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LEHN’S FORMULA IN CHOW AND CONJECTURES OF

BEAUVILLE AND VOISIN

DAVESH MAULIK, ANDREI NEGUT,

Abstract. The Beauville-Voisin conjecture for a hyperkähler manifold X

states that the subring of the Chow ring A∗(X) generated by divisor classes
and Chern characters of the tangent bundle injects into the cohomology ring of
X. We prove a weak version of this conjecture when X is the Hilbert scheme
of points on a K3 surface, for the subring generated by divisor classes and
tautological classes. This in particular implies the weak splitting conjecture of
Beauville for these geometries. In the process, we extend Lehn’s formula and
the Li-Qin-Wang W1+∞ algebra action from cohomology to Chow groups, for
the Hilbert scheme of an arbitrary smooth projective surface S.

1. Introduction

1.1. We will work with smooth algebraic varieties X over an algebraically closed
field of characteristic 0, henceforth denoted by C. For such a variety X , we will
write A∗(X) and H∗(X) for its Chow group and even-degree cohomology group
with Q–coefficients, respectively. When X = Hilbn(S) is the Hilbert scheme of n
points on a K3 surface S, a significant source of elements of A∗(X) is given by the
universal subscheme:

(1.1) Zn
�

�

// Hilbn(S)× S

π1

��

π2

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

Hilbn(S) S

We define a small tautological class to be any element of A∗(Hilbn(S)) of the form:

(1.2) π1∗

[
chk(OZn

) · π∗2(γ)
]

∀k ∈ N, γ ∈ R(S)

where R(S) ⊂ A∗(S) is the subring generated by divisor classes. Our main result is:

Theorem 1.2. The cycle class map A∗(Hilbn(S))→ H∗(Hilbn(S)) is injective on
the subring generated by small tautological classes, for any K3 surface S and n ∈ N.

This result is motivated by the following conjecture of Beauville and Voisin ([18]):

Conjecture 1.3. For any hyperkähler X, the cycle class map A∗(X)→ H∗(X) is
injective on the subring generated by divisor classes and Chern classes of TX .
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Let us henceforth specialize to X = Hilbn(S) for a K3 surface S and any n ∈ N.
Then our Theorem 1.2 implies the weak splitting conjecture ([2]) of Beauville for
arbitrary n (because of Proposition 2.8). The latter is a weaker version of Conjec-
ture 1.3, where one only considers the subring of A∗(X) generated by divisor classes.

Voisin proved Conjecture 1.3 for Hilbn(S) with n ≤ 2b + 1, where b is the rank
of the transcendental lattice of S. The upper bound on n was improved to
(b+1)(b+2) by [7], in relation with other conjectures on Chow groups of algebraic
varieties (where they also proved the weak splitting property for n < 506). Yin
([19]) showed Conjecture 1.3 and a related conjecture of Voisin 1.10 hold for all
n when the surface S has a finite-dimensional motive in the sense of [10], which
is known to hold in several examples. There is much ongoing work of Ayoub
on establishing the latter finite-dimensionality statement for all varieties, which
would prove all the conjectures mentioned in the present paper.

1.4. Our approach to proving Theorem 1.2 is package relations in Chow in the
language of representation theory. In short, we consider the Lie algebra:

(1.3) Heis×Vir

where Heis denotes a rank (24− b) infinite-dimensional Heisenberg algebra and Vir
denotes the Virasoro algebra. There is an action of the Lie algebra above on:

A∗(Hilb) =

∞⊕

n=0

A∗(Hilbn(S))

which lifts the well-known action on cohomology. We show that this action
preserves the subring Vsmall ⊂ A∗(Hilb) generated by small tautological classes
(1.2). Furthermore, we show that Vsmall is generated under the Heis × Vir action
by A∗(Hilb0(S)) ∼= Q, thus forming a lowest-weight module. The classification of
lowest weight modules of Heis (which is trivial) and of Vir (which was developed
in [5]) allows us to conclude that Vsmall is (almost) an irreducible representation of
Heis × Vir. Therefore, Schur’s lemma implies that Vsmall injects into cohomology,
thus establishing Theorem 1.2.

1.5. The key ingredient in the above argument is that any product of small tau-
tological classes can be obtained from A∗(Hilb0(S)) ∼= Q under the action of the
Lie algebra (1.3). The analogous statement in cohomology follows from certain
important results in geometric representation theory, namely Lehn’s formula ([11])
and the Li-Qin-Wang W1+∞ algebra action ([12]). Therefore, most of the technical
work that goes into the present paper is to lift the aforementioned results from
cohomology to Chow rings. In more detail, recall the following operators studied
by Nakajima ([13]), and in a different formulation, by Grojnowski ([9]):

(1.4) A∗(Hilb)
qn
−→ A∗(Hilb× S), A∗(Hilb)

qn(γ)
−−−→ A∗(Hilb)

defined for all n ∈ Z\0 and γ ∈ A∗(S) by formulas (3.3), (3.4), (3.5). The operators
(1.4) satisfy the relations of the Heisenberg algebra ([9], [13]):

[qn(γ), qn′(γ′)] = nδ0n+n′〈γ, γ′〉 · IdHilb
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where 〈, 〉 denotes the intersection pairing on A∗(Hilb). One may also adapt the
notation above to compositions of several operators (1.4), for any n1, ..., nk ∈ Z\0:

A∗(Hilb)
qn1 ...qnk−−−−−−→ A∗(Hilb× Sk), A∗(Hilb)

qn1 ...qnk
(Γ)

−−−−−−−−→ A∗(Hilb)

and any Γ ∈ A∗(Sk). A particular instance of this construction is given by the
following Virasoro operators, which are close relatives of the operators constructed
by Lehn ([11]) in cohomology:

Ln : A∗(Hilb)→ A∗(Hilb), Ln =
1

2

∑

a+b=n

: qaqb : (∆
tr)

where ∆tr ∈ A∗(S × S) is defined in (2.7) and : : denotes normal-ordering (see
(3.11)). Then our strategy for proving Theorem 1.2 is to consider the Lie algebra:

(1.5) Heis×Vir =
{
qn(γ), Ln′

}γ∈R(S)

n∈Z\0,n′∈Z

which acts on A∗(Hilb) as explained above. To prove Theorem 1.2, we must show
that this action preserves the subring of A∗(Hilb) generated by small tautological
classes, and that moreover it generates the latter subring from A∗(Hilb0(S)) ∼= Q.
To show this, we prove the following Chow-theoretic version of Lehn’s formula (an
equivalent version of equation (1) of [11]) for any smooth projective surface S:

Theorem 1.6. We have the equalities of operators A∗(Hilb)→ A∗(Hilb× S):

(1.6) G2 = −

∞∑

n=1

qnq−n

∣∣∣
∆

(1.7) G3 = −
1

6

∑

n1+n2+n3=0

: qn1qn2qn3 :
∣∣∣
∆
−

t

2

∞∑

n=1

nqnq−n

∣∣∣
∆

where Gk : A∗(Hilb) → A∗(Hilb × S) is pullback followed by multiplication with
chk(OZ), where Z ⊂ Hilb× S is the universal subscheme (2.13) and t = c1(KS).

The formulas above hold for any smooth projective surface S and one sets
t = 0 in the particular case of a K3 surface. Theorem 1.6 was shown in [11] in
cohomology; however, the argument given there does not generalize to Chow.
Indeed, the proof in cohomology relies critically on the fact that cohomology of
Hilbert schemes form an irreducible module for the Heisenberg algebra. This
reduces the identity to showing both sides have the same commutation relations
with the Nakajima operators (1.4). This approach breaks down for Chow
groups, which are too large to form an irreducible module of the Heisenberg
algebra. Instead, we will prove Theorem 1.6 by a more intersection-theoretic argu-
ment (which also leads to a new proof of Lehn’s formula in cohomology) in Section 6.

In cohomology, the study of the operators Gk was systematized by Li-Qin-Wang in
[12], where the authors showed that the algebra generated by Gk and qn satisfies
the relations in the deformed W1+∞ algebra. To prove this statement, loc. cit.
also use the irreducibility of H∗(Hilb) as a module over the Heisenberg algebra. In
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Section 3, we will prove that the following version of their result also holds in Chow:

Theorem 1.7. If S has c1(TanS) = 0 and c2(TanS) = e, then there exist operators

{Jkn : A∗(Hilb)→ A∗(Hilb × S)}k≥0n∈Z determined by the following conditions:

J0n = −qn(1.8)

Jk0 = k!

(
Gk+1 +

π∗2(e)

12
·Gk−1

)
(1.9)

and the following relations for all n, n′ ∈ Z and k, k′ ≥ 0 with k + k′ ≥ 3:

[Jkn, J
k′

n′ ] = (kn′ − k′n)∆∗(J
k+k′−1
n+n′ ) + Ωk,k′

n,n′∆∗

(
π∗2(e)

12
· Jk+k′−3

n+n′

)
(1.10)

[J0n, J
0
n′ ] = nδ0n+n′∆∗(π

∗
1)(1.11)

[J1n, J
0
n′ ] = n′∆∗(J

0
n+n′)(1.12)

[J2n, J
0
n′ ] = 2n′∆∗(J

1
n+n′)−

n3 − n

6
δ0n+n′∆∗(π

∗
2(e) · π

∗
1)(1.13)

[J1n, J
1
n′ ] = (n′ − n)∆∗(J

1
n+n′)−

n3 − n

12
δ0n+n′∆∗(π

∗
2(e) · π

∗
1)(1.14)

(see Theorem 5.5 of [12] for the precise formula of the integers Ωk,k′

n,n′ , and

note that our Jkn are Jk−n of loc. cit.). The two sides of each of relations
(1.10)–(1.14) are homomorphisms A∗(Hilb) → A∗(Hilb × S2), with each of the

operators Jkn and Jk
′

n′ in the LHS acting in one and the same of the two factors of S2.

1.8. As we mentioned, the connection between Theorem 1.2 and Conjecture 1.3
(for X = Hilbn(S)) is that divisor classes are among the small tautological classes,
but the Chern classes of the tangent bundle are not. To understand the latter, one
needs to consider instead the set of big tautological classes, namely:

(1.15) π1∗

[
chk1(OZn

)...chkt
(OZn

) · π∗2(γ)
]

∀k1, ..., kt ∈ N, γ ∈ R(S)

with the notation in (1.1). Then we propose:

Conjecture 1.9. The cycle class map A∗(Hilbn(S)) → H∗(Hilbn(S)) is injective
on the subring generated by big tautological classes, for any n ∈ N.

Note that Conjecture 1.9 implies Conjecture 1.3 for X = Hilbn(S), as a
consequence of Proposition 2.10. In [18], Voisin proposed the following:

Conjecture 1.10. Let pi : S
n → S denote the i-th projection. For any n ∈ N, the

restriction of the cycle class map A∗(Sn)→ H∗(Sn) to the subring generated by:

{
p∗i (l)

}l∈A1(S)

1≤i≤n
and

{
(pi × pj)

∗(∆)
}
1≤i<j≤n

is injective. Above, ∆ denotes the class of the diagonal in A∗(S × S).



LEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN 5

In [19], Conjecture 1.10 was shown to boil down to the “Kimura relation”, a
formula in the Chow ring of S2(b+1) that we recall in (2.10) (here b is the rank of
the transcendental lattice of S). By a standard argument, one has:

Proposition 1.11. Conjecture 1.9 is equivalent to Conjecture 1.10.

1.12. One may ask if the representation theoretic approach of Subsection 1.4 can
be generalized to prove the more general Conjecture 1.9. The answer is no, since
developing such a framework to attack Conjecture 1.9 will necessarily boil down
to the Kimura relation, which was already known ([19]) to imply Conjecture 1.10.
In more detail, if one wanted an algebra g that acts on A∗(Hilb) such that all big
tautological classes can be generated via g from A∗(Hilb0) ∼= Q, then one would
need to take:

(1.16) g = Heis× sp2∞ =
{
qn(γ), qnqm(∆tr)

}γ∈R(S)

m,n∈Z\0

Unfortunately, we will explain in Section 4 that the representation theory of sp2∞
alone is not enough to establish Conjecture 1.9. This is because the classification
of lowest weight sp2∞–modules is more complicated than that of Vir–modules, and
proving that the subring of A∗(Hilb) generated by big tautological classes is an
irreducible module for sp2∞ is at least as hard as proving the Kimura relation (2.10).

1.13. We would like to thank Pavel Etingof, Daniel Huybrechts, and Ivan Losev
for many interesting discussions. We are especially grateful to Claire Voisin
for several conversations on these topics. D.M. is partially supported by NSF
FRG grant DMS-1159265. A.N. would like to thank MSRI, Berkeley, for their
hospitality while this paper was being written in the Spring of 2018, and gratefully
acknowledges the support of NSF grants DMS-1600375 and DMS-1440140.

2. The Chow ring and Hilbert schemes of a K3 surface

2.1. In the present paper, A∗(X) will denote the Chow ring of a smooth projective
variety X with coefficients in Q, with the grading by codimension. In the particular
case of a K3 surface S, Beauville and Voisin ([3]) have studied the class c ∈ A2(S)
of any closed point on a rational curve in S. They proved the following relations:

(2.1) c2(TanS) = 24c

(2.2) l · l′ = 〈l, l′〉c

for all l, l′ ∈ A1(S). In (2.1), TanS denotes the tangent bundle of the surface S. In
(2.2), we use the notation 〈·, ·〉 : A∗(S) ⊗ A∗(S) → Q for the intersection pairing.
Moreover, Beauville and Voisin prove the following equalities in A∗(S × S), where
we will write li, ci for the classes l, c pulled back from the i-th factor, i ∈ {1, 2}:

(2.3) ∆ · c1 = ∆ · c2 = c1 · c2

(2.4) ∆ · l1 = ∆ · l2 = l1 · c2 + l2 · c1
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Finally, we have the following formulas in A∗(S × S × S), where ∆ij will denote
the class of the codimension 2 diagonal pulled back from the i-th and j-th factor,
and ∆123 = ∆12 ·∆23 denotes the class of the smallest (dimension 2) diagonal:

(2.5) ∆123 = ∆12 · c3 +∆13 · c2 +∆23 · c1 − c1 · c2 − c1 · c3 − c2 · c3

Combining (2.3) with (2.5), one obtains the following formula for the class ∆12...n

of the smallest (dimension 2) diagonal inside Sn, for any natural number n:

(2.6) ∆12...n =
∑

1≤i<j≤n

∆ij

∏

k 6=i,j

ck − (n− 2)
n∑

i=1

∏

k 6=i

ck

Thus, it is a feature of K3 surfaces that arbitrary diagonals in Sn can be expressed
in terms of codimension 2 diagonals, and the pull-back of c from the various factors.

2.2. It is convenient to consider the following modification of the diagonal class:

(2.7) ∆tr = ∆− c1 − c2 −
∑

i

l(i)1l
(i)
2 ∈ A∗(S × S)

where {l(i), l
(i)} denote dual bases of Pic(S) ⊗ Q with respect to the intersection

pairing. The notation reflects the fact that the image of ∆tr in cohomology is the
canonical tensor of the transcendental lattice (which is the orthogonal complement
of the Picard lattice). We will denote by b the rank of the transcendental lattice:

(2.8) b = 〈∆tr,∆〉

and note that it is an integer contained between 2 and 21. The classes (2.7) will be
useful for us because relations (2.3) and (2.4) can be rewritten as:

(2.9) ∆tr · l = ∆tr · c = 0

Let R(Sn) ⊂ A∗(Sn) denote the subring generated by the diagonal classes ∆ij and
the classes li, ci for all 1 ≤ i < j ≤ n, as l goes over A1(S). Conjecture 1.10 is a
statement about the injectivity of the restriction of the cycle class map to R(Sn).
In [19], Yin showed that Conjecture 1.10 is equivalent to the equality:

(2.10)
∑

σ∈Σb+1

sign (σ)

b+1∏

i=1

∆tr
i,σ(i)+b+1 = 0 ∈ A∗(S2(b+1))

Above, we write Σb+1 for the symmetric group on b+ 1 letters.

2.3. Given a K3 surface S, we let Hilbn = Hilbn(S) denote the Hilbert scheme
parametrizing colength n ideals I ⊂ OS . The following result is classical:

Proposition 2.4. The variety Hilbn is smooth and projective of dimension 2n.

(The smoothness part of the Proposition above is due to Fogarty). The Hilbert
scheme represents the functor of flat families of ideal sheaves, i.e.:

(2.11) Maps(T,Hilbn) ∼=
{
I ⊂ OT×S s.t. OT×S/I is locally free of rank n on T

}
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for any scheme T . We will use the notation I for the universal ideal sheaf:

(2.12) I

��

Hilbn × S

in terms of which the identification (2.11) is given by:
{
T

φ
−→ Hilbn

}
→
{
I = (φ× IdS)

−1(I)
}

The quotient:

(2.13) OZn
= OHilbn×S/I

is the structure sheaf of the universal subscheme Zn ⊂ Hilbn × S, namely the
codimension 2 subscheme supported on the closed subset of pairs (I, x), where
I ⊂ OS is an ideal and x is a support point of OS/I. We will write Z = ⊔∞n=0Zn.

2.5. Since Z is a codimension 2 subscheme, we have:

ch0(OZ) = 0(2.14)

ch1(OZ) = 0(2.15)

ch2(OZ) = [Z](2.16)

Using the Chern character of OZ allows us to define various types of classes in
A∗(Hilb). Recall that π1, π2 : Hilb × S → Hilb, S denote the two standard projec-
tions, and R(S) ⊂ A∗(S) denotes the Beauville-Voisin subring:

(2.17) R(S) = Q · 1⊕ c1(Pic(S))⊕Q · c

Definition 2.6. Let A∗small(Hilb) ⊂ A∗(Hilb) denote the ring of small tautological
classes, i.e. arbitrary sums of products of classes of the form:

(2.18) π1∗

[
chk(OZ) · π

∗
2(γ)

]

where k ranges over N and γ ranges over R(S).

Definition 2.7. Let A∗big(Hilb) ⊂ A∗(Hilb) denote the ring of big tautological
classes, i.e. arbitrary sums of products of classes of the form:

(2.19) π1∗

[
chk1(OZ )...chkt

(OZ) · π
∗
2(γ)

]

where t, k1, ..., kt range over N and γ ranges over R(S).

Tautological classes are closely related to tautological bundles, which are defined
for every n ∈ N and any rank r vector bundle V on S by the construction:

V [n] = Rπ1∗ (OZn
⊗ π∗2(V ))

Note that V [n] is a rank rn vector bundle on Hilbn, and the Grothendieck-
Hirzebruch-Riemann-Roch theorem implies that its Chern character is given by:

ch(V [n]) = π1∗

(
ch(OZn

) · π∗2(ch(V )) · π∗2(td(S))
)
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If the Chern character of V lies in the Beauville-Voisin subring R(S), then the
formula above shows that ch(V [n]) is a small tautological class (because td(S) =
1 + 2c, see (2.27)). In particular, the first Chern class of V [n] is given by:

(2.20) c1(V
[n]) = π1∗([Zn] · c1(V )) + π1∗(ch3(OZn

) · r)

The Picard groups of Hilbert schemes of points were described by Fogarty, whose
Theorem 6.2 of [6] shows that when S is a K3 surface, A1(Hilbn) is generated
by (2.20) as V goes over all the line bundles on S. Hence we conclude the following:

Proposition 2.8. Any divisor class on Hilbn is a small tautological class.

2.9. Since S is a K3 surface, Hilbn = Hilbn(S) is holomorphic symplectic ([1]).
Let us review this fact, by recalling the explicit construction of the non-degenerate
pairing on the tangent bundle of Hilbn. For simplicity, we will work at the level of
an arbitrary closed point I ∈ Hilbn, in which case it is known that:

TanIHilbn = Hom(I,OS/I)

The long exact sequence associated to 0→ I → OS → OS/I → 0 induces:

(2.21) 0→ Hom(OS/I,OS/I)
∼=
−→ Hom(OS ,OS/I)→

→ Hom(I,OS/I)→ Ext1(OS/I,OS/I)

It is easy the observe that the second horizontal arrow is an isomorphism, since:

(2.22) Hom(OS/I,OS/I) ∼= OS/I

Note that dimCOS/I = n. Moreover, Serre duality and KS
∼= OS imply that:

(2.23) Ext2(OS/I,OS/I) ∼= (OS/I)
∨

is also an n–dimensional vector space. Since
∑2

i=0(−1)
i dimC Exti(OS/I,OS/I) =

0 (the quantity
∑

i(−1)
i dimExti(F,G) is additive in both arguments, and it is

easy to observe that it vanishes on skyscraper sheaves), we conclude that:

(2.24) dimC Ext1(OS/I,OS/I) = 2n

Since Hilbn is smooth of dimension 2n, the long exact sequence (2.21) implies that:

(2.25) TanIHilbn ∼= Ext1(OS/I,OS/I)

(the isomorphism above is simply the Kodaira-Spencer map, if one regards the
Hilbert scheme as the moduli space parametrizing the finite length sheaves
OS/I). Moreover, Serre duality implies that the vector space Ext1(OS/I,OS/I) is
self-dual, which proves that Hilbn is holomorphic symplectic.

Proposition 2.10. The Chern character of the tangent bundle of Hilbn is:

(2.26) ch(Tan Hilbn) = π1∗

[(
ch(OZn

)+ch(OZn
)∨−ch(OZn

)ch(OZn
)∨
)
π∗2(1+2c)

]

where π1, π2 : Hilbn × S → Hilbn, S are the standard projections.
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Proof. If we combine (2.22), (2.23) and (2.24), we conclude the following equality
in the Grothendieck group of locally free sheaves on Hilbn:

[RHom(OS/I,OS/I)] = [OS/I] + [OS/I]
∨ − [TanIHilbn]

The version of this equality as I varies over the Hilbert scheme yields:

[Tan Hilbn] = Rπ1∗

([
OHilbn×S

I

]
+

[
OHilbn×S

I

]∨
−

[
OHilbn×S

I

]
·

[
OHilbn×S

I

]∨)

The Grothendieck-Hirzebruch-Riemann-Roch theorem applied to the formula above
yields (2.26), as soon as one recalls that the Todd genus of a K3 surface is:

(2.27) td(S) = 1 +
c1(S)

2
+

c1(S)
2 + c2(S)

12
= 1 + 2c

(the fact that c2(S) = 24c is precisely (2.1)).
�

3. Representation theory of Hilbert schemes

3.1. Let us recall the Heisenberg algebra action introduced independently by Gro-
jnowski ([9]) and Nakajima ([13]) on the Chow groups of Hilbert schemes on an
arbitrary smooth projective surface S. We will mostly follow the presentation of
Nakajima in the current subsection. For any n ∈ N, consider the closed subscheme:

Hilbd,d+n =
{
(I ⊃ I ′) s.t. I/I ′ is supported at a single x ∈ S

}
⊂ Hilbd ×Hilbd+n

endowed with projection maps:

(3.1) Hilbd,d+n

p−

yyss
ss
ss
ss
s

pS

��

p+

&&▲
▲▲

▲▲
▲▲

▲▲
▲

Hilbd S Hilbd+n

that keep track of I, x and I ′, respectively. It was shown in [13] that the locus above
has dimension 2d+ n+ 1, and so Nakajima used it to define the correspondences:

(3.2) A∗(Hilb)
q±n
−−→ A∗(Hilb × S)

where A∗(Hilb) =
⊕∞

d=0 A
∗(Hilbd), given by:

qn = (p+ × pS)∗ ◦ p
∗
−(3.3)

q−n = (−1)n(p− × pS)∗ ◦ p
∗
+(3.4)

We also set q0 = 0. Loosely speaking, one may think of the operators qn as a family
of endomorphisms of A∗(Hilb) indexed by A∗(S), so we write for any γ ∈ A∗(S):

(3.5) qn(γ) = π1∗(qn · π
∗
2(γ))

as an operator A∗(Hilb) → A∗(Hilb), where π1, π2 : Hilb × S → Hilb, S are the
standard projections. The Heisenberg algebra action is encoded in the fact that
the operators qn satisfy the following commutation relations (see Theorem 8.13 and
Remark 8.15 (2) of [14] for reference):

(3.6) [qn, qn′ ] = nδ0n+n′ · IdHilb × [∆]
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where both sides of the equation are Q–linear maps A∗(Hilb)→ A∗(Hilb× S × S).
In terms of the endomorphisms (3.5), the commutation relation (3.6) reads:

(3.7) [qn(γ), qn′(γ′)] = nδ0n+n′〈γ, γ′〉 · IdHilb

where 〈·, ·〉 is the intersection pairing on S.

3.2. We may generalize the notation above to products of Nakajima operators:

(3.8) qn1 ...qnk
: A∗(Hilb) −→ A∗(Hilb× Sk)

where the convention is that the operator qni
acts in the i-th factor of Sk = S× ...×

S. There are two related operations that we will apply in conjunction with products
as (3.8). The first one is to restrict the composition to the smallest diagonal:

(3.9) qn1 ...qnk

∣∣∣
∆
: A∗(Hilb)

qn1 ...qnk−−−−−−→ A∗(Hilb× Sk)
IdHilb⊠∆∗

−−−−−−−→ A∗(Hilb× S)

and the second one is to use any Γ ∈ A∗(Sk) to yield endomorphisms of A∗(Hilb):

(3.10) qn1 ...qnk
(Γ) = π1∗(qn1 ...qnk

· π∗2(Γ))

where π1, π2 : Hilb × Sk → Hilb, Sk denote the standard projections. The two
operations (3.9) and (3.10) are related by the formula:

qn1 ...qnk

∣∣∣
∆
(γ) = qn1 ...qnk

(∆∗(γ))

for any γ ∈ A∗(S), where ∆ refers to the smallest diagonal embedding S →֒ Sk.

3.3. The Q-vector space A∗(Hilb) = ⊕∞d=0A
∗(Hilbd) is graded by d, and it is clear

from (3.1) that the operators qn increase this grading by n. When writing a product
of the form (3.8), one may always use (3.6) to reorder all the terms, in such a way
that n1 ≥ ... ≥ nk. More concretely, let us consider the normal-ordered product :

(3.11) : qaqb :=

{
qaqb if a ≥ b

qbqa if a < b

The obvious generalization defines the normal-ordered products of several
Heisenberg operators : qn1 ...qnk

:. Note that the normal-ordered product only
differs from the usual product if an operator qn with n < 0 (called an annihilation
operator) is to the left of an operator qn with n > 0 (called a creation operator).
Therefore, the normal-ordering convention can be explained, in words, as saying
that all creation operators should be placed to the left of all annihilation operators.

It is easy to see that infinite expressions such as
∑a,b∈Z

a+b=k qaqb are not well defined
on A∗(Hilb). However, they do become well-defined if we normal-order all the
products, as in the following analogues of Lehn’s operators from cohomology:

(3.12) Ln =
1

2

a,b∈Z∑

a+b=n

: qaqb :
∣∣∣
∆

The reason why the Q–linear map Ln : A∗(Hilb) → A∗(Hilb× S) is well-defined
is that all the annihilation operators are to the right of all creation operators, and
therefore Ln acts by a finite sum on any given vector in A∗(Hilb). The following
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formulas are straightforward consequences of (3.6) and (3.7), and they are part of
the fundamental motivation for Lehn’s introduction of the operators (3.12):

(3.13) [Ln, qn′ ] = −n′∆∗(qn+n′) ⇒ [Ln(1), qn′(γ)] = −n′qn+n′(γ)

(3.14) [Ln,Ln′ ] = (n− n′)∆∗(Ln+n′ )−
n3 − n

12
δ0n+n′ · IdHilb ⊠ [∆∗(e)]

⇒ [Ln(1),Ln′(1)] = (n− n′)Ln+n′(1)−
n3 − n

12
δ0n+n′ · e

where e = c2(TanS).

3.4. Let us now consider the operators of multiplication by the Chern classes of
the universal subscheme Z →֒ Hilb× S:

Gk : A∗(Hilb)
π∗
1−→ A∗(Hilb× S)

·chk(OZ)
−−−−−−→ A∗(Hilb × S)

Because of (2.14) and (2.15), we have G0 = G1 = 0. As before, we will write:

Gk(γ) : A
∗(Hilb)

Gk−−→ A∗(Hilb× S)
·π∗

2(γ)−−−−→ A∗(Hilb× S)
π1∗−−→ A∗(Hilb)

for any γ ∈ A∗(S). Alternatively, Gk(γ) is the operator of multiplication by the
small tautological class π1∗(chk(OZ) · π

∗
2(γ)). One of the main goals of [12] was to

systematize the algebra generated by the operators qn and Gk, and the structure
they found was that of the deformed W1+∞ algebra. Their construction was done in
cohomology, but we will consider the exact same operators between Chow groups,
and use them to prove Theorem 1.7. Define:

(3.15) Jkn : A∗(Hilb)→ A∗(Hilb× S)

(3.16) Jkn = k!


−

|λ|=n∑

l(λ)=k+1

qλ

λ!

∣∣∣
∆
+

|λ|=n∑

l(λ)=k−1

(s(λ) + n2 − 2)
π∗2(e) · qλ

24λ!

∣∣∣
∆




(note that our Jkn are equal to the Jk−n of [12]) where λ goes over all partitions of
Z\{0}. Let us explain the notation in (3.16). Any partition λ can be described as:

λ = (..., (−2)m−2 , (−1)m−1 , 1m1 , 2m2 , ...)

for ...m−2,m−1,m1,m2, ... ∈ N ⊔ 0, and we write qλ = ...qm2
2 qm1

1 q
m−1

−1 q
m−2

−2 ... and:

l(λ) =
∑

i∈Z\{0}

mi, |λ| =
∑

i∈Z\{0}

imi, s(λ) =
∑

i∈Z\{0}

i2mi, λ! =
∏

i∈Z\{0}

mi!

We will now prove that the operators (3.15) satisfy the properties of Theorem 1.7.

Proof. of Theorem 1.7: The fact that the operators (3.16) satisfy relations (1.10)–
(1.14) is proved exactly as in loc. cit., since the only input necessary for their
computation is the commutation relation (3.2) of Nakajima operators. In particular,
we have the following special cases of (1.10)–(1.14), for all a, k ≥ 0:

[Jk±1, J
2
0] = ∓2∆∗

(
Jk+1
1

)
(3.17)

[Ja1 , J
k−a
−1 ] = −k∆∗

(
Jk−10

)
+ k(k − 1)(k − 2)∆∗

(
π∗2(e)

12
· Jk−30

)
(3.18)
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(the sign discrepancy between the formulas above and those of loc. cit. stems from
the fact that our Jkn are equal to their Jk−n). Therefore, to prove Theorem 1.7,
we only need to check (1.8) and (1.9). The former is immediate, so it remains to
prove the latter. The Grothendieck-Hirzebruch-Riemann-Roch theorem, together
with ch0(OZ) = ch1(OZ) = 0, implies that:

π1∗

(
J20
2

)
= π1∗ [multiplication by ch3 (OZd

)] = multiplication by c1(O
[d]
S ) =: d

where π1 : Hilbd × S → Hilbd is the standard projection. Note that (3.16) gives:

J01 = −q1 = −(p+ × pS)∗ ◦ p
∗
−

J0−1 = −q−1 = (p− × pS)∗ ◦ p
∗
+

respectively, with the notation of (3.1). Let:

r :

∞⊕

d=0

A∗(Hilbd,d+1)→

∞⊕

d=0

A∗(Hilbd,d+1)

denote the operator of multiplication by c1(L), where L is the tautological line
bundle on Hilbd,d+1 whose fiber over (I ⊃ I ′) is I/I ′. Then we claim that:

Jk1 = −(p+ × pS)∗ ◦ r
k ◦ p∗−(3.19)

Jk−1 = (p− × pS)∗ ◦ r
k ◦ p∗+(3.20)

Indeed, formulas (3.19) and (3.20) follow by comparing the fact that:

[Jk±1, d] = ∓J
k+1
±1

(which follows from (1.10)) to the geometrically straightforward fact that:
[
(p± × pS)∗ ◦ r

k ◦ p∗∓, d
]
= ∓(p± × pS)∗ ◦ r

k+1 ◦ p∗∓

Let us prove formula (1.9) by induction on k. The base cases k = 1 and k = 2
are precisely (1.6) and (1.7), respectively. As for the induction step, it is enough
to invoke the a = 2 case of (3.18) and prove the following equality of operators
A∗(Hilbd)→ A∗(Hilbd × S × S), for all a, b ≥ 0:

(3.21)
[
(p+ × pS)∗ ◦ r

a ◦ p∗−, (p− × pS)∗ ◦ r
b ◦ p∗+

]
=

= multiplication by (a+ b)! ·∆∗(cha+b(OZ))

The left-hand side of (3.21) is the difference of operators:

(p+ × pS1 × IdS2)∗ ◦ r
a ◦ (p− × IdS2)

∗ ◦ (p− × pS2)∗ ◦ r
b ◦ p∗+(3.22)

(p− × IdS1 × pS2)∗ ◦ r
b ◦ (p+ × IdS1)

∗ ◦ (p+ × pS1)∗ ◦ r
a ◦ p∗−(3.23)

(we write S1 = S2 = S, in order to differentiate between the two factors of the
surface that appear in Hilbd × S1 × S2). As a cycle inside Hilbd ×Hilbd × S1 × S2,
the composition (3.22) (respectively (3.23)) is supported on the locus (I1, I2, x1, x2)
such that there exists I1, I2 ⊂ J (respectively J ′ ⊂ I1, I2) with J/I1 ∼= Cx2 , J/I2

∼=
Cx1 (respectively I1/J

′ ∼= Cx1 , I2/J
′ ∼= Cx2). On the open subset (I1, x1) 6= (I2, x2),

the aforementioned two loci are isomorphic via:

(I1, I2 ⊂ J) (J ′ ⊂ I1, I2), J ′ = I1 ∩ I2 inside J
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This implies that the difference of (3.22) and (3.23), i.e. the left-hand side of (3.21),
is a cycle supported on the diagonal Hilbd × S →֒ Hilbd ×Hilbd × S × S. Hence:

(3.24) left-hand side of (3.21) =
(
IdHilb ×∆

)
∗
◦
(
multiplication by Γ

)

for some Γ ∈ A∗(Hilbd × S). Therefore, to prove (3.21) it suffices to show that:

(3.25) Γ = (a+ b)! · cha+b (OZd
)

To prove that the class Γ of (3.24) is given by (3.25), it is enough to work out how
the equality (3.24) of operators acts on the unit class 1 ∈ A∗(Hilbd). Explicitly,
this boils down to the following computation, which will be proved in Subsection 6.4:

Claim 3.5. The following identity holds in A∗(Hilbd × S1 × S2):

(3.26) (p+ × pS1 × IdS2)∗ ◦ r
a ◦ (p− × IdS2)

∗ ◦ (p− × pS2)∗(c1(L)
b)−

− (p− × IdS1 × pS2)∗ ◦ r
b ◦ (p+ × IdS1)

∗ ◦ (p+ × pS1)∗(c1(L)
a) =

= (a+ b)! ·∆∗ (cha+b (OZd
))

�

4. The proof of the main Theorem

4.1. Let us consider the following operators, in the notation (3.5) and (3.10):

A∗(Hilb)
qn(γ)
−−−→ A∗(Hilb) ∀ γ ∈ R(S), n ∈ Z\0(4.1)

A∗(Hilb)
Ln−−→ A∗(Hilb) Ln =

1

2

∑

k+l=n

: qkql : (∆
tr)(4.2)

where ∆tr denotes the class (2.7). Because of relations (2.9) and (3.13), we have:

(4.3) [Ln, qm(γ)] = 0 ∀ n,m ∈ Z\0, γ ∈ R(S)

and therefore the algebra generated by the operators (4.1) and (4.2) is:

U(Heis×Vir)

where the Virasoro algebra with central charge b is:

Vir = Q
〈
Ln

〉
n∈Z

/(
[Ln, Ln′ ]− (n− n′)Ln+n′ +

n3 − n

12
δ0n+n′b

)

(where b ∈ {2, ..., 21} is the rank (2.8) of the transcendental lattice) and Heis is the
tensor product of 24− b = dimQ R(S) copies of the Heisenberg algebra. Explicitly,
Heis is generated by symbols qn(γ) as n ∈ Z\0 and γ goes over a basis of R(S),
modulo relations (3.7).

Proposition 4.2. For any k > 1 and γ ∈ R(S), the operators Gk(γ) lie in the
algebra U(Heis×Vir). In virtue of Definition 2.6, this implies that the operator of
multiplication by any small tautological class lies in U(Heis×Vir).
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Proof. Because of formula (2.7), we have:

Ln = Ln(1)−
1

2

∑

a+b=n

[
: qa(c)qb(1) : + : qa(1)qb(c) : +

∑

i

: qa(l(i))qb(l
(i)) :

]

and it therefore suffices to show that the operatorsGk(γ) lie in the algebra generated
by qn(γ) and Ln′(1) (as n goes over Z\0, n′ goes over Z and γ goes over R(S)). By
comparing (1.9) with (3.16), the operator Gk is a sum of two terms, the first being:

(4.4) −
1

n!

∑

n1+...+nk=0

: qn1 ...qnk
: (∆12...k)

and the second being:

(4.5)
∑

n1+...+nk−2=0

coefficient : qn1 ...qnk−2
: (∆12...k−2 · ck−2)

for some coefficients in Q. We must show that both operators (4.4) and (4.5) lie in
U(Heis × Vir). For the latter operator, this is clear, since (2.3) allows us to write
∆12...k−2 · ck−2 = c1 · c2 · ... · ck−2, and so each summand in (4.5) is a product of
operators qn(c) ∈ Heis. As for (4.4), the decomposition (2.6) allows us to write:

equation (4.4) = −
1

n!

∑

n1+...+nk=0

: qn1 ...qnk
:


 ∑

1≤i<j≤n

∆ij

∏

k 6=i,j

ck − (n− 2)

n∑

i=1

∏

k 6=i

ck




= −
1

n!

∑

1≤i<j≤n

∑

n1+...+nk=0

: qn1(c1)...qni
qnj

(∆ij)...qnk
(ck) : −(operator in U(Heis))

For each fixed i < j and each fixed n1, ..., n̂i, ..., n̂j , ..., nk, the corresponding sum-
mand in the last line above is a product of L−n1−...−n̂i−...−n̂j−...−nk

(1) with the
various qna

(c), and so it lies in the algebra U(Heis×Vir). The reason for this fact
is that, as we commute qni

qnj
(∆ij) with various other qna

(c) in order to achieve
the normally ordered product, the commutator lies in U(Heis) by (3.13).

�

4.3. Let Vsmall ⊂ A∗(Hilb) denote the Heis×Vir module generated by:

(4.6) v = 1 ∈ A∗(Hilb0) ∼= Q

Recall that A∗(Hilb) = ⊕∞n=0A
∗(Hilbn) is graded by n, and L0 acts on the n-th

graded subspace as multiplication by n. Aside from the word “degree”, we may
refer to the eigenvalue of L0 on a homogeneous element w ∈ A∗(Hilb) as the
“weight” of w. Because of this, the module A∗(Hilb) has lowest weight 0.

Corollary 4.4. We have A∗small(Hilb) ⊂ Vsmall.

Proof. The well-known formula 1Hilbn
= 1

n!q1(1)
n(v) shows that the fundamental

class of every Hilbert scheme Hilbn lies in Vsmall. Therefore, Proposition 4.2 implies
that the entire ring A∗small(Hilb) lies inside Vsmall.

�
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The Heis×Vir module Vsmall is of lowest weight, in the sense that is generated by:

(4.7) {qn(γ), Ln′}
γ∈R(S)
n,n′>0 ⊂ Heis×Vir

acting on the vector v = 1 ∈ A∗(Hilb0) ∼= Q. We have:

(4.8) qn(γ)v = Ln′v = 0 ∀n < 0, n′ ≤ 1

for degree reasons (see the definition of Virasoro operators in (3.12)).

Proposition 4.5. Vsmall is an irreducible Heis×Vir module.

Proof. Let M ⊂ Vsmall denote a maximal proper submodule with respect to the
Heis×Vir action. Fix a Q-basis Γ of R(S), and let us consider any element:

(4.9)
∑

{(n1,γ1),...,(nk,γk)}⊂N×Γ

qn1(γ1)...qnk
(γk)v

γ1,...,γk
n1,...,nk

∈M

where vγ1,...,γk
n1,...,nk

∈ Vir · v. Since the integral pairing on R(S) is non-degenerate, by
applying the operators q−n(γ) for various n > 0, γ ∈ R(S) to the sum in (4.9),
we infer that vγ1,...,γn

n1,...,nk
∈ M for any unordered set {(n1, γ1), ..., (nk, γk)} ⊂ N × Γ.

Therefore, if we let N ⊂ Vir · v denote the maximal Virasoro algebra submodule
spanned by the vγ1,...,γk

n1,...,nk
that appear in (4.9) for various elements of M , we have:

M ⊂ U(Heis) ·N

However, the classification of lowest weight modules of Vir from [5] shows that the
unique such maximal proper submodule N is necessarily generated by L1v (since
the central charge of our Vir, namely the rank b of the transcendental lattice, is
contained between 2 and 21, and the weight of v is 0). Since L1v = 0 due to (4.8),
we conclude that N = 0, hence M = 0 and thus Vsmall is irreducible.

�

Proof. of Theorem 1.2: There exists a Heis×Vir action on H∗(Hilb) with respect
to which the cycle class map ζ : A∗(Hilb)→ H∗(Hilb) is equivariant (the construc-
tion and proof of all statements in cohomology are analogous to those in Chow).
Therefore, Proposition 4.5 and Schur’s Lemma imply that:

(4.10) ζ|Vsmall
: Vsmall → H∗(Hilb)

is either 0 or injective. Since ζ is an isomorphism between the one-dimensional vec-
tor spaces A∗(Hilb0) and H∗(Hilb0), we conclude that (4.10) is injective. Together
with Corollary 4.4, this concludes the proof of Theorem 1.2.

�

5. The representation theory of tautological classes

5.1. Let Vbig ⊂ A∗(Hilb) denote the Heis submodule generated by:

(5.1)

t∏

i=1

qmi
qni

(∆) · v

over all (m1, n1), ..., (mt, nt) ∈ N2, where v = 1 ∈ A∗(Hilb0) ∼= Q.
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Proposition 5.2. Vbig is preserved by the operators qmqn(∆), for all m,n ∈ Z\0.

In particular, the Proposition above implies that Vbig is also preserved by Vir, due
to formula (3.12). Therefore, we have Vbig ⊃ Vsmall.

Proof. It suffices to show that:

qmqn(∆) ·
∏

i

qki
(γi)

∏

j

qmj
qnj

(∆) · v

lies in Vbig for any choice of indices. This follows from the commutation relations:

(5.2) [qmqn(∆), qk(γ)] = mδ0m+kqn(γ) + nδ0n+kqm(γ)

and:

(5.3) [qmqn(∆), qm′qn′(∆)] = mδ0m+m′qnqn′(∆)+

+mδ0m+n′qm′qn(∆) + nδ0n+m′qmqn′(∆) + nδ0n+n′qm′qm(∆)

which are simple consequences of (3.6).
�

Proposition 5.3. Any vector subspace V ⊂ A∗(Hilb) which contains v and is
preserved by both Heis×Vir and multiplication with ch2(Tan) must contain Vbig.

Proof. Proposition 4.2 states the operators {Gk(γ)}
k∈N
γ∈R(S) lie in U(Heis × Vir).

Therefore, Proposition 2.10 (together with ch0(OZ) = ch1(OZ) = 0) implies that:

multiplication by ch2(Tan) =

= −multiplication by π1∗

[
ch2(OZ)ch2(OZ)(1 + 2c)

]
mod U(Heis×Vir)

where Hilb×S
π1,π2
−−−→ Hilb, S are the standard projections. Meanwhile, the operator

of multiplication on the second line is L0L0|∆(1 + 2π∗2(c)), by (1.6). Moreover:

L0L0|∆(2c) = 2L0L0(∆ · c) = 2L0L0(c · c) = 2L0(c)
2 ∈ U(Heis×Vir)

(the second equality follows from (2.3)), implies that we have:

multiplication by ch2(Tan) = −L0L0(∆) mod U(Heis×Vir)

Hence if V is to be preserved by Heis × Vir and multiplication by ch2(Tan), then
it must also be preserved by −L0L0(∆). However, (3.13) implies the relations:

[−L0L0(∆), qm(1)] = mL0qm(∆) +mqmL0(∆) = 2mqmL0(∆) −m2qm(24c)

which implies that V must also be preserved by qmL0(∆). Similarly, the relation:

[qmL0(∆), qn(1)] = −nqmqn(∆) +mδ0m+nL0(1)

implies that V must also be preserved by qmqn(∆). Since V ∋ v, this implies that
V must also contain all the vectors (5.1), and therefore V ⊃ Vbig.

�
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The Proposition above shows that any generalization of the proof of Theorem
1.2 that accounts for the operators of multiplication by Chern classes of the
tangent bundle must necessarily contend with the vector space Vbig. The following
Proposition shows that this vector space in fact contains all big tautological classes.

Proposition 5.4. We have A∗big(Hilb) = Vbig.

Proof. Let us first prove the inclusion ⊂. By definition, the ring Abig(Hilb) is
generated by the classes (2.19). The operator of multiplication by (2.19) is:

Gk1 ...Gkt
(∆12...t · γt) : A

∗(Hilb)→ A∗(Hilb)

By Theorem 1.7 (specifically formula (3.16)), the operator above can be written as
a linear combination of operators of the form:

(5.4) qn1 ...qns
(∆12...s · γ

′
s)

for some γ′ ∈ R(S). By applying (2.6), one can write expression (5.4) as a product
of operators in Heis with a single operator of the form qni

qnj
(∆). As both kinds of

operators preserve Vbig (the former by definition, the latter by Proposition 5.2), we
conclude that A∗big(Hilb) ⊂ Vbig. The inclusion ⊃ follows from Propositions 6.21.

�

Proof. of Proposition 1.11: The argument below closely follows the final remark of
[19]. Recall the following result of de Cataldo and Migliorini ([4], Theorem 5.4.1):

(5.5) A∗(Hilb) =
⊕

n1≥...≥nk>0

Q · qn1 ...qnk
(Γ) · v

as Γ runs over a Q–basis of A(Sk)sym, where sym denotes the part which is
symmetric with respect to those transpositions (ij) ∈ Σk for which ni = nj .

Let us first show that Conjecture 1.9 implies Conjecture 1.10. To this end, suppose
Γ ∈ R(Sk) is such that ζ̄(Γ) = 0 ∈ H∗(Sk), where ζ̄ : A∗(Sk) → H∗(Sk) denotes
the cycle class map. Since the cycle class map commutes with the assignment:

Γ qn1 ...qnk
(Γ)

we conclude that qn1 ...qnk
(Γ) ·v = 0 ∈ H∗(Hilbn1+...+nk

) for any n1, ..., nk ∈ N. By
the very definition of R(Sk) and relations (2.1)–(2.9), the class Γ can be written as
a product of pairwise diagonals (pi × pj)

∗(∆) and classes p∗i (l), p
∗
i (c), for various

1 ≤ i < j ≤ k, where pi : S
k → S denotes the i-th projection map. Therefore:

qn1 ...qnk
(Γ) · v ∈ Vbig

Prop. 5.4
= A∗big(Hilb)

Conjecture 1.9 then implies that qn1 ...qnk
(Γ) ·v = 0 ∈ A∗(Hilbn1+...+nk

), and if the
numbers n1, ..., nk are taken to be distinct, then (5.5) implies that Γ = 0 ∈ A∗(Sk).

Conversely, let us show that Conjecture 1.10 implies Conjecture 1.9. By Propo-
sitions 5.2 and 5.4, it suffices to show that the cycle class map ζ : A∗(Hilb) →
H∗(Hilb) is injective on the Q-span of:

(5.6)

k∏

i=1

qmi
qni

(∆)

l∏

j=1

qpj
(γ(j)) · v = qm1qn1 ...qmk

qnk
qp1 ...qpl

(Γ) · v ∈ A∗(Hilb)
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for any natural numbers mi, ni, pi and any classes γ(j) ∈ R(S), where we write:

(5.7) Γ = ∆12∆34...∆2k−1,2k

l∏

j=1

γ
(j)
2k+j

Recall that (5.5) states that any linear relation between ζ(elements (5.6)) implies
the corresponding linear relation between ζ(Sym(elements (5.7))) (here Sym de-
notes the operator of symmetrization with respect to the subgroup of permutations
generated by transpositions corresponding to those pairs of numbersmi, ni, pj which
are equal). Since the latter elements actually lie in ζ(R(S2k+l)), Conjecture 1.10
yields a linear relation between the Sym applied to the elements (5.7) in the Chow
group of S2k+l. Plugging this relation back into qm1qn1 ...qmk

qnk
qp1 ...qpl

(...) implies
a linear relation between the elements (5.6), as required.

�

5.5. In the remainder of this Section, we will develop the representation theory of
the space Vbig. We may consider the operators (in the notation of (2.7)):

qmqn(∆
tr) = qmqn(∆)− qm(c)qn(1)− qm(1)qn(c)−

∑

i

qm(l(i))qn(l
(i))

Similar with (4.3), we have:

[qmqn(∆
tr), qp(γ)] = 0 ∀m,n, p ∈ Z\0, γ ∈ R(S)

and therefore the vector space Vbig of (5.1) factors as:

Vbig = Fock⊗W

where Fock = Heis · v and:

W =

unordered collections⊕

(m1,n1),...,(mt,nt)∈N2

Q ·
t∏

i=1

qmi
qni

(∆tr) · v

By analogy with Proposition 5.2, the vector space W is preserved by the operators
qmqn(∆

tr) for all m,n ∈ Z\0. Therefore, we will study the algebra generated by
these operators, or more precisely, their renormalized versions:

(5.8) Dm,n =
sign n√
|mn|

qmqn(∆
tr) + δ0m+n

b

2
· IdA∗(Hilb)

for all m ≥ n ∈ Z\0, where b is the rank of the transcendental lattice. As suggested
by Pavel Etingof, the operators (5.8) generate a well-known Lie algebra:

Definition 5.6. Let us consider matrices with infinitely many rows and columns,
both indexed by Z\0. Let g = sp2∞ be the Lie algebra of such matrices where all
but finitely many entries are 0, the submatrices with (rows, columns) indexed by
N × (−N) and (−N) × N are symmetric, and the submatrix with (rows, columns)
indexed by (−N)×(−N) is the negative transpose of the submatrix indexed by N×N.

In more detail, g = sp2∞ is the direct limit of the finite-dimensional Lie algebras
sp2N as N →∞. Let us consider the elements:

(5.9) g ∋ dm,n = Em,−n + (sign m)(sign n)En,−m
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for any m,n ∈ Z\0, where Em,n denotes the elementary matrix with a single 1
at the intersection of row m and column n, and 0 elsewhere. It is elementary to
observe that the elements (5.9) with m ≥ n generate g, and that they satisfy the
following commutation relations:

(5.10) [dm,n, dm′,n′ ] = δ0n+m′dm,n′ + δ0m+m′(sign m)(sign n)dn,n′+

+ δ0n+n′(sign m′)(sign n′)dm,m′ + δ0m+n′(sign m)(sign n)(sign m′)(sign n′)dn,m′

for all m,n,m′, n′.

Proposition 5.7. The operators (5.8) give an action of g = sp2∞ on A∗(Hilb).

The Proposition follows by comparing (5.3) (with ∆tr instead of ∆) with (5.10).
The occurence of b stems from the fact that (2.8) implies that:

q−nqn(∆
tr) = qnq−n(∆

tr)− nb · Id

5.8. Let us now analyze the submodule W ⊂ A∗(Hilb) generated by the operators
(5.8) acting on the vacuum vector v. It is easy to see that:

(5.11) Dm,n · v =
b

2
· δ0m+n ∀m ≥ n, 0 > n

Therefore, we conclude that there exists a surjective map:

(5.12) M := U(g)⊗U(p) Qχ ։W

where p ⊂ g is the parabolic subalgebra consisting of all matrices with zeroes in the
(−N)× N block, and the character χ : p→ Q is given by:

χ

(
0 A
−AT B

)
=

b

2
· Tr(A)

The g module M is called a parabolic Verma module, and we will write v∅ for the
element 1⊗ 1 ∈M . If we let t ⊂ g be the Cartan subalgebra of diagonal matrices,
then the weights of the Lie algebra g can be expressed as:

(5.13) a1ε1 + ...+ anεn + ...

where ai ∈ Q and εi is the dual basis to the matrices E−i,−i−Ei,i ∈ t (to make sense
of the weights of sp2∞, one must present this Lie algebra as the limit of sp2N as
N →∞, whose weights take the form (5.13) with n up to N). The highest weight
of the parabolic Verma module M is −b/2(ε1 + ...+ εn + ...). Let us consider:

L ⊂M

to be the g–submodule generated by expressions:

(5.14) vm1,...,mb+1
n1,...,nb+1

=
∑

σ∈Σb+1

(sign σ)dm1,nσ(1)
...dmb+1,nσ(b+1)

· v∅

as m1 < ... < mb+1 and n1 < ... < nb+1 go over N. Note that the vectors (5.14)
correspond to the left-hand side of the Kimura relation (2.10), under the de Cataldo-
Migliorini correspondence between S2b+2 and Hilb. Then Conjectures 1.9 and 1.10
would follow from the fact that (5.12) factors through a map of g–modules:

M/L։W
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since this would ensure that the Kimura relation (2.10) holds in Chow. Recall
that the Levi subgroup h of p corresponds to submatrices whose rows and columns
are indexed by N, and as such h ∼= gl∞. We have the tautological representation
h y C∞ with basis vectors e1, e2, ..., rescaled so that:

(5.15) gl∞ ∋

(
Em,n −

b

2
δnm

)
· ep = δpnem

and we consider the representation R = S2(∧b+1C∞).

Proposition 5.9. There is a map of g-modules U(g)⊗U(p) R։ L induced by:

(5.16) 1⊗ (em1 ∧ ... ∧ emb+1
)(en1 ∧ ... ∧ enb+1

) vm1,...,mb+1
n1,...,nb+1

for all natural numbers m1 < ... < mb+1 and n1 < ... < nb+1.

Proof. First of all, let us prove that the nilpotent subalgebra of p annihilates the
right-hand side of (5.16). To keep the notation simple, we will do it in the case
when mi = ni = i, and leave the general case to the interested reader. We must
prove the following for all m,n > 0 (the hats denote missing terms):

d−m,−n · v
1,...,b+1
1,...,b+1 =

∑

σ∈Σb+1

(sign σ)d−m,−nd1,σ(1)...db+1,σ(b+1) · v∅
(5.10)
= ↓b+1

m−1

∑

σ∈Σb+1

(sign σ)
[
d1,σ(1)...d−n,σ(m)...db+1,σ(b+1)+d1,σ(1)...d−n,σ−1(m)...db+1,σ(b+1)

]
v∅+(...)

where the summands marked by (...) are the same ones as the terms directly pre-
ceding them, but with m replaced by n. The symbol ↓ab is 1 if a > b and 0 otherwise.
By (5.10) and (5.11), the formula above equals:

(5.17) ↓b+1
m−1↓

b+1
n−1

∑

σ∈Σb+1

(sign σ)
[
−bδnσ(m)d1,σ(1)...d̂m,n...db+1,σ(b+1)+ ↓

σ−1(n)

σ−1(m)

... ̂dσ−1(m),m... ̂dσ−1(n),n...dσ−1(m),σ−1(n)+ ↓
n
σ−1(m) ...

̂dσ−1(m),m...d̂n,σ(n)...dσ−1(m),σ(n)

+ ↓nm ... ̂dm,σ(m)...d̂n,σ(n)...dσ(m),σ(n)+ ↓
σ−1(n)
m ... ̂dm,σ(m)... ̂dσ−1(n),n...dσ(m),σ−1(n)

]

+(...). We claim that the expression above is 0. To see this, note that as σ varies,
the terms in the last two rows of the expression above (plus the corresponding
two rows when m and n are switched, which are encoded in the summands
denoted (...)) are in 1-to-1 correspondence to the outputs of the following algorithm:

• draw a perfect matching between a set of red balls labeled by 1, ..., b + 1
and a set of yellow balls labeled by 1, ..., b+ 1 (this corresponds to σ)

• find any two balls labeled by m and n, remove them, and then match
together their former matches

If the two balls which were removed had the same color, their corresponding
terms would cancel out from (5.17) due to the presence of the signature sign σ.
If the two balls have different colors, then their corresponding terms are precisely
canceled by the summand on the third line of (5.17), which implies the fact that
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the total sum equals 0, as required.

The second thing we need to prove is that the action induced by the Levi subgroup
h ∼= gl∞ ⊂ g on the two sides of (5.16) is well-defined. To this end, let us identify the
generator dm,−n ∈ h with the ∞×∞ matrix Em,n with entry 1 at the intersection
of row m and column n, and 0 everywhere else. As a consequence of (5.15):

(
Es,u −

b

2
δus

)
· (em1 ∧ ... ∧ emb+1

)(en1 ∧ ... ∧ enb+1
) =

=

i s.t.∑

mi=u

(... ∧ emi−1 ∧ es ∧ emi+1 ∧ ...)(en1 ∧ ... ∧ enb+1
)+

(5.18) +

i s.t.∑

ni=u

(em1 ∧ ... ∧ emb+1
)(... ∧ eni−1 ∧ es ∧ eni+1 ∧ ...)

is the sum of all terms obtained by all ways of isolating eu in the two wedge products,
and replacing them by es. Similarly, formula (5.10) implies that:
(
ds,−u −

b

2
δus

)
vm1,...,mb+1
n1,...,nb+1

=
∑

σ∈Σb+1

(sign σ)[ds,−u, dm1,nσ(1)
...dmb+1,nσ(b+1)

] · v∅ =

=
∑

σ∈Σb+1

(sign σ)

[
i s.t.∑

mi=u

...dmi−1,nσ(i−1)
ds,nσ(i)

dmi+1,nσ(i+1)
...+

+
i s.t.∑

ni=u

...dm
σ−1(i−1)

,ni−1ds,mi
dm

σ−1(i+1)
,ni+1 ...

]
· v∅ =

(5.19) =

i s.t.∑

mi=u

v...,mi−1,s,mi+1,...
...ni−1,ni,ni+1,...

+

i s.t.∑

ni=u

v...,mi−1,mi,mi+1,...
...ni−1,s,ni+1,...

Comparing (5.18) with (5.19) implies that (5.16) is a map of gl∞ modules.
�

6. The geometry of nested Hilbert schemes

6.1. The main purpose of the current Section is to prove Theorem 1.6. Therefore,
we let S be an arbitrary smooth projective surface over C for the remainder of
this paper (in other words, we drop the K3 assumption), and let I denote the
universal ideal sheaf on Hilbn × S. Because I is flat over Hilbn, it inherits prop-
erties from the ideals ofOS it parametrizes, such as having homological dimension 1:

Proposition 6.2. ([15]) There exists a short exact sequence on Hilbn × S:

(6.1) 0→W → V → I → 0

with W and V locally free.
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Recall from Subsection 3.1 the nested Hilbert scheme:

(6.2) Hilbn,n+1 =
{
(I, I ′) such that I ⊃x I ′ for some x ∈ S

}
⊂ Hilbn ×Hilbn+1

Above and throughout this Section, we will write I ⊃x I ′ if I ⊃ I ′ and I/I ′ ∼= Cx.

Proposition 6.3. Hilbn,n+1 is smooth of dimension 2n+ 2, and the morphism:

Hilbn,n+1
pS
−→ S, (I ⊃ I ′) 7→ supp I/I ′

is smooth.

The Proposition above is well-known, except perhaps the fact that pS is smooth.
This fact is easy to show, for example it is proved in [17] by showing that pS is a
submersion. All we will use in the present paper is that pS is flat.

6.4. Let us describe the scheme structure of Hilbn,n+1. Consider the maps:

(6.3) Hilbn,n+1

p−

yyss
ss
ss
ss
s

pS

��

p+

&&▲
▲▲

▲▲
▲▲

▲▲
▲

Hilbn S Hilbn+1

(I ⊃x I ′)
p−

{{✇✇
✇✇
✇✇
✇✇
✇

pS

��

p+

##❍
❍❍

❍❍
❍❍

❍❍

I x I ′

and the tautological line bundle on the nested Hilbert scheme:

(6.4) L

��

Hilbn,n+1

L|(I⊃I′) = I/I ′

Throughout the remainder of this paper, we will write P(E) = Proj(Sym(E)).

Proposition 6.5. Let I be the universal ideal sheaf on Hilbn × S, and let V, W
be the vector bundles of Proposition 6.2. Then we have the commutative diagram:

(6.5) Hilbn,n+1
�

�

//

p−×pS
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
PHilbn×S(V)

ρ

��

Hilbn × S

where the horizontal arrow is the zero locus of the following map of vector bundles:

(6.6) σ− : ρ∗(W)→ ρ∗(V)→ O(1)

on PHilbn×S(V). Moreover, σ− is regular (i.e. its Koszul complex is acyclic except
in the right-most place) and L is isomorphic to the restriction of O(1) to Hilbn,n+1.

Proposition 6.5 was proved in [17], as was the following analogous version with p−
replaced by p+.
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Proposition 6.6. Let I ′ be the universal ideal sheaf on Hilbn+1×S, and let V ′,W ′

be the vector bundles of Proposition 6.2. Then we have the commutative diagram:

(6.7) Hilbn,n+1
�

�

//

p+×pS
))❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
PHilbn+1×S(W

′∨ ⊗KS)

ρ

��

Hilbn+1 × S

where the horizontal arrow is the zero locus of the following map of vector bundles:

(6.8) σ+ : ρ∗(V ′
∨
⊗KS)→ ρ∗(W ′

∨
⊗KS)→ O(1)

on PHilbn+1×S(W
′∨ ⊗KS). Moreover, σ+ is regular and L = O(−1)|Hilbn,n+1

.

Proof. of Claim 3.5: We have the following formulas:

(p+ × pS)∗(c1(L)
k) = (−1)kck+2(I ⊗ K

−1
S )(6.9)

(p− × pS)∗(c1(L)
k) = (−1)kck(−I)(6.10)

Let us provide a quick proof for (6.10), and leave the analogous case of (6.9) as
an exercise to the interested reader. Since top Chern classes of vector bundles are
equal to zero loci of regular sections, Proposition 6.5 implies that:

(p− × pS)∗(c1(L)
k) = ρ∗

(
c(ρ∗(W∨),O(1)) · c1(O(1))

k
)

where c(E , z) =
∑r

k=0 ck(E)z
r−k denotes the Chern polynomial of an arbitrary rank

r vector bundle E . Since ρ is the projectivization of the vector bundle V , we have:

ρ∗
(
c1(O(1))

k
)
= ck−r+1(−V

∨) = coefficient of z−1 in c(−V∨, z) · zk

(by the theory of Segre classes). Combining the two displays above yields precisely:

(p− × pS)∗(c1(L)
k) = coefficient of z−1 in c(W∨ − V∨, z) · zk

Then I = V/W and the fact that ck(−I
∨) = (−1)kck(−I) imply (6.10).

Since Claim 3.5 is stated in the context of a K3 surface S, we will assume KS
∼= OS

for the remainder of this proof, as this will make our formulas simpler. Let us recall
that the Chern character and the total Chern class:

ch(V ) =
∑

n≥0

chn(V ), c(V ) =
∑

n≥0

(−1)ncn(V )

are connected by the operations:

Ψ(ch(V )) = c(V ), where Ψ


∑

n≥0

an


 = exp


∑

n≥1

−(n− 1)!an




Φ(c(V )) = ch(V ), where Φ


∑

n≥0

−
an

(n− 1)!


 = log


∑

n≥0

an




with an being a degree n class in the Chow group (the statements above are proved
by checking them when V is a line bundle, and then using the fact that ch is additive
and c is multiplicative). We have a short exact sequence on Hilbn,n+1 × S:

(6.11) 0→ p∗+(I)→ p∗−(I)→ L⊗ (pS × Id)∗(O∆)→ 0
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(where ∆ : S →֒ S × S is the diagonal). In the relation above and throughout this
computation, we abuse notation and write L both for the tautological line bundle
on Hilbn,n+1 and for its pull-back to Hilbn,n+1 × S and Hilbn,n+1 × S × S. The
additivity of Chern character implies the following identity in A∗(Hilbn,n+1 × S):

ch(p∗±(I)) = ch(p∗∓(I)) ∓


∑

n≥0

c1(L)
n

n!


 · (pS × Id)∗

(
[∆]−

[∆]2

12

)

We may pass this identity through the transformation Ψ, and obtain:

(6.12) c(p∗±(±I)) = c(p∗∓(±I))

[
1 + (pS × Id)∗([∆])

∞∑

n=0

c1(L)
n(n+ 1)

]

(this fact uses [∆]3 = 0, which follows from [∆] being a codimension 2 class on the
fourfold S × S). With this in mind, we may perform the following computation:

(p+ × pS1 × IdS2)∗ ◦ r
a ◦ (p− × IdS2)

∗ ◦ (p− × pS2)∗(c1(L)
b)

(6.10)
=

= (p+ × pS1 × IdS2)∗

[
c1(L)

a · (−1)bcb((p− × IdS2)
∗(−I))

]
(6.12)
=

= (−1)b(p+×pS1×IdS2)∗

[
c1(L)

acb(−I2)+[∆]

∞∑

n=0

(−1)nc1(L)
a+ncb−n−2(−I2)(n+1)

]

(6.9)
= (−1)a+bca+2(I1)cb(−I2) + [∆]

∞∑

n=0

(−1)a+bca+n+2(I)cb−n−2(−I)(n+ 1)

Above, I1 and I2 are the pull-backs of the universal ideal sheaves from the factors
Hilbn×S1 and Hilbn×S2 (respectively) to the product Hilbn×S1×S2. We suppress
the indices on I in the sum on the last line because [∆]I1 = [∆]I2. Similarly:

(p− × IdS1 × pS2)∗ ◦ r
b ◦ (p+ × IdS1)

∗ ◦ (p+ × pS1)∗(c1(L)
a)

(6.9)
=

= (p− × IdS1 × pS2)∗

[
c1(L)

b · (−1)aca+2((p+ × IdS1)
∗(I))

]
(6.12)
=

= (−1)a(p−×IdS1×pS2)∗

[
ca+2(I1)c1(L)

b+[∆]

∞∑

n=0

(−1)nca−n(I1)c1(L)
b+n(n+1)

]

(6.10)
= (−1)a+bca+2(I1)cb(−I2) + [∆]

∞∑

n=0

(−1)a+bca−n(I)cb+n(−I)(n+ 1)

Taking the difference between the two equations above yields:

(6.13) LHS of (3.26) = [∆]
∑

n∈Z

(−1)a+bca+n+1(I)cb−n−1(−I)n

which we claim is precisely the right-hand side of (3.26). This claim follows from
the identity of Chern classes (we assume a+ b > 0 for simplicity, although the case
a+ b ≤ 0 is analogous and left to the interested reader):

∑

n∈Z

(−1)a+bca+n+1(I)cb−n−1(−I)n = coefficient of za+b−1 in
dc(I, z)

dz
c(−I, z)−

−(a+1)·coefficient of za+b in c(I, z)c(−I, z) = coefficient of za+b−1 in
d log(c(I, z))

dz
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= −(a+ b)! · cha+b(I). The latter equality holds because both sides are additive in
I, and it is straightforward to check it when I is replaced by a line bundle. Since
[I] = 1 − [OZ ] in the K–theory group of Hilb × S, we have that −cha+b(I) =
cha+b(OZ), hence the right-hand side of (6.13) equals the right-hand side of (3.26).

�

6.7. Let us consider the following more complicated cousin of the scheme (6.2):

(6.14) Hilbn−1,n,n+1 =
{
(I, I ′, I ′′) such that I ⊃x I ′ ⊃x I ′′

for some x ∈ S
}
⊂ Hilbn−1 ×Hilbn ×Hilbn+1

The following result was proved in [16], in the analogous setup of moduli spaces of
stable sheaves, but the modifications to the case of Hilbert schemes are minimal.

Proposition 6.8. Hilbn−1,n,n+1 is smooth of dimension 2n+ 1.

Note that the scheme (6.14) is endowed with line bundles L1 and L2:

(6.15) L1,L2

��

Hilbn−1,n,n+1

L1|(I⊃I′⊃I′′) = I ′/I ′′, L2|(I⊃I′⊃I′′) = I/I ′

Consider also the natural maps which forget either I ′′ or I:

(6.16) Hilbn−1,n,n+1

π−

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

π+

��

Hilbn−1,n Hilbn,n+1

(I ⊃ I ′ ⊃ I ′′)

π−

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

π+

��

(I ⊃ I ′) (I ′ ⊃ I ′′)

Let Γ : Hilbn,n+1 →֒ Hilbn,n+1 × S denote the graph of the map pS .

Proposition 6.9. ([17]) Let I denote the universal ideal sheaf on Hilbn×S. Then:

Hilbn−1,n,n+1
�

�

//

π−
((❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

PHilbn−1,n(Γ
∗(V))

ρ−

��

Hilbn−1,n

Hilbn−1,n,n+1
�

�

//

π+
))❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚
PHilbn,n+1

(Γ∗(W∨ ⊗KS))

ρ+

��

Hilbn,n+1

where the horizontal arrows are the zero loci of the following maps of vector bundles:

σ′− : ρ∗−

(
Γ∗(W)

L ⊗KS

)
induced by σ−
−−−−−−−−−→ O(1)(6.17)

σ′+ : ρ∗+

(
Γ∗(V∨ ⊗KS)

L−1 ⊗KS

)
induced by σ+
−−−−−−−−−→ O(1)(6.18)
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on PHilbn−1,n
(Γ∗(V)) and PHilbn,n+1

(Γ∗(W∨ ⊗ K)), respectively (above, σ− and σ+

denote the sections given by the same formulas as (6.6) and (6.8), respectively).

Moreover, the line bundles L1 and L2 are isomorphic to the restrictions to
Hilbn−1,n,n+1 of the tautological line bundles OPHilbn−1,n

(1) and OPHilbn,n+1
(−1),

respectively. Therefore, the definition of Chern/Segre classes implies that:

π+∗(c1(L2)
k) = (−1)kck+1

(
I ⊗ K−1S − L⊗K

−1
S

)
(6.19)

π−∗(c1(L1)
k) = (−1)k−1ck−1 (−I − L ⊗KS)(6.20)

6.10. Suppose we have a fiber square of schemes with all maps being proper:

(6.21) Y ′
ι′

//

η′

��

X ′

η

��

Y
ι

// X

and we assume that the map ι is a regular embedding, cut out by a section σ :
OX → V of a vector bundle V on X . It is well-known that if X and X ′ are Cohen-
Macaulay, then the fiber square is derived (i.e. ι′ is a regular embedding cut out
by the section η∗(σ) : OX′ → η∗(V )) if and only if:

(6.22) dimX ′ − dimY ′ = dimX − dimY

On the other hand, suppose η∗(σ) lands in the kernel of a map η∗(V )→ E, where
E is a rank r vector bundle on X ′. Then the embedding ι′ is regular, and cut out
by the induced map η∗(σ) : OX′ → Ker (η∗(V )→ E), if and only if:

(6.23) dimX ′ − dimY ′ = dimX − dimY + r

We will refer to this situation as excess intersection, and call E the excess bundle.
Then the following formulas are well-known ([8]):

Lemma 6.11. If the square (6.21) is derived (i.e. the setup of (6.22) holds), then
we have the following equality of morphisms of Chow groups:

(6.24) η′∗ ◦ ι
′∗ = ι∗ ◦ η∗

If we are in the excess intersection situation (i.e. the setup of (6.23) holds), then
we have the following equality of morphisms of Chow groups:

(6.25) η′∗ ◦ (e(E) · ι′
∗
) = ι∗ ◦ η∗

where e denotes the Euler class (or top Chern class) of the vector bundle E.

6.12. Consider the following diagram, obtained by combining (6.3) with (6.16):

(6.26) Hilbn−1,n,n+1

π−

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

π+

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Hilbn−1,n

p+×pS
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
Hilbn,n+1

p−×pS
ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

Hilbn × S



LEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN 27

This diagram is a fiber square, as can be observed by recalling the definitions of
the nested Hilbert schemes involved as answers to moduli problems. It is not
a derived fiber square, which can be observed by comparing (6.6) with (6.17).
However, it is an instance of excess intersection (6.23) (see [17] for a proof), hence
we obtain the following special case of (6.25):

Proposition 6.13. We have the following equality of maps between Chow groups:

(6.27) π+∗ ◦
[
(l1 − l2 − p∗S(t)) · π

∗
−

]
= (p− × pS)

∗ ◦ (p+ × pS)∗

where l1 = c1(L1), l2 = c1(L2), t = c1(KS) are classes in the Chow groups of all
spaces in (6.26). The analogous result holds with the roles of + and − switched.

Indeed, the only thing to note is that the excess bundle is L1 ⊗ L
−1
2 ⊗ p∗S(K

−1
S )

(which arises from the dual of the denominator of (6.18)). The fact that (6.23)
holds with r = 1 is a consequence of Propositions 6.3 and 6.8.

6.14. The Hilbert scheme Hilbn has dimension 2n. If we fix a closed point x ∈ S,
then we may define the defect of an ideal I ⊂ OS at the point x: this is simply the
length at x of the finite length sheaf OS/I. We have the locally closed stratificaton:

(6.28) Hilb =
∞⊔

d=0

Hilbdef d

by defect at the chosen point x ∈ S. It is well-known that Hilbdef 0 is open, while:

(6.29) codim Hilbdef d = d+ 1

for any d > 0 (see, for example, Lemma 6.10 of [13]).

Proposition 6.15. Consider any finite colength ideal I ⊂ OS and any closed point
x ∈ S. Then we have the following estimate:

(6.30) dimC Hom(I,Cx)− 1 ≤

√
2n+

1

4
−

1

2

where n is the colength of I at the point x. When n is small, we actually have:

if n = 0, then dimC Hom(I,Cx)− 1 = 0(6.31)

if n = 1, then dimC Hom(I,Cx)− 1 = 1(6.32)

if n = 2, then dimC Hom(I,Cx)− 1 = 1(6.33)

if n = 3, then dimC Hom(I,Cx)− 1 = 1 or 2(6.34)

where in (6.34), the value 2 is taken on a positive codimension locus of ideals.

Proof. of Proposition 6.15: The problem is purely local, so we may assume that
S = A2 and x = (0, 0). In this case, the torus action T = C∗ × C∗ y A2 extends
to the projective variety Hilb•n ⊂ Hilbn parametrizing length n subschemes of A2

supported at (0, 0). It is well-known that the T –fixed points of this action are:

Iλ = (xλ1 , xλ2y, ..., xλtyt−1) ⊂ C[x, y]
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as λ = (λ1 ≥ λ2 ≥ ... ≥ λt) goes over all partitions of n. Because the dimension
(6.30) is upper semicontinuous in I, it is enough to prove (6.30) when I = Iλ for
some partition λ. In this case, it is easy to see that:

dimC Hom(Iλ,Cx)− 1 = # number of different parts of λ

If we assume that λ consists of the distinct natural numbers n1, ..., ns with multi-
plicities m1, ...,ms ∈ N, then the inequality (6.30) is a consequence of:

s =

√
2(1 + 2 + ...+ s) +

1

4
−
1

2
≤

√
2(n1m1 + ...+ nsms) +

1

4
−
1

2
=

√
2n+

1

4
−
1

2

Formula (6.31) is trivial. To establish (6.32)–(6.34), one observes that for n ∈ {1, 2}
all ideals I ∈ Hilbn are curvilinear near x, i.e. contain the ideal J of a smooth curve.
When n = 3 almost all ideals I ∈ Hilbn are curvilinear near x, except the square
of the maximal ideal of the closed point x, which leads to the value 2 in (6.34). It
is easy to prove that an ideal I which is curvilinear near a point x ∈ S has the
property that dimC Hom(I,Cx)− 1 = 1, and this implies (6.32)–(6.34). In general,
on the irreducible variety Hilb•n, curvilinear ideals form a dense open set.

�

6.16. The following is our main geometric computation (see [16] for an analogous
version in the context of the K–theory of moduli spaces of stable sheaves):

Lemma 6.17. Consider the schemes Hilbn,n+1 = {(I0 ⊂ I1)} as well as:

(6.35) Hilbn,n+1 ×
Hilbn×S

Hilbn,n+1 = {(I0 ⊂ I1 ⊃ I ′0)}

(6.36) Hilbn−1,n,n+1 ×
Hilbn−1,n

Hilbn−1,n,n+1 = {(I0 ⊂ I1 ⊃ I ′0, I1 ⊂ I2)}

where all the inclusions are required to be supported at the same closed point, hence-
forth denoted by x, which is allowed to vary over S. We have the natural maps:

Hilbn,n+1

δ

��

Hilbn,n+1 ×
Hilbn×S

Hilbn,n+1

given by δ(I0 ⊂ I1) = (I0 ⊂ I1 ⊃ I0), and:

Hilbn−1,n,n+1 ×
Hilbn−1,n

Hilbn−1,n,n+1

ε

��

Hilbn,n+1 ×
Hilbn×S

Hilbn,n+1

given by forgetting I2. Then we have the formulas:

(6.37) ε∗(1) + δ∗(1) = 1

(6.38) ε∗(l2) + δ∗(l) = −t · ε∗(1) + l1 + l′1

where l1, l
′
1, l2 are the first Chern classes of the line bundles which keep track of the

quotients denoted by I1/I0, I1/I
′
0, I2/I1 in the diagrams above, and l = l1|δ = l2|δ.
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The class t denotes c1(KS), pulled back from A∗(S) to the Chow groups of the
various moduli spaces above via the map that remembers the support point x.

Proof. As we have observed in Proposition 6.3, Hilbn,n+1 is smooth of dimension
2n+ 2. It is also connected, as the natural map p− × pS : Hilbn,n+1 → Hilbn × S
has all geometric fibers isomorphic to projective spaces, see Proposition 6.5. We
will prove that the variety (6.35) has dimension 2n + 2, and has two irreducible
components of top dimension, by stratifying it according to the defect of the ideal
I1 at the point x:

(1) if I1 is locally free at the point x (i.e. has defect 0), then:

• I1 contributes 2n to the dimension

• x contributes 2 to the dimension

• I0, I
′
0 each contributes dimHom(I1,Cx)− 1 = 0 to the dimension

(2) if I1 has defect d > 0 at the point x, then:

• I1 contributes 2n− 1− d to the dimension, by (6.29)

• x contributes 2 to the dimension

• I0, I
′
0 each contributes dimHom(I1,Cx)− 1 to the dimension

The stratum (1) has dimension 2n+2. Similarly, the dimension of stratum (2) when
d = 1 is also 2n+ 2. When d = 2, Proposition 6.15 implies that the dimension of
stratum (2) is:

2n− 1 + 2 · 1 < 2n+ 2

while if d = 3 its dimension is:

2n− 2− (0 or 1) + 2 · (1 or 2) < 2n+ 2

The explanation for the word “or” is that, as we have seen in (6.34), a colength 3
ideal I1 having dimC Hom(I1,Cx)− 1 = 2 is a positive codimension property, hence
the underlined −1 appearing in the left-hand side above. Finally, if d ≥ 4, the
dimension of stratum (2) may be estimated using (6.30):

≤ 2n− 1− d+ 2 + 2

(√
2d+

1

4
−

1

2

)
< 2n+ 2

We conclude that (6.35) has dimension 2n+2, with two irreducible components of
top dimension: one is the closure of the locus where I1 has no defect at x, and the
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other is the closure of the locus where I1 has defect 1 at x. Therefore, the square:

(6.39) variety (6.35)

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

Hilbn,n+1

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Hilbn,n+1

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

Hilbn × S

consists only of varieties of dimension 2n+2. Since the maps on the bottom are lo-
cal complete intersection morphisms (see Proposition 6.5), we conclude that (6.22)
applies and the fiber square (6.39) is derived. Therefore, the variety (6.35) is l.c.i.,
hence only has two irreducible components. Similarly, we claim the variety (6.36) is
irreducible of dimension 2n+2. Indeed, we can show that its dimension is ≤ 2n+2
by considering the stratification according to the defect of the ideal I2 at the point x:

(1) if I2 is locally free at the point x, then:

• I2 contributes 2n− 2 to the dimension

• x contributes 2 to the dimension

• I1 contributes dimHom(I2,Cx)− 1 = 0 to the dimension

• I0, I
′
0 each contributes dimHom(I1,Cx)− 1 = 1 to the dimension

(2) if I2 has colength d > 0 at the point x, then:

• I2 contributes 2n− 3− d to the dimension, by (6.29)

• x contributes 2 to the dimension

• I1 contributes dimHom(I2,Cx)− 1 to the dimension

• I0, I
′
0 each contributes dimHom(I1,Cx)− 1 to the dimension

The dimension of stratum (1) is precisely 2n + 2, and it clearly has a single irre-
ducible component of this dimension. In case (2), we may use Proposition 6.15 to
obtain that the dimension of the stratum with d = 1 is:

≤ 2n− 2 + 1 + 2 < 2n+ 2

while the dimension of the stratum with d = 2 is:

≤ 2n− 3 + (0 or 1) + 2 · (2 or 1) < 2n+ 2

(the explanation for the “or” is that a colength 3 ideal I1 having dimC Hom(I1,C)−
1 = 2 is a positive codimension property). Finally, the dimension of the stratum
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(2) with d ≥ 3 is:

≤ 2n− 1− d+

√
2d+

1

4
−

1

2
− 1 + 2

(√
2(d+ 1) +

1

4
−

1

2

)
< 2n+ 2

(the boxed 1 was subtracted because on the dense open locus of ideals I2 which are
curvilinear at x, we may replace the underlined term with 1 in the formula above).
Consider the fiber square:

(6.40) variety (6.36)

vv♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

((P
PP

PP
PP

PP
PP

P

Hilbn−1,n,n+1

((P
PP

PP
PP

PP
PP

P
Hilbn−1,n,n+1

vv♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

Hilbn−1,n

The dimension of the four spaces in the diagram above are, from top to bottom,
2n+ 2, 2n+ 1, 2n+ 1, 2n. We claim that the fiber square above is derived, which
follows from equality (6.22) applied to the square (6.40), and the bottom-most
maps being l.c.i. morphisms, due to Proposition 6.9. We conclude that the
variety (6.36) is a local complete intersection, hence irreducible of dimension 2n+2.

Formula (6.37) is simply an equality on the top dimensional irreducible components,
and it follows from the fact that the two irreducible components of (6.35) are each
mapped onto by Hilbn,n+1 and the variety (6.36), respectively, under the maps δ
and ε, respectively. As for formula (6.38), let us consider the fiber square:

variety (6.36)

ε

��

a
// Hilbn−1,n,n+1

π+

��

variety (6.35)
b

// Hilbn,n+1

where a and b denote the projections onto the right Cartesian product factor in
(6.35) and (6.36). Because the dimensions of the varieties above are 2n+2, except
for that of Hilbn−1,n,n+1 which is 2n + 1, the excess intersection formula (as in
Proposition 6.13) implies the following equality of morphisms:

ε∗ ◦ ((l1 − l2 − t) · a∗) = b∗ ◦ π+∗

Applying this equality to the fundamental class gives us:

(6.41) ε∗(l2) = ε∗(l1 − t)− b∗(π+∗(1))

Because the divisor class l1 − t is pulled back from the variety (6.35), we have:

(6.42) ε∗(l1 − t) = (l1 − t)ε∗(1)
(6.37)
=

= l1(1− δ∗(1))− tε∗(1) = l1 − δ∗(l)− tε∗(1)

Moreover, as a consequence of (6.19), we have π+∗(1) = −l, and therefore:

(6.43) b∗(π+∗(1)) = b∗(−l) = −l′1
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Formulas (6.41), (6.42) and (6.43) yield:

ε∗(l2) = l1 − δ∗(l)− tε∗(1) + l′1

which proves (6.38).
�

6.18. We will now use the computations in Lemma 6.17 to obtain certain
equalities between the Nakajima operators qk of (3.2), thus leading to Theorem
1.6. However, the correspondence (3.1) has the disadvantage that it is rather
badly behaved, and it is hard to use it in order to explicitly compute the operators
qk in terms of tautological classes. Therefore, we find it more convenient to fac-
tor the Nakajima operators in terms of the nested Hilbert schemes of Subsection 6.1:

Theorem 6.19. Consider the operators:

e↑ :

∞⊕

n=0

A∗(Hilbn) −→

∞⊕

n=0

A∗(Hilbn,n+1), e↑ = p∗−

e↓ :

∞⊕

n=0

A∗(Hilbn,n+1) −→

∞⊕

n=0

A∗(Hilbn+1 × S), e↓ = (p+ × pS)∗

e→ :

∞⊕

n=1

A∗(Hilbn−1,n) −→

∞⊕

n=0

A∗(Hilbn,n+1), e→ = π+∗π
∗
−

f↑ :

∞⊕

n=0

A∗(Hilbn) −→

∞⊕

n=0

A∗(Hilbn−1,n), f↑ = p∗+

f↓ :

∞⊕

n=0

A∗(Hilbn,n+1) −→

∞⊕

n=0

A∗(Hilbn × S), f↓ = −(p− × pS)∗

f← :

∞⊕

n=0

A∗(Hilbn,n+1) −→

∞⊕

n=1

A∗(Hilbn−1,n), f← = −π−∗π
∗
+

with the maps p± and π± as in (6.3) and (6.16). Then we have:

qk = e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
k−1 operators

◦e↑(6.44)

q−k = f↓ ◦ f← ◦ ... ◦ f←︸ ︷︷ ︸
k−1 operators

◦f↑(6.45)

Proof. We will prove (6.44), as (6.45) is deduced from it by transposition. The
desired formula is an equality of top-dimensional cycles on Hilbn,n+k. Since this
variety has a single irreducible component of top dimension (see [13]), the formula
boils down to proving that for a generic point:

(I, I ′) ∈ Hilbn,n+k

(with supp I/I ′ = {x}) there is a unique way to complete it to a full flag:

(6.46) I ′ = In+k ⊂ In+k−1 ⊂ ... ⊂ In+1 ⊂ In = I

The reason for this is that the generic point of Hilbn,n+k is curvilinear, i.e. the
quotient I/I ′ is a quotient of OC for a smooth curve C ⊂ S, and in this case the
only choice for the flag (6.46) is given by the powers of mx ⊂ OC .
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�

6.20. As a consequence of formulas (6.44) and (6.45), we have the following result:

Proposition 6.21. For any k ∈ Z\0 and any γ ∈ R(S), the map qk(γ) preserves
Abig(Hilb). Similarly, for any k, k′ ∈ Z\0, the map qkqk′(∆) preserves Abig(Hilb).

Strictly speaking, the notion of big tautological classes was only defined for a K3
surface S, but the Proposition above holds for any surface S, as long as R(S)
that appears in Definition 2.7 is replaced by a subring of A∗(S) that contains the
Chern classes of the tangent bundle.

Proof. Let us first prove the statement about qk(γ), assuming k > 0 (the case k < 0
is analogous). Recall that A∗big(Hilbn) ⊂ A∗(Hilbn) is the subring generated by:

(6.47) π1∗

[
chk1

(
OHilbn×S

I

)
...chkt

(
OHilbn×S

I

)
· π∗2(γ)

]

for any k1, ..., kt > 0 and any γ ∈ R(S) ⊂ A∗(S). In a similar vein, let:

(6.48) A∗big(Hilbn × S) ⊂ A∗(Hilbn × S)

denote the subring generated by the pull-backs of classes (6.47) from Hilbn, the
pull-back of classes in R(S) from S, and the Chern character of I itself. Let:

A∗big(Hilbn,n+1) ⊂ A∗(Hilbn,n+1)

denote the subring generated by c1(L), the classes p∗S(R(S)), the pull-backs of
classes (6.47) from either Hilbn or Hilbn+1, and arbitrary Chern classes of Γ∗(I)
and Γ∗(I ′) (where I and I ′ are the two tautological ideal sheaves on the space
Hilbn,n+1×S, and Γ : Hilbn,n+1 → Hilbn,n+1×S is the graph of the map pS). Let:

A∗big(Hilbn,n+1,n+2) ⊂ A∗(Hilbn,n+1,n+2)

be defined analogously, with respect to all possible ideal sheaves on Hilbn,n+1,n+2.
To show that qk(γ) preserves the ring of big tautological classes, it suffices by (6.44)
to show that the maps p∗−, π

∗
−, π+∗, (p+ × pS)∗ send A∗big(...) to A∗big(...). This is

obvious for the pull-back maps by the very definitions of the various rings above, so
we only need to prove it for the push-forwards. For example, we must show that:
(6.49)

(p+ × pS)∗


∏

ki,γ

π1∗

[∏

i

chki

(
OHilbn,n+1×S

I

)
· π∗2(γ)

]
·
∏

j

chk′
j
(Γ∗(I)) · c1(L)

d




lies in A∗big(Hilbn+1 × S), for any choice of ki, k
′
j , d, γ (there is no reason to also

include factors where I is replaced by I ′ since these are pulled back via p+ × pS ,
and hence pass through the direct image, due to the projection formula). The short
exact sequence 0→ I ′ → I → π∗1(L)⊗ (pS× Id)∗(O∆)→ 0 on Hilbn,n+1×S yields:

π1∗

[∏

i

chki

(
OHilbn,n+1×S

I

)
· π∗2(γ)

]
=
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= π1∗

[∏

i

(
chki

(
OHilbn,n+1×S

I ′

)
−
∑

a+b=k

π∗1(c1(L))
a

a!
· (pS × Id)∗(chb(O∆))

)
· π∗2(γ)

]

Because the Chern character of O∆ equals [∆] multiplied by a class in R(S), then:

(6.50) π1∗

[∏

i

chki

(
OHilbn,n+1×S

I

)
· π∗2(γ)

]
=

= sum of expressions of the form c1(L)
a′

·π1∗

[∏

i

(
chk′

i

(
OHilbn,n+1×S

I ′

))
· π∗2(γ

′)

]

for various a′, k′i ∈ N, γ′ ∈ R(S) (above, we used π1∗(pS × Id)∗([∆]) = 1). The
right-hand side of (6.50) lies in A∗big(Hilbn,n+1), as expected. Similarly, we have:

(6.51) chk′(Γ∗(I)) = chk′ (Γ∗(I ′)) + chk′(L ⊗ (pS)
∗(O∆|∆)) =

= chk′(Γ∗(I ′)) + sum of expressions of the form c1(L)
a′

· p∗S(γ
′)

for various a′ ∈ N, γ′ ∈ R(S). Using formulas (6.50) and (6.51), one may write
(6.49) as a sum of products of big tautological classes on Hilbn+1 × S, times:

(p+ × pS)∗(c1(L)
d)

(6.10)
= (−1)dchd+2(I) for various d ∈ N

Therefore, we conclude that (6.49) is a big tautological class, hence (p+ × pS)∗
maps A∗big(...) to A∗big(...). The computation that shows that π+∗ maps A∗big(...)

to A∗big(...) is analogous, so we leave it as an exercise to the interested reader.

Let us now prove the statement about qkqk′(∆), assuming k, k′ > 0 (the cases when
k or k′ are negative are analogous). By (6.44), the operator qkqk′(∆) is given by:

A∗(Hilbn−k−k′ )
e↓◦(e→)k

′−1◦e↑
// A∗(Hilbn−k × S)

e↓◦(e→)k−1◦e↑
// A∗(Hilbn × S × S)

IdHilbn×∆
∗

rr❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞

A∗(Hilbn × S)
π1∗

// A∗(Hilbn)

Repeating the argument for qk(γ) from the previous paragraphs shows that
applying the top-most two maps in the display above to any big tautological class
takes it to a sum of products of the following types of classes on Hilbn × S × S:

• pull-backs of classes (6.47) from A∗(Hilbn)

• pull-backs of classes in R(S × S) ⊂ A∗(S × S)

• the Chern classes of the universal ideal sheaves I1 and I2, which are
pulled back from either of the two projections Hilbn × S × S → Hilbn × S

When we restrict the classes above to the diagonal ∆ : S →֒ S × S, we simply
obtain a big tautological class on Hilbn × S, as defined in (6.48). Pushing forward
such a class to Hilbn via the first projection lands in the subring generated by big
tautological classes (by the very definition of the latter), as was needed to prove.

�
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6.22. Recall the tautological line bundle L on Hilbn,n+1, and the operator of mul-
tiplication by its first Chern class:

(6.52) r :

∞⊕

n=0

A∗(Hilbn,n+1)
·c1(L)
−−−−→

∞⊕

n=0

A∗(Hilbn,n+1)

Consider the following operators, analogous to those of Theorem 6.19 (the maps
p±, pS , π± were defined in (6.3) and (6.16)):

e
(1)
↓ :

∞⊕

n=0

A∗(Hilbn,n+1) −→

∞⊕

n=0

A∗(Hilbn+1 × S), e
(1)
↓ = (p+ × pS)∗ ◦ r

e(1)→ :

∞⊕

n=0

A∗(Hilbn,n+1) −→

∞⊕

n=0

A∗(Hilbn+1,n+2), e(1)→ = π+∗π
∗
− ◦ r

as well as the analogous notation for the f operators. In the following for-
mulas, we will often refer to t as a class on Hilbn,n+1, explicitly given by p∗S(c1(KS)).

Proposition 6.23. We have the following equalities:

(6.53) π+∗π
∗
−π−∗π

∗
+ + Id = (p− × pS)

∗ ◦ (p− × pS)∗

(6.54) π+∗π
∗
− ◦ r ◦ π−∗π

∗
+ + r =

= −p∗S(t) ·π+∗π
∗
−π−∗π

∗
++ r◦ (p−×pS)

∗ ◦ (p−×pS)∗+(p−×pS)
∗ ◦ (p−×pS)∗ ◦ r

of operators
⊕∞

n=0 A
∗(Hilbn,n+1)→

⊕∞
n=0 A

∗(Hilbn,n+1).

Formulas (6.53) and (6.54) are straightforward restatements of the equalities
(6.37) and (6.38) of cycles (for the convenience of the reader, the individual
summands in (6.53) and (6.54) precisely match the respective summands in (6.37)
and (6.38), in order from left to right). This fact uses base change (6.24) and the
fact that the squares (6.39) and (6.40) are derived.

Proposition 6.24. For any k ∈ N, we have the formulas:

(6.55)

i,j>0∑

i+j=k

qiqj

∣∣∣
∆
= e

(1)
↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸

k−1 operators

◦e↑ − e↓ ◦ e→ ◦ ... ◦ e
(1)
→︸ ︷︷ ︸

k−1 operators

◦e↑ − t(k − 1)qk

and:

(6.56)

i,j>0∑

i+j=k

q−iq−j

∣∣∣
∆
= f↓◦f← ◦ ... ◦ f

(1)
←︸ ︷︷ ︸

k−1 operators

◦f↑−f
(1)
↓ ◦f← ◦ ... ◦ f←︸ ︷︷ ︸

k−1 operators

◦f↑−t(k−1)q−k

where we recall that t = c1(KS) ∈ A∗(S) multiplies qk : A∗(Hilb) → A∗(Hilb × S)
by multiplying the S factor.

Proof. We will only prove (6.55), as (6.56) is analogous. By (6.44), we have:

(6.57) qiqj

∣∣∣
∆
= e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸

i−1 operators

◦e↑ ◦ e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
j−1 operators

◦e↑
∣∣∣
∆
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Formula (6.27) translates into the identity e→◦e
↑◦e↓ = e(1)→ ◦e→−e→◦e

(1)
→ −te→◦e→,

and therefore the right-hand side of (6.57) equals:

e↓◦e→ ◦ ... ◦ e→︸ ︷︷ ︸
i−1 operators

◦e↑◦e↓◦e→ ◦ ... ◦ e→︸ ︷︷ ︸
j−1 operators

◦e↑ = e↓◦e→ ◦ ... ◦ e
(1)
→︸ ︷︷ ︸

i−1 operators

◦e→◦e→ ◦ ... ◦ e→︸ ︷︷ ︸
j−1 operators

◦e↑−

−e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
i−1 operators

◦e(1)→ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
j−1 operators

◦e↑− te↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
i−1 operators

◦e→ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
j−1 operators

◦e↑

Restricting to ∆ and summing the right-hand sides over all i+ j = k yields (6.55).
�

Proof. of Theorem 1.6: We will first prove (1.6). Fix n ∈ N, and for any k ∈
{0, ..., n} denote by Sk the composition below (notation as in (6.3) and (6.16)):

A∗(Hilbn × S)
(p+×pS)∗
←−−−−−− A∗(Hilbn−1,n)

π+∗π
∗
−

←−−−− ...
π+∗π

∗
−

←−−−−

π+∗π
∗
−

←−−−− A∗(Hilbn−k−1,n−k)
π−∗π

∗
+

←−−−− ...
π−∗π

∗
+

←−−−− A∗(Hilbn−1,n)
p∗
+
←−− A∗(Hilbn)

If we apply (6.53), we obtain for all k ≥ 1:

Sk + Sk−1 = e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
k−1 operators

◦e↑ ◦ (−1)kf↓ ◦ f← ◦ ... ◦ f←︸ ︷︷ ︸
k−1 operators

◦f↑
∣∣∣
∆
=

(6.58) = (−1)kqkq−k

∣∣∣
∆

where the last equality combines (6.44) and (6.45). Meanwhile, S0 = (p+× pS)∗p
∗
+

and the projection formula together with (6.9) implies that S0 is equal to the usual
pullback map A∗(Hilbn)→ A∗(Hilbn × S) followed by:

multiplication by (p+ × pS)∗(1) = multiplication by c2(I ⊗ K
−1
S ) =

(6.59) = multiplication by ch2 (OZ)

Taking the alternating sum of (6.58) for all k ≥ 1 with (6.59) yields precisely (1.6).

Now let us prove (1.7). Fix n ∈ N, and for any k ∈ {0, ..., n} let us denote by Ak,
Bk, Ck the three compositions below (notation as in (6.3) and (6.16)):

A∗(Hilbn × S)
(p+×pS)∗
←−−−−−− A∗(Hilbn−1,n)

π+∗π
∗
−

←−−−− ...
π+∗π

∗
−

←−−−− A∗(Hilbn−k−1,n−k)
r
←−

r
←− A∗(Hilbn−k−1,n−k)

π−∗π
∗
+

←−−−− ...
π−∗π

∗
+

←−−−− A∗(Hilbn−1,n)
p∗
+
←−− A∗(Hilbn)

A∗(Hilbn × S)
(p+×pS)∗
←−−−−−− A∗(Hilbn−1,n)

r
←− A∗(Hilbn−1,n)

π+∗π
∗
−

←−−−− ...
π+∗π

∗
−

←−−−−

π+∗π
∗
−

←−−−− A∗(Hilbn−k−1,n−k)
π−∗π

∗
+

←−−−− ...
π−∗π

∗
+

←−−−− A∗(Hilbn−1,n)
p∗
+
←−− A∗(Hilbn)

A∗(Hilbn×S)
(p+×pS)∗
←−−−−−− A∗(Hilbn−1,n)

π+∗π
∗
−

←−−−− ...
π+∗π

∗
−

←−−−− A∗(Hilbn−k−1,n−k)
π−∗π

∗
+

←−−−−

π−∗π
∗
+

←−−−− ...
π−∗π

∗
+

←−−−− A∗(Hilbn−1,n)
r
←− A∗(Hilbn−1,n)

p∗
+
←−− A∗(Hilbn)
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If we apply (6.54), we obtain:

Ak +Ak−1 = −tSk + e↓ ◦ e→ ◦ ... ◦ e
(1)
→︸ ︷︷ ︸

k−1 operators

◦e↑ ◦ (−1)kf↓ ◦ f← ◦ ... ◦ f←︸ ︷︷ ︸
k−1 operators

◦f↑+

+ e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
k−1 operators

◦e↑ ◦ (−1)kf
(1)
↓ ◦ f← ◦ ... ◦ f←︸ ︷︷ ︸

k−1 operators

◦f↑

while if we apply (6.53), we have:

Bk +Bk−1 = e
(1)
↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸

k−1 operators

◦e↑ ◦ (−1)kf↓ ◦ f← ◦ ... ◦ f←︸ ︷︷ ︸
k−1 operators

◦f↑

Ck + Ck−1 = e↓ ◦ e→ ◦ ... ◦ e→︸ ︷︷ ︸
k−1 operators

◦e↑ ◦ (−1)kf↓ ◦ f← ◦ ... ◦ f
(1)
←︸ ︷︷ ︸

k−1 operators

◦f↑

The three relations above, together with (6.55) and (6.56), yield:

(6.60) −Ak −Ak−1 +Bk +Bk−1 + Ck + Ck−1 = tSk + (−1)k·



i,j>0∑

i+j=k

qiqjq−k

∣∣∣
∆
+ t

∞∑

k=1

(k − 1)qkq−k

∣∣∣
∆
+

i,j>0∑

i+j=k

qkq−iq−j

∣∣∣
∆
+ t

∞∑

k=1

(k − 1)qkq−k

∣∣∣
∆




Meanwhile, −A0 + B0 + C0 is equal to (p+ × pS)∗ ◦ r ◦ p
∗
+, hence the projection

formula together with (6.9) implies that:

(6.61) −A0 +B0 + C0 = multiplication by (p+ × pS)∗(c1(L))
(6.9)
=

= −multiplication by c3(I ⊗ K
−1
S ) = multiplication by 2ch3 (OZ)− tch2 (OZ)

Since multiplication by ch2(OZ) is −
∑∞

k=1 qkq−k|∆ by (1.6), we may take the
alternating sum of (6.60) for all k ≥ 1 with (6.61) and obtain:

multiplication by 2ch3 (OZ) + t

∞∑

k=1

qkq−k

∣∣∣
∆
= t

∞∑

k=1

(−1)k−1Sk−

−

i,j>0∑

i+j=k

qiqjq−k

∣∣∣
∆
− t(k − 1)qkq−k

∣∣∣
∆
−

i,j>0∑

i+j=k

qkq−iq−j

∣∣∣
∆
− t(k − 1)qkq−k

∣∣∣
∆

By combining (6.58) and (6.59), we obtain
∑∞

k=1(−1)
k−1Sk =

∑∞
k=1(k−1)qkq−k|∆.

Therefore, the relation above implies:

multiplication by 2ch3 (OZ) = −

i,j>0∑

i+j=k

qiqjq−k

∣∣∣
∆
−

i,j>0∑

i+j=k

qkq−iq−j

∣∣∣
∆
− tkqkq−k

∣∣∣
∆

Dividing by 2 yields formula (1.7).
�
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