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ABSTRACT: Advances in deep neural network (DNN)-based
molecular property prediction have recently led to the develop-
ment of models of remarkable accuracy and generalization ability,
with graph convolutional neural networks (GCNNs) reporting
state-of-the-art performance for this task. However, some
challenges remain, and one of the most important that needs to
be fully addressed concerns uncertainty quantification. DNN
performance is affected by the volume and the quality of the
training samples. Therefore, establishing when and to what extent a
prediction can be considered reliable is just as important as outputting accurate predictions, especially when out-of-domain
molecules are targeted. Recently, several methods to account for uncertainty in DNNs have been proposed, most of which are based
on approximate Bayesian inference. Among these, only a few scale to the large data sets required in applications. Evaluating and
comparing these methods has recently attracted great interest, but results are generally fragmented and absent for molecular property
prediction. In this paper, we quantitatively compare scalable techniques for uncertainty estimation in GCNNs. We introduce a set of
quantitative criteria to capture different uncertainty aspects and then use these criteria to compare MC-dropout, Deep Ensembles,
and bootstrapping, both theoretically in a unified framework that separates aleatoric/epistemic uncertainty and experimentally on
public data sets. Our experiments quantify the performance of the different uncertainty estimation methods and their impact on
uncertainty-related error reduction. Our findings indicate that Deep Ensembles and bootstrapping consistently outperform MC-
dropout, with different context-specific pros and cons. Our analysis leads to a better understanding of the role of aleatoric/epistemic
uncertainty, also in relation to the target data set features, and highlights the challenge posed by out-of-domain uncertainty.

■ INTRODUCTION
Deep neural network (DNN)-based molecular property
prediction has received new attention recently with the
development of models capable of promising performance on
large and heterogeneous data sets.1−3 In particular, recent
progress in graph convolutional neural networks4 (GCNNs)
also known asmessage passing neural networkshave led to state-
of-the-art performance for property prediction across a range of
public and proprietary data sets,1 demonstrating both accuracy
and generalization gains. However, some limitations still hold,
and uncertainty quantification has recently been highlighted as
an important direction to be investigated.1

The need for an effective uncertainty quantification is driven
by both intrinsic characteristics of DNNmodels and by peculiar
features of chemical space. In general, standard DNNmodels do
not output confidence estimates, since regression models only
output a mean, while classification outputs cannot be reliably
interpreted as confidence scores.5

DNN performance strongly depends on the volume and the
quality of training data, hence there is a need to assess when and
to what extent a prediction can be considered reliable. While this
has emerged in the context of DNNs in several heterogeneous
applications, most of which are based on computer vision,6

DNN for chemistry is characterized by additional challenges.

First of all, chemical training data are intrinsically biased7

because the chemical space has an extremely large variability,
and therefore, a training data set cannot represent the whole
space. Moreover, chemical training data are often limited in
volume and quality. Additionally, doing predictions on
molecules rather different to those seen during training is
often the actual goal in the field, for example, in drug discovery
applications. This demands good generalization performance on
one side but also being able to identify the model’s knowledge
boundary, that is, assessing to what extent the model knows what
it knows.
While uncertainty estimation in this domain has been

investigated in the context of shallow models in the last few
years,8 less is known about uncertainty in DNN and GCNN
models for molecular property prediction.

Received: October 20, 2019
Published: April 3, 2020

Articlepubs.acs.org/jcim

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.jcim.9b00975
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Ju

ne
 1

0,
 2

02
0 

at
 1

8:
54

:3
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gabriele+Scalia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Colin+A.+Grambow"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Barbara+Pernici"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi-Pei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+H.+Green"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00975&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=abs1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00975?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf


Bayesian neural networks (BNNs) have long been studied as
an effective and principled way to take into account model
uncertainty in the predictions of a DNN,9 but the intractability
of exact Bayesian inference together with the limited practicality
of the approaches proposed has prevented the widespread
diffusion of these solutions in applications until recently.5 The
recent work from Gal and Ghahramani10 gave a decisive
contribution to the spread of approximate BNNs in applications,
proposing Monte Carlo dropout (MC-dropout), a practical
method based on the widely used dropout regularization
technique, to account for model uncertainty. Moreover, Kendall
and Gal6 proposed a framework to separate epistemic uncertainty,
which refers to uncertainty in the model predictions, from the
aleatoric uncertainty, which captures noise inherent in the data.
MC-dropout has been used in various applications, including
molecular property prediction.7,11

Other techniques to efficiently approximate BNNs have been
proposed. Finding a good trade-off between effective approx-
imation and scalability remains an important open challenge.
Notably, the ensemble-based approach proposed by Lakshmi-
narayanan et al.12 constitutes a simple and scalable technique to
obtain well-calibrated uncertainty estimates and has already
been used in several applications.13,14 Moreover, even if
originally proposed as a non-Bayesian alternative to estimate
uncertainty in DNNs,12 recent work highlighted how ensem-
bling in DNNs can be traced back to Bayesian inference.15−17

In parallel to the development of methods to efficiently
approximate BNNs, their evaluation and in particular their
comparative assessment have recently attracted great interest
given the challenges it poses.17−20 Indeed, we usually do not
have “ground truth uncertainties”, which prevents using
traditional benchmarks. Furthermore, evaluating uncertainty
involves measuring the model’s unknowns and taking into
account domain-specific features. Comparative assessments
have been conducted for computer vision tasks.17,19,20 However,
no comparisons have been carried out for GCNNs in the
chemistry domain. Moreover, manymetrics traditionally used to
evaluate uncertain forecasts, such as calibration, have been
defined in a classification setting, while their extension for
regressionneeded for scalar molecular propertieshas been
discussed only recently.21,22

Comparative analysis of different methods calls for multiple
metrics and quantitative indices. In contrast, recent works
targeting uncertainty estimation for DNN-based molecular
property prediction only employ a single technique, such as
confidence-error diagrams and qualitative evaluations.7,11

In the cheminformatics field, defining the set of molecules for
which a model can reliably generate predictions (its domain of
applicability, DA) is still a very active area of research, and
different definitions and methods have been introduced for this
purpose.23,24

Figure 1. Illustrative overview of a GCNN for molecular property prediction extended as a BNN. Message passing phase. Starting from a molecular
graph, the model extracts an initial representation hi

0 for each atom vi and a bond representation ei,j for each bond between vi and vj. At each step, the
atom representation is updated based on the representation of the atom’s neighbors and the related bonds. hi

j refers to the representation for the i-th
atom at the j-th update step andN(vi) are the atom’s neighbors. At the end (K update steps), the molecule representation h results from the sum of the
learned atoms features. Readout phase. Themolecular representation is updated through a series of fully connected layers obtaining the output vector y.
The peculiarity of a BNN is to model network weights and outputs as probability distributions (e.g., Gaussians), instead of point estimates. This allows
taking into account uncertaintyepistemic and aleatoricin the model.
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Here, we first review existing methods for uncertainty
estimation in DNNs, focusing on scalable and practical
techniques that can be used in applications. We contextualize
them in a unique framework to estimate aleatoric and epistemic
uncertainty, and we draw a theoretical comparison. Second, we
introduce a set of uncertainty evaluation criteria, which are based
on the extension of existing benchmarks used in other fields and
on chemistry-specific features, also including out-of-domain
performance evaluation. Third, we extend a recently published
state-of-the-art GCNN for molecular property prediction
(chemprop1) with the presented uncertainty estimation
methods and we compare them on multiple public data sets/
properties (QM9, Alchemy, PDBbind and Lipophilicity) for the
regression task. We quantify the positive impact of modeling
uncertainty in the network on the prediction error and discuss
the behavior of aleatoric and epistemic uncertainty in different
contexts, including to what extent they are correlated and related
to ground truth errors, how they are affected by data set features,
and their performance with respect to test set domain shifts.

■ METHODS
This section is organized as follows. We first summarize
GCNNs, which constitute the state-of-the-art for DNN-based
molecular property prediction. We then review Bayesian
Uncertainty Estimation in DNNs, detailing the methods that
will be tested. Finally, we discuss uncertainty evaluation and
related metrics. An overview of a GCNN extended as a BNN is
shown in Figure 1.
Graph Convolutional Neural Networks. A GCNN used

for property prediction takes as input a molecular graph G,
where the nodes are atoms and the edges are bonds, with each
atom vi initialized with the feature vector hi

0 and each bond vi− vj
with the feature vector ei,j and then operates in two phases (see
Figure 1). During the first phasemessage passingeach atom’s
feature vector is updated based on the neighbors’ features and
related bond representations. This phase is executed K times,
iteratively, so that in the steps following the first one each atom’s
feature hv

t is updated based on already updated neighbors
features. This allows the interaction of distant atoms in the
resulting representations. At the end, the molecule representa-
tion is given by the sum of its atoms representations. The second
phasereadoutis based on a feedforward neural network that
uses the final representation of the molecule to predict some
properties of interest. The message passing phase allows the
model to learn its own feature representations, while the readout
phase allows learning the relationship between such representa-
tions and output properties.
Starting from this general description, several specific

improvements have been recently proposed.1−3,11,25 Here, we
start from a well-tested software package, chemprop,1 that
recently reported state-of-the-art performance on multiple data

sets. One of the peculiar features of chemprop is the usage of
messages associated with directed edges (bonds) instead of
vertices (atoms). Interested readers can refer to the original
work by reported by Yang et al.1 for the details.
We extended the chemprop model to include the uncertainty

estimation and evaluation methods presented next. The new
version of the software is available at https://github.com/
gscalia/chemprop/tree/uncertainty.

Bayesian Uncertainty Estimation.Uncertainty can be the
result of inherent data noise or could be related to what the
model does not yet know. These two kinds of uncertainties
aleatoric and epistemicare reviewed in the next two sections,
together with scalable techniques which have been proposed for
their approximate computation. At the end, we describe how
these two kinds of uncertainty can be combined to obtain the
total uncertainty of a prediction.

Aleatoric Uncertainty. When not explicitly modeled, the
inherent observation noise is assumed to be the same for every
molecule. This defines a homoscedastic aleatoric uncertainty, that
is, an uncertainty which does not vary over the data distribution
and is essentially only task-dependent.26 However, this
assumption does not hold in many realistic settings. For
chemistry applications, it is usually difficult to obtain high-
quality data on a large set of molecules; therefore, one often
needs to use multiple data sources of various accuracy to
compose a large enough data set to train a model. Data-
dependent aleatoric uncertainty is referred to as heteroscedas-
tic,27 and its importance for DNNs has been recently
highlighted.6,11

Because aleatoric uncertainty is a property of data, it can be
learned directly from data adapting the model and the loss
function. Assuming an underlying Gaussian error, the model
(with weights θ) can estimate both the mean μ and the variance
σ2 of the output distribution y given an input x

θ μ σ| = θ θp y x x x( , ) ( ( ), ( ))2
(1)

This does not require “noise labels” but only changing the loss
function. Indeed, by performing maximum a posteriori
estimation (MAP) inference, we obtain28

∑θ
σ

μ σ∝ || − || +
θ

θ θ
=N x

y x x( )
1 1

2 ( )
( )

1
2

log ( )
i

N

i
i i i

1
2 2

2 2

(2)

with an additional weight decay term. Notice that, assuming a
homoscedastic uncertainty, minimizing eq 2 coincides with the
usual MSE. In practice, the last layer of the DNN is split to
predict both μθ and σθ

2, and the network is trained using eq 2,
with σθ

2 implicitly learned. The output σθ
2 corresponds to the

heteroscedastic aleatoric uncertainty: σa
2 = σθ

2. This is shown in
Figure 2.

Figure 2. Aleatoric uncertainty estimation assuming an underlying Gaussian error. Last layer of the DNN is split to predict both the mean μ and the
variance σ for each output property, and the network is trained minimizing the loss (eq 2). Predicted means correspond to the output properties and
the predicted variances correspond to the aleatoric uncertainties (one for each property).
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Interestingly, σθ
2 in eq 2 can be interpreted as learned loss

attenuation.6 Intuitively, the network can learn to increase σθ
2 to

reduce the impact of uncertain predictions on the overall loss.
The second term prevents outputting an infinite uncertainty for
every point.
This approach is very practical, requiring minimal mod-

ifications to the original network, and can be used in conjunction
with MC-dropout,6 ensembling,12 or other estimates of
epistemic uncertainty.
The output distribution does not need to be Gaussian (see

Figure 1); more complex models could be used, such as mixture
density networks (MDN)29,30 or compound density networks.31

Being predicted as a data variance, aleatoric uncertainty
cannot account for uncertainty in the model’s parameters θ.
Moreover, the MAP estimate does not take into account
multiple plausible values for θ but only the most probable one.
This can be overcome by performing Bayesian inference, as
discussed next.
Epistemic Uncertainty. In a BNN, the parameters θ are

modeled as distributions learned from training data , instead of
point estimates, and therefore, it is possible to predict the output
distribution y of some new input x through the predictive
posterior distribution, eq 3.

∫ θ θ θ| = | |p p py x y x( , ) ( , ) ( )d
(3)

Equation 3 accounts for epistemic uncertainty because a
prediction is the “weighted sum” of each outcome for each
possible θ configuration of the model, with more probable θ
having higher weight. The probability of θ depends on .
Monte Carlo integration over M samples θ(i) of the posterior

distribution θ|p( ) can approximate the integral, eq 4.

∑ θ θ θ| ≈ | ∼ |
=

p
M

p py x y x( , )
1

( , ), ( )
i

M
i i

1

( ) ( )

(4)

However, obtaining samples θ(i) directly from the true posterior
distribution is virtually impossible for neural networks. There-
fore, an approximate posterior distribution θ θ≈ |q p( ) ( ) is
introduced, and approximate samples θapprox

(i) ∼ q(θ) are used
instead.
Several methods to sample from q(θ) have been introduced.

The pioneering work by Neal,9 employing the MCMC variant
Hamiltonian Monte Carlo, is currently considered the gold
standard, but its applicability is limited to small networks and
data sets. Stochastic and optimized variations enhance scalability
at the expense of approximation performance.32,33

Variational inference (VI) is an alternative paradigm to derive
q(θ). In this case, a class of approximating distributions qϕ(θ)
parameterized by ϕ is explicitly chosen so that posterior
approximation becomes an optimization problem of finding ϕ
minimizing the Kullback−Leibler divergence with respect to

θ|p( ).
VI methods constitute a standard technique in Bayesian

modeling. However, scalability requirements and NN-specific
features have led to the design of new methods.10,15,34−36

Nonetheless, some of these approachessuch as Stein varia-
tional gradient descent36do not actually scale up to training-
intensive applications such as active learning-based molecular
property prediction.7 In this work, we target scalable and
practicalmethods, which could easily be used on large data sets/
networks and in applications such as active learning.

MC-dropout and ensembling-based methods are currently
the most popular approaches for large-scale uncertainty
estimation in NNs17 and, within chemistry, both have been
very recently introduced.7,11,37−39 In addition to their scalability,
these methods owe their popularity to the relative ease of
implementation. For this reason, in the following, we will focus
on MC-dropout and ensembling, describing both the original
methods, main variations (in particular, bootstrapping), recent
improvements, and interpretations.
Monte Carlo Dropout.MC-dropout6,10 is a simple and scalable

VI approach. The algorithm consists in training a network with
dropout before every layer and then, at testing time, keeping
dropout to sample M outputs y(i) with different random masks.
Each different random dropout mask corresponds to a sample
from the approximate posterior qϕ(θ). Themodel prediction y ̃ is
the mean of the different outputs, while the epistemic
uncertainty σe

2 can be captured by the variance of the different
outputs. If the aleatoric uncertainty is also computed (as in
Figure 2), the output aleatoric uncertainty is the mean of the
different aleatoric uncertainty estimates (and, in this case, the y(i)

are substituted by the μ(i))

σ σ σ̃ = ∑ = = ∑y y yvar( )
M

i i
M

i1 ( )
e

2 ( )
a

2 1
a
( )

(5)

Formally, the MC-dropout algorithm approximates the
posterior with a product of Bernoulli distributions. Indeed,
given a dropout probability p, each unit of the network with
parameters θi has probability p of being dropped and set to zero.
Equivalently, the approximation distribution can be seen as a
mixture of two Gaussians with small variances.6,10

A drawback of the MC-dropout approach is the introduction
of the dropout rate p as hyperparameter. Such a choice has an
important impact both on the model’s accuracy and uncertainty
estimation. Indeed, p contributes to determine the magnitude of
the epistemic uncertainty. Moreover, this hinders model
hyperparametrization, especially if p is chosen to be layer-
dependent.
Concrete dropout40 represents a practical gradient-based

solution to automatically tune p. This approach has comparable
performance as grid-searched p40 and better model calibration
than standard MC-dropout.20 Therefore, we will compare this
nonparametric version of MC-dropout to the intrinsically
nonparametric ensembling approach.
Ensembling. Ensembling has been introduced as a practical

non-Bayesian alternative to estimate uncertainty with the name
Deep Ensembles.12 The algorithm consists in training the same
network multiple times with random initialization, minimizing
the MLE objective −log p(y|x,θ) each time. The output of the
ensemble is given by the mean of the predictions, while the
variance corresponds to the ensemble uncertainty, as shown in
eq 5 for MC-dropout.
It is possible to draw a parallel between ensembling and MC-

dropout because the latter can also be interpreted as a form of
ensembling.12,41 Even if ensembling has been originally
proposed as a non-Bayesian solution,12 recent literature has
proved how, with minor modifications to the original
ensembling methodology, it is possible to interpret it as a
Bayesian inference technique.15,16 Nonetheless, even without
the modifications, ensembling can be interpreted as Bayesian
approximation with an implicit distribution q(θ).17

Ensemble methods have long been recognized as very
effective to improve predictive performance of machine
learning42 and deep learning models,43 and also for chemistry
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in QSPR.1 The reason why ensembling allows reducing the
overall error with respect to each of components resides in the
diversity of their errors. Indeed, perfectly correlated errors do
not bring any advantage to the ensemble error, while perfectly
uncorrelated errors reduce the expected ensemble error
proportionally to the number of employed instances.43 Different
solutions can be easily reached by deep models given their
nonconvexity and the suboptimal optimization strategies
employed.
The intuition behind the interpretation of the ensemble

variance as model uncertainty is simple. Different instances of
the ensemble of models will tend to output similar values when
the inputs are similar to the observed training data because each
instance’s weights, even if different, are optimized for those data.
In contrast, as inputs become less similar to the training data, the
outputs of each instance tend to be more affected by the
specificities of the suboptimal solution reached, thus the higher
variance. Given this, it seems clear that diversity in the
ensembled models should be promoted both for error reduction
and uncertainty improvement.
Traditional regularization techniques, such as weight decay

and early stopping, affect the solutions reached by NNs.
Recently, the usage of these techniques has been proposed not
only as a practical strategy to increase ensemble diversity but also
as a formal evidence for a Bayesian interpretation of
ensembling.15,16 This is discussed in detail in Supporting
Information (see section Anchored Ensembles and Early
Stopping).
Bootstrapping. Also referred to as bagging, bootstrapping is a

popular technique where ensemble members, instead of being
trained on the whole data set, are trained on different bootstrap

samples of the original training set. Each bootstrap sample i is
obtained by sampling K samples with replacement from the data
set and therefore will include a fraction of the elements in
and duplicates. If the original data set is a good approximator of
the underlying distribution, each i will also be.
Bootstrapping allows increasing the diversity in the trained

instances, which, as previously discussed, is a key factor for
ensembling performance. However, instead of relying on
diversity in the models, bootstrapping relies on diversity in the
data sets. This approach has been successfully employed to
increase the diversity in shallow ensembles, but its use within
NNs might be less beneficial because given the dependence on a
large amount of training data, each individual instance will be
less powerful.12 Moreover, NNs are characterized by an
extremely large amount of equivalent local minima43 and this,
together with stochastic gradient descent optimization, should
already provide some degree of diversity even when trained on
the same data set.
Nonetheless, because bootstrapping has been recently

described in the literature as an effective approach for
NNs,37,39 below we compare it to the full-data set ensemble
method.
A comparative overview of MC-dropout, ensembling, and

bootstrapping is presented in Figure 3. As shown, each method
relies on a set of predictions (explicit or implicit models). The
different predictions are used to estimate epistemic uncertainty,
as shown in Figure 4.

Total Uncertainty. Aleatoric and epistemic uncertainty can
be added to approximate the total uncertainty of a prediction,6,12

Figure 3. Overview and comparison of MC-dropout, ensembling, and bootstrapping. is the training data set. (a) MC-dropout: only a network is
trained to minimize the loss on the training data set. Then, at testing time, multiple models are “generated” applying a stochastic dropout mask to the
initial network. All the models GCNN1, ...GCNNN share (part of) the same weights. Diversity in the models is the result of dropout masks. (b)
Ensembling: different models are trained to minimize the loss on the same training data set. Diversity in the models results from different initial
configurations (random priors). (c) Bootstrapping: each model is trained to minimize the loss on a bootstrap sample of the training data set. This,
together with different initial configurations (random priors), ensures diversity in the models.
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including both the uncertainty in themodel’s prediction of μ and
model-data deviations coming from noise in the data.
For this work, we focus on three scalable uncertainty

frameworks for predicting total uncertainty: (1) MC-dropout
using concrete dropout (2) ensembling, and (3) bootstrapping.
All the different methods use the same aleatoric approximation
scheme previously described, but the different ways epistemic
uncertainty is modeled also affects the aleatoric uncertainty
results, thus resulting in different outputs (ref. eq 5).
Hyperparameters. Uncertainty estimates obtained through

DNN-based methods are affected by the choice of training
hyperparameters. Some uncertainty estimation methods in-
troduce additional hyperparameters, but the methods used here
do not, with the exception of the sampling size M.
Hyperparameter optimization for the base network is

performed using the hyperopt package (https://github.com/
hyperopt/hyperopt). The impact of hyperparameters on
uncertainty estimates is further discussed in Supporting
Information along with more details about how we tuned
them (see section Hyperparameters).
Evaluating the Quality of Uncertainty Estimates.

Evaluating the quality of uncertainty estimates is tricky because
(1) users have different objectives, and (2) usually, the true
uncertainties are unknown. Here, we use several evaluation
methods.
Ranking-Based Methods. A first class of evaluation indices is

based on the ranking defined by uncertainty estimates. This
allows defining a conf idence curve, which, in turn, allows defining
several quantitative indices.
Conf idence Curve. One way to evaluate the uncertainty is by

considering how the error varies as we remove molecules with
the highest uncertainty in the test data set. Indeed, a meaningful
uncertainty should lead to a lower error on a subset of high-
confident predictions. This concept is captured by the conf idence
curve, that highlights how the error varies [with respect to a given
metric, e.g., mean absolute error (MAE) or root mean squared
error (RMSE)] as a function of confidence percentile (or, in
general, confidence q-quantile), that is, the error on the subset of
n % molecules (or n-th q-quantile) with the lower uncertainty.
Ideally, we would expect a decreasing confidence curve. The

error corresponding to the left-most point is simply the error on
the complete test data set; the following points correspond to
the error on the subset of testing molecules belonging to the n-th
q-quantile. A better uncertainty estimate gives a confidence
curve with a higher slope because it allows decreasing the error
faster for the same amount of removed molecules. For
comparison, randomly sampling the molecules to be removed
should lead to a more or less constant function.

What this kind of evaluation really assesses is the ordering of
the predictions by their confidence. From this perspective, the
best possible ordering is the one imposed by the true error,
giving the oracle conf idence curve.19

Conf idence-Oracle Error and AUCO. Because the oracle
ordering corresponds to the lower bound, we can define the
confidence-oracle error as the difference between the confidence
curve for a given uncertainty estimation, h(i) = (h1

(i), h2
(i), ...hq−1

(i) ),
and oracle confidence curve, h(o) = (h1

(o), h2
(o), ...hq−1

(o) ). In general,
we want this difference to be as small as possible, and therefore,
we introduce the area under the conf idence-oracle error, AUCO,
to quantify it in a single numbera

∑= −
=

−

h h hAUCO( ) ( )i

j
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j
i

j
( )

1

1
( ) (o)

(6)

This value allows an easy comparison between two uncertainty
estimations h(i) and h(j) with respect to the oracle, where smaller
is better.
Every confidence curve depends not only on the uncertainty

estimation but also on the predictive model: the first defines the
q-quantiles, and the second is used to calculate the errors. It is
not possible to directly compare two confidence curves obtained
through different models to establish which uncertainty
estimation is better. This is particularly relevant because often
the uncertainty estimation and the predictive model are strongly
tied: for example, ensembling is an uncertainty technique that
also affects the predictions. An added benefit of the confidence-
oracle error is that because it marginalizes out the oracle, it
enables a fair comparison of uncertainty estimates based on
different methods.19 Therefore, the confidence-oracle error and
the AUCO will be used in the following for this purpose.
Notice that, using q-quantiles, each uncertainty-imposed

ranking that does not change the specific quantile each
prediction belongs to, even if it does change the relative
position of the q predictions inside each quantile, is equivalent
from the point of view of the confidence curve, the confidence-
oracle error and the AUCO. These are all affected by the choice
of q. In the following, we will use percentiles as commonly
reported in the literature.
Error Drop. Error drop is defined as the error ratio between the

first and last quantiles, which should correspond to the
confidence curve’s maximum and minimum, respectively, if
the confidence curve behaves correctly

=
−

h
h

h
Error drop ( )i

i

q
i

( ) 1
( )

1
( )

(7)

This indexmeasures the relative performance improvement of
the model obtainable by considering only the most confident
predictions instead of the entire data set.
Decreasing Coef f icient. A limitation of the AUCO and error

drop indices is that they do not take into account the
monotonicity of the confidence curve, which is represented by
the decreasing ratio. Given a confidence curve h(i) = (h1

(i), h2
(i),

...hq−1
(i) )
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Figure 4. Epistemic uncertainty computation. Independently from the
method used to obtain multiple models (see Figure 3), the epistemic
uncertainty is estimated as the variance of the different outputs (ref. eq
5).
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where decr. ratio = 1 corresponds to a perfectly nonincreasing
curve.
This ratio captures the noise in the confidence curve.
Uncertainty Calibration Methods. One limitation of the

ranking-based methods is that they do not take into
consideration the actual values of the uncertainty estimates.
Indeed, another important aspect of uncertainty is more strictly
related to the actual values it expresses and referred to as
calibration. Calibration of a model refers to the property of
outputting probability distributions that are consistent with
observed empirical frequencies.
Calibration evaluation of neural networks gained interest in

the last two years because it has been shown that modern neural
networks, while being more accurate on one side, are less
calibrated on the other,18 thus encouragingmore research on the
topic.6,12 Indeed, model calibration is orthogonal with respect to
model accuracy.12 Calibrated confidence is important for model
interpretability and to establish trustworthiness with the user.18

Uncertainty calibration is a well-studied topic in the context of
classification,44 both in its traditional domain of weather
forecasting45 and, more recently, in deep learning.18 In this
context, a model is perfectly calibrated if the confidence assigned
to each class is equal to the probability of a prediction of
belonging to that specific class. In practice, over a finite number
of samples, calibration can be captured by a calibration plot,6 also
called reliability diagram.18 To obtain such a plot, the model
predictions for all samples and classes in the test set are split into
K bins in the range [0, 1] and the frequency of correctly
predicted labels for each bin is plotted.44 Perfect calibration
corresponds to a diagonal line.
Calibration can vary within the same uncertainty estimator

when considering different uncertainty intervals. This could
happen, for example, if a model has well-calibrated low
uncertainty but ill-calibrated high uncertainty, or vice versa.
Such cases are highlighted by a calibration plot that diverges
from the diagonal line in some specific confidence intervals but
not in others.
Calibration in Regression. Calibration for regression appears to

be less investigated, and different solutions to evaluate it have
been employed and discussed only recently.6,17,21,22 In the
following, we will consider two different definitions that extend
calibration in a regression setting: conf idence-interval-based and
error-based calibration.

• Confidence-based calibration (also called interval-based
calibration)17,21 interprets each prediction and its
uncertainty as the mean and the variance of a Gaussian
distribution μ σ| =p y x x x( ) ( ( ), ( ))2 , and we are
interested in evaluating the confidence intervals thus
defined. To do so, we consider symmetric intervals of
varying confidence around the mean and compare them
to the empirical probabilities of belonging to each interval.
In a well-calibrated model, x % of the predictions should
fall in the x % confidence interval. In practice, we
discretize the confidence intervals and calculate the
fraction of predictions falling in each interval. This allows
obtaining a calibration plot in the [0, 1] range, as in the
classification case, where perfect calibration corresponds
to a diagonal line.

• Error-based calibration, originally described by Levi et
al.,22 proposes to directly compare the uncertainty to the
empirical error, as in eq 9.

μ σ σ σ σ[ − | = ∼] = ∼ ∀ ∼ x y x( ( ) ) ( ) ,2 2
(9)

• This defines a perfectly calibrated model as one
outputting an uncertainty matching the expected error.
In practice, to assess calibration, it is necessary to split the
test data ordered by estimated uncertainty in K bins and
average uncertainties and errors for each bin. It is then
possible to define the calibration curve by plotting the
RMSE of the i-th bin as a function of its root mean

uncertainty, σ( )2 . Notice that, unlike classification
and confidence-interval calibration cases, here, the
calibration plot is not bound in the [0, 1] interval but
ranges between 0 and the maximum uncertainty. As in the
other cases, perfect calibration corresponds to a diagonal
line.

These two ways of constructing the calibration plot have pros
and cons. Confidence-based calibration has the advantage of
considering all the predictions to compute each point of the plot,
thus resulting inmore robust empirical calculations. However, as
recently highlighted,22 one can recalibrate practically any output
distribution using this evaluation method. The main advantage
of error-based calibration is that it directly ties computed
uncertainty to expected error, as a user would expect. However,
because only a fraction of uncertainty estimates contributes to
each computed point and the uncertainty estimates are not
uniformly distributed, the subsets used to compute the different
points are not homogeneous.
Calibration Error Curve and AUCE. We can quantitatively

evaluate uncertainty calibration by computing the absolute
difference of the calibration plot with respect to perfect
calibration, thus obtaining the calibration error curve. This
difference can be quantified by considering the area under this
curve, which has been referred to as the area under the calibration
error curve, AUCE metric.17 This is a cumulative metric
accounting for the total calibration error.
ECE, MCE, and ENCE. Rather than considering the total

error, it is possible to define the expected calibration error (ECE)
and the maximum calibration error (MCE).
For confidence-based calibration

∑= − = −
= =K

i i i iECE
1

acc( ) MCE max( acc( ) )
i

K

i

K

1 1

(10)

where i ∈ K is a confidence interval and acc(i) is the fraction of
times a prediction falls into the i-th confidence interval. ECE and
MCE correspond to the average and the maximum over the
calibration error curve, respectively. MCE is especially
important in high-risk applications because it models the
worst-case scenario.18

For error-based calibration, a variation of ECE called expected
normalized calibration error (ENCE) is defined22

∑= −

=K
i i

i
ENCE

1 mVAR( ) RMSE( )
mVAR( )i

K

1 (11)

where mVAR(i) is the root of the mean uncertainty over the i-th
bin and RMSE(i) is the root mean square error over the i-th bin.
This discrepancy is further normalized by the uncertainty over
the bin, mVAR(i), because the error is expected to be naturally
higher as the uncertainty increases.22

Sharpness and Dispersion. Calibration is insufficient to fully
evaluate an uncertainty estimator. Indeed, if the model always
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outputs the same constant uncertainty which matches the
empirical accuracy over the entire distribution, we obtain a
perfectly calibrated uncertainty but not a very useful one because
it does not depend on the input data at all. This concept is
captured by sharpness, an uncertainty’s property orthogonal and
complementary to calibration.46

Originally defined in the classification settings, this notion has
been recently extended for regression.21,22 Following the
definition introduced in Levi et al.,22 in the following, the
dispersion of an uncertainty estimator is defined as the coef f icient
of variation cv of its uncertainty estimates. A higher cv
corresponds to more heterogeneous estimates for different
inputs.
Because uncertainty estimates are often characterized by very

high/low values for specific molecules, in the following we use a
modified version of the coefficient of variation more robust to
outliers, where the standard deviation and the mean are
substituted by the interquartile range and the median,
respectively.
Dispersion represents a useful metric to be taken into account

along with calibration when comparing different methods. In
particular, we are interested in verifying that an improvement in
calibration of an uncertainty estimator with respect to another
one does not originate from a reduction in dispersion.
To the best of our knowledge, dispersion has not been taken

into account before in comparative evaluations of deep learning
uncertainty estimation frameworks17−19,47 or in the context of
deep molecular property prediction.7,11

Domain Shift. An important feature that should characterize
a well-behaving uncertainty estimator is its ability to correctly
manage domain shif ts, when the test set is markedly different
from the training set. Every data-driven model will degrade at
some point on unseen samples as they become more different
from those seen during training, but a well-calibrated
uncertainty should be able to correctly identify this “knowledge
boundary”.
The need for DNN-based uncertainty estimates which are

reliable over domain shifts has been highlighted in other
contexts,12 but it is even more important in the chemical
domain. Indeed, generalization power is a requirement in key
applications such as drug discovery, and the intrinsic high
variability of chemical space makes it challenging to fulfill this
requirement. Despite this prominent role, the evaluation of out-
of-domain DNN-based uncertainty performance in the
chemistry field appears to be absent7 or very limited,11 thus
demanding a more extensive analysis.
This analysis is also related to an important issue in QSAR,

that is, the definition of the domain of applicability of a
model.23,24 We are interested in evaluating if the tested
uncertainty estimation methods can help define and/or extend
the applicability domain of DNN-based models.
To achieve this goal, we test each target data set under two

different settings. First, we use an in-domain test set obtained by
splitting the entire data set randomly so that training and test

distributions are comparable. Then, we use a non-random out-of-
domain test set.
In general, the definition of “out-of-domain” is not

unambiguous, especially in chemistry. As explained next, in
this work, we use different split types to model out-of-domain
test sets: scaf fold splitting, size splitting, time splitting, and chemical
element splitting.
We are interested in re-evaluating all the already introduced

metricsAUCO, AUCE, and so forthin the out-of-domain
setting. We will pay particular attention to out-of-domain
calibration because it can measure to what extent a model
knows what it does not know. We are interested in quantifying
the ratio between in-domain and out-of-domain metrics, also in
relation to the ratio between in-domain and out-of-domain
errors.

■ NUMERICAL EXPERIMENTS

We first describe the target data sets, followed by a description of
the experimental procedure.

Data Sets. Numerical experiments have been carried on
several public data sets spanning different categories, properties,
and size.
We selected the largest regression data set for each category in

MoleculeNet:2 QM9 (quantum mechanics), Lipophilicity
(physical chemistry), and PDBbind (biophysics). We also
included the recently published Alchemy data set48 for quantum
chemistry data. Based on previous works, we use the MAE or
RMSE error metrics for each data set.2,48

To analyze domain-shif t performance of the tested uncertainty
estimation methods, we compared in-domain and out-of-domain
metrics on the same data sets by changing the training/testing
splits. While in-domain metrics are always evaluated through
random splitting, the splits used for out-of-domain metrics are
data set specific because we have relied on what has been already
published and used for each data set, when possible. In
particular, for QM9, we employ the recently introduced scaf fold
splitting technique:1,2 molecules are split into bins based on their
Murcko scaffold, with each bin belonging to only one among
training, validation, and test set. For PDBbind, because it comes
with time information, we use time splitting, as described in Wu
et al.2 For Alchemy, we use size splitting, as described in Chen et
al.,48 where a model trained mostly with smaller-sized molecules
is used to predict molecules of bigger size. Last, for Lipophilicity,
we introduce a chemical element split where a chemical element
(fluorine, in our case) is only contained in test molecules and not
included in training molecules.
Interested readers are referred to Supporting Information,

section Data Preparation, for more details about how each data
set was prepared. In total, we use four different data sets and split
types; see Table 1.

Experimental Procedure. We evaluated the uncertainty
estimation techniques previously reviewed (MC-dropout,
ensembling, and bootstrapping) using the evaluation criteria

Table 1. Summary of the Data Sets and Split Types for the Experiments

split

data set category size property metric in-domain out-of-domain

QM9 quantum chemistry 130,828 enthalpy [kcal·mol−1] MAE random scaffold
Alchemy quantum chemistry 103,657 heat capacity [cal·(mol·K)−1] MAE random size
PDBbind biophysics 11,908 protein binding affinity [−log(Kd/Ki)] RMSE random time (publication date)
Lipophilicity physical chemistry 4200 octanol/water distribution coefficients [log D] RMSE random chemical element (contains F)
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previously introduced. Other than including diagrams, we
evaluated the considered methods quantitatively, as follows:

• For ranking-based evaluation, we use the area under the
confidence-oracle error (AUCO) as a measure of total
discrepancy with respect to the best possible ranking, the
error drop as a measure of total error reduction for high-
confident predictions, and the decrease ratio to assess the
monotonicity of confidence curves.

• For confidence-based calibration, we use the area under
the calibration error curve (AUCE) as a measure of total
discrepancy with respect to perfect calibration and the
MCE to account for the worst-case scenariob.

• For error-based calibration, we use the ENCE as a
measure of the (normalized) total discrepancy with
respect to perfect calibration.

• For dispersion evaluation, we use the quartile-based
coefficient of variation, cv.

• For domain-shift performance, we evaluated and
compared all the above metrics also in an out-of-domain
setting (see Table 1).

Additional details about the experimental procedures are
provided in Supporting Information.

■ RESULTS

We first detail error performance for the consideredmodels, data
sets, and splits. Next, we present results for uncertainty
estimation evaluation.

Model Error Analysis.Table 2 lists the error on the test data
sets for each uncertainty estimationmethod, with in-domain and
out-of-domain splits.
The baseline is the chemprop model1 without any uncertainty

estimation. We notice how extending it to include uncertainty
always leads to reductions in error for ensembling and
bootstrapping and, in most of the cases, for MC-dropout.
These improvements, often underestimated, are due to both
aleatoric and epistemic estimation in the model. Indeed,
modeling aleatoric uncertainty implicitly reduces the impact of
noisy training samples, thus improving predictive performance.
Modeling epistemic uncertainty allows averaging multiple
weight configurations, avoiding overfitting, and overconfident

Table 2. Error on the Test Data Setsa

base model MC-dropout Deep Ensembles bootstrapping

in out in out in out in out

QM9 1.04 1.77 0.97 1.49 0.74 1.21 0.89 1.43
Alchemy 0.40 0.89 0.37 1.02 0.32 0.71 0.34 0.87
PDBbind 1.38 2.26 1.37 2.23 1.31 2.10 1.33 2.15
Lipophilicity 0.576 0.687 0.548 0.655 0.481 0.616 0.495 0.626

aResults are shown for the base model without any uncertainty estimation and for the model extended with each of the evaluated uncertainty
estimation methods, for each data set. Both in-domain and out-of-domain performance are reported for each case. Error metric provided in Table 1.

Figure 5. QM9, in-domain test set. Confidence curves for the different methods.

Figure 6. Alchemy, in-domain test set. Confidence curves for the different methods.
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estimations, with a positive impact on predictions and
generalization ability. These two contributions can independ-
ently reduce the overall error but act synergistically when both
are present.
Comparing uncertainty estimation methods, ensembling

results in the lowest error, followed by bootstrapping, and
then MC-dropout.
Uncertainty Estimation Evaluation. In the following,

resulting plots are shown and discussed for each evaluation
criterion. Additional plots are available in Supporting
Information. All the summary tables, which include quantitative
results, are available in Supporting Information (Tables S1−S4).
Ranking-Based Evaluation. The confidence curves for the

different methods and data sets are shown in Figures 5−8. The
related confidence-oracle error diagrams are included in
Supporting Information. The derived AUCO and decrease
ratiometrics for each case are reported in the first two lines of the
summary tables (Supporting Information).
For QM9 and Alchemy, the confidence curves are mostly

decreasing for all the considered methods. For QM9 [Alchemy],
decreasing ratio ≥ 0.99 [0.90] for ensembling and boot-
strapping, ≥0.95 [0.80] for MC-dropout. This means that each
method can establish a qualitatively meaningful ranking of the
predictions by their uncertainty, leading to errors up to 7−8
times lower than the overall test error for the highest percentiles.
Confidence curves of MC-dropout are more noisy and lead to a
lower error reductionboth relative (higher AUCO) and
absolute (higher MAE)with respect to the other two
methods, especially for epistemic uncertainty. For all methods,
total uncertainty leads to better or comparable results with
respect to the best performing uncertainty contribution alone.

Compared to bootstrapping, ensembling leads to slightly higher
performance and allows reaching the lowest MAE in the highest
percentiles for both uncertainty types and total uncertainty.
Interestingly, the epistemic uncertainty estimated by boot-
strapping results in an MAE comparable to ensembling in the
highest percentiles, even if the initial MAE on the whole data set
is worse. This is quantitatively measured by a higher or
comparable error drop for bootstrapping. In contrast, aleatoric
uncertainty estimated by bootstrapping leads to a worse
performance than ensembling. Comparing QM9 and Alchemy,
confidence curve shapes turn out to be markedly different.
Considering PDBbind and Lipophilicity, confidence curves

are more noisy and their slope less steadily decreasing, with a
decreasing ratio ≤0.50 in all cases. Bootstrapping has the best
decreasing ratio for both uncertainty types and on both data sets.
On PDBbind, comparing individual uncertainty components,

we observe that aleatoric uncertainty leads to a better AUCO
than epistemic uncertainty for all methods. For MC-dropout
and ensembling, epistemic uncertainty alone does not lead to a
significant error reduction in the respective confidence curves,
while for bootstrapping, we observe a more steady RMSE
decrease. Aleatoric uncertainty performs similarly (AUCO and
decreasing ratio) in the three cases. For all the tested estimation
methods, we observe that total uncertainty leads to better or
comparable results with respect to the best performing
uncertainty contribution alone. Interestingly, epistemic un-
certainty has a significant positive impact on total uncertainty
even when it does not lead to a significant error reduction by
itself. See, for example, ensembling confidence curves in Figure
6.

Figure 7. PDBbind, in-domain test set. Confidence curves for the different methods.

Figure 8. Lipophilicity, in-domain test set. Confidence curves for the different methods.
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Figure 9. QM9, in-domain test set. Confidence-based calibration for the different methods.

Figure 10. Alchemy, in-domain test set. Confidence-based calibration for the different methods.

Figure 11. PDBbind, in-domain test set. Confidence-based calibration for the different methods.

Figure 12. Lipophilicity, in-domain test set. Confidence-based calibration for the different methods.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00975
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00975?fig=fig12&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00975?ref=pdf


The confidence curves for the Lipophilicity data set are very
noisy. For this data set, epistemic uncertainty leads to better
AUCO and decreasing ratio than aleatoric uncertainty for all the
tested methods. As in the other data sets, MC-dropout has the
worst epistemic uncertainty performance. Ensembling and
bootstrapping result in similar performance (AUCO and
decreasing ratio) for epistemic uncertainty. The bootstrapping
confidence curve reaches the lowest absolute RMSE and this,
together with a higher initial error on the entire data set, results
in a far higher error drop than ensembling. For all three tested
methods, aleatoric uncertainty alone does not lead to significant
error reductions (decreasing ratio ≤ 0.15) and the relative
performances are comparable.
Calibration and Dispersion. Conf idence-Based Calibration.

The confidence-based calibration plots for the different data sets
are shown in Figures 9−12. The empirical coveragewhich is the
fraction of times the true value actually falls in a confidence
intervalis reported for each symmetric confidence interval of
probability p defined by the uncertainty. The de-
rived AUCE and MCE metrics are reported in lines three and
four of the summary tables (Supporting Information).
For all of the data sets, ensembling and bootstrapping

calibration plots based on estimated total uncertainty are close
to ideal. MC-dropout gives good calibration plots with some
data sets but shows poor calibration on the QM9 and Alchemy
data sets (Figures 9 and 10).
For all the considered data sets andmethods, total uncertainty

leads to better or comparable AUCE/MCE than aleatoric or
epistemic uncertainty contribution alone.
Error-Based Calibration. The error-based calibration plots are

shown in Figures 13−16. The derived ENCE is also reported in
line five of the summary tables (Supporting Information) and in
the figures.
Error-based calibration analysis offers a complementary view

of uncertainty performance with respect to the confidence-based
analysis already discussed. Instead of considering all predictions
simultaneously, each dot only represents a subset of predictions

with similar uncertainty in direct relation with their average
error.
Error-based calibration plots confirm what has been already

discussed for confidence-based calibration plots: the estimated
total uncertainty derived from ensembling or bootstrapping is
well calibrated for all the data sets, while the uncertainty
estimated from MC-dropout is miscalibrated for the QM9 and
Alchemy data sets.
For all the data sets and uncertainty estimation methods, the

error-based calibration plots yield strongly correlated patterns,
with ensembling and bootstrapping leading to higher correlation
than MC-dropout (e.g., on QM9, the Pearson correlation isFigure 13. QM9, in-domain test set. Error-based calibration.

Figure 14. Alchemy, in-domain test set. Error-based calibration.

Figure 15. PDBbind, in-domain test set. Error-based calibration.
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≈0.90−0.93 for ensembling and bootstrapping, ≈0.66−0.87 for
MC-dropout). Moreover, even when the error is under-
estimated, error-calibration plots are often qualitatively
characterized by “diagonal” patterns (slope ≈ 1), which
correspond to simple translations with respect to perfect
calibration (see, e.g., epistemic uncertainties for PDBbind or
aleatoric uncertainties for QM9 and Alchemy). Notice that,
without introducing error-based calibration plots (with their
bins and axis metrics), uncertainty/error correlation is generally
low and difficult to be detected reliably.37

Compared to confidence-based calibration, this kind of plot is
less stable, especially for high values of σ. This is due to (1) the
fact that the error is expected to be naturally higher as
uncertainty increases (a property already taken into account in
the ENCE computation) and (2) the fact that high uncertainty
values are more sparse.
Dispersion. The dispersion coefficient is reported in the last

line of the summary tables (Supporting Information). Results
show no significant variations between the different methods.
For all the considered data sets and methods, epistemic
uncertainty appears to be more disperse than aleatoric
uncertainty.
Out-of-Domain Uncertainty. Figures 17−28 display the

same plots already discussed for random splitting but this time
for the out-of-domain test data sets. All the related summary
tables are available in Supporting Information (Tables S5, S7,
S9, and S11). In addition to listing absolute metrics, for the out-
of-domain cases, we also listed relative metrics with respect to in-
domain test sets (Tables S6, S8, S10, and S12). In the following,
the main differences with respect to random splitting are
highlighted.
In absolute terms, as expected, uncertainty estimates for out-

of-domain molecules are less accurate, so the quality indices
have deteriorated for most of the considered methods and data
sets. For the most part, the comparative performances of the
three uncertainty estimation methods are qualitatively similar
with respect to those obtained in the in-domain setting.

For QM9 (scaffold split), domain shift leads to quantitatively
worse ranking-based evaluations, for example, a significant
increase in AUCO with a decrease in error drop and decreasing
ratio, but the plots are similar to those for a random split. In
contrast, the calibration analysis highlights an important
qualitative change with respect to in-domain results for
ensembling and bootstrapping: on this test set, the uncertainty
is always markedly underestimated.
Results on Lipophilicity (chemical element split) are

qualitatively similar to QM9 in terms of changes in ranking-
based metrics and error underestimation. As in the in-domain
case, all the plots are more noisy for Lipophilicity than for the
other data sets.
Results on PDBbind (time split) are characterized by a

peculiar behavior. For all methods, the oracle−confidence
curves, instead of converging to ≈0 as in all other considered
cases, are significantly higher (RMSE 0.91−1.41) even for the
highest percentiles. This means that the models trained on older
data do not predict any of the newer data points very well. The
higher oracle curves lead to lower AUCO in this case: the
uncertainty estimates are pretty accurate even though the model
is not very accurate for this test set. Out-of-domain calibration
analysis confirms the underestimation trend observed for QM9
and Lipophilicity, highlighting an even more drastic change for
PDBbind. Indeed, for all methods and uncertainty types,
confidence-based calibration plots are characterized by empiri-
cal coverage = 0 for p < 95%. Nonetheless, as in the in-domain
setting, error-based calibration plots highlight very high
uncertainty−error correlation (0.85−0.98 for MC-dropout,
0.93−0.99 for bootstrapping and ensembling) even though the
uncertainty estimates are much smaller than the true errors.
Epistemic uncertainty performance for ensembling and

bootstrapping on Alchemy (size split) is markedly different
from the other data sets. While aleatoric uncertainty estimates
degrade for all methods and both from a ranking-based and a
calibration-based point of view, epistemic uncertainty estimates
turn out to be comparable from a ranking-based point of view
and slightly more calibrated compared to the in-domain test set.
Even though the out-of-domain test error is larger than the in-
domain error, the uncertainty estimates for both Deep
Ensembles and bootstrapping accurately predict this increase.

■ DISCUSSION

Comparison of Uncertainty Estimation Methods.Deep
ensembles and bootstrapping perform the best across most
metrics (including error) and consistently outperform MC-
dropout, with Deep Ensembles resulting in the best overall
performance. This is in line with recent resultsc already
presented for image classification/regression12,47,49 and optical
flow estimation.17,19

The comparison between ensembling and bootstrapping
raises multiple interesting observations. On the one hand,
ensembling has an advantage for overall error, AUCO, and
aleatoric calibration, especially in the in-domain setting. On the
other hand, bootstrapping often leads to higher error drops and
decreasing ratios (i.e., more stable confidence curves which also
lead to a lower error, in proportion, when we consider small
percentages of high-confidence predictions), has a consistent
advantage for in-domain and out-of-domain epistemic un-
certainty calibration (which, in some cases, translates to better
total uncertainty calibration), and shows, in proportion, a lower
performance loss in the out-of-domain setting.

Figure 16. Lipophilicity, in-domain test set. Error-based calibration.
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Figure 17. QM9, out-of-domain test set. Confidence curves for the different methods.

Figure 18. Alchemy, out-of-domain test set. Confidence curves for the different methods.

Figure 19. PDBbind, out-of-domain test set. Confidence curves for the different methods.

Figure 20. Lipophilicity, out-of-domain test set. Confidence curves for the different methods.
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This behavior can be explained by considering the effects of
substituting each training data set with a bootstrap sample. Each
network only sees a fraction of the starting training data set, thus
increasing individual and ensembled error. Because aleatoric
uncertainty is estimated from data, it follows a trend similar to
error and it degrades. However, bootstrapping promotes
diversity in ensembled models, which is key for epistemic
uncertainty estimation, thus improving its calibration. We can
argue that as training size increasesas long as the target
molecular space is kept unchangedbootstrapping becomes
more advantageous, because each bootstrap sample becomes a
better approximator of the underlying distribution, thus
avoiding losses in error and aleatoric calibration in each single
instance and in the ensembled model but keeping an advantage
for epistemic calibration. Moreover, as we have observed,
bootstrapping performance degrades less than ensembling in the
out-of-domain setting. This can be explained by a gain of
generalization power given by the additional diversity of
bootstrapping.
In previous studies for DNN-based image regression/

classification, bootstrapping did not result in significant
improvements over ensembling.12,50 We can speculate that
these differences are due to the peculiarities of chemical space,
characterized, for example, by a larger intrinsic variability that
can be exploited by bootstrapping. Results obtained for
bootstrapping justify its recent use in active learning method-
ologies for molecular property prediction,37 where model
uncertainty (epistemic uncertainty) and generalization power
are required.
Discussing the theoretical reasons leading to explicit

ensembles (Deep Ensembles) outperforming weight-sharing
ensemble (MC-dropout) is beyond the scope of this paper and is
a subject of active research. Recently, it has been shown that
Deep Ensembles allow exploring different modes in function
space, thereby sampling diverse functions, while MC-dropout
tends to focus on a single mode in function space with low
diversity in the predictions.50

In our analysis, MC-dropout for molecular property
prediction has shown two main limitations. First, it results in a
higher error than ensembling or bootstrapping, with higher
confidence curves both in relative and absolute terms. Second,
MC-dropout tends to give overly optimistic epistemic
uncertainty estimates which are also less correlated to the true
error than estimates produced by the other tested methods. This
is especially detrimental for situations where the epistemic
uncertainty is large.
Nonetheless, MC-dropout has the practical advantage of

weight sharing that can result in lower training time/memory
consumption. Other techniques have been proposed to train an
ensemble of models in a fraction of the time required for a “true”
ensemble, such as snapshot ensembling,51 and should be the
subject of future work.
Aleatoric and Epistemic Uncertainty. Even though the

methods investigated in this work jointly model aleatoric and
epistemic uncertainties, their separate evaluation has allowed
direct comparisons. As we have observed, their performance and
their relative contribution to total uncertainty turn out to be data
set-dependent.
As aleatoric and epistemic uncertainties are conceptually

orthogonal, onemight expect them to not be strongly correlated.
However, here we show that they both result in high rank-order
correlation with respect to true error (as showed by decreasing
confidence curves), so at least from a rank-order point of view,

the two contributions are often correlated. An analytical
comparison (see Supporting Information, Table S14 for all the
results) shows thatwith few exceptionswhen Spearman
rank-order correlation is high, Pearson correlation is lower (e.g.,
on Alchemy, Spearman rank-order correlation = 0.47/0.87,
Pearson correlation = 0.01/0.30). This shows that, in most
cases, even if the two uncertainty types rank molecules are in the
same order, their values are not directly proportional.
Because aleatoric uncertainty captures inherent data noise,

one may wonder whether it correlates with error in the data with
respect to a more accurate ground truth. For example,
considering density-functional theory (DFT) calculations
(QM9 data set), the ground truth can be better approximated
by high level quantum chemistry calculations such as coupled
cluster theory with a generous basis set52,53 or experimental
results. Our analysis (see Supporting Information, section
Additional analyses for all the details) shows that aleatoric
uncertainty calculated from our model trained on DFT
calculations does not correlate with the DFT error measured
against a higher level of theory and experiments (Spearman
correlation ≈ 0.13). This can be explained as follows. DFT
errors are relatively internally consistent; therefore, even though
large, they will not be characterized by high variability (i.e.,
aleatoric uncertainty). As computed, aleatoric uncertainty can
help detect data errors when these come from inconsistencies,
not systematic errors.
In most cases, we observe that total uncertainty outperforms

or matches the best performing individual uncertainty
component, and this is the case even when one of the two
components leads to remarkably better metrics than the other
(see, e.g., the comparison between aleatoric and epistemic
uncertainty for PDBbind, both for ranking-based and calibra-
tion-based plots). We can explain this behavior as follows.
All our uncertainty evaluation metrics (with the exception of

dispersion) take into consideration how, directly or indirectly,
uncertainty estimates relate to true errors. Aleatoric uncertainty
should relate to the inherent noise in the observed property,
while epistemic uncertainty should relate to the error in the
trained function. However, the only observable error (the true
error) includes both these contributions. Therefore, it is the total
uncertainty that should best model the observed error and,
therefore, result in the best performance. Given our experiments,
the usage of the total uncertainty can be generally suggested in
applications.
From this, we can also speculate that evaluating the individual

uncertainty contributions can allow pinpointing their relative
importance in the context of different data sets, that is,
understanding if the observed error is primarily due to the
neural network approximating function or inherent data
variability. This is discussed in the next section.

Data Sets and Uncertainty Types. In general, the relative
contribution of the two uncertainty components with respect to
total uncertainty and their comparative performance turn out to
be strongly data set-dependent.
On QM9 and Alchemy, epistemic uncertainty appears to be

predominant. This can be clearly observed for ensembling and
bootstrapping, both for ranking-based and, especially, calibra-
tion-based evaluation (Figures 9 and 10). Indeed, the reason
why MC-dropout falls behind the two other approaches seems
to be its worse epistemic uncertainty estimation. As a
consequence, the total error seems to be primarily due to the
neural network rather than the inherent data noise. This can be
traced back to the fact that these data sets are derived from
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Figure 21. QM9, out-of-domain test set. Confidence-based calibration for the different methods.

Figure 22. Alchemy, out-of-domain test set. Confidence-based calibration for the different methods.

Figure 23. PDBbind, out-of-domain test set. Confidence-based calibration for the different methods.

Figure 24. Lipophilicity, out-of-domain test set. Confidence-based calibration for the different methods.
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electronic structure theory, which is relatively internally
consistent, and therefore results in low inherent variability
(aleatoric uncertainty).
On PDBbind, aleatoric uncertainty appears to be predom-

inant instead (Figure 11). Not only does it lead to better
confidence curves but it also appears to correctly predict most of
the error (Figure 15). We can explain this behavior by
considering the fact that PDBbind includes experimentally
measured binding affinities collected over a relatively long
period of time; therefore, a higher level of variability in the data is
expected, and total error seems to be primarily due to this
inherent noise.
Likewise, Lipophilicity is characterized by a relatively high

aleatoric uncertainty because of its experimental origin (Figure
12). However, unlike PDBbind, epistemic uncertainty provides
a relatively important contribution to total uncertainty in
matching the true error and empirical coverages. We can explain
this behavior by considering their different sizes (Table 1): more
training data samples reduce predicted epistemic uncertainty. In
this case, total error seems to be due to both inherent noise and
the neural network.
The above analysis provides an interesting link between data

sets and uncertainty types. However, it also has some limitations.
First, we observe that the relative contribution of the two
uncertainty components could depend on the estimation
method. For example, considering Lipophilicity, all methods
clearly show that both components are key contributors to total
uncertainty; however, we cannot exactly conclude whether
aleatoric uncertainty is more important (as resulting from MC-
dropout and ensembling) or vice versa (as resulting from
bootstrapping). Moreover, as discussed in the next section, both
uncertainty components are significantly underestimated by all
methods if one uses an out-of-domain test set and that could
further hinder this analysis. Nonetheless, these results take a step
in the direction of relating uncertainty estimates to data set
features.

Domain Shift Analysis and Domain Adaptation.
Domain shift analysis is characterized by mixed results. On the
one hand, ranking-based performance does not appear to be
drastically affected by out-of-domain molecules. Ranking-based
analysis suggests that even though predicted on molecules quite
different with respect to those seen during training, uncertainty
is effective for reliably detecting smaller subsets of low-error
molecules. Out-of-domain error on high percentiles is often
lower with respect to overall in-domain error (this is the case for
QM9, Alchemy, and Lipophilicity). On the other hand,
calibration performance is strongly affected by out-of-domain
molecules and is underestimated in most of the cases. The latter
result is in line with what has been recently observed in Li et al.37

In all of our out-of-domain experiments with the exception of
size split, the error increases without the uncertainty being able
to completely capture this risethus leading to overly
optimistic uncertainty estimates. The extent of this under-
estimation trend seems to be split dependent, being the highest
for PDBbind (time split), followed by QM9 (scaffold split) and
Lipophilicity (chemical element split) with comparable results.
Alchemy (size split) is the only case where the out-of-domain
uncertainty estimates are well calibrated.
We observe that this latter result could depend on at least two

different reasons. First, as defined by Chen et al.48 (and,
consequently, in our experimentsd), this split does not create
two totally disjointed training and test distributions because a
low fraction of molecules of bigger size (≈5%) is present in the
training set. Second, GCNNs are designed to be robust with
respect to the number of atoms, and the size split does not
prevent the same scaffolds and chemical elements to be present
in both the training and the test data sets.
For a well-calibrated behavior, we would expect uncertainty

(in particular epistemic uncertainty) to increase and match the
expected increase in error. However, evaluating the epistemic
uncertainty median for all the considered data sets and
estimation methods (see Table S15 in the Supporting
Information), we observe thatwith the exception of Alchemy
(size split)out-of-domain epistemic uncertainty not only failsFigure 25. QM9, out-of-domain test set. Error-based calibration.

Figure 26. Alchemy, out-of-domain test set. Error-based calibration.
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to match the increase in error but in several cases (PDBbind and
Lipophilicity) does not increase at all with respect to in-domain
estimates.
However, even though out-of-domain uncertainty estimates

are often miscalibrated, they are usually highly correlated with
the true error. For example, error-based calibration has
correlation ≥0.85 in all cases for PDBbind (Figure 27). This
suggests that simple recalibration techniques21,22 should be
effective.
When discussed in the context of applicability domain,23 the

tested uncertainty estimation methods are characterized by
mixed results. On the one hand, mean out-of-domain error for

uncertainty-aware DNNs is generally lower than base model
error, especially for ensembling and bootstrapping (Table 2).
This can be explained by a gain of generalization ability given by
Bayesian inference, which is especially effective in the out-of-
domain setting, suggesting that the domain of applicability of
Bayesian DNNs is broader than point estimate (i.e., “standard”)
DNNs. Moreover, our analysis shows that by considering
subsets of out-of-domain molecules with low predicted
uncertainty, we can reliably obtain subsets of out-of-domain
predictions with comparable or lower error with respect to in-
domain molecules (as in QM9, Alchemy, and Lipophilicity data
sets), or, at least, significantly lower than mean test error (as in
PDBbind data set). On the other hand, predicted uncertainty
does not appear to be effective for a prior assessment of the
applicability of a model on a given out-of-domain data set, nor to
reliably predict to what extent the error will increase in absolute
terms with respect to in-domain molecules.

Comparison of Evaluation Criteria.Until now, we mainly
compared uncertainty models. However, the obtained results
also allow for the comparison of the usefulness of different
evaluation methods.
Taking into consideration, calibration allows identifying

several important patterns that do not emerge from confidence
curves only, such as their relative contribution in matching true
error and empirical coverage for the different methods and data
sets. In contrast, even recent work that seeks to obtain
“uncertainty-calibrated prediction of molecular properties”7 do
not explicitly take into consideration calibration evaluation in
the results.
The comparison between the two considered definitions of

calibration is more subtle. Qualitatively, most of the conclusions
derived by confidence-based calibration, such as when and to
what extent one uncertainty component is more calibrated than
the other, are also reflected in error-based calibration. However,
we also notice how, in some cases, one of the two definitions
allows capturing more information about the true uncertainty
behavior.
On the one hand, even if error-based calibration directly

relates error and uncertainty according to its definition, the
inherent non-uniformity of uncertainty estimates makes it
difficult to obtain reliable statistics in some uncertainty ranges
(high uncertainty ranges in our experiments) and when the data
set is smaller (Lipophilicity in our experiments), with less stable
results. This also prevents assessing if the error in these ranges is
due to uncertainty estimates themselves or to insufficient data
for computing reliable statistics. On the other hand, when
uncertainty turns out to be largely underestimated (e.g., out-of-
domain PDBbind), calibration-based confidence turns out to be
basically useless (mostly zero), while error-based calibration still
provides meaningful insights, such as the distance with respect
to perfect calibration. Moreover, error-based calibration allows
bringing out the uncertainty/error correlation, if any, and avoids
issues when recalibration techniques are employed.22 Therefore,
we can conclude that the choice between these two different
definitions is context-dependent. If the data set is large enough
to enable meaningful estimates for all the bins, error-based
calibration should be preferred because it allows for a more
direct comparison and it avoids issues with largely under-
estimated uncertainty and recalibration techniques. Instead, if
the uncertainty distribution is highly skewed and only a few
samples are available in some ranges, confidence-based
calibration can overcome this and results in less noisy plots.

Figure 27. PDBbind, out-of-domain test set. Error-based calibration.

Figure 28. Lipophilicity, out-of-domain test set. Error-based
calibration.
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In general, we observe that the quantitative measures
introduced to summarize uncertainty performance correctly
capture the different behaviors and have allowed a more fine-
grained comparison. However, in specific cases, some evaluation
metrics turn out to be only conditionally useful. For example,
evaluating the error drop leads to meaningful comparisons when
the decreasing ratio is high (e.g., QM9), but it loses effectiveness
for noisy confidence plots (e.g., Lipophilicity).

■ CONCLUSIONS AND FUTURE WORK

In this paper, we compared three state-of-the-art approaches for
uncertainty estimation in neural networks in the context of
GCNNs for molecular property prediction: MC-dropout with
concrete dropout, Deep Ensembles, and bootstrapping. We
selected those approximate Bayesian inference techniques
satisfying some specific application-oriented criteria: scalability,
lack of hyperparameters, and independence from the underlying
network architecture. These techniques have been first reviewed
in a unified framework that separates aleatoric and epistemic
uncertainty, also in the light of recent interpretations given to
ensembling, and then experimentally compared on four public
data sets based on a set of introduced criteria. Those criteria have
been selected to evaluate uncertainty from different perspec-
tives: based on its ability to define a ranking of most confident
predictions, based on uncertainty calibration (two different
recent definitions for regression have been employed), based on
dispersion that measures estimated heterogeneity, and based on
robustness to domain shifts in the test set with respect to the
training set, with different split criteria being employed.
The obtained results lead to multiple interesting conclusions.

Ensembling and bootstrapping appear to consistently outper-
formMC-dropout, confirming the results recently presented for
other domains and different network types also for GCNN-
based molecular property prediction. The comparison between
ensembling and bootstrapping leads to moremixed results. Even
though ensembling is better with respect to most of the
considered metrics, including overall MAE, bootstrapping
appears to outperform ensembling for others, notably epistemic
uncertainty calibration. This is not in line with what has been
previously described in the context of image regression/
classification, highlighting an interesting property of the
chemical space for the model and the data sets considered.
Furthermore, the results presented have led to a better
understanding about the role of aleatoric/epistemic uncertainty
for DNN-based molecular property prediction. We investigated
the relationship between these two uncertainty types, showing
how, even though often correlated from a rank-order point of
view, they are not directly proportional. Moreover, we discussed
why aleatoric uncertainty generally does not capture error in the
data with respect to a more precise ground truth, analyzing the
correlation between aleatoric uncertainty estimated from QM9
and DFT errors with respect to higher level of theory and
experiments. In addition, we showed how evaluating the
individual uncertainty contributions can allow pinpointing
their relative importance in the context of different data sets,
with remarkable differences between experimental data sets and
those derived from electronic structure theory. Finally, our
experiments have led to a better understanding of the
performance of DNN-based uncertainty estimates under test
set domain shifts. Comparing uncertainty estimates for in-
domain and out-of-domain test sets, we showed that uncertainty
generalization ability is metric- and data set-dependent, and we

discussed these results in the context of determining the
applicable domain of the model.
One of the main limitations we found for all the tested

methods is out-of-domain uncertainty underestimation. This
hinders their usage for domain applicability analysis and
overcoming this weakness should be a major goal of future
work. To allow correct out-of-domain calibration, future work
could target recalibration techniques using existing methods21,22

or new methods. For the latter, a promising direction is
represented by the increase of diversity in the ensembled
models. This might not be the result of diversity in the data, as in
bootstrapping, but instead come from the model itself.54,55

Balancing diversity, training data size, and the number of
hyperparameters appears to be a challenging tradeoff.
Even though our results about which uncertainty type is

prevalent for each data set are congruent with the data set origin
(e.g., experimental vs computed), future work should further
investigate these trends for additional data sets and models.
In addition, our analysis mainly focused on how uncertainty

relates (directly or indirectly) to model error. Providing
chemical explanations about why one sort of uncertainty is
significantly larger than the other for a certain molecule should
be the subject of future work.
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■ ADDITIONAL NOTES
aThe confidence-oracle error has been called sparsification error
in computer vision;19 in that context AUCO has been called area
under the sparsification error curve.19
bWe did not use ECE in our tests because it does not add
significant information to AUCE for confidence-based calibra-
tion.
cIn contrast to previous comparisons, that used the “base”
version of MC-dropout12,17,19,49 we employed concrete MC-
dropout that was independently proven superior to standard
MC-dropout20,40 but to our knowledge has not been directly
compared to ensembling and bootstrapping before.
dSee data preparation in the Supporting Information for more
details.
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