they could sell.

Because our pricing rule depends on these three conditions, it is important to be clear about

what they mean, when they will or will not hold, and what happens to our results if they do not

hold. Here are the conditions again, in more detail.

1.1. The Firm’s Marginal Cost is Known and Constant

This condition, is straightforward. It is necessary because if marginal cost varies with respect to

output, the optimal price depends on the slope of the demand curve, which we assume is unknown.

When will this condition hold? For many new technology products, marginal cost is both known

and constant, and often close to zero. While this is obvious for software downloads, music or video

downloads or streaming (where marginal cost is zero), it might be less obvious for pharmaceuticals,

which is an important category of new products.

We said that marginal cost is close to zero (in fact to a first approximation equal to zero) for

biochemical drugs. To clarify, biochemical drugs are those that are essentially made by mixing

chemicals together (sometimes at precise temperatures) and have a simple molecular structure that

is easy to specify (and thus patent). An example is Pfizer’s Lipitor, a statin-type anti-cholesterol

drug, the molecule for which has 160 atoms and is made by mixing chemicals at a low temperature.1

1 https://www.wsj.com/articles/SB10001424127887324338604578328623588135326
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The chemicals that are combined usually cost very little, and the process of mixing them is easy,

so that biochemical drugs are very cheap to manufacture. Until around 2000, the vast majority of

drugs were biochemical in nature.2

1.2. The Firm Can Estimate the Maximum Price It Can Charge

By “maximum price” we do not mean the price at which the firm can sell any units (that price

might be extraordinarily high), but rather a price at which the firm can still expect to serve a few

percent of its potential market. Determining the maximum price Pm might not be easy but it is a

much less difficult task than estimating the entire demand curve.

In practice, there are several ways of estimating Pm. For some products and services, the firm

can intentionally create a scarcity situation (when a product is first introduced) and then observe

the highest prices paid for the product or service through secondary channels such as eBay (for

products) or StubHub (for events). Alternatively, the firm could first introduce a product or service

by selling it in a highest bid auction format, as is done for prototypes of luxury items. Finally,

it is common for firms to hire focus groups (marketing specialists or loyal/passionate customers),

where one of the main topics is the maximal price that can be charged for the upcoming product.

This approach is commonly used for the introduction of new software and digital services (e.g.,

paid subscriptions for online dating services).

A pharmaceutical company might estimate Pm by comparing a new drug to existing therapies

(including non-drug therapies). For example, when pricing Prilosec, the first proton-pump inhibitor

anti-ulcer drug, Astra-Merck could expect Pm to be two or three times higher than the price of

Zantac, an older generation anti-ulcer drug. And when it planned to sell music through iTunes,

Apple might have estimated Pm to be around $2 or $3 per song, as a multiple of the per-song price

of compact discs. (A CD with 12 songs might cost $12 to $15 but most consumers would want only

a few of those songs.) Likewise, Intuit might have used a simple survey to learn how much at least

some consumers would pay for software to prepare their tax returns.

One might argue that it is unlikely that a firm will know its maximum price exactly. The firm

can estimate the maximum price, but that estimate will be subject to error. What does that do to

our results? We explore this question in Section 3 of the paper and show that while uncertainty

over the maximum price can reduce the performance of our pricing rule, unless the uncertainty is

very large the firm will still do well.

2 Biotech drugs, based on recombinant DNA technologies, are quite different. The molecules are extremely complex
(often too complex to even specify precisely, so the production process is patented rather than the molecule), and
production can be expensive. Many of the new cancer therapies are biotech drugs.
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1.3. The Firm Need Not Know the Quantity It Will Sell

How can a firm set price without also having an estimate of the quantity it will sell? For new

(biochemical) drugs, marginal cost is near zero, so the firm can produce a large amount of pills

and discard whatever is not sold. (We are assuming there is no capacity limitation.) Of course

selling more is better than selling less, but the only decision the firm must make is what price to

charge. For music or video downloads and streaming services, as well as software, no factories have

to be built and marginal production cost (net of royalties) is zero. This assumption is also satisfied

in settings where production lead times are short relative to product life. An example is Intel’s

production of processors for personal computers. Building the fabrication facility involves a large

sunk cost, and a major modification of the facility is needed for each new generation of processor.

But for each generation, the firm moves down its learning curve rapidly (in about six months), and

from then on marginal production cost is very low. Thus, the firm can produce more chips than it

expects to sell, and discard whatever it doesn’t sell.

1.4. The Pricing Rule

We propose that if the three conditions discussed above hold, the firm can use the following rule:

Given the maximum price Pm, set price as though the actual demand curve were linear, i.e.,

P (Q) = Pm− bQ, (1)

With constant marginal cost c, the firm’s profit-maximizing price is P ∗ = (Pm + c)/2, which we

refer to as the “linear price.” This price is independent of the slope b of the linear demand curve,

although the resulting quantity, Q∗L = (Pm − c)/2b, is not. But as long as the firm does not need

to invest in production capacity or plan on a particular sales level, knowledge of b, and thus the

ability to predict its sales, is immaterial. For any price strictly above c, more sales are better than

less, but the only problem at hand is to set the price. We denote the resulting price and profit from

using eqn. (1) by P ∗ and Π∗ respectively.

How well can the firm expect to do if it sets P ∗? Suppose that with precise knowledge of its

true demand curve, the firm would set a different price P ∗∗ and earn a (maximum) profit Π∗∗. The

question we address is simple: How close can we expect Π∗ to be relative to Π∗∗, i.e., how well is

the firm likely to do using this simple pricing rule? As one would expect, the answer depends on

the true demand function. In this paper, we derive closed form bounds on the profit performance

for several common demand functions and compute numerically the performance for randomly

generated demands. We will show that in many cases this simple pricing rule performs well, i.e.,

Π∗ is close to Π∗∗. We will also identify cases where the rule does not perform well.

The basic idea behind this paper is quite simple and is illustrated in Figure 1. The demand

curve labeled “Actual Demand” was drawn so it might apply to a new drug, or to music downloads
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Figure 1 Illustration for a representative demand curve

in the early years of the iTunes store. A pharmaceutical company might estimate a price Pm at

which some doctors will prescribe and some consumers will buy its new drug, even if insurance

companies refuse to reimburse it. As the price is lowered and the drug receives insurance coverage,

the quantity demanded expands considerably. At some point the market saturates so that even if

the price is reduced to zero there will be no further increase in sales. For music downloads, at prices

above Pm it is more economical to buy the CD and “rip” the desired songs to one’s computer. At

lower prices demand expands rapidly, and at some point the market saturates.

If the firm knew this curve, it would set the profit-maximizing price P ∗∗ and expect to sell the

quantity Q∗∗. (In the figure, P ∗∗ and Q∗∗ are computed numerically.) But the firm does not know

the actual demand curve. A linear demand curve that starts at Pm has also been drawn and labeled

DL. This linear demand curve implies a profit-maximizing price P ∗ and quantity Q∗L, where the

subscript L refers to the quantity sold if DL were the true demand curve. Note that P ∗ does not

depend on the slope of the demand curve, b; any linear demand curve that begins at Pm will yield

the same profit-maximizing price P ∗.

How badly would the firm do by pricing at P ∗ instead of P ∗∗? For the demand curve and

marginal cost (c= 100) shown in Figure 1, the profit and price ratios (determined numerically) are

Π∗∗/Π∗ = 1.023 and P ∗∗/P ∗ = 1.069, i.e., the resulting profit is within a few percent of what the

firm could earn if it knew the actual demand curve and used it to set price. (The firm would do a

bit worse if c= 0, in which case Π∗∗/Π∗ = 1.084.)
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There are certainly demand curves for which this pricing rule will perform poorly. For example,

suppose the true demand curve is a rectangle, i.e., P = Pm for 0 ≤ Q ≤ Qmax and P = 0 for

Q>Qmax. Then, the profit-maximizing price is clearly Pm and the resulting profit is Π∗∗ = (Pm−

c)Qmax. Setting a price P ∗ = (Pm + c)/2 yields a much lower profit; in fact Π∗∗/Π∗ = 2.0. We

want to know how well our pricing rule will perform—i.e., what is Π∗∗/Π∗—for alternative “true”

demand curves.

1.5. Related Literature

There is a large literature on optimal pricing with limited knowledge of demand, much of which

deals with experimentation and learning. An early example is Rothschild (1974), who assumes

that a firm chooses from a finite set of prices (exploration phase), observes outcomes, and because

each trial is costly, eventually settles on the price that it thinks (perhaps incorrectly) is optimal

(exploitation phase). The firm’s choice is then the solution of a multi-armed bandit problem. (In

the simplest version of the model, the firm prices “high” or “low.”) The solution does not involve

estimating a demand curve.

The marketing literature has also considered the problem of pricing for new products. Examples

include classical works such as Urban et al. (1996) that consider pre-market forecasting, as well as

Krishnan et al. (1999) that consider a variation of the generalized Bass model that yields optimal

pricing policies that are consistent with empirical data. More recently, Handel and Misra (2015)

introduce a dynamic non-Bayesian framework for robust pricing of new products.

Other studies focus on learning in a parametric or non-parametric context. Several papers address

the use of learning to update estimates of parameters of a known demand function; see, e.g., Aviv

and Pazgal (2005), Bertsimas and Perakis (2006), Lin (2006), and Farias and Van Roy (2010).

A second stream examines the interplay between learning demand and optimizing revenues over

time without imposing a parametric form. Following Rothschild (1974), several authors assume

the seller first sets a price to learn about demand, and then adjusts the price to optimize revenues

(see, e.g., Besbes and Zeevi 2009, Araman and Caldentey 2011, Balvers and Cosimano 1990).

The operations research literature examines dynamic pricing using robust optimization, where

the functional form of the demand curve is known but one or more parameters are only known to

lie in an “uncertainty set.” For example, demand might depend on two unknown parameters α1

and α2, so the profit function is Π(α1, α2, p). The price p is chosen to maximize the worst possible

outcome over the uncertainty set, i.e., maxpminα1,α2
Π(α1, α2, p).

3 In related work, Bergemann and

Schlag (2011) consider a single consumer’s valuation, with a distribution that is unknown but

3 See, for example, Adida and Perakis (2006) and Thiele (2009). An alternative is the “distributionally robust”
approach, where price is robust with respect to a class of demand distributions with similar parameters such as mean
and variance (see, e.g., Lim and Shanthikumar 2007, Ball and Queyranne 2009).
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assumed to be in a neighborhood of a given model distribution. The authors characterize robust

pricing policies that maximize the seller’s minimum profit (maximin), or that minimize worst-case

regret (difference between the true valuation and the realized profit). Although robust optimization

incorporates uncertainty, its focus on worst-case scenarios may yield conservative pricing strategies.

There is an extensive literature on mechanism design and auctions that is tangentially related

to our paper. This literature considers simple mechanisms and demonstrates their performance

relative to the optimal (often very complicated) mechanism. For example, Segal (2003) examines the

profitability of bidding mechanisms relative to posted pricing. The author considers the case where

the bidders’ valuations are drawn from an unknown distribution and shows that the deterministic

optimal price auction is asymptoticly optimal when the valuations come from distributions with

bounded support. Hartline and Roughgarden (2009) show that simple approximation mechanisms

remain almost optimal in general single-parameter agent settings.

Our paper is also related to studies of model misspecification. In particular, we study the per-

formance of a simple linear demand model even if the true demand curve is far from linear. Others

have shown that linear models can perform well (e.g., Dawes (1979) in clinical prediction and

Carroll (2015) in contract theory). Besbes and Zeevi (2015) study the “price of misspecification”

for dynamic pricing with demand learning. The authors propose a dynamic pricing algorithm in

which the seller assumes demand is linear, and chooses a price to maximize revenue based on this

linear demand function. They show that although the model is misspecified, one can achieve a good

asymptotic regret performance. In our setting, however, the firm chooses a price and does not have

the option to experiment over time. In addition, our paper investigates how consumer welfare is

affected by demand misspecification.

1.6. What This Paper Does

Our approach to pricing is quite different from the studies cited above, and is related to the

prescriptive rules of thumb found, for example, in Shy (2006). Managers often seek simple and

robust rules for pricing (and other decisions such as levels of advertising or R&D), and other studies

have shown that simple rules can be very effective.4 The pricing rule we suggest is certainly simple;

the extent to which it is effective is the focus of this paper.

4 In related work, Chu et al. (2011) show how “Bundle Size Pricing” (BSP) provides a close approximation to optimal
mixed bundling. In BSP, a price is set for each good, for any bundle of two, for any bundle of three, etc., up to a
bundle of all the goods produced. Profits are close to what would be obtained from mixed bundling. Also Carroll
(2015) examines a principal who has only limited knowledge of what an agent can do, and wants to write a contract
robust to this uncertainty. He shows that the most robust contract is a linear one—e.g., the agent is paid a fixed
fraction of output. Hansen and Sargent (2008) provide a general treatment of robust control, i.e., optimal control
with model uncertainty.
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The pricing rule P ∗ = (Pm + c)/2 follows from a linear approximation to the true demand curve.

Note, however, that the same pricing rule can be obtained from a different set of modeling assump-

tions. Suppose the firm plans to sell the product to a representative consumer with a random

valuation that is uniformly distributed U [c,Pm]. In this case, to maximize expected profits, the

optimal price is also P ∗ = (Pm+c)/2. (The proof is presented in the Appendix.) The equivalence of

the two models (linear demand curve and uniform consumer valuation) is well known, and provides

an alternative way of justifying the pricing rule studied in this paper.

In some cases, estimating the maximum price Pm is difficult or impractical. However, one can

extend the results and analysis of this paper to situations where the firm can determine a price

P̄ < Pm, such that at P̄ the firm can still sell to a small set of customers who are not very price

sensitive. The pricing rule then becomes P ∗ = (P̄ + c)/2. The basic insights of this paper will still

hold, although at the expense of a pricing rule that does not perform quite as well. Obviously, the

performance deteriorates when the gap between P̄ and Pm increases.

In the following sections, we characterize the performance of our pricing rule by deriving analyt-

ical bounds for the profit ratio Π∗∗/Π∗ for several classes of demand curves. We also find bounds

for Π∗∗/Π∗ for a general concave demand, and treat the case of a maximum price that is not known

exactly. We then examine randomly generated “true” demand curves and determine computation-

ally the expected profit ratio Π∗∗/Π∗ and confidence bounds for the ratio. Finally, we examine the

welfare implications of our pricing rule.

2. Common Demand Functions

Here we examine several demand models—quadratic, monomial, semi-log, and log-log. We also

consider the case of a general concave demand. These demand models are used in many operations

management and economics applications.5 For each we compare the profits from our pricing rule

to the profits that would result if the actual demand function were known. We will see that the

profit ratio is often close to one.

Before proceeding, note that the relationship between the linear price P ∗ and the optimal price

P ∗∗ depends on the convexity properties of the actual demand function. In the Appendix we show

that if the actual inverse demand curve is convex (concave) with respect to Q,6 the linear price is

greater (smaller) than the optimal price:

5 The log-log model is widely used in many retail applications (see, e.g., Montgomery 1997, Mulugeta et al. 2013,
Cohen et al. 2017). The quadratic and semi-log functions are often used in the context of hedonic pricing (see, e.g.,
Wilman 1981, Milon et al. 1984).

6 Assuming that the inverse demand is a continuous decreasing convex (resp. concave), then the demand is also convex
(resp. concave).
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Theorem 1. If the actual inverse demand curve PA(Q) is convex with respect to Q, then P ∗∗ ≤
P ∗, and if PA(Q) is concave, P ∗∗ ≥ P ∗.

Note that we only need PA(Q) to be convex (or concave) in the range [0,Q∗∗] and not everywhere.

The value of Q∗∗ might not be known but this result can still be useful in that it tells us whether

our simple rule will over- or under-price relative to the optimal price, and it might be possible to

correct for this error by adjusting the price up or down.

2.1. Quadratic Demand

Suppose the actual inverse demand function is quadratic:

PA(Q) = Pm− b1Q+ b2Q
2, (2)

where, as before, Pm is the maximum price. Equivalently, the actual demand function is given by:

QA(P ) = 0.5[b1 −
√
b2

1− 4b2(Pm−P )]/b2. We want analytical bounds for the profit ratio Π∗∗/Π∗

and price ratio P ∗∗/P ∗. The bounds depend on the convexity properties of the function in (2) and

are summarized in the following result. (Proofs are in the Appendix.)

Proposition 1. For the quadratic demand curve of eqn. (2), for any marginal cost c≥ 0, the

profit and price ratios satisfy:

• Convex case: b1, b2 ≥ 0 and b2 ≤ b2
1/4Pm

1≤ Π∗∗

Π∗
≤ 8

√
2

27(
√

2− 1)
= 1.0116,

8

9
≤ P ∗∗

P ∗
≤ 1.

• Concave case: b1 ≥ 0 and b2 ≤ 0

1≤ Π∗∗

Π∗
≤ 4
√

2

3
√

3
= 1.0887,

1≤ P ∗∗

P ∗
≤ 2

3

(
2Pm + c

Pm + c

)
≤ 4

3
= 1.33.

Note that the restrictions on the values of b1 and b2 are necessary and sufficient conditions to

guarantee that the inverse demand curve is non-negative and non-increasing everywhere.

If demand is convex, the simple pricing rule yields a profit that is only about 1% less than what

the firm could achieve if it knew the true demand curve. Also, this is a “worst case” result that

applies when c = 0; if c > 0, the ratio Π∗∗/Π∗ is even closer to 1. The price P ∗ can be as much

as 12% lower than the optimal price P ∗∗, but the concern of the firm is (or should be) its profit.

(Also, P ∗∗/P ∗ deviates the most from 1 when c= 0.)

If demand is concave, the resulting profit Π∗ is within 8.87% of the optimal profit, irrespective of

the parameters b1 and b2. In the proof of Proposition 1 in the Appendix, we show that the largest
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value of Π∗∗/Π∗ (1.0887) occurs when b1 = 0; for positive values of b1, the profit ratio is closer to

1. The reason is that when b1 increases, the curve becomes closer to a linear function. In addition,

one can show that the profit ratio becomes closer to 1 for the concave case when either c or b2

increase (recall than b2 ≤ 0).

2.2. Monomial Demand

Now suppose the actual inverse demand curve is a monomial of order n:

PA(Q) = Pm− γQn , γ > 0. (3)

Equivalently, the actual demand is given by: QA(P ) = [(Pm−P )/γ]1/n. Note that all functions of

the form (3) are concave and decreasing, given that γ > 0. The Appendix shows that the profit and

price ratios are now:

Proposition 2. For the inverse demand curve of eqn. (3), the profit and price ratios satisfy:

1≤ Π∗∗

Π∗
=

2
1
n+1n

(n+ 1)
1
n+1
≤ 2,

1≤ P ∗∗

P ∗
=

2(nPm + c)

(n+ 1)(Pm + c)
≤ 2.

Thus for any monomial demand curve, the profit ratio only depends on the order of the monomial

n; it does not depend on the values of Pm, c or γ. (The price ratio does depend on Pm, c and n,

but not on γ.) Both ratios are monotonically increasing with the degree of the monomial n and

converge to 2 and 2Pm/(Pm + c)≤ 2 respectively, as n→∞. For monomials of order 3 and 4, the

profit ratios are 1.19 and 1.27 respectively.

2.3. Semi-Log Demand

Now consider the semi-log inverse demand curve:

PA(Q) = Pme
−αQ , α > 0 , (4)

Or equivalently, Q(P ) = 1
α

log(Pm/P ). The following result (proof in Appendix) bounds the profit

and price ratios when the marginal cost c= 0 and when c > 0.

Proposition 3. For the semi-log inverse demand curve of eqn. (4),

• When c= 0, the profit and price ratios are:

Π∗∗/Π∗ = 2e−1/ log(2) = 1.0615,

P ∗∗/P ∗ = 2e−1 = 0.7357.
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Figure 2 Profit and price ratios for the semi-log inverse demand curve as a function of c/Pm

• When c > 0, the ratios are closer to 1:

1≤Π∗∗/Π∗ < 1.0615,

0.7357<P ∗∗/P ∗ ≤ 1.

When c = 0 both ratios can be computed exactly and do not depend on α or Pm; in this worst

case, the simple pricing rule yields a profit that differs from the optimal profit by only 6.15%,

even though the prices differ by 26.5%. When c > 0, one cannot compute the ratios in closed form.

Instead, we solve numerically for Π∗∗ and P ∗∗ and present the results in Figure 2, where we plot

the ratios as a function of c/Pm. (The ratios are independent of α.) Note that as c increases both

ratios approach 1.

2.4. Log-Log Demand

We turn now to the commonly used log-log (isoelastic) demand model:

PA(Q) =A0Q
−1/β; β > 1 , (5)

where −β is the (constant) elasticity of demand. Because this demand curve has no maximum

price, we truncate it so that P (0) = Pm. Setting PA(Q0) = Pm, the corresponding quantity is

Q0 = (Pm/A0)−β. We therefore work with the following modified version of eqn. (5):

PA(Q) =

{
Pm ; if Q<Q0

Pm(Q/Q0)−1/β ; if Q≥Q0

(6)

We require that β > βmin = Pm/(Pm− c) for the optimal price P ∗∗ to be less than the maximum

price Pm. In this case:
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Figure 3 Profit and price ratios as a function of Pm/c for the log-log demand curve

Proposition 4. For the demand curve of eqn. (6), the profit and price ratios are:

Π∗∗

Π∗
=

2

(Pm/c− 1)(β− 1)

[
2β

(Pm/c+ 1)(β− 1)

]−β
,

P ∗∗

P ∗
=

2β

(Pm/c+ 1)(β− 1)
.

Note that these ratios are exact and depend only on the elasticity β and Pm/c. Also, there is a

unique value of β∗ = (Pm + c)/(Pm− c) for which both ratios equal 1.7

There are two limiting cases to note: c large and c very small. If c is large, i.e., c→ Pm, βmin→∞.

If βmin is very large, β (> βmin) is also very large (i.e., demand is elastic), so both the profit and

price ratios will be close to 1. At the other extreme, as c→ 0, P ∗∗ → 0, whereas P ∗ → 0.5Pm,

and Π∗∗/Π∗ is unbounded. But an isoelastic demand curve would then make little sense, because

Q∗∗→∞.

The general case is illustrated in Figure 3, which shows the profit and price ratios as a function

of Pm/c for β = 1.5, 2.0, and 2.5. If β = 1.5, Π∗∗/Π∗ is always close to 1. But if β = 2.5, Π∗∗/Π∗ can

exceed 2 for large enough values of of Pm/c. Note that P ∗∗ can be larger or smaller than P ∗.8 As

a result, if demand is very elastic (i.e., β is large) or the marginal cost c is very small, our pricing

rule will not perform well. One limitation of our pricing rule for the log-log demand model is the

fact that the performance crucially depends on the price elasticity, which is not known by firm.

7 If β = β∗, the elasticity of the isoelastic demand equals the elasticity of the linear demand at the optimal price. The
latter elasticity is Ed = bP ∗/Q∗

L = (Pm + c)/(Pm − c), so if β = β∗, both the linear and log-log demand curves have
the same profit-maximizing price and output.

8 The log-log demand curve is convex but truncating it modifies its convexity properties, which affects the relationship
between P ∗∗ and P ∗ (see Theorem 1). If either β or Pm/c is small, the optimal quantity Q∗∗ is small and can lie on
the truncated—and non-convex—part of the curve.
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Table 1 summarizes these results. It shows that our pricing rule works well for a variety of

underlying demand functions—but not all. For example, if the true demand is a truncated log-log

function, Π∗∗/Π∗ can deviate substantially from 1 if demand is very elastic and/or the marginal

cost is small. This follows from the convexity of this function and the fact that (unrealistically)

the quantity demanded expands without limit as the price is reduced towards zero.

We conclude this section by deriving the performance of our pricing rule for a general concave

demand function.

2.5. Concave Demand

Proposition 5. For any concave demand curve, we have:

1≤Π∗∗/Π∗ ≤ 2 , 1≤ P ∗∗/P ∗ ≤ 2.

In the worst case, the profit and price ratios will equal 2 if the true demand curve is a rectangle.

For other concave functions, Π∗∗/Π∗ < 2, but except for specific functional forms, we cannot say

how much less.

We might expect that in some cases the inverse demand curve will not be concave and may even

have a flat area (plateau), as in Figure 1. In this case, Π∗∗/Π∗ will be sensitive to whether the

plateau is below or above P ∗. If the plateau is below P ∗ and very long, Π∗∗/Π∗ can be arbitrarily

large; by pricing at P ∗, the firm is missing a large mass of consumers. But if the plateau is above

P ∗, Π∗∗/Π∗ will usually be close to 1. Thus if the firm believes there is such a plateau, it might set

price below P ∗ in order to account for it.

3. Uncertain Maximum Price

So far, we have assumed that while the firm does not know its true demand curve, it does know

the maximum price Pm it can charge and still expect to sell some units. Suppose instead that the

firm only has an estimate of the maximum price:

P̂m = Pm(1 + ε), (7)

where ε lies in some interval [−B,B], with 0≤B ≤ 1. Our pricing rule is now P ∗ = (P̂m+ c)/2, and

suffers from two misspecifications: the form of the demand curve and the value of the intercept. To

see how this second source of uncertainty affects the profit ratio Π∗∗/Π∗, we derive the profit ratios

as closed-form functions of ε for the demand models we considered in Section 2. (Details are in the

Appendix.) To simplify matters, we assume here that c= 0. (Recall from the previous section that

Π∗∗/Π∗ deviates from 1 the most when c= 0 for the demand curves we considered.)

Under a moderate misspecification of Pm (i.e., small values of ε), our pricing rule still performs

well. However, depending on the “draw” for ε, the actual profit ratio could be farther from 1.
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Inverse demand function P ∗∗/P ∗ Π∗∗/Π∗

Quadratic convex:

PA(Q) = Pm− b1Q+ b2Q
2 8

9
≤ P ∗∗/P ∗ ≤ 1 ≤ 1.0116

b1, b2 ≥ 0 and b2 < b
2
1/4Pm

Quadratic concave:

PA(Q) = Pm− b1Q+ b2Q
2 1≤ P ∗∗/P ∗ ≤ 4Pm+2c

3Pm+3c
≤ 1.33 ≤ 1.0887

b1 ≥ 0 and b2 ≤ 0

Monomial: PA(Q) = Pm− γQn 2(nPm + c)/(n+ 1)(Pm + c) 2(n+1)/nn/(n+ 1)(n+1)/n

n= 3 ≤ 1.5 1.19

n= 4 ≤ 1.6 1.27

Semi-log: PA(Q) = Pme
−αQ

c= 0 0.7357 1.0615

c > 0 < 0.7357 < 1.0615

Log-log (truncated):

PA(Q) =

{
Pm ; if Q<Q0

Pm(Q/Q0)−1/β ; if Q≥Q0

2β/(Pm/c+ 1)(β− 1) 2
(Pm/c−1)(β−1)

(
2β

(Pm/c+1)(β−1)

)−β
β ≥ βmin = Pm/(Pm− c)

Table 1 Price and profit ratios for several “true” demand curves

To see how much farther, we use the closed-form expressions in the Appendix to plot the profit

ratios as a function of ε for −0.2≤ ε≤ 2. As Figure 4 shows, the monomial demand (with n= 3)

is most sensitive to the value of ε, with Π∗∗/Π∗ reaching 1.5 when ε=−0.2. For the other demand

curves, Π∗∗/Π∗ < 1.25 over the range of ε we consider. Thus a misspecification of the maximum

price increases Π∗∗/Π∗, but only moderately.

4. Random Demand Curves

In this section, we consider randomly generated demand functions. In practice, a firm introducing

a new product may know little or nothing about the shape of the demand curve. Indeed, that is the

motivation for this paper. The firm might have no reason to expect that demand is characterized

by one of the commonly-used functions we examined earlier, or any other particular function. If

the firm uses our pricing rule — with no knowledge at all of the true demand curve, other than

the maximum price Pm — how well can it expect to do?

We address this question by randomly generating a set of “true” demand curves. For each

randomly generated curve we compute (numerically) the profit-maximizing price and profit, P ∗∗

and Π∗∗, and compare Π∗∗ to the profit Π∗ the firm would earn by using our pricing rule, i.e.,

by setting P ∗ = (Pm + c)/2. We generate 100,000 such demand curves and examine the resulting

distribution of Π∗∗/Π∗. The only restriction we impose on these demand curves is that they are

non-increasing everywhere.
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Figure 4 Profit ratios as a function of ε for different demand curves

We generate each demand curve as follows. We assume the maximum price Pm is known and so is

the maximum quantity Qmax that can be sold at a price of zero (i.e., the maximum potential size of

the market).9 We divide the segment [0,Qmax] into S equally-spaced intervals and generate a piece-

wise non-increasing demand curve by drawing random values for the different pieces. Since P (0) =

Pm and P (Qmax) = 0, there are S − 1 breaking points between 0 and Pm. (One might interpret

this partition of the market as representing customer segments, or simply an approximation to a

continuous curve.) With this partition, we draw a random value for the end of the first segment from

a distribution between 0 and Pm, which we will call P1 (see one realization for P1 in Figure 5). More

precisely, we draw a random variable X1 between 0 and 1 and P1 = PmX1. Next, we independently

draw a value for the end of the second segment, but now between 0 and P1. Call this P2 = P1X2,

where X2 is drawn between 0 and 1. We repeat this process S− 1 times, drawing a total of S− 1

independent random variables Xi; i= 1, . . . , S− 1 between 0 and 1, generating a random demand

curve with S segments. Figure 5 shows an example of such a randomly generated demand curve that

has 5 segments (for Pm = 500 and Qmax = 5). Given this demand curve, we numerically calculate

P ∗∗,Π∗∗, and the profit ratio Π∗∗/Π∗ for c= 0 and c= 0.5Pm.

We draw the random variables Xi; i= 1, . . . , S− 1 using a power distribution of the form X1/α,

where α ≥ 1 is a skewing parameter and X is uniformly distributed between 0 and 1. Note that

when α= 1, this reduces to the uniform distribution. For simplicity, we present the results for the

case of a uniform distribution (i.e., α= 1); we obtained very similar results when α= 1.5.

9 To generate random demand curves, it is convenient to specify the maximum quantity Qmax. We tested different
values of Qmax and found similar qualitative insights, so that our results are not sensitive to the value of Qmax.
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Figure 5 Randomly generated inverse demand curve with S = 5 pieces

c= 0 c= 0.5Pm

S Mean 80% 90% S Mean 80% 90%

2 1.0672 1.1625 1.2442 2 1.0748 1.1255 1.3696
5 1.1332 1.2057 1.3926 5 1.0525 1.0645 1.2271
10 1.1351 1.2081 1.3979 10 1.0523 1.0647 1.2254
50 1.1379 1.2161 1.4071 50 1.0525 1.0621 1.2264
100 1.1344 1.2124 1.4045 100 1.0525 1.0628 1.2265

Table 2 Profit ratios for randomly generated demands

We generate 100,000 demand curves and compute 100,000 corresponding values for Π∗∗/Π∗. We

calculate the mean value of Π∗∗/Π∗, as well as the 80% and 90% points (i.e., the value of Π∗∗/Π∗,

such that 80% or 90% of the randomly generated ratios are below this number). The number of

segments S can affect the resulting Π∗∗, so in Table 2 we show results for different values of S and

for c/Pm equal to 0 and 0.5.

Observe that whatever the number of segments, S, the average profit ratio is less than 1.14 if

c= 0 and less than 1.08 if c= 0.5Pm. Also, for 80% (90%) of the demand curves, the profit ratios are

less than 1.22 (1.41) if c= 0 and less than 1.13 (1.37) if c= 0.5Pm. In Figure 6, we plot histograms

of the 100,000 profit ratios for S = 5 and both c = 0 and c = 0.5Pm. When c = 0 (c = 0.5Pm),

more than 40% (75%)of the ratios are less than 1.01, and 54% (79%) are less than 1.05. Thus it is

reasonable to expect our pricing rule to yield a profit close to what would result if the firm knew

its actual demand curve.
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(a) c= 0 (b) c= 0.5Pm

Figure 6 Histogram of profit ratios when S = 5 for c= 0 and c= 0.5Pm

5. Welfare Implications

We now compare the total welfare (consumer plus producer surplus) obtained from our pricing

rule P ∗ = 0.5(Pm + c) to the welfare that would have resulted if the firm knew the true demand

curve and set the price at P ∗∗. We also look at consumer surplus separately to see how our pricing

rule affects consumers. The total welfare, denoted by W (P ), is:

W (P ) = Π(P ) +CS(P ) = (P − c)Q+
[∫ Q

0

PA(y)dy−PQ
]
. (8)

We are interested in W (P ∗∗)/W (P ∗) ≡W ∗∗/W ∗ and CS(P ∗∗)/CS(P ∗) ≡ CS∗∗/CS∗. Note that

these ratios can be less than one, i.e., our pricing rule can increase the total welfare and/or the

consumer surplus relative to that when the profit maximizing price P ∗∗ is used. In particular, we

have the following result.

Proposition 6. If the actual demand is convex, then W ∗∗ ≥W ∗ and CS∗∗ ≥ CS∗; whereas if

it is concave, W ∗∗ ≤W ∗ and CS∗∗ ≤CS∗.

Indeed, as long as P ≥ c, W (P ) is non-increasing, so that the inequalities on W follow immediately

from Theorem 1. The inequalities on CS also follow from Theorem 1 and from the fact that the

consumer surplus is a non-increasing function of the price (for P ≤ Pm). If the demand is concave,

we know from Theorem 1 that P ∗ ≤ P ∗∗, so in this case using the “wrong” price P ∗ improves both

the total welfare and consumer surplus (i.e., the benefit to consumers exceeds the loss to the firm).

However, if the demand is convex, both the firm and consumers are worse off.

Next, we calculate the welfare and consumer surplus ratios (i) analytically for the demand models

in Section 2 (see Proposition 7) and (ii) computationally for randomly generated demand curves

following the approach of Section 4. To simplify matters, we assume that c= 0. We do not report

the details of the derivations for conciseness. The closed form expressions are as follows:
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Proposition 7. The welfare and consumer surplus ratios, W ∗∗/W ∗ and CS∗∗/CS∗, for the

different demand models are:

• Quadratic convex: PA(Q) = Pm− b1Q+ b2Q
2; b1, b2 ≥ 0 and b2 ≤ b2

1/4Pm

W ∗∗

W ∗ ≤ 1.26045 and
CS∗∗

CS∗
≤ 1.5756

• Quadratic concave: PA(Q) = Pm− b1Q+ b2Q
2; b1 ≥ 0 and b2 ≤ 0

W ∗∗

W ∗ ≤
16
√

2

15
√

3
= 0.8709 and

CS∗∗

CS∗
≤ 0.544

• Monomial: PA(Q) = Pm− γQn

W ∗∗/W ∗ =
2n+ 1− 1/(n+ 1)

3− 1/(n+ 1)

( 2

n+ 1

) 1
n+1

and
CS∗∗

CS∗
=
( 2

n+ 1

) 1
n+1

• Semi-log: PA(Q) = Pme
−αQ

W ∗∗/W ∗ = 2(1− e−1) = 1.2642 and
CS∗∗

CS∗
= 1.722

We omitted the truncated log-log demand as the welfare and consumer surplus ratios are com-

plicated expressions that depend on Pm/c and β. For the exponential demand, CS∗∗/CS∗ ≤ 1.6487

(the welfare ratio is unbounded). For the monomial demand, when n= 3 and n= 4, W ∗∗/W ∗ is

0.974 and 0.999 respectively, and CS∗∗/CS∗ is 0.397 and 0.318 respectively. Also, as the order of

the monomial n increases, W ∗∗/W ∗ approaches 4/3 whereas CS∗∗/CS∗ approaches 0. Indeed, as n

increases, the inverse demand curves becomes more concave so there is a greater transfer of welfare

from the firm to consumers. One can see that for these demand models, the loss in total welfare

from using our approximation is at most 26%, but in some cases the loss (or gain) in consumer

surplus can be quite large. (For example, for the semi-log demand, when c= 0 the loss in profit is

6.16% but the decrease in consumer surplus is 72%.)

We next calculate W ∗∗/W ∗ and CS∗∗/CS∗ for randomly generated demand curves following the

approach of Section 4. As before, we fix Pm, c, and Qmax and compute the ratios for c/Pm = 0 and

0.5, using 100,000 randomly generated demand curves. (The results are very similar for different

values of S.) The average welfare ratio for c= 0 and c= 0.5Pm are 1.139 and 0.993 respectively.

As for CS∗∗/CS∗, the average ratios for c= 0 and c= 0.5Pm are 1.1885 and 0.9148 respectively

(see Figure 7 in the Appendix). As one can see from the histograms, although CS∗∗/CS∗ is close

to 1 on average, for a significant fraction of demand curves, consumers will be either better off or

worse off. Thus although our pricing rule often yields profits close to optimal, the misspecification

of demand can have a significant (positive or negative) impact on consumer surplus.
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6. Future Research and Related Open Questions

One might argue that because of the three conditions we imposed, our pricing rule is too narrow in

terms of its range of applications. Here, we discuss several possible extensions of our work, which

are left for future research. The first and most obvious extension is to relax each of the three

conditions and determine whether an alternative pricing rule that is still relatively simple can be

derived.

Second, our focus has been on a linear pricing rule (i.e., a price that is linear in the parameters

Pm and c). It would be interesting to investigate to what extent a nonlinear rule (e.g., a quadratic

function of Pm and c) yields a profit ratio closer to 1 relative to the linear rule.

Third, instead of assuming that the maximum price is known, it would be interesting to examine

what happens if the firm knows a different point on the demand curve, that is, the firm knows a

specific pair of points (P0,Q0), instead of (Pm,0). This is a relevant case in practice, as firms often

have access to a single price-demand realization.

Perhaps one of the most important caveats is the fact that our analysis is entirely static. We

assumed the true demand curve is fixed; it does not shift over time, potentially in response to

network effects (which can be important for new products). We also assumed that the firm sets and

maintains a single price; it does not change price over time to intertemporally price discriminate

or to respond to changing market conditions, nor does it offer different prices to different groups

of customers.

An additional limitation of our analysis is the fact that we assumed that capacity is not a relevant

operational decision. (We provided several examples to justify this.) Extending the analysis for

products that require capacity planning is an interesting avenue for future research. Finally, we

have ruled out learning about demand, either passively or via experimentation, which has been

the focus of the earlier literature on pricing with uncertain demand (learning and earning). To the

extent that such dynamic considerations are important, our pricing rule can be viewed as a starting

point. Managers often seek simple and robust rules for pricing; the rule we suggest is certainly

simple, and we have seen that it is also often effective.

7. Conclusions

Setting price is one of the most basic economic decisions firms make. Introductory economics

courses make this decision seem easy; just write down the demand curve and set marginal revenue

equal to marginal cost. But of course firms rarely have precise knowledge of their demand curves.

When introducing new products (or existing products in new markets), firms may know little or

nothing about demand, but must still set a price. Price experimentation is often not feasible, and

the price a firm sets is often the one it sticks with for some time.
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We have shown that under certain conditions the firm can use a simple pricing rule. The condi-

tions are: (i) marginal cost c is known and constant, (ii) the firm can estimate the maximum price

Pm it can charge and still expect to sell some units, and (iii) the firm need not predict the quantity

it will sell. These conditions hold for many new products and services, especially those introduced

by technology companies. The firm then sets a price of P ∗ = (Pm + c)/2.

How well can the firm expect to do if it follows this pricing rule? We studied this question when

the true demand curve is one of several commonly used demand functions, or even if it is a more

complex function (e.g., randomly generated). Often, the firm will earn a profit reasonably close to

the optimal profit it could earn if it knew the true demand curve. We also identified cases where

the profit loss is significant. Our results can help us understand why linear demand functions are

so popular in many applications (e.g., Koushik et al. 2012, Pekgün et al. 2013).

As mentioned in the Introduction, the results of this paper can be extended to cases where the

firm does not know Pm, but it can estimate a price P̄ < Pm, such that at P̄ the firm can sell to

a small set of customers. However, as one would expect, the pricing rule P ∗ = (P̄ + c)/2 will not

perform as well. For example, the profit ratio for the semi-log demand used in Section 2.3 will be

now at most 1.181 for any value of P̄ (the proof follows the same logic as the proof of Proposition 3

by translating the inverse demand curve).

The reader might be under the impression that the firms we are thinking about must be pure

monopolists, but this is not the case. The firm cannot be a perfectly competitive one, because such

a firm is not able to affect the price, which is determined as a market equilibrium. The firm must

have some market power, so that it can set a price and expect to sell some quantity at that price.

But we are not assuming that the firm is a monopolist.
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Appendix
Equivalence with the valuation model

Consider a representative consumer with a random valuation for the product. The valuation is

assumed to be between the cost c and the maximal price Pm. We assume that the seller knows the

valuation distribution, represented by the cdf F(·) and the pdf f(·). We also assume that the seller

seeks to maximize its expected profit, given by:

Π(p) = (p− c)P(p < v) = (p− c)[1−F(p)], (9)

where p denotes the price set by the seller and v denotes the valuation of the consumer (unknown

to the seller). If the price is below the valuation, the consumer will purchase the item and the seller

extracts a profit of p− c. Otherwise, there is no sale and 0 profit for the seller. One can take the

first order condition and obtain:

P ∗ = c+
1−F(P ∗)

f(P ∗)
. (10)

Eqn. (10) is a well-known result called the virtual valuation. If we further assume that the valuation

distribution is uniform in [c,Pm], we have: f(p) = 1/(Pm−c) and F(p) = (p−c)/(Pm−c). Therefore,

eqn. (10) becomes: P ∗ = (Pm + c)/2.

Proof of Theorem 1

The actual inverse demand curve, PA(Q), satisfies PA(0) = Pm. One can write: PA(Q) = Pm− bQ+

f(Q), with f(0) = 0 and P ′′A(Q) = f ′′(Q). Equating marginal revenue with marginal cost:

Q∗∗ =
Pm− c+ f(Q∗∗) + f ′(Q∗∗)Q∗∗

2b
.

This yields an expression for the optimal price as a function of Q∗∗:

P ∗∗ = PA(Q∗∗) = Pm−
1

2

[
Pm− c+ f(Q∗∗) + f ′(Q∗∗)Q∗∗

]
+ f(Q∗∗).

Recall that P ∗ = (Pm + c)/2 and thus: P ∗∗ = P ∗+ 0.5
[
f(Q∗∗)− f ′(Q∗∗)Q∗∗

]
. From the first order

Taylor expansion, we have for any differentiable function f(·): f(x) = f(a) + f ′(a)(x − a) + R1,

where R1 = 0.5f ′′(ζ)(x− a)2, for some ζ ∈ [x,a]. Then:

f(Q∗∗)− f ′(Q∗∗)Q∗∗ =−R1 =
f ′′(ζ)

2
(Q∗∗)2 =

P ′′A(ζ)

2
(Q∗∗)2.

Consequently, P ∗∗ − P ∗ = −P ′′A(ζ)(Q∗∗)2/4, for some ζ ∈ [0,Q∗∗]. Therefore, if PA(Q) is convex,

P ′′A(·)≥ 0 so that P ∗∗ ≤ P ∗; and if PA(Q) is concave, P ′′A(·)≤ 0 so that P ∗∗ ≥ P ∗.
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Proof of Proposition 1

Convex case: We have:

Π∗ =
Pm− c

2

[ 1

2b2

(
b1−

√
b2

1− 2b2(Pm− c)
)]
,

P ∗∗ = Pm−
b1

3b2

[
b1−

√
b2

1− 3b2(Pm− c)
]

+
1

9b2

[
b1−

√
b2

1− 3b2(Pm− c)
]2

,

Q∗∗ =
b1−

√
b2

1− 3b2(Pm− c)
3b2

.

The optimal profit is Π∗∗ = (P ∗∗−c)Q∗∗. One can express the profit and price ratios as functions of

c and b2 and check the monotonicity to conclude that the profit and price ratios are largest when

c= 0 and b2 = b2
1/4Pm, in which case P ∗∗ = (4/9)Pm and Q∗∗ = (2Pm)/(3b1). Finally, we can now

compute both profits:

Π∗ =
b1Pm
4b2

(
1− 1√

2

)
=
P 2
m

b1

(
1− 1√

2

)
, Π∗∗ =

2b1Pm
27b2

=
8P 2

m

27b1

.

Then the profit and price ratios are: Π∗∗/Π∗ = 8
√

2/
[
27(
√

2− 1)
]

= 1.0116, P ∗∗/P ∗ = 8/9. These

are the largest values for the ratios, so that the corresponding inequalities hold.

Concave case: The optimal Q∗∗ is obtained by equating marginal revenue to marginal cost:

Q∗∗ =
−b1±

√
b2

1− 3b2(Pm− c)
−3b2

.

Since Q∗∗ > 0, the positive root applies. Then the optimal price is given by:

P ∗∗ = PA(Q∗∗) =
2Pm + c

3
− b2

1

9b2

+
1

9b2

b1

√
b2

1− 3b2(Pm− c).

Finally, the optimal profit as a function of Pm, c, b1, and b2 follows from Π∗∗ = (P ∗∗− c)Q∗∗. Our

pricing rule is P ∗ = (Pm + c)/2, so

QA(P ∗) =
−b1±

√
b2

1− 2b2(Pm− c)
−2b2

.

We select the positive root so as to satisfy Q∗ > 0. The profit is then:

Π∗ = (P ∗− c)QA(P ∗) =
Pm− c

2

[ 1

−2b2

(√
b2

1− 2b2(Pm− c)− b1

)]
.

Expressing the profit and price ratios as functions of b1 and checking the monotonicity, one can see

that the worst case for both ratios occurs when b1 = 0. Intuitively, the larger b1 is, the more linear

the function is, making the ratios closer to 1. If b1 = 0, P ∗∗ = (2Pm + c)/3 and P ∗ = (Pm + c)/2, so

Π∗∗ =
2(Pm− c)

3

√
−3b2(Pm− c)
−3b2

, Π∗ =
Pm− c

2

√
−2b2(Pm− c)
−2b2

.

Then, the profit and price ratios are:

Π∗∗

Π∗
=

4
√

2

3
√

3
= 1.0887,

P ∗∗

P ∗
=

2

3

2Pm + c

Pm + c
≤ 4

3
= 1.33.

For b1 > 0, we have inequalities for both ratios.
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Proof of Proposition 2

Equating marginal revenue and marginal cost, MRA(Q∗∗) = Pm− (n+ 1)γ(Q∗∗)n = c. Thus: Q∗∗ =

[(Pm− c)/(n+ 1)γ]1/n and P ∗∗ = PA(Q∗∗) = (nPm− c)/(n+ 1). Note that P ∗∗ is independent of γ.

Next, the optimal profit is:

Π∗∗ = (P ∗∗− c)Q∗∗ =
n

(n+ 1)
1
n+1γ1/n

(Pm− c)
1
n+1.

Recall that P ∗ = (Pm+ c)/2, so the corresponding quantity is QA(P ∗) =
[
(Pm− c)/(2γ)

]1/n
. There-

fore, Π∗ = (P ∗− c)QA(P ∗) =
[
(Pm− c)

1
n+1
]
/
[
2

1
n+1γ1/n

]
. We can now compute both ratios:

Π∗∗

Π∗
=

2
1
n+1n

(n+ 1)
1
n+1
≤ 2, 1≤ P ∗∗

P ∗
=

2(nPm + c)

(n+ 1)(Pm + c)
≤ 2.

Proof of Proposition 3

First, suppose c = 0. Equating marginal revenue and marginal cost, MRA(Q∗∗) = Pme
−αQ∗∗ −

αPmQ
∗∗e−αQ

∗∗
= 0, so Q∗∗ = 1/α. Then P ∗∗ = Pme

−1 and Π∗∗ = Pme
−1α−1. If the firm prices at

P ∗, the profit is Π∗ = (P ∗ − c)QA(P ∗) = 0.5PmQA(P ∗). Since c = 0 and P ∗ = 0.5Pm, we obtain:

QA(P ∗) =−(1/α) log(0.5), and hence Π∗ = 0.5Pm log(2)/α. We then have:

Π∗∗

Π∗
=

Pme
−12α

αPm log(2)
=

2e−1

log(2)
= 1.0615,

P ∗∗

P ∗
=
Pme

−1

Pm/2
= 2e−1 = 0.7357.

We now show that when c > 0, both ratios are closer to 1. We start with the price ratio by showing

that ∂
∂c

[P
∗∗

P∗ ]≥ 0, ∀ 0≤ c≤ Pm. We have:

∂

∂c

[P ∗∗
P ∗

]
=

∂P∗∗

∂c
P ∗− ∂P∗

∂c
P ∗∗

(P ∗)2
. (11)

For eqn. (11) to be nonnegative, we need: ∂P∗∗

∂c
1
P∗∗ ≥ ∂P∗

∂c
1
P∗ . Recall that P ∗ = (Pm + c)/2 and

therefore: ∂P ∗/∂c= 0.5. As a result, we need to show:

∂P ∗∗

∂c
≥ P ∗∗

Pm + c
. (12)

From the first order condition: MRA(Q∗∗) = Pme
−αQ∗∗ − αPmQ∗∗e−αQ

∗∗
= P ∗∗(1− αQ∗∗) = c. By

differentiating both sides with respect to c and isolating ∂P ∗∗/∂c:

∂P ∗∗

∂c
=

1 +αP ∗∗ ∂Q
∗∗

∂c

1−αQ∗∗
. (13)

Recall that P ∗∗ = Pme
−αQ∗∗

and hence by differentiating with respect to c:

∂P ∗∗

∂c
=−αP ∗∗∂Q

∗∗

∂c
. (14)

By combining (13) and (14), we obtain ∂P ∗∗/∂c= 1/(2−αQ∗∗). Since the demand curve is convex,

from Theorem 1: P ∗∗ ≤ P ∗ = (Pm + c)/2 and therefore: P ∗∗/(Pm + c) ≤ 0.5. From the first order

condition, 0 ≤ 1 − αQ∗∗ ≤ 1 (so that P ∗∗ ≥ c). Thus 1 ≤ 2 − αQ∗∗ ≤ 2, so 1/(2 − αQ∗∗) ≥ 0.5,

implying that (12) is satisfied. This concludes the proof for the price ratio.

The same logic applies to the profit ratio, i.e., ∂[Π∗∗

Π∗ ]/∂c≤ 0, ∀ 0≤ c≤ Pm.
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Proof of Proposition 4

Equating marginal revenue to marginal cost, MRA(Q∗∗) = Pm

(
1 − 1

β

)
(Q∗∗/Q0)−1/β = c. Thus:

Q∗∗ =Q0

[
βc

(β−1)Pm

]−β
. Note that Q∗∗ is larger than the truncation value Q0. The optimal price and

profit are: P ∗∗ = βc/(β− 1) and Π∗∗ =Q0c/(β− 1)
[

βc
(β−1)Pm

]−β
. By requiring β ≥ Pm/(Pm− c) we

ensure that P ∗∗ ≤ Pm. We next compute the profit under P ∗: Π∗ = (P ∗ − c)QA(P ∗) = 0.5(Pm −

c)QA(P ∗). We have: QA(P ∗) = Q0

(
Pm+c
2Pm

)−β
≥ Q0. Then: Π∗ = 0.5Q0(Pm − c)

(
Pm+c
2Pm

)−β
. We can

now compute both ratios:

Π∗∗

Π∗
=

2

(Pm/c− 1)(β− 1)

( 2β

(Pm/c+ 1)(β− 1)

)−β
,
P ∗∗

P ∗
=

2β

(Pm/c+ 1)(β− 1)
.

Expressions for Section 3

Here are the closed-form expressions of Π∗∗/Π∗ as a function of ε for the demand models we

considered when c= 0. (Setting ε= 0 yields the expressions in Section 2.)

• Linear: PA(Q) = Pm− bQ Π∗∗/Π∗(ε) = 1/(1− ε2)

• Quadratic convex: PA(Q) = Pm− b1Q+ b2Q
2; b1, b2 ≥ 0 and b2 ≤ b2

1/4Pm

Π∗∗

Π∗
(ε)≤ 8

√
2

27(1 + ε)

1√
2−
√

1 + ε

• Quadratic concave: PA(Q) = Pm− b1Q+ b2Q
2; b1 ≥ 0 and b2 ≤ 0

Π∗∗

Π∗
(ε)≤ 4

√
2

3
√

3

1

(1 + ε)
√

(1− ε)

• Monomial: PA(Q) = Pm− γQn Π∗∗/Π∗(ε) = 2
1
n+1n

(n+1)
1
n+1

1

(1+ε)(1−ε)1/n

• Semi-log: PA(Q) = Pme
−αQ Π∗∗/Π∗(ε) = 2e−1

(1+ε) log( 2
1+ε )

• Log-log (truncated): PA(Q) =

{
Pm ; if Q<Q0

Pm(Q/Q0)−1/β ; if Q≥Q0

Π∗∗

Π∗
(ε) =

2[
Pm
c

(1 + ε)− 1
]
(β− 1)

 2β

(β− 1)
[
Pm
c

(1 + ε) + 1
]
−β

Proof of Proposition 5

Consider any non-increasing concave demand curve. We know from Theorem 1 that P ∗ ≤ P ∗∗.

Recall that P ∗ = 0.5(Pm + c) and therefore, P ∗ ≤ P ∗∗ ≤ Pm = 2P ∗ − c ≤ 2P ∗. We next show the

inequality for the profit: Π∗∗ = (P ∗∗ − c)QA(P ∗∗) ≤ 2(P ∗ − c)QA(P ∗∗) ≤ 2(P ∗ − c)QA(P ∗) = 2Π∗,

where the last inequality follows form the fact that QA(·) is non-increasing. In conclusion, we have

1≤Π∗∗/Π∗ ≤ 2 and 1≤ P ∗∗/P ∗ ≤ 2.
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Histograms for the consumer surplus

(a) c= 0 (b) c= 0.5Pm

Figure 7 Histogram of consumer surplus ratios when S = 5 for c= 0 and c= 0.5Pm
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