
MIT Open Access Articles

A compiler for 3D machine knitting

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: 10.1145/2897824.2925940

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/134995

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/134995
http://creativecommons.org/licenses/by-nc-sa/4.0/

A Compiler for 3D Machine Knitting

James McCann1 Lea Albaugh1 Vidya Narayanan1 April Grow1,2

Wojciech Matusik3 Jen Mankoff1,4 Jessica Hodgins1

1Disney Research 2UC Santa Cruz 3Massacusetts Institute of Technology 4Carnegie Mellon University

Figure 1: Our compiler processes high-level primitives into low-level instructions for production on industrial knitting machines.

Abstract

Industrial knitting machines can produce finely detailed, seamless,
3D surfaces quickly and without human intervention. However, the
tools used to program them require detailed manipulation and un-
derstanding of low-level knitting operations. We present a compiler
that can automatically turn assemblies of high-level shape prim-
itives (tubes, sheets) into low-level machine instructions. These
high-level shape primitives allow knit objects to be scheduled,
scaled, and otherwise shaped in ways that require thousands of ed-
its to low-level instructions. At the core of our compiler is a heuris-
tic transfer planning algorithm for knit cycles, which we prove is
both sound and complete. This algorithm enables the translation
of high-level shaping and scheduling operations into needle-level
operations. We show a wide range of examples produced with our
compiler and demonstrate a basic visual design interface that uses
our compiler as a backend.

Keywords: knitting, fabrication, transfer planning, knitting ma-
chine

Concepts: •Computing methodologies→ Planning and schedul-
ing; Graphics systems and interfaces; •Applied computing →
Computer-aided manufacturing; •Software and its engineering
→ Compilers;

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper,, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07

1 Introduction

One of the long-standing goals of computer graphics research has
been to help people express themselves, and one of the ways we
do this is by building tools and APIs that allow people to easily
interact with output devices that they would otherwise have trou-
ble controlling. OpenGL and Postscript help people control display
hardware, CAD tools help folks program machine shops, and, re-
cently, a myriad of tools have sprung up to help users control 3D
printers.

Successful tools and APIs are built around high-level primitives that
map well both to the hardware being controlled and to the tasks the
user is likely to wish the hardware to perform. In this paper we
introduce such primitives for the domain of machine knitting and
show how they can be compiled to low-level machine operations.

Machine knitting is a mature fabrication technology, used to create
items ranging from gardening gloves to fashionable sweaters. Knit-
ting machines are programmable, general-purpose devices; how-
ever, they are used almost exclusively to manufacture a fixed palette
of pre-programmed objects, occasionally with some customization
of color patterns. No knit shop today approaches the flexibility
common to CNC-on-demand machine shop operations.

This lack of flexibility is a consequence of current knit design tools.
The industry standard tools for machine knitting [Shima Seiki 2011;
Stoll 2011] provide high-level templates for a few standard objects,
but otherwise leave the user to manipulate needle-level control in-
structions in a way that fails to divorce machine-specific details
from actual fabrication operations. This situation is similar to re-
quiring all CNC machine users to write toolpath G-code by hand,
or all computer programmers to work in assembly.

In an attempt to change this landscape, we have developed a com-
piler that allows knitted objects to be specified in terms of high-level

DOI: http://dx.doi.org/10.1145/2897824.2925940

http://dx.doi.org/10.1145/2897824.2925940

shape primitives, rather than detailed stitch descriptions. These
primitives are knittable by construction – that is, they can be auto-
matically transformed into stitch level instructions. With our prim-
itives, users can create and edit designs at a high level, and easily
change knitting order, needle location, shape, and scale.

For example, when knitting a design in a new yarn or on a new
machine, a user may wish to scale it up or down to account for the
different stitch size and aspect ratio. From an aesthetic standpoint,
high-level operations decrease iteration time – adjusting the bend
angle of a stuffed toy’s arm is much easier when the bend is speci-
fied as a single primitive than when it is specified as a collection of
hundreds of individual stitch commands. Also, because our input
format provides scheduling (knitting order and location) as well as
shaping control, users can see which needles on the machine will be
in use at a given time and adjust their design to avoid any conflicts;
without changing its shape.

The main contributions of our work are

• A knitting design representation consisting of generalized
tubes and sheets, with gluing instructions at their boundaries,
which allows high-level schedule and structure manipulation.

• A knitting assembly language that formalizes the low-level
operations used by industrial knitting machines to construct
knitted objects.

• A compiler that can transform the former representation into
the latter, at whose core is a complete transfer-planning
heuristic for cycles (with associated correctness proof).

2 Related Work

Our work sets out to offer knit designers and programmers a better
choice of primitives to use for controlling their output device. We
take inspiration from work in rendering, where the primitives have
been tailored to output modality (e.g., Reyes [Cook et al. 1987] for
offline rendering and OpenGL for real-time rendering), and from
ongoing work in 3D printing, where the community is actively de-
veloping and refining primitives (e.g., [Vidimče et al. 2013]). Our
knitting primitives have orthogonal scheduling and shaping degrees
of freedom, inspired by the Halide system [Ragan-Kelley et al.
2012], in which algorithms are treated as having separate defini-
tions and schedules.

Most prior work surrounding textile design assumes a “cut-and-
sew” approach, where garments are made from flat sheets of fab-
ric, cut by humans or machines, and sewn by humans. This area
is well-covered [Liu et al. 2010], with commercial systems widely
available [CLO Virtual Fashion Inc. 2010], and active research sup-
porting sketched input [Mori and Igarashi 2007], situated interac-
tion [Wibowo et al. 2012], and advanced simulation during interac-
tion [Umetani et al. 2011].

One of the great advantages of knit fabric, however, is that it need
not be locally flat. This flexibility presents new specification chal-
lenges, which are not well-addressed by current tools. Knitting
design systems from machine manufacturers [Stoll 2011; Shima
Seiki 2011] provide detailed machine-level control languages (SIN-
TRAL and KnitPaint, respectively) and some macro features that
can be used to ease repetitive tasks (e.g., in hand-creating a li-
brary of shaped parts [Underwood 2009]), but little in the way of
general high-level primitives. Third-party commercial design tools
are limited to texture and color design on flat panels [Soft Byte
Ltd. 1999]. In the research sphere, Knitty [Igarashi 2008] provides
sketch-based design with tube primitives for hand knitting; it would
be interesting, though nontrival, given the limitations of knitting

machines, to retarget that system’s output to our machine-knitting
backend.

Recent advances have made knit simulation both tractable and pre-
dictive [Kaldor et al. 2008; Kaldor et al. 2010; Cirio et al. 2014;
Cirio et al. 2015]. However, setting up initial yarn paths can be
tedious. One option is to use visually reasonable (but not feasibly
knittable) paths [Yuksel et al. 2012]. Our knitting assembly lan-
guage provides another option: one could create an interpreter to
run the language and output virtual yarn paths for a simulation sys-
tem. Such an interpreter would be able to create simulation descrip-
tions for literally anything a knitting machine could make, using the
same instructions as the machine.

3 An Abstract Knitting Machine

Our compiler targets a knitting assembly language which captures
the capabilities common to industrial knitting machines, while ab-
stracting mechanical details that may change between them. We
define this language in terms of the actions of an abstract knitting
machine.

Knitting machines build their output by manipulating loops of yarn.
Consider these loops of yarn:

unravels stable

The orange loop on the left is not stable – pulling on either end of it
would unravel it into a straight piece of yarn. However, the orange
loop on the right is stable because it passes through and around
other loops.

knit woven

This “loops through loops” architecture is the basis of knit items.
Notice how different the structure is from typical woven items,
which use a “yarn over/under yarn” architecture.

3.1 Machine

Knitting machines hold loops on hooks called needles. These nee-
dles are arranged into rows called beds. Here we show an isometric
and top view of a bed of five needles:

V-bed knitting machines have two beds whose needles face each-
other. These are referred to as the back bed and front bed. Having
two beds allows the machine to hold tubes as well as sheets.

Yarn enters the machine from a cone, passing through a tensioning
device and a yarn carrier on its way into the knit object. Yarn car-
riers move laterally between the beds, positioning new yarn where
it is needed. There is one yarn carrier for every yarn in use on the
machine. In our diagrams, we draw yarn carriers as small triangles
between the beds.

Machines create knit objects by manipulating the loops held on
their needles. Needles can perform four basic operations: tuck adds
a loop to those the needle is holding; knit pulls a loop through all
the loops the needle is holding while releasing them; transfer hands
all the loops a needle holds to another needle; and split is a com-
bination of knit and transfer that passes a new loop through all the
loops a needle is holding while moving them to another needle.

3.2 Knitting Assembly Language

We formalize the above operations as a knitting assembly language,
which our compiler targets. A backend then further translates these
instructions into a machine-specific format.

We begin by defining identifiers for each needle:

∀i ∈ Z :

{
bi : back bed needle
fi: front bed needle (1)

Needle indices run left-to-right along a bed, and are aligned front-
to-back. So f−2 is aligned with b−2, which is three needles to the
left of b1. Although needles often hold only one loop, they can hold
several at once; thus, when talking about needle operations, we will
write ni = [l1, . . . , lt] to indicate that loops l1, . . . , lt are held by
needle ni, with lt being closest to the tip of the needle. We will also
occasionally (for notational convenience) conflate needle locations
with their integer indices, writing such phrases as f2 − b0 = 2.

We endow our abstract machine with a set of active yarns Y , which
starts empty, and limit it with a maximum racking (lateral bed off-
set) value of R.

We abstract the motion of the yarn carrier by introducing a primitive
to create loops: Let loop(y, d, n) where y ∈ Y, d ∈ {+,−}, n ∈
{fi, bi} return a new loop created by passing yarn y in direction d
over needle n.

Here we illustrate and define each of the four operations for a stan-
dard knitting machine:

Tuck. The tuck operation adds a new loop of yarn ln+1 in front
of the loops [l0...ln] already held on a needle. Mechanically, the
needle reaches forward, the yarn carrier moves to the right over
the needle, and the needle retracts, now holding a new loop. We
illustrate this in isometric and top views:

Tucking a needle already holding a loop stacks a new loop in front
of the old loop:

The yarn carrier moved to the right over the needle in the example
above, so this was a “tuck right.” Tucks can be formed to the left or
right, regardless of where the yarn was previously used. Here, the
yarn was last used to the right of the needle, but the carrier can still
be moved to the left, and then the needle tucked right:

Mathematically, we define tuck as follows:

tuck y, d, n
Given: y ∈ Y , d ∈ {+,−}, n ∈ {fi} ∪ {bi}
n← cat(n, [loop(y, d, n)])

Where “cat” is a function that concatenates lists.

Knit. Knitting a needle pulls a new loop of yarn through the all of
the loops currently held by that needle. Mechanically, the needle
reaches forward, the yarn carrier moves over it, and the needle re-
tracts, using a secondary mechanical action to lift the loops that it
was holding up and over the new loop and off of its tip.

Knit, like tuck, has a direction. The above example is a “knit right”
because the yarn carrier moves to the right when supplying the yarn
for the new loop.

knit y, d, n
Given: y ∈ Y , d ∈ {+,−}, n ∈ {fi} ∪ {bi}, n 6= []

l← loop(y, d, n)
pull(l, reverse(n))
n← [l]

Where “pull” means to pull a loop through a list of other loops; and
“reverse” reverses the order of a list.

Transfer. The transfer operation moves all the loops on a needle to
the needle across from it. That is, it moves loops from the front bed

to the back bed or visa versa.

xfer n, n′

Given: (n, n′) ∈ {(fi, bj), (bi, fj)}, |i− j| ≤ R
n′ ← cat(n′, reverse(n))
n← []

This restriction of only moving between aligned needles may seem
severe, but machines can rack (laterally move) the beds to change
which needles are aligned. By convention, we take racking values
as the offset of the back bed:

rack = 0 rack = −1

Split. The split operation combines knit and transfer into one oper-
ation. Split is useful because it allows the machine to knit through
a loop without losing the ability to access the loop in the future:

Like knit, split has a direction. The above is a split right.

split y, d, n, n′

Given: y ∈ Y , d ∈ {+,−}, n 6= [],
(n, n′) ∈ {(fi, bj), (bi, fj)}, |i− j| ≤ R,
l← loop(y, d, n)
pull(l, reverse(n))
n′ ← cat(n′, reverse(n))
n← [l]

Finally, we introduce three utility instructions that are important for
yarn management and finishing:

Drop. The instruction drop causes a needle to drop the loops it is
carrying. Mechanically, this is knit with no yarn:

drop n

Given: n ∈ fi, bi, fh
i , b

h
i , n 6= []

n← []

In, Out. The instructions in and out add and remove active yarns.
When a yarn is removed, the connection between it and its last stitch
is broken.

in y

Given: y 6∈ Y , y is a yarn
Y ← Y ∪ {y}

out y

Given: y ∈ Y
Y ← Y \ {y}

3.3 A Slight Extension

For convenience, we describe our algorithms in terms of a more
advanced form of v-bed knitting machine called an x-bed machine.
This machine adds an extra mechanical element (called a holding
hook) above every needle in the front and back beds. These holding
hooks can hold loops, but cannot knit or tuck. If any loops are held
on the holding hook associated with a needle, that needle cannot be
used to perform an operation, as the held loops will block it.

For an x-bed machine, we need to add two new types of hooks to
the array of needles:

∀i ∈ Z :

bi : back needle
bhi : back holding hook
fh
i : front holding hook
fi : front needle

(2)

Finally, because the use of the holding hook associated with a nee-
dle limits the use of that needle, we need to make it a condition of
any knit, tuck, transfer, or split operation that all of the needles in-
volved are clear. We say a needle n is clear if it is a holding hook
or if its associated holding hook is empty:

clear(n) ≡ ∃i :
n = fh

i ∨ n = bhi
∨ (n = fi ∧ fh

i = [])
∨ (n = bi ∧ bhi = [])

(3)

3.4 What Knitting Machines Can Make

We now show how the operations described in the previous sec-
tion can be used to make and deform 3D shapes. These techniques
are the core of the generalized shape primitives supported by our
compiler.

decrease tuck increase split increase

Figure 2: Increase-decrease shaping can change primitive width.

Figure 3: Partially-knit rows can be used to bend shapes, as in the
heel of this sock, and create bulges, as in this whimsical hat.

input dicing and linking interleavingboundary resolution instruction generation

knit y1 at f5; knit y1 at f4...
transfer f5 to b4; transfer b4 to f6...
knit y1 at f5; knit y1 at f4...
transfer f3 to b3; transfer b3 to f6...

Figure 4: Our compiler pipeline. Our compiler first dices each of its input primitives into courses, assigns short rows to be knit between
their adjacent courses, and decides how to link stitches in adjacent courses together. Next, during the boundary resolution stage, it decides
how to start and end each primitive. Finally, it interleaves the knitting and linking steps required for all the primitives into a final ordering,
and generates knitting assembly language instructions for them.

original height width short rows skew spin
shape schedule

Figure 5: The degrees of freedom of a tube in our input format. Schedule parameters do not change the final shape.

Sheets can be created by knitting back and forth over a nee-
dle range; e.g., knitting right on b−5, . . . , b5, knitting left on
b5, . . . , b−5, and repeating five times will create a sheet 11 stitches
wide and 10 courses (rows of knitting) tall. Tubes can be created
by knitting in a consistent direction around a circle of needles; e.g.,
knitting right on b1, . . . , b10, knitting left on f10, . . . , f1, and re-
peating 12 times will create a tube 20 stitches in circumference and
12 courses tall. These shapes can be further modified with shaping
operations.

Increases and decreases (Figure 2) can be used to adjust the num-
ber of stitches in a course, allowing tubes (sheets) of continuously
varying circumference (width). The width of a course of stitches
can be decreased by moving a stitch onto the same needle as its
neighbor, and knitting both of them with a single stitch in the next
row. Conversely, the width of a course can be increased by moving
stitches apart and filling this gap with a tuck in the next course. A
visually more pleasing increase can be performed by using a split
instead of a tuck.

Shapes can also be modified by knitting partial courses, called short
rows. These short rows have the effect of pushing their adjacent
courses apart, creating a bend or bulge in the fabric (Figure 3). An
example is the traditional shaping of a sock, where extra rows are
added to create the rounded part of the heel.

4 Compiler Pipeline

Our compiler transforms high-level primitives into knitting assem-
bly language commands through a series of stages illustrated in Fig-
ure 4. Given a group of input primitives to knit, our compiler first
dices each primitive into courses (assigning short rows to be knit at
the same time as their adjacent course), and then determines how
they should be linked using stretch-limited dynamic time-warping.
Next, during boundary resolution, the compiler selects operations to
perform at the start and end of each primitive, based on definitions
specified in the input and the needle occupancy of the diced prim-
itives. Finally, linking and knitting steps are interleaved based on
their construction time, with stash/unstash blocks added as needed
to ensure that no yarn is stressed during linking, and knitting as-
sembly language instructions are emitted.

4.1 Input

Most objects created on a knitting machine, such as gloves,
sweaters, stuffed toys, and socks, are assemblies of tubes and
sheets, with varying radii and bends. Motivated by this observation,
we designed our compiler to take as input a list of tube and sheet
primitives, positioned according to their construction time and loca-
tion on the knitting machine bed (e.g., Figure 1 and 3). This layout
makes it easy to ensure that no two primitives require the same nee-

open closed both both (closed) back back (closed) back-to-front
binding gluing

Figure 6: In our compiler’s input, each primitive has a start and end boundary definition that indicates how to stabilize loops. These can
result in primitives that are open, closed, or attached together in various ways. Not shown are front, front (closed), and front-to-back gluing,
which are defined analogously to their back variants.

dles at the same time, because this would result in an overlap in the
input.

Primitives have both shaping parameters, which influence their final
appearance, and scheduling parameters, which change which nee-
dles are used to construct them (Figure 5). For tubes, the shaping
parameters are: height, the number of courses; circumference, the
number of stitches in each course; and short rows, partial courses
that will cause the tube to bend. The scheduling parameters map
each course to the needle bed: time indicates when the first course
will be knit; skew gives the horizontal position of each course; and
spin rotates courses on the bed. In our compiler’s input file format,
all parameters except for height and time are linearly interpolated
along the height of the tube.

Sheets are specified relative to a “supporting tube” and have one
additional shape parameter: the percent of the supporting tube’s
circumference occupied by the sheet. For example, a sheet at 100%
is a tube with a slit in it (useful as a thumb slit when making a hand
warmer, Figure 14).

All dimensions are specified in (possibly fractional) numbers of
stitches, that, given a yarn, can be converted to real-world lengths.
Thus, porting a design from one yarn to another requires only that
one multiply all dimensions by a constant factor determined by the
yarns’ relative stitch size.

4.2 Dicing

After reading input primitives, our compiler breaks them into hori-
zontal slices (courses). Computing these needle lists from the sup-
plied input parameters is straightforward rasterization. Each course
has an abstract “knitting time” value, a list (in counterclockwise or-
der) of needles where loops will be formed, and a parameter value
for every needle (running from 0 to 1 counterclockwise around the
cycle) that will be used in linking. Short rows are treated as part of
their closest course.

4.3 Linking

Once a primitive has been transformed into courses, links between
adjacent courses are made. These links will be used to generate
transfer instructions later. Linking is accomplished by selecting an
optimal combination of 1-1, 2-1 (decrease), and 1-2 (increase) links
between stitches in adjacent courses, in a process akin to stretch-
limited dynamic time warping. The objective function to be min-
imized is the sum of absolute differences between the parameter
value at each stitch and the parameter value at its assigned loca-
tion, plus a large additional penalty for every increase or decrease.
This additional penalty prevents the optimization from arbitrarily
introducing paired increases and decreases.

Using a parameter value, rather than simply linking stitches that
are closest on the bed, is the key to separating scheduling (needle
location) and shape (stitch connectivity). Without using parameter

Figure 7: Primitive scheduling (particularly, spin – the orienta-
tion on the bed) is important at boundaries. This tube has closed
boundaries at the top and bottom, but has had its “spin” scheduling
parameter adjusted at the top boundary.

values to accomplish linking, it would be impossible to spin or skew
primitives on the bed without also distorting them.

4.4 Boundary Resolution

Once all the primitives have been diced and linked, their first and
last courses are compared in a stage we call boundary resolution. As
we have belabored, knit items are created by pulling loops through
loops. Any loop not pulled through another loop could unravel,
causing the final item to fall apart. Thus the starting and ending
loops of each primitive must be made stable by being pulled through
or pulling through another loop. This stabilization can be accom-
plished by attaching the loops to loops from another primitive, re-
sulting in the primitives being attached (“glued”); alternatively, lo-
cal techniques can be used to stably create (“cast on”) or stabilize
then drop (“bind off”) loops.

Each input primitive includes a boundary definition that describes
which of these actions to take at its start and end. Our compiler
supports various binding and gluing styles, illustrated in Figure 6.
Boundaries are the one place in the primitive definition where the
scheduling parameters, specifically, spin, can influence structure, as
shown in Figure 7.

4.5 Interleaving and Instruction Generation

Once the boundaries have been marked, courses and links between
courses are sorted based on their knitting time. The knitting time for
links is set to halfway between their adjacent courses. The compiler
walks through this sorted list, tracking which needles are currently
in use and emitting instructions.

For links, the compiler calls on our transfer planning algorithm
(Section 5) to generate a series of transfer instructions to enact the
link. If the generated plan involves any large racking, it may stretch
or break other primitives currently held on the bed (Figure 8). To
avoid this, the compiler will prefix the transfer instructions from the
link with what we call a stash operation, which moves every primi-
tive currently attached to two beds onto one bed, using the holding
hooks.

Figure 8: As part of moving a target cycle (left), our transfer plan-
ning algorithm may generate rackings that stress other primitives
(center). In this case, our compiler will “stash” the other primitives
on one bed by using the holding hooks (right).

For courses, the compiler first emits transfer instructions to unstash
any required stitches that were previously stored on holding hooks,
and then walks through the course, emitting a knit instruction for
every needle in the course. In the case of needles that do not cur-
rently contain a loop because of the previous link, our compiler
follows the common knitting practice of using a split or tuck in-
struction to fill the gap. If the course is a boundary, instructions are
emitted to enact the requested binding or glue operations.

4.6 Backend

We have developed a translator from our knit assembly language
to the ‘.dat’ format used by Shima Seiki’s knit specification sys-
tem, KnitPaint. We use KnitPaint to translate these files into Shima
Seiki’s proprietary machine control format.

Though our compiler assumes an x-bed machine, we only have ac-
cess to a v-bed machine (no holding hooks); thus, as part of this
translation process, our compiler transforms x-bed instructions into
half-hauge v-bed instructions, where alternate needles are used to
emulate holding hooks:

Our translator also handles low-level tasks such as inferring yarn
carrier motion from knitting instructions, unifying instructions into
“passes”, generating machine-specific boilerplate for yarn insertion
and removal, setting racking flags appropriately, setting yarn ten-
sions, and performing appropriate cast-on and bind-off stitches.

Given that knitting assembly language operations all correspond to
generally-available machine capabilities, there is no technical rea-
son that a similar program could not be developed to output, e.g.,
Stoll’s SINTRAL machine control language.

5 Transfer Planning

In order to support general links between courses, our compiler
needs a way of generating transfer instructions to move collections
of stitches around on the needle beds. During knitting, our primi-
tives occupy needles arranged in cycles (counterclockwise loops),
constrained to obey a given slack (distance between stitches).

Definition 1 (Cycle). Define a cycle to be a collection of needles
c = [c1, . . . , cn] that, when connected in index order, form a non-
self-intersecting loop on the needle bed. When dealing with cycles,
we will use cyclic indexing (so we define ci+xn ≡ ci for integers
x).

Figure 9: Cycles and slack. When drawing a cycle, we typeset
slack as labels on edges. Both cycles above have the same slack,
but the one on the left respects that slack, while the one on the right
places some stitches too far apart (red edges).

In our case, cycles are commonly the ends of tubes that have been
previously knit. It is important not to excessively stretch the yarn
between adjacent stitches in the cycle, so we introduce the notion
of slack (Figure 9):

Definition 2 (Slack). Define slack to be a list of non-negative in-
tegers s = [s1, . . . , sn] that indicates the greatest allowed length
between subsequent locations in a (cyclic) list of needles. We say
a list of needles a respects slack s if ∀i : |ai+1 − ai| ≤ si (notice
that, by cyclic indexing convention, sn is the slack between the first
and last needle).

With these definitions in hand, we may finally define the transfer
planning problem:

Definition 3. An instance of the transfer planning problem con-
sists of a slack s, counterclockwise cycles of needles n (the source)
and n′ (the target), a maximum racking R ≥ 1, and a free range
[min,max] such that |s| = |n| = |n′|, both n and n′ respect slack
s, no needles are split (i.e. ni = nj =⇒ n′i = n′j), slack is
at least one between all needles, and all needles in the source and
target are contained in [min+ 1,max− 1].

A list of transfers is a solution to this instance if it transforms n to
n′, requires no racking greater than R, and all intermediate poses
lie in free range [min,max] and respect slack s.

Our compiler is based on the first – to our knowledge – general
solution to this problem. Our solution is heuristic but complete;
that is, it can solve all instances of the problem, but it may use
more transfers than necessary. We define the algorithm here and
sketch a proof of completeness, but a full treatment is left to the
supplementary material.

The outline of our algorithm is as follows: we define a penalty
function that takes positive integer values for all bed configurations
except the target configuration n′ (at which it is zero) along with
a type of transformation (collapse/expand); our transfer planning
algorithm will compute two locally optimal collapse/expand trans-
formations at each step and choose whichever decreases the penalty
the most.

In the supplementary material, we provide a proof that for any coun-
terclockwise cycle that respects s, there exists collapse and expand
phases that could be chosen by our algorithm that will reduce its as-
sociated penalty function. Given that the penalty function is integer-
valued, and that our algorithm always choose a collapse and expand
with maximum penalty reduction, this argument suffices to prove
completeness.

5.1 The Roll-Goal Penalty

For transfer planning, we need a penalty function that measures
the distance from the current configuration to n, does not have any
local minima, and can be computed as a sum over penalties at each

Figure 10: Visualizing the penalty p(n, 2, n′) = 19 computed for
stitch n with goal n′ and roll number +2. The penalty is computed
by walking around free needle range in the direction indicated by
the roll number, charging 1 for every needle traversed and 2 for
every change of bed.

i 1 2 3 4 5 6 7
δi 0 0 1 0 0 1 0
δ′i 0 0 0 1 0 0 1
wi 1 1 1 0 1 1 0
ri -1 -1 -1 0 1 1 0

Figure 11: Winding (wi) and roll (ri) numbers are determined by
where cycles n and n′ cross between the front and back bed.

Figure 12: During a collapse-expand transform, back-bed stitches
are collapsed to the front bed, all stitches are moved to the back
bed, then the cycle is expanded by moving some stitches from the
back bed to the front bed.

needle. (This last condition makes computing the locally optimal
behavior with dynamic programming feasible.)

We decided to use a penalty involving the distance to the goal nee-
dle measured around the bed. That is, for each stitch ni in the cycle,
we assign a roll number ri indicating the number of times that stitch
should switch beds to the left (if ri < 0) or right (if ri > 0) of the
other stitches.

Given an assignment of roll numbers, it is straightforward to define
a penalty

penalty(n, r,n′) ≡
∑
i

p(ni, ri, n
′
i) (4)

where

p(n, r, n′) ≡ |n
′ − n| if r = 0

2 + (n−min) + p(min,−(r + 1), n′) if r < 0
2 + (max− n) + p(max,−(r − 1), n′) if r > 0

(5)

We illustrate the individual-stitch penalty p, which measures dis-
tance “around” the free needle range, in Figure 10.

It remains to assign roll numbers. We will define these in terms of
winding numbers wi, whose values will indicate how many times a
stitch should be rolled counterclockwise.

Defining δi to be the number of times the cycle switches beds in
counterclockwise order between ni and ni+1, and δ′i analogously
for n′, it must be the case that

wi − δi + δ′i = wi+1 (6)

This equation determines wi, up to global addition of an even num-
ber. A proof is included in the supplemental material.

The conversion between roll and winding numbers is straightfor-
ward:

ri =

{
−wi if ni is on the back bed
wi if ni is on the front bed (7)

An illustration of winding number assignment is shown in Fig-
ure 11.

5.2 Collapse-Expand

Our transfer planning algorithm uses a sequence of collapse-expand
transformations. Each collapse-expand transformation (Figure 12)
collapses the cycle onto one bed, moves it to the other bed, and
expands it back to both beds, with each motion providing an oppor-
tunity to reposition stitches in order to reduce the overall penalty.

In the following description and accompanying figures, we show a
collapse-expand from the back bed to the front bed; however, it is
equally reasonable to switch the roles of the beds, and our overall
planning algorithm considers both options.

The collapse phase will, at each step, either transfer the leftmost or
rightmost stitch remaining on the back bed to the hooks or needles
of the front bed. This ordering ensures that there are at most two
places where the slack between adjacent stitches must be respected.

After the collapse phase, the cycle is moved from the front bed to
the back bed to allow the expand phase to access the front stitches.
The algorithm will shift the whole cycle by a constant offset if doing
so decreases the penalty function while not moving any stitches
outside the free needle range.

The expand phase moves the stitches on the holding hooks of the
back bed to the front bed. Expand phases used by our algorithm
can start with any stitch, but proceed by transferring only stitches
adjacent to those already transferred. This constraint again ensures
that there are at most two places that must be checked for valid
slack.

An optimal collapse or expand for a given state may be computed
with a memoized recursive function in O(|n|2R2) time. This com-
plexity bound arises from the fact that the actions available during
a collapse or expand depend only on the indices of the next-to-be-
transferred stitches and the locations of the previous stitches.

Our planner proceeds by repeatedly choosing an optimal collapse
followed by an optimal expand; one such pair is shown in Figure 13.
It is worth noting that this is not the same as an optimal collapse-
expand pair; however, choosing separately avoids the prohibitively
high complexity of a full search, and it is sufficient for correctness
(see supplemental material).

5.3 Final Algorithm

Our final transfer planning algorithm (Algorithm 1) first assigns roll
values to every stitch and then iteratively makes a greedy choice of
collapsing/expanding to the back or front bed.

collapse shift

expand

Figure 13: A transfer plan generated by our algorithm. Solid colored circles indicate goals. First, top, the collapse phase moves stitches
to the needles and hooks of the back bed. Next, top right, the collapsed cycle is moved to the front bed. Finally, bottom, the expand phase
moves stitches from the front bed back to the back bed.

Algorithm 1 Transfer planning outer loop

1: procedure TRANSFERPLAN(n,n′, s)
2: c← n
3: r← AssignRoll(n,n′)
4: T ← []
5: while penalty(c, r,n) > 0 do
6: (Tf , c

′
f , r
′
f)← CollapseExpand(Front, c, r,n′, s)

7: (Tb, c
′
b, r
′
b)← CollapseExpand(Back, c, r,n′, s)

8: if penalty(c′f , r′f ,n′) ≤ penalty(c′b, r
′
b,n
′) then

9: (c, r)← (c′f , r
′
f)

10: T ← cat(T, Tf)
11: else
12: (c, r)← (c′b, r

′
b)

13: T ← cat(T, Tb)
14: end if
15: end while
16: return T
17: end procedure

6 Results

All knit objects in the paper were created with our compiler and knit
on a Shima Seiki SWG091N2 15-gauge v-bed knitting machine.
This is a two-bed machine with 15 needles per inch and a 91cm
long needle bed. It has a maximum racking value of eight needles
and includes ten yarn carriers. We knit our designs in half-gauge
(Section 4.6), as this machine is not an x-bed machine. Knitting at
half gauge results in a somewhat loose knit, because the 15-gauge
needles cannot hold yarns thick enough to produce a dense 7-gauge
knit.

The machine is able to use a wide variety of yarns, though for
this paper our examples were knit in acrylic (“Supersheen 1-ply”
from Yeoman Yarns) and merino wool (“Polo 1-ply” from Yeoman
Yarns). Note that Yeoman uses “ply” in the UK sense: as a size des-
ignation that does not reflect the number of component yarns plied
together to form these yarns. On our machine at half gauge, these
yarns both produce stitches that are approximately 3.04mm wide by
1.58mm tall; values we obtained by knitting a tube, stuffing it, and
computing the circumference and height of a known stitch-count
portion.

Compile time is generally trivial compared to knitting time, with the
most expensive steps of compilation being the linking (time warp-

Figure 14: Two hand-warmers designed in our system. One uses
a sheet to create a slit for the thumb, while the other uses another
tube for the thumb then decreases the width of the main tube to fit
the wrist.

ing) and transfer planning stages. This observation is unsurprising;
both are worst-case cubic in the number of stitches.

We used our system to create clothing objects for plush toys (Fig-
ure 1) and people (Figure 14). Having primitives with easy-to-
adjust size values is important in both cases. Our sock example
(Figure 3) is far too small to be worn, but does demonstrate how
gluing together tubes knit with different yarns can make colorful
stripes.

We also created a number of knit toys. Our snake toy (Figure 15)
shows how easy it is to build higher level primitives – its body is the
result of writing a script to translate a helix into a tube with short
rows. The Hilbert curve (Figure 17) was generated by a similar
script. Our collection of robots (Figure 16) demonstrates the ben-
efit of high-level primitives for rapid iteration. Finally, the teapot
example (Figure 18) makes heavy use of skew operations to sched-
ule its spout and handle; indeed, some of the stitch motions in this
example are so long that they do not consistently knit; in the version
we show, several dropped stitches were manually corrected.

6.1 Graphical Editing

We developed a graphical interface to edit our compiler’s input for-
mat. The user interface (Figure 19) consists of linked preview and
bed views. The preview view shows a rough approximation of the
final 3D shape of the model, computed in an exceedingly ad-hoc
way using as-rigid-as-possible alignment of tube primitives. The

Figure 15: The helical shape of this snake is the result of many
sets of short rows.

Figure 16: These plush robots are all variations on a design, cre-
ated rapidly by editing high-level primitives to be smaller, with a
chunkier torso and claws, and in a seated posture.

Figure 17: Two views of a 3D Hilbert curve of order two, gener-
ated by using a small script to write an input file for our compiler.

Figure 18: This teapot makes extensive use of the “skew” schedul-
ing primitive.

Figure 19: The 3D preview (left) and 2D bed view (right) of our
interface. The displayed object is the left hand-warmer from Fig-
ure 14.

bed view shows the input to the compiler, and provides basic vector-
graphics-style editing capabilities for primitive positioning and siz-
ing, along with some special tools to handle the spin and skew de-
grees of freedom, adjust the width of sheets, and set boundary def-
initions. As a convenience, the interface also loads a description of
the color information of our yarns, and can use this to set the color
of the shape primitives.

7 Discussion

In this paper, we introduced a compiler which can translate high-
level shape primitives into low-level knitting instructions. The core
of our complier is a transfer planning algorithm for knit cycles,
which is provably correct on all inputs, though it may not produce
time-optimal plans. In addition, we presented a formal, general
treatment of the basic operations of a knitting machine; this “knit-
ting assembly language” could be further refined into a general file
format for describing knitting – both for knitting machines, and per-
haps even for rendering and simulation algorithms.

The focus of our compiler is to make it easier to create knit struc-
tures; however, many knit objects also use various combinations of
stitches to create interesting surface textures. In the future, we plan
to extend our compiler to support surface texturing, by adding local
texturing programs akin to fragment shaders. These shaders will be
constrained to not change global structure, a process which is com-
plicated by the prevalence in knitting of mid-scale structures (e.g.,
“cables”) which use the local movement of small blocks of stitches
to create texture.

We believe that the knit fabrication community can benefit from a
uniform control language akin to our knitting assembly language,
and it is part of our ongoing research to port the language to any
knitting machines that we are able to access. Such a language also
allows for uniform structural debugging tools and error checking
(e.g., “you stretched that loop out a long way; it might break”). It
would also be interesting to create a knitting assembly language
backend that could set up yarns for simulation (e.g., by creating a
stitch mesh [Yuksel et al. 2012]); this backend would allow physical
and virtual garments to be created using the same code.

Our pipeline presents many opportunities for small refinements:
during dicing, it would be interesting to try more sophisticated ras-
terization techniques (possibly involving “hinting” akin to that used
in font rendering); linking could be user-controlled for interesting
shaping effects; transfer plans could be optimized further, possibly
by using limited lookahead in the collapse-expand planning space;
and, with some reverse engineering work, the backend could write
machine control files directly.

Our transfer planning algorithm cannot work with general (i.e.,
non-cyclic) slack constraints. Indeed, transfer plans do not always
exist in the presence of general yarn constraints – consider a cycle
with an additional edge linking the front and back beds at its cen-
ter; this cycle cannot be rotated 180 degrees even though both the
starting and ending positions are valid. It would be interesting to
attempt to characterize the space of feasible transfer planning algo-
rithms.

Our compiler uses unoptimized implementations of transfer plan-
ning and time-warping, both of which can approach O(s3) for pes-
simal inputs (time-warping runs anO(s2) alignment atO(s) possi-
ble offsets; transfer planning takes O(s2) per step, and may require
O(s) steps to complete a plan). Both of these could likely be sped
up by an order of magnitude by using early-out checks (e.g., the
collapse phase could terminate as soon as it knows it does not have
space to place all remaining stitches; the time warping phase could
not consider paths that cannot possibly align based on the slope con-
straints), and, further, are independent per-course tasks, so could be
distributed across threads relatively easily.

The knitting machine we used for output, like many machines, actu-
ates its needles using a cam system that slides along the beds. This
design means that, in practice, it takes basically the same amount of
time for the machine to operate on any number of needles, as long
as those operations can all be performed during one pass of the cam
system. (In addition, some operations can only be performed when
the pass is being made in a specific direction.) A production-level
system would almost certainly want to carefully track machine state
for the current target machine and attempt to use production time
when breaking ties between otherwise equivalent actions.

Right now, consumer-level knitting machines lack the sophisti-
cated transfer capabilities of industrial machines – indeed, the ba-
sic home knitting machine has not changed in hardware capability
since the 1980s. It might be interesting to come up with optimiza-
tion passes for our compiler that could make it as easy as possible
to construct objects on these severely restricted machines. There
is also a vibrant community developing new technology for these
machines [OpenKnit 2014; Guljajeva and Canet 2012; All Yarns
Are Beautiful 2014], so perhaps more automated home knitting is
only a few Kickstarters away. Until that time, having a common in-
struction format (e.g., our knitting assembly language) could make
it much easier to send knit jobs to a central location for industrial
machine processing.

We believe that 3D machine knitting should join 3D printing in the
pantheon of end-user-accessible additive fabrication, and that get-
ting it there will require new tools, algorithms, and data exchange
formats, of which our compiler, transfer planning algorithm, and
knitting assembly languages are first examples.

References

ALL YARNS ARE BEAUTIFUL, 2014. Ayab - all yarns are beau-
tiful. [Online]. Available from: http://ayab-knitting.com/index
en.html#features.

CIRIO, G., LOPEZ-MORENO, J., MIRAUT, D., AND OTADUY,
M. A. 2014. Yarn-level simulation of woven cloth. ACM Trans.
Graph. 33, 6 (Nov.), 207:1–207:11.

CIRIO, G., LOPEZ-MORENO, J., AND OTADUY, M. A. 2015.
Efficient simulation of knitted cloth using persistent contacts. In
Proceedings of the 14th ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, 55–61.

CLO VIRTUAL FASHION INC., 2010. Marvelous designer.
http://marvelousdesigner.com.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
reyes image rendering architecture. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’87, 95–102.

GULJAJEVA, V., AND CANET, M., 2012. Knitic open hardware
knitting machine. [Online]. Available from: http://www.knitic.
com.

IGARASHI, Y. 2008. Knitty: 3d modeling of knitted animals with
a production assistant interface. In Eurographics 2008 Annex to
the Conference Proceedings.

KALDOR, J. M., JAMES, D. L., AND MARSCHNER, S. 2008.
Simulating knitted cloth at the yarn level. ACM Trans. Graph.
27, 3 (Aug.), 65:1–65:9.

KALDOR, J. M., JAMES, D. L., AND MARSCHNER, S. 2010. Effi-
cient yarn-based cloth with adaptive contact linearization. ACM
Trans. Graph. 29, 4 (July), 105:1–105:10.

LIU, Y.-J., ZHANG, D.-L., AND YUEN, M. M.-F. 2010. A survey
on CAD methods in 3D garment design. Computers in Industry
61, 6, 576–593.

MORI, Y., AND IGARASHI, T. 2007. Plushie: An interactive design
system for plush toys. ACM Trans. Graph. 26, 3 (July).

OPENKNIT, 2014. Openknit: open source digital knitting. [On-
line]. Available from: http://www.openknit.org.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31, 4 (July), 32:1–32:12.

SHIMA SEIKI, 2011. Sds-one apex3. [Online]. Available from:
http://www.shimaseiki.com/product/design/sdsone apex/flat/.

SOFT BYTE LTD., 1999. Designaknit. [Online]. Available from:
https://www.softbyte.co.uk/designaknit.htm.

STOLL, 2011. M1plus pattern software. [Online]. Avail-
able from: http://www.stoll.com/stoll software solutions en 4/
pattern software m1plus/3 1.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment mod-
eling and editing. ACM Trans. Graph. 30, 4 (July), 90:1–90:12.

UNDERWOOD, J. 2009. The design of 3D shape knitted preforms.
PhD thesis, Fashion and Textiles, RMIT University.

VIDIMČE, K., WANG, S.-P., RAGAN-KELLEY, J., AND MA-
TUSIK, W. 2013. Openfab: A programmable pipeline for multi-
material fabrication. ACM Trans. Graph. 32, 4 (July), 136:1–
136:12.

WIBOWO, A., SAKAMOTO, D., MITANI, J., AND IGARASHI, T.
2012. Dressup: A 3d interface for clothing design with a physical
mannequin. In The 6th International Conference on Tangible,
Embedded and Embodied Interaction (TEI 2012), 99–102.

YUKSEL, C., KALDOR, J. M., JAMES, D. L., AND MARSCHNER,
S. 2012. Stitch meshes for modeling knitted clothing with yarn-
level detail. ACM Trans. Graph. 31, 4 (July), 37:1–37:12.

http://ayab-knitting.com/index_en.html#features
http://ayab-knitting.com/index_en.html#features
http://www.knitic.com
http://www.knitic.com
http://www.openknit.org
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1

