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ABSTRACT

Vibratory gyroscopes are angular motion sensors in which vibratory
forces produce the output signals, Potentially, these devices have impor-
tant advantages over conventional rotary type gyroscopes; however, their
present day precision is relatively low and, as a result, they have not re-
ceived appreciable use, The basic types of vibratory gyroscopes are re-
viewed first in this report and then the theoretical ultimate and practical
performance limitations of rate type instruments are examined in detail.

It is shown that the most important factor which is presently limiting the
performances of vibratory rate gyroscopes is unwanted cross coupling between
the basic drive member and the sensing system. Therefore, to improve the
performances of these instruments it is necessary to reduce the magnitude

of the cross coupling or the errors associated with it. Although both of

these methods are examined in this report, the major emphasis is on the
latter. The two ways of reducing the cross-coupled errors in vibratory

rate gyroscopes which are examined are called "double modulation' and
""optimum processing of suppressed carrier signals."

Double modulation is a process by which the driving and sensing fre-
quencies in vibratory gyroscopes are separated. It is achiéved by rotating
or vibrating the basic drive member of a more conventional vibratory gyro-
scope about a rate insensitive axis. When the frequencies are separated in
this manner, the errors associated with cross coupling between the drive
member and the sensing system are reduced. Theoretical and experimental
evidence in support of the double modulation concept are presented in this
report, a

Optimum processing of suppressed carrier signals is an .ana,ﬂlyfigal design
procedure for synchronous suppressed carrier systems, such as vibratory
gyroscopes. The techniques which are developed in this report treat the
problem of minimizing the mean square error when the signal processor is
a linear time-varying filter, and the harmonic errors are weighted either
equally with the other errors or not at all. The sources of error which are
examined in the suppressed carrier problem are quadrature signals, un-
modulated additive noise and drifts of the carrier frequency, the parameters
of the fixed elements and the phase of the demodulator synchronizing signal,
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CHAPTER I

INTRODUCTION

: ‘Broadly speaking, vibratory gyroscopes are angular motion sensors in
which vibratory forces or torques produce the output signals. This is in
contrast to conventional rotating type gyroscopes in which the forces or
torques producing the output signals are steady for constant applied angular
rates. The potential advantages of vibratery gyroscopes over conventional
gyroscopes are primarily low power consumption, low production costs,
long life and high reliability. Up to the present time, the precision of vib-
ratory gyroscopes has been relatively low and no instruments have success-
fully been matketed.* The major factors which limit the performance are
common to all vibratory rate gyroscope configurations employing macro-
scopic phenomena and are the subject of this thegis. Instruments employing
microscopic phenomena, such as nuclear magnetic resonance or electro-
magnetic waves, for angular rate measurements are not considered because
they are not generally classified as vibratory gyroscopes*

Vibratory type angular rate sensors are not conceptually new. They are

deak

found on house flies in the form of vibratory rods located behind the wings
and Foucalt's pendulum, 2 which was demonstrated in 1851, was a vibratory
rotation sensor. Nevertheless, vibratory type gyroscopes are relatively
unknown compared to the conventional rotary type gyroscopes presently used
for stabilization and navigation. The main reason for this is that vibratory

gyroscopes have received relatively little attention in the past few decades

# This comment refers to November 1964. The author realizes that several
vibratory gyroscopes will probably be marketed.in the next 5 years,

%% They are presently classified as exotic gyroscopes.
#ck Superscripts refer to number ftems in the Bibliography.
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because conventional gyroscopes have always been considered better

suited for the inertial guidance systems of airplanes, missiles and submarines
and it has been these applications toward which the majority of the gyro-

scope research and development effort has been directed. As a result,

the drift of present day conventional gyroscopes are phenomenally low
compared to the drift of conventional gyroscopes of a decade ago, whereas

the drift of vibratory gyroscopes have changed very little over the past

two decades and presently are orders of magnitude larger than the drift

of co;,yentional gyroscopes of similar size.

In the past few years, interest in vibratory and exotic types of gyroscopes
has been increasing. The major reasons for this are the increased emphasis
being placed on reliability in military equipment and the advent of new appli-
cations for gyroscopes in which the specifications differ greatly from those
of the guidance systems for which most present day rotary type gyroscopes
have been developed. Many of these new applications are in space where the
environment differs from that on earth and great emphasis is placed on reli-
ability over a long* period of time and low operating power. In other new
applications emphasis is on-one or more of the following characteristics;
low cost, ruggedness, wide bandwidth, large dynamic range, abihty to start
and stop numerous times, and often extremely high precision is not
one of the requirements. In many of these applications vibratory gyroé
scopes probably satisfy most of the specifications better than conventional
gyroscopes; however, the relatively low precision of present day vibrat't:;ry

gyroscopes has discouraged people from even considering them.

%
This is in contrast with the emphasis placed on reliability over a short

period of time for the guidance systems of some missiles.



At the present time it is difficult to estimate what the precision of these
two types of gyroscopes will be in the future. In view of the large discrepancy
in the engineering efforts expended to date on the two types, however, it is
apparent that present day precision* of vibratory and conventional gyroscopes
may not necessarily be the best criterion upon which to estimate future per-
formance. A criterion which may be more useful for this purpose is the stan-
dard deviation of the output drift which is caused by thermal fluctuations in the
mechanical components of the instruments because this noise is the ultimate
performance limitation in all instruments. Although the drift rates of the
best conventional gyroscopes are well above the thermal fluctuation limit, this
fundamental barrier has been approached in other instruments3 (galvanom-
eters, electronic circuits, etc.) and conceivably may be approached in gyro-
scopic instruments eventually. |

When the thermal fluctuation noise in vibratory and conventional gyro-
scopes of similar size are compared, rotary type gyroscopes generally are
approximately an order of magnitude4 superior, This is not discouraging
though, because vibratory gyroscopes with drift rates anywhere near the
thermal fluctuation limit would be extremely useful because of their potential
ruggedness, low power requirements and longevity. It is the unfortunate fact,
however, that the drift rates of present day vibratory gyroscopes are gener-

ally more than three orders of magnitude larger than the ultimate threshold

* All interesting numbers for conventional and vibratory gyroscopes are
classified so the reader must apply a suitable classification factor to the
following numbers which are typical of those found in the open literature.

Conventional gyroscopes - 1072 %/hr
Vibratory gyroscopes - 1 9/hr (averaged over a day or more)
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predicted on the basie of thermal fluctuations and strain limitations in
rizaterials. Tkis indicates that factors other than thermal fluctuations
are presently limiting the performances of vibratory rate gyroscopes.

On the basis of existing data on vé.rious types of vibratory rate
gyroscopes, it appears that the most important of these '"cther factors''
are practical problems associated with the stability of materials and
the limited tclerances to whi-ch.me_chanica.l parts can be made. In view
of the mahy orders of magnitude improvement obtained in past years
on conventional gyroscopes as a result of concentrated engineering efforts
on similar'practical problems," it is certainly worthwhile examining
all the factors that limit the performances of vibratory rate gyroscopes
to determine what can be done to improve their performances. These factors
are examined in this thesis after a brief survey of the basic types of vibratory
gyroscopes is presented. Then two methods for improving t};e performances
of vibratory gyroscopes are examined in detail. The first is calle'd double
modulation and the secox;d is called optimum processing of suppressed
carrier signals. A by product of this latter research is a filter theory
for synchronous suppressed carrier systems which treats the practical
problems of carrier frequency drift, drift of component parameters and

phaseof the carrier frequency reference signal available to the demodulator.



CHAPTER II
SUMMARY AND CONCLUSIONS

2.1 BACKGROUND

Vibratory gyroscopes are angular motion sensors in which vibratory
forces or torques prodiice the output signals. The numerous configurations
that have been proposed for these instruments can all be classified into
a few basic types. The classification criteria us:.;‘ for this purpose in
Chapter III are: first, whether an instrument is basically a rate or rate
integrating device; second, whether the basic drive scheme is rotary |
or vibratory;and third, whether the carrier frequency of the suppressed
carrier output signals containing the angular position or velocity information
is equal to the drive frequency, a harmonic of the drive frequency or a
linear combination of the harmonics of twe drive frequencies. Although
cer"'tain types of rate integrating instruments have been studied by others,
the present research is restricted to vibratory rate gyroscopes.

Several important types of vibratory rate gyroscopesare briefly
examined in Chapter III; however, no performance figures are quoted.

Then in Chapter IV, the ultimate performance limitations in these instruments
are examined. These limitations are that the maximum signal power out

of & vibratoz;y rale gyroscope for a constant angular rate input is determined
by strain in the drive member and the minimum noise power is determined

by the thermal noise in the sensing system components. These two factors
together determine the thecretical ultimate threshold of a vibratory rate

gyroscope. Egquations showing the effects of the material properties and the

-5
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instrument size on this threshold are derived and briefly discussed in

Chapter I¥. Then the equations are applied to an example and numerical
values for the theoretical ultimate thresholds of a rotary and a vibratory

drive device are determined. It is apparent from this example that if
instruments sould be built with thresholds even two orders of magnitude
larger than the theoretical ultimate, they would be useful in many applications.
Unfortunately, this precision has been been achieved to date because of

""practical' problems.

2.2 SUMMARY AND CONCLUSIONS. .

The "practical'' performance limitations in vibratory rate gyroscopes
are examined in Chapter V. This is accomplished by first examining the
tuning fork gyroscope in detail and then generalizing the results. It is con-
cludedthat the major factor that is presently limiting the performances of
vibratory rate gyroscopes is unwanted crbss coupling between the drive
member and the sensing system. This cross couplingis caused by
inhomogenieties, nonlinearities and instabilities of materials and the
limited tolerances to which mechanical parts can be made. Cross coupling
is troublesome because the signals produced by it have components at
the samé frequencies as the suppressed carrier angular rate information
and can be distinguished form-the angular fate signals only to the extent

that they remain constant and can be bucked or calibrated out or else

can be discriminated against by phase sensitive demodulation. Unfortunately,
the cross coupling is not constant but varies in a stochastic manner with
time, temperature, linear accelerations and numerous other factors and

also quadrature rejection is not perfect in practice. As a result, large
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cross-coupled, zero-rate errors occur at the outputs of vibratory
rate gyroscopes. Therefore, it appears that there are only two basic |
ways to improve the performances of vibratory gyroscopes. They are:
1. reduce the magnitude of the s tochastic cross
coupling (assuming it is normalized in terms of
equivalent input angular rates).
2. reduce the errors that occur at the output of an

instrument because of the cross coupling.

The cross-coupling problem in rotary a.an vibratory drive, vibratory
rate gyroscopes is thoroughly examined in Chapter V. It is concluded that
in vibratory driye instruments the magnitude of the cross coupling can be
minimized by operating large, low frequency, well balanced drive members
made out of stable materials at low strain levels in a temperature
controlled environment. Unfortunately, an instrument with all these
characte:istics is expensive (because of the precision balancing operation
required), is not a low power device (because of the power required for a
tempe.rature control) and may require a long warm up time and may be very
acceleration sensitive. Further_more, the precision of the instrument may
not be any better than that of more é'd:';ventional gyroscopes of comparable coste
Therefore, it appears doubtful that high precision, vibratory drive instruments
have sufficient advantages over more conventional gyroscopes to justify
additional research on them. However, this conclusion is not necessarily
true for medium precision instruments (10 - 100°/hr long term drift), in which
the balance need not be as good and the temperature need not be controlled.
At the present time it appears possible to build low cost, medium precision,
vibratory drive instruments having wide bandwidths and short warm up times
and requiring very little operating power. Also, the short term noise or

drift in these instruments will be.lower than the long term drift which makes
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them useful in applications in which a good but noisy ';angular position
reference is available. Therefore, it appears that future research on
vibratory drive instruments should be directed toward these instruments.

It also appears that serious consideration should be given to using stable
materials, such as quartz, for the drive members of these instruments
because theoretically there is sufficient signal power in some configurations
so that the attenuation caused by the lower maximum allowable strains

will not cause transducer noise problems while the cross coupling stability
for a .specific degreé of balance may be significantly improved.

The cross-coupling problem in rotary drive instruments is also
examined in Chapter V. This examination is brief because few data are
available in the open literature on these instruments. It is concluded:that in
rotary drive instruments the cross coupling problem is primarily caused
by rotor unbalances and non-ideal bearings and bearing supports. However,
the machining operations required to reduce the magnitude of the cross
coupling in rotary drive instruments are relatively simple compared to the
operationg required for vibratory drive instruments. On the basis of some
crude estir;lates made in Chapter V on these instruments, it appears that
medium precision (0.1 - loo/hr long term drift) rotary drive instruments
are feasible. However, these instruments will not be low power devices,
like vibratory drive instruments, and will have some type of bearings.

Reducing the magnitude of the cross coupling is just one of the two
basic ways listed to improve the performances of vibratory rate gyroscopes.
Although it is very important, a more detailed analysis requires considerable
experimental work with materials and machining technigués and is beyond the -
scope of the present research. The present research is mainly concerned with
reducing the errors that occur at the outputs of vibratory gyroscopes because

of cross coupling. Two methods of doing this which are examined are called
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'""double modulation' and "éptimu‘m processing of suppressed carrier signals'',
The double modulation research is reported in Chapter VI and the research on
optimum signal processing is reported in Chapters VII and VIII.

Double modulation is a process by which the angular rate information
in vibratory gyroscopes ié modulated twice so that the suppressed carrier
rate information does not occur at the same frequencies as the cross
coupling between the basic drive member and the sensing system. This
additionai modulation can be obtained by either rotating or vibrating the
basic drive member of a more conventional vibratory gyroscope about a rate
insensitive axis. When the frequencies of the cross coupling and angular rate
information are separated in this manner, the zero-rate errors that result
from cross coupling between the drive member and the sensing system are
greatly reduced. However, double modulation also introduces other types
of cross coupling which have components at the same frequencies as the angular
rate information. In order to investigate all of these aspects of double
modulation, an experimental rotary doubly- modulated tuning fork gyroscope
was built. The results of the experimental and theoretical research conducted
to date on this instrument are reported in Chapter VI and summarized at the

end of that chapter. The most important conclusions are:

1. It appears that a rotary doubly modulated gyroscope

| using a ring configuration for the basic drive member
could be built which would have a long term drift of
the same order of magnitude a.é a super precision,
vibratory drive instrument without double modulation
but with temperature control. An order of magnitude

estimate for the drift of these instfuments is 10-1°/hr.
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The doubly modulated instrument would undoubtedly

be cheaper, less sensitive to linear accelerations

and require much shorter warm up timés than the

super precision instrument but pr oBa.'bly would be

less reliable. Neither instrument would be a low power

device.

2. In order to achieve high precision in a rotary double
modulated instrument, additional r..qsea.rch on bearings
may be necessary. This research should be conducted
in such a manner that the results are ai:'plicable to both
rotary double modulated instruments and rotary drive
instruments because one troublesome cross coupling

problem is common to both types of instrumentse,

3. In vibratory double modulated instruments,the second
harmonic terms must be used rather than the first
bécause of cross coupling between the double modulation
motion and the sensing system. This is undesirable
because it means the signal power into the basic configuration
being double modulated is severely attenuated. Therefore

these instruments do not appear to be promising.

The secor'ldymethod which is examined for reducing the errofs that occur
at the output of a vibratory rate gyroscope because of cross coupling is called
optimum processing of suppressed carrier signals. In Chapter VII, a filter
theory for s;}nchronous suppressed carrier systems, such as vibratory gyroscopes,
is developed and then in‘ Chapter VIII it ie applied to one aspect of the vibratory -

gyroscope signal-processing problem. This work is concerned with determining
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the optimum linear time-varying filter to minimize the mean square error '

at the output of a suppressed carrier system when:

7.

there are quadrature sighala present.
there is unmodulated noise added to the modulated signals.

there are fixed elements in the system, such as the resonant
sensing system in a vibratory rate gyroscope.

there are saturation constraints on signals following
the optimum signal processor.

the carrier frequency drifts ~slowly in a randormn manner.

the parameters of the fixed elements are not constant but
drift mlowly in a random manner.

the phase of the synchronizing signal available to the
synchronous demodulator drifts slowly in a random manner.

By using this theory one can determine the minimum mean square error in a

suppressed carrier system and also the optimum signal processor when the harmonic

errors either are weighted equally with the other errors or are neglected. The

form of the optimum signal processor may be completely unrestricted, which

results in the absolute minimum mean square error,or it may be restricted in

some manner so that the errors are larger but the signal processor is

easier to build.

The mo st important conclusions of the research on the optimum processing

of suppressed carrier signals are:

1.

an optimum or approximately optimum ''practical"
signal processor can be determined in suppressed
carrier problems by using the theory developed in

Chapter VII,

processing signals in vibratory gyroscopes in an optimum

manner reduces the errors due to cross coupling but the
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percentage improvement is small if the instruments
must have a flat response to zero frequency. The
reason for this conclusion is that the cross-coupled,
zero-rate errors that result from the stochastic
inphase cross coupling and the quadrature rejection
errors caused by differential phase shift drifts cannot
be filtered if the instrument must have a response to
zero frequency because the bandwidth of the zero-rate
errors from these sources is generally much smaller

than the bandwidth of the input angular rates.

a significant improvement can be obtained in the

mean square error at the output of a vibratory rate
gyroscope by designing the signal processing electronics
in an optimum manner if the instrument need not have

a flat response to zero frequency.
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BRIEF SURVEY OF THE BASIC TYPES
OF VIBRATORY GYROSCOPES

3.1 INTRODUCTION

Although numerous, greatly different, vibratory gyroscope configurations
have been proposed, all known vibratory gyroscopés can be classified into ¢
few basic types. The classification criteria used in this chapter for that purpose
are: first, whether an instrument is basically* a rate¥* or rate integrating
gyroscope; second, the type of drive scheme or schemes used in an instrument;
and third, the relationship between the carrier frequency of the suppre ssed
carrier signals containing the rate information and the drive frequency of an
instrument. In addition to this classification, the differences Bétween one and
two axis instruments of the basic types and some of the characteristics of the
basic types are pointed out in this chapter. This is accomplished by examining
extremely simple configurations which are representative of each basic type of
instrument . and a few examples of more practical configurations. A convenient
place to start such a survey, is with the concept of the Coriolis force which

is used extensively in the following approximate analyses.
3.2 CORIOLIS FORCE

The vibratory torques or forces that produce the output signals in

vibratory gyroscopes are the result of Coriolis effects. Although the exact

Basic here refers to the characteristics of an instrument when it is operated
without feedback or external integrators.

* Rate gyroscopes are angular motion sensors in which the output is constant
when a constant input angular rate is applied. Rate integrating gyroscopes
are angular motion sensors in which the output is a ramp for a constant
input angular rate. In both cases, the output (amplitude or ramp slope)
ideally is proportional to the input angular rate.

13-
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equations describing the operation of a particular configuration must be
obtained by Lagrange's or some other method, approximate* equations can be
determined by considering the Coriolis forces on moving masses in the instru-
ment. Recall that the Coriolis force TC apparently exetted cn a mass m moving

at a velocity v g in the instrument frame of reference is

Tc= Zm(';dxm (3.1)

where Q7 is the inertial angular rate of the instrument frame of reference.

The component (8) of {1 along a particular instrument axis (axes) is the
quantity that is sensed in a vibratory gyroscope by measuring an output produced
by a ccmponent (8) of the total Coriolis force on all the moving mass particles
or the total Coriolis torque resulting from the Coriolis forces. This force
(torque) per unit mass per applied angular rate is proporticnal tc the velocity,
Vd’ which is often called the drive velocity. Since there are only two basic
methods recognizéd for driving the mass elements, the drive scheme provides

one convenient method for the classification of vibratory gyroscopes.
3.3 BASIC DRIVING SCHEMES

The two basic schemes which are recognized for driving the mass elements

in vibratory gyroscopes are called rotary drive and vibratory drive. In rotary

~ drive instruments the mass elements move in paths that are approximately circular

The approximate differential equations which are found when this method is
used do not contain terms in i, do not contain all the time varying coefficients
of some derivatives, do not contain interaxial cross-coupling terms and do
not contain the terms showing the source of the output energy. Therefore the
approximation is best when Qis small and varies slowly with time, and the
driven masses are a small percentage of the total mass of the instrument.
Since none of these conditions : i# unreasonable, the approximations are quite
good for most instruments and applications of these instruments.
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whereas in vibratory drive instrumenté the paths are arcuate or linear.
Idealized examples of these two types of drive are shown in Fig. 3.1.%

When no angular rates are applied to these devices®*¥ ' the point mass
m, in the rotary drive example rotates at a radius R and angular velocity w,
about the instrument y axis and the point mass m, in the vibratory drive
example oscillates sinusoidally with amplitude r and frequency , parallel
the instrument x axis. When angular rates are applied, Coriolis forces ‘are
exerted on the moving masses and the trajectories are altered. When a spring
type restoring force acts on the particles in the opposite direction of the Coriolis
force, the resulting change in the trajectories is relatively small and v‘;hen
the angular rate is removed the trajectories relax to their initial states. These
instruments are called rate gyroscopes. When the restoring force is absent,
the particles do not return to their initial trajectories when angular rates are
removed but instead remain in new trajectories which are a function of the
input angular rate history of the instrument. These instruments are called rate
integrating gyroscopes. The basic types of rate and rate integrating gyroscopes

are examined in the following two sections.

3.4 VIBRATORY RATE INTEGRATING GYROSCOPES

Foucaltsl pendulum, which was demonstrated in 1851, was basically an
integrating angular rate sensor. "Withit, Foucalt showed that the earth was
spinning because the plane of oscillation of the pendulum retated at a constant
angular rate which was equal to the vertical cbmponent of the earths sidereal: spin.
Thus an observer on earth could measure the time integral of the vertical com-
ponent of earth rate by observing the angle through which the plane of the

pendulum oscillation traversed in a period of time,

The dotted masses in these figures should be ignored at the present time.
They are referred to in other sections of this chapter.
%k
The word device .: is used for lack of a better word and also because
practical configuration will be evolved from these simple configurations
in this chapter.



The same principle is used in practical vibratory rate integrating

gyroscopes. In these instruments, mass particles are made to oscillate
in a uniform central force field and the plane of oscillation of the particles
in the instrument is measured to provide an output. An illustrative* example
of sucl: an instrument is shown in Fig. 3.2. In this imst::umeni:Z a string or
ribbon oscillates in the radial direction at a constant amplitude and frequency.
When an angﬁlar rate is applied about the y axis, ideally the plane of the string
oscillation remains fixed in inertial space and therefore precesses in the
instrument coordinate system. Angular rates about the instrument x and z
axes have a negligible effect on the motion of the string in the instrument because
the Coriolis forces associated with them are in the y direction. When the plane
of the string oscillation in this instrument is initially the xy plane, ideally the
integral of the subsequent input angular rate can be determined by measuring
e x coordinate (or its derivative) of an element of the string.
. .
x(t, y=0) = [sinj dto(t)] r sinwgt =r sin ey(t) sin md(t) (3.2)
o
When 6(t) i8 small, so that the approximation sin 6 = 6 is valid, a signal
proportional to x(t) is a suppressed carrier representation of the integral of
the input angular rate. Therefore the low frequency component of 8(t) can be
obtained by demodulating this signal. For larger angles, it is necessary to find
the inverse sine.of the output or else process the signals differently; perhaps
by measuring both the x and z positions of the string. The alternative is to prevent
é(t) from becoming large by using some type of feedback around the instrument.
However, when this is done the instrument output is no longer the integral of the.

input angular rate and angular information must be obtained elsewhere in the loop.

The means by which the string or ribbon is driven or the position of the plane

of oscillation sensed are not shown. Energy can be supplied to the string drive
either by applying a double drive frequency force in the y direction or a drive
frequency force in the radial direction. Sensing can be accomplished in
numerous ways but must nct torque the string. The major difficulty with
instruments of this type is building them so that they are circularly s symmetric.
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Vibratory rate integrating gyroscopes of the type shown in Fig. 3.2 are

classified as vibratory drive, drive frequency output instruments because the
carrier frequency of the output is equal to the drive frequency of the mass
elements. These instruments are single axis sensors in which, ideally, the

plane of the drive oscillation remains inertially stationary as the instrument

case is rotated about the input axis and remains approximately unchanged in the
instrument for angular rates about orthogonal axes. Two axia instruments of this
type are theoretically possible; however, the practical problems associated with
driving the mass elements and processing the signals are difficult and the resulting
instruments have few if any advantages over £ree3 gyroscopes. Therefore
instruments of this type have received very little attention. . .:- .

Rotary drive, drive frequency output instruments oper ating in the same
manner are theszy alsc a possible type of vibratory rate integrating
gyroscope . In practice, however, these instruments are difficult to build and
have few if any advantages over other, more conventional, gyroscopes. The reason
for this is that it is difficult to drive an unbalanced drive member, such as m,
shown in Fig., 3,1a, without the existence of spring type restoring forces to
constrain thq motion caused by the Coriiolis force. The easiest way in which
this difficulty can be overcome is by using &:balanced drive member (rotor such
a.é the m 1mz', cé;nbination in Fig. 3.1a); however, when this is done the resulting
instrument is more properly classified as a ''free' gyro with an asymmetrical
rotor than a vibratory gyro. Under the broad definition of vibratory gyroscopes
in Section I.1, however, these instruments are still vibratory gyroscopes unless
they are ruled cut because of the steady component of Coriolis torque which is
exerted on the drive member for constant input‘: angular rates. Since this escape
route doés exist, I choose to use it and thereby not classify free gyros with

balanced asymmetrical rotors as vibratory gyroscopes.

:




I,

The classification difficulty which has just been encountered, arises
primarily* because the definition of vibratory gyroscopes given in Section' 1.1
was quite broad in order to make it as simple as possible. The definition-
could be lengthened to clarify the distinction between free and vibratory gyro-
scopes; however, it is not necessary at this point because I have chosen to
restrict the following work to vib:a»toz‘y rate gyroscopes. The primary reasons
for this restri.ction are; first, it was necessary to restrict the scope of the work
because only a limited amount of time was available for this research; second,
the difference between a rate and rate integrating instrument is well defined;
and third there are several.l important differences between vibratory rate and rate
integrating gyroscopes which make the generalization of the performance
limitations of all these instruments more difficui‘t than necessary¥* Therefore,
unless otherwise stated, all references to vibratory gyroscopes in the following

chapters refer to vibratory rate gyroscopes (abbreviated VRG) and not rate

integrating gyrescopes.

3.5 BASIC TYPES OF VIBRATORY RATE GYROSCOPES

3.5.1 Introduction

In vibratory rate gyrcscopes, spring type restoring forces restrict the motion
of the driven mass elements when the instruments are rotated. As a result, the
change in the trajectories of the driven mass elements is relatively small and,
as an excellent first approximation, can be neglected when computing the Coriolis
forces on the driven mass elements. Approximate equations describing the
operation of the basic types of vibratory rate gyroscopes are obtained i{n this section

by using this approximation. The penalty paid for this approximation is that

It also arises because the Coriolis force was used in the analyses. The concept
of Coriolis forces is much more useful in analyzing the behavior of rate gyro-
scopes than rate integrating gyroscopes.

P
Nevertheless, much of the work done in the following chapters is applicable
to vibratory rate integrating gyroscopes. The places where it is not,
however, are not pointed out
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terms in Q and some of the time-varying coefficients in the resulting differential
equations are omitted along with inter-axial cross coupling and nonlinear terms.
In most instruments these omitted terms are not of significant importance in
understanding the principles of operation but only in determining second order

effects. Therefore this technique is considered adequate for the following sections

of the chapter.

3.5.2 Rotary Drive Instruments

A convenient place to start a brief survey of the basic types of rotary
drive, vibratory rate gyroscopes is with the simple instrument shown in Fig. 3.1a.
By examining the Coriolis forces on the single point mass m, or fhe Coriolis torque
on the two point masses m, and m,, the manner in which most instruments of this
type operate can be deduced.* When this instrument is rotated in inertial space,

the Coriolis force apparently exerted on m, is given by Eq. 3.4.

vm1 = -Rwd(i'z cos wit + T sin w 4t) (3.3)
TQcosw,t-1 0 sinw_t

Z; = Zmed{ tY 2z d } (3.4)
S ly((}z sin wt-Q cos wdt)

where Q. is the angular rate of the instrument frame of reference about
the i axie (i = x,v,2)

-l_i ig a unit vector along the i axis (i = x,y, z) .

The components of the Corivlis force are suppressed carrier representations of
the components of the applied angular rate in which the carrier frequency is the
drive frequency w,. Therefore, in theory, by measuring the components of the

Coriolis force along the x and y or y and z axes and demodulating the resulting

This is true because the total torque or force that is exerted on a drive
member when an instrument is rotated is simply an integral over-all the
point masses of the drive member.




signals with a drive frequency reference signal of the proper phase, the

low frequency¥ content of the three components of the applied angular rate can
be sensed.

In most practical rotary drive, vibratory gyrosccpes the rotation axis
passes through the centroid of the spinning member to simplify the support
and drive problems and a differential arrangement is used to produce the output
signals by vectorially subtracting the Coriolis forces on diametrically opposed
masses. An illustrative example of an instrument employing a solid rotor
which operates in this manner is shown in Fig. 3.1la. Two equal masses
my and m, at equal radii R rotate at constant angular velocity about a spin
axis passing through their centreid. The Coriolis forces acting on these masses
are opposite in sign and cause Coriolis torques to be exerted on the rotating
assemi)ly. These torques produce the output signals; however, there are two
distinct ways in which this is accomplished. -

In one type of rotary drive instrument the Coriolis torque in a coordinate
~ frame fixed in the rotor (labeled x'y'z' in Fig. 3.1) produces the output, This

torque is confined to the z' axis and is expressed as

Mc‘: = T;z 4mR'zmd (ﬁz sin wdt - Q cds wyt) (3.5)

The torque M": is a suppressed carrier representation of the ahgular rates
applied about the x and z axes in which the carrier frequency is the frequency

of the drive rotation. The Qx and (L components are 90° out of phase in time

so the output signal produced by Mé can be processed by phase sensitive
demodulation and filtering to yield both of the x and z axis rate components.
Instruments of this type are classified as two axis, rotary drive, drive frequency

4,5,6

output, vibratory rate gyroscopes. Several such instruments” have been

built and others are currently being investigated. An illustrative example of

Low frequency here implies frequencies much lower than the drive frequency.
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these instruments is shown in Fig. 3.3.* The mechanical output of this instru-
ment is the torsional oscillation of the rotating bar about the z! axis. This
motion is caused by a Coriolis torque** similar to that of Eq. 3.5. The displace-
ment or velocity of the bar with respect to the rotating support is sensed to
provide a suppressed carrier electrical signal which is a known function of the
angular rates about the x and z a.xes..

In the other type of rotary drive instrument, the Coriolis torque in the
xyz (instrument) axes produces the output signal and an interesting change

results. This can be seen in the following equation for the torque ﬁc.

M, = ZmRZwd {1 [ -, sin2wt + Q (1 - cos 204t)]+T, [Q_(1+cos 2w4t)-0Q, sin det]}
(3.7)

The x and z torque components are suppressed carrier representations of the

applied rates about the x and z axes plus the steady conventional gyroscopic terms.

The carrier frequency of the vibratory torques is twice the frequency of the drive

rotation in contrast to the previous ev 1iple in which it was equal to it, Itis

sufficient to use either the x or z component of the Coriolis torque to produce

the output because both contain the same information about the applied angular

rates. The torques about either axis corresponding to the x and z axis rates

are 90° out of phase in time so the output signal p:l’oducé& by either of the two

torques can be processed by phase sensitive demodulation to yield the x and z

axis rate components. Instruments of this type are classified as twe axis, rotary

A more practical configuration for the drive member is a spoked wheel
or cylinder as shown in Fig. 4. 6a.

%
The total Coriolis torque in this and other configurations ofthistype can be

written
' -
Mc = ZIrowd (Qz sin wgt- Qx cos wdt) (3. (?)

where 1. is the planar moment of inertia of the output member (the bar in
Fig. 3’3? from the plane defined by the axis of rotation (x) and the output
axis (z'). ,




drive, double drive frequency output, vibratory rate gyroscopes. Several
such inst:ru.v:nents7 have been built and others are currently being investigated.
An illustrative example of these instruments is shown in Fig. 3.4, The
mechanical output of this instrument is the torsional oscillation of the gimbal
about the x axis. This motion is caused by the x component of a Coriolis torque*
similar to that of Ey. 3.7 which is exerted on the asymmetrical rotor. When
this motion is sensed, it provides a suppressed carrier electrical signal which
is a known function of the x and z components of the angular rate applied to the
instrument,
All presently known rotary drive, vibratory rate gyroscopes fit into one
of these two classifications,i.e., the output frequency is either equal to the drive
frequency or twice the drive frequency. The instruments in both classifications
are two axis devices and the angular rates about the two input axes, which are
orthogonal to the nominal plane of the drive oscillation, must be separated by
phase sensitive demodulation of the suppressed carrier signals from the output
transducer. The precision of instruments of this type which employ solid
rotors, such as those shown in Figs.3.3 and 3.4, depends to a large extent
on the quality of the rotor‘ bearings and the balance of the rotating member.
Although the bearing problems differ from those of conventional gyroscopes,
bearings are still one of the major sources of error and failure in these instru-
ments. Because of these shortcomings and also the relatively large power
required in rotary drive instruments for the drive mechanism, much of the
past research on vibratory gyroscopes has been concentrated on instruments
employing the second type of drive--vibratory drive. These instruments

generally require considerably less power and have longer life expettancies;

3
The total Coriolis torque in this and other configurations of this type can be

written as

Mc = (Irrm 'Ifrmin)wd('aﬁ sin det) (3. 8)

ax
where Irr is the planar moment of inertia of the rotor about a plane containing
the axis of rotation.
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however, the thermal fluctuation thresholds* are generally larger than those

of rotary drive instruments of equal size and a severe cross-coupling problem
generally exists,

3.5.3 Vibratory Drive Instruments

A convenient place to start a >survey of fhe basic types of vibratory drive,
vibratory rate gyroscopes is with the instrument shown in Fig. 3.1b. By
examining the Coriolis force on the single point mass or the Coriolis torque
on two point masses m, and m,, the manner in which most instruments of this
type operate can be deduced. When this instrument is rotated in inertial space,

the Coriolis force apparently exerted on the point mass m, with a velocity '\_r'm
1

is given by Eq. 3.10.

v = lx r wq cos mdt (3.9)

T; =2m,r_w, cos wdt;["'lynz-'-lzny (3.10)

The components of the Coriolis force are suppressed carrier representations
of the y and z components of the instrument angular rate in which the carrier
frequency is the drive frequency of the mass element m,. The Coriblis forces
corresponding to the y and z axis rates are spatially orthogonal rather than
orthogonal in time so the output signals must be produced by either the y or z
force components but not both if the rate components are to be distinguished.
Therefore two trans ducers are required for a two axis instrument.
Instruments of this type are classified as two axis™vibratory drive, drive

frequency output, vibratory rate gyroscopes. An illustrative example is shown
in Fig. 3.5. In this instrument a longitudinal standing wave in a fluid provides

the drive motion to the particles and pressure pickups located on the walls of the

= :
The differences in the thermal fluctuation thresholds is examined in Chapter IV

and the cross coupling problem is examined in Chapter V,

These instruments are potential two axis devices. The designer may restrict
or not measure one component of the cutput motion and therefore only have
a esingle axis instrument.

*k
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of the tube along the y and z axes, detect the Ciriolis pressures. These

pressures are given by Eq. 3.12

?d*zTyvo sin w4t cos é-}r-’s (3.11),.{
Fc = 2dpv  sin wdt(TxQz -Tzﬂx) (3.12) -

where p is the density ot the fluid, dis the diameter of the fube, Vo is maximum
velocity of the drive particles in the tube and £ is the length of the tube. The
output of each pressure pickupis an electrical suppressed carrier signal which
is a known function of the y or z component of the instrument angular rate.

It is interesting¥** to exanﬁneﬁ‘ﬁs simple configuration further since it
leads to other configurations for instruments of the basic type which are not
immediately obvious. First, if the tube in Fig. 2.5 is lengthened so that it is
n wavelengths long rather than 1/2 and the pressure pickups are removed and
instead a straight flexural beam is located in the center of the tube for sensing
purposes, it follows that the Coriolis forces on the beam in the y and z directions
are periodic in both time and space. The same condition exists if a longitudinal
standing wave is established in the beam rather than in the fluid surrounding the
beam . In either case, if the ends of the beam are properly terminated and a

constant angular rate applied about the x or z axis, a flexural standing wave

F-3 -
This equation assumes the tube is lossless. In actual tubes the pressure
wave and velocity are not orthogonal because energy must be supplied to
all the oscillating mass particles. ‘

ek

Configurationsof vibratory drive vibratory rate gyroscopes are examined
in more detail than configurations of the other basic types because these
instruments appear to be superiqQr to others with respect to long life
expectancigsand low power requirements.:. Alsw®, it has been these
instruments that have been the subject of the majority of vibratory gyro-
scope research, '

N “
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spatialiy synchronized with the Coriolis forces is established in the beam

in the z direction for y axis rates and in the y direction for z axis rates. One

of the most convenient methods of terminating the beam is to form the tubé

and beam into a ring and make n an even number so that the drive wave can exist
either in the tube or beam. When this is done, the Coriolis pressure apparently

exerted on the beam is given by Eq. 3.13.
1'5c = kv  sin wjt cos (ne)[TrQy-Ty(Qz cos 8+Q_ sin 9] (3.13)

where Tr is a unit vector in the radial direction, 6is the angle about the y axis
and k is a constant which depends on whether the Coriclis forces result from a
standing wave in the fluid surrounding the ring or a longitudinal wave in the ring
itself.

Several interesting cbservations can now be made from Eq. 3.13. First,
it follows from the —l-r component of Pc that an n wavelength radial* flexural
standing wave¥*¥ of frequency @3 will be established in the ring for constant
applied rates about the y axis. Second, and much more important, it can be

12,13 ¢ om the Tx component of pc that flexual standing waves**. in the

shown
y direction with n+1 and n-1 wavelengths*%* and frequency wg will be established

in the ring for constant angular rates about either the y or z axes. The (n+l)

or (n-1) wavelength standing waves containing the y and z axis rate information

A radial flexural standing wave with n wavelengths is described by the
Tr component of v, in Eq. 3.12.

** This wave is spatially synchronized with the appropriate Coriolis force
component in Eq. 3.11 and the phase relationship in time between the
Coriolis force component and the output wave depends on the drive
frequency and the dimensions, material, etc. of the ring which determine
its reasonant frequencies.

kK .
This becomes apparent upon application of two trigonometric ideiititiestoEq.3.11:

2 cos nBcos 6
2 cos nb 8in 6

cos(n+1)8.+ cos{n-1)6
sin(n+1) 8 - sin(n-1) 6

I u
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are spatially orthogonal and any of these standing waves can be eliminated
by constraining the motion of various elements of the ring. Third, when the
ring is used as the drive member rather than & surrounding fluid, the Coriolis

forces can be increased by a factor of nt+1 by using a radial flexural standing

wave, such as

- - 0
= i B d
vi lr vo cos nb cos w 1t+ 1] — sinnYcos w,t

6n
(3.14)
to provide the drive velocity to the mass elements. The resulting instrument
is extremely simple because it contains only a ring in which one flexual standing
wave* is used to provide the drive velocity to the mass elzmentsand another to
detect the instruments rotation about one or two axes in the plane of the ring.
The vibratory drive instruments studied thus far in this section have all
been potential two axis configurations in which the carrier frequency of the output
was the drive frequency. These instruments evolved from the single point mass
instrument shown in Fig. 3.1b. In order to examine other types of vibratory
drive, vibratory rate gyroscopes, it is cenveniart to add the dott:d mass m,
to Fig. 3.1b because in these configurations the Geriolis forces acting on
symmetrical drive masses generate a Ceriolis torque which produces the output.
When the two masses m, and m, in Fig. 3.1b, oscillate in phase opposition
along axes parallel to the instrument x axis, the Coriolis torque apparently
exerted on a drive member containing the two masses is
r
Rx[ cos wit + Z'Rﬁ aindet] [Tyny +Tzﬂz] ;
M, = -4mr w, * (3.15) °

r
- o . -
R:[ lx(l&cos wgt + TR: sin 2w ;t (Tyﬂy+ 1 Qz)]

It can be shown that the two flexural waves are interchangeable.
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The components of the Coriolis torque are suppressed carrier representations
of the angular rates about the y and z instrument axes. The carrier frequencies
of these torques are the fundamental and the second harmonic of the drive
frequenéy. In practice, only the torques at one frequency are used to produce
the output so instruments of £h15 type are classified as vibratory drive, drive
frequency or double drive frequency output, vibratory rate gyroscopes.

The majority of vibratory gyroscope configurations of this type use the
fundamental component(s) of the Cariolis torque to produce the ouiput because
it is considerably larger than the second harmonic in instruments -of equal sive.*
These instrume nts can be evolved from the simple example of Fig. 3.6 by letting
either R_. or R, equal zero. These two conditions are now examined separately
even though the resulting instrument are all classified as vibratory drive, drive
frequency output devices, because these configurations have always been the .
most popular for vibratory gyroscope research.

An illustrative example of the type of instrument that results when R,=0

14-17 chown in Fig. 3.6. The mechanical output of this single

is the tuning fork
axis instrument is the torsional oscillation of the tuning fork about the y axis.
This motion, which is caused by the fundamental of the y component of the
- Coriolis torque Eq. 3.15. when R, = 0, is sensed to provide a suppressed
carrier electrical signal which is ‘a. known function of the y axis angular rate.
The tuning fork is rigidly®supported except in the torsional mode about the y
axis;_.in order to minimize the motion caused by the z axis Coriolis torque.
This configuration has been the most popular over the past 20 years for

both experimental and theoretical work on vibratory gyroscopes and it is

examined in more detail in Chapter V. The configurations which have evolved

The ratio of the magnitudes of the torqﬁes in Eq. 3.13 is
Z(Rx or Ry)

r
o

for the example of Fig. 3. 1b.

ok .
Not in Fiig. 3.6 but in practice.

PR S S
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from it are usually symmetric with respect to the xz planes--a double tuning fork--

and also sometimes circularly symmstric with respect to the y axis. One

such instrument is a cylinder in which the top and bottom halves oscillate

extentionally in the radial direction in phase opposition to provide the drive

velocity to the symmetrically located mass elements. The output mechanical

motion when rates are applied about the axis of the cylinder is an oscillatory

twisting of the two halves of the cylinder in oppoéite directions because the

Coriolis torquesare opposite in sign for the two halves of the cylinder.
Instruments of this type, which can be evolved from the example of Fig. 3.1b

by letting Rk = O,. are generally single axis devices. The moment of inertia

of the drive member (or a part of it in the case of the cylinder mentioned above) i

about the input axis in these instruments varies sinusoidally with time and can

be written as

IY = I, (1 ‘+o.y1 sin o)dt) (3.16)

Therefore when constant angular rates are applie.d about this axis, a torque equal
to Qyiy is exerted on the drive member about the y axie. This torque is equal to
the sum of the Coriolis torques on all the driven mass.elements,

Most potential* two axis vibratory drive, drive frequency output instruments
can be evolved from the simple example of Fig. 3.1b by making Rx = 0 rather
than Ri . An illustrative example of the type of instrument that results is shown
in Fig. 3.8. In this instrument a drive member consisting of four point masses
symmetrically located along the x and z axes is twisted sinusoidally about the
¥ axis to provide the drive velocity. The mechanical output of this = two axis
instrument is a torsional oscillation of the drive member about the x{&’) axis for

angular rates about the z(x) axis. The Coriolis torque which causeythe twisting

about the ® axis can be obtained from Egq. 3.15. Since the output motions cxussd >

These instruinents are potentislly two axis sensorsaithoagh: the designer may
choose to restrict the output motion about one of the axes and therefore
make a sinple axis sensor.

R
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by the. x and z axes torques are spatially orthogonal, two transducers must
be used to sense the twisting and provide suppressed carrier electrical signa.lé
which are known functions of the x and &z components of the applied angular rate.
* A more sc.)p,hist‘.ic:a.ted18 version of this instrument uses two, counter oscillating
wieels as tﬁe drive members and the outputs are the angles between the wheels
about the x and z axes. The torques that cause this motion can be derived by
integrating the Coriolis torques on the mass slements or by using the equation

which is used in conventional gyroscopes

M=Tx H (3.17)

where

ﬁ:lylyeowdcoswdt " (3.18)

and 6, is the amplitude of the drive oscillation of the wheel of inertia I about the
z axis.

In all of the vibratory drive instruments that: have beer examined thus far,
the output frequency was equal to the drive frequency. This is true of most
practical configurations; however, other configurations have been propcsed in
which the output frequency is a harmonic of the drive frequency. A double
drive frequency Coriolis torque exists in all the examples of Fig. 3.7 but it is
much smaller than the fundamental and therefore is':not used, Configurations
which use a double frequency Coriolis torque to produce the output are generally
designed so that the gundamental torque component does not exist. This can
be done in the example of Fig. 3. 1b by making R, = 0 and sensing an output caused
by the y and/or z axis component of the Coriolis torque in Eq. 3. 15. An exarr_lple j
of a single axis instrument of this type is shown in Fig. 3.8. The outiput is the
torsional oscillation of the bar about the y axis. The double drive frequency

torque which causes this mction can be calculated by integrating the Coriolis torques:'
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Fig. 3.7 Two Axis, Vibeatory Drive, Drive Frequency Output Device
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Fig. 3.8 Single Axis, Vibratory Drive, Double Drive Frequency Output Device



where the position of the vibrating mass elements from the rest positioﬁ is
sinusoidal in time .

Inst;uments of this type, which are classified as vibratory drive, double
drive frequency output, vibratory rate gyroscopes have received relatively
little attention Compared to that given vibratory drive, drive t‘requency output
instruments over the past years because in two instruments of equal size the
double frequency Coriolis torques in the one instrument are much emaller than

fundamental torques in the other while the magnitudes of the noise in the two

g,

instruments are about the same, The same Teasoning is valid for explaining why

Ty .Mc=2mR 6, wy cos wyt [sinzesinwdt]ﬂy (3.

The same €xpression can be obtained by com uting the Corjolis forces on the
masses and then the torques but this method ?fy M = OY Iy) is obviously

much more efficient in the present example,
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since the moment of inertia of these mass elements about the y axes is

2 2 : '
Iy = 2m[R cos (eo sin wdt)] = mR"[1+cos 26_sin wdt] (3.22)

The higher harmonic Coriolis torque expressions can be obtained from Eq. 3,21

by using the identity

sin 20 sin wyt = 2 Z J2k+l(ze°)sin(2k+1)mdt (3.23)
k=0

@
where Jn is a Bessel fur-tion of order n. It is now apparent that the amplitude

of the higher harmonic torques fall cif quite rapidly.

All presently known, practical, ¥ vibratory driwe, vibratory rate gyroscopes
can be classified ag either ive frequency or a double drive frequency output
instruments. These instruments can all be evolved from the simple examples
eXamined in this section. The two axis gyroscopes of both these types require.
two transducers because the two components of the Coriolis force.: which
cause the outputsare in phase in time but spatially orthogonal.

The drive member or media in vibratory drive,vibratory rate instruments
may be either a solid,liquid, or gas or a combination of these and the drive motion
may be imparted bysither a flexural, longititudinal or torsional oscillation, The
drive power required is generally quite low because of the large quality factors
that can be obtained, particularly in solids. This is one of the major advantages

of instruments of this type over cther types of gyroscopes. Some other

advantages are that there are no moving parts to wear out, the electronics
are extremely simple, the instruments can be turned on and off with no

difficulty and theoretfcally require very short warm up times. Also the instruments |

Practical is inserted here to rule out instruments similar to that shown in
Fig. 3.9J in which higher harmonic torques exist and may be used to produce
the output signals.
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are rugged, simple and therefore cheap, Unfortunately, vibratory drive
instruments also have important disadvantages. The most important of
these are examined in the following chapters and are simply stated here.
They are that unwanted cross. coupling exists between the drive and sensing
systems, and the maximum drive velocity of the masgs elements in vibratory

drive instruments is lower than in rotary drive instruments of the same size.

3.5.4 Instruments Employing Double Modulation

In order to make the presert survey of the basic types of vibratory rate
gyroscopes complete, it ig necessary to include instruments whichk employ
double modulation, * In these instruments there &e two separate drive motions
and the frequency of the output is a linear combination of harmonics of the

two drive frequencies, Although these instruments are more accurately classified

modulation, it is more convenient in a survey such as this to consider them
Separately. The reason for this is that a vibratery rate gyroscope employing
double modulation ig basically a rate gyroscope which fits into one of the
classifications discussed in Sections 3.5.2 and 3 .5.3, in which the angular rate
about its input axis (axes) is a modulated representation of two or more com-
ponents of the overall instrument angular rate; and the effect of double modulation

on the output of an ideal instrument ig approximately independent of the basic

vibratory rate gyroscope. In this Way some of the errors resulting from un-

wanted cross coupling can be removed; however, other difficulties are encountered. fi

The whole concept of double modulation "8 discussed in Chapter 6 so itiid unnecessar

to elaborate more upon it here.

The only known vibratory double modulated rate gyroscope was built by the
author and is examined in detail in Chapter 6.
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The second modulation* of the Coriclis forces or torques in a double
modulated instrument can be introduced by either rotating or vibrating a
basic VRG about a rate insgnsitive axis. This is a planar double modulation
and it turns a basic single axis instrument into a fwo axis instrument. A
simple example*¥ of such an instrument is shown in Fig. 3.19. In this device

Qp o = ﬁy cos 6 + Q_ sin © (3.24)

where Q.[ A is the angular rate about the input axis of the basic single axis
instrument and 6 is the angle between the y axis and the input axis.

When rotary double modulation is employed the angle 6can be written as

e = w t (3.25)

where w is the frequency of rotation. Therefore QI.A. and also the output

of the basic single axis instrument are suppressed carrier representations of

0 and Q, in which the carrier frequency is wm. The two rate components,

Q_and Q_, can be obtained from the instrument output by using two phase sensitive

Yy Z
demodulators. The Coriolis forces (torques) inside the instrument which cause

*
The first modulation occurs in the basic vibratory rate gyroscope and it
causes the carrier frequency of the output signals to be a harmonic of the
drive frequency.

ok

Thi s simplified analysis assumes the characteriatics of the single axis
instrument are unchanged by the double modulation motion. In reality,

the complexity of the equations describing the operation of the overall
instrument is noticeably increased by double modulation but the approxima-
tions are very good and cexiainly consistent with the approximations made
in prior sections of this chapter.
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the output are modulated an additional time by the double modulation process
so that they now occur at nw * wm instead of nw,;. Therefore the signal
processing can also be accomplished by a single demodulator for each cbmponent
of rate if the frequency of the demodulator reference is nw 4 + w - In this case
the energy of one sideband is discarded.

When vibratory double modulation rather than rotary double modulation

is employed, the angle 6 in Fig. 3.10 can be written as

6 = 8, sin w t (3.26)

where 6, is the amplitude of the torsional oscillation. The angular rates about
the input axis of the single axis instrument now occur at all harmonics of the

double modulation frequency w -

o0
Oy A, = Qy[Jo(ao) +2 z J (%) cos kamt] + ‘,
‘ k=1 :I_'

Q2 Z Toxe1 (85) sin (k1) w _t] (3.27)
k=0

where J) is 2 Bessel function of order k. Because of the nature of Bessel
functions, the magnitudes of the higher harmonic terms decrease quite rapidly.

The Coriolis forces (torques) inside the instrument which cause the output are

modulated an additional time by the process and now occur at nw d:l:kam for y

axisg rates and nwdt(Zk-l-l)wm for z axis rates. Therefore different demodulation
frequencies must be used to obtain the y and z axis rates from the suppressed
carrier output signals when a single axis instrument is double modulated. If a
two axis instrument, with both input axes in the plane of the double modulation
motion, is:used this difficulty is avoided because the output of the other channel

of the simple instrument would be similar to that of Eq. 3,27 with (L replaced

by Q -
y Ya.ndﬂy.b}' Q,.
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In theory, double modulation can also be non-planar but this is generally
impractical because it greatly complicates the instrument and the signal
processing. Therefore, the rotary and vibratory double modulation examples
which have just been presented are representative of the two basic types of

double modulated vibratory gyroscopes.

3.6 SUMMARY

Any known vibratory gyroscope can be classified into one of the & basic
types (numbered 1, 5, 6,9, 10, 11, 14 and 15) shown in solid lines in Fig. 3.11.
No configurations have yet been proposed which fit into the 7 other basic types
(numbered 2, 3, 4, 7, 8, 12, 13) shown in dotted lines but instruments of these
types are not completely unreasonable. Types which, appear to have no possible
merits other than the remcte possibility of poorly detecting extremely large
angular rates have not been included in Fig. 3.11. Obviously, most of the types
presently shown in dotted lines belong in the latter-omitted-category but,
since they were breifly discussed in this chapter, they are included in this
summary section.

The first classification criterion used in the chart of Fig. 3.11 is whetherAa
vibratory gyroscope is a rate or rate integrating instrument. Although certain
instruments in classification No. 1 presently appear promising, the work in
the following chapters is restricted to vibratory rate gyroscopes. These
instruments are conveniently classified by the second criterion in Fig. 3.11

as either rotary or vibratory drive instruments depending on the drive scheme

used.
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All practical rotary drive vibratory rate gyroscopes are two axis sensors in

which a single transducer is used to detect the suppressed carrier rate
information about the two input axes. The two axial rate components can be
obtained from the transducer output by phase sensitive demodulation because
the carriers of the tﬁ'r'o“components are orthogonal in time. The carrier frequency
in these instruments is either the.frequency of rotation or twice the frequency
of rotation.* The major sources of error in these instruments are the rotor
bearings and unbalanced rotors.

Practical vibratory drive, vibratory rate gyroscopes may be either one
or two axis sensors, but in instruments not employing double modulation, a
separate transducer is needed to detect the suppressed ca.rﬂer rate information
about each input axis. This is because the components of the Coriolis force
containing the axial rate information are not orthogonal in time as in rotary
drive instruments but orthogonal in space. The carrier frequency in these
instruments is almost always equal to the frequency of the drive vibration
although it is possible to have it equal to harmonice of the drive fre quency.
The fundamental frequency is generally preferred because the fundamental
Coriolis forces (torques) are always much larger than the harmonics while
the noise in the instruments is the same order of magnitude at both frequencies.
The major sources of error in these instruments is unwanted cross coupling
between the driving system and the sensing system,

One possible way to reduce the errors associatedbwith unwanted cross
coupling in vibratory drive rate gyroscopes is by double modulation. In this
manner, the carrier fgeqﬁency of the angular rate information is no longer

equal to the drive frequency but is a linear combination of the two drive

This is not true when double modulation is used but it is doubtfnl if instruments
of this type have any advantages over the other two types whereas they certainly
are more complex. Therefore they are not mentioned in the above summary.
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frequencies used in the instrument. This concept is examined more
thoroughly in Chapter 6.

The primary purpose of this chapter was to acquaint the reader who
is unfamiliar with vibratory gyroscopes with the basic types of these
instruments and to define the most important of these basic types so
that they can be referred to in the following werk. Therefore many approxima-
tions and omissions were made and the performance characteristics of instru-
ments of the basic types were not presented.* In all of the examples the outputs
of these ihstruments were simply said to be a suppressed carrier representation
of the angular rates about one or more- axes bﬁt the noise also present and the
exact relationship between the angular rates and the modulation envelope were
not examined. These factors must all be known before one can determine the

characteristics and performance limitations of these instruments; therefore,

they are the subject of the following chapters.

F3 .
Another reason for not presenting performance information is that much

of it is classified--usually company confidential.




CHAPTER IV

ULTIMATE PERFORMANCE LIMITATIONS
IN VIBRATORY GYROSCOPES

4.1 INTRODUCTION

In vibratory gyroscopes, the output is produced by vibratory forces or

torques that result from Coriolis effects on moving masses. These forces

. or torques cause an oscillitory displacement of the output member or media

and this displacement or a derivative of it or a strain associated with it is
sensed by an electromechanical transducer. The output of the transduce;'
ideally is a suppressed carrier signal in which the modulation is a function
of the applied angular rate about one or more axes and the carrier frequency
is the output frequency of the instrument. In practice, the signal from the
transducer also contains noise and the designer attempts to maximize the
signal to noise ratio. The constraint which is imposed on the maximum signal
power by the strains in the drive member and the c'onstraint on the minimum
noise power which is imposed by thermal noise in the sensing system com-
ponents are examined in this chapter. Also, the constraint imposed on the
bandwidth of the applied rates by the suppressed carrier modulation is re-
viewed. These three factors - thermal noise, strain constraints in materials,
and suppressed carrier signal processing - are the ultimate performance
iimitations in vibratory gyroscopes and a knowledge of them allows us to
determineé the theorefical ultimate threshold of an instrument. This thres-
hold is a useful figure of merit for comparing different éonﬁgurations and
types of gyroscopes even though it is unlikely that the thresholds of actual

VRG's will approach this limiting value, .

4,2 SIGNAL PROCESSING IN VIBRATORY GYROSCOPES

In vibratory gyroscopes, the output motion whicn is sensed by an elec-

tromechanical transducer to obtain a suppressed carrier electrical signal

P U DT P AT T T L e SO S M T Try LI IE
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which is a function of the applied angular rate, is caused by Coriolis effects.
As a good first approximation, * the total force or tarque which causes this
motion is the integral of the Coriolis forces or torques on all the driven
mass elements and the structure or media on which it acts is a linear time-
invariant system, Therefore, in the linear range of the output transducer,

- a good approximation of the supﬁressed carrier signal out of the electro-
mechanical transducer can be obtained by convolving the suppressed carrier
Coriolis torque (force)with the inpulse response of the output linear sensing
system - transducer combination. This signal is then amplified andv‘filtered
and demodulated to provide the ingtrument output which ideally is only a |
function of the past input angular rate.

For constant input angular rates, the output mechanical motion associated
with the Coriolis torque is a sindsoidal oscillation of constant frequency and
amplitude so the low frequency output of the demodulator is proportional to
the angular rate. When the input angular rate is not constant but varies slowly -
with time, the demodulator output is no longer directly proportional to the
angular rate because of the transfer characteristics of the sensing system
and the filter characteristics of the demodulator. However, in most VRG's
the relationship between the demodulator oﬁtput and the inpﬁt angular rate
can be approximated by a linear time-invariant differential equation (and
tht;refore a transfer function) ’a.s long as the carrier frequency of the suppreased
carrier signals is much larger than the bandwidth of the input angular rate.
This transfer function can be determined from the transfer functions of the
sensing system-transducer combination and any linear filters which follow |

the transducer but precede the demodulator. The relationship between the

* This approximation was discussed in Ch. 3 and for most practical con-
figurations it is extremely good. The actual differential equations which
describe the instrument can best be described as lorrendous because of
the numerous time-varying toefficients. An example of these equations,
for the tuning fork are in Section and References ,
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approximate transfer function and the transfer function of the suppressed
carrier filters is familiar to most engineers and is just reviewed here,

Figure 4, la represents a suppressed carrieér synchronous communication
link and is a good approximation of an ideal, noise free vibratory gyroscope.
The transfer function of the linear system which filters the suppressed carrier
signal is denoted as Gs. c,.(s). The demodulator is a multiplier with a sinu-
soidal sensitivity function which is'the modulating signal phase shifted by an
angle ¢, followed by an ideal low pass filter with a cutoff frequency equal to

the carrier frequency.

The signal out of the multiplier, fm(t) in Fig. 4. la, can be written as

t ,
£ (t)=3 f ar g, _ (7)) mit - 7)) {coslw T, - ¥) + cos[w _(2t-7)) - ¥])

0 (4.1)

where m(t) is the input to the suppressed carrier system and gs.c.('r) is the
impulse response of the suppressed carrier linear filter with a transfer func-
tion Gs. .. (s). When the input signal is bandlimited and the bandwidth is much
smaller than the carrier frequency W the spectrum of the first term of fm(t)
does not overlap that of the second and the output of the ideal band pass filter
is simply the first term in Eq. 4.1. By transforming this term, the transfer

function Ge(s) can be obtained.

i

Fo(s)=3[e7G,  (s-jug) + &G, . (8+ju )| M(s) = G (s)M(s) (4.2)

G (s)=g[e¥a,  (s-ju) + VG, _ (stiu)] (4.3)

Therefore, the effect of the suppressed carrier transmission link shown in
Fig. 4.1a on a bandlimited message is approximately the same as a linear

time invariant filter with a transfer function G _(s). This equivalent system
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is showr in Fig. 4. 1b.

In moat vibratory rate gyroscopes and applications, the bandwidths of the
input angular rates are much smaller than the output freqﬁencies. Therefore,
the approximation of Fig. 4. 1b and Eq. 4.3 is applicable for estimating the
ingtrument transfer function if the transfer characteris? = of the sensing sys-
tem in the frequency range around the carrierare known. These transfer

characteristics are examined in the following section.

4.3 SENSING SYSTEMS IN VIBRATORY RATE GYROSCOPES

The sensing system of a vibratory rate gyroscope consists of the output
member or media which oscillates when the instrument is rotated about an
input axis, the spring type element or media which provides the restoring
force on the output member or media, and the output transducer which detects
the output motion or a derivative thereof.* In most instruments, the trans:ferZ
characteristics of the sensing system at frequencies around the carrier fre-
quency are similar to those of a lumped parameter second order system,
Therefore, since it has been shown that this is the frequency range of major
importance for estimating the transfer characteristics of a vibratory gvro-
scope, it is convenient to postulate** such a model for the sensing systems
of vibratory gyroscopes and use it in the following work.

An electrical analog of the model chosen¥** for the sensing system of a
vibratory rate gyroscope is shown in Fig. 4.2, where Mc is the input Coriolis
torque, Io is the moment of inertia of the output member about the output axis,

w, is the natural frequency of the sensing system without the transducer, Q.

* These three components may all be the same in pizeoelectric and similar
devices.

*% 1t has been shown - Reference 4.2- that this approximation is good for
distributed parameter systems.

#k A torsional model was chosen because the majority of known VRG's
operate in this manner., The analogy between torsional and other types
of sensing systems should be apparent to the reader,.



-49-

is the quality Sactoxf of the sensing system without the transducer, and Z i

is the mechanical input impedance of the transducer. Usually, Zi is purely

resistive (in the model of Fig. 4,2) in the frequency range of interest be-

cause the stability of electrical reactive components is much poorer than that

of mechanical components and stability is extremely important in VRG's. Then

the sensing system-transducer combination is also a second order linear system.,
When the transducer is a velocity measuring instrument, such as a

variable reluctance pickup, and the normalized input impedance in Fig. 4.2

is purely resistive (which it is assumed to be in all the following work) and

equal to

Z(s) = (4.4)

the transfer function of the sensing system is

v  dile) — _ | '
Gs.c.(s)-'ﬁc-é'!g)l-"' 3 , (4.5)

- W
1] 82 +-Q% s+ wnz]

(4.6)

where Qs = 0 40

In order to maximize the power into the output transducer** for slowly
varying angular rates, the natural frequency ©p should be made equal to w a°
When this is done and ¢ = 0 to maximize the demodulator output, the approximate

transfer function for the sensing system is

* This will be shown in Chapter V.,
** The impedances should also be matched.
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_ sd(s 1 T .
Ge(s) = B—If—c%;} !'4—1-0— (-T—;—.r—l), s <<”c (4.7)
where
,ZQs
T = o (4.8)

If feedback is used around the sensing system, as shown in Fig, 4.3, to
increase or decrease the bandwidth, the value of T in Eq. 4.7 is changed to T'.

2 Qg+tH

'e ( ) (4.9)
T ﬁl‘)n QSH

Iw :
where oHn is the gain of the feesdback loop. Therefore, the gain bandwidth

product of the sensing system is unchanged by feedback.

When a position rather than a velocity type transducer is used, the approx-
imate transfer function at resonance, Ge(s), has an addition factor wn-l. Al-
though at first this appears to indicate that velocity type transducer are better,
a closer examination reveals that the power delivered into the two types of out-
put transducers are the same if their mechanical irput impedances are the
same at W When either of these systems operate off resonance, the api)rox-
imate transfer function for the instrument differs greatly frorg Eq. 4.7 and
must be computed from Eq. 4.3. This condition is not examined further because
mogt practical vibraory gyroscopes operate at or near resonance with or without
feedback. This is done so that the effect of noise appearing after the transducer
is minimized because the signal is preamplified before the noise enters.
Obviously, this preamplification does not occur for the noise which originates
in the sensing system,., The irremovable porticn of this noise is caused by ther-
mal fluctuations of the components in the sensing system and is examined in the

following sections,
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4.4 THERMAL NOISE IN VIBRATORY GYROSCOPES

The ultimate barrier to high precision in most devices » including vibratﬁry '
gyroscopes, is thermal ncise, A knowileuge of spectrum of this noise in an
instrument is useful because it allows the theoretical threshold of the instru-
ment to be computed. In vibratory rate gyroscopes, thermal noise results from
thermal fluctuations of the components in the sensing system. The noise which
is at the same frequencies as the suppressed carrier rate information cannot
be distinguished from the rate signals and therefore causes zZero-rate errors
at the instrument output. From our knowledge of vibratory gyrﬁscopes and
statistical physiés it is possible to determine the spectrum of this noise and add
an appropriate noise generator to a generalized VRG model; This model is then
used in Section 4.6 to determine the ultimate thresholds of the basic types of
vibratory rate ‘gyroscopes.

It is well knownsthat any system which is in thermal equilibrium with its
environment will exhibit thermal fluctuations of the state variables which
determine the energy of the system. When the component of the systems energy
that is assoclated with a state variable is a quadratic function of that variable,
the variable must have a mean sguare value such that the average value of the
energy is %I where k is Boltzman's constant and T is the absolute fermperature.
Therefore, in a lumped parameter second order system, such as the model of
the sensing systems of vibratory gyroscopes in Fig. 4.2a, the following rela-

tionship can be written

I(6_)" = kT (4.10)

where ér is the angular velocity of the inertia Io which is caused by thermal
noise. In this or an analogous manner the standard deviation of 9"1_ can be de-
term ined for mos t vibratory rate gyroscopés. What we desire to know, however,

is not the mean square value of 01_ but the power density spectrum of 01_ go that
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the thermal angular rate threshold of a vibratory gyroscope can b; computed.

Since vibratory rate gyroscopes operate at relatively low frequencies, it
is safe to assume that the power density spectrum of the thermal torques*
acting on the sensing system is flat and proportional to the loss term in the
resonant system without the transducer. Then by using Parseval's. theorem
it is possible tc; derive the expression for the magnitude, Nz, of the power.

density spectrum of the torques,

o

* 2 _ k! ' . .
(6. =I—<:[‘=2}Ff N Gs.c. (o) Gy (-ju) dw =-—--—-—1\1’2.Qs (4.11)
-00 ZIown
I 4kTI
_ 0*n o _
N° = 2KT ( o) = =2, Q =Q_ (4.12)

Lo
where —cr'n is the loss term in the resonant system. This noise torque source
s

can now be added to the generalized VRG model in Fig. 4.2a and the power

density spectrum of 91_ can be represented as

§0.1_ é-r (s) = NZ Gs.c.(s) Gs.c.(-s) (4.13)
The output transducer has been neglected in this analysis because the
noise characteristics of transducers and the associated electronics vary so
much from one type to another, As a reasonable approximation, let us agssume*x*
that the noise temperature of the transducer is the same as the temperature of

the sensing system components. Then Eq. 4.12 is valid for any relationship

* This is analogous to the assumption made when analyzing the noise in RLC
circuits. See Reference 4,

** This assumption is discussed in Chapter Y and is not as bad as one would
first think.
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bet@een'Qm and Qt and we can simply measure the time constant of the trans-
ducer output to determine Qs as long as feedback is not uced around the sensing
system. When feedback is used, the noise torgues ideally are unchanged but
the spectrum of é-r changes because Gs.c.(’) changes.

Although it is useful to add a noise torque generator to the VRG sensing
system model of Fig, 4.2, to represeni thermal ﬁoise, it is muc;h more use-
ful to add an approximately equivalent noise sou rce to a linear model such
as,_ié f‘in Fig. 4,1b. This can be done as lbz;g as the bandwidth of the applied
angular rate is much smaller than the carrier frequency by using the signal
processing scheme of Fig. 4. 1a and neglecting overlapping spectra or by
approximating the actual noise torque by the sum of statistically independent
sinusoidally and cosinusoidally modulated band limited white noise torques as
shown in Fig. 4.4. The noise v_n(t)~ in Fig. 4.4 is equivalent to the actual ther-
mal noise in the frequency range of interest around the carrier ffequency.

Then, if the sinusoidally rnodulated noise is digcriminated against in the de-
modulator and the cosinusoidally modulated noise is not, the thermal noise
torque nc(t) can be considered as an input to a simplified model of a VRG in
which Ge(s) in Eq. 4.7 replaces the suppressed carrier instrument. This model
is shown in Fig. 4.5 where u’y""c Io is a normalized representation of the ampli-

tude of the torque which is derived in the following section.

4.5 NORMALIZED CORIOLIS mtﬁs (FORCES) IN VIBRATORY RATE
GYROSCOPES

The total Coriolis torque (force) that causes the output in a vibratory
rate gyroscope is the integral of the Coriolis torque (force) over all the driven

mass elements. This torque can ussally: be written in a normalized manner as

M, =0 (ol o) cos ¢ _t (4.14)
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where Io is the moment of inertia of the output member in Fig. 4.2 about the
output aiis, a is a constant which is a function of the configuration and the
material, and W is the carrier frequency of the output signals. Thfs no;'ma.lized
representation is useful because it means tha,t only four parameters, a, Io’ Qs’
and w,, are necessary to completely dercribe the VRG model in Fig, 4.5.

The terms Io and W, in the normalized Coriolis torque are self explanatary
and have been examined previously. The remaining term, a, is now examined
for the four major types of vibra;tory rate gyroscopes. The maximum values
of a can be obtained in rotary and vibratory drive, drive and double drive fre-
quency output instruments from the equationsinSection 3.3 for
the instruments shown in Fig. 3.1. The exact equations for a can also be
determined from the equations presented in Chapter 3 for the more practical
configurations.

In the simple rotary drive, drive frequency output instrument shown in

Fig. 3. 1la, fhe Coriolis torque can be written as

M_ = 02T 0 ) cos wt (4.15)

from Eq. 3.5. Therefore, the value of a is 2. In more practical configurations,
a, which is given the subscript R1 for this type of instrument, is less* and can

be written as

ap = , 0<a,R <2 (4.16)
1 () 1

where Iro is the planar moment of inertia of the driven and sensed member

from a plane containing the axis of rotation and the output axis; and Io is the

* In a practical configuration of this type ap is probably nearer to unity than
1




)

-56-

gggémr=g%%ﬁm
N2
T
n(t)
-W (A ] iu
C c

Fig. 4.4 Approximately Equivalent Thermal Noise Representation

cos w_t
n ()
n(t) X
sin ucf
2,6

aw

—r®

n®
+
+
lo G(S)
1, T
G(S) = 4|°( =¥7) Sq 4.7
Eq 4.12

T 1 |o"’n
Pn o )= 2, TG
- cc s

Fig. 4.5 Model of a Vibratory Rate Gyroscope



-57-

moment of inertia of the same member about the output axis.
In the simple rotary drive, double drive frequency output instrument

shown in Fig. 3. 1la, the Coriolis torque can be written as

)

I w
Mclz(—gz-—c-) Oi cos w t (4.17)

from Eq. 3.7. Therefore, the value of a is % In more practical configurations

a, which is given the subscript R2 for this type of instrument, is less* and can

be written as

Irrmax i Irrm:ln
O0<a

1

- N <_..

*R, T[1 1 +2L_] R, 2

r T
max min &

(4.18)

where Irr is the planar moment of inertia of the rotating member from a plane
containing the ;a.xis of rotation, Ir is the moment of inertia of the rotating member
about the output axis, and Igo is the moment of inertia of the gimbal about the
output axis.

In both types of rotary drive instrument, the value of ap is strictly a
function of the configuration of the rotating member. This configuration is
generally selected so that the strain in the rotating member is approsi mately
uniform. When the size of an instrument is changed by linearily scaling all
the dimensions, the value of ap remains 6onstant and independent of size.
Therefore, in order to increase the Coriolis torques in a rotary drive instru-
ment, the product Io wg must be increased until the strain in the drive mem-
ber reachesits maximum allowable value. This constraint is examined in Section
4.6,

In the simple vibratory drive, drive frequency output instrument shown

* In practical configurations of this type ap is probably nearer to 0.2 than
0.5, 2
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in Fig. 3. 1b, the Coriolis torque can be written as

ZIo""c ro ' '
Mc = Qi —F ) Qioos “’ct (4.19)

2r
from Eq. 3.15. Therefore, the value of a is (__EQ), which has a maximum of

Z when 'r'o = Ro‘ In more practical configurations a, which is given the sub-
script V1 for this type of instrument, is less** and can be determined from
the squation for themoment: of inertia of the drive member about the output

axis

I,=I(1+a, cos ©q t:) =I(1+ ay €os o t) (4.20)

v 1

1

or for instruments such as in Fig. 3.7 it is simply

dd (4.21)

where Id is the moment of inertia of the driven and sensed member about the

drive axis.and © 4 is the maximum angle of the drive oscillation.

In the simple vibratory drive, double drive frequency output instrument shown

in Fig. 3.1b, the Coriolis torque can be written as

0% "o '
. (4.22)

2
lr
from Eq., 3.15. Therefore, the value of a is 2'(—R°-) which has a maximum

value of 21- when r, = R. In more practical configurations, a, which is given

* This R is either R, or RY in the model of Fig. 3. 1b.

*% It is difficult to make a general statement about a for this type of instrument.
In practice, however, it rarely exceeds 0.1 and often is orders of magnitude
lower.
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the subscript V2 for this type of instrument is considerably less* and can be

determined from the equation for the moment of inertia of the drive member -
about the output axis

Io = Io(l +o.V cos mdt+av

cos det) (4.23)
1 2

In both types of vibratory drive instruments, the values of ay is a func-
tion of the configuration of the drive member and the maximum allowable
strain in the drive member. It can easily be shown that the strain in the drive
member is proportional to (1;;{-) in these instruments so that when the size of
an instrument is changed by linearily scaling all the dimensions, the value
of ay remaing constant and independent of size. It can also be shown that
the cxfai.’;uration of a vibratory drive instrument is ,\extremely important and
the product Ay Io wq must be examined more closely before conclusions can

be made about materials and operating frequencies. This is done in the follow-

ing two sections.

4.6 STRAIN CONSTRAINTS IN VIBRATORY GYROSCOPES

The Coriolis force that is exerted on a driven mass element in a vibratory
gyroscope is proportional to the drive velocity of the mass element. In order
to maximize the sensitivity of an ideal fixed configuration and size VRG, the
drive velocity of the mass elements must be maximized. For the model of
Fig. 4.5 this is equivalent to maximizing the factor aw since Io is fixed. In
rotary drive instruments the velocity is maximized by increasing the drive
frequency until the strain in the rotor reaches the maximum safe value - £ max’

In vibratory drive instruments the velocity is maximized by increasing the

amplitude of the drive oscillation until the strain in the energy storage member

* It is impossible to make a general comment other than that the values of a
<or these instruments are much lower than for the other three types which

have been considered,




reaches a maximum safe value. By examining normalized equatio}ls for the
strain in these two types of gyroscope, the effect of size and material prop-
erties on the maximum velocities can be determined. For this analysis it is
useful to consider only instruments in which all the dimensions are uniformly
and linearily scaled when the size of the instrument changes.

The strain in the rotor of a linearily scaled rotary drive device can be

written in a normalized manner as

wdR 2
E = 5§ (—) (4.24)

C

where R is the maximum radius of the rotor and therefore a dimension which
is representative of the size of the instrument, Bg is a constant which is only
a function of the rotor configuration, and c is the velocity of sound in the mat-

erial. Recall that

C2 =-§— (4.25)

where E is Young's modulus for the material and p is the density. Therefore,

both the configuration constant aR«and the maximum drive velocity

3
A4 = Rwd =C max (4-26)

in a linearily scaled device are independent of the size; and the maximum
drive velocity is proportional to the product c gmaxl/z’ where both are prop-
erties of the material of the drive me mber.

The strain in the energy storage member in a linearily scaled vibratory

drive device can be weitten in a normalized manner as

e =7 ) (4.27)
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where 7 is a constant which is only a function of the coniiguration: R is the
average radius of the device and therefore a dimension which is comparable
to R in a rotary drive device, and r is the maximum oscillétory displacement
of the driven masselements with the largest drive velocities. Another equation
for the strain can be determined by equating the maximum potential energy

stored in the strained member to the maximum kinetic energy.* This equation is
L ldt
g = plg(-—-c ) (4.28)

where B_ is a constant which is only a function of the configuration and
c= /% where E refers to the energy storé.ge member of p' refers to both
the energy storage and drive member. Therefore, the maximum drive velocity
in a linearily scaled vibratory drive instrument
€€ max
094 Tp = TRugE max (4.29)
is independent of the size and proportional to ¢ Emax® The configuration constants

oy and ay_ are also independent of the size and can be written as

1 2
Zro
- 1 - i
Qvl = GVI(T) = Zﬂ.'vl Ye (4.30)
2 ay -
r A
2 2 2
ay =al (——)= Al (4.31)

where o..;’, and a{’ are functions of the configuration which have maximum

1 2
values of unity.

¥ At ‘c:.or-zstant r or amplitude of oscillation.
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Upon comparison of Eqs. 4.26 and 4.29, it is apparent that ti:le_ equation
for the maximum drive velocity for vibratory drive instruments has an additional

factor of ¢ 1/2 in the numerator. Since € max is usually a number less than

max
unity, it appears that the maximum drive velocities in vibratory drive instrument

may be lower than in rotary drive instruments of equal size. This is usually true
and is best illustrated by examining the two instruments shown in Fig. 4.6. The
instrument shown in Fig, 4.6a is a rofary drive, drive frequency éutput device
and the one in Fig. 4.6b is a vibratory drive, drive frequency outpat device,
Both instruments employ a ring of radius R and cross sectional area S as a
drive member which is why these particular configurations were chosen for

this illustration. The maximurn drive velocity for the ring elements in the ro-

tary drive device is

= = max
Vg =Rey =cf—— (4.32)
max max
while in the vibratory drive device it is
Va T Towq= Cfay (4.33)
max
Also the drive frequency in the vibratory device is
_C

“4 "R - (4.34)

Therefore, the ratio of the maximum drive velocities 18F Which for steel
max

ia approximately 50. This means that the Coriolis forces in the rotary drive,

drive frequency ocutput device are a factor of ’ z 2 greater than the funda-
. “max

mental Coriolis forces in the vibratory drive device and a factor of 3
max

greater than the second harmonic Coriolis forces in the vibratory drive device,

This large difference arises because in the rotary drive device the kinetic
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Fig. 4.6a Rotary Drive, Drive Frequency Output Device
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Fig. 4.6b Vibratory Drive, Drive Frequency Output Device
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energies of the driven mass elements is much greater than the pofentia.l energy
stored in the strained rotor whereas in the vibratory drive device the twe must
be equal.

It appears from the examples in Fig 4.6 and Eqs. 4.26 and 4.29 that rotary
drive devices may be more sensitive than vibratory drive devices of the same
size. Although this is generally true, it cannot be determined from the magni-
tude of the drive velocities alone because vibratory drive configurations can
probably be fcund in which the maximum drive velocities are equal fo those of
a rotary drive instrument of the same size and material. Instead, it is necess-
ary to know the relative magnitudes of the gignals and noise in both types of
instruments since this is a meaningful and useful criterion for comparing the
sensitivities of instruments. In the following section the signal to thermal noise
raios for the basic types of vibratory rate gyroscopes are determined and the

reiative sensitivities of the basic types compared.

4,7 THEORETICAL ULTIMATE PERFORMANCE OF VIBRATORY RATE
GYROSCOPES

The theoretical uitimate performance of a vibratory rate gyroscope is
limited by the thermal noise in the sensing system, the maximum allbwable
strain in the drive member and the ratio of the bandwidth of applied angular
rates to the drive frequency. In an instrument in which the bandwidth of the
applied angular rates is much smaller than the output carrier frequency, the
noise temperature of the transducer is equal to the temperature of the instru-
ment, and the signal processing electronics are noise free; the VRG model
shown in Fig. 4.5 and the strain relations derived in Section 4.6 can be used
to determine the theoretical ultimate performance, It is convenient to express
the ultimate performance in terms of an angular rate threshold - Qu - which
is defined as the constant angular rate which causes the signai to noise ratio at the

output of the VRG model in Fig, 4.5 to be unity. Because the noise in the model
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of Fig. 4. 5‘ is white, Qr is proportional to the square rooct of the bandwidth of
Ge(s). Therefbr;, in order to make (1, a figure of merit which is useful for
comparing the basic types of vibratory rate gyroscopes, it is necessary to make
the bandwidths of the instruments identical by using an ideal noise free feedback
loop around the sensing system or else an external filter. In either case the
following equation can be obtained from the model of Fig. 4.5 for a VRG.

-1

tw I
c’o
Qr =( —=T=-w===a==) (4. 35)
KT—x— B.W.
s
where all the terms have been defined previously except B, W, which is the

instrument bandwidth in radians per second.

It<is convenient to rewrite the equations for Q. as

0.l = (e [ 1,0, Q, ) (T (B (4.36)

w
(': ewc (-wi) (4.37)

where T w
' n

because the first term is a function of the configuration and the materials, the
second is a function of the instrument temperature and the third is a function

of the instrument and noise bandwidth. Therefore, the first factor,, which here-

after is called Fi where the subscript { denotes the type of instrument,

F, = ai,IOw::Q’ I Ri. Ry V), V, ' (4.38)

is the only term of interest for comparing configurations and types of instru-
ments and it should be maximized in order to minimize Q.
When the equations from Sections 4.5 and 4.6 are used to define a and W

and the inertia of the output member is writtezi in a normalized manner as
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2
Io = pimR (4.39)

where pi is a function of the configuration and m is the mass of the output
member which is proportienal to p R3, the following equations can be destermined
for F. In these equations the assumptions have been made that Qs is not a func-
tion of W, and also W =W, This frequency relationship has beenused to sim-
plify the equations and also because it is the relationship usually employed in
VRG's to maximize the amplification of the. rate signals before the noise in the
signal processing electronics is added. If another frequency relationship is

used, * the following equations for F must be multiplied byfw_.’—c_’.
n

1 -
FRlzaRIJﬁimRQs(ch)R, wc=mn—wd (4.40)
- ! = =
FRZ = aRz inmRQ.(ch)R » woEw =204 (4.41)
where
£ L
(R.wc) £ ~Enax
R N "¢
r, —
= 1
Fvl zavl () “/pimRQs (ch)v ) W ®wy =g (4. 42)
a{’z To 2 31
FVZ "2 (-R-.) inmR Q, (R"’c)v » o = =2ey (4.43
where
r
o, A
) = T€max

* Other frequency relationships may be used to reduce errors caused by a
temparature shift of w_ and to obtain instruments with wide bandwidths
without feedback, Wheh this is done,. however, that factor

wce

Vo, .

rarely exceeds 10% 1/2 ;, the errors in F that results from neglecting this
factor ére not too great,
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An attempt was made to write Eqs. 4,40 - 4,432 in terms of the most mean.ing'—y .
ful parameters, i.e., parameters that can easily be estimated i{n an actual
instrument. For a rotary drive instrument aRl, uRZ, 51’ and ﬂg are easily
estimated from the configuration of the drive member and gimbal. For a vib-
ratory drive instrument 4 can be estimated from the configuration and materials
of the drive system and therefore ﬁsv can be determined, and q:[l or a.i,zcan be
determined from the configuration of the instrument with a small amount of
effort.

Numerous conclusions can now be drawn from Eqs. 4.40 - 4.43 about
materials and configurations for vibratory gyroscopes and the effect of size on

Q.. The most important of these conclusions are listed below.

1. FR and Q.r_l in all instruments are proportional to RZ. Therefore,
the bigger the instrument the lower the ultimate threshold which is
certainly reasonable.

2, The material for the drive member of a rotary drive device should
be selected to maximize the term

(P &g /5 1/

3. The material for the drive member in a vibratory device should be

selected to maximize the term

(gmax pl/ 2 cl/ z) for drive frequency output instruments

2 1/2 1/
(Cmax P/ ©
if the drive member is made of a single material. If the energy stor-

2
) for double drive frequency output instruments

age material differs from that of the driven mass elements it must

be kept in mind that ¢ = %—, where E refers to the energy storage

material and p' refers to both the energy storage and driven materials.
4. The material for the energy storage member in the sensing system

should be selected for maximum Q. Eurthermore, a high input impe-
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dance transducer should be used to sense the output moticn so that
Q, is large.

5. If there is a size constraint in a vibratory drive, drive frequency
output instrument, the term rgm wc)l 2 should be maximized in order
to minimize Q.- This usually occurs when m is made as large as
possible and W, is made as small as possible; however, in some con-
figurations, such as a tuning fork with uniform tines, the term row 1/2
is constant. In this case, if ol is the only quantity of importance, we

can be selected anywhere in a range of frequencies.

c

6. If there is a size and an input power constraint in a vibratory drive,
drive frequency output instrument and the quality factor of the ;;-i\(er; 1/2
member is independent of frequency, QT-I is proportional to (—13—\2--)
where Qd is the quality factor of the drive member and Pin. is the°
input power.In this cassg, if (O is the only quantity of importance, W,
should be made as small* as possible.

Although numerous other conclusions could be drawn from the equations
for Q., it is probably more worthwhile at this time to apply the equatiams to the
two configurations shown in Fig. 4.6. In this way an order of magnitude number
can be obtained for the theoretical ultimate thresholds of rotary and vibratory
drive devices of the same size. For the comparison a radius of 2 cm was select-
ed since this would result in an instrument of approzimately 2 - .?.1/2 inches
on a side which is a practical dimension. The ring dimensions, material
properties (steel) and all the configuration constants mentioned in the chapter
for the two devices shown in Fig.4.6 are listed in Table 4, 1. The calculated
values of F and Q'r are then listed in Table 4.2 for the two devices,

If there were no other sources of error in vibratory rate gyroscopes than
thermal noise in the sensing system and output transducer and also noise in

the signal processing electronics, it would not be unreasonable to expect that the

* The choice of high or low operating frequencies for vibratory drive instru-
ments is a controversial topic. Other evidence supporting low operating
frequencies is given in the following chapter.
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; Rotary Drive Device Vibratory Drive Device
Parameter Fig. 4.6a Fig. 4.6b
R cm 2 2
S c:mZ 1 R |
o EZ, 7.6 7.6
c S 5x 10° 5% 10°
€ max 1073 1073
Q 103 103
m gm 95 95
B, | 1 1
k ZE 1.38 x 10716 1.38 x 10”16
T OK 300° 300°
JET ergl/? 2x1077 2x 1077
B.w, radlans 100 100
secC
S a\',l, a{;z 1 1 and 1
2
ﬁe 1
4 - 1
cm 4 2
Vdma.x s—ec— 1. 1x 10 5x 10
wg I2dians 5.5 x 10° 2.5% 10°
sec

Table 4.1 Parameters of Devices Shown in Fig. 4.6
Vibratory Drive Device - Fig. 4.6b

Rotary Drive Output Frequency
Parameter Device-Fig. 4.6a Fundamental Second Harrmonic
4 2 -1
FR’FV’FV 4.5x 10 6.1x10 1.5x 10
1 1 2
- ,radians ~11 -9 -5
Q) 4.5x 10 3.3x10 1.3x 10

Table 4.2 Ultimate Thresholds of Devices Shown in Fig. 4.6

L e et T A A S U SO . Sl Aayey e o
PR A UL G I R B N T T N S
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thresholds of well engineered VRG's of this same size (2 - 21/2 inches}
would be approximately 100 times larger than the numbers for 01_ in Table
4.2, These more practical numbers, changed into degrees per hour, are in -
Table 4.3 along with an estimate* of the threshold of a rotary drive, double

drive frequency output device of the same size.

AProjected Practical
Type of Instrument Size Threshold

Rotary Drive. . -3
Drive Frequency Output 2z " 1x10° *°/hr

Rotary Drive . -3
Double Drive Frequency Output .23 2x10 ~ °/hr

Vibratory Drive -2
Drive Frequency Output 23" 7x10 ° °/hr

Vibratory Drive
Double Drive Frequency Output 24n 3x10 '“fhr

Table 4.3 Projected Practical Thresholds' of a 234
Vibratory Rate Gyroscope
The numbers in Table 4.3 are simply crude estimates of the actual
thresholds that one might expect for the four basic types of vibratory rate
gyroscopes if there were no other sources of error than those mentioned in
this chapter. These numbers have been presented because it is difficult to
ascertain anything of this nature from Eqs. 4.40 - 4,43 alone. Furthermore,
these members are probably conservative** because higher strength materials
than the steel used in the examples are available and also highes Qf',_s than 1000

can be obtained in sensing systems.

* The estimate is simply twice that of the rotary drive, drive frequency output
device,

** These numbers are particularly conservative for the vibratory drive
instruments,
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It is apparent from Table 4.3 that the thresholds of both types of rotary
drive instruments and of drive frequency output, vibratory drive instruments
are small enough to more thaﬁ satisfy the specifications of many applications.
It is the unfortunate fact, however, that the unclassified thresholds of the best
vibratory gyroscopes {(assuming the numbers are scaled by a factor of R2 and
the bandwidths are the same) of these three types are at least three orders of
magnitude larger. This indicates that factors other than thermal noise and
amplifier noise are presently limiting the performance of these instruments,
The most important of these '"'practical" performance limitations are examined

in the following chapters,
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 CHAPTER V

PRACTICAL PERFORMANCE LIMITATIONS
IN VIBRATORY RATE GYROSCOPES

5.1 INTRODUCTION

The precision of all vibratory rate gyroscopes that have been built to
date has been more than three and often six orders of magnitude worse than
the theoretical ultimate which is dictated by the thermal noise in the sensing
system and the strain constraint in the drive member. The factors which are
responsible for the low precision of these instruments are the instability and
inhomogeniety of materials and the limited tolerances to which mechanical parts
can be made. These '"practical'' performance limitations are examined in
this chapter with the major emphasis being placed on vibratory drive instru-
ments. This is accomplished by firsnt examining in detail the sources of error
in the tuning fork gyroscope and then generalizing the results to include all
vibratory rate gyroscopes,

The tuning fork was selected as the configuration to examine in detail
because it has been the most popular configuration for experimental and
theoretical research on vibratory gyroscopes and it was the configuration used
in the double modulation experiment which is reported in Chapter 6. This
does not mean that the author considers the tuning fork to be superior to other
configurations for laboratory type or practical instruments. On the contrary,
the tuning fork is a poor*conﬁgurafion fo.i'- an actual instrument but it is excelleﬁt
for demonstrating all the major sources ofberror in vibratory drive, vibratory

rate gyroscopes.

E3
Th.e tuning fork is a poor configuration for a vibratory gyroscope because
it is extremely acceleration and temperature sensitive and it is difficult to
accurately machine in a single piece. '

-72-
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5.2 TUNING FORK GYROSCOPE

5.2.1 History of Tuning Fork Gyroscopes

A conventional tuning fork gyroscope is a single axis, vibratory drive,
vibratory rate gyroscope in which the drive member is a tuning fork and the
carrier frequency of the output is the fundamental frequency of the tuning fork
tine oscillation. This configuration has been the subject of much of the theoretical
and experimental vibratory gyroscope research over the past 25 years because
of its simplicity and potential high sensitivity. In the United States, Lyma.n1
is credited with the basic invention of the tuning fork gyroscope and the Sperry
Gyroscope Company in the development of the "Gyrotron"z’ 3. expended the major
effort on it, This work started in the 1940's' and resulted in an instrument
with a long term stability: of approximately 10°/hr and a short term stability
more than an order of magnitude better; however, the instrument v;'a.s not a low
power, low cost device because the ambient temperature of the fork had to be
closely controlled and a time consuming precision balancing operation was
required for the tuning fork. Therefore the instrument was never put inté
production because it had few if any advantages over other types of gyroscopes
for most applications.

Since the development of the'Gyrotron'', numerous other experimental
tuning fork gyroscopes have been built and at the present time research is being
conducted on &t least two separate tuningfork type instruments. Although the
reported drift rates of some of these instruments have been lower than that
of the Gyrotpon, long term drift data or even mention of it is noticeably absent
in most of the reports on these instruments with the exception of thosé 'osn the
A5 gyroscope currently being developed at the Royal Aircraft Establishment in
Farnborough England. T his instrument appears to be more than an order of

magnitude better than the Gyrotron but it 18 an éxpensive instrement -
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because the tuning fork requires hundreds of man hours to machine and
balance. Also it is not a low power device because the temperature of the
tuning fork must be maintained constant.

Reported data on the A5 gyroscope and the Gyrotron together with data
obtained on the crude tuning fork gyroscope used in the double mocdulation
experiment which is reported in Chapter VI are used throughout this chapter
to give the reader an order of magnitude feeling for the various limitations
that are discussed and to partially support some of the estimations and con-
clusions that are made. Data from the A5 and Gyrotron are used because
these instruments are undoubtedly the two best tuning fork gyroscopes
that have been built. The data from the instrumenat used in the double
modulation experiment are used bec’ause this instrument is typical of many
of the other tuning fork'gyroscopes that have been built and the author |
is familiar with it and therefore able to make meaningful estimates of the
characteristics of an improved version of this instrument. To simplify.the
repeated references to this instrument in this chapter it is called the UTFG-1

where the letters stand for unmodulated tuning fork gyroscope.

5.2.2 Cross Coupling

S

Many of the sources of error in the tuning fork gyroscope have been
pointed out by Morrow6a.nd othera.7 They have shown that the major barrier to
high precision is associated with the forces required to drive the mass elements |

along their trajectories in the instrument reference frame. Minute fractions
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of these forces couple into the sensing systern of the instrument in an

erratic manner which varies with the passage of time, linear accelerations

and changes in the environmental parameters. such as temperature. The

torques produced by these cross-coupled forces which' are at the same frequency
as the Coriolis torques are distinguishable from the Coriolis torques only to the
extent that they remain constan;c and can be bucked or calibrated out or else the
signals’ produced by them can be distriminaied against in the phase sensitive
demodulation which occurs in the signal processing.

In order to understand more clearly how unwanted cross coupling can occur
between the drivingand sensing systems, an idealized model of a tuning fork
gyroscope is now examined. Figure 5.1 shows an idealized double tuning fork
in which the arcurate motion of the opposed tines has been idealized as the
straightline motion of the masses represented by the dotted spheres. Ideally
these two equal masses move periodically in colinear paths along the X, axis
and are always symmetric with respect to the statianaxfy:)ff axis. In practice,
however, none of these conditions is true and the trajectories of the unequé.l masses
are slowly varying functions of time, temperature, linear acceleration and other
factors. To account for some of these effects, the masses are represented by
the solid spheres in Fig. 5.1 and the trajectories are straight lines parallel to
the X. axis, but displaced a distance AR on each side of the X, axis. The dis-
placement AR causes a torsional cross coupling between the drive member and the
sensing system. There are numerous.: other asymmetries which also produce .
unwanted cross coupling; however, they are not examined because this simple
example clearly illustrates the difficulties that are encountered.

When the motion of the two masses in Fig. 5.1 is sinusoidal,

xm1 = Ro + r, sin wdt (5.1)
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Fig. 5.1 Idealized Double Tuning Fork



the fundamental component of the Coriolis torque which is exerted about the

yg axis of the tuning fork is

Mc = -Qy£4mR°r° w4 cos wdt (5.2)
and the cross-coupled torque about the same axis which results from the asymmetry
AR is
M =2mr wz AR (sin w_.t + 1 cos w_.t) 4 (5.3)
cc o d d Q-c_l d

where Q g 18 the quality factor of the tuning fork in its driven mode. The first ar.
ginusoidal term in Eq. 5.4 is caused by the reaction forces applied by the tines
on the masses and center support to accelerate the masses. Therefore this
term is 90° out of phase in time with the Coriolis torques which are proportional
to the velocity of the masses. The second term in Eq. 5.3 is caused by the
forces applied on the masses to supply the lossrenergy to the tuning fork. This
term is in phase with the Coriolis torque and a factor of Qal smaller than the
quadrature cross coupling. When the drive mechanism is carried by the funing
fork structure so that the drive forces act only on the tuning fork, the second term
in Eq. 5.3 does not exist for the model of Fig. 5.1. In practice, however,
because of asymmetries in the loss paths, a small inphase loss term appears
even when the drive mechanism is carried by the tuning fork.

The total torque, Ms' acting on the tuning fork along the yg axis is the

sum of the Coriolis and cross-coupled torques and can be written as

M, = -4mR.°r°wd[(ny + Q) cos wgt + Qq sin wdt] | (5.4)

where Qd is an equivalent angular rate representing the component of the cross-

coupled torque which is in phase with the Coriolis torque and hqis an equivalent %
angular rate representing the component of the crosscoupled torque which is ;f
in quadrature with the Coriolis torque. For the model of Fig. 5.1, where only 'E

;g
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torsional cross coupling exists and the drive mechanism is not carried by

the tuning fork, Qq and Q g are defired as

ARw

A d
Q.= =K (5.5)
d o d
ARw .
A d

In order to understand more clearly the magnitude of the 'cx;oss-coupling
problem, typical numbers for the RMS values of the quadratui'e and inphase
cross coupling (denoted ﬂq and Q g respectively) in the A5, Gyrotron and Q_TFG-I
tuning fork gyroscoupes are listed in Table 5.1. Also listed in this table alre
the authors estimates of cross coupling in an improved version of the UTFG-1
which is called the UTFG-H where H stands for' the hypothetical. This
hypothetical instrument is used to tabulate the authors estimates of the
characteristics of a good cheap* tuning fork gyroscope where cheap means that
in quantity the instruments would sell for approximately $200. The reported
or estimated values of Qq in these instruments are then used to determine érR

o
by using Eq. 5.5.

Instrument

Parameter A-5 Gyrotron UTFG-1 UTFG-H
a(°/nr) 10 1% 3x10* 1.5x103
Q,(°/nr) 10 50"  3x102 1.5x 102
w (E2dlans, 2(1000) 2n(1800)  2m(360) 2n(360)
Q, .‘ 10t 5x10%%  2x10° 8x10°
R0 (inches) 0.8% 0.6% | 0.5 0.5
T (Eq. 5.6) 1.5x10°% 8x10"7  12x10°% 6x10~°

5 ., |

AR (inches) 1.2x10°% 48x107  ex10%" 3x 1_0"6

Table 5.1 Torsional Unbalance Data

F3
Estimated numbers.
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The tuning forks in all of these instruments were approximately the
same size and the average length was approximately 2.5 inches (in the UTFG-1
it was actually approximately 5 inches but it was a double tuning fork). In the
A5 the single piece tuning fork required hundreds of hours of machining and
balancing time to reduce the cross coupling to the level indicated in Table 5.1
whereas the tines in the UTFG-1 were replaceable and clamped on and the
balancing operation required approximately 3 man hours. In this operation the
masses of the tines were adjusted to minimize the motion of the tuning fork
center support in the Xe direction and then the centers of mass of the tines
were adjusted in the z £ direction to minimize the torsional unbalance. Both
of these adjustments were done with set screws in the tines. Smaller values
of Qq were obtained on occasion for the UTFG-1 and it is conveiveable that in
an improved version of this instrument & patient balancer could reduce Qq to
approximately 1.5 x 103°/hr in a few hours time. This number is an engineering
estimate based on the limited balancing experience of an impatient balancer--
the author--using crude equipment.

Cross coupling magnitudes of 103°/hr and 104°/hr most likely appear large
to readers who are unfamiliar with vibratory gyroscopes; however, they are
not unreasonable for crude vibratory drive, vibratory rate gyroscopes of this
size. Cross coupling magnitudes below lozo/hr are extremely difficult to
attain but they are possible in large low frequency instruments if the materials
are free of defects and the tolerances on the tuning fork dimensions are very
small and a precision balancing operation is performed on the tuning fork, The
relationship between the size of an instrument and the magnitude of the cross
coupling can be determined from Egs. 5.5 and 8. 6 for the model of Fig. 5.1.
In a linearily®caled instrument as was censidered in Chapter III, the drive
frequency is inversely proportional to the size, the qua.lity factor ideally is
independent of the size,and normalized balances such as -R— are much easier
to obtain as the size increases. Therefore the magnitude of the cross coupling
in a linearily scaled, vibratory drive instrument should be inversely proportional
to the linear size of the instrument raised to a power between one and three.* .
If the instrument eize is fixed, which is often the case, the croes coupling should
be proportional to the drive frequency in which case it is desirable to design
the drive member so that the drive frequency is low rather than high.

E3
The factor of three is obtained if AR is inversely proportional to Ro'
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If the cross-coupled torques were constant and the:other components
in a tuning fork gyroscope were ideal, cross coupling would not be troublesome
because the torques or the signals resulting from them could be bucked out or
else discriminated against in the demodulator. Unfortunately, in an actual
instrument the cross coupling is not constant and the other components are
not i&eal and ‘zero-rate errors ' occur at the instrument output because of the
cross-coupled torques. The i'-hos;t important causes of these zero rate errors

in tuning fork gyroscopes are examined in the following three sections.

5.2.3 Time-Varying Cross Coupling

Since extremely small normalized asymmetries such as RA—R; cause large
cross-coupled equivalent rates, it is not difficult to see why the cross coupling
in tuning fork gyroscopes is not constant. Non-uniform creep in the materials,
which is aggravated by the large strains in the energy storage member in the
drive system, causes slowly varying changes in the balance of the fork. Non-
uniform thermal expansion and deflections under linear accelerations chahge
both the balance of the fork and the alignment of the drive mechanism. These

three causes of time-varying cross coupling are now examined separately,

Non-uniform creep in -materials is a severe problem in vibratory drive,

vibratory rate gyroscopes because it causes the balance of the drive member
to change slowly with time. The standard deviation of the re sulting time-varying

cross coupling can be minimized by:

1. choosing the proper material for the drive member and then
inspecting the material for defects,

2. machining the drive member to very close tolerances so that
symmetrically located parts are as symmetric as possible, and

3. operating the drive member at low strain levels.
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Unfortunately, the machining to close tolerances greatly increases the cost

of the instrument am; the operaticn at low strain levels ‘reduces the signal

power out of the sensing system transducer for a specific angular rate input.
Also, the maximum allowable strain in stable materials such as quartz is orders
of magnitude lower than it is in less stable steel alloys #0 if a stable material

is selected, the noise in the sensing system, transducer and signal processing
electronics ‘becomes much more important than when less stable materials are
used. This . problem becomes more apparent by examining actual numbers

for tuning fork gyroscopes.

The tuning forks in the instruments listed in Table 5.1 were mm de of steel
alloys and the A5 and Gyrotron forks were operated at very low strain levels--
probably on the order of 10_4. The changes in the cross coupling in these
instruments with time corresponded to normalized unbalances - -R— - of
approximately 10 -9 and 10 -8 respectively where the difference was due to
better materials and machining in the A5. The forks in both of these instruments
were very expensive because of the extensive machining required. However,
even with all of this care, the long term drift of the A5 -0. lo/hr— was more
than two* orders of magnitude larger than the thermal fluctuation threshold,

This indicates that theoretically the amplitude of the drive oscillation and
therefore the strain in the drive member could be reduced by almost a factor

of 100 without seriously degrading the performance of the instrument. Therefore
it appears advantageous to use materials such as quartz, which has a

maximum allowable strain approximately two orders of magnitude smaller

than that of steel, for the drive member because the creep and therefore the

time-varying cross coupling should be much lower than in a steel drive member

if both are made to the same tolerances.

= 10"

* This number was estimated from data on the UTFG-I in which o,vl

and €= 10-3 jnq it assumes that in the A5 a  >10 2

1
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This theoretical conclusion has practical significance if the noise
in the sensing system electromechanical transducer and signal processing
electronics is not; or forseeably can be reduced to a point where it is not ,
several orders of magnitude larger than the thermal fluctuation noise which
was analyzed in Section 4.4. At the present time this: is known to be true only
for cépacitance type transducers. H::wvley8 has reported that a Western
Electric Model 640-AA condenser microphone can sense diaphragm displacements

of6x 10™12

cm with a unity signal to noise ratio in a 10 cps bandwidth., This
displacement is approximately equal to the standard deviation of the thermal
fluctuations in the sensing system of a tuning fork gyroscope, such as the

UTFG-1, * which has a moment of inertia about the output axis (Io) of 103 gm cmz,

a drive frequency of 360 cps and is measured at 2 cm radius. (This number can be
computed by using Eq. 4.10 and these members, ) Although the reported sensitivitie
of other types of electromechanical transducers are lower than that of the condenser
microphone, it does not seem unreasonable to predict that it should be possible in
practice to reduce the noise in the sensing system, electromechanical transducer
and signal processing electronics in a well designed vibratory rate gyroscope

to a point where it is less than two orders of mR gnitude larger than the thermal
fluctuation noise in thesensing system. If this is true, stable materials such

as quartz should definitely be used for the drive members of iow cost, vibratory
drive instruments in which the balance is not as good as it could be. In expensive,
high precision instruments the chaice is not clear but it appears that the same

conclusion is true; however, additional research on electromechanical

transducers may be necessary.

—
The UTFG-1 is used in this example because it i8 the only instrument
for which the author knows the numberical value of Io.
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Non-uniform thermal expansion of materials is a severe problem in

vibratory drive, vibratory rate gyroscopes because it causes the balance of

the drive member and the alignment of thed rive mechanism to change slowly
with time unless the temperature is maintained constant. Furthermore, because
energy is disaipated in the drive member and the drive mechanism when the
instrument is ope a:ating, the warm up time is often large* even if the

instrument temperature is maintained constant when the drive member is

turned off. The magnitude of the time-varying cross coupling which is

caused by these non-uniform thermal expansions can be minimized by:

1. inspecting the materials of the drive member and drive
mechanism for defects,

2. machining the parts to very close tolerances so that
symmetrically located parts are as symmetric as
possible, and

3. thermally insulating the tuning fork envircnment and

surrounding the tuning fork with a good heat conductor
to minimize the temperature gradients seen by it.

Unfortunately, the machining to close tolerances greatly increases the cost
of an instrument and the insulation and heat conductor increase the size and
weight and even with these precautions it appears that a temperature controller
is required if a high precision instrument must operate over a temperature range
of more than a few centigrade degrees. This can be seen from the numbers listed
in Table 5.2 for the first order temperature coefficients of the four instruments
previously examined.

Stable materials such as quartz and configurations other than the tuning
fork should redu\ce the temperature coefficients in vibratory drive instruments
below the numbers listed in Table 5.2 but it is impossible with the data presently

available to estimate the magnitude of these improvements. Other than thia .

Many tens of minutes in high precision instruments like the Gyrotron and A. 5.



Instrument
Parameter A5 Gyrotron UTFG-1 UTFG-H

Firat Order Temperature )
Sensitivity (9/hr /g::) ? 4 300 20

First Order Acceleration
Sensitivity (9/hr/g) 3 ? 600 10

(g = acceleration of gravity)
Table 5.2 Approximate "Température and Acceleration Sensitivities

vague possible solution, the temperature ¢ross-coupling problem in high precision
vibratory gyroscopes does not appear to have any solution other than temperature
control. This solution is undesirable in some applications becameit: increases the
power requirements of an instrument by orders of magnitude. The actual power
required for temperature control depends on the temperature range and time
characteristics of the environment in which the instrument must operate and the

space available for insulation so it cannot be estimated.

Non-Uniform deflections under acceleration loading is a problem in

vibratory drive, vibratory rate gyroscopes because it causes the balance of the
drive member and the alignment of the drive mechanism to change in proportion
to the acceleration, The magnitude of the time~-varying cross coupling which is

caused by these non-uniform deflections can be minimized by:

1. inspecting the materials of the drive member and the drive
mechanism for defects,

2. machining all parta to close tolerances 8o that symmetrically
located parts are as symmetric as possible, and

3. balancing the assembled instrument.

7

Unfortunately, the precision machining and balancing Operations greatly increase
the cost of an instrument and even after they are completed the acceleration
coefficients of some configurations may be too large for some applications. This

can be seen from the numbers listed in Table 5.2 for the acceleration coefficients

T O




of the four tuning fork gyroscopes. The major cause of acceleration variations
in the cvoss coupling in tuning fork gyroscopes is non-uniform deflections

of the tines in the z; direction (Fig. 5.1) which causes a tcrsional unbalance.
This is one of the major disadvantages of the.tuning fork configuration., In
other configurations which are more symmetric, such as the cylinder shown

in Fig. 4.6b, the acceleration sensitivity should be much lower than it is

in tuning fork gyroscopes.

The acceleration cross-coupling problem in vibratory gyroscopes is not
examined further because few data are available on configurations other than
the tuning fork and in many applications the acceleration errors in vibratory
gyroscopes should be 8mall compared to the other errors. Also, in some
applications, an acceleration signal is available so some of the acceleration

errors can be compensated.

Regardless of the c#use of the variations in the cross-coupled torques in
t uning fork gyroscopes, the stochastic inphase torques cannot be distinguished
from the Coriolis torques. Therefore zero-rate errors proportional to the
stochastic inphase torques appear at the outputs of these instruments. Foi’tunately,
the inphase stochastic cross-coupled torques in vibratory drive instruments are
much smaller than the stochastic quadrature cross-coupled torques but the ratio
is generally not as large as Eqs. 5.5 and 5. 6 imply.becausé it is :auch easter to
reduce Qq by changing the mass distribution than it is to reduce Qd by changing
the drive mechanism. Therefore in poorly balanced instruments fcll >>0 d (these
are the RMS values of the cr@ss-coupled components).while in high precision
instruments, such as the A5, the two rr;ay be approximately equal. Also the
standard deviation of the quadrature cross-coupled torques should be much
larger than the standard deviation of the inphase cposs-coupled torques in
poorly balanced instrumente while in well balanced instruments, such as the A5,

the standard deviation of the quadrature cross coupling may only be an order
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of magnitude larger tha.n.the standard deviation of tize inphase cross coupling.
The spectrum of the zero-rate errors from the stochastic inphase cross
coupling in a tuning fork gyroscope depende upon the spectrum of the acceleration
applied to the instrument and the spectrum of .the temperature of the tuning
fork environment, When the accelerations are small and the temperature is
approximately constant, the stochastic inphase cross coupling will depend
primarily on the creep of the drive member and the spectrum will be extremely
narrow with a2 bandwidth on the order of 10_3 cps.* In this case filtering is
ineffective if the insisuient is to remain a ''rate'" gyroscope with response
to zero frequency. However, if the instrument re3po;18e to very low
frequency rates is not important, the slowly varying éross-coupled zero-rate
errors that result from material creep and slowly varying temperature changes
can be filtered electrically.
Ideally, the stochastic quadrature cross coupling and the steady components
of both quadraefure and inphase cross coupling are not troublesome in tuning
fork gyroscopes because the quadrature components are discriminated against
in the demodulator and the steady inphase components can be bucked out either
before or after the demodulation. Unfortunately, in actual instruments, this is
not true and all of these terms cause zero-rate errors. The most important

ways in which this happens are examined in the following two sections.

5.2.4 Differential Frequency Drifts

The resonant frequency of any tuned system is a function of numerous
factors and drifts in a stochastic manner with time. In tuning fork gyroscopes
there are generally two resonant frequencies of interest--the tuning fork
tine resonant frequency and the resonant frequency of the sensing system--and

uncompensated differential frequency drifts between them cause significant

3 ) .
T his number was found in the Gyrotron.

R R L i (T Tl e Py o N o St Y e I VNeice C oaamt i m de s w es a
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zero~rate errors. Although some of this differential drift theoretically

can be compensated if the temperature, linear acceleration, etc. of the

because it is difficult and usually both impractical and unnecessary . Therefore
not only the truly random component of frequency drift (the drift of the resonant
frequency when the temperature, lixiear accelerations, etc. are held constant)
must be considered as stochasti¢: when designing an instrument but also the
uncompensated drifts due to temperature changes, linear accelerations etc.
These stochastic differential frequency drifts are generally extremely small
in well designed turing fork gyroscopes (much smaller than the bandwidth of
the resonant sensing system) but cause significant zero-rate errors because
of the large unwanted quadrature cross coupling.

The zero rate errors which occur in tuning fork gyroscopes betause of
differential frequency drifts - A w-are primarily due to the differential phase
shifts proportional to Aw that occur in the sensing system. This differential

phase angle is defined as
o () 2/G (o) r/G (jw_ + jAw) (5.7)
s.cH e 8.V T ‘

where Gs.c. (s) is the transfer function of the sensiné system and any elect~onics
which precede the demodulator and W, is either equal to the natural frequency

of the resonant sensing system or some slightly different frequency which

is rela.te'd:to.the natural frequencby by a function of the time constant of the

sensing system which is approximately equal to unity. If we use the same lumped

parameter.: model for the sensing system that was used in Section 4.3, in which

Gg.c.(8) = — - 2 (5.8)

8 +

and we make w, =W, then
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ZQ.M

8(Aw) = (5.9)

c
if & is small compared to ch;I. Now by using the small angle approximations
for the sine and cosine of 6(Aw), the zero rate errors caused by a differential

frequency drift can be written as

20,40 Q, 20 Aw °
Qm=ﬂq(———5——-)- 5 (——) (5.10)
c ¢
: 2Q Aw
Since Qq > Qd and ( = ) <<'1, the second term in Eq. 5.10 can be neglected.
c

It is now apparent from the first term, which can be rewritten as

- 20 (A2 g

ao = 2205 9, (5.11)

Q

that in order to minimize QAw it is necessary to

(a) reduce both the steady and stochastic components of the
quadrature cross-coupled torques applied to the sensing
system. This can be accomplished by balancing the drive
member and also bucking out the steady component of
by applying torques to the tuning fork. If bucking sig- q
nals are applied afterward these errors will not be eliminated. -

(b) make the frequency stability (-AT?-) of both the resonant frequencies

as stable as possible. For this reason the resonant frequencies are
generally determined by the mechanical properties of materials

and any electrical feedback around a resonant system does not
introduce any significant phase shifts at the resonant frequency.

(c) make Q g 38 small as possible. Unfortunately, this is. inconsistent
with our previous conclussion in Chapter IV that Qs should be large

to minimize the thermal noise in the sensing system and reduce the
significance of noise which occurs in the signal processing electronics.
Therefore, an optimum value of Qs should exist for the sensing systems

of vibratory rate gyroscopes.




In order to better understand the magnitude of the zero-rate errors

caused by differential frequency drifts Aw, let ue briefly examﬁxe typical
numbers for the normalized frequency stability and the temperature and
acceleration coefficients of tuning forks. Let us start with those of the

UTFG-1 which are known but are excessively high because the tines of this tuning

fork were clamped on. The numbers for this crude instrument are:

*
(A_;)co_)T,A -2x10"%
A2 /°c = 2x 107%°%C (5.12)

B /g=2x 107" /g

9

In tuning fork frequency standards’ in which the tuning forks are made of
composite materials, *temperature coefficients of 10-6/00 and long term
stabilities of 10-6 are common but this long term stability often requires days
to attain. Therefore, since no data are available on these three coefficients

for the Gyrotron and A5, let us estimate the following numbers for a well

designed tuning fork gyroscope the size of the A5 and Gyrotron

(A T, A _40-3
(A2)/°c = 107/%C (5.13)

B2 /g = 107 /g

The temperature coefficient is assumed to be quite low because it is possgible
to make both resonant systems out of the same materials and therefore obtain

good differential temperature compensation.

* T A
() means the long term stability when the temperature and acceleration
are constant.

*

%
Two materials combined so that the Young's Modulus of the combination has
a zero slope with temperature at the operating point.
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When these numbers are used for the Gyrotron and 7 = 100~
Q = 103°/hr, then the long term zero-rate drift, temperature and acceleration
sensativities caused by differential frequency drifts are 1%hr, 0.1%hr/°C
and 1°/hr/g respectively. These numbers are smaller than the experimental
values of 1o°/h;-, 36/h::/o C and ? for the Gyrotron but they certainly are not
insignificaht.

It is difficult to draw meaningful numerical conelusions from these
few numbers but it does appear that differential frequency drifts in well designed
tuning fork gyroscopes the size of the A5 and Gyrotron cause zero-rate errors
which are not insignificant but most likely are smaller than the zero-rate
errors caused by the stochastic inphase cross coupling and other factors. The
most important of these lother factors'' is examined in the following section.
In small or high frequency instruments, however, in which Qs is larger,this
may not necessarily be true and differential frequency drifts may cause zero-
rate errors which are important. In any case, an optimum value of Qs generally
will exist for tuning fork gyroscopes because the zero-rate errors due~to thermal
fluctuation: noise, noise in the electromechanical transducer in the sensing
system and noise in the signal processing electronics decrease as QB increases

while zero-rate errors due to differential frequency drifts increase as Qg

increases.

5.2.5 Differential Phase Shift Drift

The phase shift at a ﬁxed frequency of any electronic circuit or
electromechanical transducer is a function of numerocus factors and drifts
in a stochastic manner with time. In tuning fork gyroscopes in which a
large quadrature signal is present, a differential phase shift in either
the signal or reference channels of the demodulator causes significant
zero-rate errors. The equation for these errors was determined in Section 2.4

and is
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Q
Qpg = 0 A0 - 3 (a0 )2 . Bay

where A® is by definition a differential phasg shift. Since 'Qq = 4 and A6 << ],
the second term in Eq. 5.14 can be neglected. Therefore the zero-rate errors
caused by differential phase shifts in tuning fork gyroscopes are approximately
equal to QqAG .

Almost no data are available on the stability of differential phase shifts
in tuning fork gyrescopes. This stability depends to a large extent oxn the
quality of the components, the range of the environmental parameters and
the sophistication of the circuitry while the zero-rate errors which result
from differential phase shifts depend to some extent on the method used to
null. the instrument output. The cutput can be nulled either by adding an
adjustable backing signal before or after the demodulator and then adjusting
the phase of the demodulator reference At"o réinimize the long term drift or else
the bucking signal can be omitted and the outpuf nulled by adjusting the phase
of the demodulator reference signal. The former has definite advantages in
high precision instruments but the latter is much cheaper: and simpler and.
w orks almost as well in instruments in which Qq >> 0 a4 These fine points'
are not discussed further because in almost any scheme an adjustable phase
shifter is required and it is the source of the major differential phase shift
drifts.

In the Gyrotron bucking amplifier and the UTFG-1 demodulator reference
it was necessary to shift the phase of the drive frequency signal approximately

90°,

There are numerous ways of doing this but they al require reactive
and resistive components. In order to estimate the magnitude of the phase shift
drifts and temperature coefficients in these instruments, let us examine the

extremely simple phase shifter shown in Fig. 5.2.
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Fig. 5.2 Simple Phase Shifter
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IfR > R1 and the input impeda.ncé of the T2T$ combination i8 much
larger than R1 then the transfer function of the phase shifter is appfoximately,
e——n- T“R‘C“ (5.15)
Thus when chC = 1, the phase shift is 90° and small changes can be
achieved by changing R a small amount. The most important components
in this circuit are R and C. If & change occurs in either of them, a differential

phase shift results, *

1 1
so= 355 = 7 () (5.16)
Therefore if a long term stability of 0,2%and a temperature coefficient of
0.01%/00 are assumecffor R and C, the following two numbers are obtained
for the long term drift and temperature coefficient of the phase shifter
(assuming statistical imdependence).

T -3
A =1.4x10"°

a6 /°C = 2.8x 107%/°C

It is interesting to note that this estimated temperature coefficient compares
favorably with the oBserved temperature coefficient of the Gyrotron backing
amplifier (3 x 10-47°C) and the long term drift compares favorably with the
ratio of the long term drift of the UTFG-1 in a temperature controlled

-3)

environment to the RMS value of the quadrature cross coupling (3 x 10

A differential phase shift also occurs when W, changes an amount A,

It is equal to -z- which is generally much smaller than 6 (Aw) computed

m the previous section 8o it can be neglected in most cases.

These numbers are based on the following data on Spraguel0 '"highly stable"
components of an appropriaté size-

Styrachon Film Capacitors-Temperature Coeff. 120 ppm/)%
drift 0.2 %
Molded Filmistor-Metal Film- Terrperature Coeff

0.01%/°
drift 8.
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In practice, the long term stability of differential phase shiftsiin .
demodulators is generally higher than the :number ‘g‘i‘ven in Eq. 5.17 and
10'2 is often quoted for the quadrafure réjection capability, However, in
vibratery gyroscopes the drive frequency reference signal should be quite
clean so the number 10-Z often used is conservative for well designed
demodulators. This was found to be true in the UTFG-1 and is documented
in the following chapter. In that instrument the long term quadrature
rejection was always better than 5x 10"3. Therefore, since no other data
on this topic are known by the av’hor, let:us assume that an optimistic but
not unreasonable number for the long term st»ability of differential phase
shifts; in well designed tuning fork gyroscopes is 3x 10'3 or approximately
twice the number given in Eq. 5.16.

Although it is difficult to draw meaningful numerical conclusions from
these few numbers, it ‘appears: that’differential phase shift drifts cause
significant zero-rate errors in tuning fork gyroscopes. In well balanced
instruments, such as the A5 and Gyrotron in which the standard deviation
of the inphase cross coupling may not be more than two orders of magnitude
smaller than the RMS value of the quadrature cross coupling, these errors
may be small compared to the zero-rate errors caused by the stochastic
inphase cross coupling. However, in smaller, higher frequency and poorer
b alanced instruments in which the RMS value of the quadrature cross coupling
is more than two orders of magnitude larger than the standard deviation of

the inphase cross coupling, the zero-rate errors caused by differential phase

shifts will be a significant part of the total zero-rate error.

5.2.6 Tuning Fotk Gyroscope Summary

The major factors which are presently limiting the performances of tuning

fork gyroscopes are zero-rate errors caused by unwanted cross coupling
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between the drive member and the sensing system and the noise in the
sensing system electromechanical transducer and signal processing electronics.
Both the inphase and quadrature components of cross coupling produce zero-
rate errors. This is because the stochastic inphase cross-coupled torques
cannot be distinguished from the Coriolis tor;;ues and the signals produced
by the steady and stoehastic quadrature cross-coupléd torques cannot be
perfectly discriminated against in the demodulation process because of
differential phase shift drifts in the signal processing electronics and also
differential frequency drifts between the tuning fork drive frequency and the
resonant frequency o. the sensing system. With the exception of the zero-rate
errors caused by linear accelerations, the cross-coupled zero-rate errors in
tuning fork gyroscopes generally vary very slowly with time. The higher frequency
noise in these instruments is generally the noise from the sensing system
electromechanical transdaucer and signal processing electronics. This noise
appeared to be insignificant in the previous chapter but this is not the case
because it is impossible to operate tuning forks at their maximum allowable
strain levels as was assumed in Chapter IV. Instead it is necessary to |
operate them at very low strain levels and even use stable materials, such
as quartz, which have much lower maximum allowable strain levels than
steels in order to minimize the creep in the drive member and therefcre |
the RMS value of the cross coupling.

The magnitude of the cross coupling in tuning fork gyroscopes can be
reduced by using largeylow frequency, accurately machined, well balanced
tuning forks made out of stable materials and operated at low strain levels;
but, it appeara that it is also necessary to control the temperature in order
to obtain high precision (low long term drift). This is necessary because

the stochastic inphase cross coupling, which is the major cause of long term
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&rift in a well balanced instrument, and the differential phase shifts in

the signal processing electronics,are beth dependent upon temperature and
temperature gradients. Therefore a high precision tuning fork gyroscope,
such as the A5, will be both expensive because of the time consuming
machining and balancing cperations, and it will not necesgarily be a low
power device because of the temperature controller required. Also it

will require long warm up times when the tuning fork is initially turned on.
Therefore, in view of theprecision, reliability, power requirements and
cost of present day conventicnal gyroscopes, it is doubtful that there are many
applications where a ""high precision'' tuning fork gyroscope would be
better than a conventional gyroscope. One exception to this statement is
an application in which extremely 1§ng life expectancies and continuous
operation are required.

The above conclusion is not necessarily true for less expensive, tuning
fork gyrSscopes. however, because there are numerous applications for small,
medium lprecision, vibratory rate gyroscopes which have short warm up times.
Therefore let us estimate some of the characteristics of a low cost tuning-
fork gyroscope. On the basis of the conclusions presented in the
previous parts of this section, it appears that in such an instrument the
tuning fork should be made of a stable raterial such as quartz and the
configuration should be one in which the drive frequency is low and also one
in which the critical parts are easily machined to small tolerances and then
balanced when the instrument is assembled. In this way the RMS cross
coupling and the zero-rate errors assco<iated with the cross coupling should
be minimum for a limited amount of machining and balancing. The major
cross-coupled zero-rate errors in such an instrument will be due to both the
stochastic inphase cross coupling and the signals from the quadrature cross

coupling which are not discriminated against in the demodulator. Because the
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machining andbalancing operations are not as precise as in expensive
instruments, the zero-rate errors from the inphase and quadratu;e cross
coupling will probably be approximately equal. Thus, if stable materials
and good electronic components are use;:i and the instrument cost is limited
to a few hundred dollars, itis ‘not unreasonable to expect that at constant
temperaturer the standard deviation of the stochastic, inphase, cross
coupling will be on the order of 3x 10"3 Qq(the RMS value of the quadrature
cross coupling) and the stability of the phase shift drifts will also be
approximately 3x 10"3. Therefore an estimate of the long.term drift of

t his hypothetical, low cost, tuning fork gyroscope is approximately

(Q—T_)l/z =4x1-3

07 a (5.18)

Now if we assume that the balance of this instrument is characterizedby a
normalized unbalance érR = 10-5, which is approximately the number estimated
for the UTFG-H in Tab1e°5. 1, the standard deviation of the long term drift can
be rewritten as |

(;77)_1/2 -2x10780 radians/sec (5.19)

d

by using Eq. 5.6. If the drive frequency is 1000 cps, which is reasonable for
an instrument of this size, the long term drift in a temperature controlled
environment will be approximately 30°/h1-. On the basis of the characteristics
of other tuning fork gyroscopes, itis not unreasonable to estimate that the
temperature drift coefficient of the same iﬁstrument will be approximately
3°/hr / °C and the power required for this instrument without a temperature
controller will be less than 10 milliwatts.

Jt must be kept in mind that these numbers are only the authors estimates
of the characteristics of a low cost tuning fork gyroscope and are not data on
an actual instrument. These numbers have been presented because they tie

together the lengthly discussions and estimations that are contained in the
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earlier sections and also they indicate that medium precision may be obtainable
in low cost tuning fork gyrascopes. If this indication is accurate, it presently
appears that in many applications these low-cost instruments have significant
advantages over conventional rotary type gyroscopes of comparable precision.
Since it was previously ® ncluded that more expensive and higher precision
tuning fork gyroscopes may not have many advantages over conventional rotary
type gyroscopes of comparable precision it appears that future research on
tuning fork gyroscopes should be directed toward the development of low cost,

medium precision instruments.
5.2.7 Comments

The actors that are presently limiting the precision of tuning fork gyroacopes
have now been thoroughly examined. This was done in far more detail than
required because the conclusions of Section 5.2. 6 are valid for vibratory drive
instruments with othe:.r configurations and also because these same factors
limit the precision of other types of vibratory rate gyroscopes. It should now
be apparent that the most important of these factors is unwanted cross
coupling because without it the errors caused by random phase shift drifts
and frequency drifts would be insignificant. For this reason the cross
coupling problem in other types of vibratory rate gyroscopes is briefly

examined in the following section.

5.3 CROSS COUPLING IN VIBRATORY RATE GYROSCOPES

Unwanted cross coupling between the drive motion and the sensing yystem‘
is one of the major sources of error in all types of vibratery rate gyroscopes.
In vitratory drive instruments it is caused by mass unbalances in the drive

member and asymmetries in the driving mechanism and misalignments or
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nonlinearities of the electromechanicai transducer in the sensing system.

In rotary drive instruments it is caused by mass unbalances in the rotating
parts and nonlinearities or asymmetries in the bearings or bearing supports.
In both types of instruments the cross coupling magnitude and phase are a
function of temperature, linear accelerations and numerous other factors

so that the cross coupling has both steady and a stochastic components.

In vibratory drive, drive frequency output instruments the cross

coupling caused by mass unbalances in the drive member and asymmetries
in the drive mechanism is the same as in the tuning fork. Since this cross
coupling was thoroughly examined in Section 5. 2 it is not reviewed.here.
The other type of cross coupling in these instruments is caused by a mis-
alignment or an asymmetry of the sensing system transducer such that it
senses some of the drive motion. A simple example of this type of cross
coupling occurs when a pressure sensor in the acoustic gyroscope shown in
Fig. 3.5 is not located exactly at the pressure mode of the drive wave, Regard-
less of which of these two types of cross coupling occurs or predominates

in a vibratory drive, drive frequency output instrument, the cross coupling
that is in quadratiare with the Coriolis forces (or the signals resulting from
them) is generally much larger than the inphase cross couplirig. Therefore
it is possible to discriminate against much of the cross coupling by phase
sensitive demodulation in both one and two axes instruments. Unfortunately,
it is not possible to discrimirate perfectly and the inphase component is

not neéiigible 80 cross coupling produces large zero-rate errors in these
instruménts,

In vibratory drive, double drive frequency output instruments the major cross

coupling still occurs at the fundamental of the drive frequency; but, smaller,
second harmonic cross coupling also occurs for the reasons previously listed.
The relationship between the magnitude of the fundamental and second harmonic

cross coupling can be seen by examining the tuning fork model shown in Fig. 5.1.
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When the trajectories of the point masses in this model are changed so
that they are linear and planar but no longer parallel, a second harmonic
cross coupling torque occurs because the torsional unbalance AR varies

sinusoidally with time. If this torsional unbalance is written as
AR =AR_+£R) ¢ ginwyg (5.20)
- o A.,‘:R o d :

where T, 18 the amplitude of the drive oscillation and (%%) is the angle
between the two trajectories, it can be shown that the second harmonic,
cross-coupled, equivalent rates are a factor (éﬁ—'-) smaller than the fundamental
cross-coupled, equivalent rates given by Eqs. 5.5 and 5.6. Therefore the
cross coupling in this type of instrument which is caused by mass unbalances
and asymmetries in the drive mechanism will probably be as troublesome as

it is in drive frequency output, vibratory drive instruments. Furthermore

this same conclusion is true for the other types of cross coupling that occur

in vibratory drive instruments. Therefore, since the signal strength

in these instruments is much lower than it is in drive frequency output
instruments of the same size and the noise from the sensing system trans-
ducer and signal processing electronics are approximately the same in |
the two types of vibratory drive instruments, it appears that double

drive frequency output instruments will generally- be poorer than drive
frequency. output instruments of the same size.

In rotary drive instruments, cross coupling is caused by static and

dynamic unbalances in the rotating parts, asymmetries in the spin

axis bearings, asymmetries or nonlinearities in the bearing supports and

also angular rates about the other input axis. In a rotary drive instrument

an unbalanced rotor causes the rotor and the rest of the instrument to translate

and rotate in a periodic manner along and about the two instrument axes that




-101-
are normal to the spin axis. When the bearings and bearing supports in
such an instrument are ideal, these motions occur at the .fundamental
of the drive frequency when the rotor' is symmetric (drive fre quex‘my output
instruments) and at the fundamental and odd harmonics of the drive frequency
w hen the rotor is asymmetric (doubie drive frequency output instruments).
Motion at these frequencies is not troublesome because in drive frequency
output instruments it appe.ars as an input angular rate at the drive frequency
while in double drive frequency output instruments it appears as an output
oscillation at these frequencies. Unfortunately, in practice bearings and
bearing supports are: not ideal and the motions of the rotor that result from
unbalances do not occur at only the fundamental and odd harmonics of the
drive frequency. Instead the motion has even harmonic terms that are small
but nevertheless troublesome because:

1. When the» rotor of a rotary drive, drive frquency output
instrument rotates about an instrument axie normal to the
axis of rotation at twice the rotation frequency, the instru-
ment cannot distinguish between this motion and a constant
input angular rate about the same axis. The relationship

between the angle of this oscillation and the zero-rate error
in this type of instrument is derived in Appendix C,

2. When the rotor and gimbal of a rotary drive, double drive
frequency output instrument rotates about an instrument
axis normal to the axis of rotation at twice the rotation
frequency, the instrument cannot distinguish between this
motion and the output oscillation that results from a
constant input angular rate.

In both types of instruments the stochastic crose coupling of this type
cannot be discriminated against in the demodulator because the phase angle
of the stochastic cross coupling is uniformly distributed between 6 and 2n
radians.

The other type of cress coupling that occurs in rotary drive instru-

ments is caused by input angular rates about the second input axis because

these instruments are always two axis sensors. This cross coupling is in



-102-

quadrature with the angular rate signals about the input axis of interest
but it can cause errors at theoutput because of differential phase shift
drifts in the signal processing electronics or differential frequency drifts
between the drive frequency and the resonant frequency of the sensing system.
However, in many applications this inter«axial cross coupling is not nearly
as troublesome as the cross coupling that causes zero-rate errors when the
instrument is inertially stationary. Therefore let us examine the former
type of cross coupling in more detail.

In both drive frequency output and double drive frequency output, rotary
drive instruments the most troublesome cross coupling is that which causes
. the rotor to twist about an instrument axis normal to the axis of rotation at
twice the rotation frequency. The major source of this cross coupling is
bearing asymmetries that result from machining limitations, material creep
and wear, dirt, temperaturechanges and linear accelerations. Therefore the
problem of minimizing the cross coupling and the zero rate errors associated
with it in rotary drive instruments is similar to that in vibratory drive instru-
ments. However, there are important differences between the two. The most
important of these are:

1. The critical machining problem in rotary drive instruments
is the bearing surfaces and this is almost trivial compared
to the machining problem in vibratory drive instruments in
which the entire drive member must be made to very close
tolerances.

2. The major cross coupling in vibratory drive instruments is
in quadrature with the angular rate signals so it is possible
to discriminate against much of it in the signal processing.
In rotary drive instruments the quadrature and inphase
cross coupling of the type being considered are statistically
the same so no discrimination is possible.

3. The statistical properties of the cross coupling in rotary

' and vibratory drive instruments probably are greatiy
different. In vibratory drive instruments the cross

coupling varies very slowly. The author is not familiar

with any data on cross coupling in rotary drive instruments
but it probably varies much faster with time so that its

spectrum is much wider in the frequency range of interest.
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The cross coupling problem in rotary drive instruments has now been
examined but no examples have been given because the author is not aware
of any published data on this subject. Therefore let us make some crude
estimates of the magnitude of cross coupling thet :might exist in a well designed
drive frequency output instrument similar to the one shown in Fig. 4. 6a.
Let us assume that the instrument is approximately 2 1/2 inches in size
and the frequency of rotation is approximately 103 cps. Also let us assume
that the bearings are round to within 10'6 inches which is well within the
present state of the art. Then if the total displacement of the rotor at
the secoind harmonic of the drive frequency is 0,1 o/o of 10"6 inches, a

statistical estimate of the angle of the second harmonic torsional oscillation

of the rotor is

= 107 radians. (5.21)

Since a torsional oscillation of the rotor at the second harmonic of the drive
frequency causes a zero-rate errorof -420703 radiand¥sec. , it follows that the
long term drift of this hypothetical instrument is approximately 0, 5°'/hr. This
is certainly a respectable number but it must be kept in mind that it is only a
crude estimate presented here hecause of the lack of actual experimental data.
Nevertheless, this low drift number does indicate that rotary drive, vibrAa.tory
rate gyroscopes may be more sensitive than vibratory drive instruments of
comparable cost. Rotary drive instruments should also be less sensitive

to temperature variations than vibratory drive instruments but they will require
more ;-operating power than vibratory drive instruments and also will have
shorter life expectancies because of the spin axis bearings.

The conclusions of the previous paragraph are all based on the single drift
estimate made for a drive frequency output, rotary drive instrument. This
was done because it is difficult to estimate the cross-coupled zero-rate errors
in rotary drive, double drive frequency output instruments and also because

almost no experimental data are available in the open literature on this problem.

*
See Appendix C.
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At the present time, it appears that additional theoretical and experimental
research on the cross coupling problem in rotary drive vibratory rate
gyroscopes is necessary so that the sensitivities and the relative merits

of the two types of rotary drive instruments can be determined. It also
appears that such research may be very fruitful because a low cost, rotary
drive, vibratory rate gyroscope with a long term drift rate on the order of

the estimated 0.5 o/dur. would be a useful instrument in many applications.

5.4 CONCLUSIONS

The factors that are presently limiting the performance of both rotary
and vibratory drive, vibratory rate gyroscopes are the instabilities and‘
inhomogenieties of materials and the limited tolerances which mechanical parts
can be made. These factors cause unwanted cross coupling to take place
between the driving motion of the mass elements and the output sensing system.
The most troublesome cross coupling is that which occurs at the carrier
frequency of the suppressed carrier angular rate information. This cross
coupling can be distinguished from an input angv;xlar rate only to the
extent that it remains constant and can be bucked or calibrated out or else
can be discvriminated against in the phase snesitive demodulation that occurs
in the signal processing. It is also possible to electrically filter some of the
signals resulting from unwanted cross coupling but generally the major cross-
coupled zero-rate errors that occur at the output of vibratory rate gyroscopes
vary very slowly with time so that filtering is ineffective if the instruments must
remain true ''rate’' gyroscopes.

It appears that there are only two basic ways to improve the performances
of vibratory rate gyroscopes. They are:

1. reduce the magnitude of the unwanted cross coupling
(assuming the magnitude is normalized in terms of
equivalent input angular rates), and

2. reduce the errors that occur at the output of vibratory
rate gyroscopes because of the cross coupling.
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The magnitude of the cross coupling in vibratory gyroscopes can be reduced
using better materials, more accurate machining and balancing t;chniques

and better configurations. These problems have been briefly examined in

this chapter. Although a more detailed analysis of these very important
problems is necessary, the present research is primarily concerned with

the second method for improving the performances of vibratory rate gyroscopes.

The zero-rate errors that occur at the outputs of vibratory rate gyroscopes
because of unwanted cross coupling between the drive motion and the sensing
system can be reduced in at least two, greatly different ways. The first
approach to be examined is calied ""double modulation'' and it involves a
radical change in the design of vibratory rate gyroscopes. The secon&‘:approach
to be examined is called "optimum processing of suppressed carrier signals"
which is self explanatory. These two approaches are previewed in the following
paragraphs and then thoroughly examiined in the following three chapters.

Double modulation is a process by which the Coriolis forces in a vibratory
rate gyroscope are modulated twice rather than once as in the more conventional
types of vibratory rate gyroscopes. The additional madulation can be
accomplished by either rotating or vibrating the basic drive member of a more
conventional vibratory rate gyroscope about a rate insensitive axis. The
purpose of the additional modulation is to make the carrier frequencies of
the suppressed carrier angular rate information different than the
frequencies of the cross coupling so that it is possible to discriminate against
the cross coupling in the signal processing. The results of theoretical and
experimental research on double .modulattm are reported in Chapter VI.

In conventional vibratory gyroscopes and vibratory gyroscopes that
employ double modulation, the angular rate inforration is suppressed carrier
modulated so that it is necessary to demodulate this information in order to

obtain an unmodulated output signal. Furthermore the suppressed carrier
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angular rate signals are corrupted by additive cross~-coupled signals,

and neise from the thermal fluctuations in the sensing'system, the sensing system
electromechanical transducer and the signal processing electronics so it is
necessary to filter and demodulate the signals from the sensing system
transducer. Since there are numerous ways of accomplishing this signal
processing, it is desirable to know which wé,y is best or optimum and how good

it is. This information is useful because it allows one to determine if an
instrument can satisfy the specifications of a particular problem and also it

shows how the unspecified components in the instrument should be de signed

to achieve this optimum performance.

At first glance this might appear to be a simple filter problem but a
closer examination shows that it is not because of the suppressed carrier
modulation and fact that the carrier frequency, the resonant frequency of the
sensing system, and the phase of the demodulator reference are not constant
but drift in a stochastic manner with time. Since these 'practical" problems
cause significant errors in vibratory gyroscopes they must be taken into
account when estimating the optimum performance of an instrument and
designing the sensing system and signal processing electronics. For these
reasons a filter theoryfor suppressed carrier systems is developed in
Chapter VII that can handle this and other suppressed carrier problems. This
filter theory is then applied to some aspects of the vibratory gyroscope signal

processing problem in Chapter VIII,




CHAPTER VI

REDUCTION O ERRORS IN VIBRATORY GYROSCOPES
BY DOUBLE MODULATION

6.1 INTRODUCTION

Double modulation refers tc the introduction of a secon: -:.dulation
of the Coriolis forces in a vibratory rate gyroscope through modulation of
the angular rates to be sensed. The first modulation is associated with the
drive motion imparted by the basic drive member and the second modulation
is associated with a vibration or a rotation of the basic drive member about
a rate insensitive axis. The purpose of second modulation is to separate the
carrier frequency of the suppressed carrier Coriolis forces containing the
input angular rate information from the fundamental and harmonics of the
basic drive frequency and the ‘double modulation frequency. When these
frequencies are separated through double modulation, the ""zero rate'" errors
associated with unwanted cross-coupling between the drive member and the
sensing system may be reduced; however, other new sources of error occur
because of the double modulation motion. Both of these aspects of double
modulation are examined in this chapter and experimental evidence in support
of the double modulation concept is presented.

Double modulation in vibratory gyroscopes was originally proposed
by Newtonl as a means of reducing the errors associated with unwanted -
cross coupling in a vibrating ring device. By rotating the ring about its rate
insensitive axis (the ring axis of rotation) it was hoped that the long term
drift rate of the ring device could be greatly improved. Although preliminary
designs of a doubly modulated vibrating ring gyroscope were completed by
Newton, experimental verification of the double modulation concept was not
initiated until 1961 when a National Aeronautics and Space Administration Re-
search Grant was giventhe MIT Electronic Systems Laboratory for research
on doubly modulated and other types of vibratory gyroscopes. At that time it
was decided that an experimental double-modulated tuning fork device would
be built initially to obtain experimental data on a double-modulated device
and also some practical experience with vibratory gyroscopes. After this
Preliminary research was completed, additional research on double modu-
lation was to be carried out if it was necessary and justified and also other

types of vibratory gyroscopes were to be investigated. Unfortunately, the
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basic research on double rnodulation proceeded at a much slower rate than
originally anticipated and it became necess ary for the author to ::omplete
much of the basic experimental research as a part of this thesis rather than
some of the originally proposed thesis research. Even more unfortunate is
the fact that this research is not yet entirely completed to the author's
satisfaction although enough has been completed todraw some meaningful
conclusions on double modulation and to evaluate some of the theoretical

work on suppressed carrier signal processing that is reported in the following
two chapters.

The data that have been obtained by the author on the experimental
double-modulated tuning fork gyroscope as a part of this thesis are re-
ported in this chapter. f‘uture data and a summary of all data obtained on the
instrument will be reported in a final report to the National Aeronautics and
Space Administration on Research Grant NsG-149-61 sornetime in 1965,

6.2 DOUBLE-MODULATED TUNING FORK GYROSCOPE

The way in which double modulation can reduce the errors associated
with unwanted cross coupling in vibratory gyroscopes is by making the fre-
quencies of the suppressed angular rate information differ from the frequency
of one of the major components of cross coupling. This conéept is most easily
understood by examining a simple vibratory drive configuration, * Figure 6.1
shows how a single axis double tuning fork instrument can be double modu-
lated by rotating it about its xk axis at a constant angular rate W From
Fig. 6.1 it is seen that the angular rate around the sensitive axis of the

tuning fork is

Qy_f = Qy cos wmt + QZ sin wmt (6. l)
where QY is the angular rate around the y axis of the doubly modulated in-
strument and 0, is the corresponding rate around the z axis.

In order to understand how double modulation affects the total torque

around the sensing axis it is necessary to rewrite Eq. 5.4 as

* This description of a rotary doubly modulated tuning fork gyroscope is taken
from a p::lperZ by Bush and Newton which is scheduled to appear in the IEEE
Transactions on Automatic Control in October, 1964.
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Ms = aywdlo[n}'f cos gyt + Qn(sinwdt+0n) + Qa(sinwdt + ea)] . (6.2)

In this equation the quadrature and direct components of the cross-coupled
torque have been combined and then separated into a non-acceleration sensitive
component represented by the equivalent rate Q at a phase angle Gn and an
acceleration sensitive component Qa at a phase angle 6, where both Q, and Ga
are functions of the acceleration vector. The non-acceleration dependent term
is a slowly varying stochastic function of time and temperature (both the mag-
nitude and the phase angle vary but 8. is usually a very small angle) which was
examined in Section 5.22. The acceleration dependent term arises primarily
from unsymmetrical deflection of the tines under an acceleration load which
was examined in Section 5,2,3. The major contribution to the acceleration com-
ponent will be caused by unequal deflecticn of the tines in the Zg direction caused

by an accleration of the instrument in the Zg direction. Thus we can write

approximately

Q, Tk azf = ka[-ay sine t+a cos wmt] (6.3)

where ka is the first order acceleration sensitivity. Now by combining Egs. 6.1
through 6.3 the following expression can be obtained for the total torque about

the sensing axis of the tuning fork in Fig. 6.1

Mg =My, +M_ +M__ (6.4)

The three components, at frequencies w, = w, + w__ (upper sideband), o
1 + d m d

(drive frequency) and »_ = W =W (lower sideband), respectively, are:

a w I
M, a __Lz_?_g[(ny + ka ay') cos t + (Qz + ka az') sinw+t] (6.5)
é-awIQ cos(w,t+ 0_) (6.6)
sd y'co''n d n *
A %y Iy
- 1 - (]
M, _ £ _L_Z [(a, +k,a.") cos w_t (0, +k,2,) sing_t] (6.7)
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where
o .
ay' = ayej 2 (6.8)
NS)
a'=ae (6.9)

It can be seen from Eqs. 6.5 through 6.7 that the effect of rotary
double modulation of the singie axis tuning fork instrument about one of its
rate insensitive axes is to produce torque components about the sensing axis
at three frequencies instead of the single frequency that is present in the ab-
sence of double modulation. The upper and lower sideband torque components
contain the desired rate information for a rotation of the instrument about an
axis in the plane of the double modulation motion. The cprﬁponéht at the tuning
fork drive frequency is a non-doubly modulated torque which is 'proportional
te the non-acceleration dependent cross-coupling-Qn. By suitable signal pro-
cessing it is possible to have the overall instrument respond to either or
both the sideband torques and exclude the other component (8). In this way
double modulation, at least theoretically, is able to discriminate between
the desired rate signal and the undesired non-acceleration dependgnt cross
coupling in such a way as to exclude the latter, Since both of the sideband
torque components contain acceleration dependent cross-coupling terms, how-
ever, double modulation does not discriminate between the rate signal and
the acceleration dependent cross coupling. This occurs because both the
acceleration vector in the yz plane and the angular rates seen by the single
axis tuning fork device are modulated by the double modulation motion.

The above description of the double modulation method of discrimin-
ating against non-acceleration dependent cross coupling is a simplified
discussion for the rotary method of double modulation that is valid for con-
stant angular rates, small amplitudes of the tine vibration and for a negli-
gible amplitude of torsional oscillation of the fork about the sensing axis.

A more sophisticated analysis of the tuning fork device with rotary double

modulation is given in Appendix A.

6.3 SOME ASPECTS OF DOUBLE MODULATION

Double modulation is the introduction of an additional modulation of

the Coriolis forces in a vibratory rate gyroscope for the purpose of
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discriminating against one major component of unwanted cross coupling be-
tween the basic drive member and the sensing system. This corﬁponent is the
non-acceleration dependent cross coupling which is one major component of
cross coupling that in the past has severely limited the precision of vibratory
drive, vibratory rate gyroscopes. Since the double modulation motion also
modulates the acceleration vector seen by the basic drive member, accelera-
tion dependent cross-coupling will not be discriminated against by double
modulation and therefore must be handled by other means.

Double modulation can be accomplished by either rotating or vibrating
the basic drive member of a vibratory rate gyroscope about a rate insensitive
axis. When rotation is used the Coriolis forces on the driven mass elements
are modulated the addition time at the double modulation frequency while if
vibratory double modulation is used the modulation occurs at harmonics of the
double modulation frequency.  With both types of double modulation a
single axis instrument is turned into a two axis instrument where both input
axes are in the plane of the double modulation. The rates about the two ortho-
gonal axes in this plane can be separated in the s ignalprocessing (see
Section 35.4).

Although in principle, this concept of double modulation is applicable
to both rotary and vibratory drive, vibratory rate gyroscopes, the discussion
in this chapter is limited to vibratory drive devices. The reasons for this
restriction are that cross-coupling problems are more severe in vibratory
drive devices than in rotary drive devices and all of the theoretical and exper -
imental work that has beer done on doubly modulated vibratory gyroscopes

has been on vibratory drive devices.

6.4 SOURCES OF ERROR IN VRG's EMPLOYING DOUBLE MODULATION

Most of the sources of error and performance limitations in vibratory
double-modulated rate gyroscopes are the same as those examined in Chapters
4 and 5 for the more conventional types of VRG's., These and the sources of
error introduced by the double modulation motion are briefly examined in this
section. The following three sections of this chapter then review the results
of the experimental research on vibratory double - modulated rate gyroscopes
and compare the experimental results with the theory.

The ultimate performance limitations in VRG's employing double
modulation are the same as in the more conventional VRG's; namely

1. Thermal noise in the sensing system

2, Strain constraints in the drive member
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3. Suppressed carrier signal processing
In doubly modulated instruments these limitations may be of greater signifi-

cance than in other types of VRG's because:

1. The errors due to unwanted cross coupling may be significantly
reduced by the double modulation, .

2. The double modulation frequency, which is the important frequency
from signal processing considerations, will generally be much lower
than the basic drive frequency because it is necessary to move
much larger masses., Therefore signal processing limitations
must be taken into account if the spectrum of the input angular rates
is broad. This is one of the reasons for the theoretical work on
suppressed carrier signal processing which is done in the following

chapter.
The theoretical ultimate threshold of rotary doubly modulated VRG's will gen~
erally be approximately a factor of 2 larger than that of the basic drive member
which was examined in Chapter 4 because generally only one sideband is used
to produce the output. With vibratory double modulation the ultimate threshold
may be considerably larger than that of the basic drive member because the
thermal noise is unchanged but the Coriolis torques are attenuated by a factor
of Jn(eo) where I is a Bessel function of order n and eo is the angle of the
double modulation oscillation.

In addition to these ultimate performance limitations, cross coupling
will also be troublesome in doubly modulated instruments. The cross coup-
ling that. occurs at the same frequencies as the Coriolis forces containing
the rate information 'caué e s zero-rate errors because:

1. The cross coupling is not constant but varies with time,

2. The frequencies w4 and w  are not constant but vary with time.

3. The components in the sensing system and signal processing
‘electronics are hot ideal but vary with time.

4. The phase of the demodulatot(sf‘reference signal is not con-
stant but varies in a stochastic manner with time, temperature,

etc.
These practical performance limitations were examined in Chapter 5 where it

was shown that they are responsible for the major '"zero rate' errors in con-
ventional vibratory rate gyroscopes. |

In addition to the cross coupling that = eccurs at the same frequencies
as the rate information,cross coupling also occurs at harmonics of the drive
frequency and double modulation frequency in VRG's employing double mod-
ulation. The signals caused by this cross coupling are troublesome, not

because they occur at the same frequencies as the rate information, but

T.wo demodulators may be used in a double-modulated instrument to process the
signals in one channel and the overall two axis instrument may use 3 demoddlato:

; ST ) . o r . L 0 eniset
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because they are often quite large and cause the sensing system transducer
or signal processing electronics to saturate. Therefore a high Q resonant
sensing system is often desirable in doubly modulated instruments.

In order to understand more clearly the types of cross coupling that
can occur in a doubly modulated instrument let us now examine the tuning
fork configuration of Fig. 6.1 and separate the cross coupling into three bas-

ic types.

Type 1 Cross Coupling - Type 1 cross coupling is between the basic drive mem-

ber and the sensing system. This cross coupling was examined in Section 5,22
The non-acceleration dependent component occurs at the drive frequency while
the acceleration dependent component is doubly modulated and occurs at the

same frequencies as the suppressed carrier rate information.

Type 2 Cross Coupling - Type 2 cross coupling is between the sensing system

and the double modulation motion and is independeéent of the drive motion of the
basic drive member. The output signals from the sensing system for this type
of cross-coupling occur at harmonics of the double modulation frequency. By
way of example, an acceleration dependent component of this type of cross-
coupling occurs in the tuning fork shown in Fig. 6.1 if the center of gravity

of the tuning fork is displaced along the x ; axis from the y; sensing axis when
the instrument is accelerated in the yz plane. In other configurations such as
the ring, this component  of cross coupling should not be as large as in the
tuning fork configuration. .

When the tuning fork in Fig. 6.1 is double-modulated by vibration
rather than rotation about the X axis, a non-acceleration dependent compon-
ent of this type of cross coupling occurs if the center of gravity of the tuning
fork is displaced from the point of intersection of the sensing axis (yf) and the
double modulation axis (xf) along both the Ve and z, axes. This component of
cross coupling is similar to the torsional cross coupling that was examined
in Section 5.22. Another cause of non.—é.cceleration dependent. cross coupling
of this type occurs when the axis of the '\'ribr'ato-r;y. double modulation motion
of the basic drive member is not orthogonal to fhe sensing axis. This mis-
aligmment causes type 2 cross coupling at the double modulation frequency.

When the tuning fork in Fig. 6.1 is double modulated by rotation
rather than vibration about the Xe axis, a non-acceleration depzndent compon-
ent of this type of cross coupling occurs if the rotating member in the instru-

ment is unbalanced and the structure supporting the rotating member is not
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uniform in all directions or the bearings on the double modulation axis are
not perfect., When a nonuniformity exists, either because of imperfections in
the bearings or actual mechanical design, the tuning fork in Fig. 6.1 is twist-
ed about the yg Or Zg axis in a periodic manner. The twisting about the zZ; axis
will cause cross coupling if the center of gravity of the tuning fork is mis-
aligned in the y. z. plane along both axes whereas the twisting about the ¢
axis will cause type 2 cross coupling without any misalignments. This cross
coupling occurs at harmonics of the double modulation frequency if bearings
without balls or rollers are used, If the bearings contain balls or rollers, this
type of cross coupling occurs at harmonics of the double modulation frequency
which are not integers and depend on the dimensions of the races and balls or
rollers and the number of balls or rollers,

Type 3 Cross Coupling - Type 3 cross coupling is between the sensing system

and the double modulation motion and it is dependent on the drive motion of the
basic drive member. The output signals from the sensing system for this type
of cross coupling occur at many frequencies, including those at which the
suppressed carrier rate information occurs.

In the vibratory double-modulated tuning fork that was examined in the
previous paragraphs on type 2 cross coupling, a misalignment of the double
modulation axis with respect to the sensing axis causes a component of the
double modulation motion to be about the sensing axis of the tuning fork. This
twisting appears as an angular rate at the double modulation frequency which
is indistinguishable from a double modulated angular rate about the z axis.
However, it was shown in Section 3.11 that the y axis rates ars double modu-
lated at twice the double modulation frequency so these rates are distinguish-
able from this type of cross-coupling.

In the rotary double-modulated tuning fork that was examined in the
previous paragraphs on type 2 cross coupling, a misalignment of the double
modulation axis with respect to the sensing axis causes a component of the
double modulation motion to be about the sensing or input axis of the tuning
fork. This misalignment causes type 3 cross coupling at the tuning fork fre-
quency. Since there is already a large amount of quadrature cross coupling
(Qn) at this frequency, this additional cross coupling may not be too trouble-
some even though W is large.

The type 3 tross coupling ‘that is troublesome in rotary double-
modulated devices is that which is caused by an unbalance of the rotating

member and/or non-uniform bearings and rotor supports which cause the
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tuning fork to twist about the Zs and x, axes at harmonics of the double modu-
lation frequency. The twisting which occurs about the ¥¢ axis which is at the
double modulation frequency cannot be distinguished from a double modulated
angular rate in the instrument yz plane. When the twisting motion of the rotor
which causes this type 3 cross cbupling in a rotary double-modulated instru-
ment is viewed from the instrument (xyz) axes, it appears to be a twisting

of the rotating member about an axis normal to the double modulation axis

at twice the double modulation frequency. This twisting can be minimized by
balancing the rotating member, using good bearings which are symmetric
and making the bearing supports symmetric so that rotor unbalance causes
twisting at only odd harmonics of the double modulation frequency.

Of the three types of cross coupling that have been examined, the
second two will probably be the most troublesome in well designed instru-
ments. By properly choosing the drive and double modulation frequencies
and the bearings on the double modulation axis, the long term drift in a ro-
tary double-modulated instrument should be caused primarily by type 3 cross
coupling and should be much lower than the long term drift of the basic single
axis instrument being double-modulated. The short term drift in the same
instrument will depend on the quality of the bearings and the balance of the
basic drive member and the rotating member.

In vibratory doubly modulated instruments the long term drift should
also be better than that of the basic single axis instrument being double-
modulated. However, the factor .]'2 .(eo) in the sensitivity expression which
results from using the second harmonic term rather than the first to avoid
. the misalighment problem may be quite small. In order to increase this
factor it is necessary to decrease the double modulation frequency W
Therefore, signal processing errors may be significant in this type of
instrument,

Now that the sources of error in double-modulated vibratory rate
gyroscopes have been examined, it is desirable to know the magnitude of the
various cross-coupled errors and whether double modulation actually does
improve the performance of a vibratory rate gyroscope. In order to answer
this question, a rotary double-modulated tuning fork gyroscope was built.
This instrument and the experimentai data obtained on it are the subject of

the following two sections.



6.5 EXPERIMENTAL APPARATUS -

A vibratory gyroscope that can be operated either with or without
double modulation was constructed so that the merits of double modulation
could be evaluated experimentally. The goals of the experimental program
were to compare the performances of the instrument in the two modes of
operation and investigate the causes of zero-rate errors with double modula-
tion. The instrument is solely a laboratory model of convenient size to per-
mit easy modification. It can be separated into three parts for descriptive
purposes: the single-axis vibratory gyroscope ' {tuning-fork unit), the double
modulation carriage, and the signal processing electronics.

The tuning fork unit shown in Fig. 6.2 is a single-axis vibratory
gyroscope designed so that it can be rotated about an axis perpendicular to
its rate-sensitive input axis. A double tuning fork is used as the drive mem-
ber and a mechanical tuned system is used in the sensing mode. Tuning fork
drive and vibration detector electronic circuits are required for its operation
as a single-axis vibratory gyroscope.

A double tuning fork, similar to that shown in Fig. 6.1 was selected
because its symmetry simplified support problems when it is rotated and
because it facilitates comparison with the considerable results of past re-
search on tuning -fork gyroscopes. Replaceable tines are used in the actual
instrument to simplify machining and to reduce fatigue problems. Set screws
are provided for rough balancing by changing the mass of the tines and moving
the center of mass normal to the plane of vibration. The double modulation
rotation axis is perpendicular to the fork input axis Ve and coincides with
the X
two tuning forks are coupled together by small springs and are magnetically
driven. The aniplitude and frequency of the fork vibration are maintained

axis when the fork is inertially stationary. The adjacent tines of the

constant by the tuning fork drive circuit that has as its input a signal from
reluctance type pickups sensing the motion of the tuning fork tines and as its
output the coil currents of the magnetic drivers, B

When angular rates are applied to the unit about the V¢ axis.,‘. torques
proportional to the product of these rates and the sinusoidal velocity of the
tuning-fork tines are impressed on the tuning fork about the V¢ axis. The re-
sulting twisting motion of the tuning fork with respect to the case is uaually
sensed to provide the electrical output. This motion can be maximized by

making the torsional resonant frequency of the fork and suspension about
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the V¢ axis equal to the carrier frequency of the torques. Resor}ant sensing
lowers the instrument threshold; however, the resulting twisting of the fork
through large angles is undesirable because it increses the interaxis cross-
coupling of rates from the X axis and decreases the useful dynamic range

of the instrument. In order to alleviate these difficulties, while still maintain-
ing the beneficial characteristics of resonant sensing, a counterpoise sensing
scheme is used in this instrument. The counterpoise is an inertia much
smaller than the tuning-fork inertia which is attached to the tuning fork by
means of a torsion bar along the Ve axis. When the system is properly de-
signed, the counterpoise and tuning fork vibrate in phase opposition and the
amplitude of the counterpoise vibration is much larger than that of the fork
when torques are applied to the tuning fork at the upper resonant frequency

of the combination, Higher Q's (quality factor) are achievable with this scheme
than with the signal tuneéd system and the undesirable motion of the drive mem-
ber is greatly reduced.

The counterpoise element. shown in Fig. 6.3 is attached to the tor-
sion rod which is along the V¢ axis of the ‘tuning fork, It is in the form of a
plate which together with insulated plates attached to the tuning fork center
piece forms a differential capacitor. This capacitor is in a capacitance bridge
which is excited at a low radio frequency from the vibration detector circuit.
The bridge output is then amplified, rectified and filtered to provide an elec-
trical signal proportional to the angle between the tuning fork and counterpoise,

The torsion rod on which the counterpoise is mounted is attached to
the tuning fork by collets at the ends of the fork and the ends, together with
four spokes attached to each end of the fork, provide support for the tuning
fork with respect to the case. The fork is therefore rigidly supported in all
modes except the torsional mode about the yf.axis,

The upper resonant frequency of the sensing system is tuned to the
lower sideband of the Coriolis torques which are applied to the tuning fork
when the unit is double modulated by rotation. These torques occur at the
tuning fork drive frequency minus the double modulation frequency. The
numerous cross-coupled torques applied to the tuning fork at other frequencies
justify discarding the energy in the upper sideband in order to obtain better
filtering and not saturate the vibration detector. When this instrument is

operated without double modulation, however, it is off resonance. Since the
cross-coupled torques in this mode of operation are at the same frequencies

as the Coriolis torques and we are well above thethreshold of the detector,
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Fig. 6.3 Experimental Double Tuning Fork
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this untuned condition is desirable because it reduces the zero rate errors

due to shifts in the resonant frequencies of the tuning fork and sensing system.
Therefore it is possible to use the same tuning fork unit for the comparison
tests. This unit is shown in Fig. 6.2 without its outer steel shield and with-
out the tuning fork drive and vibration detector electronics which are pre-

gently mounted on the unit inside the shield. The schematics for these circuits

are in Appendix B,

Double Modulation C arriage

The double modulation carriage shown in Fig. 6.4 rotates the tuning-
fork unit about an axis that can be oriented at any angle with respect to ver-
tical. The carriage is turned by a printed circuit motor driven by silicon
controlled rectifiers and is phase locked to a stable low-frequency oscillator.
Tapered roller bearings were used in the initial tests and ball bearings are
presently being investigated.

Accurate control of the carriage speed is necessitated by the high Q
mechanical resonance in the sensing mode of the tuning-fork unit. It is
accomplished by sampling the output of a stable, low-frequency oscillator
twice each revolution of the carriage and using this error signal to control the
firing angle of the SCR's driving the motor. The sampling occurs when two
diametrically opposed slots in a disc rotating with the carriage pass a light
source and allow the light to reach a photodiode. The schematics for the

speed control system of the carriage are in Appendix B.

Signal Processing Electronics

Figure 6.5 shows a block diagram of all the electronic circuits used
in the experiment. The signal processing electronics consist of two ring de-
modulators, one phase shifter and several linear amplifiers and filtei:s. Tke
vibration detector, tuning-fork drive and sﬁeed control have been discussed
in the sections on the tuning-fork unit and the double modulation carriage.

The signal from the vibration detector, which is proportional to the
angle between the counterpoise and tuning fork, is first demodulated using
as the reference a phase-shifted signal from the tuning-fork drive. When the
instrument is operated without double modulation the output of the demodulator
is passed through a low-pass filter to obtain a d-c signal proportional to the
applied rate, The trahsfer function for the instrument reiating the input rate
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Fig. 6.4 Double Modulation Carriage
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and the output voltage has the frequency characteristics of the low-pass filter,

When the instrument is operated with double modulation the output of
the first demodulator is transmitted through a band-pass filter centered at the
double-modulation frequency. This signal is then demodulated using as the
reference a square wave phase locked fo the carriage. The output of the de-
modulator is passed through a low-pass filter to obtain a d-c signal propor-
tional to the applied rate about either the y or z axes depending on the phase
of the reference of the second demodulator. The transfer function relating the
input rate and output voltage now depends on the quality factor Qs of the
mechanical sensing system, the band-pass filter following the first demodulator,
and the low-pass filter fcllowing the second demodulator. The band-pass filter
characteristics can be neglected since the filter is needed only to separate the
signal from d-c and the second harmonic of the tuning fork frequency. For
data transmission, the mechanical resonance contributes a first order pole

with a time constant expressed by

T = s (6.10)

where

0
"

quality factor of the sensing system at frequency wg

upper resonant frequency of the suspension

The schematics of the two demodulators presently used for signal

processing are in Appendix B,

6.6 EXPERIMENTAL DATA

The experimental tuning fork gyroscope which is described in Section
6.4 has been successfully operated with axd without double modulation. Al-
though double modulation greatly reduced the long term drift of the tuning
fork unit when it was operated in free air, the present data are not sufficient
to allow final quantitative conclusions to be drawn. Research is continuing on
the instrument so that a better understanding of the performance limitations
with double modulation can be obtained and then final conclusions will be drawn.
This future research will be reported in a final report on NASA Research Grant
No. NsG-149-61 which will be written in 1965.
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The data which presently are available on the instrument- are sufficient
to draw meaningful conclusions however. Figures 6.6 and 6.7 show typical
output recordings from the instrument when it was operated in free air with
some 5000 eru (earth rate units of approximately 15°/hr) of quadrature
cross coupling. The instrument parameters for these tests -- dated July
1963 -- are listed in Table 6.1. The drift characteristics of this instrument
for both modes of operation are listed in Table 6.2. These numbers were
taken from the traces shown in Figs. 6.6 and 6.7.

The short term noise visible on the recordings shown in Figs. 6.6
and 6.7 is different in the two modes of operation because the signal pro-
cessing bandwidths and the noise sources are different in the two modes of
operation. The bandwidth of the instrument (sensing system plus signal
processing electronics) was approximately 0.5 cps without double modula-
tion and approximately 0. 15 cps with dovble modulation because of the reson-
ant sensing system employed with double modulation.

The standard deviation of the short term noise when the instrument
was operated without double modulation was approximately 6 eru. This noise
was due to random cross coupling in phase with the Coriolis forces and a
combination of the large quadrature cross coupling and random phase shifts
of the demodulator reference signal. Better tuning-fork balance would re-
duce the latter component or drift but tests have shown that the major source
of short term drift or noise in the instrument used for these tests was random
inphase cross coupling. This drift could be reduced (see Chapter 5 for estim-
ates of the performance of a greatly improved version of this same instrument)
by using a better tuning fork* but the present fork is thought to be adequate
for the present double-modulation experiment.

The standard deviation of the short termrioise when the instrument was
operated with double modulation was approximately 6 eru. This noise was
due to the spin axis bearings which were tapered.roller bearings. It can be
seen in Fig. 6.7 that much of the short term noise was a 0.8 cps. component
which is thought to come from the bearings. If the source of this noise was
known and removed (such as by using a different type of bearing or similar

bearings with different race dimensiocns or number of rollers), the standard

* This fork was quite crude. It was made out of 4340 steel and the replaceable
tines were clamped in place. Furthermore, the balancing operation was also
quite crude and the drivers were not mounted on the tuning fork.
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Table 6.1 Instrument Parameters .

Parameter Symbol Value
Tuning fork drive frequency VI 358.6 cps when Wy T 0
Upper resonant frequency.of @ “s 312 cps wheny = 0

the sensing system Zn
Lower resonant frequency of _“’_l_ 31 cps when W = 0

the sensing system 2m

(.Om 5

Double modulation frequency > | 45.19 cps
Tuning fork average inertia I 1000 gm cm2 (approx.)

about the Ve axis y
Ratio of the modulated inertia of a 0.03 (approx.)

the tuning fork about the y y '

axis to the unmodulated inertia
Quality factor of the sensing Q 580

system at the upper resonant s

frequency
Bandwidth of the electrical BW 0.5 cps

filtering following the

demodulators

Table 6.2 Drift Characteristics
Parameter . Without Double With Double
Modulation Modulation

Standard deviation of the short 6 eru 6 eru

term drift '
Standard deviation of the long 44 eru Not observable on

term drift trace :
Magnitude of the cross-coupling 5650 eru 60 eru
Phase shift sensitivity 100 -£ru eru

degree 1 degree
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deviation of the short term drift with double modulation would probably be
approximately 3 eru which compares favorably with the 6 eru without double
modulation since the square root of the ratio.of the bandwidths in the two modes
of operation is 1.8. '

On the basis of the data shown in Figs. 6.6 and 6.7, it appears that the
limiting factors deteff'nining the short term drift of the tuning fork gyroscope
used in these tests are the relafively crude tuning fork and bearings used in
the experiment. The short term noise in bothk modes of operation could prob-
ably be reduced by two orders of na gnitude in a more sophisticated instru-
ment; however, it is felt that the instrument used in these tests and the data
obtained on it are partizl to neither mode of operation and the relative short
term performances are characteristic of rotary double-modulated vibratory
rate gyroscopes. Additional data supporting this conclusion are presented after
the long term drift data from Figs. 6.6 and 6.7 are examined.

The long term drift visible on the recordings shown in Figs. 6.6 and
6.7 is different in the two modes of operation because double modulation
successfully reduced the cross coupling from 5650 eru to 60 eru. Of the re-
maining 60 eru, 40 eru of it was due to theaceleration of gravity which was
exactly equal to the predicteé* value. and was inphase with the rate signral as
the theory predicts.

The standard deviation of the long term drift when the instrument was
operated without double modulation was approximately 44 eru. Much of this
drift was caused by temperature-balance effects in the tuning fork which was
operated in free air; however, this does not imply that controlling the temper-
ature of the tuning fork would eliminate or reduce the large long term drift
in this instrument because the drift caused by material creep and drift of
electrical components becomes important over longer periods of time. This
has been found to be true in other vibratory drive instruments and was exam-
ined in Chapter 5. On the basis of data extrapolated from other tuning fork
gyroscopes it is not unreasonable to expect that the long term drift of the
present instrument in a te'mpera;ture controlled environment would be approx-
imately 7 x 10-3 times the quadrature cross coupling, Therefore the number
of 44 eru listed in Table 6.2 is not unreasonable for the crude tuning fork
used in the test, Data supporting this conclusion are presented later in this

section.

40 eru of drift were predicted on the basis of the measured acceleration
sensitivity of the tuning fork unit.
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The standard deviation of long term drift of this same tuning fork unit
when it was operated with double modulation in free air was much lower than
44 eru. Itis difiicult to estimate a number for this drift from the trace of
Fig. 6.7 because of all the 0,8 cps noise. If this noise is filtered out by using
an eyeball low pass filter with a time constant of 30 seconds or so, the stan-
dard deviation of the long term drift would be approximately 3 eru. This drift
was cause by the 40 eru of acceleration dependent type 1 cross coupling and
the 20 eru of types 2 and 3 cross coupling. Most of this drift or noise appear-
ed to be associated with types 2 and 3 cross coupling because the signal out
of the vibration detector did not change noticeably when the tuning fork was
turned off. Over a longer period of time, however, the acceleration dependent
type 1 cross coupling would undoubtably be a more important source of drift
because it is inphase with the rate signals,

Unfortunately, insufficient data are available to fully support all of these
conclusions or allow us to analyze the various components of the drift in the dou-
ble-modulated instrument. Furthermore, lack of temperati.re control may
appear to be a means of deliberately biasing the experimental data in favor of
the double modulation. For these reasons and also the author's dissatisfaction
with the repeatability of the data and overall reliability of the equipment, a

major modification of the electronics was undertaken and the bearings were

changed to ABEC no. 9 ball bearings. Also a temperature controlled environ-
ment was assembled so that the temperature of the overall instrument could

be controlled. The need for this environment should be apparent from the

trace shown in Fig. 6.8 in which the cutput of the tuning fork gyroscope without
double modulation made an approximate periodic oscillation over a 24 hour
period with a peak to peak variation of approximatelyi60 eru.when it was op-
erated in free air.

When the tuning fork gyroscope was ol;erated in an environment in
which the temperature was controlled to with +1°F and the signal processing
demodulators were cperated inan environment in which the temperature was
controlled to within :l:7°F, the long term drift without double modulation was
greatly reduced. This can be seen from the trace in Fig. 6.9. During this
test the quadrature cross coupling was approximately 1600 eru and the time
constant of the low pass filter following the first demodulator was 2 seconds.
The standard deviation of the long term drift over a period of 16 hours was
approximately 5 eru. This was the best data obtained on the instrument but
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_typical drift rates over a 24 hour period were always less than 10 eru. and
over a period of several days the drift rates were not much larger, Therefore
the previous estimate that the iong term drift would be approximately 7 x 10-3
times the quadrature cross coupling is valid for the present instrument.

When this same tuning fork gyroscope was operated with double modu-
lation, the equipment was found to be extremely reliable but the types 2 and 3
cross coupling were excessively large. This problem hopefully will be solved
in the coming months. Some double modulation data are available on the instru-
ment in its present form, however, which are of interest and are described
below.

When the tuning fork gyroscope was operated with double modulation
and ABEC no. 9 ball bearings and the resonant frequency of the sensing sys-
tem was changed so that it did not coincide with any of the frequencies of the
three major* types of ball bearing noise, the output noise was very similar
to that shown in Fig. 6.7. This noise is shown in Fig. 6.10 where the quality
factor of the sensing system was approximately 200 and the time constant oi
the low pass filter following the second demodulator was 2 seconds. The stan-
dard deviation of the short term drift in Fig. 6.10 is approximately 3 eru and
does not change when tuning fork drive amplitude and therefore the factor e in
Eq. 6.2 is increased by a factor of 1.4. Therefore this short term noise was
caused by type 2 cross coupling or noise associated with the bearings and
unbalance of the carriage. This is encouraging because no attempt was made
to accurately balance the carriage. Because this test was made without tem-
perature control and the recording time waé relatively short it is impossible
to determine the long term drift of the double modulated instrument. This will
be done in the future and it is expected that it will be approximately 2 - 3 eru.

- 6.7 CONCLUSIONS ,

Double modulation is a process by v‘;hich all non-acceleration depen—":
dent cross coupling between the drive member and the sensing system (type 1
cross coupling) can theoretically be discriminated against in vibratory gyro-
scopes. Experimental tests with a crude tuning fork gyroscope operating with
and without rotary double modulation have shown that this is true. Unfortun-

ately, double modulation also introduces other types of cross coupling so the

* The three types of bearing noise that are feferred to here are caused by
lumps or holes on the inner race, ouiter race, or any of the balls.:
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overall improvement of the long term drift by double modulation is

not neceséarily large and depends to a large extent.on whether or not the
temperature of the instrument is controlled. This is because the non-
acceleration dependent cross coupling in vibratory drive instruments is very |
dependent on temperature and temperature gradients.

Experimental tests with the same crude tuning fork gyroscope showed
double modulation improved the long term drift by more than two orders of
magnitude when the temperature was not controlled and the instrument was
operated in the ordinary laboratory epvironment; however, when the tem-
perature was controlled to within +1°F the improvement was less than an
order of magnitude. Unfortunately, even with the present data and
experience with rotary double modulation it is difficult to predict what the
long term drift of a well designed rotary doubly modulated instrument is

likely to be because:

1. The improvement obtained on the tuning fork configuration
by double modulation is not necessarily representative of
the improvement that could be obtained with a ring con-
figuration because the Type 2 cross coupling, which was
very large and troublesome in the tuning fork instrument,
should be small in a ring configuration.

2. The bearings used in the tuning-fork double-modulation
experiment were ball bearings which are known to be noisy.

However, on the basis of these experiments and the reported low zero-
rate drift of the A5 tuning-fork gyroscope (better than 1°/hr), it
appears doubtful that the long term drift of a rotary double-modulated
instrument could be significantly better than that of a super precision,
temperature controlled, vibratory drive instrument. If this proves to
be so, then the advantages of the double modulated instrument over the

more conventional vibratory drive instrument are likely to be:

1. A much lower cost if a ring configuration is used because
the super precision drive members are extremely ex-
pensive to fabricate and balance whereas rather crude
basic drive members can be used in double-modulated
instruments.
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2. Shorter warm up times because the type 1 cross
coupling ir vibratory drive devices requires
considerable time (at least an hour) to stabilize .
whereas the rotary double modulation rotation
can be started up quite quickly (a few seconds
at most). ) 5o

3. A lower acceleration sensitivity because the
Type 1 cross coupling in the low frequency
vibratbry drive configurations that are neces-

sary for super precision, vibratory drive
instruments is more acceleration sensitive
than the Types 1 and 3 cross coupling in
rotary double modulated instruments.

On the other hand the double-modulated instrument would undoubtedly be
less reliable because the rotation requires bearings, some type of a motor
and more electronics. Furthermore, the power required for the double
modulation motion would be several orders of magnitude larger than that
of the basic drive member and certainly the overall instrument would
require more than a watt whereas the power required to control the temper-
ature of the more conventional vibratory drive device would also be large
but would depend on the environment and the space available for insulation.
The major sources of error in rotary double -modulated instruments
are acceleration dependenttype 1 cross coupling between the basic drive
member and the sehsing system and types 2 and 3 cross coupling between
the double modulation motion and the sensing system. The types 1 and 2
cross coupling can be reduced to acceptable levels for most applications by
the proper choice of the drive member configuration and by balancing the
drive member. Therefore the type 3 cross coupling should be the major
source of error in rotary double-modulated instruments. This cross
coupling can be minimized by balancing the basic drive member and the
rotating member and by choosing symmetric bearings and bearing supports
but it presently appears that additional research o;l-bearings, or other
means of suspending a rotating member, would have to be conducted before
a high precision, rotary double-modulated, vibratory gyroscope could be

perfected.
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At this point it is interesting to note that the type 3 cross coupling
that is troublesome in rotary double-modulated VRG's is very similar to
the cross coupling that is troublesome in simple, rotary drive, vibratory
rate gyroscépes (see Section 5.3). In both types of instruments a torsional
oscillation of the rotating member about a rate sensitive axis at twice
the frequency of rotation causes zero-rate errors at the instrument output
which cannot be distinguished frcm angular rate inputs. Therefore any
research on bearings should be directed toward this problem in such a way
that the results are applicable to both rotary drive, vibratory gyroscopes
and rotary double-modulated, vibratory gyroscopes. One of the results of
this research should be an answer to the following question: Does rotary
double gnodulation, which includes disadvantages of both rotary and vibratory
drive instruments, have any significant advantages over the more conventional
rotary drive, vibratory gyroscopes?” A crude analysis of the non-acceleration
dependent cross coupling in these two types of instruments is presented
in Appendix C and it indicates that the answer may be ''no' in some applications.
This is because a torsional oscillation of amplitude ¢° and frequency Zwm

of the rotating member in a rotary double -modulated, vibratory gyroscope-

¢ w

e Lol 2T om . . s
dausés a zZero rate érror of — while the same oscillation of the rotating

member in a rotary drive, drive frequency output, vibratory gyroscope causes

w, ¢

L el ok d'o _

a Zero-ratée érror of Ta-'l_{— where wy = @ and aRl was defined in Eq. 4.16.
1

Since ap has a maximum value of 2 and generally is approximately 1, this

1
indicates that the magnitude of the cross coupling in the double -modulated

instrument will be approximately the same as that in the rotary drive
instrument. Admittedly this analysis is very crude and does not consider
the acceleration dependent cross coupling, which is a severe problem in
rotary drive drive frequency output instruments, and does not consider
rotary drive, double drive frequency output instruments in which the
output torques must be transmitted through the bearings. However, the
results are presented here because this is an important question which
should be investigated before any additional research is conducted on

rotary double-modulated instrum ents
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The conclusions of the previous paragraphs indicate that rotary double

modulation is a questionable practical value because:

1.

\

The types 2 and 3 cross coupling associated with rotary double
modulation cause significant zero-rate errors. Thus the
precision obtainable .in a double~-modulated instrument may
not be any better than that of a high precision vibratory
gyroscope without double modulation.

The double modulation rotation decreases the reliability of a
vibratory drive instrument because it requires bearings, a
motor and additional electronics. Also the double modulation
rotation greatly increases the power requirements of a vibratory
drive device so that the overall instrument is not a low power
device. As a result, a rotary double-modulated vibratory gyro-
scope has few advantages over conventional rotating type gyro-
scopes and perhaps also over rotary drive vibratory gyroscopes.

However, the latter two reasons are not applicable to instruments which employ

the second or vibratory type of double modulation. This is because a second

i bration should be as reliable as the first and require apprcximately the

same amount of power. Therefore, the future of double modulation in

vibratory gyroscopes may well depend on what precision can be obtained in

vibratory double-modulated, vibratory drive instruments. No experimental

research has been conducted on these instruments; however,vibratory double

modulation does not appear too promising even on paper because:

1.

A misalignment of the double modulation axis with respect

to the input axis of the basic vibratory drive configuration
being double modulated causes type 3 cross coupling. This
cross coupling is in quadrature but at the same frequency as
the angular rates which are double modulated at the double
modulation frequency (See Section 3.5.4 for a description of
the harmonic modulations that are associated with vibratory .
double modulation). Thexrefore it is necessary to use the
second harmonic double-modulation rather than the fundamental
if this cross coupling is large.

The second harmonic double modulation attenuates the angular
rate signals in the basic vibratory drive configuration being double
modulated by a factor - 2J Z(eo)- while the noise in the sensing

system and signal processing electronics is almost unchanged.
Since it is a diffiéult mechanical problem to make the double-
modulation angle 6, large, high precision is even theoretically

difficult to achieve in this type of instrument.

Second harmonic type 3 cross coupling can occur in these instru-
ments. It results foom a misalignment of the double modulation’.
axis and a non-linearity of some type that causes even harmonic
rather than just odd harmonic signals from the sensing system
transducer. This nonlinearity would not have to be very large to

be as troublesome as the fundamental cposs coupling which made

it necessary to use the second harmonic double maosilaticn hecause the: patio

R N O S SL JPP A (R T A et T v I SR V. ' R AP I
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of the Coriolis torques at the fundamental and second
harmonic of the double modulation frequency == _

*
;glf(eés;- - is a small number for most practical angles %.
Therefore it appears that high precision may not be obtainable in vibratory
double-modulated. instiruments because of the cross-coupling problem and
the signal attenuation caused by the factors Jl(eo) or Jz(eo). This is only
a preliminary conclusion and there are no experimental data to support
it but the numerical values of the Bessel functions given in Table 3.3

are certainly not encouraging.

Jl(eo)
® T1(8) T8, J';@;T
0.1 .0499 .0012 41.5
0.2 .0995 .0050 19.8
0.3 . 1483 .0112 13.2
0.4 .1960 .0197 9.95
0.5 . 2423 .0306 7.90

Table 6.3 Bessel Functions of Small Angles



CHAPTER VII

-

OPTIMUM PROCESSING OF SUPPRESSED CARRIER SIGNALS

7.1 INTRODUCTION

Suppressed carrier signals occur in communication systems, AC servo--
mechanisms, vibratory gyroscopes and numerous other instruments. In
all of these applications a suppressed-carrier, amplitude modulated signal
which is‘corrupted by noise is demodulated and filtered. The choice of
the signal processor to use for this purpose in a particular problem is always
based on the signal processing ability, cost and reliability of the different
applicable types, the designers experience and other factors. Usually,
this choice is quickly narrowed to a few basic types of signal processors
and at that time it is useful to know approximately the s ignal processing ability
of each of them. This is often determined by choosing a meaningful 'goodness"
criterion as a measure of the performance of the entire system or instrument
and then determining either analytically or experimentally the signal processor
of each type whichmaximizes the ""goodness'* criterion. These signal processors
are by definition the optimum signal processors and the numerical values of
their '"goodness'' are also optimum or maximum.

A''goodness' criterion which is often used for determining an ""optimum
signal processor' is a weighted function of the error between the actual output
of the system or instrument being investigated and the de sired output for

typical input signals and noise. Since there are numerous, greatly different

-139-
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error criteria and also numerous greatly different types of signal processors,
it is impossible to develop one analytical design procedure which is meaningful
for all suppressed carrier problems. Therefore any theoretical work on
optimum signal processing is only applicable to a small class ;_-;_f problems.
This is particularily true of the theory developed in the present chapter
because only one error criterion and only one basic type of signal processor
are considered. T his error criterion is the ensemble mean square error
and the signal processors are restricted to linear time-varying systems or
filters. This choice was made because: the minimum mean square error is
a useful figure of merit for comparing the performances of vibratory rate
gyroscopes and some other suppressed carrier systems; linear time-varying
filtars; are usually used to process the signals in synchronous, suppressed-
carrier systems and the equations which must be solved to determine the
optimum signal processor and minimum mean square error are linear and
can be solved analytically or else numerically on a digital computer.

The motiviation for this researchon optimum signal processing of
suppressed carrier signals was the vibratory gyroscope signal processing
problem in which an accurate model of the instruments is available and the
statistical properties of the input angular rates, environmental parameters,
and corrupting noise are either known or can easily be determined for a
given application. What are not always known are the optimum performance
that can be obtained from a given instrument for a given problem; and, how
to design the parameters that are relatively easy to change in that instrument,
such as the sensing system resonant frequency and time constant and signal
processing electronics, to obtain the optimum performance. Much of the

previous work done on suppressed carrier filter problems is not particularily




applicable to the vibratory gyroscope problem. This is because the systems

analyzed were either not synchronous or quadrature signals were absent or an
infinite delay which is associated with good bandpass filtering was aLllowable1
or else an elegant theory was dleveloped2 which was not applicable to

practical suppressed carrier systems in which the carrier frequency, the
resonant frequencies of bandpass filters and the phase of the demodulator
reference signal drift with time, temperature and numerous other factors.
Thetefoie: it was necessary to develop an analytical design technique

for the vibratory gyroscope, signal processing problem which takes into
account noise, quadrature signals and drifts of the carrier frequency, the
resonant frequency of the sensing system and also the phase of the demodulator
reference signal. However, since this problem is very similar to the AC
servomechanism problem and some other suppressed carrier problems,

a more general problem than required for the optimization of vibratory
gyroscopes was selected. This problem is examined in the following section.
The following chapter then applies the theory developed in the present chapter

to the vibratory gyroscope signal processing problem.

7.2 STATEMENT OF THE PROBLEM

A block diagram of the suppressed carrier problem which is analyzed

in this chapter is shown in Fig. 7.1 where

m(t) is the message signal which has an autocorrelation
function ¢mm('r) .

q(t) is the guadrature signal which has an autorocrrelation
function ¢qq('r) .

n(t) is the noise which has an autocorrelation function

¢ (7).
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w_ is the carrier frequency.

gs (§;) is the impulse response of a linear time-
1 invariant system located before the optimum
filter. . ’ -

go(t, T) is the impulse response of the optimum linear time-
varying signal processor or filter which has a carrier
frequency synthronizing signal:as an input in addition
tothe normal input. '

8¢ (‘g’l) is the impulse response of a linear time-invariant
2 system located after the optimum filter; .

d(t) is the desired output which is usually the input message
signal convolved with the desired transfer function--
gd(-r)--of the overall system.

e(t) is the error between the actual output and the desired
output of the system being analyzed.

The problem is to develop an analytical design technique which will allow
us to determine either exactly or approximately the optimum linear time-
varying filter and the minimum mean square in the suppressed carrier

problem of Fig. 7.1 when:

1. the form of the optimum filter is either completely unspecified,
which results in the absolute minimim mean square error, or
else restricted so that the minimum mean square error is larger
than the absolute minimum but the optimum processor is simpler
and therefore cheaper and more reliable.

2. the carrier frequency is not a constant but a slowly varying
random variable with a mean .of: W, .

3. the imi)ulse responses of the fixed elements are not constant
but vary slowly with time in a random manner.

4. the phase of the synchronizing input to the optimum signal processor
is not constant but varies slowly with time in a random manner.

5. the linear time-invariant filters are not completely linear but
saturate for large input signals.



The reasonslfor developing thi; design technique are to improve the design
of suppressed carrier systems and to learn more about the performance
limitations of such systems. ’
| The words exactly or approximately are used in the above problem

statement because the time and effort required to obtain exact. solutions
to practical suppressed carrier filter problems, like many other problems,
are often much larger than the time and effort required to obtain good
approximate solutions. For this reason, smlytical techhiques for determining
upper and lower bounds on the minimum mean square error in the suppressed
carrier pfoblem of Fig. 7.1 are also developed in this chapter. These techniques
are found to be very worthwhile because:

1. in most sﬁppre ssed carrier problems in which the exact solution

is difficult to obtain, the upper and lower bound on the minimum
mean square error are very close together.

2. insight as to the most important performance limitations in
suppressed carrier problems is often lost in the lengthy
calculations required to obtain the exact answers.

3.  in some practical suppressed carrier problems, such as
the vibratory gyroscope problem, it is necessary to modify -
the error criterion slightly to fit the actual problem and
this is often difficult to do in the exact formulation but
relatively easy to handle approximately.

The model of Fig. 7.1 is a good representation of a vibratory rate
gyroscope and also an AC servomechanism. In vibratory gyroscopes the
noise n(t) represents both the noise which enters in the sensing system and
the noise which enters after the sensing system from the sensing system trans-
ducer and the signal processing electronics. The power density spectrum

of this ''all purpose'' noise is

q?n 20y (s)

’m@ = §n1n1(8)+ Gf (s)’Gf (-8s) (7.1)
1 1
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where

n n, (s) is the spectrum of the noise entering at
1 the input or in the sensing system of a vibratory rate

gyroscope.

@n n (s) is the specirum of the noise entering after
272 the fixed element B¢ (§1).
1

Gf (=) is the Laplace transform of gfI(E )} which
1

is the sensing system transducer combination
in a vibratory rate gyroscope.

The analytical techniques required to solve the suppressed carrier
filter problem which has just been described are developed in this chapter.
This i2 accomplished by first thoroughly analyzing the simplest possible
suppregsed carrier filter problem of the type shown in Fig. 7.1. In this
analysis all the tools required for the analysis of more complex problenis
are developed and demonstrated. After this is done the analytical techniques
required for solving the more difficult problems involving fixed elements,
saturation constraints, carrier frequency drift, component drift and drift
of the phase of the synchronizing signal into the optimum filter are developed
one at a time. No ekamples of these more complicaied problems are given
in this chapter because the following chapter uses many of the analytical
techniques to study the vibratory gyroscope problem, Admittedly, some of
the theory developed in this chapter is not demonstrated because it appears
to be of questionable practical value except in problems where a digital com-
puter is actually going to be used for signal pro?_:essing. The reason for this
apparent lack of usefullness is that the computations required to obtain a solu-
tion in a practical problem are lengthy and the optimum performance is
difficult to achieve with signal processors other than digital processors.
Naturally there is a limit to the complexity of calculations which are practical
and when such a limit is approached in the following work it is pointed out and
when it is obviously surpassed, alternative, simpler and less exact approaches

to the same problem a¥e investigated.



-145-

7.3 FREE CONFIGURATION PROBLEM WITH IDEAL COMPONEN TS

7.3.1 Review of Linear Time-Varying Filter Theory

-

When there are no fixed elements or saturation constraints in the suppressed
carrier system of Fig. 7.1 and the components are ideal and the form of the
optimum LTV (linear time-varying) ﬁiter is unrestricted, the problem of
minimizing the mean square error is called a free configuration problem
with ideal components. Ideal in this sense means that the components in the
optimum filter and those that determine the carrier frequency and the
phase of the optimum filter synchronizing signal do not drift with time and
environmental changes but are constant. In the following work the word
ideal is omitted and unless otherwise stated it should be assumed that the
components are ideal. When all of these conditions are true, the
resulting suppressed carrier filter problem can be analyzed by using
the conventional, linear, time-varying, statistical filter theory. This theory,
which was originally developed by Booten, is an extension of Wiener%s linear
time-invariant statistical filter theory. Because the conventional iinear
time-invariant theory is probably familiar to most readers and the time-
varying theory is straightfcrward extension of it, the time-varying theory is
simply reviewed at this time rather than examined in detail. Readers who
desire more background on the time-varying statistical filter theory should
refer to References 4 by R.C. Booten and 5 by L., A, Zadeh and some of
the refereucesklisted in the extensive bibliography which accompanies the

latter reference.

3
Because this lengthly list of references on the subject exists in the literature,
only the references directly pertaining to the present work are listed in this

chapter.



The output of a linear time-varying filter is obtained by using a convolution
equation which is similar to the one umsed for linear time-invariant systems.
Two different forms of this equation are

-

o t
fo(t) = f fi(t-Tl)g(t, 7,1) d‘l'l = ffi(g)g(t- g)
o -

fi(t) is the input time function
14 o(t:) is the output time function

g(t, 'rl) is the impulse response of the linear time-varying
filter at time t to an impulse occurring T, seconds
before at time t-1,. g(t,€) is another way of writ-
ing this expressiofi. The only difference is the
change of variables § = t-T,.

In the following work the notation g(t, 7,) is used as the definition of the
impulse response of a linear time-varying filter.

When the error out of the system at time t is defined as the difference
between actual output and the desired output d(t),

e(t) = d(¢) - fo(t) (7.3)

the ensernble mean square error :a: time t is minimized when g(t, ‘rl) is a

solution of the following integral equation.
- A

)

fi(t-—TZI d(t) - f d'rlfi(t-‘rl)git, ‘rl)] =0, 7,20 (7.4)

-

This equation 8imply says that the mean square error is minimum when the
error at time t is uncorrelated with the input for all past time. It is necessary
to use ensemble averaging in this equation because the input and output auto-
correlation functions and the ensemble mean square error are all functions
of time so that time averaging is not interchangeable with ensemble averaging.

The expression for the minimum mean square error at time t is

e2 (1) = aft) () - f dr, f,(t-7 )d(t) g (t, 7))  (7.5)
o

and is always a function of time in the present problem. This expression is
immediately apparent from the equation for the mean square error and the

equation for go(t,'rl)

* The straight line is used to represent ensemble averaging.
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S
The integral equation which inust be solved for go(t, Tl) can be

obtained from the equaticn for the mean square error at time t by defining

-

gle, 7)) = g (6, 7)) + eylt, 7)) (7.6)
wheré go(t, 'rl) is the optimum filter

y(t, 'rl) is a physically realizable LTV filter
and then setting the first partial derivative of this equation with respect to

€ equal to zero. This is the conventional calculus of variations approach to

minimizing a functional.

When the correlation functions that are obtained as the result of ensemble

averaging in Eq. 7.4 are stationary (independent of time)

Ti(t-'rl) fi_(t-'rz) = ¢ﬁ(t,1'1,1'2) = ¢ﬁ(1-2-1-1)
fi(t'Tz)d(t) = q’id(t’ TZ) = ¢id(fz)

Equation 7.4 is the standard Wiener-Hopf equation and the solution can be written

as
1
GO(S) = AT(E) [rx(%]_'_ (7.7)
where A+(s) A(s) =& ii(s) = Exponential Transform of ¢ii(1'2-'rl)

A (-5) = A (s)
I's) =2 ;a(8) = Exponential Transform of ¢ 4(75)

[ ]+ = Laplace transform: or the transform - of the positive
time portion of the inverse exponential or two sided
transform: of [ | when the integration required for the
inverse transform is carried out along the s = jw axis.

G,(s) =Laplace transform of the optimum filter which in this case
is independent of time.
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The ﬁzinimum mean square error in this time-invariant problem is

—— -1
2
e(t) = 4,400 - Z° [24(s) G (8)] . (7.8)
min t=0
-1
where x is the inverse Laplace or one sided transform of the bracketed
t=0

term evaluated at t=0. Reademwho are not familiar with the Wiéner~-Hopf
equation, exponential transforms or .the spectrum factorization me thod of |
solution (Eq. 7.7) should refer to reference 6 by Newton, Gould and Kaiser.
When the correlation functions in Eq. 7.5 are not stationary, the
optimum filtering problem becomes much more difficult to solve and explicit
solutions can usually only be obtained in special cases. In these special

cases the input autocorrelation function can be factored as

dy(t, 7 = [ T h(t, )n(eer, 4 ) (7.9)

This is equivalent to requiring that 4>ﬁ(t; T) be the autocorrelatipn function of
the output of a linear time~varying filter with an impulse response h(t, €)
when the input is white noise. Unfortunately, this factoring technique is
usually extremely difficult or even impossible to carry out in most

signal processing problems with non-stationary inputs. T his is particularily
true if the input is the sum of a signal and noise. In fact, it has not yet

been shown that it is always poseible to factor any real valued, symmetric
autocorrelation function. Therefcre, in the following work on suppressed
carrier signal processing, no attempt* is made to factor the autocorrelation
function except in the special case where the autocorrelation function of the

message signal is equal to that of the quadrature signal,

£
This does not mean the author did not try to factor ¢ii(t. T).
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7.3.2 Free Configuration Problem Integral Equation

In this section and the following ones in this chapter, the integral
equation . whichvmust be solved in order to determine the optimum LTV filter
is simply stated when it is in the form of Eq. 7.4. Furthermore it is assumed
that the autocorrelation functions of m,q,n, and d (see Fig 7.1) are stationary
and all cross-correlation functions exgept ¢r1;1d('r) are zero. These conditions
exist in most suppressed carﬁer problems and when they are true the resulting
equations are much easier to write down and solve.

For the free configuration suppressed carrier problem, the integral

equation which must be solved for the optimum filter is

¢md(1'2) cos wc(t--rz) = -%;/:11'1go(t, 'rl) [¢mm('rz—'rl)+¢qq(7z-'rl)]cos wc,('rz-fl)
(e}
for T, >0
) [ ¢mm('rz-1'l)-¢qq(1'2+1'1)§cos wc(Zt-'rl-TZ)

S

| 2 Gpnlmomm)) (7.10)

and the minimum mean square error associated with the optimum filter is
2z, 3
e (t)min= ¢dd(0) - f d'rlgo(t,-rl)dimd(fl)cos wc(t'TI) (7.11)
-0
Because of the time varying term - cos ué(?.t-'rz—'rl)- in the input autocorrelation
function in Eq. 710, it appears impossible to obtain an explicit solution for

go(t, -rl:) unless
Pam (™) = 9gqf™ (7.12)

Although this appears to be a sevefe restrictioﬁ, "ti'aia condition is often
b approxiniately true for rotary drive vibratory gyroscopes, gyroscopes with
rotary double modulation and some synchronous communication systems. It
" is fortunate that it is true for these two types of vibratory gyroscopes because

in these instruments the carrier frequency is generally much lower than in other




types of instruments and therefore signal processing difficulties due to
overlapping spectra may be encountered. In other typee of vibratory
g yroscopes and other suppressed carrier problems in which ¢m’m () # 'c)qq('r),

an approximation technique must be used to solve Eq. 7.10. These tweo

cases are examined in the following sections and then approximate techniques

for bounding the mean square error are developed.

7.3.3 Special Case When ¢mm(§) = ¢qq('r)

When ¢mm('r) = ¢qq('r) the input autocorrelation function in Eq. 7.10is :".:

stationary. When a solution of the following form is assumed, the integral equation

Ve e go('rl,t) = gos('rl) sin wct + goc(‘rl) cos wct (7.13)

for go(t, T l) separates into two time-invariant Wiener-Hopf type equations,
(- <}

¢md(-rz) cos w T, = zf d-rlgoc(Tl) [¢mm(-rz-'rl)cos wc('rz--ri+ ¢nn('rz-1'l)] (7.14)

o

(cos w.t equation which must be satisfied for 7,2 0)

¢ 04Tz 8inw T, =f d-rlgos(-rl) [¢mm(1'2-'rl) cos mc(Tz-Tl)+¢nn(1'z-1'1)] {7.15)
o -

(sin w.t equation which must be satisfied for T2 0)

The reason we were able to assume the correct form of the optimum filter is

d eveloped in tke following section. The solutions of these Wiener-Hopf type

equations for the two linear time-invariant filters are

¢ (s-jwg) . ‘ .
1 md *
T (s) I * [ ]} =Im{G_. (s):
Gof#) = = [—1, m{A”(s> NE S %

A'(s) A (s)
¢ gqletio)
- 1 r 'md c _ ' :
: {A".(t-l)L A" (s) ]+} ) Im{Gi’j“’c(“)}

r—
This notation means the imaginary part of the bracketed term when s is
considered as a real pumber. Re on the following page means the real
part under the same condition,




RN RN TR

I.(s) ¢ qf8-iw.) '
1 (o 1 d c
Go (8) = — = R } = RelG .o (8)}(7.16) -
‘%(s A (s) A'(s)] o At (s) [ A (s) ] & c ’

+

1 dnglstivl). ) )
A+(S) A" (s) ]+ } = Re{ +jwc(s)} (7.17)

where

At(s) A(s) = Als) = b m(s-0g) +2_ (st ) +29 (s)

To(6) = 73 [ qle-fug) - 8 y(s+io)]= Im {8 fo-ju )
Tel8) = g [Bpale-iug) + & 46456 )] =Re (& (s-ju)}  (7.18)

L Pmalesie)

Lo (8) =
mjg Ats) A(s) 4
$ (s+jw )
G+'m (s) = +1 md- c
I®e A (s) A(s) +

The optimum filter which results is shown in Fig. 7.2. An equivalent filter,
shown in Fig. 7.3, is the more conventional representation. The two linear

time-invariant filters in Fig, 7.3 are related to those in Fig. 7.2 as

Gl (s) = 2[Re Go (s=jw) + Im(G (s-jwc) ] = 2Re G+jw (s-jwc)
c c 8 c

G:)s (s) = 2[Re Gos(s-jwc) -Im Goc(s-jwc) ] = -2Im G+jwc((q-jwc) (7.19)

An example of the optimum filters that occurs in this special case is determined

in Section 7.38.
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Cos wct
m(t) = -
3 +
att) | d(n
sin wet
Fig. 7.1 Suppressed Carrier Problem
Cos 0c'
gOc(rl) X
+
go('s’ﬁ) =
+
Ll ol x
sin wct
Fig. 7.2 Optimum Filter in the Special Case
cos wc'
X — g.oc('r')
+
—{goltr) f— = —
+

O —okins

Sin Uct

Fig. 7.3 Alternate Form for the Optimum Filter in the Special Case
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7.3.4 General Case When (gnm('r)_ ' ¢qq(1')

When the input autocorrelation function is not staticnary, the integral
"'equation: (Eq. 7.9 for ga(t,‘rl;) cannot be solved explicitly. Therefore an
approximation technique must be employed. Two approximate methods which

are applicable to the present problem are:

1. Approximate the optimum LTV filter by a discrete filter {discrete
along both the T and t axes) with a finite memory and solve the

resulting set of linear algebraic equations on a digital computer.

2. Represent the optimum LTV filter by means of a complete set of
linear timewvarying filters of an appropriate form. Then truncate
the series and solve the resulting set of linear integral equations for
an approximately optimum LTV filter.

When the optimum LTV filter is constrained to be a discrete filter with
a finite memory, the minimum mean square error is naturally larger than
when a continuous unrestricted LTV filter with an infinite memory is used.
As the memory time of the discrete filter becomes longer and the distance
between the discrete points becomes smaller, the minimum mean square error
associated with the discrete filter converges to the absolute minimum. Unfortunately,i’e
it may take a large number of discrete points to adequately approximate the

continuous filter. This practical consideration is examined after the equations

for the optimum discrete filter are derived.. .

Let us first examine the equation which must be sclved in order to find
the optimum discrete filter at time t = L This filter is a series of N impulses
along the T, axis which are separated by time Tl and have an area Tlgk(nTl)

where nT1 =T Therefore the output of this filter can be written as

N-1
£(t) = Z T, g (nT, ) (8, -nT ) (7.20)
n=0
and the ensemble mean square error at time t, can be written in matrixmstation as
VTR LAY 21
e(tk)e(tk) = ¢dd(0) - ZT1 gk(nTl) qsid(tk,nTl)] + T1 gk(nTl)[ ¢ii(tk,nTl, m'Ii)]qt(mTl)]
(7.21)
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where the autocorrelation function matrix

[ 40T, mT ] = flE - nT )] g -mT)) -
¢  (n-m) T, ¢ (n-m)T
- [, 1y 99 lycos o fn-m)T +0¢_(m-m)T] +

¢ . (n-m)T. ¢ (n-m)T
[ mm 1. .99
> :

L} cosu_ 2t-(ntm)T, ] (7.22)

is an NxN square symmetric matrix and the cross-correlation function matrix

¢id(tk’ nT)) = fi(tk-nTl)d(tk) = ¢md(nTl)cos wc(tk-nTl)] (7.23)
is an N element vector. Now in order toc find the optimum discrete filter,
the expression for the mean square error must be partially differentiated

with respect to each of the unknowns and this expression equated to zero.

5—2'— 2. . NN
e (t,) pe’(t,) ‘ pe’(t,)
0= —52_1:(5')_ Agk(O) + -—a—g—lzﬂ Agk(l) + ...+ @N-_IT Agk(N-l) : (7. 24)

Since this equation must be satisfied for all Agk(nT 1), the partial derivatives
must all equal zero to minimize* the me an square error. It can be shown that

this requires that the optimum filter satisfy the following matrix equation,
¢ 4(t, -nT )] = T,[ ¢;;(t,, nT |, mT )] g (mT,)] (7.25)

Therefore the discrete optimum filter and associated minimum mean square

error at time tk are

T, g (mT )] = [ 4,5, 0T, mT )] " & ,(t, -aT))] (7.26)

o 2aql®) - T) 4l mT ] o (6, 0T mT ] 7 g 60T ) (7.27)

This is a minimum and not a maximum because the second partial derivative
is always greater than zero.

*%k
This same equation could have been obtained by substituting the discrete form
of the optimum filter into Eq. 7.4.
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It is now apparent that an NxN square symmetric matrix must be inverted
at each point t.k in order to determine the optimum discrete filter gk(nTl).
Fortunately this task can be performed by a digital computer by’using
standard matrix inversion programs. All that must be determined are T1
and N and the interval T' along the t axis between the discrete points. This

interval is defined as

A . ,
tk+1 - tk = T', k = an integer ! (7.28)

Let us now determine some of the characteristics of the optimum filter before

analyzing these practical considerations.

Two important characteristics can be determined from the following two

equations
¢ (t.,nT. )= & (t, +2% nT )= -4 (t +—— _aT,) (7.29)
1alfx l_idtkwc’ 1) = idtkwc" 1 :
; 2w _ n
;3 (ty, mT,nT)) = ¢ii(tk+7n;’mT1’nTl) = ¢ii(tk+'6>:’nTl’ mT )

(7.30)

The first characteristic is that go(t, -rl) is periodic in time with a frequency w, .

The second characteristic is that

gk(mTl)] = -g. . (mT,)] (7.31)

k-5
Y .
Third, it can be shown that when N is‘chosen so that NT1 is an integral number
of perio&s of the carrier frequency and T' is made equal to Tl,the foliowing
rélatidnship is true. i |
N1 T _ T
[q)ii (!T,nT,rnT)] = [q’ii(-@ - tT,nTl, mTl) [Is]' £=0,1, .. .mc (7 32)
, 0 1
where [I1.] = [ 11l o] =4i+j = N)

Because of these three characteristics, when T' = T1 = T and N is chosen

so that NT is an integral number of periods of the carrier frequency
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and :there are K discrete points per half cycle of the carrier 'frequency..
it is only necessary to invert -I;(K even) or _I_(%-_l (K odd) NxN sguare symmetric
real matricies in order to determine the optimum, discrete, lir;ear time-varying
filter with a finite memory.

Let us now returr. to the practical considerations of selecting the values
of N and T to use in an actual problem. Fortunately, it is possible tc
estimate these parameters without resorting to the trial and error approach
on a computer. Since the input message is modulated at O, s it follows that
the impulse response of go(t, 'rl) will also oscillate with a frequency W back
along the T, axis in synchronism with cos wc(t-'rl). Therefore T must be

less than 'u':!— and as a first approximation it should probably be on the order

£ ¢

o 1-5wc
J >T (7.33)
10wc —_— :

Intuitively the envelope of go(t, T 1) should be pproximately equal to the impulse
response of the optimum filter that one obtains by minimizing the mean square
error between the desired output d(t) and the output of a linear time-invariant
filter in which the input is m(t) + n'(t) where n'(t) is the noise n(t) in the
frequency range around the carrier frequency. Actually we are only interested
in the time constant of this filter and it can be estimated in namerous ways.
One of the easiest is the graphical spectrum factorization method tﬂat isi'. o
demonstrated in Fig. 7.4. it is shown in this figure that by plotting log ﬁi(j“’)
vs. log wusing asymptotic approximation techniques and then observing where
the break frequencies differ from those of Qmm(jw), it is possible to estimate
the bandwidth of the optimum filter. Therefore,in this manner it is possible
to estimate the time constant ('rf) of the optimum suppressed carrier filter.
Once this has been estimated the memory time of optimum discrete filter (NT)

can be made three times this time constant as a good first approximation,
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1. Plof§“(s) = Em(s) +§n'n(s) on log log paper using asymptotic approximation

techniques.
_ _ prd
Example im(s) = 2.2
" 2,2
3 Pon €3)= 2.
loggb;;(w)
2
log (N2+'4) ‘ l /Asynptote of log %
|
|
2 2
: Y Asymptote of log 2 *N:"
! i N °
: : i I
a rf"l b . oe

2. 1F $yy(s) = F, (s the filter bandwidth is 7! and con be determined
approximately by this asymptotic appreximation technique.

Fig. 7.4 Grophical Spectrum Foctorization
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It then follows that as a good first approximation one should use

N= 10 T W, ; .
It is immediately apparent that in probléms in which the time constant of .
the optimum filter is more than an order of magﬁitudé larger than period of
the carrier frequency, N is large and the time required for matrix inversion
on a digital computer, which increases as N3 for large N, may be ‘exc¢essively
large and expensive. In these cases it is necessary to use some other method
to obtain an exact answer or else settle for‘ bounds on the mean square error.
Forfunately, in cases where N is large the upper and lower bounds that
are derived later in this section are quite close together.

A second method for obtaining an approximate solution to the integral
equation for go(t, 1'1) involves representing go(t, 1'1) in terms of a sinusoidal

expansion along the time axis. This representation is shown in Fig. 7.5 and is

®

go(t, 'rl) = Zggn_l('rl) cos (Zn-l)wct + g;.n-l(Tl) sin (Zn-l)wct (7.34)

n=1

This expansion is a valid representation of go(t, T) because go(t, T)= -go(t +£—, 'rl) =
go(t+ Z‘w—"-, 'rl) and the sine-cosine series is complete. Now instead of minirixizing
the ensecmble mean square error at all times, it is hecessary to minimize
the time average of the ensemble mean square error. This can be done by
usirig the conventional calculus of variatio}__é_ ttechnique on each of the linear
time-invariant filters in the equation for e_z-i:) whefe the second line implies
a time average. When the series is complete the resulting minimum mean
square error as a function of time is a minimum at all points. When the

series is not complete but is truncated after a finite number of terms,the

same approach is valid but the resulting minimum mean square error at anytimet

N = 100 is a reasonable dividing line between large and small although ‘some
people talk seriously of inverting matrices in which N = 2x104.
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— glc(fl) *é}

> g? (Tl)

—— g%(r') ‘

= —{ g3 (%)

. cos(2n-1wct

c
1907 x
sin(2n-)wct

' . g;n-l (z) X
1 o °
! . .
] [ ) 9

Fig. 7.5 Series Form of the Optimum Filter



is equal to or greater than the absolute minimum and therefore the time

average of the mean squai'e error is greater than the absolute minimum.
When this expansion is used the solution is quite easy to obtain in the

special case where ¢mm(1') = ¢qq(1‘) because the integral equations for

ggn-l(Tl) and ggn_l(‘rl) are uncoupled. In the more general problem when
{T) ;( ¢qq(1‘) the equations are coupled together and the solutions are

difficult to obtain. This can be seen from the following equations for g‘lz,

gi, g:n and gfn where m = 2n-1,

¢md(1'2) cos w T, = f dr, ¢11(T2-Tl)g1 (-rl) +

1 cos u)c('rz*"‘l'l)[gg("'l)"'g(l:("'l)] ! .

>0 P (7.35) .
(gc 2 Z 72242701 gin @ (1‘2+Tl)[g§(71)+g§(71)]

1 equation)

<]

cl('rz) sinw T, fd'r ((bll(frz-'rl) gg(:'rl) + )
)
. cos wc(‘rzf ™) [ g;(‘l’l) —g?(-rl)] ,
T2 0 7 %22(72-7y) (7.36)
, sin wc(TZ-i- 1'1) [ -gg(‘l'l)+ g‘;(Tl)]JJ

(gsl equation) "
[ar o (rpmr el (4
191172718\ ™)

220
cos w (1,-7)) g, 20T+ g ya(T))]
(g:;equa.tion)%- 4>Zz('rz-'rl) (7.37)
sin o (T,-7)[ g _p(7))+ g 4p(7))]

0= fd'rl by, (Tp-T g5 (r)) +
(o]

cos mc('rz-l- ‘rl) [g:n_z(Tl) + g:n+z(rl)]
(g:n equation)-é- ¢y o (T5-T; (7.38)
sin wc('rz+'rl) [g;_Z(T'l)ég:n+Z(Tl)]
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where tt»ll('t'2 - 1'1) = [¢

(T2 =Tt ¢qq(1'2-1'1)]cos w(r,-7) + 2, (7,-7))

020727 = [ Sy m(To-7y) - ¢qq(72-+1)]
m=1,3,5... odd

It is immediately evident that when 4)22(7) # 0, the integral equations are

coupled together and even when the series is truncated the integral equations

are difficult to solve in a practical problem. To make matters worse, all the
filters change when the number of terms in the expansion increases or decreases.
Therefore, this method will not be examined further because it appears to

involve more algebraic manipulations than are practical for even an academic
exercise: and, if numerical techniques must be employed, the previous method

is undoubtedly more practical.

7.3.5 Upper Bound on the Minimum Mean Square Error

In the suppressed carrier problem as well as many others, an. exact
answer is often difficﬁlt to obtain but bounds can be put on the answer with
much less difficulty. If the upper and lower bounds are not too far apart,
it is often unnecessary to solve the exact problem. We have just seen that
in the suppressed carrier optimization problem, the minimum mean square
error and optimum linear time.varying filter are difficult tc determine except
when ¢mm('r) = cbqq('r) or when the bandwidth of ’g’ét, flv).and the carrier frequency
are within an order of magnitude or so of each other such that N is less than
100 when the discrete approximation approach is employed. In other problems

the number of samples required to approximate the optimum filter with sufficient



accuracy may become so large that matrix inversion on a digital computer
is excessively expensive. Fortunately, in most of these problemf the upper
and lower bounds that.. can be determined easily and explicitly without the
aid of a digital computer do not differ greatly. This is true because harmonic
errors from the message and quadrature components can be filtered out when
the carrier frequency is much larger than the bandwidth of the modulating
signals and the delays of 2:“7 imposed by sampling demodulators do not
cause significant errors. ‘

-An upper bound on the minimum mean square error in the free
configuration suppressed carrier problem can be determined by using sampled

data theory. When the input signal fi(t) in Fig. 7.1 is sampled twice per cycle

when sin wct = 0 and the sampled pulses alternate in sign and then these pulses
are passed through an optimum discrete time-invariant linear filter and the
output held between samples, the resulting mean square error establishes an
upper bound on the minimum that can be obtained using an unrestricted linear
time-varying filter. This system is shown in Fig. 7.6. The equation for the
optimum discrete filter in Fig. 7.6 is
H (2 )- —— [B2l], (7.39)
A(z) A=)
= AL
where ANz) = émm(z) + @nn( z)
I‘(Z) = de(z)
atz) = A (271
.

zZ =€ (.Uc

L=

nn(-z) rather than § (z) is correct because the samples alternate in sign.
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This equation is simply the discrete version of Eq. 7.7for a Wiener type optimum
filter. Readers who are not familiar with this z transform notation or
sampled data theory should refer to any sampled data text or Reference 7
by DeRusso.
Once Ho(z) isknown, the minimum mean squareerror at the sampling

time, t = nT, is also known. It is

-1
2
(T) = 4,400 - aZ: {Parml®) H,(2)) (7 40)
t=
-1
where Z means the inverse Laplace or z transform of the positive time
t=0

portion of the bracketed expression evaluated at t = C.

When the output of the discrete filter is held between sample times,
the mean square error increases from a minimum at the sample time to a
maximum immediately before the next sample. At atimet=nT + A the

equation for the mean square error is
@

eZ(nT+4) = ¢dd(0)-zf ¢ (mT+4 b (mT) +

m=0

[ [ BT Dl T+ (0 (e T] (7,40
0

m=0 n=

where T = (—:—r— . Therefore if the following two conditions are true
- c

tmd(z) = Qmm(z) Gd(z)

¢ (T = M2 P il

the mean square error at time t = nT+Ais




-bA

-1
e?(nT+4) = ¢34(0)-(2e -1):% §_g(2)H_(z). (7 42)

Therefore the time average minimum mean square error can be obtained

by averaging Eq. 7.42 over the interval 0< Asg— and this average is approximately
c

equal to

t
eZ(t) = by400)-(1- BT) 2 {(4gegte) B} - (7 43)
€ t-=0

In this manner an upper bound on the time average of the minimum
mean square error can be obtained in a free configuration suppressed
carrier problem. However, this bound will be unnecessarily high when the
spectrum of n(t) is flat over a frequency band much larger than the carrier
frequency because the sampler cannot tell the difference between noise occur=
ring at a frequency wcamlnoise occurring at odd harmonics of . Therefore
in order to improve the bound it is necessary to add a low pass filter in
the noise channel (see Fig. 7.6) with a cutoff frequency larger than the
carrier frequency. T his filter, if located in front of go(t, -rl), would greatly
increase the calculations required to obtain a solution but would have a negligible
effect on the spectra of the modulated message and quadrature if the cutoff
frequency is larger than the carrier frequency plus the bandwidth of the
modulated signals, Therefore it can be placed only in the noise channel.

since we are only interested in bounding the answer.
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7.3.6 Lower Bound on the Minimum Mean Square Error

-

A lower bound on the minimum mean square error in the free configuration
suppressed carrier problem can be obtained by using an ideal demodulator
like the one shown in Fig. 7.7. This demodulator consists of a sinusoidal
sensitivity function and an ideal bandpass filter which eliminates all harmonics
resulting from the modulated m(t) and q(t) signals. Followmg the demodulator
is a linear time-invariant optimum filter which is designed in the conventional
manner to minimize the time average of the ensemble mean square error.

The equation for this optimum filter is

1 T (8)
G (8) = — 7.44
ol® N [A‘(s)]+ {7.449

where

As) = (s) + @ (s+jwc)+ an(s-jwc)
I'(s) = 28 (s)

The resulting time average mean square error is

G (a) ] s)
md( (7. 45)

e?(t) = ¢dd(0) - .Z‘

and it establishes a lower bound on the time average of the minimum mean
square error in the free configuration suppressed carrier problem. An
example of the lower and upper bounds that one obtains in suppressed carrier

problems is worked out in the following section,
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m(t)
o =
n(t)—IFILTER LM, —s Ho(2) —f I-e%c e(t)
Lo——--1 S
+
att) m(t) d(n
Sin wet
m(t)
i 3r
let1et —
o 1 V4.4 [ —
We
Fig. 7.6 Sampling Demodulator and Optimum Discrete Filter
\ .
H(j -
| ('1”4)_'%%—- Gols) e(t)
+
d(t)

Fig. 7.7 Ideal Demodulator and Optimum Linear Filter
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7.3.7 Examples of the Developed Methods

Example 1. The example which is examined first in the section is the
suppressed carrier filtering problem when there is no unmodulated noise

at the input and the autocorrelation functions of the message and quadrature
signals are exponential. In the speciai case of this problem, when message
and quadrature autocorrelation functions are equal, the optimum filter can
be determined by applying Eqs. 7.16-7.18. The steps of this procedure

are outlined below.

bm(™) = dg(m) = &7
2

%am!®) = EOEET
) -2 B -4(s+a)(s-a)
Als) = 2Re {zs-r-wc)(.su-fwc)} " (FTHje e+ 1-ju J(s-TFju Ns-T-ju )
where a.2 a wg +1

de(s) = Qmm(s)

(s+14!;jwé)(3+1-jwc) 2(5‘1+j“’c)(s"'1'jwc)

G, (o) = Re { 2(s¥ay BoTTa {5+ 176, )(5-2) 1) =1
wc(s-a)
GOS(B) = Im {Same} = ‘l'—(]—.m-(-s-;zy
ez(t) :'-T%-_Z sinz wct
'ei(t) —t - L, e >»>1
1+A+wc2 %

Although this is a relatively simple example, several important conclusions

can be drawn from the answers. The most important of these conclusions

are listed on the following page.
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The optimum LTV filter is not impractical to
build because it consists of two multipliers and a

phase shifter similar to the one shown in Fié. 5. 2.

The way in which the optimum LTV filter minimizes the
ensemble mean square error is by cancelling out the harmonic
errors from the message and quadrature signals by using two
demodulation channels. Although this demodulation scheme
will also work when ¢~mm(1') £ ¢qq('r), the mean square

error will not be minimum because it is possible to do

better by using higher harmonic terms in the expansion

c;f Eq. 7.34, ‘;ihis will become apparen* when the bounds on
the minimum mean 8quare error in the present problem are

determined.

The time average of the minimum mean square error
is not small and the major errors are due to harmonics
from the message and quadrature signals which are not

perfectly cancelled. The errors due to the quadrature signal

¢ .(0)
is approximately ‘_q_%___ for w, > 1 because

t
~|Ty-1, | ¢ (0)
€ 2 1 go(t: Tl)go(t: TZ) = __q%__

r
d:qq(O) f d'l-1 J d‘rz
o o
Therefore if this same filter is used in a2 problem .
in which the message and quadrature are related as
o bgq(™) = ko (7)
then the time average mean square error will be approximately

e (t)

k+1

w
[

ne
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4. The optimum filter allows some quadrature cross coupling
in order to minimize the mean square errcr. _Although

this cross coupling is small in the present probiem because

' w

Goliw) = - ﬂ%aﬁ;~+ 'Z'Ef:_)
it demonstrates one of the major limitations of the
ensemble mean square error criterion in suppressed carrier
problems. T his limitation is that harmonic errors are
weighted the same as noise errors, quadrature cross-coupled
aerrors and message distortion errors. Therefore in some
problems the mean square error criterion may not be a
good error criterion to use because harmonic errors which
occur far outside the message spectrum are generally
not nearly as troublesome as the errors that appear at the

output at the same frequencies as the message signals.

Let us now examine the bounds that can be put on the time average minimum
mean square error in the present problem. Obviocusly the lower bound is 0
and when no quadrature signals are present this performance can be realized

by using an optimum filter with an impulse response

© ~.

go(t, 'rl) = -2 5(1'1) Z(_I)Zn-l cos(Zn-l)wct
n=1
This performance is considerably better than that of the optimum filter determined
for the special case where ¢mm('r) = ¢qq(‘r) because with that filter the mean
square error is approximately ZIT when no quadrature signals are present.
The upper bound on the time avcerage mean square error can be determined

by using 1)sa.mp1ed data theory . Since the input i# assumed to be free of noise

* The symbol[ is used to represent the phase angle of Go(s) when s = ju .
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the optimum filter in this case is a simple sample and hold circuit and
Ho(z) =1

gt 7) = x{m =

At the discrete sampling times the mean square error is zero and at

the time A away from the sampling time the mean square error is

K- 2[1-e"# ], 0cac &

Therefore by averaging over A, the time average mean square error is

found to be w
==t Tw_
e”(t) = 2{1+L——3]=-1,w >> 1
(Dc Cc

m
w

c

This indicates that the bound is off by a factor of approximately win the

special case when the autocorrelation function of the message and quadrature
signals are equal. However, when the quadrature signals are very much larger
than the message signals the bound becomes much better and the optimum filter
approaches a sample and hold demodulator.

In conclusion, it has been shown that the time average of the ensemble

mean square error in a suppressed carrier problem in which

& (1) =
bngl™ = bt = eI
is between the limits Tt
T
0 <e“(t) < oo 2l

where the lower bound represents the case where the quadrature signals

are much smaller than the message signals and the upper bound represents the
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case where the quadrature signals are much larger than the message signals.
In between these two extremes when the spectra of the message and quadrature
signals are equal, the time average of f._he minimum mean square error

is approximately wc-l for W, >1, In si;;uations other than these three, it

is necessary to usethe discrete approximation method of Section 7.3.4to

determine the exact answer.

Example 2. The second example which is examined in this section is the
suppressed carrier filtering problem when there is gaussian white noise at
the input and the autocorrelation functions of the message and quadrature
signals are exponential. The purpose of this relatively simple problem is to
demonstrate the fechniques for bounding the error va.n.d also to remove the
impression which might have been obtained from the pervious example that the
algebraic manipulations required to obtain the exact answer and the upper
bound are relai:ively simple.

Let us first consider the problem in which the spectra of the message
and quadrature signals are equal and the mean square value of the noise is NZ.

-2
? m(8) = Qqq(s) =8 4(8)= G-

& (s) = N°
2
_ . 2,  2N"(stct+jd)(stc-jd)(s-ct+jd){s-c-jd)
A(s) = ZRe {Qmm(s-chHN } ~ s+ ch s+l- wc 8- +ch S8ml]- wc
2 2A 2 1
where d"-c™ = - (1+ &7)

2, 2A 2 2, 2
d“+c” = (1+wc)(1+wc+ ;\1-2)

2(1-ju )(s+14j w )
Z

Goc(s) +j Go (8) =

s N°[(1+e)*H(d®-ud)-2ju_(1+d)] (stcHjd)(s+c-jd)

When one attempts to find each of the optimum filters and then determine the

minimum mean square error it soon becomes apparent that even in the special
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case in w}iich,)¢mm(1') = ¢qq(1‘),. thg time required to obtain exact solutions
to actual problems is long. Therefore let us examine the bounds that can
be put on the time average of the minimum mean square error.

The upper bound on the time average of the ensemble mean square

error in the present j:roblem can be determined by using sampled data

theory.
¢ _ (1) =e" |
= =27
l-e
8 (z) = ¢ (ar) 2" =
mm n; mm (1-e~Tz" ") (1-e"Tz)
2
¢ (") = NTf L7l
where f is the bandwidth of the noise
=) D1 - e T
n=-® o 2(1+e” 2" )(1+e™ Tz)
2 -8T, -1 -gT
N (l-e )(1l-e z)
A(Z) = 'Y
(1-e~ Tz 1)(1-e " Tz)(14e Es 2~ ) (1+e " 7z)
2, -T -Zf'r -2T
A N7fe “(i- )-e” ( -e )
where vy = ZNTe“I"'
(e ETsetET) & N 2¢1-e~2T) (1462 T)42(1-e" 2 T)(14+e 2T
‘ sz --r(1 eﬁgf«r)-e-fT(l-e'ZT)
H () - (l—e-ZT)(l-e'(fﬂ)T)(l-e:'sz)
° N* (l-e-lg*.I)T)(l—e'gTz)

_2.__

When one attempts to determine H (z) and e“(t) for various values of NZ,
f and w, it soon becomes apparent that the time required to obtain an
upper bound on the time average minimum mean square error in these

problems is also long. Therefore let us examine the lower bound.
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The lower bound on the mean square error in this same problem
can be determined by using the method of Section 7.3.7. The steps of the

procedure are outlined below

-2
Qmm(s) = W = ¢md(s)

’

8 (s) = N
2
_ 2N?(s-b)(s+b)
Als) = = ry(e-D)
2 A 1
here b2 2 1+
wnere -Nj
G (s) = (s4l) -4 _ 2
o T NP (ep) (BHINE-BL NZ(b+1)(s+b)
-1
t
2t) =1-eZ =2 g

o NO(b+1)(s+b)(s+1)(s-1)

It should now be apparent that this method is by far the easiest of

the methods examined in this chapter to apply to actual problems. Also
the filter time constant is approximately equal to the time constant of the
optimum filter (b = c). However, it must be kept in mind that the answer
is only a lower bound on the minimum mean square error and not an exact
answer. Furthermore this method completely neglects harmonic errors

which is undesirable in some problems but desirable in many others.

7.3.8 Summary

All of the mathematical 'tools' required to solve either exactly or
approximately the problem of minimizing the ensemble mean square error
in suppressed carrier problems have now been presented and all except the

finite memory discrete approximation method have been demonstrated.
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It was shown in the second example of Section 7.3.7 that determining the
absolute minimum mean square error or an upper bound on it is a time
consuming task even in the. special case when (bmm(f) = ¢qq(1’). It was

also shown that the ensemble mean square error criterion may not necessarily
be the best criteribn for some of the suppressed carrier problems of interest
because the harmonic errors in suppressed carrier problems are large and
the error criterion weights them equally with the cross~-coupled errors, the
errors from the unmodulated noise and distortion errors. Unfortunatel y it

is impossible to change the weighting of the various errors in the exact
method of analyzing the problem. However, in the approximate methods
presented for bounding the time average of the ensemble mean square error,
the harmonic errors are neglected or weighted with 0 which is the other
extreme. In the vibratory gyroscope problenr and many other suppressed
carrier problems this latter weighting is preferable to the former

because the harmonic errors which occur at even harmonics of the carrier
frequency are relatively unimportant compared to the errors which occur

at the output at the same frequencies as the message signal. Therefore in
the following sections the method developed for establishing the lower bound
on the time average minimummean square error is impraved Bo. that it can be
used to determine a ''practical', approximately optimum, LTV filter and the
time average mean square error associated with it when the harmonic errors

from the message and quadrature signals are neglected.
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7.4 PROBLEM WITH FIXED ELEMENTS LOCATED BEFORE THE SIGNAL
PROCESSOR

7.4.1 Unrestricted Optimum Filter Problem

When a linear time-invariant fixed element is located in front of the optimum
LIV filter as shown in Fig. 7. 8, the integral equation which must be solved

for the optimum filter is

E[d £ gfl( €200, qlT253) cos  w {t-T,-8,) = (7.46)

@

fd§2fdglﬁ-rl gfl(gl)gfl(g 2) go(t’ Tl)[ ¢11(x) + ¢22(X) COQ . iwc ,(Zt-Tl-TZ-gl-gz)
o o o T
where ;%) = [¢mm(x) + d)qq(x)]cos wx+2¢ (x)

¢22(X) = [ ¢mm(X) - ¢qq(x)] T _( e - .

X

13
T2tS2-T 0 h
where gs ( 51) is the impulse response of the fixed element. The associated
1
minimum mean square error is

e (t) = d)dd(O)-fd-rlfd §1 gfl(gl)go(t,'rlwmd('rl- §1) cos wc(t-'rl- €1) (7.47)
min o) o

As long as the fixed element is ideal, realizable and minimum phase (all

poles and zeros in the right half of the s plane) and the optimum LTV filter

is unrestricted, 4 fixed element does not impose anylllimitations on the system
because the optimum filter simply cancels'out the poles and zeraswith equal
zeros and'poles so that thé problem returns to the free confiéuration problem
which was examined in Section 7.3. When the fixed element is non-minimum
phase or a time delay this cancellation requires that the optimum filter have
poles in the left half of the s plane or prediction capability--both of which are
not allowable. Therefore when these fixed elements are in a system they cause
the minimum mean square error to be larger than it would be in a similar but

free configuration system.

e
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When the fixed element is a time delay, all the methods presented in
Section 7.3 for determining go(t, 'rl) either exactly or approximately and the
methods for bounding the time average of the minimum mean square error
are valid if ¢md('r) is replaced by ¢md('r+ td) wher'e ty is the delay time. When
the fixed element is non-minimum phase and ¢mm('r) = ¢qq('r) the optimum
filters can be determined by usingA Eqgs. 7.17 and the following éxpressions which

have a subscriptlinstead of A,I‘c andI.
Af(s) &) (s) = &(s) = G¢ (s)Gy (-8)Ms)
rsl(s) _ Gfl(-s)I"s(s)

I‘cl(s)z Gfl(-s)l"c(s) (7.48)

where Gfl(S) is the Laplace transform of gfl(‘::l). When ¢_  (7) £ ¢qq('r)
and there is a non-minimum phase fixed element gfl( 51), it is necessary to
approximate the optimum filter by a discrete filter with a finite memory and
solve a set of algebraic equations in order to determine go(t, 'rl) and the
minimum mean square error., The equations are not presented here because
they are easily derived from Eqgs.7.26 and 7.46and they have questionable
practical v;alue because of the complexity of the solution and the lack of actual
problems which fall into this classification. Usually the non-minimum phase

fixed elements in suppressed carrier problems are caused by some kind of

time delay and are best treated as such.

7.4.2 Restricted Optimum Filter Problem

A problem which arises quite often in suppressed carrier systems which

involves fixed elements located before the signal processoristhe following, A
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suppressed carrier signal, fi(t)’ is passed through a bandpass filter

in which there are a fixed number of poles and zeros with adjustable
numerical values. The output of this filter is then demodulated by a
demecdulator that consists of a multiplier with a sensitivity function p(t)
followed by a linear time-invariant filter. as shown in Fig. 7. 9. In some
problems the final. filter and sensitivity function may assume any form while
in others--such as the AC servomechanism problem in which a twe phase
servo motor is the demodulator--either or both may be specified. The
problem is to optimize the system by properly choosing whatever is not
fixed so that the time average of the ensemble mean square error or some
other similar error criterion is minimized.

If the sensitivity function of the demodulator is defined as

p(t) £ zazn_lc°5[(2n-l) w t-V] (7.49)

n=1
where {is the phase angle between the cos wct modulating signal and the
sensitivity function, the following equation can be written for the time average

of the ensemble mean square errdr..

t 00 [o-]
e2(t) = ¢dd(0)"b[d72.[d g, q?md(TZ- gz)gfl( £5) 8(T,) a) cos(u (€ ,-¥) +

- o
3 2
4, ) La _jco8(2n-1)g (r,+t,)-
%‘ fdTlded§1d§zgo(71)go("'z)gf1(él)gfl(ﬁyz) 1 poyen-l etz |
o -

af cos{u.é(g 5 € 1)—2'1:}

g =)

A

¢y ()

A

z Hn-1%2n+1°°° Zn‘”c("z"rl)',
n=1

cos w, (§2+§1)JJ

(7.50)
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Fig. 7.9 Fixed Element Before a Restricted Signal Processor
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Fig. 7.10 Practical Sensitivity Functions
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where

¢, = [ 8 00) + ¢ (] cos wx+ ¢ (x)
8y200) = 7 [ 460 = & ()]
x= (48, - Tm8))

By using the conventional calculus of variations technique on this expression,

the following integral equation can be obtained for go(Ti) when it is not

specified -
:[ aE58¢ () 4, (T2 E5)a) CO8 (i € 5o =
. S he bracketed
: same as the brackete
f dglde?.del g (5))g (%) 86T term in Eq. 7.50 ] (7.5
o o 0

This equation’ can be solved for go(-rl) in terms of the coefficients ayi-1
and the unknown parameters of gfl( gl) by using the conventional spectrum
factorization approach* Then the time average of the minimum mean square
error can be determined in terms of the same unknowns ~and this expression
minimized by choosing the optimum values for the unknowns, Unfortunately,
this require‘s a great deal of time and patiencg evén if n is a small number.

Furthermore in most practical demodulators the coefficients a, are usually

n-1

constrained because practical sensitivity functions are rectangular as shown

32n+1  2n+l
in Fig. 7.10 and the fastest they fall off is in the square wave where -;—;——I— =5="
N

Therefore let us take a step backward and away from this elegant mathematical
solution and intuitively examine the sensitivity function problem. First, if
g5 (g 1) ié a bandpass filter so that the spectrum of the signal into the multi-

1

plier. is band limited or approximately band limited, this signal can be written as

£1(t) = [m(t) + n;(t)] cos (wct-‘b)-i-[q'(t)«i-n'(t)] sin(® t-1) _‘. (7.52)

This technique cannot be used to determine the optimum gfl( 1) if it is
completely unspecified because of the terms {os w( ot 1) in Eq. 7.50.

o~
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where ¢Q- »-Gfl(j ué) (7.53)

and m'(t), q'(t), n'(t) are functions of m(t), q(t), n(t) and the bardpass filter.

Now when fi'(t) is multiplied by p(t) in Eq. 7.49, the following terms re;ult.

©

f{(t)p(t) = al[m'(t)+n'(t)]+z azn_l[m'(t) +n'(t)]+a2n+1[m'(t)+n'(t)]}cqu(nwct-‘IJ)

n=1

+ Aa.zn_ l[ q' (t)+n'(t)] -2, 4 1[ ql(t)+nt(t)]} sinZ(‘nwct-d;)

(7.54)

It is now apparent that the power density spectrum of the input to the
linear time-invariant filter, go('rl), _has large components centered at
frequency and the even harmonics of the carrier frequency. Therefore
the output of go('rl) also has power predominality at these frequencies.
The problem is to reduce the harmonic power by the proper or optimum
selection of the coefficients a1 and the filfer transfer function. When the
filter transfer function containshand rejection characteristics at the
harmonics this is a difficult optimization problem because it is necessary
to factor the bracketed term in Eq. 7.51 and follow the previously outlined
procedure. In practice, however, it is usually impractical and unnecessary
to use band rejection filters at the even harmonics of the carrier frequency
because the harmonic signals are usually filtered sufficiently by | - |
simple low pass filter and the other components in the system. When this
is the case, the coefficients a1 should be chosen to minimize the time
average mean square harmonic error at eachtaf 'the harmonics. This is

accomplished when the coefficients are related in the following manner.
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22n+1 - | ¢;'nm(o) B ¢:;q(o) a-1 (7.55)

= - -— - -

a . TS T o+l
2n-~-1 , 4’1':1m(°) + %q + 24’1'm(°)
where

%0+ 41,(0)
S () Y (U]

When the Fourier coefficients of the sensitivity functions are related in this
manner, the time average of the mean square harmonic error from the
bracketed term in Eq. 7.54 is minimized and the sensitivity function can

be written in a closed form as

2(1-A)cos “’ct 2a(l+a) cos w.t

p(t) = > = > vi .
(1+A7) - 2Acos cht (1+a")+(1 -0 )coszwct (7.56)
This is an approximately optimum sensitivity function for problems of this
type in which the input signal to the signal processor is bandlimited and the
filter following the sensitivity function does not have band rejection charac;
teristics at even harmonics of the carrier frequency.

In a special class of problems of this type in which ¢21§(T) = 'yq;;nm(T)
and q;nn(T) = 0, 'p(t) is the optimum sensitivity function. This class of
problems has been analyzed by Booten and Goldsteinsin some detail; how-
ever, they did not obtain the explicit solution for p(t) which is given by Eq.
7.56 when a =v. In this special case the sensitivity function approaches an
impulse train in which the impulses alternate in sign. when ¥ >> ! and when
vY<<1 it approaches (cos wct)'l. In between these extremes, when =1,

it is equal to cos wct as Booten and Goldstein pointed out.
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Now that the sensitivity function problem is understood, it is necess ary
to return to Eq. 7.52 and examine the effect of the bandpass filter on
¢mm(0), ¢' (0) and q)' (0). If the noise n(t) is flat around the carrier
frequency and the bandpass filter has an adjustable bandwidth but is con-
strained such* that the gain bandwidth product is approximately constant,
d’nn( 0) is proportional to product of the filter time constant and an(jmc)
while ¢'mm( 0) and ¢;1q(0) are proportional to the product of the square of
the filter time constant and ¢mm(0) and ¢qq(0) respectively as long as the
filter bandwidth is greater than the bandwidth§ of the power density spectra
of the message and quadrature signals, Therefore, A,a and p(t) are func-
tions of the bandwidth of g f (§ ) so the sensitivity function cannot be
determined independently of gf (g ). However, if the filter following the
sensitivity function does not have band rejection characteristics, the har-
monic errors generally are much less important than the other errors in
the problem. When this is true the optimum parameters of gf1(§1) and
the optimum filter go('rl) can be approximated by using the method of
section 7.4.4 and then ‘an approximately optimum sénsitivity function can
be determined. It must be kept in mind that these two methods are only
applicable in problems in which go(-rl) does not have band rejection

charcteristics.and the input fi'(t) is band limited.

* See Eq. 4.9 and associated discussion,
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When the filter go('rl) contains band rejection elements, p(t)
is not the optimum sensitivity function but only an approximation to it.
However, the determination of the optimum sensitivity function and the
optimum filter is a hezrendms problem in this case. Therefore let us
examine the bounds that can be put on the minimum mean square error

by using the techniques developed in Section 7.3.5 and 7.3.6.

7.4.3 Upper Bound on the Minimum MSE in the Restricted Problem

An upper bound on the minimum MSE in the restricted problem of Fig. 7.9
can be determined by using sampled data theory and assuming the cutput of
gfl( g 1) is sampled twice each cycle of the carrier and then passed through
an optimum discrete filter and held betweeh sampling pulses. The equation

which must be solved for the optimum discrete filter is

1 Iz)

i} 7.57
“alz) A7(2) (7.57)

I-Io(z) = ]+

‘where Alz) = 8__(2) Gl;l (z)GfI; (z-1)+§qq(z)G}’. (z)Gfi.(z-1)+§nn(—z)G£(z)Gf(z'l)

I(z) = & d(z)Gfﬂ(z)
Gzi(Z) = [Re e'jbfi(s-jwc)]*

i b . %
G (0) = [1e "Gyt -suy)
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¥ Means the z Transform of the Bracketed Term

z=e"sT,T=—E— 7 -

e
These relations can be determined by representing an impulse train with

pulses that alternate in sign as

i(t) = { cos(2n~-1) w t (7.58)
n=1

and an impulse train with pulses that are all positive as

i(t) = % + ZCOS anct (7.59)
: n=1

and then applying trigonometric identities to the sampled output of g, ( El).
1

The minimum mean square errér associated with the optimum discrete

filter at the sample times is

-1
0T = 439(0) - &L tagy(e) G (o) Hfe (7.60)

and the time average MSE can be determined in the same manner as in

Section 7.3.5 by averaging over the period between samples. This number will

be in terms of the adjustable coefficients of the bandpass filter. These coefficients
can then be chosen to minimize this upper bound on the time average mean square
error. A meaningful minimum will usually exist because as the bandwidth of

the bandpass filtcr increases the errors due to overlapping spectra increase

while the errors due to the cross coupling between m(t) and q(t) decrease.

When a sampling demodulator is used, which is quite often in practice, the
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optimum parameters for the bandpass filter and the minimum time average
mean square eryor:: are xnown. When cther types of demodulators are
used, these parameters for the bandpass filter will not be exactly optimum
but not too far from it as long as the input signal to the demotiulator is band
limited. Since Eqs. 7.57 and 7.60 are generally orders of magnitude
easier to solve than Eq. 7.51, these small errors may be overlooked if

one is only seeking an approximate answer,

7.4.4 Lower Bound on the Minimum MSE in the Restricted Problem

The lower bound on the minimum MSE in the restricted problem of
Fig. 7.9 can be determined by using the ideal demodulator approach examined
in Section 7.3.6 and shown in Fig. 7.6. The equation which must be solved

for the optimum linear time-invariant filter which follows the demodulator is

1 ¥(s)
G _(8) = (7.61)
o™ Fe) [A“(s)]+
r r . i
where Mo = #..,(s) Gy (s) Gy (o) + L) dfi<s) Ge (o) +

2R { @nn(s+j wc)[ Gfl(s-j wc)-;-Gfl(-s-l-jwc)]}

Ks) =28_,(8) GF (s)
1

G; (5) = Re [ éj¢Gf§S-hjwc)]
Gfi;(s) = Ll ‘;j\be](l”j w)]

and the time average minimum mean square error associated with the filter is
-1
2 1
e“(t) = ¢,4(0) -z{ 2 gm(8) GF (8) G (s) (7.62)
e dmi 1

I3
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The two transfer functions G; (s) and G;l(s) are the envelope transfer func-
1 .

tions for the message and quadratire signals respectively and are functions

of Gf (s). The minimum mean square error and Go(s) are also functions

1
of G; (s) and it is necessary to choose the variable parameters of Gfl(s)

so that tke value of:z(_t). determined from Eq. 7.62 is minimum. Be-

cause of the nature of the épprox‘lma.tion, however, this minimum will

often occur when the bandwidth of Gfl(S) is as large as possible because

the cross-coupled errors decrease as the filter bandwidth increases while.
the errors from the noise n(t) can usually be filtered equally well before or
after thevsinusoida.l sensitivity function.. This is not true fn all problems
though. In problems such as the vibratory gyroscope problem which is exam-
ined in the following chapter, wide band noise enters after the bandpass
filter so that the preamplification of the message signals with respect to

this noise is proportional to the bandwidth of the bandpass filter, In prob-
lems of this type the optimum parameters for Gfl(s) are not those associated
with the largest bandwidth,

The difficulty which has just been encounteread arises because over-
lapping noise spectra are not troublesome when a sinusoidal sensitivity
function is used while they are troublesome when practical sensitivity func-
tions are used, Fo:.; this reason the lower bound on the minimum mean
square error which is obtained by using Eqs. 7.61 and 7,62 -is: low and
the bandwidth of the bandpass filter may be larger than optimum. Fortun-
ately it is possible to improve this bound in a relatively easy manner by
addiﬁg more noise to the exp&ession for A(s) in Eq. 7.61. The exact
expression which should be used for the noise in Eq. 7.61 is the noise

term in the brackets of Eq, 7.51. The.time domainiexpression for all

the noise in A(s) is
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2 *
¢ (%) & (T) gfl(’il) gfl(gz) ; agn_l cos (2n-1)w (7,-7,)

-

where

x=7, -7 +§, - §,

The transform. of the new components of this term is

G (s) 2 a ? (7 8n(e-ime ) Gy (-s-jmw ) Gy (stime ) +
m=odd 1 1

1 : : j
3,5,7... > an(s-fjmwc) Gfl(-S+mec) Gfl(S'mec)

where the bracketed term can be simplified as either of the following expression

R {¢,,(s-jm0 ) Gy (-s-jmuc) Gy (s4imc)}
or

R {6 posHimoc) Gy (3-jmu) Gy (-stim,))

1

as was done in Eq. 7.61. This term could now be added to A(s) in Eq.
7.61 but this would only result in an unnécessarily complicated solution.
Therefore, let us again step back from this elegant mathematical solution
and intuitively examine the present problem.

In most practical problems Gfl(S) is a bandpass filter such that Gfl(.s+jmwc)
is proportional to mc-l or wc-Z for m larger than unity. Therefore, if the
bandwidths of the message and quadrature signal are much smaller than
W the higher harmonic noise terms can be approximated as
Qr;n(jmwc) _Gf( -jmwc) Gf(jmwc) and all but the first few harmonic terms

dropped. Since these noise terms are just -numbers it means that the only

change in Eq. 7.61 is that a constant defined as N is added to A(s).

%
The a, term is already in Eq. 7.61 so it is not included in the following
equations.

v
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When this is done, Go(a) and e (t) are functions of the variable parameters

of Gfl(s) and it is necessary to determine the values of the variable
parameters which minimize the time average of the mean square error. If
the coefficients a  are specified this is a relatively easy problem. However;
if the coefficients are not specified but are chosen to satisfy Eq. 7.4,

it is necessary to use an iterative type of solution to determine the
approximately optimum parameters of G fl(s), Go(s) and a_ . Although

this is a more difficult problem to solve than .he one that was presented
earlier in this section, it is orders of magnitude easier to solve and

the solutioﬁ is usually much more pratical than that which is obtained by
solving Eq. 7.51. However, because of the approximations made with
respect to the harmonic noise, the answer can ne longer be considered

a bound. Instead it is an approxina te solution to the problem of minimizing
the time average mean square error in the restricted problem of Fig. 7.9
when harmonic errors from the message and quadrature signals are neglected.
Since this error criterion is better for analyzing many problems than

the conventional mean square error criterion which weights the harmonic
errors equally with the other errors, it is used in the vibra;tory gyroscope

example of Chapter VIII.

7.4.5 Summary

Most suppressed carrier problems with fixed elements located
before the signal processor can be analyzed by using the methods
developed in this section. The exact solution to the problem of minimizing
the ensemble mean square error is difficult to obtain but an approximate
solution which minimizes the time average of the ensemble mean square

error but neglects harmonic errors from the message and quadrature signals
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is relatively easy to obtain. No illustrative examples are included in this
section because they would only duplicate the vibratory gyroscope example

of Chapter VIII. Furthermore the methods used to obtain the solutions

are the same as those used in the simpler examplesworked out in Section 7.3
and therefore need not be demonstrated.

7.5 PROBLEM WITH FIXED ELEMENTS LOCATED AFTER THE SIGNAL
PROCESSOR

When linear time-invariant fixed elements are located after the optimum
filter as shown in Fig. 7.11, the conventional linear time-varying filter theory
is no longer directly applicable because the output of the fixed element at time

t, is a function of the optimum LTV filter for all past time. In the problems

k
previously studied the output was only a function of the optimum {ilter at time

t, so the calculus of variations could be used on the expression for the

k
ensemble mean square error to determine an integra.I equation ©. ot L

for go(tk, 1'1). However, because of the periodic nature of the optimum filter
in the present problem an approximate solution can always be obtained

by minimizing the time average mean square error and an exact solution can
be obtained in the special case where _¢m.m(1')k = ?qq(T).

It should be obvious that wheP the fixed element, gfz(gl), is minimum
phase it does not have any effect on the minimum mean square error because
the optimum filter can cancel out the poles and zeros of the fixed element with
equal zeros and poles and the problem returns to the free configuration
problem of Section 7.3. When the fixed element is a time delay it can be
handled in the same way as a time delay’ before the optimum filter which

was discussed in Section 7.41. Therefore the only problem of interest

is the one in which a non-minimum phase fixed element; such as
_ B=a
sz(S) = 3Fa: (7.63)

is located after the optimum LTV filter.
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In the special case where ¢mm(x) = ¢qq(x) and a sinueoidal expansion
form of go(t, 'rl) is used, the following two integral equations must be
solved for g, (rrl) and g, (7,) in order to minimize the time average of

e 8 - :

the ensemble mean square error.

,{:di zgfzygz”’md(fz +5;) cos 0T, =

7 a5 dz,07 8¢ (5))8¢ ()% 1(:)['g,ob(rl)cos (56 M, (7))t 0 (5-8))]

o

(7.64)

J 95285, (52) bnalmotRety T, =

o

%fd§1d§zd"13£2(§1)gfz(§2)¢l1(")[ -g’o-b(Tl)sin wc(§2-§1)+g°(s'rl)cos wc(ﬁz-il)]

(o]

where ¢y () = ,i_ [ ¢ )+ 4>nn(x)] cos wx+ ¢ (x)

X = (-rz+ €, -7 - §1) (7.65)

These equations can be put into a form which can easily be solved by adding
+j times the second equation to the first one. The solutions of these two

modified equations are

¢ (s-ju )Gf,(-s+jw )
G_(s) = Re { - md "% 2 <.} (7.66)
G (s-jwc)é (5) G-(s-jwé)A-(s)
G_(s) = Im {Same Term} (7.67)
where Gy (344,) Gy (-s=ju)) = G (40 )G (s43)

. . + . - .
sz(s-ch)GfZ(-s+_]wc) =G (s-ch) G (s-ch)
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It is much easier to solve these equations in the form of optimum filter

-

shown in Fig. 7.3 in which case

¢ qf8) Gf,(-3)
GL(s) = Re {— +1 md ” z 1.} (7.68)
¢ ~ G'(s) A'(s%ju) G(s) A(stjw )
Gy(s) =Im {Same Term} (7.69)

When gf (§) is minimum phase, G ( 8) = G (s), and the term [G (s)]"1
factors out of both equations as expected When the fixed element is non-
minimum phase this does not occur and the minimum mean 8quare error is
larger than in thefree configuration problem.

In the general case when 4> (x) ¥ 4> (x) and non-munmum phase fixed
elements are located after g, (t, 71),11: is necessary to approximate the
optimum LTV filter by h discrete linear timednvariant filﬁersand h periodic

multipliers. This can be done because
2m m
go(t' Tl) = go(t"‘a;'—. 71) = "‘go(t+u'§_: Tl)
c c

The approximate LTV filter is represented as

h-1

BtaT) = ) Tg@T)p g (7.70)
k=0

where pk(t) is the periodic waveform shown in Fig, 7, 12,

The error at time pT can now be written as

h-1
e(pT) = d(pT) - Z Z T[f (pT-nT-mT)] Z g? (mT) g k(nT)
n=0m=0 k=0

(7.71)

RE R PV R R
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cos wet
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sin wct

Fig. 7.11 Fixed Element Following the Signal Processor
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Fig. 7.12 Periodic Multipliers
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where g5mT) = go(r,)py (7)) (7.72)

and g_q(nT) = -gn_q(nT) (7.73)

The time average of the ensemble mean square error can now be minimized

by using the calculus of variations.

h-1
Es_g—%ﬂ ( Z 'ez(pT)) i=0,1,...h-1 (7.74)
i p=0

This differ.entiation produces a set of h linear matrix equations in terms
of the h optimum linear time-invariant filters. These equations are
derived in Appendix D. In order to determine the h optimum filters it
is necessary to solve the h equations simultaneously. This can be done
on a digital computer but the compﬁtation time is propecrtional to N:"‘h3
fof large N and h where N is the number of discrete points in each of the
h discrete filters. Therefore in most practical problems the computation.
time required to obtain a solution will be very large.

At this point it is interesting to note that this same technique can
be used to solve some problems in which the fixed element following the
optimum filter is linear time-varying. If the fixed element can be represented

as a periodic multiplier followed by a linear time-invariant filter and

the multiplier has the characteristics

m(t):m(tf%l)= _-m(t+-‘—ul)
c c

then the multiplier can be lumped with pk(t) and a solution to the

problem obtained. Although this is a severe restriction on the form .:
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of the fixed element there is at least one important problem
that satisfies it. It is the AC servomehcanism problem in which a

two phase motor is the fixed element.

In conclusion, a method for determining the optimum LTV f{ilter and
minimum en"semble mean square error in suppressed carrier problems with
fixed elements following the optimum fllter haé been derived. Unfortunately,
it appears to be of questionable practical value unless a digital computer
is going to be used as the éigx:al processor because the computation time
required to obtain a solution is long and it may be difficult to realize
the optimum filter without a digital computer. The ti.me average of
the minimum mean square error in this problem can be bounded by using
the techniques of Sections 7.3.5 and 7.3.6 but when thése methods are used
the problem is simply that of a linear time-invariant or sampled data system
with fixed elements Since this problem has been thoroughly analyzed by
Newton, Gould and Kaiser6 in the continuous case and by DeRusso7 in

the discrete case it is not reviewed in this section.

7.6 SATURATION CONSTRAINTS ON SIGNALS FOLLOWING
THE OPTIMUM LTV FILTER

In practice, components such as amplifiers and motors saturate when the

input signal or its derivative is large and when this occurs the output is no longer



linearily related to the input and the performance of the systemis usually
degraded. It is often desirable to know approximateiy how well a system

will perform with a given saturating element so that the most reliable and
economical system can be built, Intuitively, the optimum system shouid adapt
to the magnitude of the input signal but such a system is.not linear and is be;rond
the scope of the present work. If we confine the optimum filter in a system with

a saturating element to be a linear filter it is impossible to solve the

sectionsof this chapter because when an element saturates the output is no
longer linea.ﬁly related to the input. Therefore it is necessary to use some
other approach or reformulate the problem so that the present techniques are
applicable. .

Newton’has shown that it ig possible to analyze the performance of
linear time-invariant systems with saturating elements by constraining the mean
Square value of the Baturating signal to be equal i:o or below a certain value.
This approximate technique is useful because constraining the mean square
value of a signal limits the percentage of the time the element ig saturated.’
Furthermore the eqdations that must be solved when this technique is employed
are sim;lar to those of the free configuration problem and the 8ame techniques
cﬁn be used to solve,them. These equations arise because the: pmoblem of
minimizing the mean 8quare error and constraining the mean square:value of a
saturating signal is a minimization problem which can be solved by using |
the calculus of variations and Lagrange multipliers, The way in which this
problem differs from the free configuration problem is that the input and error
are no longer uncorrelated and the optimum filter which is obtained by solving
the Wiener Hopf type equation contains Lagrange multipliers ih it. These 4

multipliers--one for each constraint--are independant of time and must be

evaluated such that the constraint is sa.tiafied and the mean équare error
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value of the saturating signal and the mean square error are plotted as
functions of the Lagrange multipliers. -

This same technique can also be applied to the suppressed carrier
filter problem; however, the calculations involved quickly get out of
hand. This can be reasoned by analyzing the system; shown in Fig. 7.13
where gss(gr,l) is the saturating element. If we attempt to minimize the
mean square error at all time and also constrain the mean square value of
the saturating signal fB ::(t) to be less than or equé.l to a constant, the following

functional must be minimized

Flg (6, 7)), d)] = e2(t) +p(t) £(1) (7.75)

where p(t) is a Lagrange multiplier which is a function of time. By using
a discrete approximation for go(t, 'rl), gfz(g 1), gs(fl) and p(t) it is possible
to determine an optimumvdiscrete filter by using the methods developed in
the previous section; however, this filter and therefore the mean square error
and mean square vé.lue of the saturating signal are all functions of the discrete
values of the Lagrange multiplier. Therefore it is necessary to determine the
discrete values of the Lagrange multiplier which satisfy the saturation constraint
and minimize the mean square error which is an extremely difficult non-linear
prE)blem.

Since minimizing the mean square value of a saturating signal is actually
a substitute problem for the actual problem of constraining the magnitude
of the saturating signal, it is not too unreasonable to choose another substituke
problem in the hope of reducing the complexity of the solution without seriously -
degrading the significance of the results. One possible alternative is to
constrain the time average of the saturating signal. When this technique is

employed it is necessary to minimize the following functional
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cos wct
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Fig. 7.13 Saturating Signal Following the Signal Processor
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t t
F{go(tv Tl)’ ] = ;2-(:‘) + pfs (t) - (7.76)

where P is a constant rather than a function of time. An optimum discrete
filter can now be determined by using the method of Section 7.5 and Appendix D

by replacing the matrix

Qo

Qo
{ dg, gfz(gz)/;dgz 8, (%) [ 4;0,m, 5)]

in Eq. . D, 14 by the following matrix.

© ) o oo
{{dél gf2(§1>{d§z B () + _{ dg) g, (51) _{ds',_ Eg(5'5) } 4, (i,n,3)]

In the special case where ¢mm(1') = ¢qq(1’) an explicit solution can be obtained
but in other problems it is necessary to solve a set of h matrix equations
simultaneously. Therefore the required computation time will be large
because it ig necessary to solve the problem for several values of p in
order to determine the value which minimizes the time average of the mean
Sfquare error and also satisfies the saturation constraint. Therefore it is

doubtful that this analytical technique has much practical value,

The saturation problem of Fig. 7.13 can be analyzed by the approximate

methods of Scctioms7.3.5 and 7.3.6 in order to obtain bounds on the answer.

time-invariant or sampled data system with a saturating element. Since
this problem has been thoroughly analyzed by Newton, Gould and Kaiser® in
the continuous case and by DeRusso7in the discrete case it is not reviewed in

this section .

CACEIE TN S TR A A it
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7.7 RANDOM DRIFT OF THE CARRIER FREQUENCY

7.7.1 Optimization without Fixed Elements ' .

The carrier frequency in most suppressed carrier problems drifts
in a random manner at a rate that is usually quite slow with respect to the
bandwidth & the siéﬁal being modulated. The errors caused by this drift
are often large and must be allowed for when designing a system.
(e.g., lag compensa;,ting in AC servomechanisms by using second order resonant
filtér:s,.: is almost impossible in practice aithough it is theoretically fine
as long as the carrier frequency and components of the filter are constant .l)
The effect.‘"of random frequency drift on the optimum LTV filter and minimum
mean square error in the suppressed carrier problem of Fig. 7.1 is investigated
in this section by making the carrier frequency a random variable, w, which
is constant in each ensemble mamber. The only difficulty with this approach
is that it considers only the amplitude statistics associated with the frequency
drift and neglects the time statistics. In most practical problems, however,
this does significantly affect the results when the mean square error
criterion is used because it means that terms such as ¢_ (%) ¢__ (7)are
approximated as ¢mm('r) ¢ww(0)' where cbww('r) is the autocorrelation function
of the carrier frequency which is generally much wider than the autocorrelation
function of the modulated signals.

Since a carrier frequency reference signal is available to the optimum
LTV filter, it is unreallistic to require a fixed optimum filter whi:ch does
. not adapt in some manner to a change in the carrier frequency. Therefore two
methods of adapting are analyzed. The choice of the procedure to use in study- .

ing an actual problem will depend on the type of signal processor being used.
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The best possible ada.ptiv§ filter for a suppressed carrier system
is one that responds to changes in the carrier frequency by scalfng the
optimum filter along both the T, and t axes.. When this occurs the optimum
filter is a function of the carrier frequency and it is necessary to averé.ge‘
over @ in order to determine the ensemble mean ;quare error. However,
in order to obtain a meaningful average it is necessary to average the errors
out of the ensemble members when the phase of the carrier frequency reference
signals into the optimum signal processors are the same. Therefore it is

necessary to write the error at time t from an ensemble member as

[~}

e(t) = 4{t) - f d-rlgo(t,'rl)[m(t-p,-rl)coa wc(t-’rl)-l-q(t-u-rl)sinwc(t—-rl)+n(t—m'1)] (7.7%)

w

Al 7.78) "
S (7.78)

where u
is a stochastic scaling factor along the T axis which is used so that the
optimum filters in each ensemble member are identical. This eguation.can
be useid tozabtain angkpression for the ensemble mean square error and
then the calculus of variations can be used to obtain an integral equation
for go(t, 1'1). When this is done, the only difference: between the integral
equation and Eq. 7.10 :is: that the correlation functions must be averaged

over the random variable p in the following manner.

00

f duplp) Hux) = $(x) (7.79)




where p(u) is the probability density function of the random variable u.

This averaging does not change the value of the correlation function at x = 0
but it does at the other values of x, These changes are most easily

understood by considering the power density spectra of ¢(x) and ¢*(x). -

If ¢(x) is exponential and the mean frequency is w 8o that u-l

= 1, then
the spectra are equal at s = 0, theij¥ areasmre equal and the spectrum of
¢'(x) falls off faster at lowr;frequéncies a. dower. af high frequencies than
the spectrum of ¢{x). In most practical problems this is an insignificant
change. Therefore the minimum mean square error should not differ

significantly from its constant frequency value when the optimum filter

adapts perfectly along both the T 1 and t axes.

Unfortunately,it is often impossible or unpractical to use filters
that resPOhd ‘tn this perfectly adaptive manner to changes in the carrier
frequency: Besides digital computers which can be programmed to be
perfectly a&aptive in this sense, the next most adaptive LTV filter 8 are
synchronous demodulators which are not followed by band rejection filters
or preceded by band pass filters or else LTV filter s which employ
synchronously switched elements. As long as there are no fixed elements
preéeding a LTV filter of these types, the minimum mean square error in these
systems should not change significantly when the carrier frequency drifts.
However, when there are fixed elements in problems of this type the
mean square error does change significantly when the carrier frequency

drifts. This problem is analyzed in Section 2.7.2.
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The leaqt adaptive type of filter to be considered is one that ecales
only along the t axis in synchronisi:. with the carrier frequency: Although
this type of scaling is usually unreallistically poor, it is briefly analyzed
because it establishes an upper bound on the minimum mean square error
in synchronous suppressed carrie:ﬁ' systems. With this type of scaling the
optimum LTV filters are the same in all ensemble members and the
conventional calculus of variations techniques can be used to obtain an
integral equation for go(t, 'rl) . The only difference between the integral
equation and Eq. 7.10 is that the cosine terms must be averaged over the
carrier frequency w with the product ut considered a constant, ~When plw)
is gaussian with a mean of W, and a variance o Z’ the ave;aging results in the

following expressions

i 0_2. 1_2
dwp(w) cos w(t-'rz) = e Tz cos (t-'rz) (7.80)
: 2 2
- (1'2-1'1)
dw p(w) cos w(fz—'rl) —e 2  cos wc(‘rz-'rl) (7.81)
-0'2(1'2+1'1)2
dwp(w) cos w(Zt-'rz—'rl) =e cos wc(Zt-u'rz-'rl) (7.82)

Since the exponential terms in Eqs 7.81 and 7.82 are not equal, the optirpum
filter is unable to get a sample of m(t) in the past without getting some !
quadrature croes coupling. Therefore the minimum mean square ‘error

will increase as expected When pumerical methods are used to sc;lve

the integral equation for go(t, T 1),, the exact expressions for the averaged
cosines shouid be used. However, when an explicit solution is sought in

the special case when-~ .¢mm(‘r) = ¢qq(‘r), the autocorrelation function in Eq. 7.81

should be approximated as an exponential autocorrelation function which

falls off faster than the original autocorrelation function.
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The least adaptive type of filter to be considered is one that scales
only along the t axis in synchronisi:. with the carrier frequency. Although
this tyj:e of scaling is usually unreallistically poor, it is briefly analyzed
becausé it establishes an upper bound on the minimum mean square error
in synchronous suppressed carrier systems. With this type of scaling the
optimum LTV filtere are the same in all ensemble members and the
conventional calculus of variations techniques can be used to obtain an
integral equation for go(t,'r 1). The only difference between the integral
equation and Eq. 7.10 is that the cosine terms must be averaged over the
carrier frequency w with the product ut considered a constant. When p(w)
is gaussian with a mean of w, and a variance o 2, the averaging results in the

following expressions

2_2
c T .
dwp(w) cos m(t--rz) ze Zz cos (t--rz) (7.80)
-0'2(1'2-?1)2
dw p{w) cos uT —1'1) =e Z cCoB W ('r --rl) (7.81)
-0 (1' +-|-1)z
dwp(w) cos m(Zt-‘rz-‘rl) =e 2 cos wc(Zt-'rZ--rl) (7.82)

Since the expor;ential terms in Eqs 7.81 and 7.82 are not equal, the optimum
filter is unable to get a sample of m(t) in the past without getting some
quadrature cross coupling. Therefore the minimum mean square error

will increase as expected When numerical methods are used to solve

the integral equation for go(t, 'rl), the exact exbressions for the averaged
cosines shouid be used. However, when an explicit solution is sought in

the special case when- ¢ ('r) = ¢ ('r), the autocorrelation function in Eq. 7.81
should be approximated as an exponential autocorrelation function which

falls off faster than the original autocorrelation function.
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v7 .7.2 Optimization with Fixed Elements

In most practical suppressed carrier systems there are fixed
elements which precede f:he pignal processor and also the signa.l'
processor is some type of synchronous demodulator. Therefore the
problem is the same as shown in Fig. 7.9. When the fixed element. is
a linear time-invariant bandpass filter, the minimum mean square error
may increase considerably when the carrier frequency drifts. This is
particularily true when significant quadrature signals are present (as in
vibratory drive, vibratory gyroscopes) or when the standard deviation of
the carrier frequency is a significant fraction of the filter bandwidth
(as in AC servomechanisms with lag compensation). The effect of frequency
drift in these problems can be analyzed by allowing the carrier frequency
to be a random variable which is constant in each ensemble member. Then
when the method of Eq. 7.44%s used to analyze the problem, the introduction
of a stochastic carl'rier frequency makes it necessary to average the following

terms over W,

¢_4(1,-8,) cos (&E,-¥)
¢ mlT2t8,-T;-5y) cos (wil—dz)gfl(%l) cos (w’éz-*)gfl(%z)
“"qq(fzﬁz‘ﬁ'gﬂsm(“’%“’) gfl(gl)sin(wﬁz-\lr )gfl(ﬁz)
bnlT 7 -8)) c08 dTp=T ) (518 (D)
If the probability density function of wis known, these quantities can be
averaged; however, with mosi practigal probability distributions the

resulting expressions are in formsithat make it impossible to obtain

explicit solutions for the optimum or approximately optimum filter and associated

3 T
When the discrete approach to analyzing this problem is used to obtain a bound

or else the exact answer when a sampling demodulator is used, the equations
that result are the discrete versions of the equations presented in this section.
Therefore they are not presented separately.
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‘time average of the ensemble mean square error. Therefore it is necessary
to use some approximate method to solve the .equationa. A convenient
approximation is to represent the probability density function of y as
a finite set of discrete impulses Beéause when this is done the optimum
or approximately optimum filters can be determined by the spectrum
factorization techniquef

'~ When the Probability density function of the carrier frequency is
approximated as a finite set of discrete impulses #nd the method of Section 7.4.4
is used to find an approximately optimum filter, Eq. 7.61 must be solved and

Als) and I'(s) must be averaged in the following manner.
As) =8 1) T pic‘gl (s,Awi)Glf'l(-s, dw,) (7.83)
i
+ éqq(s) zi:PiGil(s, Awi)Gil(-s, Awi)
+ 2Ref }_;Pi 2 (50, Gfl(s-j wi)Gfl(-s+jwi) }+ 2N

(8) = zi:Pinl(s, Au) (7.84)

>

where w,

. =W+ Aw,
i CAwl

P,
i

1]

Proba.bility that ¢ = w
-~}

N & n{fl 21: 2P & _ [j(2n+1)wi] Gy [—j(2n+l)q] G [j(2n+1)wi]

In most problems N changes very little with frequency and can be considered

@ constant. The most important changes are in the averaged terms involving

G; (s) and G; (8). These changes are most easily understood by examining the
1 1

fixed element used in Chapter I¥ to describe the resonant sensing system of a

vibratory rate gyroscope,



Gy (8) = 5 2 | (7.85)

If ¥ = 0 the appr oximate envelope transfer function for the message and

quadrature signals are given by Eqs. 7.86 and 7.87 respectively.

_c;fr (s, Aw) = Re { eIV Gy (s=jo,) } = ":'."(’..v*’ 2) (7.86)
1 1 2
2[ (s+a)“+ &uf]
2
' . 8 -2wAw
Gif' (s,00,) = Im{e"”Gf (8-juwy) } = — c7 L y) (7.87)
1 1 4w'c[(s+a) +Aw;]

where & W + Aw i and it is assumed that w, > é, a, and Auzi. The following

two important conclusions can be drawn from these equations.

(1. GI; (s, Aw i) is a good low pasas filter if and only if(a) inFg, 7.85
1
- is larger than Aw,. For this reason lag compensation
is extremely difficult to achieve in AC servomechanisms

with resonant linear time-invariant filters.

(2 The quadrature cross-coupling which appears at the output
is proportional to Aw, . For extremely small frequency

drifts A“i <a, the ratio of the two transfer functions

A
Gfl(s' Awi) sz - ch Au.zi
T = (7.88)
G fl(s, Aw i) ch (s+a)
Aw
is equal to ( t ) at 8 = 0. Therefore the low frequency

:131’.

quadrature cross-coupled errors are proportional to
Aw,
q(t) ( 7;‘-’—) which is the same relationship that was

determi.r;ed in Section 5.2. 4.
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If the probability density function of wj is approximated as two
impulses of area.-é- at frequencies w_ + Aw, where Awis the RMS ...
valuae s of w , then the averaging which is required in Eq. 7.83

is relatively easy.

S B.GF (s, a0,) GF (-8, As, ) = -(sta){z-a) 7.89)
L FiCg (e B Gp -8, By, af (s+2)% + Aw?][ (-s+a)°+Au”] (
‘ 4,2, 2 ,
S P, Gi (s, Awy) G} (-8, M) = Wl il - (7.90)
N 1 1 16[ (s+a)“+ Av ] [(«8+a)” + AuF]wc
2P, G, “(s,Am) = —2+2 | . 7.91
i T st + A | 794

. B C ok
The noise term cannot be averaged unless the noise spectrum is known.

This problem is analyzed further in the following chapter and was presented
here only to show that it is relatively easy to perform the averaging if a

discrete probability density function is selected for the carrier frequency.

7.7.3 Conclusions

By using the analytical techniques developed in this section, the
effects of carrier frequency drift on the optimum filter and minimum
mean square error in a suppressed carrier problem can be determined.
When harmonic errors are relatively unimportant compared to cross-coupled
errors and noise errozs, as in vibratory gyrescopes, the method of Section 7.7.2
should be used. This method is relatively easy to apply if a simple probability
density function is used for the carrierfrequency. In the following chapter
the effect of carrier frequency drift in vibratory gyroscopes is ﬁnalyzed

by using this analytical procedure.
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7.8 RANDOM DRIFT OF THE BPIXED ELEMENTS

The characteristics of any fixed element vary with time, environmental
parameters and other factors. When the fixed elements are in linear systems,
these changes or drifts cause the poles and s@os of the transfer function of the
linear system to move in a random manner in the s plane. Usually, these
changes are relatively small and are not troublesome if good components and
designs are used, However, if the poles and zeros of the transfer function
are located near the jw axis in the s plane in order to obtain band pass or band
rejection characteristics, a random drift of the poles or zeros parallel to
the jw axis can cause important errors in ca.rrierAsystems. Fortunately, the
time constants ;ssociated with these drifts are generally very long com-
pared to the widths of the autocorrelation functions of the signals so it is
possible to introduce this problem into the model of Fig. 7. 1 by assumir;g
that the fixed elements are constant in each ensemble member. Then the only
changes that occur in the integral equatiensthat have been developed in previous
sections are that terms containing the impulse response of the random fixed
elements must be averaged. If a discrete probability density functicn is
selected for the fixed elements, this is a relatively easy problem to solve. How-
ever, in practice the most troublésome fixed elements are band pass filters
and their resonant frequencies generally drift but the damping remains
approximately constant, When this is the case, the drift can be statistically
added to the carrier frequency drift since the differential drift between the
two is really the important drift in carrier systems. Then the analytical
techniques of section 7.72 can be used.which is an even easier method of

analysis,
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7.9 RANDOM PHASE SHIFTS ON THE REFERENCE SIGNAL

In the suppressed carrier problem of Fig. 7.1, the optimum filter is
synchronized with the carrier frequency modulating signal. In practice,
the phase of the reference or synchronizing signal is usually adjustable so
that the best quadrature rejection and signal reception can be achieved in a
given system. Unfortunately, the phase of the synchronizing signal with
respect to modulating signal is not always constant and the reference signal
may be noisy. Both of these imperfections can cause significant errors in
suppressed _cari'ier systems. The statistics associated with the random
component of the phase shift are usually very slow because they are due to
material aging and temperature variations while the spectrum of the noise on
the synchronizing signal varies from problem to problem.

In vibratory gyroscopes, the noise on the synchronizing signal is usually
quite small'fnd can be ne glected in most well designed instruments. The
random component of the phase is also small but cannot be neglected because
of the large quadrature signals that usually are present. The effect of this
randomness on the optimum filter and minimum mean square error can be
analyzed by using the model of Fig. 7.1 and adding a phase angle 6(t) to the

modulating sinusoids as

sin @t — sin [wct + 0(t)]

cos w_t = cos [wct + ot)]

When this is done, the sinusoidal terms in the integral equation (7. 10) for
go(t, 1'1) become
a) ¢ 4 (-rz) cos [wc(t-Tz) - e(t-'rz)]

b) ¢,,(T,) cos [w (rp-7) + e(t-'rl)-e(t--rz)]

¢) $,5(T2) cos [w (2t-7,-7)) + 6 (t-T})+8 (t-7,)]
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These expressions must be averaged over 6 since 6 is a random variable in
the problem, This averaging can be done by assuming that 6(t) is constant in
each ensemble member and then averaging over the ensemble as was done

in the pfevious two sections or the time statistics of 6(t) can be introduced

into the problem by using the small angle approximations,
sin6 = ¢

: o2

cosgs ® = 1 - 35

When this iatter approach is used and terms involving products of angles to
powers larger than 2 are deopped, the following relationships are found for

the expressions in Eq. 7.10,

o2
a) ¢md(1'z) [1 - T] cos (Dc(tn‘rz)
b) _ ¢11(‘rz =T - ?1— ‘#’_ee(TZ'Tl)] cos . (7,-7))
7 .
c) ¢zz(‘rz-1'l) [1- e“- ¢ea(72-71)] cos wc(zt-'rz--rl)

These expressions can be used in Eq. 7,10 to obtain the optimum LTV
filter and minimum mean square error when the harmonic errors are

weighted equally with the other errors. When the harmeonic errors

Sections 7.3, 6 and 7.4.4. When there are no fixed elements in the system
the answer isg obvious and need not be discussed. When there are fixed
elements and a syn;hronous demodulator is used so that the problem is

similar to that shown in Fig. 7. 9 , then the effect of phase shift drift



(7.92)

where *o steady or average component and A9 {s the random Component which ~¢=
has 3 zsro mean. When thig is done and Ap is assumed to be constant in each .
ensemble member, the only terms in Eq. 7.61 that change are G;'I (s)

and G}I(“). Wh~n smal} angle approximations are made

8in AS = A6 (7.93)

2
Cos A9 = 1. A79—- =1
the following €Xpressions are obtained,
r r ' i
Gt (8,40) = G (s) + As G (s) (7.94)
1 1 1 :
Gt (8,40) = G (a) - A8GE (s) (7.95)
f1 f1 fl . . .

When the method of Section 7.4.4% {g uged to find an approximately

optimum fiiter, Eq. 7.61 must be solved ang A(3) and I'(3) must be

Eq. 7.96 and the quadrature signal is no longer q(t) but is q'(t) given by

m'(t) = m(t) + Ap (t) q(t)

™) = b (1) + bgp(T) PqqlTI™ (7.96)

bound or else the exact answer when a sampling demodulator ig used, the
eéquations that result are the diacrete ver sions of the equations presented

in thig section. Therefore they are not pPresented Separately,
*
* K A% is sassumeq to be a constant in each ensemb]e member, then $gg must

be replaced by As”,
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q'(t) = q(t) - A {t) m(t) (7.97)

" -
$gq(T) = dgq(T) +600(T) by (T)
where
dnigi{T) = bmg(™) = 0 (7.98)
. :
When these relati onships are used for the inphase and quadrature autocorrela--

tion functions and -

A92<1
A =0

one obtains the same equation for the optimum filter.

7.10 SUMMARY OF OPTIMUM PROCESSING OF SUPPRESSED CARRIER
SIGNALS

An‘analytical design technique has now been developed for the suppressed
carrier problem shown in Fig. 7.1. By using it one is able to determine
1. the optimum LTV filter to minimize the ensemble mean square error
at all times when harmonic errors from the message and quadrature
signals are weighted equally with the other errors.
2. the approximately optimum restricted LTV filter to minimize the
time average of the ensemble mean square error when harmonic
errors from the message and quadrature signals are neglected.
3. an upper bound on the time average of the minimum mean square error.
4. a lower bound on the time average of the minimum mean square error.
In problems ir which harmonic errors zié& as important as the other errors,
- one should use the techniques developed for obtaining the exact answer. How-
ever, in other problems the harmonic errors may not be important on the
form of the signal processor may be restricted. In either of these cases the

techniques developed for obtaining the approximately optimum LTV filter should

be used.




CHAPTER VIII

EXAMPLE OF AN OPTIMUM FILTER .
FORA VIBRATORY RATE GYROSCOPE

8.1 INTRODUCTION

Most vibratory rate gyroscopes can be represented by a block diagram
similar to the one shown in Fig. 8.1. However, in some ingtruments

1. a position or an acceleration gensitive transducer may
‘be used rather than the velocity sensitive transducer
that is indicated,

2. the sensing system may be designed so that the resonant
frequency does not coincide with the carrier frequency but
-is an order of magnitude or so awé.y so that the transfer
function of the fixed elements is flat around the carrier
frequency, or

3. feedback may not be used around the sensing system to

change the bandwidth.

Because these numerous different schemes exist, it is impossible to analyze
one model and draw conclusions about all of the different types of sensing
schemes. With _tbis in mind, let us now thoroughly examine one example.
Admittedly, one is a small number of examples, but recall that the primary
purpose of this work is to develop an analytical design technique for suppressed
carrier problems, such as vibratory gyroscopes. The theory was developed

in the preceeding chapter and this chapter simply demonstrates how to

apply the theory to one type of problem that occurs in vibratory gyroscopes:
This example was selected because it cannot be solved by just plugging

numbers into the derived equations but instead it is necessary to mbdify

one of .the analyticdl techniques slightly to fit the problem.
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The foll‘owing example is analyzed by using the approximate method
of Section 7.4.4 to minimize the time average of the ensemble nifean square
error using a restricted form of optimum LTV filter. T his error criterion
and form of the optimum LTV filter are used rather than the straight mean
square error criterion because:

1. the harmonic errors that result from the message and
quadrature signals in vibratory gyroscopes are generally
much less important than the errors that occur at the output
at the same frequencies as the rate information.

2. In most practical vibratory gyroscopes, the carrier frequency
is more than 10 times the bandwidth - of the applied angular
rates so overlapping spe>ctra are not troubleséme although:
they still cause significant mean square errors.

3. The signal processors generally used in vibratory gyroscopes
are similar to the restricted form of signal proéessor shown
in Fig. 8.1. If the instrument is a two axis instrument,
then two demodulators are used but generally they are both

similar to the one shown in Fig. 8.1.

8.2 VIBRATORY DRIVE, VIBRATORY RATE GYROSCOPE EXAMPLE

In vibratory drive, vibratory rate gyroscopes, the major source
of long term drift or very low frequency noise at the output is unwa/.r;ted
cross coupling between the drive member and t}'xe sensing system. As was
explained in Chapter V, this noise is primarily caused by the signals produced
by
1. Inphase cross-coupled torques.

2. Quadrature cross-coupled torques which are not perfectly

discriminated against in the demodulation process.
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The spectra of the output signals caused by the cross coupling is generally
extremely narrow and centered around DC and cannot be filtered electrically
if the instrument is to be a ''rate'' gyroscope with response tc zero frequency.
Therefore these crossv-coupled, zero-rate errors, which can be written
approximately as

Q.. =Q

Aw
e 4 + Qq(A0+ ZQs T)

from Chapter V, must not be introduced directly into the equation for
the mean square error because when they are, they force the transfer charac-
teristics of the optimum filter--Go(s) in Fig. 8.1~-to be very small at low
frequencies, When the cross—coupled, zero-rate errors are omitted and the
method of Section 7.4.4 is used to analyze the problem, the major sources
of error are additive noise and message distortions. These errors are functions
of the bandwidth of the resonant sensing system which is determined by the
gain in the feedback loop. Since fhe cross-coupled, zero-rate errors
are also functions of the bandwidth of the resonant sensing system, an
optimum bandwidth can be determined by adding the two types of ¢xxrors: and
determining the minimum of the sum. This method is demonstrated in the
following example in which

m(t) = inn(t) + Qd(t) where Qin(t) is the input angular rate which

has an autocorrelation function of e”
a = one half the bandwidth of the resonant sensing system without;féedback

h = one half of the bandwidth of the resonant sensing system with feedback.
This is the parameter we are attempting to optimize.

nl(t) = noise in the sensing system which is assumed to be negligible
compared to the noise in the signal proceesing electronics.

nZ(t) = noise in the signal processing electronics which is assumed
to be white and 10 times larger than the noise that would occur
at the point it enters because of thermal fluctuations of the sensing
system components

p(t) = square wave serisxt1v1ty function because the Fourier coefficients
decrease faster with this waveform than with other pract1ca1
sensitivity functions.
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Now we can write down the following expressions from ChaptersiV and VII

-2

] ~ (8) =
Qinn..in ls-IHs-l-lS

10N

2
! o N 0/hr)
2 2 radian/sec

§n nz(s) -

2 a

= Amplitude of the thermal fluctuation
noise spectrum

N,

& (s) =8 (8) G ,(8)
mad'® Qin“ins al®

Gd(s) =1

When the method of Saction 7.4.4 is used, it can be shown that it is necessary

to solve Eq. 7.61

1 I(s)
G _(s) =
o' als) ats) T

)

where
- 1 (s-a){s+a)
Als) = s-1)(s+l)(s-h)(s+ + ZN'Z (s-h)(s+h) + 2N
o]
1 .2 102
N = SN )[L = 0.2*N!
2'\2n+ T 102_*‘(2114_1)2 J 2
n=1 .
2

T(s) =aony (e II(s-RY

Let us now define ’
A 2.4Nf2 (s-b)(s-c)(s+b)(s+c)

Als) = —EIT(s-RI(eF1)(5¥E)

2 2
where b2+ c2 2 #a’+1)+0.8(h+1)
4.8 2

. -1
2 24 N'2 + 422 +0.8h

bre” = 13

Tilis number is simply an estimate based on the first four coefficients %-:*'2-15 +
(g) + Z% (%—) +—6%;s (%—). It shows that the noise from the harmonics of p(tg} is small




Now we can determine the optimum filter and the time average of the

minimum mean square error.

G (s) = 1 (s+13)>
° 1.2 Nb(b+1)(ct1) (s¥b)(e¥e)
t
e (t) =1~ 1

4.8 N (b+1)*(c+1)

The answer checks when N'2 = 0 because as N'2 becomes small the product

1

N} b2c? approaches 4.8~ and b>1 and c>1.

Now we have an expression for the time average of the minimum mean
square error as a function of the gain oftthe feedback loop (h'+a= h). By pui:ting
"2

in values for a and N'Z we can plot e (t) as a function of h. However, since we

have used an input spectrum with the bandwidth of 1 radian/sec.it is necessary to
perform some frequency scaling in order to obtain reallistic numbers. If

we assume we -have an instrument in which

wC:ZﬁX103
Q =300
8
w
Cc
a= —n5 =10
-]

it is convenient ot scale (a) by a factor of 100 so that it is 10~} which is

equivalent to increasing the band\;vidth of the input angular rates to 100 radians

second. Now let us make a N, = (10-40/hr)2 and (—)-Z_ = 105(°/hr)2'. Therefore
10N " radians/sec e

Ny = 3 2. 10 (10-4 °/hr)2 but since we have scaled the frequency it is

a a raaiar_;s7sec 6
necessary to use gcale N2 by a factor of 107 -gcithat . - L =t

-3
N'2 =10
t

- Now we can plot e“(t) as a function of h,(which is also scaled by a factor of 100

from the actual instrument), First, however let us define some new variables
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because for the numbers just chosen, b and c are imaginary for small values

of h,

np>

d + je

ed-je

When this is done it can be shown that

2. 2 4a®+1)+0.8m%+1)
= 375

d -e
-1 2 2
d2+ez—(N:?' + 4a” + 0.8h )1/2
B 4.8
t
e’ (t) =1~ 1 >

4.8 Ny, [(a+1)° + ]

t
—— 2
In Fig. 8.2, e“(t) and Oz(ZQ —A'wﬁ) are plotted as functions of h

é—u‘,ﬂ = 10-5. The parameters of the optimum filter

where it is assumed that
for several values of h are also recorded, These two curves are then added
together to produce a third curve which is a plot Qf the mean square error from
the noise, message distortion and quadrature cross coupling which is not per-

fectly discriminated against because of differential phase shifts, It is apparent

from the third curve that a minimum occurs approximately when

h=3.3
d=2.81 |
e =2.57

Therefore the optimum filter for the model of Fig. 8.1 is

s+ 3.3
Gols) = 0 [ sz Tz o7 72 8T -2 5

which shows that the optimum filter weights the low frequency signals more

than the high frequency ones, This is because in the model we have selected,

the low frequency signals are preamplified before the Hy noise enters by the
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resonant sensing system while the higher frequency components in the input
spectrum are not. ﬁ

Let us now estinﬁate what the mean square error is from the har-
monics of the message and quadrature, The largest harmonic error results
from the quadrature signal and it is approximately

=== 40 2
ea? = 1—22 [ Gmxzoyz] = 1.5 0/ hour )

which is a significant number but certainly not larger than the mean square
error that results from cross coupling and noise in the electronics which is

tabulated below and is approximately 11.4(0/ hr)2

| ez(t) = (o. 53) (O/hr)2 From noise N2

2

(E(zl) (2822)" = < 0.01 (0/hr)?

(_r-)i_) (A62) = 10° x 9 x 10°% = 0.9(0/hr)?
"2 -4, 2 2

(Qg) = 10 (nq) = 10(0/hr)

11. 4(0/hr)?

It is apparent from this example that the feedback gain does have an
optimum setting but the total mean square error in the instrument changes
only a few percentage points if the gain is off by a factor of 10 because the
major source of error in the example is’ the: stéchastic inphase cross coupling.
Furthermore the time average of the mean square harmonic errors that re-
sult from the message and quadrature signals are smaller than the other
errors and therefore the decision to ﬁeglect them when formulating the prob-
lem was sound. In order to further reduce the mean square in the instru-

ment it is necessary to filter out the lowfrequercy cross-coupiéd‘e:rors.



niques. Conceivably such a filter could reduce the mean square error (neglect-
t

ing harmonic errors) to approximately the value of e (t) plotted in Fig, 8.2

but then the instrument would not have response to zero frequency.

8.3 SUMMARY

poor signal processors, The reason for the relative ineffectiveness of opti-
mum filtering techniques in vibi'atory gyroscopes is the fact that the cross-
coupled noise occurs at very low frequencies and filtering is often not allowable
at these frequencies. In other Suppressed carrier filter Problems in which the
spectra of the message and quadrature signals are similar and the same order
of magnitude, optimum filtering in the manner of Chapter VII will lead to

significant improvements .



APPENDIX A; N -

THEORY OF OPERATION OF TUNING-FORK GYROS. " E
- EMPLOYING DOUBLE MODULATION

The following two differential equations describe the ideal double
modulated tuning-fork gyroscope when inertial ratés are applied about the
y and x axes shown in Fig. A-l, Terms involving rates about the z axis are

omitted because of their similarity to the y axis terms,

Iy(l +°‘y sinmdt)e1 + (£, t1, +°ny“’d cos wdt)el + {K1 K,

&

HL-L04a, singst] wF o =1, 6, + K,,
101 tag sing t) Q o, sine_ t- Q cosw_ t]

- Lpaswg coswgt] Qp cosw t] +[1(1 ta, sinwgt) -1 ],

2 2 . 2 |
[ 8, + ay 8) siny ¢t - Q (o, +0,) sing _t] (A-1)

S ' ) 2 e .
ch 5t 158, + [K2+(1xc Izc)wm] 6, = 6, + K,8,
+ IYC[Qywm sing t - Oy cosw t] +[1, -1 ]

C C

2 2 . 2
fﬂz g + Qy 8, sin W t- Qy(wm-i-f)x) sinwmt] (A-2)

Moment of inertia of the tuning fork about the X axis

Moment of inertia of the tuning fork about the Yy axis
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Ix = Moment of irertia of the counterpoise about the x_ axis
c B
IY = Moment of inertia of the counterpoise about the Ye axis
c
Iz = Moment of inertia of the counterpoise about the zZ_ axis
c
K, = Spring constant for torsion rod and spokes supporting the tuning fork
K, = Spring constant for torsion rod between tuning fork and counterpoise
f1 = Loss term associated with K1 spring
fz = Loss term associated with KZ spring
QY = Inertial rate applied about the y axis
Q. = Inertial rate applied about the x axis
6, = Angle between the tuning fork and the case
62 = Angle between the counterpoise and the case
w_, = Double modulation frequency
wy = Tuning fork or drive frequency

The differential equations were derived using Lagrange's method and
making the following as’sun.nptions.

1. Higher harmonic terms of the tuning fork inertias are negligible.

2. Double modulation is planar.

3. The tuning fork and counterpoise are rigidly constrained except in
the torsional mode about the V¢ axis.

The last term of Eq. 2 can be eliminated by making I, = Iz . The re-
maining time-varying term represents a torque applied to :he co;nterpoise
member at the double modulation frequency. Since we are using resonant sen-
sing and synchronous demodulation this term c;.n be neglected and the resulti;lg

equation shows that the counterpoise element acts in the intended manner as a

vibration damper.
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The last term of Eq. 1 contains the interaxis cross-coupling terms and
second order terms in the applied rates. Even when these terms are dropped,
the time-varying coefficients make it difficult to solve the equations exactly.
An approximate solution can be obtained by using the average values of the .
coefficients. A more exact solution can be obtained by using properties of
Mathieus equation.

In the following analysis the simplified theory is used to determine the
approximate behavior of the instrument, Forcing functions at the double mod-
ulation frequency,interaxis cross-coupling terms and second order terms are
dropped. F(t) is the forcing function at the two sidebands (wd:!:wm) and is ex~

pressed by

w
F(t) = -?% Iyaywd[(l +ﬁ§?m) cos (wd -wm)t +(1- %ﬁl—) cos (wd-l-wm)t] (A-3)

where B8 is a function of the inertia of the tuning fork which is approximately
zero since Iyay & Izaz. When these approximations are made the following
two equations result,
. . ) 2 .
IY o, + (fl+f2)91 + fK1+K2+(Ix-Iz)wm] o, = £,0, + K, 8, - F(t) (A-4)
IYc 6, + 1,0, K0, =1,0, +K, 8, (A-5)
Since the equations are linear, the following transfer function relating the

output angle (ez - 91) to the forcing function F(t) can be obtained.

82(3) - Ql(é__ 52 (A-6)
Fls) = T 2, 2, @ 2
Iy(s +qs+w‘¢ Xs +§S—S +ws )
where

wy = Lower resonant frequency
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s Upper resonant frequency

Quality factor associated with the lower resonant frequency

s Quality factor associated with the upper resonant frequency

If w__ is made equal to the drive frequency minus the upper resonant
frequency of the mechanical system and wy << wg» the envelope transfer function
for the lower sideband of F(t) is expressed by Eq. 7

[62(3) -8,(s)|g i a_wgT .. 2Q

ay(s) Do (s + 1) ©g (A-7)

The upper sideband is separated from the resonant frequency by Zwm and the
cross-coupled tuning ffbrk drive signal by w SO they are attenuated with

respect to the lower sjdeband from which we are extracting the rate infor-

mation,




APPENDIX B

This appendix contains the schematics of the electronic circuits used in
the double modulation experiment as of August V196‘4. No attempt was made
to minimize the power requirements of these circuits.

The schematics found on the following pages are tabulated below.

Figure B.1 Tuning Fork Drive
Figure B.2 Vibration Detector
Figure B.3 Error Angle Detector
Figure B.4 SCR Motor Control
Figure B.5 First Demodulator

Figure B.6 Second Demodulator

A block diagram of the instrument is in Fig. 6.5.
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APPENDIX C

CROSS COUPLING COMPARISON

In a rotary double-modulated, vibratory rate gyroscope a torsional
oscillation of the rotating member about a rate sensitive axis at twice the
double modulation frequency cannot be distinguished from an input angular
rate. If the amplitude of this oscillation is ¢o’ the angular rate seen by

the input axis of the basic double-modulated instrument is

' 0 w
0 _ o m .
'55-[(‘1’0 cos 2w _t) cos wmt] = ——z——[sin @ t+ 3sin 3wmt] (C.1)

6w
Therefore, a zero rate error of —=tr a ears at the instrument output.
—3—— app P

In a rotary drive, drive frequency output, vibratory rate gyroscope a
torsional oscillation of the rotating member about a rate sensitive axis at
twice the double modulation frequency couples energy into the sensing system
at the drive frequency and its third harmonic. If a lumped pararﬁeter sensing
system is assumed and the instrument configuration is similar to that of
Figure 4. 6a, the approximate transfer function relating the amplitudes of
the fundamental oscillation of the sensing system and oscillation of the rotating
member is 2

0(s) - 8

8 w
2 n 2
2(8 +¢s 8 + (:Jn)V

(s = joy) (c.2)
o

where ¢o is the amplitude of the torsional oscillation of the rotating member
and 6 is the amplitude of the instrument output oscillation. Since the transfer

function for constant input angular rates in the same instrument is

a W

0 (8) Rl d .
= ) (S = de)

il® ( 2,%n +o?)

8 Q n

w &
the torsional oscillation ¢ causes a zero rate error of 7(1—9— .
o ap

1
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APPENDIX D -

OPTIMIZ ATION PROBLEM WITH FIXED ELEMENTS
FOLLOWING THE OPTIMUM FILTER
When the optimum LTV fijter isg approximated by h discrete linear

time-invariant filters gk(nT) and h periodic multipliers pk(t) as

h-1
BoltsnT) = 3 Tg (aT) P, (t) (D-1)

k=0

where pk(t) is the periodic Waveform shown in Fig, 7.14, then the error

from an ensemble member at time PT can be written as

(e 2] o] h-] X
o(pT) = d(pT) - ¥ -y T[fi(pT-nT-mT)] 2 gf(mT)gp_k(nT)
h=0 m=0 R=0

(D-2)
where

gi(mT) = g (r ) P(r)) (D-3)

g_q(nT) = -8, ,(nT) (D-4)

mean Sguare error,

h-l-—z——_
5@?871’1")[}208(5’1')]=0s i=0, 1...h -3 (D-5)

h-1

Z pH, 1 1 i k!

g (m'T)f (pT-n T-m'T) f(pT-n'T-m ) z g¢ (mT) _1.1({nT)

mt 1 1 2 24 kizg T = p-k!
(D-6)

Since m!' can only take on the following discrete values

m' = (p+i), (P+i) + n, (p+i)+2n ... (D-7)
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it can be shown that the summation of the first term in Eq. D-6 over p
results in the following expression,

I%, gfm'T) ¢ _4(m'T + n'T) cos w_(iT + n'T + m'T) (D-8)

if
f’i’_(t) = m(t) cos wct + g(t) sin wt+ n(t) (D-9)
If we define p - k! & -j, it follows from Eq. D-3 that m can only take on the
following'discrete values. -
m=(p+j), (p+j)+h, (p+j)+2h... (D-10)
Therefore the summation of the second term in Eq. D-6 over p results in

the following expression.

h-1
T ¥ 2 X gfm'T) gmT) {4} z g_;(nT) (D-11)
m' m n
where
A [%¢mm(X) 4‘% bqqi®) * byp(®)] cos o (j-)T+mT -m'T+n T -n'T]
¢ £ - .

[% ¢mm(x) - -;- ¢qq(x)] cos wc[(i+j)T + mT+m’T+nT+n'T]

If the summations over m and m' are replaced by integrations, we obtain

the following discrete equation which must be satisfied for n'T > 0,
1 ! i (3 " —
f de' ge(E ') & 4(8' + n'T) cos o (iT +n'T+¢') =

h-1

T Zl g_j(nT) dg' ge(g') x dg g(8).
j= ’

[21- ¢mm(x)+% ¢qq(x) +¢ (x)] cosw, [(i-j) T+E €'+ nT-n'T]
[ -é— P m %) --é- ¢qq(x)] cos wc{ (it+j)T+€+€ +nT+n'T]

where x = E-E'+ nT-n'T (D-13)
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Recall that this is only the i th equation and all h of these i equations must

be solved simultaneously in order to determine the h optimum filters. Therefore

it is necessary to solve the following matrix equation,

bl m)] = [4;06,0,9)] g_n)] (D-14)
where
A : -
¢id(i, n)] = f d§ ' gf(ﬁ')¢md(§'+n‘T)cos u.\c(s’ +iT+nT) (D-ls)

o

[a56m,3)] 2 [ azrggen [ asgdos
0. o

¢ (x) ¢ _(x)
[ m’_’;_‘ + _‘.1;_1 +¢_(x)] cos v [({i-)T+E-E" + (n-a")T]
@ g
[ —-2-——] cos ¥ [(i+J)T +E+4+E +nT +n'T] (D-16)
g_;(n)] =ATg_j(nT)] (D-17)
These h matrix equations can be written as
¢id(o’ n‘)] [¢ii(0!nl’n’ 0)] [ ¢ii(0:n|’n: h'l)]
¢id(1,n')] [ ¢ii(1,n',n, 0)] go(n'n]-i-. .+ [tbii(l,n',n, h-1)] g_h+fnT)] 1
¢id(h"1:n')] [ ¢ii(h-l’nl9n’ 0)] . [¢ii(h"1tn':n: h"l)]

(D-18)

When the h optimum filter are constrained such that they have only a finite
memory

0 <n < (N-1) (D-19)

itis necessary to invert an hxh square symmetric matrix in which each

element is an NxN square symmetric matrixin order to determine the hN
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elements of the optimum filter. This can be done on a digital computer
by using the Gausq Jordan reduction procedure or a modification thereof
to reduce roundcff errors.

Recall that the Gauss Jordan procedure for solving a set of h simultaneous
equations is just a systematic procedure for combining the equations to
eliminate variables and finally end up with a matrix equation of the same
form but in which the square hxh matrix is no lenger symmetric but instead
has zeros for all the elements below the diagonal. Therefore one unknown
is immediately known from the last equation and it can be used to determine
another from the next to last equation, etc. , etc., until all the unknowns have
been determined.

When this procedure is used in the present problem, the computation

3h3 for large N and h because the multi-

time is roughly proportional to N
plication of two NxN matrices requires that the computer perform N3
multiplications and N3 additions and the number of times it is necessary to
do this is proportionalto h3 in order to reduce the equations to a form in
which the elements below the diagonal are zero. Once the equations are

in this form the computation time to determine the Nh elements is
proportional to h2N3. Therefore the computation time required to solve the
filtering problem with fixed elements following th/e optimum demodulator
will always be large since the number h3N3 is large. Therefore it is

doubtful that this method is of much practical use except in problems where

a digital computer is actually going to be used for the signal processor.
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