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ABSTRACT: Not all nanopores are created equal. By definition, nanopores
have characteristic diameters or conduit widths between ∼1 and 100 nm.
However, the narrowest of such pores, perhaps best called Single Digit
Nanopores (SDNs) and defined as those with regular diameters less than 10
nm, have only recently been accessible experimentally for precision transport
measurements. This Review summarizes recent experiments on pores in this
size range that yield surprising results, pointing toward extraordinary
transport efficiencies and selectivities for SDN systems. These studies have
identified critical gaps in our understanding of nanoscale hydrodynamics,
molecular sieving, fluidic structure, and thermodynamics. These knowledge gaps are, in turn, an opportunity to discover and
understand fundamentally new mechanisms of molecular and ionic transport at the nanometer scale that may inspire a host of
new technologies, from novel membranes for separations and water purification to new gas-permeable materials and energy
storage devices. Here we highlight seven critical knowledge gaps in the study of SDNs and identify the need for new approaches
to address these topics.

■ INTRODUCTION
Nanopores, broadly defined as pores with diameters or conduit
widths smaller than 100 nm, underpin a large array of material
systems and technological applications. For example, adsorbent
technology for chemical and air separations employs activated
carbon with pores as small as 0.6 nm in size,1−3 while zeolites
such as ZSM-5, with a pore diameter of 5.5 Å, have been used for
a wide variety of catalysis, adsorption, and pollution abatement
applications.4,5 Membrane technology for reverse osmosis and
nanofiltration typically involves inorganic substrates with pores
on the order of 0.5 nm and from 1 to 5 nm, respectively.6,7

However, detailed studies of nanopore transport at the single
pore level have only become possible recently with the advent of
isolated pore systems combined with sophisticated readout
mechanisms to probe fluidic motion andmass transport in pores

that are geometrically and compositionally well-defined.
Examples of such systems include short8 and ultralong carbon
nanotubes,9,10 boron nitride nanotubes,11 graphene oxide
laminates,12,13 polymer nanochannels,14,15 and silicon nano-
channels.16,17 These systems have been probed with analytical
techniques including fluorescence, Raman, nonlinear,18 and
single-defect spectroscopies,19−24 ab initio density functional
theory (DFT) simulations,25−27 and multiscale models28−34 to
elucidate solvation phenomena,25,27 correlative and dissipative
behaviors,31 and ionic and molecular selectivity mechanisms35

that arise under extreme confinement.
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In particular, recent studies of transport in single-digit
nanopores (SDNs), that is, pores with a diameter or conduit
width smaller than 10 nm, reveal many counterintuitive
behaviors that often defy continuum descriptions of fluid flow.
These results expose critical knowledge gaps that motivate
investigation and challenge existing theories. SDNs also provide
exciting opportunities to advance fundamentally new technol-
ogy, in the form of membranes and fluidic platforms with
unprecedented transport rates and selectivities, and a unique
opportunity for the seamless integration of wet ionic devices
with dry electronics, thus enabling long-sought bioelectronic
interfaces.39 Specifically, SDNs can be tailored to (i) sieve ions
efficiently from seawater and serve as membranes for seawater
desalination,40 (ii) differentiate between polar and nonpolar
fluids and serve as flow sensors,41 (iii) enhance proton transport
in fuel cell applications,42 and (iv) generate electricity from
osmotic power harvesting.11 Moreover, a deeper mechanistic
understanding of water transport through SDNs may allow us to
build robust synthetic analogues of transmembrane proteins,
such as aquaporins,43 for water treatment applications. This
Review discusses recent work and critical gaps in our
understanding of nanoscale hydrodynamics, molecular sieving,
fluidic structure, and thermodynamics in SDNs. It also
comments on the implications of these new molecular transport
mechanisms. We refer the reader to other compelling reviews on
other classes of nanopores,44,45 nanoporous materials for energy
storage,46,47 and for water and gas purification.48−50

This brief literature survey identifies knowledge gaps that have
recently emerged in the areas of nanofluidics and fluid
confinement. Examples of these gaps include: the observation
of slip-flow enhancement, in which the narrowest nanopores

demonstrate the highest mass transport rates;8,37 non-Gibbs−
Thomson phase behavior, in which fluid phase boundaries in
SDNs are distorted relative to their bulk fluid counterparts; and
nonlinear, correlative effects10,51 in ion transport through SDNs
that are not observed in larger nanopores (Figure 1). We define
these and other observations as critical knowledge gaps, because
existing theorieswhether continuum, atomistic, or molec-
ularfail to adequately describe the basis for these exotic
effects. In this Review, we identify seven such knowledge gaps,
highlight recent progress, and suggest next steps for their
exploration.

■ KNOWLEDGE GAP 1: SLIP FLOW ENHANCEMENT

Flow enhancement by slip flow in SDNs is unexpectedly large.
Slip flow52 occurs when the fluid molecules in contact with the
wall have a nonzero velocity, and the no-slip boundary condition
in fluid mechanics does not hold. This situation often occurs in
nanopores with atomically smooth walls. The slip length is
defined mathematically as the distance required beyond the wall
for the fluid velocity to decrease linearly to zero. Large values of
slip lengths for fluids confined inside SDNs can result in flow
rates that greatly exceed the predictions of theHagen−Poiseuille
equation, thereby substantially lowering the pressure drop for
narrow conduits.8,37,52 Several recent studies37,38,53−58 suggest
that the narrowest pores demonstrate the largest slip-length
enhancements. Mechanistic understanding of this scaling is in its
infancy, because theory and simulations52,59−65 have failed to
match the results of recent measurements on pores that are
wider than SDNs.

Figure 1. Critical knowledge gaps in SDN nanofluidics. (a) The scaling of slip length with nanopore diameter is unknown and possibly
nonmonotonic in the single-digit range. Data taken from refs 36−38. (b) The phase behavior of fluids inside SDNs cannot be predicted by existing
theories. (c) Phase separation may be enhanced by nanoconfinement. (d) Defects may have an outsized effect on transport inside SDNs, but the
magnitude of these effects is unknown. (e) Transport of ions in SDNs shows novel spatial and temporal correlations. (f) SDNs may form the basis for
systems with enhanced molecular and ionic selectivity, surpassing that of membranes currently used for reverse osmosis. (g) Solvation in confinement
differs from that in bulk, with profound effects on transport rates and selectivity.

The Journal of Physical Chemistry C Review Article

DOI: 10.1021/acs.jpcc.9b02178
J. Phys. Chem. C XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jpcc.9b02178


1.1. Carbon Nanotube and 2D Material Assemblies.
Carbon nanotubes (CNTs), with their atomically smooth walls
and constant diameters, are an ideal system for probing flow
enhancement in SDNs. Following a landmark molecular
dynamics (MD) prediction of fast flow in CNT pores,66 there
has been a long history of experimental investigations of water
flow through membranes composed of arrays of vertically
aligned CNTs.37,38,57,67 For example, Majumdar et al. studied
fluid flow through membranes composed of vertically aligned
multiwalled CNTs of ∼7 nm diameter and reported water slip
lengths of 39 to 68 μm, which correspond to water flow rates that
are 4 to 5 orders of magnitude faster than the predictions of the
Hagen−Poiseuille equation with a no-slip boundary condi-
tion.38 Holt et al. studied water and gas flow throughmembranes
composed of double-walled CNTs (DWCNTs) with diameters
less than 2 nm and reported water slip lengths from 140 to 1500
nm.37 These studies and others were also motivated by earlier
work showing selective ionic and molecular transport through
synthetic membranes with nanopores in the single-digit
range.68−70

These pioneering CNT studies revealed large slip lengths of
water inside CNTs, but they were performed on CNT
membranes, and measurement of fluid flow through individual,
isolated CNTs remained a technical challenge for many years. In
a recent study, Secchi et al.36 devised an experimental platform
to measure pressure-driven water flow through isolated CNTs
larger than the SDN range and reported a large radius-
dependent flow enhancement, with the slip length reaching
300 nm for CNTs with a diameter of 30 nm diameter.
Furthermore, by measuring the flow rate of water inside 30−100
nm diameter CNTs, Secchi et al.36 showed that the slip length of
water increases monotonically with a decrease in the CNT
diameter. This monotonicity, however, may not continue into
the SDN range (Figure 1a). When the diameter of the CNT

approaches the van der Waals diameter of water in the range of
0.8−2 nm, for instance, water molecules adopt a layered
structure that can result in a nonmonotonic variation of slip
length with CNT diameter. Between 2 and 10 nm, experimental
results are varied.
Recent experimental advances using CNT porins,71 that is, 10

nm long nanotube segments inserted into lipid membranes
(Figure 2a,b), complement experimental results using isolated
CNTs. CNT porins occupy a unique place in the arsenal of
nanofluidic tools, because these materials allow researchers to
probe ensemble-scale transport in the important sub-1 nm size
regime of nanotube pores that are inaccessible for conventional
aligned CNT membrane platforms.8 The osmotic water
permeability of 0.8 nm diameter CNT porins exceeds that of
1.5 nm diameter CNTs by an order of magnitude (Figure 2c),8

suggesting that a one-dimensional (1D) arrangement of water
molecules,72,73 which is only achievable at small diameters,
introduces an additional enhancement mechanism besides the
wall slip and promotes ultrafast water transport in collective
bursts.66 The same 1D arrangement of water molecules appears
to produce a significant enhancement of Grotthuss proton
transport rates in narrow CNT pores.42,74 Transport through
short CNT porins can be compared with the results from a
complementary platform9,10 that uses Raman spectroscopy to
characterize transport in ultralong CNTs (Figure 2d−f). A
recent study with ultralong CNTs reported highly non-
monotonic freezing point elevation of confined water as a
function of nanotube diameter.10 Taken together, these results
suggest that slip flow may be highly nonmonotonic with
diameter, especially for the smallest diameters and channel
lengths. These intriguing findings highlight the need to develop
structure/function relationships for SDNs that can predict
exotic transport given specific confinement conditions.

Figure 2. Transport measurements in CNT porins and CNTs. (a) CNT porins (CNTP) in lipid membranes (inset shows a cryo-TEM image of a 0.8
nm diameter CNTP in a lipid membrane). From Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water
permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792−796. Reprinted with permission fromAAAS.
(b) Osmotically driven water transport through CNT porins. From Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.; Wanunu, M.; Noy, A.
Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792−796. Reprinted with
permission from AAAS. (c) Water permeability of aquaporin protein (AQP1) compared with that of 0.8 nm (nCNTP) and 1.5 nm (wCNTP)
diameter CNT porins. FromTunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.;Wanunu,M.; Noy, A. Enhanced water permeability and tunable
ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792−796. Reprinted with permission from AAAS. (d) The CNT
experimental platform, which comprises isolated CNTs connected to two reservoirs, enables monitoring by microRaman spectroscopy. Reprinted
from ref 10, Springer Nature. (e) Temporal study of the radial breathing mode (RBM) frequency. (i,ii) A time map showing the evolution of the RBM
frequency and intensities for a 1.15 nmDWCNT. Dotted lines indicate the time points at which water is added to the reservoirs. Reprinted from ref 10,
Springer Nature. (f) Filling is shown for the inner tube of a DWCNT but not the outer tube by an upshift in RBM frequency. Reprinted from ref 10,
Springer Nature.
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The van der Waals assembly of two-dimensional (2D)
materials to form nanoconduits, pioneered by Andre Geim
and co-workers, provides another avenue to study fluids under
extreme confinement.75 In this series of experiments, fluid flow
was measured through nanocapillaries formed by sandwiching
few-layer 2D materials like graphene, hBN, or MoS2 between
atomically smooth crystals of graphite, hBN, or MoS2.

75−80

Gravimetric measurements of water permeation through
channels formed by graphene spacers show extreme slip flow
and suggest high capillary driving pressures.76 The structure and
properties of water under 2D confinement are quite different
from bulk, with unusually low dielectric constant,77 changes in
viscosity that arise from finite-size effects,81 and the appearance
of unusual phases like 2D square ice.82 These slit pores with 2D
material spacers also show remarkable ionic transport proper-
ties, including transport of protons with complete rejection of
larger ions79 and asymmetric transport between similarly sized
cations and ions even in the absence of substantial surface
charge.80 While fluid structure and transport are likely different
under 2D confinement than in the 1D systems discussed
elsewhere in this Article, the implications of these differences for
slip flow and ion transport have not been fully established.
1.2. Slip Flow Simulations. Molecular dynamics simu-

lations show wide disparities in slip flow inside carbon
nanotubes. Snapshots and illustrations from several MD
simulations are shown below (Figure 3). Slip lengths
determined from MD simulation studies differ by ∼3 orders of
magnitude, varying between 1 nm and 1 μm for water flow
through CNTs with diameters ranging from 0.81 to 7 nm.65 The
slip length of water can be estimated using both nonequilibrium
and equilibrium MD simulations. In nonequilibrium MD
(NEMD) simulations, a pressure-driven water flow is simulated
by applying an external force on the water molecules. However,
results from NEMD simulations can depend sensitively on: (i)
the choice of the thermostat used to maintain the temperature of
the water molecules and CNT;83 (ii) the length of the CNT
when considering finite-size CNTs due to entrance/exit
effects;84 and (iii) the type of fitting of the velocity profile
used to obtain the slip length due to the nearly pluglike velocity
profile of water inside CNTs.65 In contrast, equilibrium MD

simulations of water confined inside a periodic CNT can be
performed to obtain the slip length reliably based on the Green−
Kubo relationship.52

Several factors have contributed to the large variation in the
slip lengths of water reported in previousMD simulation studies,
including (i) the use of different methods (e.g., NEMD vs
equilibrium MD) to calculate the slip length, (ii) the nature and
strength of the force field used to model water−carbon
interactions, and (iii) the water model used to model water−
water interactions inside the CNT.85 The concept of slip length
itself is ambiguous in the case of 0.8−1.6 nm diameter CNTs. In
such small pores, water molecules arrange in separate chains
connected through intrachain and interchain hydrogen bonding,
and so the water velocity profile is not well-defined. Therefore, it
is more reasonable to describe the water flow rate in terms of the
CNT permeability, which is expressed as a function of the water
friction coefficient.52 Additional studies are required to elucidate
the dependence of the CNT permeability on water−CNT and
water−water interactions.
It is noteworthy that previous MD simulation studies have

used a simple pairwise additive Lennard-Jones potential to
model the interactions of water molecules with CNTs. However,
water, as a polar solvent, can exert strong electric fields that can
result in a significant polarization of the carbon atoms in CNTs.
Polarizable force fields, which can self-consistently model the
polarization and dispersion energy components of the water−
CNT binding energy, can be used to obtain a more realistic
modeling of the water−CNT interface at a modest increase in
computational cost.32 Additionally, hybrid quantum mechan-
ical/molecular mechanics (QM/MM) and full ab initio
molecular dynamics (AIMD) simulations can be performed to
obtain more accurate estimates of the friction coefficient of
water inside some of the small-diameter CNTs, although the
computational cost for performing these simulations will be
significantly higher than that incurred using classical, force-field-
based MD simulations.86 Finally, the study of fluid flow through
nanotubes made of heteropolar nanomaterials, such as
molybdenum disulfide and hexagonal boron nitride, will allow
for decoupling the effects of electrostatic and London dispersion
forces on nanofluidic phenomena.33,87,88

Figure 3. Modeling confinement effects on transport and phase transitions in SDNs. (a) Simulations of NaCl and KCl solutions confined in 1.4 nm
diameter CNTs. Reproduced from ref 25. Copyright 2016 American Chemical Society. (b) MD simulation snapshot showing the capillary filling of a
(10,0) chirality CNT by a single file of water molecules. (c) Multiphase structure of water near a CNT interface where the vapor phase, ice, condensed
water, and the bulk phase of water coexist. Reproduced from ref 28. Copyright 2016 American Chemical Society.
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■ KNOWLEDGE GAP 2: PHASE TRANSITIONS IN
SDNS

Fluids confined in nanopores exhibit significant distortions of
the temperature−pressure phase boundary. This has been
shown experimentally in carbon nanotubes10,51 and discussed at
length for fluids in nanoporous silica.89 These distorted phase
transitions can be described by modifying the Gibbs−Thomson
equation with the Turnbull coefficient.51 This coefficient, which
was originally proposed in metal nucleation theory, is the ratio of
the nanopore−liquid interfacial tension γSL to the enthalpy of
fusionΔHm of the liquid (which is also proportional to themolar
volume to the two-thirds power, Vm

2/3)90 and has been shown to
be invariant with pore size for a given liquid. In this model, the
change in freezing point is given by

γ
Δ = − =

Δ
T T T

T V

r H

2
f f,bulk f,pore

f,bulk m SL

pore m (1)

where Tf is the freezing point, and rpore is the radius of the
nanopore.
However, no theory currently exists for describing phase

transitions in the narrowest of pores.10 Below ∼4 nm, water
structuring effects cause the Gibbs−Thomson equation to fail,
with freezing points varying dramatically and changing non-
monotonically with pore diameter. For example, recent
simulations91,92 and experimental data10 show water freezing
above 100 °C in a narrow range of CNTs close to 1 nm in
diameter and confirm the nonmonotonic dependence on
diameter of confined phase transitions predicted by simulation.
Experimentally, phase transitions in CNT pores can be tracked
by shifts of the radial breathing mode (RBM) using Raman
spectroscopy.10 MD studies have also shown that the phase
transition temperature of polar fluids such as water inside CNTs
can be strongly modulated by external electric fields.93−96

However, because the results of force-field-based MD
simulations can depend sensitively on the force-field parameters
used to model water−CNT interactions and on the choice of the
water model, it is not yet clear how the complex interplay
between water−CNT and water−water interactions determines
the phase behavior of water inside CNTs. The thermodynamics
and phase behavior of confined water represent a significant
knowledge gap that needs to be understood with a new theory
and modeling approaches supported by comprehensive
experimental data. One promising technique is to incorporate
chemically specific emissive defects in CNTs. These defects can
then be used asmolecular rulers to resolve the state of the fluid at
the single defect level.19,20,97

■ KNOWLEDGE GAP 3: PHASE SEPARATION UNDER
EXTREME CONFINEMENT

Phase separation, in which a single phase transitions into a two-
phase or multiphase coexistence region, is also influenced under
the extreme confinement of SDNs.98−100 Of particular interest is
the use of this phenomenon in new nanopore and membrane
separation mechanisms.100,101 Gravelle et al. noted from MD
simulations that CNT membranes may achieve selective
transport by nanoconfinement-induced preferential adsorption
of water over ethanol.99 MD studies have shown that gases such
as CO2, O2, and H2 from gas−water mixtures exhibit selective
physisorption into single-digit CNTs. Furthermore, the
solubility difference of gases in water combined with phase
separation using SDNs can be exploited for the separation of
gases.102 Nanoscale confinement has also been shown to change

the phase diagram and azeotrope location of CCl4/C6H12
mixtures in activated carbon fibers, with implications for phase
separation.80 In water, it could also be important in future work
to investigate the role of dissolved ions on phase trans-
formations, such as freezing or evaporation, which would tend
to reject and concentrate ions in the liquid phase after nucleation
and potentially generate large disjoining pressures.
Even less is known about the behavior of nonaqueous fluids

under similar conditions of extreme nanoconfinement inside
SDNs. Solvent−solvent and solvent−solute interactions neces-
sarily change as the fluid phase squeezes into molecularly sized
channels, but the nature of the change is not understood in
detail.98,100,103−106 Simulation studies have so far focused on
understanding the fluidic structure of liquids, such as
methanol107 and ethanol,99 confined inside CNTs. On the
experimental front, Ellison et al. studied the transport of
methanol, lithium ions, and various amino acid cations in the
presence of water through a 2.25 nm CNT and rationalized the
different dwell times of the various species based on a simple
model that took into account molecular and ionic sizes.108,109

Other relevant questions are whether and how confinement in a
small nanopore changes the thermodynamics and kinetics of
phase separation of ordinarily miscible fluids.110 For example,
demixing induced by confinement99 could be used to control
fluid transport or to achieve more efficient or selective
separations. Examples could include separating alcohols from
water, fractionating hydrocarbons, and separating other complex
macromolecular mixtures. For example, Mao and Sinnott used
classical MD simulations to investigate the use of CNTs for
separation of light gases, such as methane, ethane, and butane,
from one another.111 In another study, Rodriguez et al. studied
polar mixtures of water and acetonitrile nanoconfined between
silica surfaces and found an almost equal reduction in the
diffusion coefficients of confined water and acetonitrile
molecules as compared to their respective bulk diffusion
coefficients.112 As the nanochannel diameter approaches 1−5
nm, surface tension starts to exert an outsized influence on the
fluid inside the channel, potentially creating conditions for
spontaneous phase separation via spinodal decomposi-
tion.113−115

■ KNOWLEDGE GAP 4: THE OUTSIZED IMPACT OF
DEFECTS

Defects are ubiquitous in nanopores, but their effects on
nanofluidic transport are poorly understood. Structurally,
defects are deviations within an otherwise continuous and
regular conduit, manifesting as changes in diameter or CNT
chirality, atomic vacancies or substitutions, dangling bonds, and
point defects that can be as simple as the addition of a hydrogen
atom or as complex as a charged organic functional group.
In large pores a fluid may flow around a defect site. However,

the effect of defects can become increasingly pronounced as the
size of the pore/channel decreases. The role of defects in
molecular transport by SDNs can be as critical as it is in electrical
transport, in which defects are known to dominate conductive
pathways at the nanometer scale.116,117 In a spectacular example
of the power of defects to influence molecular transport, a few
strategically placed charges in aquaporin proteins block proton
flow through the protein channel.118 Comparing aquaporin to
other protein channels, the elimination of hydrogen-bonding
interactions increases the diffusion coefficient of single-file water
by up to 2 orders of magnitude.119,120 Similarly, in an AIMD
study of synthetic nanopores, Joly et al. found significantly larger
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friction of the liquid as water flowed past wall defects that caused
the molecules to dissociate.120 In extreme cases, fluid
interactions with defects in SDNs, and the resultant pinning
effects, could completely change the nature of transport through
the pore.
There are two significant challenges to understanding the

effects of defects on nanopore transport. First, most defects
occur randomly, and it is difficult to locate and resolve them in a
pore.116,121 Second, there is a lack of tools to resolve defects and
quantify their impact on fluidic transport in situ. Although
techniques such as transmission electron microscopy (TEM)
can resolve defects at atomic resolution, such methods typically
require ultrahigh vacuum and can cause significant beam
damage to nanomaterials, prohibiting a direct correlation
between defects and fluid transport.
SDN platforms provide a unique opportunity to quantify the

effects of defects on molecular transport. With the development
of new tools and synthetic methods to control and probe defects,
the effect of defects on fluid transport may be observed
unambiguously. Defects can be intentionally implanted to
control various material properties, such as electrical con-
ductivity and photoluminescence, and can thereby be used as
experimental markers to understand better the system and the
effects of molecular transport.116,122 When we control and
intentionally add defects in a limited manner, their properties
can be spatially localized, acting as perturbations rather than
completely changing the structure of the host. In combination
with advanced imaging techniques, controlled defects can
therefore be used to understand behaviors like molecular
transport in SDNs. In fact, recent theoretical work has enabled
the prediction of the exact shapes of extended vacancy defects or
nanopores in graphitic surfaces, thereby allowing for direct
linkages with experimental data through the simulation of
realistic defect morphologies in nanofluidic systems.123

Single-defect spectroscopy may enable the understanding of
how defects affect, and can be used to control, fluid transport.23

Recent advances in super-resolved hyperspectral imag-
ing22,23,124 and our knowledge of defects in 1D and 2D
systems19,20,24,122,125 are rapidly making this prospect a reality.
For instance, to quantify the effect of molecular defects on

nanofluidic transport, single defects can be used as quantum
light emitters.97,126−128 Such defects can be installed syntheti-
cally along single-walled CNTs by covalently attaching organic
functional groups to the sidewall and pore mouth of the
nanotube.20,21 A particularly exciting property is that these
emissive defects create potential wells that trap excitons that can
recombine to produce bright photoluminescence that is
sensitive to the chemical environment.19,20,97,126,128,129 At the
single-molecule level, ion pairs can cause much more substantial
perturbation to the local environment of the trapped excitons
than do individual ions. Thus, it also should be possible to
perform spectral differentiation to count ion pairs. With
advances in precision spectroscopic techniques, a more detailed
understanding of defects in SDN transport is forthcoming.

■ KNOWLEDGE GAP 5: CORRELATED TRANSPORT
OF IONS

Strong nanopore confinement, which is often accompanied by
partial or complete desolvation of solutes, gives rise to
interesting physical phenomena in which ions and molecules
exhibit unusual spatial and temporal correlations.130,131 A good
theoretical description is currently available only for wide
nanopores in dilute solutions (Figure 4). In these larger
nanopores under dilute conditions, when the Debye screening
(λD) length is larger than the average ionic distance, and the
average ionic distance (rnn) is smaller than the pore diameter
(d), mean field theories can correctly predict the transport
behavior of ionic channels, including interesting physical
phenomena such as channel gating and a nonlinear diode-like
behavior.17,30,67,132,133 In concentrated electrolytes, ion−ion
correlations lead to ordering of ions in nanopores, and even to
charge inversion in highly charged pores. Ion−Ion correlations
require a departure from classical mean-field electrostatics
models to describe charge inversion, leading to attractive
pressures or bridging between like-charged pore walls.134,135

Charge inversion can also result in electro-osmotic flow reversals
and electrophoretic mobility reversals.30,136

The effect of confinement is most pronounced in small
nanopores, in which the average ionic separation is larger than
the pore diameter and ions effectively form a 1D chain, for which

Figure 4. Electrostatics under confinement. Different behavior expected for the electrostatic interactions in a nanopore as a function of ionic
concentration (c) and pore radius (d). Classical theories (Poisson−Boltzmann) are only appropriate in the bottom right corner. New approaches are
needed under extreme confinement and high concentrations. The Bjerrum length, or the characteristic length for electrostatic interactions, determines
the extent of ion pairing relative to rnn. Under extreme confinement, d < rnn or d < λD, 1D correlated transport is expected to dominate. At high
concentrations, λD < rnn, 3D correlations and ion pairing can play a bigger role.
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three-dimensional (3D) continuum models are therefore not
relevant.137 This configuration gives rise to exotic behavior.

Extremely small channels can be modeled as discrete Ising
chains of charges, giving rise to anomalous capacitance

Figure 5. Single-nanopore system construction. (a) Track-etched nanopores in polyimide. From Siwy, Z.; Dobrev, D.; Neumann, R.; Trautmann, C.;
Voss, K. J. A. P. A. Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, 2003. Reprinted by permission from Springer
Nature. (b, c) Track-etched nanopores in silicon nitride. Reproduced from ref 155. Copyright 2009 National Academy of Sciences. (d) A nanopore
drilled by TEM. From Storm, A.; Chen, J.; Ling, X.; Zandbergen, H.; Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision,
2003. Reprinted by permission from Springer Nature.

Figure 6. Probing ion transport through SDNs. (a) A platform for single CNT porin ionic conductance measurements. (b) Ionic conductance of
individual, 0.8 nm diameter CNT porins. From Tunuguntla, R. H.; Henley, R. Y.; Yao, Y.-C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water
permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792−796. Reprinted with permission fromAAAS.
(c) Local charge inversion induced by trivalent cobalt ions (CoSep) causes the formation of positive surface charges and the appearance of diode-like
behavior in individual conical nanopores. Reproduced from ref 157. Copyright 2009 American Chemical Society. (d) Measuring the reversal potential
allows the surface charge to be calculated. Data shown are from silica nanochannels, and charge inversionwas obtained withMg2+. Reproduced from ref
161. Copyright 2015 American Chemical Society.
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curves.138,139 Sub-2 nm pores also display ionic and protonic
current fluctuations,9,140 as well as the formation of ion pairs and
even larger aggregates.67,141,142 Partial removal of ion solvation
shells, which prevents those ions from forming long-term pairs in
the bulk, leads to ion pairs with unusually long lifetimes in
confinement, along with potentially enhanced reaction dynam-
ics.67,141,142 Spontaneous, long-scale ordering in nanopores can
also create conditions for efficient and selective transport of
particular molecular or ionic species; formation of the hydrogen-
bonded single-file water chain in narrow CNTs, for example,
gives rise to fast proton conduction via the Grotthuss
mechanism.8,66 Confinement-induced effects lead to unusually
strong correlative transport modes, dramatically enhancing
mechanisms such as electro-osmotic transport and ion
concentration polarization.143,144 As hydrated ions become
squeezed into narrow gaps with slippery wall surfaces, the
distinction between ion solvation shells and the rest of the
solution becomes increasingly blurred, increasing the probability
of strong electro-osmotic and diffusio-osmotic coupling effects,
which can become dominant in the narrowest of channels.144,145

Recent experimental and theoretical work also highlights the
importance of considering charge-regulation effects on nano-
fluidic transport, where the surface charge density in SDNs
depends sensitively on the pH of the solution.146 Even though
these effects are not surprising on an intuitive level, their
rigorous treatment has occurred only recently,145 and
experimental efforts are still sparse. The incorporation of these
effects to enhance scaling of ionic flux and selectivity for SDNs
points to operational realms for nanopore membranes that may
circumvent flux-selectivity tradeoffs. Finally, future research also
must address the behavior of ionic mixtures confined within
nanopores. In one of the few examples, the anomalous mole
fraction effect, in which permeation of ion mixtures is slower
than permeation of either ion individually, was demonstrated
inside synthetic nanopores.147−149

Modeling the coupling between driving forces under
confinement, such as gradients in pressure and electric potential,
is essential for our understanding of these unique transport
phenomena. Pressure-driven flow through a nanopore will
advect ions in the electric double layer, resulting in a streaming
current, whereas electric fields conducting ions through a pore
will also drive electro-osmotic flow in the double layer.30,150 The
interplay between Coulombic ordering and steric repulsion can
influence the thermodynamic driving forces for ion trans-
port.135,151,152 A more general coupled flux model is necessary,
especially at high concentrations within a nanopore, as
pioneered by Stefan-Maxwell for dilute gases and Onsager for
generalized linear irreversible thermodynamics.153

Experimentally, the study of correlated nanopore ion
transport could benefit from new approaches to electrical
manipulation, spectroscopic probing, and precise pore con-
struction and modification (Figure 5).154,156 When pore
geometrical and chemical properties are known and controlled,
the presence of spatial and temporal correlations of ions will be
made evident by examining the ion current. Ion current through
a nanopore is extremely sensitive to the properties of the pore
walls and distributions of ions in the pore. As an example, the
effect of charge inversion at a surface can be probed by recording
current−voltage curves of asymmetric nanopores.157 Structur-
ally asymmetric and charged nanopores behave as rectifiers,
transporting ions in one direction and hindering ionic transport
in the opposite direction; the direction of preferential ion flow
depends on the surface potential.158−160 A nanopore that

undergoes charge inversion can be therefore immediately
identified by its flipped current−voltage curve (Figure 6).157

The magnitude and polarity of effective surface potential can
also be measured precisely in nanopores via the so-called
reversal potential, that is, an electrical potential difference
established across a membrane in contact with a salt
concentration gradient.161 It is expected that nanoconfine-
ment-induced ion correlation effects, such as the breakdown of
electroneutrality,130,162 could be probed electrochemically with
a nanopore whose geometry and surface chemistry were tuned
to make it especially sensitive to the balance of positive and
negative charges.
Ion correlations may influence the ion selectivity of

nanopores.163 Experiments with single nanopores could provide
experimental guidance to such modeling and help to design
systems with newmechanisms of ionic and molecular selectivity.
Probing ion correlation systematically in nanopores of
controlled chemical properties, using solvents that vary in
dielectric constant and ions that differ in size and valence, would
help build a universal description of how correlation of ions
influences transport at the nanoscale.164

Another important direction of inquiry is the identification of
current and electrokinetic fingerprints of ion pairs and
aggregates. Extreme confinement can lead to the formation of
pairs of ions of the same charge131 and that these pairs can be
broken with an electric field. Formation of ion pairs of different
charge (i.e., pairs containing both cations and anions) has also
been reported,130,142,165 but it is not known how their presence
influences electrokinetic transport. The possibility of tuning the
formation of ion pairs by the properties of the pore wall has also
been suggested.142 Nanopores with tunable electrochemical
properties could enable an understanding of the role of ion pairs
in ionic transport, as well as how to incorporate ion pairs and
aggregates into existing models.

■ KNOWLEDGE GAP 6: NANOSCALE SOLVATION
BEHAVIOR

Protein ion channels routinely exploit minute differences in
solvation behavior to act as exquisitely selective molecular gates
(e.g., K+ ion channels).166,167 As confinement approaches the
levels seen in SDNs, solvation effects start to diverge from their
bulk behavior, with profound effects on transport efficiency and
selectivity.168−173 The energetics of solvation under strong
confinement affect nanopore entry and lead to ion-specific
modulations of the double-layer structure inside the pore.25,26

As an example, in extreme confinement and under double-layer
overlap, counterions with strong hydration shells, such as
sodium ions, were found to create a layered structure close to the
charged surfaces.173−175 This effect was discovered experimen-
tally with a surface-force apparatus (SFA), in which two mica
surfaces were brought into close contact with distance
controlled with sub-nanometer precision. Introducing the
effects of solvent to solute−solute interactions leads to the
prediction of an oscillatory force between two surfaces, an effect
that has also been measured with the SFA.176 These phenomena
are only beginning to be probed.
Understanding and exploiting solvation phenomena in

synthetic SDNs could lead to a new generation of membranes
that are capable of manipulating hydration effects to achieve
single-species selectivity in a manner that is virtually impossible
with current technologies.177 Recently, Zwolak and colleagues
proposed that dehydration-based selectivity could be indeed the
basis for a universal mechanism to achieve selectivity between
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ions of the same charge, for example, Na+ and K+.178

Interestingly, it was shown that, to optimize ion selectivity,
both pore diameter and pore length need to be tuned.168 These
concepts could potentially be extended to design systems that
could effectively filter out pharmaceutical compounds that
plague water supplies in industrialized nations,179,180 harvest Li+

ions for batteries,181 or provide efficient and thin exclusive
proton-conducting membranes for fuel-cell technologies.182,183

Probing chemistry and organization in SDNs requires a
technique that can offer high spatial resolution, such as infrared
spectroscopy, Raman spectroscopy,10,184,185 UV/visible (elec-
tronic) spectroscopy, fluorescence spectroscopy, X-ray scatter-
ing,186 X-ray photoelectron spectroscopy,187 optical Kerr effect
(OKE) spectroscopy,18,188,189 or neutron diffraction.190 These
techniques can have sufficiently high depth resolution to study
solid−liquid interfaces, but their lateral resolution is typically
limited by diffraction or spot size to something on the order of 1
μm. In SDNs, the width of a pore may provide the desired
resolution in one lateral direction but not along the pore axis. A
lateral resolution on the nanometer scale would be ideal for
understanding, for instance, the chemical bonding in the
neighborhood of individual ions. An understanding of the
complex interplay among steric, electrostatic, and van der Waals
interactions, as well as solvent entropy, becomes possible only at
this length scale. Although tip-enhanced Raman spectroscopy
(TERS) and other scanning-probe techniques have found
success in probing interfaces on this scale,191−195 chemical
mapping with∼1 nm resolution is not yet routine. Furthermore,
the dielectric constants of polar solvents, like water, confined
inside SDNs can be dramatically lower than those in the bulk.
For example, in a recent experimental study of water confined
between hexagonal boron nitride (h-BN) and graphite,
Fumagalli et al. reported that the out-of-plane dielectric constant
of water drops from 78.5 in the bulk to just 2 inside
nanocapillaries.77 Moreover, the dielectric constants of solvents
can also vary with ion concentration.196 In this regard, the
classical Born equation of ion solvation predicts a higher free
energy of solvation of an ion in a bulk medium with a higher
dielectric constant.197 However, the manner in which changes in
the dielectric constants of solvents confined inside SDNs
impacts the solvation of ions remains an open question.
Another issue with many of these techniques is that they are

not compatible with every SDNmaterial. Optical spectroscopies
are useful for studying behavior in pores in transparent materials.
There is a large literature, for instance, in the use of OKE,
Raman, and NMR spectroscopies to probe liquid dynamics in
silica pores that has led to important insights regarding the
behavior of pure solvents. For instance, in OKE spectrosco-
py,18,188,189 a linearly polarized pump induces a small net
alignment, and thereby a transient birefringence, in a transparent
liquid composed of molecules with an anisotropic polarizability.
The return to an isotropic orientational distribution is
monitored via depolarization of a probe pulse as a function of
time delay. This technique has provided a detailed picture of the
spatial dependence of orientational relaxation in liquids
confined in silica nanopores198 and could readily be applied to
confined solutions. It is important to note that such studies
probe behaviors that are averaged over large numbers of pores,
rather than behavior in a single, well-characterized pore.
Furthermore, other SDN materials with strong optical
signatures, like carbon nanotubes, may present challenges for
the use of optical spectroscopies to study confined fluid alone.

Spectroscopic techniques that have never been applied to
SDNs may enhance our understanding of solvation behavior
under nanoconfinement. Vibrational sum-frequency generation
(VSFG) spectroscopy199−204 is a surface-selective technique
that can reveal chemically specific information at solid/liquid
interfaces. For instance, VSFG has been used to show that
acetonitrile next to a silica surface forms an unexpected bilayer
structure that has a profound influence on the properties of the
interface.198,205 VSFG probes vibrational modes that are
simultaneously IR and Raman active, and by collecting spectra
under different polarization conditions, it is possible to obtain
information on the structure of interfacial molecules.201 VSFG
has not been applied to fluids confined within SDNs to our
knowledge, but it has great potential for studying nanopores that
are transparent to the relevant colors of light. SDN liquid−solid
interfaces and ion−solvent interactions might also be probed
with the addition of an electron beam in the form of ultrafast
electron crystallography206 or in situ TEM with applied electric
fields207 or magnetic fields,208 or electron holography.209

■ KNOWLEDGE GAP 7: ENHANCED IONIC
SELECTIVITY

The translation of SDN physics to multipore membrane systems
with precise ionic selectivity remains elusive. Membrane-based
technologies have played an important role in separations,
including water purification and seawater desalination, for many
years.49,177,210,211 Most state-of-the-art solute-rejecting (e.g.,
reverse osmosis and nanofiltration) and ion-exchange mem-
branes are polymer films with nonuniform pore characteristics,
which hinder precise ion−ion selectivity. In these membranes,
size- and charge-based separations are the main mechanisms
that govern selectivity, rendering the membranes poorly
selective when species with similar size or charge are
present.212−214 On top of the inherent challenge of separating
similar species, engineering ultraselective pores for separation of
small ions (e.g., chloride, fluoride, and lithium) is technologi-
cally difficult due to the sub-nanometer precision required.49,215

Graphene oxide membranes, for instance, demonstrate remark-
able molecular selectivity216 but allow fast transport of small
ions.217 While ion selectivity can be achieved, framework defects
and swelling of graphene oxide laminates in water remain
issues.12,218 For CNT membranes, it is possible to achieve
moderate charge- or size-selective transport,219−221 but scaling is
difficult, and high selectivity between ions of similar size and
charge has not been achieved. The major obstacles for aligned
CNT membrane development are the difficulty of growing
arrays of CNTs with uniform diameters, the difficulty of
controlling the arrangement and quality of the nanotubes in
those arrays,222,223 the low yield of the fabrication process,224,225

and the crude nature of the procedures used to remove the
nanotube end-caps. An added difficulty is that CNTs would
likely need to have diameters less than 1 nm to effect truly
selective ion transport. But despite these challenges, the
exploration of enhanced ion−ion selectivity in SDNs is a
promising area of research. It may assist the development of
materials strategies for separating a target ion from multi-ion
solutions more generally; example applications include separat-
ing Li+ ions from Na+ and K+ ions in seawater and designing an
exclusively proton-conducting membrane for fuel cells.226

Although major efforts have focused on studying size-based
selectivity,8,12,217,227 emerging research suggests that enhanced
ion−ion selectivity in SDNs may be based on differences in ion
hydration, charge, or shape properties (Figure 7). The limited
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difference in selectivity observed for small ions in membranes
with sub-nanometer pores, for instance, is often attributed to
hydration and dehydration effects. Specifically, an ion with a
smaller radius (e.g., F− or Na+) acquires a larger and stronger
hydration shell and undergoes lower dehydration at the pore
mouth compared to an ion with a larger ionic radius (e.g., Cl− or
K+).8,171 Ion dehydration also underlies the precise selectivity
observed in selective-ion biological channels.228,229 Here,
specific sites within the channel create a cavity with a perfect
match for a specific bare ion, compensating energetically for its
loss of hydration shell and excluding the permeation of other
ions (Figure 7a).
Knock-on mechanisms have recently been proposed230 to

explain how biological nanopores discriminate similarly sized
ions (i.e., Na+ vs K+). Here, fully dehydrated K+ can pass through
a potassium channel all without intervening water molecules,
whereas Na+ does not enter the channel without water. Long-
time (i.e., multi-μs) MD simulation has played an essential role
in elucidating this mechanism.231 At the same time, computa-
tional predictions are known to be sensitive not only to the
sampling times, which are getting more and more straightfor-
ward, but also to the nature of the physics included in the force
field. For instance, beyond scaling charges in nonpolarizable
force fields,232 polarizable force fields233 have been suggested234

to capture essential features of divalent cations (e.g., Ca2+ vs
Mg2+). Furthermore, effects not captured in any conventional
force field, such as charge transfer, have proven essential to
describe ion-specific effects in some cases.235 Thus, predictive
modeling in this area requires both development of multiscale
approaches as well as careful consideration of the physics
involved.
Experimentally, ion dehydration was recently proposed to

explain the Arrhenius-type behavior observed for ion perme-
ation through nanopores and membranes:8,12,236−238
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RT
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where J is the ion flux through the membrane, A is the pre-
exponential factor, Ea is the activation energy, R is the gas
constant, and T is the temperature in Kelvin. Differences in
dehydration-based energy barriers have been shown to boost
selectivity between ions permeating through nano-
pores.12,237−240 Experiments that quantify energy barriers as a
function of pore diameter, or location-specific functionalization
of the pore mouths or bodies of SDNs, may shed light on the
physical and chemical effects that induce dehydration and lead
to selective transport.
Another aspect of SDNs that can be used for enhanced ionic

selectivity is their electric interaction with ions (Figure 7b). In
general, charged pores repel co-ions, and the extent of repulsion
is correlated with the extent of ion charge. However, recent
results show that even ions with the same charge (e.g., Cl− and
NO3

−) are affected differently by a charged membrane,35 a
phenomenon that calls for fundamental investigation of charge-
exclusion mechanisms. These results cannot be predicted by
traditional models for transport and exclusion of ions in
nanofiltration membranes, based on the extended Nernst−
Planck equation,241,242 even when this equation is modified to
include contributions from ion-specific effects in the electric
double layer. Experimentally, state-of-the-art membranes are
either neutral or contain charged groups on their surfaces and
within their pores. As a result, surface and in-pore charge effects
on ion selectivity cannot be distinguished. SDNs that have
charges localized either in the pore mouth or pore body (e.g.,
CNTs with a functionalized and negatively charged pore
mouth)8 may provide an opportunity to highlight surface and/
or in-pore charge effects. MD simulation studies have shown
that the free-energy barrier for ion transport through CNTs can
be changed significantly by chemical functionalization of the
pore mouth, raising the possibility of practical applications of
SDNs that are chemically functionalized at particular sites.243,244

Finally, pore shape influences selectivity (Figure 7c). This
effect can occur, for example, between nonspherical polyatomic
ions (e.g., NO3

−, ClO4
−, and AsO4

−) and spherical monatomic
ions (e.g., Cl− and F−), as evidenced by discrepancies between
experimental energy barriers and theoretical hydration free
energies.35,238,245,246 Structural characterization and modeling
techniques such as MD simulations can assess the effect of pore
mouth and pore-body shape on permeant selectivity for
monatomic and polyatomic ions.246 Overall, fundamental
questions about the effect of pore geometry, charge-based
selectivity, and dehydration on selective ionic transport will need
to be addressed in future research, with the goal of creating rules
for the rational design of selective SDN membranes.

■ CONCLUSIONS
In this Review we have highlighted seven knowledge gaps that
are central to the study of molecular and ionic transport in
single-digit nanopores. These gaps include the presence and
magnitude of slip flow, phase behavior under nanoconfinement,
nanoconfined phase separation, the impact of defects on
transport, correlated ion transport inside SDNs, nanoscale
solvation behavior, and the engineering of enhanced ionic
selectivity. Although nanoporous materials with characteristic
dimensions smaller than 10 nm have been studied for some time,
the confluence within the past decade of precise model systems
with well-characterized pores, new spectroscopic techniques,
and improved simulations has subjected these knowledge gaps
to studies at unprecedented new levels of detail. Although some
knowledge gaps, such as the scaling of slip length with SDN

Figure 7. Potential mechanisms for increasing ionic selectivity.
These mechanisms include selectivity by (a) ion dehydration; (b)
surface charge, in-pore charge, and electric double-layer effects; and (c)
shape-related steric exclusion. With a combination of these selectivity
mechanisms, it may be possible to design SDN systems with
unprecedented ionic selectivity.

The Journal of Physical Chemistry C Review Article

DOI: 10.1021/acs.jpcc.9b02178
J. Phys. Chem. C XXXX, XXX, XXX−XXX

J

http://dx.doi.org/10.1021/acs.jpcc.9b02178


diameter, have been posed but not resolved, other knowledge
gaps, like the impact of a single defect on molecular transport
inside an SDN, are only now coming into focus. We expect that
the study of molecular and ionic transport under extreme
confinement will test the limits of bulk-scale fluid mechanics,
provide opportunities for the exploration of new synthetic and
spectroscopic techniques, and inform our understanding of
transport at molecular interfaces. We also anticipate the
development of fundamentally new technologies, as the
dramatic effects of nanoconfinement give rise to adsorbents,
membranes, and fluidic platforms with extraordinary transport
efficiencies and selectivities.
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(232) Kohagen, M.; Pluharǒva,́ E.; Mason, P. E.; Jungwirth, P.
Exploring ion−ion interactions in aqueous solutions by a combination
of molecular dynamics and neutron scattering. J. Phys. Chem. Lett. 2015,
6, 1563−1567.

(233) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.;
Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio,
R. A., Jr; et al. Current status of the AMOEBA polarizable force field. J.
Phys. Chem. B 2010, 114, 2549−2564.
(234) Jing, Z.; Liu, C.; Qi, R.; Ren, P. Many-body effect determines
the selectivity for Ca2+ and Mg2+ in proteins. Proc. Natl. Acad. Sci. U. S.
A. 2018, 115, E7495−E7501.
(235)Willow, S. Y.; Xantheas, S. S.Molecular-level insight of the effect
of Hofmeister anions on the interfacial surface tension of a model
protein. J. Phys. Chem. Lett. 2017, 8, 1574−1577.
(236) Richards, L. A.; Richards, B. S.; Corry, B.; Schaf̈er, A. I.
Experimental Energy Barriers to Anions Transporting through
Nanofiltration Membranes. Environ. Sci. Technol. 2013, 47, 1968−
1976.
(237) Corry, B. Designing carbon nanotube membranes for efficient
water desalination. J. Phys. Chem. B 2008, 112, 1427−1434.
(238) Epsztein, R.; Shaulsky, E.; Qin, M.; Elimelech, M. Activation
behavior for ion permeation in ion-exchange membranes: Role of ion
dehydration in selective transport. J. Membr. Sci. 2019, 580, 316−326.
(239) Richards, L. A.; Schaf̈er, A. I.; Richards, B. S.; Corry, B.
Quantifying barriers to monovalent anion transport in narrow non-
polar pores. Phys. Chem. Chem. Phys. 2012, 14, 11633−11638.
(240) Song, C.; Corry, B. Intrinsic Ion Selectivity of Narrow
Hydrophobic Pores. J. Phys. Chem. B 2009, 113, 7642−7649.
(241) Brown, M. A.; Abbas, Z.; Kleibert, A.; Green, R. G.; Goel, A.;
May, S.; Squires, T. M. Determination of Surface Potential and
Electrical Double-Layer Structure at the Aqueous Electrolyte-Nano-
particle Interface. Phys. Rev. X 2016, 6, 011007.
(242) Parsons, D. F.; Bostrom, M.; Nostro, P. L.; Ninham, B. W.
Hofmeister effects: interplay of hydration, nonelectrostatic potentials,
and ion size. Phys. Chem. Chem. Phys. 2011, 13, 12352−12367.
(243) Corry, B. Water and ion transport through functionalised
carbon nanotubes: implications for desalination technology. Energy
Environ. Sci. 2011, 4, 751−759.
(244) Chan, W.-F.; Chen, H.-Y.; Surapathi, A.; Taylor, M. G.; Shao,
X.; Marand, E.; Johnson, J. K. Zwitterion functionalized carbon
nanotube/polyamide nanocomposite membranes for water desalina-
tion. ACS Nano 2013, 7, 5308−5319.
(245) Epsztein, R.; Cheng, W.; Shaulsky, E.; Dizge, N.; Elimelech, M.
Elucidating themechanisms underlying the difference between chloride
and nitrate rejection in nanofiltration. J. Membr. Sci. 2018, 548, 694−
701.
(246) Gravelle, S.; Joly, L.; Detcheverry, F.; Ybert, C.; Cottin-Bizonne,
C.; Bocquet, L. Optimizing water permeability through the hourglass
shape of aquaporins. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16367−
16372.

The Journal of Physical Chemistry C Review Article

DOI: 10.1021/acs.jpcc.9b02178
J. Phys. Chem. C XXXX, XXX, XXX−XXX

R

http://dx.doi.org/10.1021/acs.est.8b06880
http://dx.doi.org/10.1021/acs.est.8b06880
http://dx.doi.org/10.1021/acs.jpcc.9b02178

