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Abstract

Uncertainty quantification (UQ) is an important component of molecular property

prediction, particularly for drug discovery applications where model predictions direct

experimental design and where unanticipated imprecision wastes valuable time and

resources. The need for UQ is especially acute for neural models, which are becoming

increasingly standard yet are challenging to interpret. While several approaches to UQ

have been proposed in the literature, there is no clear consensus on the comparative

performance of these models. In this paper, we study this question in the context of

regression tasks. We systematically evaluate several methods on five regression datasets

using multiple complementary performance metrics. Our experiments show that none

of the methods we tested is unequivocally superior to all others, and none produce a
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particularly reliable ranking of errors across multiple datasets. While we believe these

results show that existing UQ methods are not sufficient for all common use cases and

further research is needed, we conclude with a practical recommendation as to which

existing techniques seem to perform well relative to others.

Introduction

Uncertainty quantification (UQ) has grown increasingly valuable in molecular property pre-

diction pipelines, where quantitative structure-activity relationship (QSAR) models are used

to prioritize expensive and time consuming experimentation.1,2 Of the many architectures

employed for QSAR modeling, neural networks (NNs) are some of the most opaque in terms

of our ability to interpret their predictions. This makes it especially challenging to evaluate

their robustness, out-of-domain applicability, and possible failure modes. Significant work

has been done in UQ for NNs in an attempt to resolve this problem, both within and out-

side of the context of QSAR3–15 including several comparative reviews.16,17 While many UQ

methods have been developed, variation between datasets, evaluation criteria, and hyper-

parameter selection have made objective performance comparison difficult. Our goal is to

systematically explore this topic.

We focus on small organic molecules and properties or activities used in four widely-

adopted public benchmark datasets and one synthetic dataset for regression tasks.18 We

systematically evaluate a variety of UQ techniques compatible with NNs. We apply these

methods to message passing networks (MPNNs), which learn parameterized mappings from

graph-structured objects to continuous feature vectors and have achieved state-of-the-art

performance across a wide variety of public and industrial datasets.18–23 In addition, we

also apply these methods to feed forward networks (FFNs) using static fingerprint (FP)

representations, to see if behavior is constant across NN architectures. We also test two

fingerprint-based regression techniques with alternate approaches to uncertainty estimation

not involving neural networks.
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We explore multiple metrics for evaluating UQ that reflect its potential applications. At

minimum, an effective form of UQ should help us identify molecules for which the model

prediction is more or less certain than for other molecules. When the objective is to maximize

the domain of applicability of the QSAR model, it could be used to select molecules with

the highest uncertainty for experimental testing. To test for this desirable property, we

measure each method’s ability to rank predictions by absolute error. Some UQ methods

also model the expected error as a Gaussian random variable, thereby producing explicit

confidence intervals. We evaluate whether these confidence intervals reflect the distribution of

observed errors; this can be applied to batched Bayesian optimization to estimate the overall

probability of improvement and whether predictions are likely to be systematically over- or

under-confident. We also evaluate predictions on a molecule-by-molecule basis in terms of

the probability that the observed error can be explained by the quantitative uncertainty

prediction.

No method consistently satisfied the objective of producing a strong ranking of errors,

on either MPNNs or FFNs. Performance of this task was strongly dataset dependent, with

all methods producing poor rankings for certain tasks. We also found no UQ method to

significantly outperform all others across all performance metrics. Instead, we found sub-

stantial variation in performance across all dimensions of our experimentation: Methods

performed inconsistently across evaluation criteria within each dataset; within each evalua-

tion criterion, methods performed inconstantly across datasets. Our results show that while

existing UQ tools may be used to isolate low-error predictions for some tasks, researchers

can still encounter tasks on which all existing methods do poorly. We have also not identified

any dataset properties that make this more likely to occur, leaving trial and error as the

only currently known strategy for identifying these cases. Therefore, we believe that further

method development is necessary to identify reliable UQ methods for regression tasks.
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Methods

We distinguish between four primary strategies for uncertainty estimation: Ensemble based

methods, distance based methods, mean variance estimation, and union based methods.

Some of these UQ methods are intended to provide a quantitative measure of the expected

squared error, while others are intended to be used only to indicate relative uncertainty.

Methods of the former type are preferred, as they can be directly incorporated into Bayesian

optimization frameworks for molecular optimization. Methods of the latter type are still very

useful, as they can be used for Bayesian experimental design when the goal is to optimize

model accuracy. The evaluation metrics we describe later reflect both of these use cases.

We restrict our evaluation to regression tasks, for which we have a dataset D comprising a

collection of tuples {(x, y)}, where y ∈ R is a scalar property and x is a molecule (represented

by its SMILES string).

We treat our models’ predictions as following a Gaussian distribution with an expected

signed error of zero. The UQ values thus reflect beliefs about the unsigned error. Specifically,

the error of a model prediction M(x) compared to the true value y is modeled by

M(x)− y ∼ N (0, σ̂2(x)) σ̂2(x) := f(U(x)), (1)

where σ̂2(x) is a predicted variance that is assumed to be a simple function f of any of the

uncertainty metrics U(x) described below.

For those methods that attempt to provide a quantitative estimate of the variance, we

assume f to be the identity function so that σ̂2(x) := U(x). For relative uncertainty esti-

mators, linear functions f enable us to compute meaningful σ̂2(x) values (see the discussion

below of “calibrated” uncertainty).

The MPNN framework used in this study is Chemprop, described in detail by Yang

et al..23 A link to the corresponding code is available at the end of this paper. Unless

otherwise noted, the model was trained with the following default parameters: 3 message
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(a) Ensemble Based Methods (b) Mean-Variance Estimation

(c) Distance Based Methods (d) Union Based Methods

Figure 1: Illustration of each considered uncertainty estimator. (a) In ensemble based meth-
ods, molecules are passed through a trained ensemble, with greater variation in prediction
outputs suggesting greater uncertainty. (b) In mean-variance estimation, the neural net-
work’s output is modified to produce the parameters of a Gaussian distribution. (c) In
distance based methods, the distance from a molecule of interest to its nearest neighbors in
the training set is interpreted as uncertainty. (d) In union based methods, the output of a
neural network is fed into another model that can calculate uncertainty.
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passing steps, ReLU activation functions, and a hidden size of 300 to produce a learned

300-dimensional feature vector. The 300-dimensional feature vector is passed through two

additional dense layers of size 300 before a final linear output layer.

For FFNs, the same two dense layers of size 300 are used without the preceding message

passing layers. For these models, molecules are represented as Morgan fingerprints as imple-

mented in RDKit with a length of 2048, radius of 3, and the useChirality flag set to true.24

We did not explore other FP representations.

We now present each of the UQ strategies summarized by the four categories in Figure 1.

Ensemble Based Methods

In any deep learning task, there is inherent stochasticity arising from a network’s initialization

and the order of data observed while training. For this reason, test predictions vary across

multiple runs. Rather than training a single model M , ensemble based methods instead

train a set of models E = {M1,M2, · · · ,Mn}, where each Mi is a single, distinct model. For

any input x, the ensemble’s prediction is defined to be the arithmetic mean of the individual

models’ predictions:

M̃(x) =
∑
M∈E

M(x)

n
. (2)

Prior work has established that ensembling can yield models with greater accuracy than

any individual model in the set.25 Lakshminarayanan et al. propose that the variance be-

tween model outputs might also be used as a measurement of uncertainty.5 Therefore, the

uncertainty of an ensemble, Uensemble, is defined as the variance of predictions:

Uensemble(x) =
∑
M∈E

(M̃(x)−M(x))2

n
. (3)

The primary drawback of any ensemble based uncertainty estimation method is increased

training time, the magnitude of which depends on the size of the ensemble and how elements
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are selected. For testing purposes, we fix the size of the ensemble to 16 and consider the

following methods to produce E :

Traditional Ensembling

Each Mi ∈ E is trained on the same training data but is initialized with a different set of

randomly selected weights, as proposed by Lakshminarayanan et al..5 The expectation

is that in regions of the input space that are not well covered by the training data,

each model is affected more significantly by its initialization, while near known values

each model is likely to have converged to a similar value. This would imply that when

variance between model outputs is high, there is greater uncertainty in the ensemble’s

prediction. As each Mi is trained individually, the computational cost scales linearly

with the size of the ensemble, far exceeding the cost of training a single network.

Bootstrapping

Motivated by bootstrapping, a classic method of estimating statistical uncertainty,

bootstrap ensembling trains independent models on different training data subsets

and has been observed to outperform traditional ensembling for deep learning models

by some metrics.17 As in traditional ensembling, each Mi ∈ E is trained independently,

but now each model is only trained on a random subset of the data Xi ⊂ Dtrain. By

training each model in the ensemble on different data, the ensemble gains information

regarding the density of different features within our input space: It is expected that

several models lack exposure to those features which are sparse in the training set and

so produce high variation between model outputs. If |Xi| � |Dtrain|, bootstrapping

can greatly reduce training time when compared to traditional ensembling. To test

this method, we expose each Mi to 25% of the molecules in the training set, selected

independently at random.

Snapshot Ensembling

This method works by training a single model M and periodically storing snapshots
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of its state throughout training. It is these snapshots which collectively make up

the ensemble. Since training only needs to be performed once, this strategy results

in significantly lower training times than traditional or bootstrap ensembling. This

approach was formalized by Corts-Ciriano and Bender, who showed its performance

to be on-par with traditional ensembling on many drug discovery tasks.8 To test this

method, we produce snapshots by saving the weights of our model every third training

epoch. After each snapshot is taken, the model’s learning rate is reset in order to

encourage variation between models and prevent the entire collection from converging

to the same local minimum.

Monte Carlo Dropout Ensembling

This method begins by training a single model M with dropout, stochastically set-

ting the weight of each node in the neural network to zero at every training step with

probability p. Dropout was originally introduced as a form of regularization to avoid

overfitting, but here dropout is also applied when predicting: Rather than producing a

fixed ensemble of models E , a set of predictions is produced for every input x by apply-

ing different randomly generated dropout masks. Gal and Ghahramani showed that

such a strategy approximates Bayesian inference.7 Monte Carlo dropout ensembling is

advantageous in that it significantly cuts down on computational cost by only training

a single instance of the model. This approach has been applied to QSAR tasks, e.g.,

by Corts-Ciriano and Bender.8 Following Gal and Ghahramani, we test this strategy’s

performance with dropout rates of 10% and 20%.7

Mean Variance Estimation (MVE)

Ideally, a neural network would be capable of estimating the uncertainties of its own predic-

tions. One framework with this capability is the Bayesian neural network, in which every

weight parameter is represented by a Gaussian random variable, so the final prediction is

described by a distribution, rather than a fixed value.9,10,26 However, training these networks
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using an exact loss function is impractical for large datasets.

For this reason, it is useful to consider alternate distributional approaches like Mean

Variance Estimation (MVE).27 In this approach, the output layer of the network is modified

to predict both the mean µ(x) and variance σ2(x) of the property of interest for input x; the

softplus activation is used to ensure σ2(x) is strictly positive. The model is trained using a

negative log likelihood loss according to a Gaussian likelihood model, defined as:

NLL(x, y) =
1

2
ln(2π) +

1

2
ln(σ2(x)) +

(y − µ(x))2

2σ2(x)
. (4)

The network’s predicted variance, σ2(x), is then treated as the uncertainty. Alternate im-

plementations of this concept have trained neural networks to predict the logarithm of the

variance rather than the variance itself.3

Distance Based Methods

One intuitive reason to be uncertain about predictions made for certain test inputs is if

they are dissimilar from inputs in the training set. For a particular input x and distance

measurement d(·, ·), the uncertainty of the model M on x can be defined as the minimum

distance between x and any element in the training set:

Udist(x) = min{d(x, x′) : x′ ∈ Dtrain}. (5)

Quantitative measurements of distance between molecules could identify molecules that

are far from the training set and, ostensibly, more likely to produce high error.11,28 However,

as this calculation is highly sensitive to outliers, a more robust uncertainty estimate is to

instead consider Udist(x) to be the average distance between x and its k nearest neighbors in

the training set. In our experiments, we set k = 8. Distance metrics implicitly assume that

there is a relatively smooth mapping between the input representation and the output value,

so it is worth noting that this assumption is clearly violated for some molecular property
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prediction tasks due to the known presence of structure-activity cliffs.29

What remains then is to identify a distance measurement for which this assumption holds.

We consider two principle strategies:

Structure Space

One candidate is the log-scaled Tanimoto distance between two binary molecular fin-

gerprints x, x′:

DT (x, x′) = − log2

(
|x ∩ x′|
|x ∪ x′|

)
. (6)

The Tanimoto distance provides a metric of relative uncertainty, not a metric that

is intended to match the magnitude of error. To encode molecules, we use Morgan

fingerprints as implemented in RDKit with a length of 2048, radius of 3, and the

useChirality flag set to true.

There are many descriptors and metrics that could be used to assess distance between

molecules, including functional descriptors and the Mahalanobis distance, as used by

Toplak et al. and Schroeter et al..16,30 Later work proposed identifying molecules out-

side of the applicability domain of a QSAR model (i.e., a binary assessment of un-

certainty) solely based on the values of each descriptor relative to the distribution

observed in the training set.12 There are also ways of incorporating information about

the predicted reliability of neighbors based on the density of compounds in chemical

space, rather than using a strict nearest neighbors approach.13

Latent Space

One downside of using distance in structure space for UQ is that any hardcoded mea-

surement will not vary between prediction tasks. An alternative is to calculate distance

using a learned molecular embedding from the model, as the ability to learn task-

specific representations without manual feature engineering is one of the advantages
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of deep learning. For testing purposes, we use the Euclidean distance in a continu-

ous embedding space–the vector representation of a molecule immediately before the

output layer–to measure dissimilarity, as proposed by Janet et al..14 Using the default

Chemprop hyperparameters, this corresponds to a 300-dimensional feature vector.

Note that results are reported for both MPNN Tanimoto Distance and FFN Tanimoto

Distance. While UQ in each case is based solely on the fixed molecular fingerprint and will

be identical, the predicted means will differ between the two base models; in turn, the true

errors and evaluation metrics will differ.

Union Based Methods

Another method for confidence estimation, as proposed by Huang et al., is to combine models

that naturally produce confidence estimates with the predictive power of neural networks in

a pipelined approach.

In this method, a neural network M is first trained for the regression problem as normal.

The output layer of the network is then dropped to provide an embedding network, M ′, that

transforms any input x into the task-specific latent space. The entire validation set is then

passed through this model to produce

D′val = {(M ′(x), y) : (x, y) ∈ Dval}. (7)

D′val is then used to train a second model which is capable of predicting both the regression

value and the uncertainty. We consider two specific cases:

Gaussian Process

The transformed validation set is used to train a linear Gaussian process (GP), G. On

any further input x, we define our prediction and uncertainty to be the output mean

and variance, respectively, of G(M ′(x)). Huang et al. show that these “DNN-GP”s are

significantly more accurate than traditional Gaussian processes.15 For our testing, we
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use GPy’s SparseGPRegression implementation, as training time with the standard

GPRegression implementation was impractical, coupled with a linear kernel.31

Random Forest

The transformed validation set is used to train a random forest (RF), R. On any

further input x, we take the prediction to be R(M ′(x)) and the uncertainty to be

the variance of predictions of the decision trees. For our testing, we use sklearn’s

RandomForestRegressor with 128 trees.32

In order to train an accurate Gaussian process or random forest, a substantial amount of

data must be reserved for the validation set. Dval is transformed to train the supplementary

model rather than Dtrain because any overfitting of the neural network on the selected set

would expose the supplementary model to an unrepresentative distribution of errors. This

same Dval is used for early stopping during training as normal.

Fingerprint-based Methods

All of the methods described earlier in this section are implemented for the MPNN-based

and FFN-based regressions. Also included in our evaluation are two baseline approaches

that use static FP representations:

FP GP

Gaussian Process Modeling using the fixed fingerprint in place of the learned feature

vector. As with the union based GP approach, the prediction and uncertainty are

taken to be the mean and variance of the GP.

FP RF

Random Forest modeling using the fixed fingerprint in place of the learned feature

vector. As with the union based RF approach, the FP RF prediction and uncertainty

are taken to be the mean and variance of the predictions of 128 decision trees.

12



Evaluation Metrics

Spearman’s Rank Correlation Coefficient

For any uncertainty estimator, we expect that predictions with low uncertainty will have

comparatively low true error. More precisely, given some model M and two molecules a and

b for which U(a) < U(b), we expect M(a) to be more accurate than M(b) on average. This

property can be measured quantitatively using Spearman’s Rank Correlation Coefficient.

Given two vectors L1 and L2, define rank vectors rL1 and rL2 that assign integer ranks to

each value in ascending order. The correlation coefficient is then defined as function of their

covariance (cov) and standard deviations (std), where

ρ(L1, L2) =
cov(rL1 , rL2)

std(rL1)std(rL2)
. (8)

In the event that L1 and L2 have the exact same ranking, ρ(L1, L2) = 1, and in the event

that L1 and L2 have opposite rankings, ρ(L1, L2) = −1.

The ranking coefficient is calculated between the list of predicted uncertainties and the

list of absolute errors. Note that a perfect correlation of ρ = 1 is not expected since we

believe the errors will be approximately normally distributed. It is possible for the model to

randomly produce a result with low error even in the event it has high uncertainty. Because

this metric compares ranks, not precise values, it is appropriate for relative UQ metrics (e.g.,

the distance based methods described above).

Miscalibration Area

Another way to evaluate UQ methods is to consider whether predicted uncertainties are

similar in magnitude, quantitatively, to the true errors we observe. This property is referred

to as calibration. Tran et al. propose to compare the observed fraction of errors falling within

z standard deviations of the mean to what is expected for a Gaussian random variable with

variance equal to the uncertainty prediction U(x) of the UQ method.4 For example, 68% of

13



the test errors are expected to be within one standard deviation, 95% to be within two, etc.

Given a perfect uncertainty estimator, the expected fraction should exactly match the

observed fraction for any z. To provide a quantitative statistic, the miscalibration area is

computed as the area between the true curve of observed versus expected fractions and the

parity line; a perfect UQ metric will have an area of 0. This metric only provides an evalu-

ation of whether a method is systematically overconfident or systematically underconfident.

A method that is overconfident about half of the points and underconfident about the other

half can still achieve a perfect score of 0.

Negative Log Likelihood (NLL)

A third metric is the negative log likelihood (NLL) of observed errors under the assumption

that they are normally distributed around 0 with variances given by the UQ estimates, U(x).5

Given some collection of molecules Dtest, the average negative log likelihood is defined to be

NLL(Dtest) =
1

2|Dtest|
∑

x,y∈Dtest

ln(2π) + ln(U(x)) +
(M(x)− y)2

U(x)
, (9)

where M(x) is the model’s point prediction and U(x) is the UQ estimate for molecule x.

Note that NLL is averaged to prevent bias against larger datasets.

For a given list of residuals, there will be a lower bound to the NLL that can be achieved.

Therefore, to decouple UQ performance from the accuracy of predictions, we also examine

the difference between the minimum possible NLL and the NLL that is achieved. These

results can be found in the Supporting Information (Figure S1).

Calibrated NLL

For UQ methods whose uncertainty estimates are not intended to be used as variances (e.g.,

distances), NLL as described above is an uninformative metric. In order to still apply NLL to

these methods, an alternative is to first calibrate the uncertainty estimates so that they more

closely resemble variances. Thus, rather than taking σ̂2(x) := U(x), the two are assumed to
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be linearly related:

σ̂2(x) := aU(x) + b (10)

For each dataset and method, the Calibrated NLL (cNLL) is computed using the scalars a

and b which minimize the NLL of errors in the validation set:

cNLL(Dtest) :=
1

2|Dtest|
∑

x,y∈Dtest

ln(2π) + ln(a∗U(x) + b∗) +
(M(x)− y)2

a∗U(x) + b∗
, (11)

a∗, b∗ = argmin
a,b

1

2

∑
x,y∈Dval

ln(2π) + ln(aU(x) + b) +
(M(x)− y)2

aU(x) + b
. (12)

A similar recalibration was performed by Janet et al. in their implementation of the latent

space distance metric.14 A plot of the difference between the minimum possible cNLL and

the cNLL that is achieved can also be found in the Supporting Information (Figure S2).

Data

We use four datasets commonly used for benchmarking from Wu et al.:18 aqueous solubility

(Delaney), solvation energy (freesolv), lipophilicity (lipo), and atomization energy (QM7).

We also include one additional synthetic dataset of CLogP as a case where there is no

aleatoric uncertainty–originating from inherent, unpredictable noise in the data, including

experimental noise when the data were acquired3–and the property is calculable through a

simple heuristic function. The CLogP dataset was prepared by taking the union of molecules

appearing in the four other datasets and using the RDKit24 implementation of the Crippen

heuristic estimate of the octanol-water partition coefficient.33

We use a 50/20/30 split for training/validation/testing. Several of the methods we eval-

uate (i.e., the union based methods) require the use of a large validation set to produce

strong confidence estimations. All methods were tested with the same set of eight random

splits to control for random performance variations resulting from a particularly lucky or

unlucky test set. We additionally use a single scaffold split using RDKit’s Murcko scaffold
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decomposition and a greedy bin packing algorithm to approximately distribute molecules

according to a 50/20/30 split after sorting clusters of examples by descending cluster size; in

this manner, test molecules are more likely to be “out-of-domain” and have rarer scaffolds

than in a random split.24

Results

In the following subsections, we show and discuss model performance according to each of the

four evaluation metrics described above. We conclude with a pairwise comparison between

all models to summarize the results across all five datasets and eight random splits.

Spearman’s Rank Correlation Coefficient

Figure 2 shows the Spearman’s rank correlation for all datasets and all methods. An im-

mediate observation is that there is a significant amount of variation both between and

within datasets. For some (e.g., lipophilicity in Figure 2c), no method is able to perform

particularly well. For this experimental dataset, the measurement noise/error during acqui-

sition can be high, on the order of 0.5 log10 unit, and the range of measurements is quite

narrow; we should not necessarily expect a method to be able to perform well. For other

datasets, many methods perform quite well (e.g., the simulated CLogP data in Figure 2e).

The variation of performance across different datasets makes it clear that if one were to

benchmark UQ methods on a single dataset, one could draw completely incorrect conclu-

sions about the superiority of a particular estimator. In fact, no method was consistently

strong across all datasets, although MPNN MVE, MPNN RF, and FP RF are often highly

ranked. Occasionally, a method will even exhibit a negative Spearman correlation.

To illustrate this phenomenon, Figure 3 shows the change in RMSE as prediction is

restricted to subsets of Dtest on which the model is least uncertain. A sharp, monotonic

decrease in RMSE between these classifications would indicate that the UQ correctly identi-
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Figure 2: Spearman’s rank correlation coefficient, ρ, for all UQ methods and datasets eval-
uated in this work. A higher value of ρ indicates stronger agreement between the estimated
uncertainty and the relative magnitude of the observed absolute error. (a) Delaney aque-
ous solubility, (b) freesolv solvation energy, (c) lipophilicity, (d) QM7 atomization energy,
(e) CLogP heuristically-calculated lipophilicity. Random split boxes show quartiles without
excluding outliers.
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Figure 3: Average RMSE in random splits calculated for all datasets evaluated in this work
and a selection of UQ methods. RMSE is recorded for the 100%, 50%, 25%, 10%, and 5% of
the test set on which the UQ method calculated the lowest uncertainty. The UQ methods
above were selected because they produced the highest median Spearman’s rank correlation
coefficient across datasets within the four categories of approaches summarized in Figure 1.
Datasets are (a) Delaney aqueous solubility, (b) freesolv solvation energy, (c) lipophilicity,
(d) QM7 atomization energy, (e) CLogP heuristically-calculated lipophilicity.

18



fies its lowest error predictions. When employed on the lipophilicity data set, MPNN MVE

actually produced higher than average error on the predictions it was most confident about,

despite providing more reliable error rankings on other datasets.

We also note that with few exceptions, scaffold splitting resulted in a slightly weaker

ranking than the median random split.

Miscalibration Area

Figure 4 shows the miscalibration area (Area) for all datasets and all methods. Recall

that miscalibration area measures systematic over- or under-confidence in an aggregated,

quantitative sense. A score of 0 indicates perfect alignment, while a score of 0.5 indicates

maximal misalignment. As such, it does not measure if the absolute errors of individual

compounds are predicted well or poorly, nor is it appropriate to evaluate relative UQ metrics

like the Tanimoto or latent space distances.

The MPNN MVE and union methods (MPNN-/FFN-based RF/GP) are superior to most

other methods, although FP GP and FP RF also perform quite well. Unlike with Spearman’s

ρ, there is a more noticeable difference between performance on random and scaffold splits.

For example, Figure 4e shows that the first six MPNN methods have miscalibration areas

several times higher for the scaffold split than for any random split. This is consistent with

Scalia et al.’s observation that epistemic uncertainty–arising from either a poor model fit or

a lack of exposure in the training set3–is consistently underestimated using ensembling or

dropout techniques for out-of-domain samples;17 note that recalibrating the variance of an

ensemble prediction to provide more reliable confidence intervals can reduce miscalibration,

though we do not investigate recalibrated miscalibration areas in this study.8 The MPNN

GP and MPNN RF approaches work remarkably well for the scaffold split, often achieving

a lower miscalibration area than for the random split.
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Figure 4: Miscalibration area (Area) for all UQ methods and datasets evaluated in this work.
A miscalibration area closer to zero indicates better quantitative agreement between the
expected and observed fraction of true values within their predicted confidence intervals at
any level of statistical significance. This evaluation interprets the UQ metric quantitatively,
so we exclude distance based metrics (in latent space or in structure space) which would not
produce meaningful results. (a) Delaney aqueous solubility, (b) freesolv solvation energy, (c)
lipophilicity, (d) QM7 atomization energy, (e) CLogP heuristically-calculated lipophilicity.
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Figure 5: Negative log likelihood (NLL) for all UQ methods (excluding FFN MVE as an
outlier) and all datasets evaluated in this work. A lower value of NLL indicates better quan-
titative agreement between the estimated uncertainty and the magnitude of the observed
absolute error when treating the UQ metric as the predicted variance of errors. This eval-
uation interprets the UQ metric quantitatively, so we also exclude distance based metrics
(in latent space or in structure space) which would not produce meaningful results. (a) De-
laney aqueous solubility, (b) freesolv solvation energy, (c) lipophilicity, (d) QM7 atomization
energy, (e) CLogP heuristically-calculated lipophilicity. Random split boxes show quartiles
without excluding outliers.
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Negative Log Likelihood (NLL)

The negative log likelihood (NLL) results (Figure 5) represent a stricter evaluation of whether

models are capable of predicting accurate UQ metrics that can be directly treated as variances

of normally-distributed errors. It is important to keep in mind the accuracy of each method

will have an affect on the minimum NLL that can be achieved through optimal prediction

of variance. The more accurate a method is, the lower its errors will tend to be, and the

higher its maximum likelihood, corresponding to a lower minimum NLL. A comparable figure

showing the difference between observed NLL and optimal NLL can be found in Figure S1.

Again, it is inappropriate to calculate NLL for relative UQ metrics, so values for Tanimoto

and latent space distances are excluded. FFN MVE also produced such extreme values on

certain splits that it has been omitted for visual clarity. A plot with its performance included

is available in the Supporting Information (Figure S3).

On all datasets, the MPNN GP, MPNN RF, FP RF and FP GP performed well. While

median scores were strong for the MPNN MVE as well, this method and the FFN MVE

showed by far the most variation across random splits. The MPNN Ensemble consistently

underestimates error; this tendency was observed in the MPNN Bootstrap and MPNN Snap-

shot Ensembling as well, although to a lesser extent. All estimators performed far better on

the CLogP random split than the scaffold split, as shown in Figure 5e, suggesting that many

estimators struggle to account for aleatoric uncertainty.

Calibrated NLL

The final set of results show the calibrated negative log likelihoods (cNLL) for each dataset

and method (Figure 6). This is a more forgiving quantitative assessment, as each evaluation

reflects an optimized calibration of σ̂2(x) := aU(x) + b as defined by Equation 11. MPNN

MVE produced such extreme values on certain splits that it has been omitted for visual

clarity. A plot with its performance included is available in the Supporting Information

(Figure S4).
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Figure 6: Calibrated negative log likelihood (cNLL) for all UQ methods (excluding MPNN
MVE) and datasets evaluated in this work. A lower value of cNLL indicates better quan-
titative agreement between the estimated uncertainty and the magnitude of the observed
absolute error after allowing a linear adjustment to the UQ metric to describe the predicted
variance of errors. (a) Delaney aqueous solubility, (b) freesolv solvation energy, (c) lipophilic-
ity, (d) QM7 atomization energy, (e) CLogP heuristically-calculated lipophilicity. Random
split boxes show quartiles without excluding outliers.
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Calibrating each U(x) has an equalizing effect and causes many methods to have similar

cNLL values. It is essential for evaluation of relative UQ metrics like the Tanimoto or latent

spaces distances and provides a quantitative boost to others. For many methods, however,

the optimized parameters may lead to predicting a nearly-constant variance (a ≈ 0) and

so the calibrated model ignores structure-specific uncertainties. More information on this

phenomenon can be found in the Supporting Information (Figure S5).

On all the first four datasets, calibration is quite effective at improving some methods,

reducing the maximum observed NLL across all estimators and splits by nearly an order

of magnitude. However, calibration is sensitive to the choice of calibration set (here, the

entire validation data) and harms the performance of those methods which were previously

well calibrated, such as the MPNN MVE, MPNN GP, and MPNN RF. This is most evident

in Figure 6e, where the performance of several methods appears significantly worse once

calibrated. This effect may be due to particularly poor fits on certain random splits.

Pairwise Model Comparisons

To provide an overview of each UQ method’s relative performance across datasets, we per-

form modified Wilcoxon Signed-Rank Tests (WRSTs).34,35 Given a performance metric and

two UQ methods (a primary and secondary), the WRST aims to determine how frequently

the primary method outranks the secondary across all five datasets and eight random splits.

A large positive z-score suggests that the primary method consistently outperformed the sec-

ondary method, and a large negative z-score suggests that it consistently underperformed.

Figure 7 shows the WSRT z-scores for every pair of UQ methods when ranked by Spearman’s

Coefficient, Miscalibration Area, and NLL. Rows with many positive z-scores (indicated by

the color green in this plot) indicate UQ methods that consistently performed well when

compared against any of the tested alternatives.

Note that the z-score is calculated purely on the ranked performance of the methods

and does not indicate the extent to which one method outperformed another. More tech-
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Figure 7: Z-scores produced by a modified Wilcoxon Signed-Rank Test (WSRT), computed
over all data sets and random splits, for every pair of UQ methods when performance is
ranked by (a) Spearman’s Coefficient, (b) Miscalibration Area, and (c) NLL. A positive z-
score indicates that the Primary Estimator (y-axis) often ranked better than the Secondary
Estimator (x-axis) on that particular metric.

nical details regarding the calculation of WRST and additional figures are available in the

Supporting Information, including a comparison of the median performance when the eight

random splits are aggregated (Figure S6).

Discussion

Our analysis examines the performance of several approaches to UQ using learned embed-

dings via message passing networks (MPNNs) or feed forward networks (FFNs) using fixed

fingerprint (FP) representations. Our evaluation focuses on four metrics: the Spearman’s

rank correlation coefficient, measuring relative agreement between UQ metrics and absolute

errors; the miscalibration area, measuring overall agreement between predicted UQ metrics

as predicted variances for normally-distributed errors; the average negative log likelihood

of the observed value, using models’ predicted values and UQs as means and variances of

normal distributions; and a calibrated version of the negative log likelihood, where the UQ
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metrics are linearly related to variances.

Consistency of performance across model architectures

One challenge in comparing UQ method performance when applied to MPNNs and FFNs

is that the models themselves have very different accuracies. As shown in Figure 3, RMSEs

produced by FFNs were often twice as high as those produced by MPNNs on the same

dataset. These results are consistent with the findings of Yang et al..23 However, the same

figure also shows that MPNNs and FFNs usually saw a similar reduction in RMSE, as a

percent of total, from each UQ method. All UQ methods also produced similar Spearman’s

rank correlations, miscalibration areas, and NLLs across model architectures. There was

some more variation on Calibrated NLL, on which UQ methods appeared to perform uni-

formly better on MPNNs than FFNs, except on CLogP dataset, where the reverse was true.

As discussed in the NLL results section, this can be explained by the significant gap in accu-

racy between the MPNNs and FFNs. For both MPNNs and FFNs, we observed union-based

methods to outperform virtually all ensembling methods in terms of miscalibration area and

NLL (Figure 7bc).

Consistency of performance across datasets

Methods did not perform consistently relative to one another across different datasets, with

some achieving standout performance on certain datasets and middling performance on oth-

ers. This variation explains why one proposed method may appear superior to other base-

lines for a particular dataset or split. For example, Janet et al. found the calibrated Latent

Distance UQ to significantly outperform uncalibrated ensembling on the two datasets they

tested using a FFN with an application-informed feature vector.14

The variation observed in Spearman’s rank correlation across datasets was enough to

significantly affect practical utility of the UQ. For example, the MPNN MVE achieved an

average Spearman’s Rank Correlation of approximately 0.65 on CLogP and approximately
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0.1 on lipo. This translated to much poorer isolation of low error predictions on the latter

dataset: The top 25% of predictions identified by the MPNN MVE on CLogP had an RMSE

that was 75% less than the RMSE on the entire test set, while the top 25% of predictions

using the MPNN MVE on lipo had higher RMSE than the overall test set.

Consistency of performance across evaluation metrics

Method performance was also not consistent across evaluation metrics, although MPNN

RF and MPNN MVE were highly ranked for each. The relevant subset of our results are

consistent with those of Scalia et al., who found that while MPNN Ensemble generally

produces a ranking at least as strong as MPNN Bootstrapping, the latter method is better

calibrated.17

As illustrated by Figure 7, we found that a ranking of uncertainties was best achieved

using MPNN MVE or MPNN RF approaches, with MPNN Ensemble and FP RF not far

behind. Overall miscalibration areas were lowest using FP RF, followed by FFN RF or FFN

GP and MPNN GP, MPNN RF, or MPNN MVE. Negative log likelihoods, reflecting both

quantitative accuracies and uncertainty estimates, were lowest using MPNN FP, MPNN GP,

and MPNN MVE.

Highest-performing method

Figure 7c shows that MPNN RF very often produced the lowest NLL of all tested methods,

with MPNN GP and MPNN MVE in second and third place; FP RF and FP GP were not far

behind in fourth and fifth. These results are consistent with those of Tran et al., who when

testing UQ methods on the material property prediction space found their Convolution-Fed

Gaussian Process—an implementation similar to our MPNN GP—to perform best.4 While

we found the MPNN GP to perform worse on all three metrics than the MPNN RF, the

differences were relatively minor and it might be possible to close the difference in ranking

performance with hyper-parameter optimization. The MPNN RF, MPNN GP, and MPNN
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MVE methods were found to be the highest-performing neural network methods overall with

FP RF representing a strong baseline.

Conclusion

An ideal uncertainty estimator would exhibit significantly less performance variation between

datasets than has been observed from these existing methods. One technique which may

lead to more consistently performant models is stacking, which involves joining the results of

multiple weak models to produce a meta-estimator.36 Scalia et al. previously experimented

with summing the outputs of an MPNN MVE with a few ensemble based methods, but

there remain many unexplored method combinations and aggregation strategies.17 If several

methods were known with near-independent performance, there would be a high probability

that at least one of them would work well for any particular task; the challenge would then

be to learn when each estimator is most relevant. It will also be worthwhile to explore the

performance of these methods, or approximations of these methods, on larger datasets, given

that several of the implementations presented here (e.g., ensembling) scale impractically.

Finally, future work might expand on recent work on UQ for classification tasks.37 Given the

current state of the art in UQ for regression models and our results, particularly using the

NLL evaluation metric to reflect both regression accuracy and UQ accuracy, we recommend

the MPNN RF as a reasonable first approach, while again noting the substantial variation

across datasets and splits.
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Additional Results
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Figure S1: The difference between the observed negative log likelihood (NLL) and NLL that would be produced by an
ideal estimator, for all UQ methods and datasets evaluated in this work. A lower value of NLL Difference indicates better
quantitative agreement between the estimated uncertainty and the magnitude of the observed absolute error when treating the
UQ metric as the predicted variance of errors. This evaluation interprets the UQ metric quantitatively, so we do not expect the
distance-based metrics (in latent space or in structure space) to produce meaningful results. (a) Delaney aqueous solubility,
(b) freesolv solvation energy, (c) lipophilicity, (d) QM7 atomization energy, (e) CLogP heuristicly-calculated lipophilicity.
Random split box plots show quartiles without removing outliers.
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Figure S2: The difference between the calibrated negative log likelihood (cNLL) and the NLL that would be produced by an
ideal estimator, for all UQ methods and datasets evaluated in this work. A lower value of cNLL Difference indicates better
quantitative agreement between the estimated uncertainty and the magnitude of the observed absolute error after allowing a
linear adjustment to the UQ metric to describe the predicted variance of errors. (a) Delaney aqueous solubility, (b) freesolv
solvation energy, (c) lipophilicity, (d) QM7 atomization energy, (e) CLogP heuristicly-calculated lipophilicity. Random split
box plots show quartiles without removing outliers.
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Figure S3: Negative log likelihood (NLL) for all UQ methods which produce confidence intervals and all datasets evaluated
in this work. A lower value of NLL indicates better quantitative agreement between the estimated uncertainty and the
magnitude of the observed absolute error when treating the UQ metric as the predicted variance of errors. This evaluation
interprets the UQ metric quantitatively, so we do not expect the distance based metrics (in latent space or in structure
space) to produce meaningful results. (a) Delaney aqueous solubility, (b) freesolv solvation energy, (c) lipophilicity, (d) QM7
atomization energy, (e) CLogP heuristically-calculated lipophilicity. Random split boxes show quartiles without excluding
outliers.
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Figure S4: Calibrated negative log likelihood (cNLL) for all UQ methods (excluding MPNN MVE) and datasets evaluated
in this work. A lower value of cNLL indicates better quantitative agreement between the estimated uncertainty and the
magnitude of the observed absolute error after allowing a linear adjustment to the UQ metric to describe the predicted
variance of errors. (a) Delaney aqueous solubility, (b) freesolv solvation energy, (c) lipophilicity, (d) QM7 atomization energy,
(e) CLogP heuristically-calculated lipophilicity. Random split boxes show quartiles without excluding outliers.
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Figure S5: Calibration slopes for each method capped between 0 and 10, aggregated across data sets and splits. A high
fraction of slopes above or below 1 indicates poor calibration. For example, the large number of slopes ≥ 10 for (a) MPNN
Ensemble and (k) FFN Ensemble indicate that traditional ensembling consistently underestimates uncertainty.
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Wilcoxon

Figure S6: Z-scores produced by a modified Wilcoxon Signed-Rank Test (WSRT), computed over the median random split
performance for each dataset, for every pair of UQ methods and three metrics considered in this work. A higher z-score
indicates that the Primary Estimator often ranked better than the Secondary Estimator on that particular metric. (a)
Spearman’s Coefficient, (b) Miscalibration Area, (c) NLL.

Given a set of scores (performance metrics) for one UQ metric (the primary), {x1, x2, · · · , xn} and

a set of scores for another UQ metric (the secondary), {y1, y2, · · · , yn} for n different datasets/splits

using one evaluation criterion, the WSRT z-score is calculated by first computing a set of differences

D = {d1, d2, · · · , dn}, where

di = xi − yi

.

The set is then sorted to produce R, where ri is the ith smallest element of D, by magnitude. Let

S =
∑

i i for all i where ri indicated the primary primary UQ method outperformed the secondary (a
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positive value if large values of the metric are desired and a negative value if small values of the metric are

desired).

The z-score is then

z =
S − 1

4
n(n+ 1)

1
24
n(n+ 1)(2n+ 1)

.

This formula has been modified slightly from the standard WRST35 in order to produce a signed z-score

that allows us to distinguish between cases where the primary metric performs significantly better than

the secondary metric from cases where it performs significantly worse.
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