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The hot QCD matter produced in any heavy ion collision with a nonzero impact parameter
is produced within a strong magnetic field. We study the imprint that these fields leave on the
azimuthal distributions and correlations of the produced charged hadrons. The magnetic field is
time-dependent and the medium is expanding, which leads to the induction of charged currents due
to the combination of Faraday and Hall effects. We find that these currents result in a charge-
dependent directed flow v1 that is odd in rapidity and odd under charge exchange. It can be
detected by measuring correlations between the directed flow of charged hadrons at different rapidi-
ties, 〈v±1 (y1)v±1 (y2)〉.

PACS numbers:

I. INTRODUCTION

Strong magnetic fields ~B are produced in all non-
central heavy ion collisions (i.e. those with nonzero im-
pact parameter b) by the charged “spectators” (i.e. the
nucleons from the incident nuclei that “miss”, flying past
each other rather than colliding). Indeed, estimates ob-
tained via application of the Biot-Savart law to heavy ion

collisions with b = 4 fm yield e| ~B|/m2
π ≈ 1-3 about 0.1-

0.2 fm/c after a RHIC collision with
√
s = 200 AGeV and

e| ~B|/m2
π ≈ 10-15 at some even earlier time after an LHC

collision with
√
s = 2.76 ATeV [1–7]. In recent years

there has been much interest in consequences of these
enormous magnetic fields present early in the collision
that are observable in the final state hadrons produced
by the collision. In particular, the interplay of magnetic
field and quantum anomalies has been predicted to lead
to a number of interesting phenomena, including the chi-
ral magnetic effect [1, 8], a quadrupole deformation of the
electric charge distribution induced by a chiral magnetic
wave [9, 10], and the enhanced anisotropic production
of soft photons through “magneto-sonoluminescence” –
the conversion of phonons into photons in an external
magnetic field [11]. While several of the predicted effects
have been observed in heavy ion collision data [12–18],
it is often hard to distinguish them unambiguously from
a combination of mundane phenomena possibly present
in the anisotropic expansion of quark-gluon matter, see
e.g. Refs. [19–21]. This makes it imperative to establish
that the presence of an early-time magnetic field can have
observable consequences on the motion of the final-state
charged particles seen in detectors, making it possible to
use data to calibrate the strength of the magnetic field.

In this paper we analyze what are surely the simplest

and most direct effects of magnetic fields in heavy ion col-
lisions, and quite likely also their largest effects, namely
the induction of electric currents carried by the charged
quarks and antiquarks in the quark-gluon plasma (QGP)
and, later, by the charged hadrons. The source of these

charged currents is twofold. Firstly, the magnitude of ~B
varies in time, decreasing as the charged spectators fly
away along the beam direction, receding from the QGP

produced in the collision. The changing ~B results in
an electric field due to Faraday’s law, and this in turn
produces an electric current in the conducting medium.
Secondly, because the conducting medium, i.e. the QGP,
has a significant initial longitudinal expansion velocity ~u
parallel to the beam direction and therefore perpendicu-

lar to ~B, the Lorentz force results in an electric current

perpendicular to both the velocity and ~B, akin to the
classical Hall effect. (We shall refer to this current as a
Hall current throughout, even though this nomenclature
may not be quite right since our system has no edge at
which charges can build up.) Fig. 1 serves to orient the

reader as to the directions of ~B and ~u, and the electric
currents induced by the Faraday and Hall effects. The
net electric current is the sum of that due to Faraday and
that due to Hall. If the Faraday effect is stronger than
the Hall effect, that current will result in directed flow
of positively charged particles in the directions shown in
Fig. 1 and directed flow of negatively charged particles
in the opposite direction. Our goal in this paper is to
make an estimate of the order of magnitude of the re-
sulting charge-dependent v1 in the final state pions and
(anti)protons. We will make many simplifying assump-
tions, since our goal is only to show which v1-correlations
can be used to look for effects of the initial magnetic
field and to give experimentalists an order-of-magnitude

ar
X

iv
:1

40
1.

38
05

v1
  [

he
p-

ph
] 

 1
6 

Ja
n 

20
14



2

B

z

x

η<0, v <0 

η>0, v <0 η>0, v >0 

η<0, v >0 

JHall

JFaraday

JFaraday

JHall

u u

uu

Total Directed Flow  

Total Directed Flow  

y

1 1

1 1

FIG. 1: Schematic illustration of how the magnetic field ~B in
a heavy ion collision results in a directed flow, v1, of electric
charge. The collision occurs in the z-direction, meaning that
the longitudinal expansion velocity ~u of the conducting QGP
that is produced in the collision points in the +z (−z) direc-
tion at positive (negative) z. We take the impact parameter
vector to point in the x direction, choosing the nucleus moving
toward positive (negative) z to be located at negative (posi-

tive) x, which is to say taking the magnetic field ~B to point
in the +y direction. The direction of the electric currents due
to the Faraday and Hall effects is shown, as is the direction of
the directed flow of positive charge (dashed) in the case where
the Faraday effect is on balance stronger than the Hall effect.
In some regions of spacetime, the electric current due to the
Hall effect is greater than that due to the Faraday effect; in
other regions, the Faraday-induced current is stronger. The
computation of the directed flow of charged particles is a suit-
ably weighted integral over spacetime, meaning that the final
result for the directed flow arises from a partial cancellation
between the opposing Faraday and Hall effects. In some set-
tings (i.e. for some hadron species, with momenta in some
ranges) the total directed flow for positively charged particles
points as shown. In other settings, it points in the opposite
direction.

sense of how large these correlations may reasonably be
expected to be.

The biggest simplifying assumption that we shall make
is to treat the electrical conductivity of the QGP σ as
if it were a constant. We make this assumption only
because it will permit us to do a mostly analytic cal-
culation. In reality, σ is certainly temperature depen-
dent: just on dimensional grounds it is expected to be
proportional to the temperature of the plasma. This
means that σ should certainly be a function of space
and time as the plasma expands and flows hydrodynam-

ically, with σ decreasing as the plasma cools. Further-
more, during the early pre-equilibrium epoch σ should
rapidly increase from zero to its equilibrium value. Tak-
ing all this into consideration would require a full, nu-
merical, magnetohydrodynamic analysis, which we leave
to the future. We shall treat σ as a constant, unchang-
ing until freezeout. We select a reasonable order-of-
magnitude value of the conductivity σ based upon re-
cent lattice calculations [22–26]. It is conventional in
these calculations to quote results for C−1

emσ/T , where
Cem ≡ ( 4

9 + 1
9 + 1

9 )e2 = 0.061 in 3-flavor QCD. The quan-

tity C−1
emσ/T is weakly temperature dependent between

about 1.2Tc and 2Tc, with Tc ∼ 170 MeV the tempera-
ture of the crossover from a hadron gas to quark-gluon
plasma. At T = 1.5Tc ∼ 255 MeV, C−1

emσ/T lies between
0.2 and 0.4 [22–26]. We shall set σ = 0.023 fm−1 through-
out this paper. This corresponds to C−1

emσ/T = 0.3 at
T = 255 MeV.

To do an analytic calculation we need an analytic so-
lution for the hydrodynamic expansion of the conducting
fluid in the absence of any electric currents. We shall
use the analytic solution to relativistic viscous hydrody-
namics for a conformal fluid with the shear viscosity to
entropy density ratio given by η/s = 1/(4π) found by
Gubser in 2010 [27]. The solution describes a finite size
plasma produced in a central collision that is obtained
from conformal hydrodynamics by demanding boost in-
variance along the beam (i.e. z) direction, rotational in-
variance around z, and two special conformal invariances
perpendicular to z. This leads to a fluid flow that pre-
serves a SO(1, 1) × SO(3) × Z2 subgroup of the full 4-
dimensional conformal group, with the Z2 coming from
invariance under z ↔ −z. Gubser obtains analytic ex-
pressions for the four-velocity uµ from which one can
construct the local temperature and energy density of
the conformal fluid. As we demonstrate below, we can
choose parameters such that Gubser’s solution yields a
reasonable facsimile of the pion and proton transverse
momentum spectra observed in RHIC and LHC collisions
with 20−30% centrality, corresponding to collisions with
a mean impact parameter between 7 and 8 fm, see e.g.
[28, 29]. Gubser’s hydrodynamic solution is rotationally
invariant around the z-direction and so in reality cannot
be directly applicable to collisions with nonzero impact
parameter. A future numerical analysis should be based
instead upon a numerical solution to (3+1)-dimensional
relativistic hydrodynamics for non-central heavy ion col-
lisions.

We shall assume throughout that the effects of the
magnetic field are small in the sense that the velocity
of charged particles that results (via Hall and Faraday)

from the presence of ~B, call it ~v, is much smaller than the
velocity of the expanding plasma ~u. That is, we require
|~v| � |~u|. We shall see that this is a good assumption.
Upon making this assumption, and given that our goal
is only an order-of-magnitude estimate of the magnitude
of the charge-dependent directed flow, all we really need
from hydrodynamics is a flow field ~u that is reasonable in
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transverse extent and in magnitude, and a temperature
field T that can be used to define a reasonable freezeout
surface in spacetime at which the hydrodynamic fluid
cools below some specified freezeout temperature and is
replaced by hadrons, following the Cooper-Frye proce-
dure [30]. In particular, we shall only be interested in
the small charge-dependent azimuthal anisotropy v1 due
to the velocity ~v of charged particles and shall not be
interested at all in the larger, but charge-independent,
azimuthal anisotropies in the hydrodynamic expansion
that are induced by the initial azimuthal anisotropy in
collisions with nonzero impact parameter. For all our
purposes, therefore, Gubser’s azimuthally symmetric so-
lution suffices.

In order to obtain the velocity ~v associated with the
charged currents due to the electromagnetic field, in Sec-
tion 2 we first calculate the magnetic and electric fields

themselves, ~B and ~E, by solving Maxwell’s equations in
the center-of-mass frame (the frame illustrated in Fig. 1).

From ~E and the electrical conductivity σ it would be
straightforward to obtain the electric current density
~J = σ ~E. However, for our purposes what we need is

not ~J itself. The electric current ~J will be associated
with positively charged fluid moving with mean velocity
~v and negatively charged fluid moving with mean veloc-
ity −~v, and what we need to determine is the magnitude
and direction of ~v.

In order to determine ~v at some point in spacetime, we
first boost to the local fluid rest frame at that point in

spacetime, namely the (primed) frame in which ~u′ = 0
at that point. In the primed frame all components of

the electromagnetic field ~E′ and ~B′ are non-vanishing.
We then solve the equation of motion for a charged fluid
element with mass m in this frame, using the Lorentz
force law and requiring stationary currents:

m
d~v′

dt
= q~v′ × ~B′ + q ~E′ − µm~v′ = 0 , (1.1)

where the last term describes the drag force on a fluid el-
ement with mass m on which some external (in this case
electromagnetic) force is being exerted, with µ being the
drag coefficient. The nonrelativistic form of (1.1) is justi-
fied by the aforementioned assumption |~v|/|~u| � 1. The
calculation of µm from first principles is an interesting
open question. In QCD it may be accessible via a lattice
calculation; in N = 4 supersymmetric Yang-Mills (YM)
theory it should be accessible via a holographic calcu-
lation. At present its value is known precisely only for
heavy quarks in N = 4 SYM theory, in which [31–33]

µm =
π
√
λ

2
T 2 , (1.2)

with λ ≡ g2Nc the ’t Hooft coupling, g being the gauge
coupling and Nc the number of colors. For the purpose
of our order-of-magnitude estimate, we shall use (1.2)
with λ = 6π. As in our (crude) treatment of the electric
conductivity σ, and as there for the purpose of obtaining

our estimates from a mostly analytic calculation, we shall
also approximate µm as a constant. Throughout this
paper we shall choose the constant value of µm to be
that in (1.2) at T = 1.5Tc with Tc ∼ 170 MeV.

In the local fluid rest frame, we look for stationary cur-
rents for the up and down quarks and anti-quarks. We
assume that the particle density for u and d quarks and
antiquarks are all the same, thus neglecting any chemical
potentials for baryon number or isospin. (Leaving out
the strange quarks and neglecting any chemical poten-
tials for baryon number or isospin are less serious simpli-
fying assumptions than the others that we have already
made.) With these assumptions, the average velocity for

the positively charged species is (~v′u + ~v′d̄)/2 and that

for the negatively charged species is (~v′d + ~v′ū)/2. Hav-

ing found ~v′ for the positively charged particles (and −~v′
for the negatively charged particles) we next transform
the four velocity v′µ back to the center-of-mass frame,
obtaining a four velocity, that we can denote by V +µ or
V −µ, that describes the sum (in the sense of the relativis-
tic addition of velocities) of ~u and the additional charge-
dependent velocity ~v or −~v. That is, the four-velocity
V +µ (or V −µ) includes both the velocity of the positively
(or negatively) charged particles due to electromagnetic
effects and the much larger, charge-independent, velocity
~u of the expanding plasma. Finally, we apply the Cooper-
Frye freezeout procedure [30], taking V +µ and V −µ as the
four-velocity for positively and negatively charged parti-
cles, integrating over the freezeout surface, and calculat-
ing the spectra of charged pions and (anti)protons as a
function of the transverse momentum pT , the azimuthal
angle in momentum space φp and the momentum-space
rapidity Y . Integrating the spectra against cosφp yields
the directed flow v+

1 (pT , Y ) (and v−1 (pT , Y )) for posi-
tively (and negatively) charged particles.

After solving Maxwell’s equations in Section II, in Sec-
tion III we present our implementation of Gubser’s solu-
tion for ~u, including the hadron spectra that result from
it after freezeout. In Section IV we present the calcu-
lation of ~v, and from it v1, that we have just sketched.
We present our estimates of the charge-dependent v1 for
pions and protons in heavy ion collisions at the LHC and
RHIC. We close in Section V with some suggested corre-
lation observables designed to pull out the effects of the
magnetic field whose magnitude we have estimated, and
a look ahead.

II. COMPUTING THE ELECTROMAGNETIC
FIELD

In this Section we determine the electromagnetic field
in the center-of-mass frame. The magnetic field is pro-
duced by the charged ions in a non-central collision. We
begin by considering a single point-like charge located at

the position ~x′⊥ in the transverse plane moving in the

+z direction with velocity ~β. Our coordinates are as in
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Fig. 1. Using Ohm’s law ~J = σ ~E for the current pro-
duced in the medium, one finds the wave equations

∇2 ~B − ∂2
t
~B − σ∂t ~B =

−eβ∇×
[
ẑδ(z − βt)δ(~x⊥ − ~x′⊥)

]
, (2.1)

∇2 ~E − ∂2
t
~E − σ∂t ~E = −e∇

[
δ(z − βt)δ(~x⊥ − ~x′⊥)

]
+

eβẑ∂t

[
δ(z − βt)δ(~x⊥ − ~x′⊥)

]
. (2.2)

Solution of these equations is straightforward by the
method of Green functions. We evaluate the y-

component of ~B at an arbitrary spacetime point (t, z, ~x⊥)
in the forward lightcone, t > |z|. We shall write the

spacetime point in terms of its proper time τ ≡
√
t2 − z2

and spacetime rapidity η ≡ arctanh(z/t) as well as
x⊥ ≡ |~x⊥| and the azimuthal angle φ. We find that
By due to a + mover at location ~x′⊥ and z′ = βt is given
by

eB+
y (τ, η, x⊥, φ) = α sinh(Yb)(x⊥ cosφ− x′⊥ cosφ′)

(σ| sinh(Yb)|
2

√
∆ + 1)

∆
3
2

eA , (2.3)

where α = e2/(4π) is the electromagnetic coupling, Yb ≡
arctanh(β) is the rapidity of the + mover, and we have
defined

A ≡ σ
2

(
τ sinh(Yb) sinh(Yb − η)− | sinh(Yb)|

√
∆
)

(2.4)

∆ ≡τ2 sinh2(Yb − η) + x2
⊥ + x

′2
⊥

−2x⊥x
′
⊥ cos(φ− φ′) . (2.5)

We were able to obtain this analytic solution because
we are treating σ as constant, throughout all space and
time, with the value σ = 0.023 fm−1 chosen as described
in Section I. The finite size and finite duration of the
fluid of interest will enter our calculation in Section III,
via the calculation of the freezeout surface. As a check,
note that upon setting σ = 0 in (2.3) one recovers the
standard result for By in vacuum, as in Ref. [1].

A similar calculation shows the x-component of the
electric field produced by the + moving particle is given
by

eE+
x (τ, η, x⊥, φ) = eB+

y (τ, η, x⊥, φ) coth(Yb − η) . (2.6)

The other components of the electromagnetic field will
turn out to be irrelevant.

Now we need to evaluate the total By and Ex fields
produced by all the protons in the two colliding nuclei,

some of which are spectators, meaning that at their ~x′⊥
location one finds either + movers or − movers but not
both, and others of which are participants, meaning that
at their locations one has both + and − movers. The
spectators have the same rapidity after the collision as
they did before it, referred to as beam rapidity and de-
noted Y0. (At RHIC, Y0 ' 5.4 and at the LHC, Y0 ' 8.)

Because the participant protons lose some rapidity in the
collision, after the collision they have some distribution
of rapidities Yb. We shall use the empirical distribu-
tion [1, 34]

f(Yb) =
a

2 sinh(aY0)
eaYb , −Y0 ≤ Yb ≤ Y0 , (2.7)

for the + moving participants, choosing a ≈ 1/2 for
both RHIC and LHC collisions. (This value of a cor-
responds to the string junction exchange intercept in
Regge theory [34] and is consistent with experimental
data on baryon stopping [34, 35].) After the collision
the − moving participants have the same distribution
with Yb replaced by −Yb. We must then add up the By
and Ex produced by all the spectators and participants.
Denoting the magnetic field due to spectators and par-

ticipants moving in the +(-) z direction by ~B+
s ( ~B−s )

and ~B+
p ( ~B−p ), the total magnetic field will be given by

~B = ~B+
s + ~B−s + ~B+

p + ~B−p .
Let us first look at the contribution from the specta-

tors. We shall make the simplifying assumption that the
protons in a nucleus are uniformly distributed within a
sphere of radius R, with the centers of the spheres lo-
cated at x = ±b/2, y = 0 and moving along the +z and
−z directions with velocity β. We shall take R = 7 fm
and b = 7 fm. If we project the probability distribution
for the protons in either the + moving or the − moving
nucleus onto the transverse plane it takes the form

ρ±(x⊥) =
3

2πR3

√
R2 −

(
x2
⊥ ± b x⊥ cos(φ) +

b2

4

)
.(2.8)

In a collision with impact parameter b 6= 0 the + and −
moving spectators are each located in a crescent-shaped
region of the ~x′⊥-plane and one can write the total elec-
tromagnetic field produced by all the spectators as [1]

eBy,s = −Z
∫ π

2

−π2
dφ′
∫ xout(φ

′)

xin(φ′)

dx′⊥x
′
⊥ρ−(x′⊥) (2.9)

×
(
eB+

y (τ, η, x⊥, π − φ) + eB+
y (τ,−η, x⊥, φ)

)
,

eEx,s = Z

∫ π
2

−π2
dφ′
∫ xout(φ

′)

xin(φ′)

dx′⊥x
′
⊥ρ−(x′⊥) (2.10)

×
(
−eE+

x (τ, η, x⊥, π − φ) + eE+
x (τ,−η, x⊥, φ)

)
,

with B+
y and E+

x defined in (2.3) and (2.6). Here xin and
xout are the endpoints of the x′⊥ integration regions that
define the crescent-shaped loci where one finds either +
movers or − movers but not both. They are given by

xin/out(φ
′) = ∓ b

2
cos(φ′) +

√
R2 − b2

4
sin2(φ′) . (2.11)

We have taken Z = 79 and Z = 82 for heavy ion collisions
at RHIC and the LHC, respectively. In Fig. 2 we plot eBy
produced by the spectators at the center of a heavy ion
collision at the LHC. We see that, as other authors have



5

0.5 1.0 1.5 2.0
t @fmD

10-5
10-4
0.001

0.01

0.1

1

eBy @fm-2D

FIG. 2: Magnetic field By perpendicular to the reaction plane
produced by the spectators in a heavy ion collision with im-
pact parameter b = 7 fm at the LHC. The value of eBy at the
center of the collision, at η = 0 = x⊥, is plotted as a function
of τ . The blue curve shows how rapidly By at η = 0 = x⊥
would decay as the spectators recede if there were no medium
present, i.e. in vacuum with σ = 0. The presence of a con-
ducting medium with σ = 0.023 fm−1 substantially delays
the decay of By (red curve). At very early times before any
medium has formed, when the blue curve is well above the red
curve the blue curve is a better approximation. We shall use
the red curve throughout, though, because our calculation is
not sensitive to these earliest times.

shown previously (see Refs. [2–7], in particular Fig. 4 in
Ref. [6]) the presence of the conducting medium delays
the decrease in the magnetic field. This is Faraday’s Law
in action, and it tells us that an electric current, indicated
schematically by JFaraday in Fig. 1, has been induced in
the plasma. Our goal in subsequent Sections will be to
estimate the observable consequences of the presence of
such a current.

A similar calculation to that for the spectators shows
that the total contribution to By and Ex from the par-
ticipants is given by

eBy,p = −Z
∫ Y0

−Y0

dYbf(Yb)

∫ π
2

−π2
dφ′
∫ xin(φ′)

0

dx′⊥x
′
⊥ρ−(x′⊥)

×
(
eB+

y (τ, η, x⊥, π − φ) + eB+
y (τ,−η, x⊥, φ)

)
, (2.12)

eEx,p = Z

∫ Y0

−Y0

dYbf(Yb)

∫ π
2

−π2
dφ′
∫ xin(φ′)

0

dx′⊥x
′
⊥ρ−(x′⊥)

×
(
−eE+

x (τ, η, x⊥, π − φ) + eE+
x (τ,−η, x⊥, φ)

)
,(2.13)

where the integration regions have been chosen to corre-
spond to the almond-shaped locus in the transverse plane
where one finds both + and − movers. Finally, the total
electromagnetic field is given by the sum of the contribu-
tion of the spectators in (2.9), (2.10) and the participants
in (2.12), (2.13). The other components of the electro-
magnetic field will be irrelevant because Bz = 0. In most,
but not all, locations in spacetime the contribution of the
participant protons to both By and Ex is substantially

smaller than that of the spectators. We have checked
that eliminating the contribution from the participants
changes the final results that we obtain below for the
directed flow by at most 10%, typically much less.

III. HYDRODYNAMICS AND FREEZEOUT

As we have already noted in Section I, we shall use
the analytic solution to the equations of relativistic vis-
cous conformal hydrodynamics found recently by Gub-
ser [27] that describes the boost invariant longitudinal
expansion and the hydrodynamic transverse expansion of
a circularly symmetric blob of strongly coupled confor-
mal plasma with four-velocity uµ(τ, η, x⊥), independent
of the azimuthal angle φ. We shall then place this hydro-
dynamic solution in the electric and magnetic fields com-
puted in Section II, and determine the small additional
charge-dependent velocity ~v that results. We refer to
Ref. [27] for details of Gubser’s solution and confine our-
selves here to a brief summary. The only nonzero com-
ponents of uµ are uτ , which describes the boost-invariant
longitudinal expansion, and u⊥, which describes the
transverse expansion. They are given by [27]

uτ =
1 + q2τ2 + q2x2

⊥

2qτ
√

1 + g2
, u⊥ =

qx⊥√
1 + g2

, (3.1)

where

g ≡ 1 + q2x2
⊥ − q2τ2

2qτ
. (3.2)

The fluid four-velocity uµ in the solution is specified by
a single parameter denoted by q, with the dimension of
1/length. (q is unrelated to charge.) The transverse size
of the plasma is proportional to 1/q. The local tempera-
ture of the plasma is then given by [27]

T =
1

τf
1/4
∗

(
T̂0

(1 + g2)1/3
+

H0 g√
1 + g2

×
[
1− (1 + g2)1/6

2F1

(
1

2
,

1

6
;

3

2
;−g2

)])
, (3.3)

where the first the term, proportional to the dimension-
less parameter T̂0, corresponds to an ideal fluid and the
second term incorporates dissipative effects due to the
shear viscosity η. The initial temperature of the plasma
is proportional to the parameter T̂0, and is also affected
by the choice of the parameter q. The expression (3.3)
introduces two further dimensionless parameters that we
shall choose as in Ref. [27]. f∗ is the parameter that
relates the energy density of the plasma ε to the local
temperature, ε = f∗ T

4, and we shall choose the value
f∗ = 11, reasonable for the QCD quark-gluon plasma
with T ∼ 300 MeV [36]. H0 is the parameter that con-
trols the strength of viscous corrections; it is defined by
η = H0 ε

3/4. We choose the value H0 = 0.33 that corre-
sponds to η/s = 0.134, as has been estimated for SU(3)
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gluodynamics [37]. The local energy density ε and the
fluid four-velocity uµ fully specify the energy-momentum
tensor of the fluid.

It remains to fix the parameters q and T̂0. Together
they determine the initial temperature profile of the
plasma at some fiducial early time that should be com-
parable to or greater than the time at which a hydrody-
namic description becomes valid. Hydrodynamic calcula-
tions appropriate for heavy ion collisions at the LHC, for
example those in Refs. [38], suggest that at τ = 0.6 fm the
initial temperature should be between 445 MeV and 485
MeV. It is not possible to use this initial temperature to
fix q or T̂0, however, because the the temperature profile
as a function of x⊥ is quite different in Gubser’s solu-
tion than in a heavy ion collision: in Gubser’s solution
the temperature profile is both more peaked at x⊥ = 0
and has a heavier large-x⊥ tail relative to a Woods-Saxon
distribution with its flat middle and damped tails. The
parameters q and T̂0 also implicitly determine the radial
velocity profile at the end of the hydrodynamic evolu-
tion, which in turn determines the hadron spectra after
freezeout. Our approach, therefore, is to explore the two
parameter space looking for values that give reasonable
final state spectra to mock up heavy ion collisions at the
LHC in the 20 - 30% centrality class (i.e. the collisions in
the 20th-30th percentile in impact parameter, which have
impact parameters around 7− 8 fm. We have found that
choosing T̂0 = 10.8 and q−1 = 6.4 fm yields reasonable
pion and proton spectra, as we shall show below. This
choice yields a temperature of 617 MeV at the center
of the collision at τ = 0.6 fm and an average tempera-
ture within x⊥ < 7 fm at τ = 0.6 fm of 458 MeV. For
heavy ion collisions at RHIC we find instead that choos-
ing T̂0 = 7.5 and q−1 = 5.3 fm yields reasonable pion
and proton spectra. With this choice, at τ = 0.6 fm
the temperature at x⊥ = 0 is 488 MeV and the average
temperature within x⊥ < 7 fm is 326 MeV.

We calculate the hadron spectra for the pions and the
protons by applying the Cooper-Frye freezeout procedure
to Gubser’s hydrodynamic solution. The hadron spec-
trum for particles of species i with mass mi will depend
on transverse momentum pT , momentum space rapidity
Y and the azimuthal angle in momentum space φp. These
are related to pµ by

p0 = mT coshY,

pz = mT sinhY,

py = pT sinφp,

px = pT cosφp, (3.4)

where we have defined the transverse mass mT ≡√
p2
T +m2

i . To establish notation, note that the depen-
dence of the hadron spectrum on φp can be expanded
as

Si ≡ p0 d
3Ni
dp3

=
d3Ni

pT dY dpT dφp
(3.5)

= v0 (1 + 2 v1 cos(φp − π) + 2 v2 cos 2φp + · · ·) ,

where in general the parameters vn will depend on Y
and pT . Note that the sign of v1 is conventionally de-
fined such that if the spectators moving toward positive
z, i.e. moving with positive Y , were deflected away from
the center of the collision that would correspond to a
positive v1. We see in Fig. 1 that, with our choices of
conventions, the spectators moving toward positive z are
at negative x. This means that for us v1 > 0 corresponds
to directed flow toward negative x, as we have already
indicated in the labelling of Fig. 1. This is why v1 mul-
tiplies cos(φp − π), not cosφp, in (3.5).

Gubser’s solution is boost invariant and azimuthally
symmetric, meaning that it is independent of Y and
φp. In this case, the only nonvanishing vn is v0, and
v0 = (2πpT )−1d2N/dY dpT depends only on pT . We
want to calculate v0 for pions and protons. The stan-
dard prescription to obtain the hadron spectra from
a hydrodynamic flow, assuming sudden freezeout when
the fluid cools to a specified freezeout temperature Tf ,
was developed by Cooper and Frye [30]. We shall take
Tf = 130 MeV for heavy ion collisions at both the LHC
and RHIC. The freezeout surface is the isothermal surface
in spacetime at which the temperature of Gubser’s hydro-
dynamic solution, given in (3.3), satisfies T (x⊥, τ) = Tf .
The spectrum for hadrons of species i is then given by [30]

Si = p0 d
3Ni
dp3

= − gi
(2π)3

∫
dΣµ p

µF

(
−p

µuµ
Tf

)
, (3.6)

where dΣµ is the area element on the freezeout sur-
face, uµ is the 4-velocity of the fluid, gi is the degen-
eracy of hadron species i and F (x) is a distribution
function that we will take as the Boltzmann distribu-
tion F (x) = exp(−x). As with many of our other sim-
plifying assumptions, we choose Boltzmann rather than
Fermi-Dirac or Bose-Einstein in order to obtain a calcu-
lation that can be done mostly analytically. (The sign
in the argument of F in (3.6) comes from our use of
the mostly + signature metric.) The freezeout surface is
Σµ = (τf (x⊥), η, x⊥, φ) where τf (x⊥) is the solution of
the equation T (x⊥, τf ) = Tf . See Fig. 3 (top). The area
element perpendicular to the freezeout surface is

dΣµ = −εµνλρ
∂Σν

∂η

∂Σλ

∂x⊥

∂Σρ

∂φ

√
−g dη dx⊥dφ

= (−1, 0,−Rf , 0)x⊥τf dη dx⊥dφ , (3.7)

where
√
−g = x⊥τ on the freezeout surface and where

we have used the fact that dT = (∂T/∂x⊥)dx⊥ +
(∂T/∂τ)dτ = 0 on the freezeout surface to define

Rf ≡ −
∂τ

∂x⊥
=

∂T

∂x⊥

/∂T
∂τ

∣∣∣
Tf

. (3.8)

This completes the specification of the quantities appear-
ing in the expression (3.6) for the hadron spectra.

We now calculate (3.6) for Gubser’s flow, for example
with the parameters chosen with LHC heavy ion colli-
sions in mind as we described above. For uµ as in Gub-
ser’s flow, the argument of the function F simplifies as

pµuµ = −mT u
τ cosh(Y − η) + pT u

⊥ cos(φp − φ) .(3.9)
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FIG. 3: Features of Gubser’s flow. Top figure illustrates
the isothermal curves in the (x⊥, τ) plane for Gubser’s hy-

drodynamic solution with the parameters T̂0 = 10.8 and
q−1 = 6.4 fm. We choose the T = 130 MeV isotherm as
the freezeout surface. Bottom figure is the comparison of the
spectrum of positively charged pions (black, top) and protons
(black, bottom) as a function of transverse momentum pT re-
sulting from Gubser’s hydrodynamic solution to the spectra
for pions (red, top) and protons (red, bottom) in LHC heavy
ion collisions with 20-30% centrality measured by the ALICE
collaboration, as in Ref. [39]. Because we have no chemical
potential for baryon number or isospin in our calculation, the
spectra of antiprotons and protons are identical as are the
spectra of the negatively and positively charged pions.

One can then perform the η and φ integrals in (3.6) an-

alytically, obtaining

p0 d
3Ni
dp3

∣∣∣∣∣
G

=
gi

2π2

∫
dx⊥x⊥ τf (x⊥)

×
{
mT K1

(
mTu

τ

Tf

)
I0

(
pTu

⊥

Tf

)
+RfpTK0

(
mTu

τ

Tf

)
I1

(
pTu

⊥

Tf

)}
(3.10)

where Rf was defined in (3.8). As expected, the result is
independent of Y and φp and only depends on pT . One
then evaluates the x⊥ integral on the freezeout surface
numerically and obtains the spectra of hadrons freezing
out from Gubser’s hydrodynamic flow as a function of
pT . The results for the charged pion and proton spectra
are presented in Fig. 3 (bottom).

We observe that Gubser’s flow with this choice of pa-
rameters does not yield fully satisfactory spectra — in
particular there are too few protons relative to pions —
but at a qualitative level it reproduces many features
of the spectra in LHC heavy ion collisions with 20-30%
centrality measured using the ALICE detector [39]. The
shortfall in the number of protons comes because we are
using a single freezeout temperature Tf instead of letting
the number of each hadron species, for example protons,
freezeout first at a somewhat higher chemical freezeout
temperature or using a hadron cascade code between Tc
and Tf . By assuming thermal and chemical equilibrium
and using hydrodynamics all the way down to a single
freezeout temperature Tf = 130 MeV the proton mul-
tiplicity in the final state is being overly suppressed by
the Boltzmann factor at T = Tf . We see, though, that
the shape of the proton spectrum is reproduced well. If
we were to use a slightly lower Tf , say 120 or 110 MeV,
we could improve the shape of the pion spectrum at the
expense of suppressing the proton multiplicity even more
than in Fig. 3. Given the simplicity, and the unphysical
initial temperature profile, of Gubser’s analytic hydrody-
namic solution and given the crude freezeout at a single
Tf that we are employing, we find it impressive that it
is possible to obtain spectra as reasonable as those in
Fig. 3.

We have also done the exercise of comparing spectra
obtained at freezeout from Gubser’s hydrodynamic solu-
tion with varying values of q and T̂0 to pion and pro-
ton spectra for 20-30% centrality heavy ion collisions
at RHIC [40], finding reasonable spectra upon choosing

q−1 = 5.3 fm and T̂0 = 7.5, values of the parameters that
we already quoted earlier in this Section.

In the next Section, after we have determined the
charge-dependent velocity corresponding to the electric
current we shall re-evaluate (3.6) upon replacing uµ by
V +µ or V −µ for positively or negatively charged hadrons.
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IV. ELECTRIC CURRENT AND
CHARGE-DEPENDENT DIRECTED FLOW

We are now ready to study the effects of the magnetic
field on the directed flow v1, which is the purpose of this
paper. In the center-of-mass frame, the magnetic and
electric fields are given by the sum of (2.9) and (2.12),
and (2.10) and (2.13). The fluid velocity in the absence
of any electromagnetic effects is given by uµ in Gubser’s
solution, (3.1). In order to obtain the fluid velocity V µ,
including electromagnetic effects, at a given spacetime
point we first Lorentz transform by Λ(−~u) to the local

fluid rest frame in which ~u′ = 0 at that point and then
use the Lorentz transformed electromagnetic fields in the
stationary current condition (1.1), setting q = +2e/3 to

obtain ~v′u, setting q = +e/3 to obtain ~v′d̄, and averaging

these to obtain ~v′. The average drift velocity for neg-
atively charged particles in the local fluid rest frame is

obtained similarly and is given by −~v′. We then Lorentz
transform by Λ(~u) back to the center-of-mass frame, ob-
taining the total velocity V +µ and V −µ for positively and

negatively charged particles via Lorentz transforming ~v′

and −~v′ back to the center-of-mass frame, respectively.
At this point we checked whether our assumption

|~v|/|~u| � 1 is indeed satisfied. In order to characterize
this assumption in a Lorentz invariant fashion, we can
calculate the difference between the Lorentz factor for
the total velocity V ±µ, including Gubser’s uµ and the
excess velocity due to magnetic effects, and the Lorentz
factor for uµ alone. The difference between these turns
out to be very small, of order 0.001 or smaller everywhere
in the (η, x⊥, φ) space.

Once we have obtained the total velocity V ±µ we can
use the freezeout procedure described in the previous Sec-
tion to calculate the hadron spectra including electro-
magnetic effects by replacing uµ in (3.6) by V +µ when
evaluating the π+ and proton spectra and by V −µ when
evaluating the π− and antiproton spectra. The change
to the φ-integrated dN/dpT , i.e. the change to v0 defined
in (3.5), that results from using V ±µ instead of uµ is mi-
nuscule, and for all practical purposes it is fine to use
results for v0 obtained as in Section III. Because the
magnetic field induces an electric current that circulates
in the (x, z) plane, see Fig. 1, when we use V +µ or V −µ

in (3.6) we obtain a small, but nonzero, directed flow
v1 that is opposite in sign for positively and negatively
charged particles. Teasing out this charge-dependent v1

is the goal of this paper. From its definition in (3.5) we
see that v1 is given by

v1(pT , Y ) =

∫ π
−π dφp cos(φp − π)Si(pT , Y, φp)

2πv0
. (4.1)

Recall from Fig. 1 that our conventions are such that a
positive v1 corresponds to directed flow in the negative
x direction. In evaluating the denominator in (4.1) we
shall use v0 obtained from uµ as in Section III. There are
four integrals to be evaluated in the numerator of (4.1),

-3 -2 -1 1 2 3
Y

-0.00004

-0.00002
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v1

FIG. 4: Directed flow v1 for positively charged pions (solid
curves) and negatively charged pions (dashed curves) in our
calculation with parameters chosen to give a reasonable fac-
simile of 20-30% centrality heavy ion collisions at the LHC.
We plot our results for v1 as functions of momentum-space
rapidity Y at pT = 0.25 (green), 0.5 (blue) and 1 GeV (red).
Here and in all subsequent figures we are only plotting the
charge-dependent contribution to the directed flow v1 that
originates from the presence of the magnetic field in the col-
lision and that is caused by the Faraday and Hall effects.
This charge-dependent contribution to v1 must be added to
the, presumably larger, charge-independent v1. For exam-
ple, if the charge-independent v1 for pions with Y < 0 and
pT = 1 GeV is positive then in that kinematic regime our
results correspond to a positive v1 for both π+ and π−, with
v1(π+) > v1(π−) .

namely integrals over x⊥, η, φ and φp. It turns out that
one can evaluate the φp integral analytically in terms of
Bessel and hypergeometric functions:∫ π

−π
dφp cosφp Si(pT , Y, φp) =

gi
(2π)2

∫
dη dx⊥ dφ x⊥ τf (x⊥)

× e
−mTTf [V τ cosh(Y−η)−V ητf sinh(Y−η)]

×

{(
V ⊥ cosφ− x⊥V φ sinφ

)
×

[
mT cosh(Y − η)√

W
I1

(
pT
Tf

√
W

)

+Rf pT
v⊥

W

(
I0

(
pT
Tf

√
W

)
−Ψ2

(
p2
T

4T 2
f

W

))]

+
1

2
Rf pT cosφΨ2

(
p2
T

4T 2
f

W

)}
, (4.2)

where we have defined W ≡ (V ⊥)2 +x2
⊥(V φ)2. The three

remaining integrals in (4.2) have to be done numerically.
After doing so we obtain v1(Y, pT ) from (4.1).

Figure 4 shows v1 for positively and negatively charged
pions as a function of momentum-space rapidity Y at
transverse momenta pT = 0.5, 1, and 2 GeV. In this Fig-
ure we have chosen the initial magnetic field created by
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FIG. 5: Comparison of Hall vs. Faraday effects. We plot v1
at pT = 1 GeV as a function of Y for positively charged pions
with values of parameters chosen as in Fig. 4, appropriate
for LHC collisions. The dashed red curve is obtained if we
turn off the Hall effect, keeping only the Faraday effect. The
solid red curve, which is the same as that in Fig. 4, includes
both the Hall and Faraday effects. We see that the Hall and
Faraday effects have opposite sign, as in Fig. 1. Here, the
Faraday effect is stronger.

the spectators with beam rapidity±Y0 = ±8 and the par-
ticipants, we have set the parameters specifying Gubser’s
hydrodynamic solution to T̂0 = 10.8 and q−1 = 6.4 fm,
we have chosen the electric conductivity σ = 0.023 fm−1

and the drag parameter µm in (1.1) as in (1.2) with
T = 255 MeV, and we have set the freezeout temper-
ature to Tf = 130 MeV. As we have described in previ-
ous Sections, these parameters have been chosen to give
a reasonable characterization of v1 in 20-30% centrality
heavy ion collisions at the LHC. Note that here and in
the following we will only look at the directed flow at
values of |Y | that are well below Y0. This is because the
trajectories of final-state hadrons produced near beam
rapidity can be affected by Coulomb interactions with
the charged spectators at very late times [41], long after
freezeout, and we are neglecting these effects.

We see in Fig. 1 that if the current induced by Fara-
day’s law is greater than that induced by the Hall effect,
we expect v1 > 0 for negative pions at Y > 0 and for
positive pions at Y < 0 and we expect v1 < 0 for positive
pions at Y > 0 and for negative pions at Y < 0. Compar-
ing to Fig. 4, we observe that this is indeed the pattern
for pions with pT = 1 GeV, meaning that in the compe-
tition between the Faraday and Hall effects, the effect of
Faraday on pions with pT = 1 GeV is greater than the
effect of Hall. However, the effects of Hall and Faraday
on pions with smaller pT and small Y are comparable in
magnitude, for example with the Hall effect just larger
for pT = 0.25 and |Y | < 1.2, resulting in a reversal in the
sign of v1 in this kinematic range.

We can check that the Faraday and Hall effects make
contributions with opposite sign to the directed flow v1,
as illustrated schematically in Fig. 1. In order to calcu-
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FIG. 6: v1 for protons (solid curves) and antiprotons (dashed
curves) in our calculation with the same parameters as in
Fig. 4, namely parameters chosen with 20-30% centrality
heavy ion collisions at the LHC in mind. We plot v1 as a
function of momentum space rapidity Y at pT = 0.5 (blue),
1 (red) and 2 GeV (black).

late the contribution to v1 that is caused by the magnetic
field only via Faraday’s law we proceed as follows. We
solve for the electric and magnetic fields in the center-
of-mass frame, as always. The electric field Ex is that
due to Faraday’s law: it is present because By is decreas-
ing with time. So, we compute a drift velocity ~v (or -~v)
for positively (or negatively) charged particles by solving

q ~E = µm~v in the center-of-mass frame. At each point in
space time we then add this ~v (and −~v) to the charge-
independent flow velocity ~u using special relativistic addi-
tion of velocities, and form a four-velocity from the sum.
In this way we obtain V +µ (and V −µ) that include the ve-
locity from Gubser’s flow as well as the additional veloc-
ity for positively (and negatively) charged particles that
is induced by Faraday’s law. But, we have left out the
Hall effect. We can then compute v1. In Fig. 5 we show
v1 for pions with pT = 1 GeV in our calculation with pa-
rameters appropriate for LHC collisions. The solid curve
is the full result, including both the Hall and Faraday
effects. The dashed curve shows the v1 due only to Fara-
day, with the Hall effect turned off. We see that the full
result arises from a partial cancellation between the Hall
and Faraday effects, which act in opposite directions as
in Fig. 1. For pions with pT = 1 GeV, the Faraday effect
makes the larger contribution to v1. We see, though, that
the contribution to v1 due to the Hall current is compa-
rable to that arising solely from the Faraday effect. It
would therefore be interesting to attempt a full-fledged
magnetohydrodynamic study in which the back-reaction
of this current on the magnetic field is taken into consid-
eration. We leave this to future work.

Next, we repeat the same calculation as in Fig. 4, this
time for the protons and antiprotons. In Fig. 6 we plot
v1 for (anti)protons as a function of momentum-space
rapidity Y at transverse momenta pT = 0.25, 0.5, and
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FIG. 7: v1 for positively (solid curves) and negatively (dashed
curves) charged pions with parameters chosen as for a 20-
30% centrality heavy ion collision at RHIC. We plot v1 as a
function of momentum space rapidity Y at pT = 0.25 (green),
0.5 (blue) 1 (red) and 2 GeV (black). Antiprotons are not
displayed in this figure for visual clarity.

1 GeV. We observe that in the range of parameters pT
and Y that we are interested in v1 for protons turn out
to be in they opposite direction to the v1 for pions. So,
when it comes to their influence on the directed flow of
protons in collisions at LHC energies, the Hall effect is
stronger than the Faraday effect. How is it possible for
the Faraday effect to be stronger for pions while the Hall
effect is stronger for protons? First, in some regions of
spacetime the electric current induced by the Faraday
effect is greater than the current induced by the Hall
effect whereas in other regions of spacetime the Hall cur-
rent is greater. And, second, because mT is so much
larger for protons than for pions when one computes v1

the integral (4.2) over the freezeout surface weights the
contribution from different regions of the freezeout sur-
face substantially differently for protons than for pions.
Putting these together, it turns out that the Hall con-
tribution to v1 for protons is larger than that from the
Faraday effect, whereas it is smaller for the pions.

Interestingly, the magnitude of v1 is less for protons
with pT = 1 GeV than it is at lower pT , meaning that
the pT -dependence of v1 for protons in Fig. 6 is opposite
that for pions in Fig. 4. These observations indicate that
for both pions and protons the magnitude of the Fara-
day contribution to v1 increases with increasing pT faster
than the magnitude of the Hall contribution.

Finally we present our estimates for heavy ion colli-
sions at RHIC with

√
s = 200 AGeV and 20-30% cen-

trality. That is, now we choose an initial magnetic field
created by spectators with beam rapidity Y0 = 5.4, we set
the parameters specifying Gubser’s hydrodynamic solu-
tion to T̂0 = 7.5 and q−1 = 5.3 fm, we choose the electric
conductivity σ, the drag parameter µm in (1.1) and the
freezeout temperature Tf as before. One change that we
made is that in our calculations with these choices of pa-
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FIG. 8: v1 for protons with parameters chosen as in Fig. 7, so
as to yield estimates for RHIC. We plot v1 as a function of Y
at pT = 0.5 (blue), 1 (red) and 2 GeV (black). Anti-protons
are not displayed in this figure for visual clarity.

rameters we left out the contribution of the participant
protons to the magnetic and electric fields from the be-
ginning, computing only the effects due to the spectators.
We made this simplifying choice after having checked
that, in our previous calculations with parameters ap-
propriate for LHC collisions, leaving out the participants
makes only a less than 10% difference to the calculated
v1’s, in most regions of momentum space much less. In
Fig. 7 we plot v1 for positively and negatively charged
pions as a function of Y at pT = 0.25, 0.5, 1 and 2 GeV.
We observe that Faraday effect is dominant for pions at
RHIC even for pT as low as 0.25 GeV. And, in Fig. 8 we
present v1 of protons in our calculation with parameters
chosen to mock up a RHIC collision with 20-30% central-
ity for protons with pT = 0.5, 1 and 2 GeV. As in Fig. 6,
we see that the magnitude of the Faraday contribution
to v1 increases with increasing pT . In Fig. 8 we see that
the sign of v1 flips as pT increases, as the Faraday con-
tribution goes from being smaller than to larger than the
Hall contribution.

V. OBSERVABLES, AND A LOOK AHEAD

Our estimates of the magnitude of the charge-
dependent directed flow of pions and (anti)protons in
heavy ion collisions at the LHC and RHIC, and their
dependence on Y and pT , can be found in Figs. 4, 6, 7
and 8. If we focus on Y ∼ 1 and pT ∼ 1 GeV, we see
that the magnitude of the contribution to v1 due to the
magnetic field is between 10−5 and 10−4, with the effect
being about twice as large at in heavy ion collisions at top
RHIC energies than in those at the LHC and about twice
as large for pions than for (anti)protons. So, the effect is
small. What makes it distinctive is that it is opposite in
sign for positively and negatively charged particles of the
same mass, and that for any species it is odd in rapidity.
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Detecting the effect directly by measuring the directed
flow of positively and negatively charged particles, which
we shall denote by v+

1 and v−1 , is possible in principle but
is likely to be prohibitively difficult in practice for two
reasons. First, event-by-event there can be significant
charge-independent contributions to v1 due to event-by-
event variation in the “shape” (in the transverse plane) of
the energy deposited by the collision. This means that a
separate measurement of v+

1 and v−1 followed by subtract-
ing one measured quantity from the other would require
enormous data sets and very precise control of each of the
two separate measurements. Second, the separate mea-
surement of either v+

1 or v−1 requires reconstructing the
direction of the magnetic field in each event (i.e. deter-
mining event by event whether By is positive or negative)
by using forward detectors to measure the directions in
which the remnants of the colliding ions are deflected.
It would be advantageous to define correlation observ-
ables that, first of all, involve taking ensemble averages
of suitably chosen differences rather than just of v+

1 or
v−1 and that, second of all, do not require knowledge of
the direction of the magnetic field. The construction of
such observables can be guided by symmetry consider-
ations that apply in collisions between like nuclei that
dictate that the contribution to the directed flow that
is caused by the electric currents induced by a magnetic
field created in the collision must satisfy

v+
1 (Y ) = −v−1 (Y ) = −v+

1 (−Y ) = v−1 (−Y ) (5.1)

for either pions or (anti)protons, for any value of pT , and
regardless of the direction of the magnetic field. Here
Y = 0 means particles produced at 90◦ to the beam
direction in the center-of-mass frame.

To isolate the charge-dependent directed flow that we
are after, namely the effect of an electric current as in
Fig. 1 that must satisfy (5.1) event-by-event, and to sepa-
rate it from larger charge-independent effects it is helpful
to define the following asymmetries between the directed
flows for positive and negative hadrons:

A+−
1 (Y1, Y2) ≡ v+

1 (Y1)− v−1 (Y2),

A++
1 (Y1, Y2) ≡ v+

1 (Y1)− v+
1 (Y2),

A−−1 (Y1, Y2) ≡ v−1 (Y1)− v−1 (Y2), (5.2)

and to measure correlations of these asymmetries. It is
easy to see from (5.1) that for the effects induced by a
magnetic field

A+−
1 (Y, Y ) = 2v+

1 (Y ) = −A+−
1 (−Y,−Y )

= A++
1 (Y,−Y ) = A−−1 (−Y, Y ) , (5.3)

and so on. Even if the direction of the magnetic field
is not reconstructed, one can still study the correlation
functions defined by

Ci,j1 (Y1, Y2) ≡ 〈Ai1(Y1, Y2)Aj1(Y1, Y2)〉. (5.4)

These correlation functions are quadratic in the directed

flow, and so are not sensitive to the direction of ~B and the

sign of v1 in a given event. However, they still carry the
requisite information about dynamical charge-dependent
correlations induced by the magnetic field. Analogous
correlations functions have been measured with high pre-
cision [12, 13]. Using the relations (5.1) and (5.3), one
can easily construct the desired correlators, and can then
predict their signs and magnitudes using our results from
Section IV. Let us list four examples. First, consider

C+−,+−
1 (Y, Y ) ≡ 〈A+−

1 (Y, Y )A+−
1 (Y, Y )〉

= 4〈v+
1 (Y )v+

1 (Y )〉, (5.5)

where we have used (5.1) in the second equality. Charge-
independent contributions to v1 that do not satisfy (5.1)
will cancel in (5.5). Second, in addition to measuring

C+−,+−
1 (Y, Y ) with the goal of extracting 〈v+

1 (Y )v+
1 (Y )〉

it is very important at the same time to measure

C+−,+−
1 (Y,−Y ) ≡ 〈A+−

1 (Y,−Y )A+−
1 (Y,−Y )〉

= 0, (5.6)

since according to (5.1) this correlator should vanish, as
indicated by the last equality. One can of course also
measure

〈(v+
1 (Y ) + v−1 (−Y ))2〉 = 4〈v+

1 (Y )v+
1 (Y )〉, (5.7)

where we have used (5.1) in the equality. Fourth, consider

C++,−−
1 (Y,−Y ) ≡ 〈A++

1 (Y,−Y )A−−1 (Y,−Y )〉
= 2〈v+

1 (Y )v−1 (Y )− v+
1 (Y )v−1 (−Y )〉

= −4〈v+
1 (Y )v+

1 (Y )〉, (5.8)

where we have used (5.1) in the last equality. So, to give
an example of a possible analysis strategy, imagine mea-
suring the four correlators (5.5), (5.6), (5.7) and (5.8) in
heavy ion collisions at RHIC or the LHC, for pions or
for (anti)protons or for that matter for charged hadrons.
Contributions to these correlators arising from the elec-
tric current induced by the Hall and Faraday effects due
to the presence of a magnetic field will vanish in (5.6),
will be equal in (5.5) and (5.7), and will be equal in mag-
nitude but opposite in sign in (5.8). Measuring correla-
tions that fit this pattern will allow for the determination
of 〈v+

1 (Y )v+
1 (Y )〉, which could then be compared to the

results of calculations like those we have presented in
Section IV.

Finally, it may also be advantageous to measure
the components of (5.8), namely 〈v+

1 (Y )v−1 (Y )〉 and
〈v+

1 (Y )v−1 (−Y )〉, separately. Measuring each of these
correlators and showing that they are both nonzero, are
equal in magnitude, and that the first is negative while
the second is positive would also constitute strong evi-
dence for the charge-dependent and rapidity-odd contri-
bution to the directed flow induced by the magnetic field
present during the collision.

The challenge to experimentalists is to measure these
correlators, or others that are also defined so as to sepa-
rate the effects that satisfy (5.1) from charge-independent
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backgrounds. If this is possible, one can imagine that it
may be possible to use comparisons between data and
the nontrivial pT - and Y -dependence of results like those
that we have obtained in Figs. 4, 6, 7 and 8 to extract
a wealth of information, for example about the strength
of the initial magnetic field and about the magnitude of
the electrical conductivity of the plasma.

Before such goals can be realized, however, there re-
main many challenges on the theoretical side. We have
made many simplifying assumptions, justifying them by
virtue of the fact that our goal in this paper is only order-
of-magnitude estimates of the Hall and Faraday effects on
the charge-dependent directed flow. Given that the mag-
nitude of the observable effect turns out to result from a
partial cancellation between the Hall and Faraday effects,
and given the interesting and quite nontrivial dependence
of our results on Y and pT , there is plenty of motiva-
tion for a more sophisticated, less simplified, treatment.
In our view, the most pressing challenges are the inclu-
sion of temperature-dependent, and therefore spacetime-
dependent, electrical conductivity σ and drag parameter
µm, as well as the ab initio calculation of the second
of these two quantities. Treating both these quantities
as temperature-dependent, rather than as constants, will
require an analysis in which the solution of Maxwell’s
equations is done numerically, rather than analytically as
in Section II. Once this threshold has been crossed, there
will be no motivation to use Gubser’s analytic solution
to the hydrodynamic equations. At this point it will be
best to use a state-of-the-art (3+1)-dimensional numeri-
cal relativistic viscous hydrodynamics calculation. Even
further in the future it may become relevant to consider
the back reaction of the effects induced by the magnetic
field on the hydrodynamics itself. However, given the
smallness of the effects that we have found, attempting
this even more challenging extension of our analysis does
not seem to be pressing.

A natural direction for further investigation is lower
energy heavy ion collisions, as in the RHIC Beam Energy
Scan program. Heavy ion collisions with

√
s as low as 7.7

AGeV have been studied in the first, exploratory, phase
of this program. The STAR collaboration has measured
the directed flow v1 for positively and negatively charged
pions and for protons and antiprotons in these lower en-
ergy collisions [42]. These preliminary data show hints
of the effects of magnetic fields that we have described,
for example with v1 for positively charged pions less than
(greater than) v1 for negatively charged pions with Y > 0
(Y < 0), as when the Faraday effect dominates over the
Hall effect, in collisions with

√
s = 7.7 and 11.5 AGeV.

This motivates the measurement of the directed flow cor-
relations that we have proposed. High statistics data sets
at these low collision energies are anticipated in a few

years, after the implementation of a RHIC upgrade in-
volving adding electron cooling for lower energy heavy
ion beams.

Since we have found that the observable effects of mag-
netic fields on the charge-dependent directed flow are
greater at top RHIC energies than at LHC energies, it
is natural to expect that the effects will be greater still
in lower energy collisions at RHIC. At these lower en-
ergies, however, the calculation of these effects is much
more challenging for several reasons. The matter pro-
duced in the collision spends less time in the QGP phase
meaning that it spends a larger fraction of its time in the
vicinity of the crossover or transition between QGP and
hadron gas, and in the hadron gas phase. This makes
the use of a constant σ and the use of a solution to con-
formal hydrodynamics, like Gubser’s, less viable even as
qualitative guides. We look forward to estimating the
magnitude of the directed flow correlators that we have
introduced in this paper in lower energy collisions in the
future, once a treatment with σ varying in space and time
and with more realistic hydrodynamics is in hand. Also,
at the lowest energies the assumption that we made in
calculating the magnetic field that the spectators travel
along straight lines will no longer be valid. Finally, the
assumption that all the fragments of the incident nucle-
ons (spectators and participants) end up at large |Y |, well
separated from the smaller values of |Y | where we look
for effects of the magnetic field, must also break down in
lower energy collisions with smaller beam rapidity. For
all these reasons, further calculations are needed before
firm conclusions can be drawn from the low energy data.
And, there are strong motivations for measuring the di-
rected flow correlators that we have defined in heavy ion
collisions at top RHIC energy and at the LHC, where our
estimates should be more reliable.
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