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A B S T R A C T

High-flux evaporators are important for various fundamental research and industrial applications. Understanding the heat loss mechanisms, especially the con-
tribution of natural convection during evaporation is thus a ubiquitous process to predict and optimize the performance of evaporators. However, a comprehensive
analysis on natural convection heat transfer, where the vertical Stefan flow due to evaporation couples with buoyancy driven convective flow has not been carefully
considered. In this work, we developed a theoretical framework to elucidate the effect of Stefan flow on natural convection during evaporation. This theory
incorporates the vertical Stefan flow into the conventional boundary layer theory. We found that a significant suppression of natural convection can be induced by a
weak Stefan flow owing to the increase of boundary layer thickness. To understand this phenomenon, we discuss the governing mechanisms at different Stefan flow
regimes. We provide a theoretical correlation to the overall heat transfer which includes both effects of the Stefan flow velocity and the buoyancy force. We finally
predict the effect of natural convection on an evaporator at different operating temperatures. The heat loss from natural convection no longer monotonically
increases with the superheat temperature due to the effect of Stefan flow suppression. As a result, there is an approximately 40% overestimation of the natural
convection contribution at saturation temperature using conventional theory. This work improves the fundamental understanding of the natural convection during
evaporation and can help guide future high-performance evaporator designs.

1. Introduction

Recent advances in high-performance evaporators promise utiliza-
tion in a variety of applications including thermal management [1–4],
water purification [5,6], and steam generation [7–10]. Accurate esti-
mation of the heat loss is critical to design, predict and optimize the
performance of the evaporator. Natural convection is one of the most
ubiquitous sources to the heat loss which is particularly important
when the evaporator operates at high temperature (e.g., the saturation
temperature) or has a large characteristic length scale (Rayleigh
number RaL ∝ L3) [11]. To understand this fundamental process, a
number of theoretical and experimental studies have been carried out,
such as natural convection on a hot/cold plate with arbitrary inclina-
tion [12–20], natural convection on objects with complex geometry
[21] and natural convection on porous media [22–27].

To analyze the heat loss through natural convection on an eva-
porator, classical theories describing the heat transfer on a horizontal
hot plate in the quiescent air ambient have been previously used [7,28].
However, the assumption of a quiescent air ambient is not necessarily
true especially at high fluxes because of evaporation-induced Stefan
flow, which arises from the removal of air at the liquid-vapor interface
[29]. As shown in Fig. 1, diffusive transport of air and vapor occurs in
the gas phase due to the presence of a concentration gradient. Since the

liquid-vapor interface is considered impermeable to air molecules, an
upward bulk gas flow, known as the Stefan flow (Fig. 1), must com-
pensate the diffusive air flux and maintain the vapor pressure. There-
fore, natural convection is always associated with Stefan flows during
evaporation into an air ambient.

To predict the heat loss on evaporators accurately, it is crucial to
understand the effect of Stefan flow on natural convection. In this work,
we performed theoretical analysis on natural convection with Stefan
flow in ambient air. We developed an analytical model using boundary
layer theory. We found heat transfer through natural convection can be
significantly suppressed even when the Stefan flow is much weaker
than the buoyancy-induced flow. More than 50% reduction of the
Nusselt number was found at moderate bulk flow velocities (e.g.,
~0.01m/s). This suppression effect is very sensitive to the geometric
configurations and the wall superheat temperature of the evaporator.
We finally applied the proposed theory to a device-level analysis. We
calculated the natural convection-induced heat loss and analyzed the
corresponding dominant mechanisms at different superheat tempera-
tures. We found the contribution of natural convection to total heat loss
can be overestimated by over 40% at high superheat temperatures if the
effect of Stefan flow is ignored. The physical insights explored in this
work enhance the mechanistic understanding of natural convection in
the presence of Stefan flow. In addition, the proposed theory serves as a
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new tool to analyze the heat loss and aid in the design of high-perfor-
mance evaporators.

2. Theoretical formulation

2.1. Boundary layer theory of natural convection in a Stefan flow

We first applied boundary layer theory to study the effect of Stefan
flow on natural convection analytically. We considered a two-dimen-
sional, steady, laminar boundary layer on a horizonal evaporator. As
many high-performance evaporators are operated in a planar config-
uration [4,28,30], we modeled the evaporator as a semi-infinite flat hot
plate with a uniform temperature Ts and the half length of L. To further
simplify the problem, we made the following assumptions: (1) The
Stefan flow velocity V0 is reasonably small compared to the horizontal
characteristic velocity U so that the boundary layer assumption is still
valid. (2) No-slip boundary condition can be applied to the air flow at
the liquid-vapor interface as the dynamic viscosity of liquid water is one
order of magnitude larger than that of the air (e.g., 8.9× 10−4 Pa ∙ s
compared to 1.8× 10−5 Pa ∙ s at 25°C, respectively). For evaporators
that use micro/nano structures or pores where a large portion of them is
covered by solid, this assumption more strictly holds [4,28] (Fig. 2). (3)
All of the fluid properties are assumed to be constant except for the air
density, which is described by the Boussinesq approximation. These
fluid properties were evaluated at Tf=(Ts+ T∞)/2. (4) The viscous
and thermal boundary layer have the same thickness δ(x) because the
Prandtl number Pr≤1 [11]. As shown in Fig. 2, we focus on solving the
boundary layer problem in region I (the boundary layer in region II is
also solved in Appendix C). For convenience, we set the origin of the
coordinate system at the leading edge of the plate. We obtain the
governing equations for the natural convection boundary layer in the
Stefan flow using a scaling analysis (Appendix A for detailed deriva-
tions),
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The boundary conditions are,
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where u and v are the flow velocity in x- and y-direction, respectively. T
and p are the temperature and pressure. ρ, μ, and α are the gas density,
viscosity and thermal diffusivity, respectively. We use the well-known
approximate expressions for the velocity and temperature profile within
the boundary layer which automatically satisfy the boundary condi-
tions (Eqs. (5) and (6)) [20],
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We combine the x- and y-momentum equations (Eqs. (2) and (3)) by
substituting the pressure gradient term,
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Combining the continuity equation (Eq. (1)) with the momentum
(Eq. (9)) and the energy equation (Eq. (4)) and integrating them within
the boundary layer, we obtain
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where ΔT= Ts− T∞ is the wall superheat. Note, except the term V0ΔT,
Eqs. (10) and (11) have the same expression as the momentum and

Fig. 1. Schematic of the evaporation induced Stefan flow on the liquid-vapor
interface at high evaporative flux. During evaporation, air molecules transport
downwards due to the presence of a concentration gradient. As the liquid-vapor
interface is impermeable to air molecules, an upward Stefan flow forms to
maintain the vapor pressure at the interface.

Fig. 2. Schematic of the natural convection boundary layer on the evaporator.
Uniform Stefan flow V0 is applied on the interface. Natural convection occurs in
the gas phase due to the presence of a density gradient. In region I, the flow and
thermal boundary layers cover the top of the evaporator with temperature Ts.
The boundary layer thickness δ varies along x direction. A uniform upward flow
V0 enters region I through the interface. At the center of the evaporator, the
fluid flow leaves region I and moves upwards into region II, where a vertical
boundary forms. The computational domain is defined by four boundaries.
Boundary (1) indicates the far-field condition, where the ambient temperature
and pressure is applied. Boundary (2) is at the leading edge of the evaporator.
Boundary (3) is located at the interface, where the temperature and upward
flow velocity are defined by Ts and V0, respectively. A no-slip boundary con-
dition is applied to the horizontal flow. The evaporator is symmetric about the
axis (4).
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energy integral for conventional boundary layer theory because the
governing equations (Eqs. (1)–(4)) for both conditions are the same.
V0ΔT indicates the Stefan flow effect due to the boundary condition
v= V0 at y=0. Substituting the velocity and temperature profile (Eqs.
(7) and (8)) into the integral equations (Eqs. (10) and (11)), we obtain
the equations for the natural convective boundary layer in Stefan flows,
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where x∗ = x/L, δ∗ = δ/L and U∗ =UL/ν are the dimensionless forms of
corresponding variables. GrL is the Grashof number, i.e., =GrL
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2 ,
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0
0 is the Stefan flow Reynolds number. Physically, Eq. (12)

indicates the balance between inertial ( U( )d
dx

1
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2 ), viscous ( U )

and buoyant (GrL
d
dx ) forces, and Eq. (13) demonstrates the energy

balance between horizontal convection ( U( )d
dx ), vertical convec-

tion (30ReV0
δ∗), and conduction (60/Pr). According to Eqs. (12) and

(13), the average Nusselt number of natural convection NuL is de-
termined by GrL, ReV0

, and Pr, i.e., =Nu Nu Gr Re Pr( , , )L L L V0 . Eqs. (12)
and (13) can be solved strictly using numerical methods. In addition,
we can also find the analytical solution with proper approximations,
which shows more physical insights into the dominant mechanism of
heat transfer (Appendix B for detailed derivations). To predict the
overall heat transfer through natural convection, we calculate the
average Nusselt number NuL as,

=Nu dx2 .L 0

1

(14)

2.2. Finite element simulation of natural convection in a Stefan flows

To more accurately obtain the evolution of the boundary layer, we
also carried out numerical simulations based on the finite element
method (FEM) using COMSOL. Similar assumptions used in the
boundary layer approach (e.g., constant fluid properties and the
Boussinesq approximation) were incorporated in the FEM simulations.
The two-dimensional simulation domain is shown in Fig. 3(a), which
consists of the evaporator and the air ambient surrounding it. The
evaporator is modeled as a long strip in the third dimension (into the
page), similar to the boundary layer theory. Because of symmetry, only
half of the domain is included, with the axis of symmetry at the center
plane of the evaporator. The length of the evaporator in the domain is L
(i.e., the full evaporator length is 2L) and the overall size of the simu-
lation domain is 2.5L by 2.5L. Boundaries 1 and 2 are defined as open
boundaries to allow air to enter (at temperature T∞) and exit the

domain freely. Boundary 3 in front of the leading edge of the evaporator
is modeled as an adiabatic wall. Because most of the heat transfer oc-
curs near the leading edge of the infinite strip, it is important to resolve
the flow accurately in that area. We applied a refined mesh near the
leading edge as shown in Fig. 3(b). The refinement factor as well as the
overall domain size were determined such that further increasing them
does not appreciably change the results (relative change< 0.5%,
Appendix D for details). In a typical simulation, the fluid velocity field
and temperature field were calculated at incremental time steps until
they reached their steady state after the initial disturbance decayed.

2.3. Theory of one-dimensional Stefan flow on an evaporator

The vapor transport during evaporation is usually modeled by Fick's
law [29], where vapor molecules diffuse upwards while air molecules
diffuse downwards due to a concentration gradient. However, as the
liquid interface is impermeable to air, an upward bulk flow (i.e., Stefan
flow) is required to balance the downward diffusive flux of air mole-
cules with velocity V0 such that the net air flux (convective plus dif-
fusive) is zero at the interface (Fig. 1). This bulk flow is no longer
negligible as the evaporative flux increases where the dilute-solution
assumption of Fick's law starts to break down. Therefore, we modeled
the vapor transport using the Maxwell-Stefan law instead, where the
bulk flow velocity is given by,

=V D
p

dp
dyA

A
0

(15)

where D is the mass diffusivity, and pA is the partial pressure of air.
Accordingly, this bulk air-vapor flow creates a convective vapor flux,
i.e., VP M

R T 0
v v
0

. Combining the convective and the diffusive flux, the total
vapor flux j is expressed as,

= +j DM
R T

dp
dy

p M
R T

Vv v v v

0 0
0 (16)

where Mv is water molecular weight, R0 is the universal gas constant
and pv is the vapor partial pressure. Using Eq. (15) as well as the facts
that pv+ pA= p∞ and dpv/dy+ dpA/dy=0, we can obtain the total
vapor flux j as,

Fig. 3. (a) Simulation domain with boundary con-
ditions. The evaporator of length L is indicated by
the black dotted line. Boundary 1 and 2 are open
boundaries to allow air to flow into the domain.
Boundary 3 near the leading edge of the evaporator
is modeled as adiabatic. (b) Simulation domain with
mesh. Boundary conditions applied in this simulation
are the same as the conditions described in Fig. 2.
The mesh near the leading edge of the evaporator is
refined by a factor of 100.

Table 1
Parameters for natural convection heat transfer calculation in a quiescent air
ambient.

Ts T∞ L Pr GrL

40°C 25°C 1–20 cm 0.706 103–107
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where Eq. (17) is known as the Stefan's law and can be integrated to
give,
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Here δc represents the effective boundary layer thickness which is ty-
pically scaled by the characteristic length L of the evaporator and is
determined experimentally in practice [28]. By substituting the un-
known pressure gradient in Eq. (15) using Eqs. (17) and (18), we ob-
tained the final form of V0 as,
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which is a function of the evaporator temperature Ts and air ambient
temperature T∞.

3. Results and discussion

3.1. Method assessment

To validate our method, we calculated the natural convection in a
quiescent air ambient and compared the results with well-known cor-
relations. The simulation parameters are given in Table. 1. As shown in
Fig. 4(a), both the boundary layer solution and the FEM results agree
well with the experimental correlations. Specifically, the boundary
layer solution (i.e., =Nu Ra0.98L L

0.2) shows excellent agreement with
the correlation suggested by Corcione (i.e., =Nu Ra0.96L L

0.19) and rea-
sonable agreement with other commonly used correlations (< 40%
deviation) within the range of RaL (i.e., 104 < RaL < 107) that the
correlations are valid [31]. The FEM results generally predict the
overall heat transfer to be lower than the boundary layer solution be-
cause: (1) FEM has a larger numerical error at the leading edge due to

Fig. 4. Comparison between the present theory and the suggested correlations. Both the boundary layer theory solution and the FEM results agree with the widely
used correlations well. The deviation between the theory and correlation increases as the plate characteristic length increases.

Table 2
Parameters for natural convection heat transfer calculation with different
Stefan flow Reynolds numbers.

Ts T∞ L Pr GrL ReV0

40°C 25 °C 5 cm 0.706 105 0–240

Fig. 5. Effect of Stefan flow on the heat transfer through natural convection and the boundary layer thickness. (a) The average Nusselt number NuL as a function of
Stefan flow Reynolds number ReV0

. The average Nusselt number NuL decreases rapidly when a weak Stefan flow occurs (ReV0
< 90) (b) The boundary layer thickness

as a function of x-coordinate under different Stefan flow velocities. The decrease of overall heat transfer performance arises from the increase of boundary layer
thickness in the Stefan flow.
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the limited refinement (Fig. A2, Appendix E), and (2) the heat transfer
in region II (Fig. 2) cannot be well-described by the boundary layer
theory (Appendix E for details). Fig. 4(b) shows that the boundary layer
theory deviates from the experimental correlation =Nu Ra0.96L L

0.19

more significantly at a larger characteristic length L. One of the possible
reasons is that at large L, flow instability usually occurs for which
reason the steady laminar boundary layer assumption cannot strictly
hold [32,33].

3.2. Effect of Stefan flow on natural convection

To understand the effect of Stefan flow, we studied natural
convection at a variety of vertical flow velocities ranging from 0 to
0.08m/s where the corresponding Stefan flow Reynolds number ReV0

ranges from 0 to 240. We investigated natural convection on a two-
dimensional evaporator with L=5 cm. The simulation parameters are
listed in Table 2.

Fig. 5(a) shows the average Nusselt number NuL of natural con-
vection varies with ReV0

. The natural convection heat transfer decreases
significantly as the increase of Stefan flow velocity, indicating the heat
loss through natural convection is heavily suppressed by Stefan flow.
Particularly, NuL decreases> 50% when V0 rises to 0.03m/s (i.e.,
ReV0

= 90). Note that V0= 0.03m/s is much smaller than the

characteristic vertical velocity Vc≈0.1m/s at y= L, which is induced
by buoyancy in the quiescent ambient condition (Fig. 6(a)). The result
demonstrates that natural convection is very sensitive to perturbation
by Stefan flow. This effect can be explained by the increase of thermal
boundary layer thickness δ∗ as the upward Stefan flow velocity in-
creases. As shown in Fig. 5(b), δ∗ increases> 5 times when ReV0

in-
creases to 240 (i.e., V0 = 0.08m/s). Since the local thermal resistance is
proportional to δ∗, the increase of δ∗ leads to a reduction of overall heat
transfer. Additionally, the FEM simulation provides more physical in-
sight into the evolution of boundary layer (Fig. 6). Initially, the steady
boundary layer (Figs. 6(a) and (d)) covers the entire plate. As the Stefan

Fig. 6. FEM simulation results of the velocity field when (a) V0= 0 m/s (ReV0
= 0), (b) V0= 0.02 m/s (ReV0

~60) and (c) V0= 0.08 m/s (ReV0
~240), and the

temperature distribution when (d) V0= 0 m/s (ReV0
= 0), (e) V0= 0.02 m/s (ReV0

~60) and (f) V0= 0.08 m/s (ReV0
~240). The red line in (d)-(f) represents an

isotherm of T=39 °C, which demonstrates the evolution of boundary layer thickness. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Summary of the inertia and conduction effect on heat transfer in different
Stefan flow Reynolds number regimes.

Expression Behaviors at ReV0
< 50 Behaviors at ReV0

> 150

Inertia U( )d
dx

1
105

2 Negligible Dominant

Conduction
Pr
60 Dominant Negligible

Fig. 7. Average Nusselt number NuL as a function of Rayleigh number RaL
under different Stefan flow Reynolds number ReV0

. The heat transfer of smaller
evaporators (i.e., smaller RaL) is more sensitive to the Stefan flow.
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flow velocity increases, the boundary layer starts to detach from the
center (x∗ =1, Figs. 6(b) and (e)) and finally completely separates from
the evaporator (Figs. 6(c) and (f)). The boundary layer becomes very
thick due to the separation (the red line in Fig. 6(d)–(f)), for which
reason natural convection in high ReV0

only relies on the boundary layer
at the leading edge, i.e., x∗ ≈0.

We further discuss the inertial, conductive and convective effects on
the overall heat transfer at different ReV0

regimes. To understand the
effect of inertia and conduction, we eliminated the corresponding terms
from Eqs. (12) and (13), respectively, and compared the results with the
rigorous boundary layer solution (Fig. 5). We first simplified the
boundary layer Eqs. (12) and (13) by neglecting the inertial term

U( )d
dx

1
105

2 and the conduction term 60/Pr (Eqs. (A.12) and (A.13) in
Appendix B), which is valid at large Pr (Pr > 1 according to Ref. 13)
and 30ReV0

≫ 60/Pr,

= +U Gr d
dx

0 L (20)

=d
dx

U Re( ) 30 .V0 (21)

We obtained the analytical expression for the overall heat transfer
which is given by (Appendix B for detailed derivations),

= =Nu hL
k

Re
Gr

4
60

.L
V

L

1
40

(22)

Eq. (22) clearly shows the suppression effect of Stefan flow on
overall heat transfer. The average heat transfer coefficient (HTC) h
decays as ReV0

1
4 . According to Eq. (22), however, NuL rises to infinity at

ReV0
= 0, because the condition 30ReV0

≫ 60/Pr is invalid at the low
ReV0

regime. To describe the behavior of natural convection at low ReV0
,

we incorporated the term 60/Pr into the boundary layer equations,

= +U Gr d
dx

0 L (23)

= +d
dx

U Re
Pr

( ) 30 60
V0 (24)

and we found the mathematical expression for the boundary layer
thickness,

+
=

( )
d x4 .

Re
Gr Ra

0

3

240 4 640 3V
L L

0
1
2

(25)

As shown in Fig. 5, NuL decreases to a reasonable finite value at
ReV0

≈ 0 by considering the conduction effect into Eq. (24), and NuL

predicted by Eq. (25) converges gradually to the result given by Eq. (22)
at high ReV0

. Therefore, conduction through the boundary layer is the
dominant effect when ReV0

< 50, but becomes negligible as
ReV0

> 150.
We then analyzed the inertial effect by including term U( )d

dx
1

105
2

into Eqs. (20) and (21), and Eqs. (23) and (24) (Eqs. (A.25), (A.26), (12)
and (13)). It can be seen from Fig. 5, calculations considering the in-
ertial term (the results of “NuL no Pr” and “NuL all” in Fig. 5(a)) agree
well with the results neglecting the inertial term (the results of “NuL no
Pr and inertia” and “NuL no inertia” in Fig. 5(a)) at ReV0

≈ 0, but
predict much lower overall heat transfer at large ReV0

. Therefore, the
inertial effect is weak when ReV0

≈ 0 but develops to be the dominant
mechanism as ReV0

increases. We summarize the behavior of the con-
duction and inertial effects in Table 3.

To understand the sensitivity of natural convection to the Stefan
flow at various evaporator sizes, we calculated the heat transfer on the
evaporator from L=1 cm to L=100cm at various ReV0

(Fig. 7). We
used the same parameters listed in Table 1 and Table 2. The increase of
Rayleigh number RaL arises from the increase of L. As shown in Fig. 7,
the curve of NuL shifts downwards as ReV0

increases due to the sup-
pression effect. The relative change of NuL is less significant at larger
RaL for the same amount change of ReV0

, indicating Stefan flow induced
suppression is more important for smaller evaporators. For example,
when ReV0

increases from 0 to 60, the natural convection heat transfer
reduces by 50% for a 5 cm length evaporator while it only decreases by
20% when L is 50 cm.

From a practical consideration, it is useful to provide a correlation
of NuL to quantify the effect of ReV0

and RaL simultaneously. This
correlation can be theoretically guided by boundary layer theory. The
dependence of NuL on RaL in a log-log scale is shown in Fig. 7. The
linear dependence in the log-log graph indicates that the following
monomial relationship is valid,

=Nu C Re Ra( )L V L
C Re

1
( )V

0
2 0 (26)

where C1 and C2 are the front coefficient and power factor respectively,
which represent the effect of ReV0

. As shown in Fig. 8, the boundary
layer theory can predict the relationship between these two coefficients
and ReV0

. We found C1 and C2 have good linear dependence on ReV0
in

the log-log scale when ReV0
> 20. We fitted these linear coefficients

and obtained the monomial correlations for C1 and C2,

=C Re6.89 V1
0.78

0 (27)

=C Re0.163 .2 V
0.108
0 (28)

Substituting Eqs. (27) and (28) into Eq. (26), we suggest a general

Fig. 8. (a) The coefficient C1 and (b) the power factor C2 as a function of Stefan flow Reynolds number ReV0
. C1 and C2 show linear dependence with ReV0

at the high
ReV0

regime (ReV0
> 20) in the log-log scale, indicating C1 and C2 have the monomial relationship with ReV0

(i.e., C1= 6.89ReV0

−0.78 and C2= 0.163ReV0

0.108).
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correlation for the average Nusselt number NuL according to the
boundary layer theory,

= >Nu Re Ra Re6.89 ( 20).L V L
Re

V
0.78 0.163 V

0
0

0.108

0 (29)

This correlation is valid when the Stefan flow Reynolds number ReV0

is larger than 20, which can be widely used for engineering estimations.

3.3. Analysis of natural convection induced heat loss on an evaporator

In this section, we analyzed the heat loss due to natural convection
on a L=5 cm evaporator, which is operated at different temperatures.
For an evaporator with a fixed geometrical configuration, i.e., δc and L,
the Stefan flow velocity V0 only depends on the evaporator temperature
Ts and the ambient temperature T∞, i.e., V0= V0(Ts,T∞) (Section 2.3),
indicating,

= = =Nu Nu Re Pr Gr Nu Re T Pr Gr T Nu T( , , ) ( ( ), , ( )) ( )L L V L L V L L0 0

(30)

where the average Nusselt number NuL then depends only on the wall
superheat ΔT= Ts− T∞ if T∞ is fixed. We calculated the Stefan flow
velocity as a function of wall superheat. We chose two representative
effective diffusion boundary layer thicknesses i.e., δc=0.1L and δc= L
which match different experimental conditions [28,30]. The relatively
large effective diffusion boundary layer thickness is achieved by di-
rectly exposing the evaporator into a quiescent ambient, whereas the
smaller diffusion boundary thickness typically occurs when the vapor at

the far field removed (i.e., convected) by a weak flow. As shown in
Fig. 9(a), the Stefan flow velocity increases with the wall superheat,
where a significant increase in V0 occurs when Ts approaches the sa-
turation temperature. Also, the strength of Stefan flow highly depends
on the effective boundary thickness δc, indicating the importance of
considering the Stefan flow effect for high-flux evaporators [28].
Fig. 9(b) shows the dependence of NuL on ΔT (Eq. (30)). At low wall
superheats ΔT (ΔT < 30 °C), the overall heat transfer considering the
Stefan flow effect agrees well with the results in a quiescent ambient as
the natural convection is in the low ReV0

regime where the conduction
effect (represented by 60/Pr) is dominant (Table 3). However, the heat
transfer considering the Stefan flow deviates from the quiescent am-
bient results when ΔT is large (ΔT > 30 °C) since the Stefan flow be-
comes strong. For example, the average Nusselt number reduces by over
40% due to the Stefan flow effect when δc=0.1L and ΔT=75 °C
(Fig. 9(b)). Consequently, it is of great interest to note that NuL no
longer monotonically increases as ΔT increases. Instead, there is a peak
value of NuL when the Stefan flow is strong enough, indicating that the
natural convection heat transfer coefficient has a global maximum. A
similar phenomenon can also be seen in the total heat loss through
natural convection. As shown in Fig. 9(c), qconv′′ reaches maximum 350
W/m2 at ΔT≈67 °C and drops to about 300 W/m2 when ΔT increases
further (when δc=0.1L).

Finally, we performed heat loss analysis using the developed theory.
We considered the evaporator has δc=0.1L and is well-insulated. Only
the radiation and natural convection contribute to the total heat loss.

Fig. 9. Analysis of the natural convection heat loss as a function of wall superheat. (a) Stefan flow velocity V0 as a function of wall superheat ΔT. (b) Predicted
average Nusselt number NuL at different wall superheat ΔT. (c) Heat loss through natural convection qconv′′ at different wall superheat ΔT. (d) Contribution of natural
convection to the total heat loss on the evaporator varying with wall superheat ΔT.
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We considered the evaporator has an emissivity ε=1, and the con-
tribution of natural convection to the total heat loss is expressed as
qconv′′/qtot′′ where qtot′′ = qconv′′ + qrad′′. As shown in Fig. 9(d), conven-
tional theory assuming quiescent air ambient predicts the contribution
of natural convection steadily maintained at about 45% when ΔT is
reasonably large because both qconv′′ and qrad′′ are scaled by ΔT in the
low temperature (Ts < 100 °C) regime. However, it can be seen that
the conventional theory overestimates the contribution of natural
convection by ~ 40% at high ΔT, demonstrating that the Stefan flow
effect needs to be carefully incorporated into the heat loss analysis of
high-flux evaporators.

4. Conclusions

In this work, we identified and quantified the suppression of natural
convection in an evaporation induced by Stefan flow. To understand
this suppression effect, we developed a comprehensive theoretical fra-
mework which couples natural convection with the Stefan flow using
boundary layer theory. The Stefan flow, which arises from the high
evaporative flux of an evaporator, leads to the increase of boundary

layer thickness and the reduction of convective heat transfer. This
suppression effect highly relies on the Stefan flow velocity, and dif-
ferent heat transfer mechanisms dominate the different Stefan flow
Reynolds number regimes. We found over 50% suppression of the
overall natural convection is possible even though the Stefan flow is
much weaker than the buoyancy-induced flow. We also considered the
effect of evaporator geometry (i.e., the size and effective diffusion
boundary layer thickness) and wall superheat temperature on the nat-
ural convection suppression. We found that the overall heat transfer no
longer monotonically increased with the wall superheat and conven-
tional correlations significantly overestimated the heat loss through
natural convection when the evaporative flux was high. We also pro-
vided a fully analytical expression of the natural convection heat loss
coefficient in the presence of the Stefan flow to facilitate engineering
calculations. The results presented in this study show the importance of
the natural convection suppression effect to high-flux evaporators. The
developed theoretical framework offers physical insights into the nat-
ural convection suppression phenomenon and can be beneficial to a
wide range of applications from heat loss analysis to performance op-
timization of evaporators.

Appendix A. Derivation of the governing equations for natural convection in a Stefan flow

The general conservation of mass, momentum and energy equations describing fluid flow and heat transfer during natural convection are given
by,
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To simplify the governing equations, we considered the following dimensionless variables,

= = = = =u u
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where L≫ δ. According to the governing Eqs. (A.1) to (A.4), we have the scaling analysis on the order of magnitude estimation for each term. The
continuity equation gives,
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Substituting Eqs. (A.5) and (A.6) into the x-momentum Eq. (A.2),
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As μU2/δ2 ≫ μU2/L2, the x-momentum equation can be simplified as,
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Similarly, in the y-momentum equation, we have the following scaling terms,
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The pressure term (ρU2/δ) is much larger than the inertial term (ρU2δ/L2) since L≫ δ. In addition, the viscous term can also be neglected when
ReU ≫ 1. Consequently, the y-momentum equation can be expressed as,

=T T g p
y

(1 ( )) .
(A.10)

In Eq. (A.4), the heat conduction along x-direction can be neglected since L≫ δ, for which reason the energy equation is simplified as,

+ =u T
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y
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2

2 (A.11)

Appendix B. Solutions to the boundary layer equations

We firstly solved the boundary layer Eqs. (12) and (13) neglecting the inertial term U( )d
dx

1
105

2 and the conduction term 60/Pr when the Stefan
flow Reynolds number ReV0

and Prandtl number Pr are large, i.e., 30ReV0
≫ 60/Pr. The simplified boundary layer equations are given by,

= +U Gr d
dx

0 L (A.12)

=d
dx

U Re( ) 30 .V0 (A.13)

According to Eq. (A.13), we had,

=U Re x30 .V0 (A.14)

Substituting Eq. (A.14) into Eq. (A.12) and eliminating U∗, we obtained,
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x dx d

30
.V

L

30

(A.15)

Integrating Eq. (A.15) on both sides, we obtained the boundary layer thickness,
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and the average Nusselt number is given by,

= =Nu hL
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We next considered the more rigorous solution by including conduction contribution but still neglecting the inertial effect,

= +U Gr d
dx

0 L (A.18)
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Plugging Eq. (A.18) into Eq. (A.19) and eliminating term U∗, we obtained,
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We used the following transformation and substituted it into Eq. (A.20),
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and
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Integrating Eq. (A.22) on both sides and considering dδ∗/dx∗ ≈0 at x∗ =1 (flat boundary layer assumption), we obtained the differential
equation for the boundary layer thickness,
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Eq. (A.23) gives the implicit form of the boundary layer thickness,
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To consider the effect of the inertial term in the boundary layer equations, numerical solutions are required. The differential equations including
the inertial term but still neglecting the conduction term are given by,
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Still, substituting Eq. (A.26) into Eq. (A.25) and eliminating term U∗, we obtained,
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which was solved numerically using ode45 in MATLAB.
Finally, we solved the boundary layer Eqs. (12) and (13) rigorously considering all terms. Denoting a=U∗2δ∗ and b=U∗δ∗, Eqs. (12) and (13)

can be rearranged as,
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with initial conditions a|x∗=0= b|x∗=0=0. Similarly, Eqs. (A.28) and (A.29) can be solved by ode45 using MATLAB.

Appendix C. Extra considerations: the vertical boundary layer in region II

In this section, we solved the vertical boundary layer (region II in Fig. 2). We simplified the governing equations (Eqs. (A.1) and (A.4)) using the
dimensionless variables x∗ = x/δv and y∗ = y/H where H≫ δv is the characteristic length scale in vertical direction. Performing similar scaling
analysis, we obtained the following equations,
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We assumed the velocity and temperature profile,

= +v x y V y x
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where V(y=0)= V0. We obtained the vertical boundary layer equations by performing similar integral within the boundary layer and substituting
Eqs. (A.34) and (A.35) into corresponding integral equations,

=d
dy

V g T13
35

( ) 1
2v v

2
(A.36)

=d
dy

V( ) 0.
(A.37)

Eq. (A.37) indicates Vδ= Vδ|y=0≈ V0L. Plugging Eq. (A.37) into Eq. (A.36), we solved the vertical boundary layer as,
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where the y∗ = y/L in Eq. (A.38). According to Eqs. (A.37) and (A.38), the vertical flow velocity is given by,
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It can be seen from Eq. (A.39) that the air flow is accelerated due to the buoyant force. The vertical boundary thickness decreases accordingly to
conserve the mass in boundary layer, which agrees well with the COMSOL simulation.

Appendix D. Details of the finite element simulation

In this section, we verified that the numerical results of the finite element simulations are mesh independent and domain size independent. For
this purpose, we simulated the evaporator heat flux subject to pure natural convection (i.e., without the induced Stefan flow). The evaporator
temperature was fixed at Ts=40 °C and the ambient temperature was T∞=25 °C. The half evaporator length was L=5 cm. Fig. A1(a) shows the
evaporator heat flux as a function of the leading edge mesh refinement factor (i.e., number of mesh points within 0.2L of the leading edge, see inset).
When the mesh was coarse, the simulation severely overestimated the evaporator heat flux. After increasing the refinement factor above 50, the heat
flux converged to its true value. Fig. A1(b) shows the dependence on the simulation domain size. The domain size was measured in terms of the half
evaporator length L. It turned out that the simulation results were not sensitive to the choice of domain size. For the simulations carried out in this
study, we chose a refinement factor of 100 and a domain size of 2.5L considering both accuracy and computational cost.

Fig. A1. (a) Evaporator heat flux as a function of the refinement factor. Inset: detailed view of the evaporator in the simulation domain (left), and refined mesh near
the evaporator leading edge (right). (b) Evaporator heat flux as a function of the simulation domain size (L – the half evaporator length).

Appendix E. Comparison between the boundary layer theory and FEM results

In this section, we compared the results from boundary layer theory and FEM and discussed the sources of discrepancy. Fig. A2 shows the local
heat transfer coefficient (HTC) as a function of x position under different Stefan flow velocities. When V0= 0 m/s, the result of boundary layer
theory agrees with that of the FEM very well in general. However, small discrepancies were found at the leading edge (x→0 mm) and center of the
evaporator (x→50 mm), which indicate two sources of deviation (the inset of Fig. A2(a)). Specifically, the discrepancy at the leading edge arises
from the mesh refinement of numerical calculation. Note x=0 mm is a singular point with zero boundary layer thickness and infinitively large local
HTC, and most of the heat transfer occurs at the leading edge region. To accurately predict the heat transfer, extra refinement of mesh at the leading
edge should be carried out. Boundary layer theory is computationally efficient, which enables very good refinement at the leading edge (~ 0.001mm
between two neighboring nodes), whereas the corresponding refinement of FEM (length between two nearest nodes) is 0.1 mm. For this reason, the
maximum HTC at x=0 mm from our boundary layer theory can reach ~ 1100W/m2K, but the corresponding HTC at the same position from FEM is
only ~ 100W/m2K. This poor spatial resolution in the mesh of FEM can lead to an underestimation of NuL . The second discrepancy shown in the
middle of the evaporator (the inset of Fig. A2(a)) attributes to the assumption of boundary layer theory. Since boundary separation occurs at the
region II (Fig. 2) which is not considered by the boundary layer theory, it overestimates the local HTC at the center. Because of these two sources of
discrepancy, the boundary layer theory can always predict NuL to be higher than FEM (Fig. 4(a)). When V0 increases to 0.02m/s and 0.08m/s,
although the local HTC predicted by the boundary layer theory still agrees with that of the FEM well (Fig. A2(b) and (c)), a larger discrepancy was
observed at the leading edge region due to both the numerical resolution and the boundary separation (the insets of Fig. A2(b) and (c)). However, the
discrepancy at the center becomes very small (the insets of Figs. A2(b) and (c)) because the boundary layer is very thick at large ReV0

(Figs. 5(b) and
6). Therefore, compared to the FEM, the boundary layer theory provides a relatively conservative prediction for the natural convection suppression
effect.
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Fig. A2. Local HTC hx calculated by the boundary layer theory (blue line) and FEM simulation (red open circle) for (a) V0= 0 m/s (ReV0
= 0), (b) V0= 0.02 m/s

(ReV0
~60) and (c) V0= 0.08 m/s (ReV0

~240). The inset shows a zoom-in view of the HTC near the leading edge. The orange shaded area indicates where the
dominant heat transfer occurs (x=0mm indicates the leading edge). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Nomenclature

D mass diffusivity (m2/s)
T∞ far field temperature (K)
g gravity constant (m/s2)
ΔT wall superheat (K)
GrL Grashof number
u flow velocity at x-direction (m/s)
hx local heat transfer coefficient (W/(m2∙K))
U bulk flow velocity at x-direction (m/s)
h average heat transfer coefficient (W/(m2∙K))
v flow velocity at y-direction (m/s)
j vapor mass flux (kg/(m2∙s))
V0 Stefan flow velocity (m/s)
k thermal conductivity (W/(m∙K))
Vc Characteristic vertical flow velocity (m/s)
L evaporator half length (m)
x x coordinate (m)
Mv water molecular weight (kg/mol)
x∗ dimensionless x coordinate
NuL average Nusselt number
y y coordinate (m)
p pressure (Pa)
y∗ dimensionless y coordinate
p∞ far field pressure (Pa)

Greek letters

pv vapor pressure (Pa)
α thermal diffusivity (m2/s)
pv, ∞ vapor pressure at far field (Pa)
β coefficient of thermal expansion (1/K)
pv, s vapor pressure on the substrate (Pa)
δ boundary layer thickness (m)
Pr Prandtl number
δ∗ dimensionless boundary layer thickness
R0 specific gas constant (J/(kg∙K))
δc effective diffusive boundary layer thickness
RaL Rayleigh number
ε emissivity
ReV0

Stefan flow Reynolds number
μ dynamic viscosity (Pa∙s)
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T temperature (K)
ν kinematic viscosity (m2/s)
Tf film temperature (K)
ρ gas density (kg/m3)
Ts substrate temperature (K)
ρ∞ far field gas density (kg/m3)
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