
MIT Open Access Articles

Swapping labeled tokens on graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1016/J.TCS.2015.01.052

Publisher: Elsevier BV

Persistent URL: https://hdl.handle.net/1721.1/134490

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134490
http://creativecommons.org/licenses/by-nc-nd/4.0/

Swapping Labeled Tokens on Graphs

Katsuhisa Yamanaka1, Erik D. Demaine2, Takehiro Ito3, Jun Kawahara4,
Masashi Kiyomi5, Yoshio Okamoto6, Toshiki Saitoh7, Akira Suzuki3,

Kei Uchizawa8, and Takeaki Uno9

1 Iwate University, Japan.
yamanaka@cis.iwate-u.ac.jp

2 Massachusetts Institute of Technology, USA.
edemaine@mit.edu

3 Tohoku University, Japan.
{takehiro, a.suzuki}@ecei.tohoku.ac.jp

4 Nara Institute of Science and Technology, Japan.
jkawahara@is.naist.jp

5 Yokohama City University, Japan.
masashi@yokohama-cu.ac.jp

6 University of Electro-Communications, Japan.
okamotoy@uec.ac.jp

7 Kobe University, Japan.
saitoh@eedept.kobe-u.ac.jp
8 Yamagata University, Japan.
uchizawa@yz.yamagata-u.ac.jp

9 National Institute of Informatics, Japan.
uno@nii.ac.jp

Abstract. Consider a puzzle consisting of n tokens on an n-vertex
graph, where each token has a distinct starting vertex and a distinct
target vertex it wants to reach, and the only allowed transformation is
to swap the tokens on adjacent vertices. We prove that every such puz-
zle is solvable in O(n2) token swaps, and thus focus on the problem of
minimizing the number of token swaps to reach the target token place-
ment. We give a polynomial-time 2-approximation algorithm for trees,
and using this, obtain a polynomial-time 2α-approximation algorithm
for graphs whose tree α-spanners can be computed in polynomial time.
Finally, we show that the problem can be solved exactly in polynomial
time on complete bipartite graphs.

1 Introduction

A ladder lottery, known as “Amidakuji” in Japan, is one of the most popular
lotteries. It is often used to assign roles to children in a group, as in the following
example. Imagine a teacher of an elementary school wants to assign cleaning
duties to two students among four students A, B, C and D. Then, the teacher
draws four vertical lines and several horizontal lines between two consecutive
vertical lines. (See Fig. 1(a).) The teacher randomly chooses two vertical lines,

(a) (b)

D B A C

(c)

D B A C

Fig. 1. How to use ladder lottery (Amidakuji) in Japan.

1 2 3 4

4 2 1 3

(a)

4 2 1 3

2 4 1 3

2 1 4 3

2 1 3 4

1 2 3 4

(c)

 f0

ft
v1 v2 v3 v4

v1 v2 v3 v4

4 2 1 3

1 2 3 4

(b)

 f0

ft
v1 v2 v3 v4

v1 v2 v3 v4

?

Fig. 2. (a) Ladder lottery of the permutation (4, 2, 1, 3) with the minimum num-
ber of bars, (b) its corresponding instance of token swapping for a path, and
(c) a transformation from f0 to ft with the minimum number of token swaps.

and draws check marks at their bottom ends. The ladder lottery is hidden, and
each student chooses one of the top ends of the vertical lines, as illustrated in
Fig. 1(b). Then, the ladder lottery assigns two students to cleaning duties (check
marks) by the top-to-bottom route from each student which always turns right
or left at each junction of vertical and horizontal lines. (In Fig. 1(c), such a
route is drawn as a dotted line.) Therefore, in this example, cleaning duties are
assigned to students B and C.

More formally, a ladder lottery can be seen as a model of sorting a particular
permutation. Let π = (p1, p2, . . . , pn) be a permutation of integers 1, 2, . . . , n.
Then, a ladder lottery of π is a network with n vertical lines (lines for short) and
zero or more horizontal lines (bars for short) each of which connects two con-
secutive vertical lines and has a different height from the others. (See Fig. 2(a)
as an example.) The top ends of the lines correspond to π, and the bottom
ends of the lines correspond to the target permutation (1, 2, . . . , n). Then, each
bar connecting two consecutive lines corresponds to a modification of the cur-
rent permutation by swapping the two numbers on the lines. The sequence of
such modifications in a ladder lottery must result in the target permutation
(1, 2, . . . , n).

There are many ladder lotteries that transform the same permutation π =
(p1, p2, . . . , pn) into the target one. Thus, one interesting research topic is min-
imizing the number of bars in a ladder lottery for a given permutation π. This

(a) f0 (b) (c) (d) ft

v1

v4

5

4

v2

v5

1

2

v3

v6

3

6

v1

v4

1

4

v2

v5

5

2

v3

v6

3

6

v1

v4

4

1

v2

v5

5

2

v3

v6

3

6

v1

v4

4

1

v2

v5

5

2

v3

v6

6

3

Fig. 3. A sequence of token placements of the same graph.

minimization problem on ladder lottery can be solved by counting the number
of “inversions” in π [8, 10], where a pair (pi, pj) in π is called an inversion in π
if pi > pj and i < j; for example, there are four inversions in the permutation
(4, 2, 1, 3), that is, (4, 2), (4, 1), (4, 3) and (2, 1), and hence the ladder lottery in
Fig. 2(a) has the minimum number of bars. The bubble sort algorithm sorts π
using a number of adjacent swaps equal to the number of inversions in π, and
hence gives an optimal ladder lottery of π. In this paper, we study a generaliza-
tion of this minimization problem from one dimension to general graphs.

1.1 Our problem

Suppose that we are given a connected graph G = (V,E) with n = |V | vertices,
with n tokens 1, 2, . . . , n already placed on distinct vertices of G. (Refer to Fig. 3,
where the number i written inside each vertex represents the token i.) We wish
to transform this initial token placement f0 into another given target token
placement ft. The transformation must consist of a sequence of token swaps,
each defined by an edge of the graph and consisting of swapping the two tokens
on the two adjacent vertices of the edge. (See Fig. 3 as an example.) Notice that
we need the graph to be connected for there to be a solution.

We will show that such a transformation exists for any two token placements
f0 and ft. Therefore, we consider the token swapping problem of minimizing
the number of token swaps to transform a given token placement f0 into another
given token placement ft. Figure 3 illustrates an optimal solution for transform-
ing the token placement f0 in Fig. 3(a) into the token placement ft in Fig. 3(d)
using a sequence of three token swaps.

As illustrated in Fig. 2, token swapping on a path is identical to minimizing
the number of bars in a ladder lottery. The permutation π = (p1, p2, . . . , pn) in
the ladder lottery corresponds to the initial token placement f0, and the target
identity permutation (1, 2, . . . , n) corresponds to the target token placement ft
where each token i, 1 ≤ i ≤ n, is placed on the vertex vi. Then, the number of
bars is identical to the number of token swaps.

1.2 Related work and known results

A ladder lottery appears in a variety of areas in different forms. First, it is
strongly related to primitive sorting networks, which are deeply investigated

by Knuth [9]. (More precise discussion will be given in Section 2.3.) Second,
in algebraic combinatorics, a “reduced decomposition” of a permutation π [11]
corresponds to a ladder lottery of π with the minimum number of bars. Third,
a ladder lottery of the reverse permutation (n, n − 1, . . . , 1) corresponds to a
pseudoline arrangement in discrete geometry [13].

The computational hardness of token swapping is unknown even for gen-
eral graphs. However, the problem of minimizing the number of bars in a ladder
lottery, and hence token swapping for paths, can be solved in time O(n2) by
counting the number of inversions in a given permutation [8, 10], or by the ap-
plication of the bubble sort algorithm. Furthermore, token swapping can be
solved in time O(n2) for cycles [8] and for complete graphs [3, 8]. Heath and Ver-
gara [7] proposed a polynomial-time 2-approximation algorithm for the square
of a path P , where the square of P is the graph obtained from P by adding a
new edge between two vertices with distance exactly two in P . Therefore, token
swapping has been studied for very limited classes of graphs.

1.3 Our contribution

In this paper, we study the token swapping problem for some larger classes
of graphs, and mainly design three algorithms. We first give a polynomial-time
2-approximation algorithm for trees. Based on the algorithm for trees, we then
present a 2α-approximation algorithm for graphs having tree α-spanners. (The
definition of tree α-spanners will be given in Section 3.2.) We finally show that
the problem is exactly solvable in polynomial time for complete bipartite graphs.

In addition, we give several results and observations which are related to the
three main results above. In Section 2.2, we prove that any token placement for a
(general) graph G can be transformed into any target token placement by O(n2)
token swaps, where n is the number of vertices in G. We also show that there are
instances on paths which require Ω(n2) token swaps. In Section 2.3, we discuss
the relationship between our problem and sorting networks. We finally note that
our lower bound (in Lemma 1) on the minimum number of token swaps holds
not only for trees but also for general graphs.

Due to the page limitation, several proofs are omitted.

2 Preliminaries

In this paper, we assume that all graphs are simple and connected. Let G =
(V,E) be an undirected and unweighted graph with vertex set V and edge set
E. We sometimes denote by V (G) and E(G) the vertex set and edge set of G,
respectively. We always denote n = |V |.

2.1 Definitions for token swapping

Suppose that the vertices in a graph G = (V,E) are assigned distinct labels
v1, v2, . . . , vn. Let L = {1, 2, . . . , n} be a set of n labeled tokens. Then, a token

placement f of G is a mapping f : V → L such that f(vi) ̸= f(vj) holds for every
two distinct vertices vi, vj ∈ V ; imagine that tokens are placed on the vertices
of G. Since f is a one-to-one correspondence, we can obtain its inverse mapping
f−1 : L → V .

Two token placements f and f ′ of a graph G = (V,E) are said to be adjacent
if the following two conditions (a) and (b) hold:
(a) there exists exactly one edge (vi, vj) ∈ E such that f ′(vi) = f(vj) and

f ′(vj) = f(vi); and
(b) f ′(vk) = f(vk) for all vertices vk ∈ V \ {vi, vj}.

In other words, the token placement f ′ is obtained from f by swapping the tokens
on two vertices vi and vj such that (vi, vj) ∈ E. For two token placements f and
f ′ of G, a sequence S = ⟨f1, f2, . . . , fh⟩ of token placements is called a swapping
sequence between f and f ′ if the following three conditions (1)–(3) hold:
(1) f1 = f and fh = f ′;
(2) fk is a token placement of G for each k = 2, 3, . . . , h− 1; and
(3) fk−1 and fk are adjacent for every k = 2, 3, . . . , h.

The length len(S) of a swapping sequence S is defined to be the number of token
placements in S minus one, that is, len(S) indicates the number of token swaps
in S. For example, len(S) = 3 for the swapping sequence S in Fig. 3.

Without loss of generality, we always denote by ft the target token place-
ment of a graph G such that ft(vi) = i for all vertices vi ∈ V (G).
For a token placement f0 of G, let OPT(f0) be the minimum length of a
swapping sequence between f0 and ft, that is, OPT(f0) = min{len(S) :
S is a swapping sequence between f0 and ft}. As we will prove in Theorem 1,
there always exists a swapping sequence from any token placement f0 to the
target one ft, and hence OPT(f0) is well-defined. Given a token placement f0 of
a graph G, the token swapping problem is to compute OPT(f0). We denote
always by f0 the initial token placement of G.

2.2 Polynomial upper bound on the minimum length

We show the following upper bound for any graph.

Theorem 1. For any token placement f0 of a graph G, OPT(f0) = O(n2).

It is remarkable that there exists an infinite family of instances on paths such
that OPT(f0) = Ω(n2). Recall that token swapping for paths is equivalent to
minimizing the number of bars in a ladder lottery of a given permutation π =
(p1, p2, . . . , pn). As we have mentioned in Introduction, the minimum number
of bars is equal to the number of inversions in π [8, 10]. Consider the reverse
permutation πr = (n, n−1, . . . , 1). The number of inversions in πr is Ω(n2), and
hence OPT(f0) = Ω(n2) for the corresponding instance of token swapping.

2.3 Relations to sorting networks

In this subsection, we explain that token swapping has a relationship to sorting
networks in the sense that we can obtain an upper bound on OPT(f0) for a given
token placement f0 from a sorting network which sorts f0.

We first explain that a primitive sorting network [9] gives an upper bound on
OPT(f0) for token swapping on paths (i.e., ladder lotteries). A primitive sort-
ing network transforms any given permutation into the permutation (1, 2, . . . , n)
by comparators each of which replaces two consecutive elements pi and pi+1

with min (pi, pi+1) and max (pi, pi+1), respectively. Therefore, in token swap-
ping for paths, we can obtain a swapping sequence for a given token placement
f0 by swapping two tokens whose corresponding elements are swapped in the
primitive sorting network when f0 is input as a particular permutation.

We generalize this argument to parallel sorting algorithms on an SIMD ma-
chine consisting of several processors with local memory which are connected
by a network [1]. For our purpose, an interconnection network is modeled as an
undirected graph G with n labeled vertices v1, v2, . . . , vn. Then, a (serial) sorting
on G can be seen as a problem to transform a given token placement f0 of G into
the target one ft by swapping two tokens on the adjacent vertices. In a parallel
sorting algorithm for G, we can swap more than one pair of tokens at the same
time along a matching M of G; note that each pair of two adjacent tokens in M
can be swapped independently. More formally, a parallel sorting algorithm for
G with r rounds consists of r prescribed matchings M1,M2, . . . ,Mr of G and
r prescribed swapping rules R1, R2, . . . , Rr; each swapping rule Ri, 1 ≤ i ≤ r,
determines whether each pair of two adjacent tokens in Mi is swapped or not
by the outcome of comparison of adjacent tokens in Mi. It should be noted that
the parallel sorting algorithm must sort any given token placement f0 of G by
the prescribed r matchings and their swapping rules. Then, since each matching
contains at most n/2 edges, the argument similar to primitive sorting networks
establishes the following theorem.

Theorem 2. Suppose that there is a parallel sorting algorithm with r rounds for
an interconnection network G. Then, in token swapping, OPT(f0) = O(rn)
for any token placement f0 of the graph G.

For example, it is known that there is a parallel sorting algorithm with O(
√
n)

rounds for a
√
n×

√
n mesh [12]. Thus, we have OPT(f0) = O(n3/2) for token

swapping on such meshes. Similarly, from an O(log n(log log n)2)-round algo-
rithm on hypercubes [4], we obtain OPT(f0) = O(n log n(log log n)2) for token
swapping on hypercubes.

3 Approximation

In this section, we give approximation results.
We first give a lower bound on OPT(f0) which holds for any graph. For a

graph G and two vertices v, w ∈ V (G), we denote by spG(v, w) the number of
edges in a shortest path on G between v and w. For a token placement f of G,
we introduce a potential function pG(f), as follows:

pG(f) =
∑

1≤i≤n

spG(f
−1(i), vi),

(a) f

v1

v4

5

4

v2

v5

1

2

v3

v6

3

6

(b) D

v1

v4

5

4

v5

1

v3

v6

3

6

Fig. 4. (a) token placement f of a graph, and (b) its conflict graph D.

that is, the sum of shortest path lengths of all tokens from their current positions
to the target positions. Notice that f−1

t (i) = vi for all tokens i, 1 ≤ i ≤ n, and
hence pG(ft) = 0. Then, we have the following lemma.

Lemma 1. OPT(f0) ≥ 1
2pG(f0) for any token placement f0 of a graph G.

3.1 Trees

The main result of this subsection is the following theorem.

Theorem 3. There is a polynomial-time 2-approximation algorithm for token
swapping on trees.

As a proof of Theorem 3, we give a polynomial-time algorithm which actually
finds a swapping sequence S between two token placements f0 and ft of a tree
T such that

len(S) ≤
∑

1≤i≤n

spT (f
−1
0 (i), vi) = pT (f0). (1)

Then, Lemma 1 implies that len(S) ≤ 2 · OPT(f0), as required.

Conflict graph.
To give our algorithm, we introduce a digraph D = (VD, ED) for a token

placement f of a graph G (which is not necessarily a tree), called the conflict
graph for f , as follows:

• VD = {vi ∈ V (G) : f(vi) ̸= ft(vi)}; and
• there is an arc (vi, vj) from vi to vj if and only if f(vi) = ft(vj) = j.

Therefore, each token f(vi) on a vertex vi ∈ VD needs to be moved to the vertex
vj ∈ VD such that (vi, vj) ∈ ED. (See Fig. 4 as an example.)

Lemma 2. Let D be the conflict graph for a token placement f of a graph G.
Then, every component in D is a directed cycle.

Algorithm for trees.
We now give our algorithm for trees. For two vertices u and v of a tree T ,

we denote by P (u, v) a unique path in T between u and v. Let D be the conflict
graph for an initial token placement f0 of T , and let C = (w1, w2, . . . , wq) be an
arbitrary directed cycle in D where wq = w1. Let ℓk = f0(wk) for each k, 1 ≤
k ≤ q−1; then ft(wk+1) = ℓk. Our algorithm moves the tokens ℓ1, ℓ2, . . . , ℓq−1 on
the vertices in C to their target positions along the unique paths. More formally,

2 3 4

9

1

10 6 7 5 8

(c) f2,0

w1

w3

w2

w4

2 3 4

9

1

75 610 8

(d) f3,0

w1

w3

w2

w4

2 3 9

10

1

4 5 6 7 8

(e) f4,0

w1

w3

w2

w4

1 2 3

9

10

4 5 6 7 8

(f) ft

w1

w3

w2

w4

1 2 3

9

10

4 5 6 7 8

(b) ft

w1

w3

w2

w4

(a) f0 = f1,0

7 2 3

9

1

4 10 6 5 8

w1

w3

w2

w4

Fig. 5. (a) Initial token placement f0 of a tree and (b) target one ft, where a
directed cycle C = (w1, w2, w3, w4, w1) in the conflict graph D for f0 is depicted
by dotted arrows. (c), (d) and (e) indicate the applications of Step (1) to the
tokens ℓ1 = 7, ℓ2 = 5 and ℓ3 = 10, respectively. (f) indicates the application of
Step (2) to the token ℓ4 = 1.

we construct a swapping sub-sequence SC for C, as follows; let f1,0 = f0 as the
initialization. (See also Fig. 5 as an example.)
(1) At the k-th step of the algorithm, 1 ≤ k ≤ q− 2, we focus on the token ℓk

(= f0(wk)) which is currently placed on the vertex f−1
k,0(ℓk), and move it

to the vertex in the path P (f−1
k,0(ℓk), f

−1
k,0(ℓk+1)) which is adjacent to the

vertex f−1
k,0(ℓk+1). Let fk+1,0 be the resulting token placement of T .

(2) At the (q − 1)-st step of the algorithm, we move the token ℓq−1 (=
f0(wq−1)) from the vertex f−1

q−1,0(ℓq−1) to the vertex wq (= w1).

Then, we have the following lemma.

Lemma 3. For the swapping sub-sequence SC , the following (a) and (b) hold:
(a) len(SC) ≤

∑
1≤k≤q−1 spT (wk, wk+1); and

(b) the token placement f of T obtained by SC satisfies

f(vi) =

{
ft(vi) if vi in C;
f0(vi) otherwise,

for each vertex vi ∈ V (T).

It should be noted that Lemma 3(b) ensures that we can choose directed cycles
in D in an arbitrary order. Therefore, by repeatedly constructing swapping sub-
sequences for all directed cycles inD (in an arbitrary order), we eventually obtain

the target token placement ft of T . Furthermore, notice that f−1
0 (ℓk) = wk for

each k, 1 ≤ k ≤ q − 1, and hence Lemma 3(a) implies that Eq. (1) holds.
This completes the proof of Theorem 3. ⊓⊔

3.2 General graphs

We now give an approximation algorithm for general graphs by combining our
algorithm in Section 3.1 with the notion of “tree spanner” of a graph.

A tree α-spanner T of an unweighted graph G = (V,E) is a spanning tree
of G such that spT (v, w) ≤ α · spG(v, w) for every pair of vertices v, w ∈ V [2].
Then, we have the following theorem.

Theorem 4. Suppose that a graph G has a tree α-spanner, and it can be com-
puted in polynomial time. Then, there is a polynomial-time 2α-approximation
algorithm for token swapping on G.

Theorem 4 requires to find a tree α-spanner of a graph G in polynomial
time. However, Cai and Corneil [2] proved that deciding whether an unweighted
graph G has a tree α-spanner is NP-complete for any fixed α ≥ 4, while it
can be solved in polynomial time for α ≤ 2. Therefore, several approximation
and FPT algorithms have been studied extensively. For example, Emek and
Peleg [6] proposed a polynomial-time O(log n)-approximation algorithm on any
unweighted graph for the problem of finding the minimum value of α. Dragan
and Köhler [5] gave approximation results for some graph classes. (For details,
see their papers and the references therein.)

4 Complete Bipartite Graphs

The main result of this section is the following theorem.

Theorem 5. Token swapping can be solved exactly in polynomial time for
complete bipartite graphs.

Let G be a complete bipartite graph, and let X and Y be the bipartition
of the vertex set V (G). We again construct the conflict graph D = (VD, ED)
for a token placement f of G. Then, we call a directed cycle in D an XY -cycle
if it contains at least one vertex in X and at least one vertex in Y . Similarly,
a directed cycle in D is called an X-cycle (or a Y -cycle) if it consists only of
vertices in X (resp., only of vertices in Y). Let cXY (f), cX(f) and cY (f) be the
numbers of XY -cycles, X-cycles and Y -cycles in D, respectively. Let c0(f) be
the number of vertices in V (G) that are not in D, that is, c0(f) = |V (G) \ VD|.
Then, we introduce the following value s(f) for f :

s(f) = cXY (f) + cX(f) + cY (f) + c0(f)− 2 ·max
{
cX(f), cY (f)

}
. (2)

For a token placement f of a complete bipartite graph G, let q(f) = n−s(f).
Then, we have the following formula for OPT(f0).

Lemma 4. OPT(f0) = q(f0).

Lemma 4 implies that OPT(f0) can be computed in polynomial time for a com-
plete bipartite graph G. Therefore, in the remainder of this section, we prove
Lemma 4 as a proof of Theorem 5.

4.1 Upper bound

We first prove OPT(f0) ≤ q(f0) by induction on q(f0). Our proof yields an actual
swapping sequence S between two token placements f0 and ft of a complete
bipartite graph G such that len(S) = q(f0).

Base case.
Let f0 be an initial token placement of G such that q(f0) = 0. Then, we

claim that f0 = ft. Recall that cXY (f0), cX(f0) and cY (f0) denote the numbers
of directed cycles in D, while c0(f0) denotes the number of vertices in G that are
not contained in D. Since each directed cycle in D contains at least two vertices
of G, we have c0(f0) = |V (G) \ VD| ≤ n − 2 ·

(
cXY (f0) + cX(f0) + cY (f0)

)
.

Therefore, by Eq. (2) we have

s(f0) ≤ n−
(
cXY (f0) + cX(f0) + cY (f0)

)
− 2 ·max

{
cX(f0), cY (f0)

}
.

Since cXY (f0), cX(f0) and cY (f0) are all non-negative integers, we thus have
s(f0) ≤ n. Furthermore, s(f0) = n holds if and only if cXY (f0) = cX(f0) =
cY (f0) = 0, that is, the conflict graph D has no vertex. Therefore, if q(f0) =
n − s(f0) = 0 and hence s(f0) = n holds, then we have f0 = ft as claimed. We
thus have OPT(f0) = 0 = q(f0).

Inductive step.
Suppose that OPT(f ′

0) ≤ q(f ′
0) holds for any token placement f ′

0 of G such
that q(f ′

0) = k. Let f0 be an initial token placement of G such that q(f0) = k+1.
Then, we prove that OPT(f0) ≤ q(f0) = k + 1 holds.

We may assume without loss of generality that cX(f0) ≥ cY (f0). We first
choose one directed cycle C from the conflict graph D for f0 in the following
manner:
(A) if cXY (f0) ≥ 1, then choose any XY -cycle C in D;
(B) if cXY (f0) = 0 and cY (f0) ≥ 1, then choose any Y -cycle C in D; and
(C) otherwise choose any X-cycle C in D.

It should be noted that at least one of cXY (f0), cX(f0) and cY (f0) is non-zero
because q(f0) = n − s(f0) ̸= 0. Therefore, we can always choose one directed
cycle C from D according to the three cases (A)–(C) above.

We then swap some particular pair of tokens according to the chosen directed
cycle C. We will show that the resulting token placement f ′

0 of G satisfies q(f ′
0) =

k. Then, by applying the induction hypothesis to f ′
0, we have

OPT(f0) ≤ 1 + OPT(f ′
0) ≤ 1 + q(f ′

0) = 1 + k = q(f0).

Due to the page limitation, we here prove only Case (b), that is, C is a
Y -cycle; the remaining cases can be proved similarly.

X

Y

(a) f0

v1

v5

6

1

v2

v6

7

3

v3

v7

8

4

v4

v8

5

2

(b) f0’

X

Y

v1

v5

6

1

v2

v6

7

3

v3

v7

8

4

v4

v8

2

5

CX

C

Fig. 6. Example of Case (B).

In this case, by the choice of directed cycles from D, we have cXY (f0) = 0.
Furthermore, since cX(f0) ≥ cY (f0), we have cX(f0) ≥ 1 and hence the conflict
graph D for f0 contains at least one X-cycle CX . Figure 6(a) illustrates an
example; in the figure, for the sake of simplicity, we omit all the edges in E(G)
and depict the arcs in the conflict graph by dotted arrows.

We arbitrarily pick one vertex in C and one vertex in CX , and swap the two
tokens on them. (See Fig. 6(b).) Then, the resulting token placement f ′

0 of G
satisfies cXY (f

′
0) = cXY (f0) + 1 (= 1); cX(f ′

0) = cX(f0) − 1 (≥ 0); cY (f
′
0) =

cY (f0)− 1 (≥ 0); and c0(f
′
0) = c0(f0). Therefore, by Eq. (2) we have

s(f ′
0) =

(
cXY (f0) + 1

)
+
(
cX(f0)− 1

)
+
(
cY (f0)− 1

)
+c0(f0)− 2 ·max

{
cX(f0)− 1, cY (f0)− 1

}
= s(f0) + 1.

We thus have q(f ′
0) = n− s(f ′

0) = n−
(
s(f0) + 1

)
= q(f0)− 1 = k for Case (b).

In this way, we can verify that OPT(f0) ≤ q(f0) holds.

4.2 Lower bound

We then prove OPT(f0) ≥ q(f0). Since q(ft) = 0, it suffices to show that one
token swap can decrease the value q(f0) by at most one. More formally, we have
the following lemma, which completes the proof of Lemma 4.

Lemma 5.
∣∣q(f ′) − q(f)

∣∣ ≤ 1 holds for any two adjacent token placements f
and f ′ of a complete bipartite graph G.

5 Concluding Remark

In this paper, we investigated algorithms for the token swapping problem
on some non-trivial graph classes. We note that the algorithm for trees runs in
O(n2) time, because each step moves the token ℓk along the unique path of O(n)
length in the tree. A swapping sequence S can be represented by outputting the
edges used for the token swaps in S. Therefore, the algorithm can return an
actual swapping sequence for a given token placement f0 in O(n2) time, while
there are instances on paths such that OPT(f0) = Ω(n2) as we have discussed in
Section 2.2. Therefore, it seems difficult to improve the time complexity O(n2)
of the algorithm if we wish to output an actual swapping sequence explicitly.

Acknowledgment

We are grateful to Takashi Horiyama, Shin-ichi Nakano and Ryuhei Uehara for
their comments on related work and fruitful discussions with them. This work
is partially supported by MEXT/JSPS KAKENHI, including the ELC project.
(Grant Numbers 24.3660, 24106010, 24700130, 25106502, 25106504, 25330003.)

References

1. Bitton, D., DeWitt, D.J., Hsaio, D.K., Menon, J.: A taxonomy of parallel
sorting. ACM Computing Surveys 16, pp. 287–318 (1984)

2. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Mathematics 8,
pp. 359–387 (1995)

3. Cayley, A.: Note on the theory of permutations. Philosophical Magazine 34,
pp. 527–529 (1849)

4. Cypher, R., Plaxton, C.G.: Deterministic sorting in nearly logarithmic time
on the hypercube and related computers. J. Computer and System Sci-
ences 47, pp. 501–548 (1993)

5. Dragan F.F., Köhler, E.: An approximation algorithm for the tree t-
spanner problem on unweighted graphs via generalized chordal graphs.
Proc. APPROX-RANDOM 2011, LNCS 6845, pp. 171–183 (2011)

6. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees
on unweighted graphs. SIAM J. Computing 38, pp. 1761–1781 (2008)

7. Heath, L.S., Vergara, J.P.C.: Sorting by short swaps. J. Computational
Biology 10, pp. 775–789 (2003)

8. Jerrum, M.R.: The complexity of finding minimum-length generator se-
quence. Theoretical Computer Science 36, pp. 265–289 (1985)

9. Knuth, D.E.: Axioms and Hulls. LNCS 606, Springer-Verlag (1992)
10. Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edition.

Addison-Wesley (1998)
11. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy

Loci. American Mathematical Society (2001)
12. Thompson, C.D., Kung, H.T.: Sorting on a mesh-connected parallel com-

puter. Communications ACM 20, pp. 263–271 (1977)
13. Yamanaka, K., Nakano, S., Matsui, Y., Uehara, R., Nakada, K.: Efficient

enumeration of all ladder lotteries and its application. Theoretical Computer
Science 411, pp. 1714–1722 (2010)

