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Understanding the origin of fast radio bursts (FRBs) is a central unsolved problem in astrophysics that is
severely hampered by their poorly determined distance scale. Determining the redshift distribution of FRBs
appears to require arcsecond angular resolution, in order to associate FRBs with host galaxies. In this paper,
we forecast prospects for determining the redshift distribution without host galaxy associations, by cross-
correlating FRBs with a galaxy catalog such as the SDSS photometric sample. The forecasts are extremely
promising: a survey such as CHIME/FRB that measures catalogs of ∼103 FRBs with few-arcminute
angular resolution can place strong constraints on the FRB redshift distribution, by measuring the cross-
correlation as a function of galaxy redshift z and FRB dispersion measure D. In addition, propagation
effects from free electron inhomogeneities modulate the observed FRB number density, either by shifting
FRBs between dispersion measure (DM) bins or through DM-dependent selection effects. We show that
these propagation effects, coupled with the spatial clustering between galaxies and free electrons, can
produce FRB-galaxy correlations that are comparable to the intrinsic clustering signal. Such effects can be
disentangled based on their angular and ðz; DÞ dependence, providing an opportunity to study not only
FRBs but also the clustering of free electrons.

DOI: 10.1103/PhysRevD.102.023528

I. INTRODUCTION

Fast radio bursts (FRBs) are an astrophysical transient
whose origin is not yet understood. Since initial discovery
in 2007 [1], interest in FRBs has grown, and explaining the
FRB phenomenon is now a central unsolved problem in
astrophysics (see [2–4] for recent reviews).
An FRB is a short (usually 1–10 ms), bright (∼1 Jy)

radio pulse which is highly dispersed: the arrival time at
radiofrequency ν is delayed, by an amount proportional to
ν−2. This dispersion relation arises naturally if the pulse
propagates through a cold plasma of free electrons. In this
case, the delay is proportional to the “dispersion measure”
(DM), which is defined as the electron column density
along the line of sight:

ðDelayÞ ¼ ðDMÞ
�

e2

2πmec

�
ν−2 ð1Þ

¼ ð4.15 msÞ
�

DM
1 pc cm−3

��
ν

1 GHz

�
−2
; ð2Þ

where

DM≡
Z

neðxÞdx: ð3Þ

FRBs are a population of dispersed pulses whose observed
DM significantly exceeds the maximum Galactic column
density DMgal (inferred from a model of the Galaxy [5,6]).
On most of the sky, DMgal is ≤ 50 pc cm−3, and FRBs
are regularly observed with DM≳ 1000. From the outset,
the large DM suggested that FRBs were extragalactic,
although on its own the large DM could also be
explained by a Galactic event with a large local free
electron density. As more FRBs were observed, their sky
distribution was found to be isotropic (i.e., not correlated
with the Galactic plane), conclusively establishing an
extragalactic origin.
At the time of this writing, 92 FRB discoveries have been

published (according to FRBCAT [7], frbcat.org). Ten
of these FRBs are “repeaters,”meaning that multiple pulses
have been observed from the same source [8–11]. Nine of
the repeaters were discovered by the CHIME/FRB instru-
ment, and a much larger sample of nonrepeating FRBs
from CHIME/FRB is expected soon. (The authors are
members of the CHIME/FRB Collaboration, and forecast-
ing the scientific reach of CHIME/FRB was the main
motivation for this paper.)
Determining the redshift distribution of FRBs is critical

to understanding the FRB phenomenon since a distance
scale is required to determine the burst energetics and
volumetric rate. In the next few paragraphs, we summarize
the current observational status.
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FRBs do not have spectral lines, so FRB redshifts cannot
be directly determined. When an FRB is observed, an upper
bound on its redshift z can be inferred from its DM as
follows. We write the total DM of an FRB as the sum of
contributions from our galaxy, the intergalactic medium
(IGM), and the host galaxy:

DM ¼ DMgal þDiðzÞ þDh; ð4Þ

where the IGM contribution is related to the FRB
redshift as

DiðzÞ ¼ ne;0

Z
z

0

dz0
1þ z0

Hðz0Þ ; ð5Þ

where ne;0 is the comoving electron number density and
HðzÞ is the Hubble expansion rate. If we assume that DMgal

is known precisely and subtracted, then the inequality
Dh ≥ 0 implies an upper bound on z. A DM ¼ 1000 FRB
must satisfy z≲ 0.95, and a DM ¼ 3000 FRB satisfies
z≲ 3.08. However, an alternative hypothesis is that FRBs
are at much lower redshifts, and have large host DMs.
Three FRBs have been observed in long-baseline inter-

ferometers with sufficient angular resolution to uniquely
identify a host galaxy, and thereby determine a redshift
[12–16]. The inferred redshifts are z ¼ 0.19, 0.32, and
0.66. These observations suggest that most of the DM is
IGM-related, but with only three data points it cannot be
concluded that this is true for the entire population.
Host galaxy associations are a powerful way to deter-

mine FRB redshifts, but require angular resolution around
1 arcsecond or better [17]. Unfortunately, most telescopes
capable of finding large numbers of FRBs have angular
resolution much worse than this. In particular, for most of
the CHIME/FRB sources, the angular resolution is either
≈10 or ≈100, depending on whether baseband data are
available for the event [11,18,19].
In this paper, we study the following question. Given a

catalog of FRBs whose resolution is insufficient for host
galaxy associations on a per-object basis, is it possible to
associate FRBs and galaxies on a statistical basis? To make
this question precise, we model the angular cross power
spectrum Cfg

l between the FRB and galaxy catalogs and
forecast its signal-to-noise ratio (SNR). The SNR turns out
to be surprisingly large. For example, given a catalog of
1000 FRBs with 10 resolution, and the photometric galaxy
catalog from SDSS-DR8 [20], we find an SNR of 25–100,
depending on the FRB redshift distribution.
As a consequence of this high SNR, the cross-correlation

is still detectable if the FRB and galaxy catalogs are binned
in various ways. By dividing the galaxy catalog into
redshift bins, and separately cross-correlating each bin with
the FRB catalog, the FRB redshift distribution can be
constrained. By additionally dividing the FRB catalog
into DM bins, the FRB redshift distribution of each DM

bin can be constrained, pinning down the redshift-DM
correspondence.
Other binning schemes are possible. For example, the

FRB catalog can be binned in observed flux, so that the
galaxy cross-correlation pins down the redshift-flux cor-
respondence, and therefore the intrinsic luminosity distri-
bution of FRBs. Or the galaxy catalog can be binned by the
star formation rate before cross-correlating with FRBs, to
determine whether FRBs are associated with star formation.
This technique can be applied easily to other tracer fields
such as supernovae and quasars.
This paper overlaps significantly with work in the galaxy

clustering literature on “clustering redshifts” [21–25]. This
term refers to the use of clustering statistics to determine
the redshift distribution of a source population, by cross-
correlating with a galaxy catalog.
However, in the case of FRBs, we find a significant new

ingredient: large propagation effects, which arise because
galaxies are spatially correlated with free electrons, which
in turn can affect the observed density of FRBs and its DM
dependence. Propagation effects produce additional con-
tributions to the FRB-galaxy angular correlation, which
need to be modeled and disentangled from the cosmologi-
cal contribution. In particular, if a galaxy catalog and an
FRB catalog are correlated, this does not imply that they
overlap in redshift. Propagation effects can produce a
correlation between low-redshift galaxies and high-redshift
FRBs (but not vice versa).
Propagation effects arise from several distinct physical

mechanisms: dispersion, scattering, and plasma lensing. In
this paper, we will analyze the dispersion case in detail,
leaving the other cases to future work. The propagation
effects that we will explore have some similarity with
magnification bias in galaxy surveys (see, e.g., [26] and
references therein).
We also clarify which properties of the FRB population

are observable via cross-correlations. It is well known that
on large scales (“2-halo dominated” scales), the only
observable is ðbfdnf=dzÞ: the product of FRB redshift
distribution dnf=dz and the large-scale clustering bias
bfðzÞ. We find that there is an analogous observable
ðγfdnf=dzÞ which determines the FRB-galaxy correlation
on smaller (“1-halo dominated”) scales. The quantity γfðzÞ
measures the degree of similarity between the dark matter
halos which contain FRBs and galaxies, and is defined and
discussed in Sec. IV.
This paper is complementary to previous works that

have considered different FRB-related clustering statistics.
In [27], the three-dimensional (3D) clustering statistics of
the FRB field were studied, using the DM as a radial
coordinate. This is analogous to the way photometric
galaxy surveys are analyzed in cosmology. Here we
generalize to the cross-correlation between the FRB field
and a galaxy survey. The FRB-galaxy cross-correlation has
higher SNR than the FRB autocorrelation, since the number
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of galaxies is much larger than the number of FRBs.
Whereas [27] was entirely perturbative, we perform both
perturbative calculations and nonlinear simulations using a
halo model. In addition, we consider two propagation
effects: DM shifting and completeness (to be defined
below), whereas [27] considered only the former.
Another idea that has been considered is to cross-

correlate a two-dimensional (2D) map of FRB-derived
dispersion measures with galaxy catalogs, to probe the
distribution of electrons in dark matter halos [28–32]. The
cross-correlation of DM vs galaxy density is related to
the DM moment of the statistic Cfg

l ðz;DÞ considered here.
Therefore, our statistic contains a superset of the informa-
tion in the statistic considered in these works.
In [33], a cross-correlation was observed between 2MPZ

galaxies at z ∼ 0.01, and a sample of 23 FRBs from ASKAP
operating in “fly-eye” mode with 100–600 angular resolution
[34,35]. This measurement is seemingly at odds with the
three FRB host galaxy redshifts that imply a much more
distant population. In the very near future, FRB catalogs will
be available with much higher number density and better
angular resolution, so it will be possible to measure the
cross-correlation at higher SNR and push the measurement
to higher redshift. The machinery in this paper will be
essential for interpreting a high-SNR cross correlation and
separating the clustering signal from propagation effects.
This paper is organized as follows. In Sec. II, we define

notation and our modeling assumptions. In Sec. III, we
define our primary observable, the FRB-galaxy cross power
spectrum Cfg

l . We explore and interpret clustering contri-
butions to Cfg

l in Sec. IV, and propagation effects in Sec. V.
We present signal-to-noise forecasts in Sec. VI, and in
Sec. VII we describe a Monte Carlo simulation pipeline that
we use to validate our forecasts. We conclude in Sec. VIII.

II. PRELIMINARIES

A. Definitions and notation

Throughout the paper, we use the flat-sky approxima-
tion, in which an angular sky location is represented by a
two-component vector θ ¼ ðθx; θyÞ, and we assume peri-
odic boundary conditions with no angular mask for
simplicity. Angular wave numbers (continuous quantities
in a plane) are denoted l ¼ ðlx;lyÞ, and 3D comoving
wave numbers are denoted k. We denote the observed sky
area in steradians by Ω.
Let HðzÞ be the Hubble expansion rate at redshift z, and

let χðzÞ be the comoving distance to redshift z:

χðzÞ ¼
Z

z

0

dz0

Hðz0Þ : ð6Þ

Let Plinðk; zÞ denote the linear matter power spectrum at
comoving wave number k and redshift z.
We use f and g to denote an FRB or galaxy catalog.

Depending on context, the FRB catalog may be binned

in DM, or the galaxy catalog may be binned in redshift.
For X ∈ ff; gg, let n2dX , n3dX ðzÞ, and dn2dX =dz denote the
2D number density, 3D number density, and 2D number
density per unit redshift. These densities are related to each
other by

n3dX ðzÞ ¼ HðzÞ
χðzÞ2

dn2dX
dz

; n2dX ¼
Z

dz
dn2dX
dz

: ð7Þ

B. Halo model

We model FRB and galaxy clustering using the halo
model. For a review of the halo model, see [36]. In this
section, we give a high-level summary of our halo model-
ing formalism. For details, see Appendix A.
In the halo model, FRB and galaxy catalogs are

simulated by a three-step process. First, we simulate a
random realization of the linear cosmological density field
δlinðθ; zÞ. Since δlin is a Gaussian field, its statistics are
completely determined by its power spectrum Plinðk; zÞ.
Second, we randomly place dark matter halos, which are

modeled as biased Poisson tracers of δlin. More precisely,
the probability of a halo in mass range ðM;M þ dMÞ and
comoving volume d3x near spatial location x is

n3dh ðM; zÞð1þ bhðM; zÞδlinðxÞÞd3xdM; ð8Þ

where n3dh ðM; zÞ is the halo mass function, or number
density of halos per unit comoving volume per unit halo
mass, and bhðM; zÞ is the halo bias. We use the Sheth-
Tormen mass function and bias [Eqs. (A4) and (A6)].
Third, we randomly assign FRBs and galaxies to halos.

We always assume that the number counts ðNf; NgÞ of
FRBs and galaxies are independent from one halo to the
next. That is, ðNf; NgÞ is a bivariate random variable whose
probability distribution (the halo occupation distribution or
HOD) depends only on halo mass M and redshift z. Once
the counts ðNf; NgÞ have been simulated, we assign spatial
locations to each FRB and galaxy independently, by
sampling from the Navarro-Frenk-White (NFW) spatial
profile [Eq. (A7)]. We assume that galaxy positions are
measured with negligible uncertainty, but FRB positions
have statistical errors ðθx; θyÞ that are Gaussian with full
width at half maximum (FWHM) denoted θf. Unless stated
otherwise, we take the FRB angular resolution to be θf ¼ 1

arcminute.

C. Fiducial FRB models

Throughout the paper, we derive analytic results for
an arbitrary HOD, but show numerical results for two
specific FRB models: the fiducial “low-z” and “high-z”
FRB models. Our two fiducial models are intended to
bracket the range of possibilities for the FRB redshift
distribution currently allowed by observations. The median
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FRB redshift in the low-z and high-z FRB models is z ∼
0.022 and z ∼ 0.76, respectively. The hostDM distributions
in the two models have been chosen so that the distribution
of total DMs is similar (Fig. 1). In the high-z FRB model,
observed DM is a fairly good indicator of the FRB redshift,
whereas in the low-z FRB model, there is not much
correlation between DM and redshift. The high-z FRB
model was motivated by the FRB host galaxy associations
at redshifts 0.19, 0.32, 0.66 reported in [12–16], and the
low-z FRB model was motivated by the ASKAP-2MPZ
cross-correlation at very low redshift reported in [33].
In both FRB models, we define the FRB HOD so that

FRBs have a small nonzero probability to occur in halos
above threshold mass Mf ¼ 109 h−1M⊙. We have chosen
Mf to be small, roughly the minimum halo mass needed to
host a dwarf galaxy, since one FRB (the original repeater)
is known to be in a dwarf. If Mf is increased (keeping
the total number of observed FRBs NFRB fixed), then the
FRB-galaxy cross-correlations SNR also increases.
Therefore, our choice of small Mf makes our forecasts a
bit conservative.

D. Galaxy surveys

We consider three galaxy surveys throughout the
paper. First, the SDSS-DR8 optical photometric survey
over redshift range 0 ≤ z ≤ 1.1, with redshift distribution
taken from [37]. Second, the 2MPZ all-sky infrared photo-
metric survey [38], where almost all (≈98%) of the 2MPZ
galaxies have photometric redshifts < 0.2. Finally, the
upcoming DESI-ELG spectroscopic survey, whose redshift
distribution is forecasted in [39] and covers the range 0.6 ≤
z ≤ 1.7. For photometric surveys, we neglect photometric

redshift uncertainties, since these will be small compared
to the FRB redshift uncertainty arising from scatter in the
FRB host DM.
The galaxy HOD is constructed so that halos above

threshold mass MgðzÞ contain ðM=MgðzÞÞ galaxies on
average. The redshift-dependent threshold halo mass
MgðzÞ is chosen to match the redshift distribution of the
galaxy survey (“abundance matching”). Numerical values
of MgðzÞ are shown in Fig. 2.
For more details of the FRB and galaxy models,

including precise specification of the FRB redshift and

FIG. 1. Left panel: FRB redshift distributions in our high-z and low-z fiducial FRB models (see Sec. II), with galaxy redshift
distributions shown for comparison. Right panel: FRB DM distributions in both fiducial models. We show total extragalactic DM
(IGMþ host, denoted “DM”), and the IGM contributionDiðzÞ. The total DM distribution is similar in the two fiducial models, but DMs
are usually host dominated in the low-z model and IGM dominated in the high-z model. Vertical dotted lines mark maximum redshift
cutoffs.

FIG. 2. Threshold halo mass MgðzÞ for hosting a galaxy in the
2MPZ, SDSS-DR8, and DESI-ELG galaxy surveys, determined
by abundance matching to the redshift distribution dng=dz as
described in Sec. II and Appendix A 2. Vertical dotted lines mark
maximum redshift cutoffs.
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host DM distributions in the two fiducial models, see
Appendixes A 2 and A 3.

III. THE POWER SPECTRUM Cfg
l

A. Definition

Our primary statistic for FRB-galaxy cross-correlations
is the angular power spectrum Cfg

l , which measures the
level of correlation as a function of angular wave number l.
We review the definition of the angular power

spectrum. The input data are a catalog of FRB sky
locations θf1 ;…; θfNf

, and a catalog of galaxy sky locations
θg1;…; θgNg

. We then define the 2D FRB field δfðθÞ as a sum
of delta functions,

δfðθÞ ¼
1

n2df

XNf

i¼1

δ2ðθ − θðfÞi Þ; ð9Þ

and similarly for the galaxy field δgðθÞ.
In Fourier space, the FRB field δfðlÞ is a sum of

complex exponentials,

δfðlÞ ¼
1

n2df

XNf

i¼1

expð−il · θðfÞi Þ; ð10Þ

and likewise for δg. The two-point correlation function of
the fields δf, δg is simplest in harmonic space, where it
takes the form

hδfðlÞ�δgðl0Þi ¼ Cfg
l ð2πÞ2δ2ðl − l0Þ; ð11Þ

where the delta function on the right-hand side (RHS) is a
consequence of translation invariance. This equation
defines the power spectrum Cfg

l .
The power spectrum Cfg

l is one representation for the
two-point correlation function between δf and δg. Other
representations, such as the two-point correlation function
as a function of angular separation, contain the same
information as Cfg

l . The power spectrum has the advantage
that when it is estimated from data, statistical correlations
between different l values are small (in contrast with the
correlation function, where correlations between different
angular separations can be large). For this reason, we
choose to use the angular power spectrum throughout
the paper.
If the galaxy catalog has been divided into redshift bins,

then for each redshift bin j we can define a galaxy field

δgjðθÞ and a power spectrum C
fgj
l by cross-correlating with

the (unbinned) FRB catalog.
Similarly, we can bin the FRBs by dispersion measure.

Throughout the paper, we assume that the galactic
contribution DMgal can be accurately modeled and sub-
tracted from the observed DM prior to binning. For each

FRB DM bin i and galaxy redshift bin j, we can compute

an angular power spectrum C
figj
l . In the limit of narrow

redshift and DM bins, the angular power spectrum
becomes a function Cfg

l ðz;DÞ of three variables: angular
wave number l, galaxy redshift z, and FRB dispersion
measure D.

B. Two-halo and one-halo power spectra

In the halo model, the power spectrum Cfg
l can be

calculated exactly. Here we summarize the main features of
the calculation; details are in Appendix A.
The power spectrum is the sum of 2-halo and 1-halo

terms,

Cfg
l ¼ Cfgð2hÞ

l þ Cfgð1hÞ
l ; ð12Þ

which correspond to correlations between FRBs and
galaxies in different halos, or in the same halo. Some
example 2-halo and 1-halo power spectra are shown
in Fig. 3.
The 2-halo term Cfgð2hÞ

l is sourced by large-scale
cosmological correlations and is responsible for the large
bump at low l. For an arbitrary redshift z, the bump is at
l ∼ keqχðzÞ, where keq ∼ 0.02 hMpc−1 is the scale of
matter-radiation equality. The 2-halo term arises because
FRBs and galaxies trace the same underlying large-scale
cosmological density fluctuations. A complete expression

for Cfgð2hÞ
l is given by Eq. (A39) in Appendix A. Here we

give a simplified expression which applies on angular
scales larger than the angular size of a halo (l≲ χ=Rhalo,
where Rhalo is the comoving radius of a typical halo):

Cfgð2hÞ
l →

1

n2df n2dg

Z
dz

HðzÞ
χðzÞ2

�
bfðzÞ

dn2df
dz

�

×

�
bgðzÞ

dn2dg
dz

�
Plin

�
l

χðzÞ ; z
�
: ð13Þ

Here, bfðzÞ and bgðzÞ are bias parameters that measure
the coupling of FRBs and galaxies to the cosmological
density field on large scales. The FRB bias bf is defined
by the statement that the FRB and matter overdensities
are related by δf ≈ bfδm on large scales, and likewise
for bg. An explicit formula for bf, bg is given in Eq. (A40),
and numerical values are shown in Fig. 4. The 2-halo
term mainly depends on the redshift overlap between the
FRB and galaxy catalogs, via the factors ðbfdn2df =dzÞ ×
ðbgdn2dg =dzÞ in Eq. (13).
As a technical comment, power spectra have been

computed using the Limber approximation [40–42]
throughout the paper. We comment on the accuracy of
the Limber approximation in Appendix B.

CHARACTERIZING FAST RADIO BURSTS THROUGH … PHYS. REV. D 102, 023528 (2020)

023528-5



The 1-halo term Cfgð1hÞ
l arises because FRBs and

galaxies occupy the same dark matter halos. A complete

expression forCfgð1hÞ
l is given by Eq. (A39) in Appendix A.

Here we give a simplified expression that applies on
angular scales l≲ χ=Rhalo larger than the angular size of
a halo:

Cfgð1hÞ
l →

1

n2df n2dg

Z
dzdM

χðzÞ2
HðzÞ n

3d
h ðM; zÞhNfNgiM;z;

ð14Þ

where h·iM;z denotes the average over the HOD in a halo of
mass M at redshift z.
The 1-halo term is harder to interpret than the 2-halo

term, since it depends on the details of the HOD. As an
artificial example, suppose that the FRB and galaxy
catalogs do overlap in redshift, but the FRB and galaxy
HODs do not overlap in halo mass. Then the 1-halo term
will be zero. This example is artificial, since halos of
sufficiently large mass will contain galaxies of all types,
and presumably FRBs as well. However, it illustrates that
interpreting the 1-halo term is not straightforward. We will
return to this issue shortly.

The 1-halo term Cfgð1hÞ
l arises whenever FRBs and

survey galaxies occupy the same halos. If FRBs actually
inhabit the survey galaxies themselves, there will be an

additional “Poisson” term CfgðpÞ
l that dominates on the

smallest scales (high l). We have neglected the Poisson
term in our forecasts, since we are assuming that the FRB
survey has insufficient resolution to associate FRBs and
galaxies on a per-object basis, but this does make our
forecasts slightly conservative. For more discussion of the
Poisson term, see Eq. (A41) in Appendix A.

IV. THE OBSERVABLES bðdn=dzÞ AND γðdn=dzÞ
In the limit of narrow galaxy redshift and FRB DM bins,

the angular power spectrum Cfg
l ðz;DÞ is a function of three

variables: angular wave number l, FRB dispersion measure
D, and galaxy redshift z. One may wonder whether the
information in Cfg

l can be “compressed” into a function of
fewer variables.
In this section, we will take a step in this direction, by

showing how the l dependence can be absorbed into two

FIG. 4. Large-scale bias parameters. The FRB bias bfðzÞ
assumes minimum halo mass Mf ¼ 109 h−1 M⊙. The galaxy
bias bgðzÞ for the 2MPZ, SDSS-DR8, and DESI-ELG surveys
assumes the minimum halo mass MgðzÞ from Fig. 2. We take
electron bias be ¼ 1 throughout. We also show the halo bias
bhðzÞ for two choices of halo mass.

FIG. 3. Angular cross power spectrum Cfg
l as a function of l for the fiducial high-z FRB model (see Sec. II) and SDSS-DR8 galaxies.

The total observed power spectrum is the sum of clustering and propagation contributions, and each contribution may be split into 1-halo
and 2-halo terms, which we show separately here. Disentangling these terms is a challenge and one of the main themes of this paper. The
clustering terms are described in Sec. III B, and the “DM-shifting” and “completeness” terms are propagation effects which will be
described in Sec. V. Left panel: Unbinned FRB and galaxy fields. Right panel: FRB dispersion measure bin 1400 < D < 1500 and
galaxy redshift bin 0.63 < z < 0.74.
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observables, corresponding to the power spectrum ampli-
tude in the 2-halo and 1-halo regimes. These observables,
denoted bðdn=dzÞ and γðdn=dzÞ for reasons to be
explained shortly, will be functions of z and D.
The basic idea is simple. For a narrow galaxy redshift

bin ðz; zþ ΔzÞ, the 2-halo and 1-halo power spectra
in Eqs. (13) and (14) have the following forms for
l≲ χ=Rhalo:

Cfgð2hÞ
l → ðConstantÞPlin

�
l

χðzÞ ; z
�
;

Cfgð1hÞ
l → ðConstantÞ: ð15Þ

For l≳ χ=Rhalo, the power spectra acquire additional l
dependence which gives information about halo profiles,
but we will assume that this profile information is of
secondary interest. Thus, the information in the l depend-
ence of the power spectrum can be compressed into two
numbers: the coefficients in Eq. (15). Given a measurement
of the total power spectrum Cfg

l , we can fit for both
coefficients jointly, without much covariance between them.

A. The 2-halo observable bf ðdn=dzÞ
Starting with the 2-halo power spectrum, we take

Eq. (13) in the limit of a narrow redshift bin ðz; zþ ΔzÞ,
obtaining

Cfgð2hÞ
l →

1

n2df

HðzÞ
χðzÞ2

�
bfðzÞ

dn2df
dz

�
bgðzÞPlin

�
l

χðzÞ ; z
�
:

ð16Þ
All factors on the RHS are known in advance except
bfðzÞdn2df =dz, including the factor Plinðl=χðzÞ; zÞ which
determines the l dependence. In particular, the galaxy bias
bgðzÞ can be measured in several ways, for example, by
cross-correlating the redshift-binned galaxy catalog with
cosmic microwave background (CMB) lensing. Therefore,
we can interpret the 2-halo power spectrum amplitude as a
measurement of the quantity bfðdn2df =dzÞ.
The observable quantity bfðdn2df =dzÞ is not as intuitive

as the FRB redshift distribution ðdn2df =dzÞ, but in practice
the two are not very different. For example, in our fiducial
model with threshold halo mass Mf ¼ 109 h−1M⊙, the
FRB bias satisfies 1.2 ≤ bf ≤ 1.5 for z ≤ 1 (see Fig. 4).
This interpretation of the 2-halo amplitude as a meas-

urement of bðdn=dzÞ is fairly standard and has been
explored elsewhere [21–25]. The 1-halo amplitude is less
straightforward to interpret and does not seem to have a
standard interpretation in the literature. In the rest of this
section, we will define an analogous observable γðdn=dzÞ
for the 1-halo amplitude. The definition is not specific to
FRBs and may be interesting in the context of other tracer
populations.

B. The 1-halo observable γf ðdn=dzÞ
We define the following 3D densities:

n3dgg ðzÞ ¼
Z

dM n3dh ðM; zÞhN2
giM;z; ð17Þ

n3dfgðzÞ ¼
Z

dM n3dh ðM; zÞhNfNgiM;z; ð18Þ

where h·iM;z is the expectation value over the HOD for a
halo of mass M at redshift z. These can be interpreted as
comoving densities of pair counts ðg; g0Þ or ðf; gÞ in the
same halo. Next we define

γfðzÞ ¼
n3dg ðzÞ
n3df ðzÞ

n3dfgðzÞ
n3dgg ðzÞ

: ð19Þ

We will see shortly that the 1-halo amplitude can be
interpreted as a measurement of γfðdn2df =dzÞ.
We would like to give an intuitive interpretation of

γfðzÞ. First, note that γf is invariant under rescaling the
overall abundance of FRBs and galaxies. For example, if
we wait until the FRB experiment has detected twice as
many FRBs, then densities rescale as n3dfg → 2n3dfg and

n3df → 2n3df , leaving γf unchanged.
Second, note that if the galaxy and FRB HODs were

identical (aside from overall abundance), then γfðzÞ ¼ 1. If
the FRB HODwere then modified so that FRBs are in more
massive halos (relative to the galaxies), then n3dfg would
increase, and γfðzÞ will be > 1. Conversely, if the typical
FRB inhabits a halo that is less massive than a typical
galaxy, then γfðzÞ will be < 1.
In Fig. 5, we show γfðzÞ for our fiducial HOD

[Eqs. (A15) and (A20)] as a function of ðMf;MgÞ the
threshold halo masses for FRBs and galaxies. Consistent
with the previous paragraph, if Mf and Mg are of the same
order of magnitude, then γf is of order unity. In the regimes
Mf ≪ Mg and Mf ≫ Mg, the quantity γf will be ≲1

and ≳1, respectively.
Now we show how the 1-halo amplitude can be

interpreted as a measurement of γfðzÞðdn2df =dzÞ. We take
Eq. (14) and specialize to a narrow redshift bin ðz; zþ ΔzÞ,
obtaining

Cfgð1hÞ
l →

1

n2df

n3dfgðzÞ
n3dg ðzÞ : ð20Þ

Similarly, the 1-halo amplitude of the galaxy auto power
spectrum is

Cggð1hÞ
l →

1

n2dg

n3dgg ðzÞ
n3dg ðzÞ ð21Þ
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by specializing Eq. (A39) for Cggð1hÞ
l in Appendix A to low

l and a narrow redshift bin. Now we write Cfgð1hÞ
l in the

following form:

Cfgð1hÞ
l →

n2dg
n2df

γfðzÞ
n3df ðzÞ
n3dg ðzÞC

ggð1hÞ
l

¼ Δz
n2df

�
γfðzÞ

dn2df
dz

�
Cggð1hÞ
l ; ð22Þ

where the second line follows from the first by using
Eq. (7). All factors on the RHS are known in advance

except γfðzÞdn2df =dz, including the factorCggð1hÞ
l which can

be measured from the galaxy auto power spectrum.
Therefore, the 1-halo amplitude can be interpreted as a
measurement of the quantity γfðzÞdn2df =dz.
Summarizing, we have defined power spectrum observ-

ables bfðdn2df =dzÞ and γfðdn2df =dzÞ. By measuring the
power spectrum Cfg

l as a function of ðl; zÞ, both observ-
ables may be constrained as functions of z. This extracts all
information in Cfg

l , except for suppression at high l which
contains information about halo profiles. The FRB catalog
may be further binned in DM to measure the observables
bfðdn2df =dzÞ and γfðdn2df =dzÞ as functions of ðD; zÞ. In the
top rows of Figs. 6 and 7, we show the observables as
functions of ðD; zÞ in our fiducial model.

V. PROPAGATION EFFECTS

So far, we have considered contributions to Cfg
l which

arise because 3D positions of FRBs and galaxies are
spatially correlated. However, propagation effects also
contribute to Cfg

l . Galaxies at redshift zg will spatially
correlate with free electrons, which can modulate the
observed abundance of FRBs at redshifts zf > zg, via
dispersion, scattering, or lensing. This generates new
contributions to Cfg

l , which we will study systematically
in this section.
Throughout this section, f denotes an FRB catalog,

which may be constructed by selecting on FRB properties.
For example, f could be a subcatalog of a larger catalog,
obtained by selecting a DM bin or a fluence bin.

A. Generalities

Let δeðθ; zÞ be the 3D electron overdensity along the
past light cone. We will expand propagation effects to first
order in δe.
Let δfðθÞ be the 2D FRB overdensity produced by

propagation effects, given a realization of δe. We write δf as
a line-of-sight integral:

δfðθÞ ¼
Z

dzWfðzÞδeðθ; zÞ; ð23Þ

where this equation defines the “window function” WfðzÞ.
We will show how to calculate WfðzÞ shortly.
Given the window function WfðzÞ, the contribution to

Cfg
l due to propagation effects may be calculated from

Eq. (23). In the Limber approximation, the result is

Cfg
l ¼ 1

n2dg

Z
dzWfðzÞn3dg ðzÞPge

�
l

χðzÞ ; z
�
; ð24Þ

where Pgeðk; zÞ is the 3D galaxy-electron power spectrum
at comoving wave number k. We model Pge using the halo

FIG. 5. Top panel: Quantity γfðzÞ defined in Eq. (19), as a
function of threshold FRB halo mass Mf and threshold galaxy
massMg, for Poisson HODs at redshift z ¼ 0.5. IfMf andMg are
comparable, then γf is of order 1. Bottom panel: Quantity γfðzÞ
as a function of redshift, assuming FRB threshold halo mass
Mf ¼ 109 h−1 M⊙, and galaxy threshold halo mass MgðzÞ from
Fig. 2. At high redshifts, γf can be ≪ 1 in our models, since
galaxies are rare and our abundance-matching prescription gives
a large value ofMg. Vertical dotted lines mark maximum redshift
cutoffs.
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FIG. 6. Visual comparison between clustering and propagation contributions to the clustering power spectrum Cfg
l , for our fiducial

high-z FRB model and SDSS-DR8. Each row corresponds to one such contribution: clustering (top), DM-shifting propagation effect
(middle), and completeness propagation effect (bottom). Since Cfg

l is a function of three variables ðz; D;lÞ, we compress the l
dependence into two clustering observables bfdnf=dz (left column) and γfdnf=dz (right column), as described in Sec. IV. Qualitatively,
it is clear that clustering and propagation effects may be distinguished based on their ðz; DÞ dependence.
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FIG. 7. Same as Fig. 6, but for the fiducial low-z FRB model.
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model [Eq. (A42)] in Appendix A. For a narrow galaxy
redshift bin ðz; zþ ΔzÞ, Eq. (24) becomes

Cfg
l →

HðzÞ
χðzÞ2 WfðzÞPge

�
l

χðzÞ ; z
�
: ð25Þ

B. Dispersion-induced clustering

In this section we will compute the window function
WfðzÞ defined by Eq. (23). There will be contributions to
WfðzÞ from several propagation effects: dispersion, scat-
tering, and lensing. In this paper, we will describe the
dispersion case in detail, deferring the other cases to
future work.
For an FRB at sky location θ and redshift zf, we write the

DM as D ¼ DiðzfÞ þ Δðθ; zfÞ, where Δðθ; zfÞ is the DM
perturbation due to electron anisotropy along the line of
sight at redshifts 0 < z < zf. Then Δ is given explicitly by

Δðθ; zfÞ ¼ ne;0

Z
zf

0

dz
1þ z
HðzÞ δeðθ; zÞ: ð26Þ

As usual, let dn2df =dz denote the angular number density
per unit redshift, so that

n2df ¼
Z

dz
dn2df
dz

: ð27Þ

We introduce the notation ð∂=∂ΔÞðdn2df =dzÞ to denote the

derivative of dn2df =dz with respect to a foreground DM
perturbation ΔðzÞ along the line of sight. Then, by differ-
entiating Eq. (27), we can formally write the propagation-
induced FRB anisotropy as

δfðθÞ ¼
1

n2df

Z
dzfΔðθ; zfÞ

� ∂
∂Δ

dn2df
dzf

�
:

Plugging in Eq. (26) for Δðθ; zfÞ and reversing the order of
integration, we get

δfðθÞ ¼
ne;0
n2df

Z
dz

1þ z
HðzÞ δeðθ; zÞ

Z
∞

z
dzf

� ∂
∂Δ

dn2df
dzf

�
:

ð28Þ
Comparing with the definition ofWf in Eq. (23) we read off
the window function:

WfðzÞ ¼
ne;0
n2df

1þ z
HðzÞ

Z
∞

z
dz0

� ∂
∂Δ

dn2df
dz0

�
: ð29Þ

This identity relates the window function Wf to the
derivative ð∂=∂ΔÞðdn2df =dzÞ, but it remains to compute
the latter quantity. This will depend on the details of how
the FRB catalog f is selected.

Generally speaking, the derivative ð∂=∂ΔÞðdn2df =dzÞ
contains two terms. First, there is a term that arises
because a DM perturbation changes the probability that
an FRB is detected. Increasing DM preserves pulse fluence,
but decreases signal to noise.1 If the FRB catalog is
constructed by selecting all objects above a fixed SNR
threshold, then this effect gives a negative contribution to
ð∂=∂ΔÞðdn2df =dzÞ. We will refer to this contribution as the
completeness term.
Second, in the case where the FRB catalog is DM

binned, there is an additional term in ð∂=∂ΔÞðdn2df =dzÞ
which arises because a DM perturbation can shift observed
DMs across a bin boundary. We will refer to this con-
tribution as the DM-shifting term.
We give an explicit formula for the DM-shifting term as

follows. Suppose that the FRB catalog is constructed by
selecting FRBs in DM bin ðDmin; DmaxÞ. Let ðd2n2df =dzdDÞ
be the angular number density of FRBs per (redshift, DM),
so that

dn2df
dz

¼
Z

Dmax

Dmin

dD
d2n2df
dz dD

: ð30Þ

Then the DM-shifting term is
� ∂
∂Δ

dn2df
dz

�
DM-shifting

¼
�
d2n2df
dz dD

�
Dmin

−
�
d2n2df
dz dD

�
Dmax

:

ð31Þ
Next we give an explicit formula for the completeness
term. This term is more complicated and depends on both
selection and the underlying FRB population. As a toy
model for exploring the order of magnitude of this term, we
will make the following assumptions:
(1) The FRB catalog is constructed by selecting all

objects above threshold signal-to-noise SNR�.
(2) All FRBs have the same intrinsic pulse width ti.
(3) In each redshift and DM bin, the FRB luminosity

function is Euclidean: the number of FRBs above
fluence F� is proportional to ðF−3=2

� Þ.2
(4) SNR is related to fluence F by

SNR ∝
F

ðt2i þ t2s þ t2dÞ1=4
; ð32Þ

1This is true for FRB searches based on incoherent dedisper-
sion, such as the CHIME/FRB real-time search, due to pulse
broadening within each frequency channel. If the FRB search
were based on coherent dedispersion, then dispersion would not
change the SNR. However, a coherent search is computationally
infeasible for large blind searches.

2The luminosity function is expected to be Euclidean at low z
if the FRB catalog is unbinned in redshift. However, within a
(z, DM) bin, there is no particular reason why the FRB luminosity
function should be Euclidean, so this assumption of our toy
model is fairly arbitrary.
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where ts is the instrumental time sample length and
td is the dispersion delay within a channel, given by

td ¼ 2μðDMÞν−3ðΔνÞ; ð33Þ

where ν is the observing frequency, ðΔνÞ is the
channel bandwidth, and μ ¼ 4.15 msGHz2 is the
coefficient in the FRB dispersion relation ðdelayÞ ¼
μðDMÞ=ν2 in Eq. (2).

Under these assumptions, we can calculate the derivative of
log d2nf=ðdzdDÞ with respect to a foreground DM pertur-
bation Δ, as follows:

∂
∂Δ

�
log

d2nf
dz dD

�
¼ −

3

2

∂ logF�
∂Δ

¼ −
3

2

∂ logðt2i þ t2s þ t2dÞ1=4
∂Δ

¼ −
3td

4ðt2i þ t2s þ t2dÞ
∂td
∂Δ

¼ −
3μðΔνÞtd

2ν3ðt2i þ t2s þ t2dÞ
: ð34Þ

Here, the first line follows from toy model assumption 3,
the second line follows from Eq. (32), and the last line
follows from differentiating Eq. (33) with respect to DM.
To get the completeness term in the derivative

ð∂=∂ΔÞðdn2df =dzÞ, we integrate Eq. (34) over D:

� ∂
∂Δ

dn2df
dz

�
completeness

¼
Z

dD

� ∂
∂Δ

d2n2df
dz dD

�

¼
Z

dD

�
d2n2df
dz dD

��
−

3μðΔνÞtd
2ν3ðt2i þ t2s þ t2dÞ

�
: ð35Þ

In our toy model, the completeness term always gives a
negative contribution to Cfg

l , since increasing the DM of an
FRB (at fixed fluence) decreases SNR. This is true under the
assumptions of our toy model, but is not guaranteed
to be true in general. For example, in the CHIME/FRB
real-time search, the radiofrequency interference removal
pipeline includes a filtering operation which detrends inten-
sity data along its radiofrequency axis, removing the signal
from low-DM events. In principle this gives a positive
contribution to Cfg

l , although end-to-end simulations of the
CHIME/FRB triggering pipeline would be needed to deter-
mine whether the overall sign is positive or negative.
Summarizing, in this section we have calculated two

contributions to Cfg
l from propagation effects: a “DM-

shifting” term and a “completeness” term. In both cases, the
contribution to Cfg

l is calculated as follows. We compute

the intermediate quantity ð∂=∂ΔÞðdn2df =dzÞ using Eq. (31)
or Eq. (35), then the window function WfðzÞ using

Eq. (29), and finally Cfg
l using Eq. (24).

Finally, other studies have proposed to isolate these
propagation effects to measure Pge by cross-correlating
galaxies with the 2D field Δ̄ðθÞ of DM averaged over all
FRBs detected in a particular direction θ. Such statistics are
related to the DM moment of Cfg

l ,

CΔ̄g
l ∝

X
i

Din2dfi C
fig
l ; ð36Þ

where fi denotes the sample of FRBs in DM bin i centered

on Di. Since CΔ̄g
l is a moment of our clustering statistic

Cfg
l , the former contains a subset of the astrophysical

information.

C. Numerical results

In this section, we numerically compare contributions to
Cfg
l from spatial clustering, and two propagation effects:

DM shifting [Eq. (31)] and completeness [Eq. (35)]. For
the completeness effect, we have used FRB intrinsic
width ti ¼ 10−3 s, and instrumental parameters matching
CHIME/FRB: time sampling ts ¼ 10−3 s, channel band-
width Δν ¼ 400 kHz, and central frequency ν ¼ 600 MHz.
To visualize contributions to Cfg

l , we compress the
power spectrum into two observables bfðdn2df =dzÞ and

γfðdn2df =dzÞ, as described in Sec. IV. To compute these
observables for propagation effects, we split the galaxy-
electron power spectrum Pge into 2-halo and 1-halo terms
[see Eq. (A42) in Appendix A]. For l≲ χ=Rhalo, these take
the forms

P2h
geðk; zÞ → bgðzÞbeðzÞPlinðk; zÞ; ð37Þ

P1h
geðk; zÞ →

n3dgeðzÞ
n3dg ðzÞn3de ðzÞ ; ð38Þ

where n3de ðzÞ is the 3D number density of free electrons and
n3dgeðzÞ is defined by

n3dgeðzÞ ¼
Z

dM n3dh ðM; zÞhNgNeiM;z ð39Þ

similar to the definition of n3dfgðzÞ in Eq. (18). Now a
calculation combining Eqs. (16), (22) (25), (37), (38) shows
that the contribution to the power spectrum observables
ðbfdn2df =dzÞ and ðγfdn2df =dzÞ from propagation effects is

�
bf

dn2df
dz

�
prop

¼ WfðzÞðbeðzÞn2df Þ; ð40Þ
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�
γf

dn2df
dz

�
prop

¼ WfðzÞðγeðzÞn2df Þ: ð41Þ

Here, beðzÞ is the large-scale clustering bias of free
electrons, which we will take to be 1. The quantity γeðzÞ
is defined by

γeðzÞ ¼
n3dg ðzÞ
n3de ðzÞ

n3dgeðzÞ
n3dgg ðzÞ

ð42Þ

similar to the definition of γfðzÞ given previously.
In Figs. 6 and 7, we show power spectrum observables

bfðdn2df =dzÞ and γfðdn2df =dzÞ from clustering and both
propagation effects, in the (DM, z) plane. It is seen that
propagation effects are comparable in size to the clustering
signal. However, it is qualitatively clear from Figs. 6 and 7
that there is some scope for separating the two based on
their dependence on redshift and DM.

D. Ideas for separating spatial clustering
from propagation effects

Propagation effects complicate interpretation of the
FRB-galaxy cross spectrum Cfg

l . For example, suppose a
nonzero correlation is observed between high-DM FRBs
and low-redshift galaxies. In the absence of propagation
effects, this would mean that the FRBs and galaxies must
overlap in redshift, implying a significant population of
FRBs at low redshift and large host DM. However, in the
presence of propagation effects, another possibility is that
FRBs are at high redshift and correlated to low-redshift
galaxies via propagation effects.
On the other hand, propagation effects add new infor-

mation to Cfg
l . By treating propagation effects as signal

rather than noise, it may be possible to learn about the
distribution of electrons in the IGM. In this section, we will
consider the question of how the spatial clustering and
propagation contributions to Cfg

l might be separated.
Rather than trying to anticipate every observational sce-
nario that may arise, we will present some general ideas.
Propagation effects can sometimes be eliminated by

changing the way the FRB catalog is selected. To take the
case of dispersion, the DM-shifting term will be eliminated
if the FRB catalog is unbinned in DM. Of course, this also
throws away information since the DM dependence of the
clustering signal is of interest. The completeness term will
be eliminated if FRBs are selected in a fluence bin, rather
than selecting FRBs above an SNR threshold. The fluence
bin must be complete, in the sense that all FRBs in the bin
are detected regardless of their dispersion. This may require
restricting the cross-correlation to fairly large fluence and
discarding low-fluence FRBs in the catalog.
Some propagation effects have a preferred sign; for

example, the completeness term in Eq. (35) is negative,

since adding dispersion makes FRBs harder to detect.3

Scattering is another example of a propagation effect with
a negative sign, for the same reason.
Propagation effects appear in theCfg

l power spectrum via
the product WfðzÞPgeðl=χ; zÞ [Eq. (24)]. We will discuss
separately how the window function WfðzÞ and galaxy-
electron power spectrum Pgeðk; zÞ might be modeled.
The window functionWfðzÞ may simplify in the limit of

low z. As a concrete example, consider the DM-shifting
effect, where the window function is

WfðzÞ ¼ ne;0
1þ z
HðzÞ

×
Z

∞

z

dz0

n2df

��
d2n2df
dz0dD

�
Dmin

−
�
d2n2df
dz0dD

�
Dmax

�

ð43Þ

by combining Eqs. (29) and (31). In the limit of low z this
becomes

lim
z→0

WfðzÞ ¼
ne;0
H0

1

n2df

��
dn2df
dD

�
Dmin

−
�
dn2df
dD

�
Dmax

�
; ð44Þ

where the derivative ðdn2df =dDÞ can be estimated directly
from data, since it is just the DM derivative of the observed
DM distribution.
A similar comment applies to other propagation effects:

the z → 0 limit of the window function WfðzÞ can be
estimated directly from the distribution of observed FRB
parameters, plus a model of the instrumental selection.
Away from the z → 0 limit, the window function will
depend on the FRB redshift distribution, which is not
directly observable. On the other hand, this means that if
the z dependence of WfðzÞ can be measured, it constrains
the FRB redshift distribution.
Now we discuss modeling the galaxy-electron power

spectrum Pgeðk; zÞ. On 2-halo dominated scales, where
Pgeðk; zÞ ¼ bgðzÞbeðzÞPlinðk; zÞ, this should be straightfor-
ward. The galaxy bias bgðzÞ can be determined from either
the galaxy auto power spectrum or cross-correlations with
gravitational lensing, and the electron bias beðzÞ is
expected to be very close to 1.
On 1-halo dominated scales, modeling Pgeðk; zÞ is more

difficult. One interesting near-future possibility is to mea-
sure Pgeðk; zÞ through the kSZ (kinetic Sunyaev-Zeldovich)
effect in the cosmic microwave background. Currently, the
kSZ effect has been detected at a few sigma, but not
constrained to high precision. However, measurements at
the ≈10σ level are imminent, and future CMB experiments
such as Simons Observatory and CMB-S4 will measure Pge

3As discussed near Eq. (35), this is true for our toy instru-
mental model, but not guaranteed to be true for a real pipeline.
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with percent-level accuracy [43,44]. These measurements
will be very informative for modeling FRB propagation
effects.
Less futuristically, the galaxy-matter power spectrum

Pgmðk; zÞ can be measured using cross-correlations
between the galaxy catalog and gravitational lensing maps.
On large scales, Pgmðk; zÞ and Pgeðk; zÞ are nearly equal,
but on smaller scales they will differ since dark matter halo
profiles are expected to be more compact than electron
profiles. Nevertheless, measuring Pgm may be a useful
starting point for modeling Pge.
In a scenario where Pgeðk; zÞ has been measured accu-

rately as a function of k, the l dependence of Cfg
l is

determined, even if the window function WfðzÞ is com-
pletely unknown. Therefore, it is possible to marginalize
over propagation effects by fitting and subtracting a
(z-dependent) multiple of Pgeðl=χ; zÞ from Cfg

l . This
marginalization will degrade clustering information to
some extent. In the two-observable picture, statistical errors
would increase on one linear combination of bfðdn2df =dzÞ
and γfðdn2df =dzÞ.
Summarizing, there are several interesting ideas for

modeling the separation of Cfg
l into clustering and propa-

gation signals. Which of these ideas proves to be most useful
will depend on which observational scenario emerges, and
what auxiliary information is available (e.g., kSZ).

VI. FORECASTS AND SIGNAL TO NOISE

A. Fisher matrix formalism

Our basic forecasting tool is the Fisher matrix, which we
briefly review. Suppose we have M FRB fields f1;…; fM
and N galaxy fields g1;…; gN . We will always assume that
galaxy fields are defined by narrow redshift bins, but FRB
fields could be defined by binning in DM or a different
quantity, or the FRB field could be unbinned (M ¼ 1).
We assume the FRB-galaxy cross power spectrum is of

the form

C
figj
l ¼

X
μ

AμC
figjðμÞ
l ; ð45Þ

where μ ¼ 1;…; P. That is, the power spectrum is the sum
of P terms whose l; i; j dependence is fixed by a model,
but whose coefficients Aμ are to be determined from data.
For example, we could take μ ∈ f1h; 2hg with P ¼ 2, to
forecast constraints on the overall amplitude of the 1-halo
and 2-halo clustering terms. Propagation effects can sim-
ilarly be included in the forecast.
Given this setup, the P-by-P Fisher matrix is

Fμν ¼ Ω
X
ij

Z
ldl
2π

C
figjðμÞ
l C

figjðνÞ
l

Cfifi
l C

gjgj
l

: ð46Þ

We assume that FRB auto power spectra are Poisson noise
dominated, i.e.,

Cfifi
l ¼ ðn2dfi Þ−1; ð47Þ

but have written Cfifi
l in Eq. (46) for notational uniformity.

The Fisher matrix is the forecasted inverse covariance
matrix of the amplitude parameters Aμ in Eq. (45). For
example, if P ¼ 1, then the 1-by-1 Fisher “matrix” F is the
SNR2, and the statistical error on the amplitude parameter
is σðAÞ ¼ 1=

ffiffiffiffi
F

p
.

A few technical comments: The form of the Fisher
matrix in Eq. (46) assumes that FRB and galaxy fields are
each uncorrelated, i.e.,

C
fifj
l ¼ δijC

fifi
l ; C

gigj
l ¼ δijC

gigi
l : ð48Þ

This assumption is satisfied for FRB fields, since we are
assuming that autospectra are Poisson noise dominated.
The galaxy fields will also be uncorrelated if they are
defined by a set of nonoverlapping redshift bins.
Equation (46) also assumes that Cfg

l ≪ ðCff
l Cgg

l Þ1=2 in
the fiducial model. This will be a good approximation if
the FRB number density is not too large. Finally, in Eq. (46)
we have written the Fisher matrix as a double sum over
(redshift, DM) bins for maximum generality, but for
numerical forecasts we take the limit of narrow bins, by
replacing the sum by an appropriate double integral.

B. Numerical results

In Table I, we show SNR forecasts for several FRB and
galaxy surveys. We report SNR separately for six contri-
butions to the power spectrumCfg

l as follows. First, we split
the power spectrum into three terms from gravitational
clustering, and the DM-shifting and completeness propa-
gation effects described in Sec. V. We then split each of
these terms into 1-halo and 2-halo contributions, for a total
of six terms. Each SNR entry in Table I is given by

ffiffiffiffiffiffi
Fii

p
,

where Fii is the appropriate diagonal element of the 6-by-6
Fisher matrix. This corresponds to SNR of each contribu-
tion considered individually, without marginalizing the
amplitude of the other terms in a joint fit.
The forecasts are extremely promising: a CHIME/FRB-

like experiment which measures catalogs of ∼103 FRBs
with few-arcminute angular resolution can measure the
clustering signal with high SNR. The precise value depends
on the FRB redshift distribution and choice of galaxy
survey, but can be as large as ≈100 in the low-z FRB
model. As a consequence of the high total SNR, the FRB-
galaxy correlation can be split up and measured in ðz;DÞ
bins, allowing the redshift distribution (or rather, the
observables bfdnf=dz and γfdnf=dz) to be measured.
One interesting feature of Table I is that if FRBs

do extend to high redshift, the cross-correlation with a
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high-redshift galaxy sample is detectable (e.g., SNR ¼ 12
for the high-z FRB model, DESI-ELG, and θf ¼ 1 arcmi-
nute). Angular cross-correlations should be a powerful tool
for probing the high-z end of the FRB redshift distribution,
where galaxy surveys are far from complete, and FRB host
galaxy associations are difficult.

To get a sense for the level of correlation between
different contributions to the FRB-galaxy power spectrum,
we rescale the Fisher matrix to a correlation matrix
rij ¼ Fij=ðFiiFjjÞ1=2 whose entries are between −1 and 1.
Using the SDSS-DR8 galaxy survey and high-z FRB
model, we get
0
BBBBBBBB@

1.00 0.20 −0.76 −0.17 −0.10 −0.03
0.20 1.00 −0.14 −0.83 −0.02 −0.14
−0.76 −0.14 1.00 0.19 −0.22 −0.04
−0.17 −0.83 0.19 1.00 −0.04 −0.23
−0.10 −0.02 −0.22 −0.04 1.00 0.19

−0.03 −0.14 −0.04 −0.23 0.19 1.00

1
CCCCCCCCA
;

ð49Þ
where the row ordering is the same as Table I. We see that
there is not much correlation between 1-halo and 2-halo
signals, but the clustering signal is fairly anticorrelated to
the DM-shifting signal. The correlation is not perfect since
there is some difference in the (redshift, DM) dependence,
as can be seen directly by comparing the top and middle
rows of Fig. 6. The correlation matrix depends to some
degree on model assumptions. For example, in the low-z
FRB model, the correlation matrix is
0
BBBBBBBB@

1.00 0.17 −0.02 −0.00 −0.78 −0.16
0.17 1.00 −0.00 −0.02 −0.13 −0.86
−0.02 −0.00 1.00 0.19 −0.19 −0.04
−0.00 −0.02 0.19 1.00 −0.04 −0.20
−0.78 −0.13 −0.19 −0.04 1.00 0.19

−0.16 −0.86 −0.04 −0.20 0.19 1.00

1
CCCCCCCCA
;

ð50Þ

TABLE I. Forecasted SNR for FRB-galaxy cross-correlations.
Each row corresponds to a choice of FRB model, galaxy survey,
and FRB angular resolution θf . Each column corresponds to one
contribution to the FRB-galaxy power spectrum. Each entry is
total SNR after summing over angular wave number l and a
narrow set of redshift and DM bins. We have assumed a catalog
with NFRB ¼ 1000 FRBs (Dmax ¼ 104); in general each SNR
value scales as N1=2

FRB.

Clustering DM shifting Completeness

1h 2h 1h 2h 1h 2h

High-z FRB model
SDSS-DR8, θf ¼ 10 25 6.1 18 5.8 1.2 0.4
SDSS-DR8, θf ¼ 100 6.9 5.8 8.3 5.6 0.57 0.38
SDSS-DR8, θf ¼ 300 2.4 4.9 5 4.9 0.34 0.33
2MPZ, θf ¼ 10 8.2 1.8 10 2.8 0.72 0.2
2MPZ, θf ¼ 100 4.8 1.7 7.4 2.8 0.51 0.2
2MPZ, θf ¼ 300 2.2 1.7 4.8 2.8 0.32 0.19
DESI-ELG, θf ¼ 10 12 4.6 5.4 3.4 0.34 0.22
DESI-ELG, θf ¼ 100 1.9 4.2 0.85 3.1 0.055 0.2
DESI-ELG, θf ¼ 300 0.49 3.2 0.22 2.4 0.014 0.15

Low-z FRB model
SDSS-DR8, θf ¼ 10 103 14 4.4 0.74 0.28 0.049
SDSS-DR8, θf ¼ 100 87 14 4.1 0.74 0.26 0.049
SDSS-DR8, θf ¼ 300 63 14 3.5 0.74 0.22 0.048
2MPZ, θf ¼ 10 92 13 3.9 0.7 0.25 0.046
2MPZ, θf ¼ 100 82 13 3.7 0.7 0.24 0.046
2MPZ, θf ¼ 300 62 13 3.2 0.7 0.21 0.046

FIG. 8. Forecasted SNR of FRB-galaxy cross power, for varying choices of maximum redshift zmax and maximum angular wave
number lmax, after summing over narrow ðD; zÞ bins. Left panel: Fiducial low-z FRB model and SDSS-DR8 galaxies. Right panel:
Fiducial high-z FRB model and SDSS-DR8 galaxies.
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where we have assumed the SDSS-DR8 galaxy survey.
Here, there is a large correlation between clustering and
completeness terms. (However, Table I shows that com-
pleteness terms are small in the low-z FRB model.)
Figure 8 shows the evolution of total SNR as a function

of angular wave number and redshift. In the analysis of
real data, large scales (l≲ 20) may be contaminated
by Galactic systematic effects, such as dust extinction.
Figure 8 shows that these scales make a small contribution
to the total SNR, so our forecasts are robust against such
systematics.

VII. SIMULATIONS

Our SNR forecasts in the previous section make the
approximation that the FRB and galaxy fields are Gaussian.
More precisely, we are assuming that the band power
covariance of the FRB-galaxy power spectrum is given by
the Gaussian (or disconnected) form

CovðCfg
b ; Cfg

b0 Þ ≈
Cff
b Cgg

b

fskyðlðbÞ2
max − lðbÞ2

min Þ
δbb0 ; ð51Þ

where Cfg
b denotes the estimated FRB-galaxy power in a

set of nonoverlapping l bands lðbÞ
min ≤ l ≤ lðbÞ

max with b ¼
1;…; Nbands, and we have assumed Cfg

l ≪ ðCff
l Cgg

l Þ1=2.
In reality, FRB and galaxy fields are non-Gaussian. The

FRB catalog consists of a modest number of objects that
obey Poisson (not Gaussian) statistics. Galaxy catalogs are
larger, but Poisson statistics of the underlying halos may be
important, since the number of halos is smaller than the
number of galaxies. The purpose of this section is to
determine whether the Gaussian covariance (51) is a good
approximation, by carrying out Monte Carlo simulations of
galaxies and FRBs.

A. Description of simulation pipeline

Our simulation pipeline is based on the halo model from
Sec. II and Appendix A. We use the high-z FRB model and
SDSS-DR8 galaxy survey. Because non-Gaussian effects
are expected to be largest for the 1-halo term, our simu-
lation pipeline only includes 1-halo clustering. In particu-
lar, we do not simulate the Gaussian linear density field δlin,
because it is not needed to simulate 1-halo clustering.
We use a 10 × 10 deg2 sky patch, in the flat-sky approxi-

mation with periodic boundary conditions. We sample
Poisson random halos in 100 redshift bins, and 500
logarithmically spaced mass bins betweenMf andMmax ¼
1017 h−1 M⊙. For each halo, we assign an FRB and galaxy
count by sampling a Poisson random variable whose
expectation value is given by the HODs in Eqs. (A15)
and (A20). For each FRB and galaxy, we assign a 3D
location within the halo using the NFW profile [Eq. (A7)].
Angular positions are computed by projecting 3D positions

onto the sky patch. In the case of FRBs, we convolve sky
locations by the beam [Eq. (A34)]. Finally, FRBs are
assigned a random DM, which is the sum of the IGM
contribution DiðzÞ and a random host contribution Dh
[see Eq. (A23)].
Next, we grid the FRB and galaxy catalogs onto a real-

space 2049 × 2049 pixelization with resolution ≈0.3 arc-
minutes, using the cloud-in-cell (CIC) weighting scheme.
We take the Fourier transform to obtain Fourier-space fields
δfðlÞ, δgðlÞ. Then, following Eq. (A37), we estimate the

angular cross power spectrum Cfg
l by averaging the cross

power hδfðlÞ�δgðlÞi in a nonoverlapping set of l bins.

B. Numerical results

We run the pipeline for 105 Monte Carlo realizations and
find that the cross power spectrum Cfg

l of the simulations

agrees with the numerical calculation of Cfgð1hÞ
l , for a few

ðDM; zÞ binning schemes. To compare the band power
covariance to the Gaussian approximation in Eq. (51), we
first estimate the covariance of the simulations as

CovðCfg
b ; Cfg

b0 Þ ¼
�

1

nsim − 1

�

×
Xnsim
i¼1

ðCfg;i
b − hCfg

b iÞðCfg;i
b0 − hCfg

b0 iÞ:

ð52Þ

In Fig. 9, we show the band power correlation matrix rbb0 ,
obtained from the Monte Carlo covariance matrix Cbb0 in
Eq. (51) by

rbb0 ¼
Cbb0

ðCbbCb0b0 Þ1=2
: ð53Þ

For a Gaussian field, rbb0 is the identity (distinct band
powers are uncorrelated). In our simulations, we do see off-
diagonal correlations due to non-Gaussian statistics, but the
correlations are small (≈20% for adjacent bands).
In Fig. 10, we compare the total SNR of the FRB-galaxy

cross-correlation obtained from simulations to the Gaussian
approximation. The total SNR was computed as

SNR2 ¼
X
b;b0

ðCfg
b ÞCovðCfg

b ; Cfg
b0 Þ−1ðCfg

b0 Þ; ð54Þ

where CovðCfg
b ; Cfg

b0 Þ is either the Monte Carlo covariance
matrix in Eq. (52) or the Gaussian approximation in
Eq. (51). From Fig. 10, the total SNR in the simulations
agrees almost perfectly with the Gaussian forecast. This
indicates that our forecasts in previous sections, which
assume Gaussian statistics, are good approximations to the
true non-Gaussian statistics of the FRB and galaxy fields.

RAFIEI-RAVANDI, SMITH, and MASUI PHYS. REV. D 102, 023528 (2020)

023528-16



VIII. DISCUSSION

In summary, the use of angular cross-correlations allows
telescopes with high mapping speed and modest angular
resolution to constrain quantities that appear to require host
galaxy associations, such as the FRB redshift distribution.
Angular cross-correlations may also be detectable at high
redshift, where galaxy surveys are far from complete, and
FRB host galaxy associations are difficult. This dramati-
cally extends the scientific reach of instruments such as
CHIME/FRB.
One complication is that the FRB redshift distribution

ðdnf=dzÞ is not quite directly measurable. In Sec. IV we
studied this issue and showed that there are two clustering
observables ðbfdnf=dzÞ and ðγfdnf=dzÞ in the 2-halo
and 1-halo regimes, respectively. Here, bf is the usual
large-scale bias parameter, and the quantity γf [defined in
Eq. (19)] depends on details of HODs.
Propagation effects can produce contributions to Cfg

l
that are comparable to the intrinsic clustering signal. This
means, for example, that if a nonzero correlation is
observed between FRBs and low-redshift galaxies, one
cannot definitively conclude that a substantial population
of FRBs exists at low z. The correlation could instead be
due to the clustering of low-z galaxies with free electrons,
which modulate the abundance of FRBs observed at
higher z either through selection effects or by shifting
FRBs between DM bins.
Propagation effects can be separated from clustering

based on their dependence as functions of ðz;D;lÞ. This is
shown qualitatively in Figs. 6 and 7, where clustering and
propagation signals have very different ðz;DÞ dependence
[after compressing the l dependence into the two clustering
observables ðbfdnf=dzÞ and ðγfdnf=dzÞ]. For a longer,
more systematic discussion, see Sec. V D.
Propagation effects are both a potential contaminant of

the clustering signal and a potential source of information
about ionized electrons in the universe. Indeed, the “DM-
shifting” propagation effect identified in Sec. V can be used
to probe the distribution of electrons in the circumgalactic
medium along the lines of [27–32].
We now interpret our forecasts in relation to the 3σ

correlation between ASKAP-discovered FRBs and 2MPZ
galaxies measured in [33]. Scaling to a sample of 21
galaxies, and noting the weak dependence on angular
resolution, our low-z FRB model predicts an intrinsic
clustering correlation SNR of roughly 12, a factor of 4
higher than that observed. While it is not straightforward to
interpret SNR units—the difference could be one of signal
amplitude, estimator optimality, or modeling—this would
nonetheless seem to disfavor a completely nearby popula-
tion. However, the measured SNR is far greater than what
our high-z FRB model predicts and cannot be explained
by DM shifting (the measurement was unbinned in DM) or
completeness as modeled (wrong sign and too small of

FIG. 9. Band power correlation matrix rbb0 of the FRB-galaxy

cross power spectrum Cfgð1hÞ
l , estimated from simulations [see

Eq. (53)]. We have used the fiducial high-z FRB model, SDSS-
DR8 galaxies, FRB angular resolution θf ¼ 10, and maximum
dispersion measure Dmax ¼ 104. Correlations between band
powers are ≈20% for adjacent l bins, and decay rapidly after
that. This is one way of quantifying the importance of non-
Gaussian statistics, since off-diagonal correlations would be zero
if the FRB and galaxy fields were Gaussian.

FIG. 10. Cumulative SNR for the FRB-galaxy cross power

spectrum Cfgð1hÞ
l , using the Monte Carlo band power covariance

[Eq. (52)], with the Gaussian approximation shown for com-
parison [Eq. (51)]. The two agree almost perfectly, justifying
the Gaussian forecasts used throughout the paper. We have used
the fiducial high-z FRB model, SDSS-DR8 galaxies, FRB
angular resolution θf ¼ 10, and maximum dispersion measure
Dmax ¼ 104.
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an amplitude). As such, we suggest that the true FRB
population may be somewhere between these two models,
which could still be consistent with the three direct local-
izations (at high redshifts z ¼ 0.19, 0.32, 0.66).
The results in this paper can be extended in several

directions. We have not considered all possible propagation
effects (e.g., scattering, plasma lensing), or fully explored
the impact of various model assumptions (e.g., free electron
profiles). We have explored the effect of binning the FRB
catalog in DM, but not binning in other FRB observables.
One particularly interesting possibility will be binning
FRBs by observed flux F. By measuring the FRB dis-
tribution d2nf=ðdzdFÞ as a function of redshift and flux,
the intrinsic luminosities of FRBs can be constrained.
The galaxy catalog can also be binned in different ways.

As an interesting example which also illustrates subtleties
in the interpretation, suppose we bin galaxies by estimated
star formation rate, in order to determine whether FRBs
are statistically associated with star formation. If the FRB-
galaxy correlation is observed to be larger for star-forming
galaxies, how should this be interpreted?
The answer depends on the angular scale l where the

power spectrum Cfg
l is measured. On angular scales that

are 2-halo dominated, FRBs and galaxies correlate via the
observable ðbfbgdnf=dzÞ, so the observation just means
that the galaxy bias bg is larger for star-forming galaxies.
On 1-halo dominated scales, the observation would imply
that FRBs preferentially inhabit halos which contain star-
forming galaxies, but this does not necessarily imply that
FRBs inhabit the star-forming galaxies themselves. Finally,
at very high l where Cfg

l is dominated by the Poisson term
(a regime which we have mostly ignored in this paper, but
see discussion in Sec. III), the observation would imply that
FRBs do preferentially inhabit star-forming galaxies.
In this paper, we have developed tools for analysis and

interpretation of FRB-galaxy cross-correlations. This work
was largely motivated by analysis of CHIME/FRB data in
progress, to be reported separately in the near future.
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APPENDIX A: HALO MODEL

In this appendix, we describe the model for spatial
clustering of FRBs and galaxies used throughout the paper.
We use a halomodel approach: first we specify the clustering

of dark matter halo, and then we specify how halos are
populated by FRBs and galaxies.

1. Dark matter halos

We define σðR; zÞ to be the root-mean-square amplitude
of the linear density field at redshift z, smoothed with a top
hat filter of comoving radius R:

σðR; zÞ ¼
�Z

d3k
ð2πÞ3 Plinðk; zÞWðkRÞ2

�
1=2

; ðA1Þ

where WðxÞ is the Fourier transform of a unit-radius top
hat,

WðxÞ ¼ 3
sinðxÞ − x cosðxÞ

x3
; ðA2Þ

and Plinðk; zÞ is the matter power spectrum in linear
perturbation theory, which we compute numerically with
CAMB [45]. Throughout, we adopt a flat ΛCDM cosmology
with h ¼ 0.67, Ωm ¼ 0.315, Ωb ¼ 0.048, As ¼ 2 × 10−9,
ns ¼ 0.965,

P
νmν ¼ 0.06 eV, and TCMB ¼ 2.726 K.

If M is a halo mass, we define

RM ¼
�

3M
4πρm

�
1=3

; ðA3Þ

where ρm is the comoving total matter density (dark
matter þ baryonic). Note that RM is just the radius of a
sphere which encloses massM in a homogeneous universe.
Abusing notation slightly, we define σðM; zÞ to be equal to
σðR; zÞ evaluated at R ¼ RM.
Let nhðM; zÞ be the halo mass function, i.e., the number

density of halos per comoving volume per unit halo mass.
We use the Sheth-Tormen mass function [46,47], given by

nhðMÞ ¼ ρm;0

M
d log σ−1

dM
fðσÞ;

fðσÞ ¼ A
δc
σ

ffiffiffiffiffiffi
2a
π

r �
1þ

�
σ2

aδ2c

�
p
�
exp

�
−
aδ2c
2σ2

�
; ðA4Þ

where σ ¼ σðM; zÞ and

a ¼ 0.707; δc ¼ 1.686; p ¼ 0.3; ðA5Þ

and A ¼ 0.3222 is the normalization that satisfiesR
dðlog σÞfðσÞ ¼ 1, which means that all matter is formally

contained in halos of some (possibly very small) mass M.
We assume that halos are linearly biased Poisson tracers

of the cosmological linear density field δlin, i.e., the
number of halos in comoving volume V and mass range
ðM;M þ dMÞ is a Poisson random variable with mean
dMðdn=dMÞ RV d3xð1þ bhðMÞδlinðxÞÞ. Here, bhðMÞ is the
Sheth-Tormen halo bias:
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bhðMÞ ¼ 1þ 1

δc

d log f
d log σ

: ðA6Þ

Note that σ, nh, and bh are functions of both M and z.
We assume that halos have NFW (Navarro-Frenk-White)

density profiles [48]. Recall that the NFW profile ρðrÞ has
two parameters: the virial radius rvir where the profile is
truncated, and the scale radius rs which appears in the
functional form of the profile. Sometimes, we reparame-
trize by replacing one of these parameters by the concen-
tration c ¼ rvir=rs. The NFW profile uðrÞ and its Fourier
transform ũðkÞ are given by

uðrÞ ¼ A
ðr=rsÞð1þ r=rsÞ2

ðr ≤ rvirÞ; ðA7Þ

ũðkÞ ¼ 4πAr3s

�
−

sinðκcÞ
κð1þ cÞ þ ðcos κÞ½Ciðκð1þ cÞÞ − CiðκÞ�

þ ðsin κÞ½Siðκð1þ cÞÞ − SiðκÞ�
�
; ðA8Þ

where κ ¼ krs, and Si and Ci are the special functions,

SiðxÞ ¼
Z

x

0

dt
sin t
t

; ðA9Þ

CiðxÞ ¼ −
Z

∞

x
dt

cos t
t

¼ γ þ logðxÞ þ
Z

x

0

dt
cos t − 1

t
; ðA10Þ

and γ ¼ 0.577216… is Euler’s constant. We choose the
normalizing constant A in Eqs. (A7) and (A8) to be

A ¼ 1

4πr3s

�
logð1þ cÞ − c

1þ c

�
−1
: ðA11Þ

With this value of A, the profile satisfies ũð0Þ ¼R rvir
0 drð4πr2ÞuðrÞ ¼ 1.
To use the NFW profile, we need expressions for the

virial radius rvirðM; zÞ and halo concentration cðM; zÞ, as
functions of halo mass and redshift. For the concentration,
we use the fitting function from [49]:

log10cðM; zÞ ¼ αðzÞ þ βðzÞlog10
�

M
1012h−1 M⊙

�
;

αðzÞ ¼ 0.537þ 0.488 expð−0.718z1.08Þ;
βðzÞ ¼ −0.097þ 0.024z: ðA12Þ

For the virial radius, we reparametrize by defining a virial
density,

ρvir ¼
3Mð1þ zÞ3

4πr3vir
; ðA13Þ

and then use the fitting function for ρvir from [50]:

ρvirðzÞ ¼ 178ΩmðzÞ0.45ρcritðzÞ

¼ 178ΩmðzÞ0.45
�

3

8πG
HðzÞ2

�
: ðA14Þ

The factor ð1þ zÞ3 in Eq. (A13) arises because ρvir is a
physical density, whereas rvir is a comoving distance.

2. Galaxies

We assume that the number of galaxies in a halo of mass
M is a Poisson random variable whose mean N̄gðM; zÞ is
given by

N̄gðM; zÞ ¼
� ðM=MgðzÞÞ if M ≥ MgðzÞ
0 if M < Mg

; ðA15Þ

where MgðzÞ is the minimum halo mass needed to host a
galaxy.
For each galaxy survey considered in this paper, we

compute MgðzÞ by matching to the redshift distribution
dn2dg =dz, by numerically solving the equation

dn2dg
dz

¼ Ω
χðzÞ2
HðzÞ

Z
∞

MgðzÞ
dM nhðMÞ M

MgðzÞ
ðA16Þ

for MgðzÞ. [This procedure for reverse engineering a
threshold halo mass MgðzÞ from an observed redshift
distribution is sometimes called “abundance matching.”]
The redshift distribution dn2dg =dz is taken from [37–39] for
SDSS-DR8, 2MPZ, and DESI-ELG, respectively. For each
survey, the redshift distribution dn2dg =dz and threshold halo
mass MgðzÞ are shown in Figs. 1 and 2.

3. FRBs

Similarly, we model the FRB population by starting
with a redshift distribution dnf=dz, which we take to be of
the form

dn2df
dz

∝ z2e−αz ðA17Þ

for 0 ≤ z ≤ zmax, where the parameter α and maximum
redshift zmax are given by

α ¼
�
3.5 ðhigh-z FRB modelÞ
120 ðlow-z FRB modelÞ ; ðA18Þ

zmax ¼
�
5 ðhigh-zFRB modelÞ
0.12 ðlow-zFRB modelÞ ; ðA19Þ

for our fiducial high-z and low-z FRB models, respectively.
The FRB redshift distribution in both models is shown
in Fig. 1.
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We assume that the number of FRBs in a halo of
mass M is a Poisson random variable whose mean
N̄fðMÞ is given by

N̄fðM; zÞ ¼
�
ηðzÞðM=MfÞ if M ≥ Mf

0 if M < Mf
; ðA20Þ

where Mf is the threshold halo mass for hosting an FRB,
and ηðzÞ is an FRB event rate per threshold halo mass.
In the FRB case, we take Mf to be a free parameter and
determine ηðzÞ by abundance matching to the FRB redshift
distribution in Eq. (A17). In detail, we take

Mf ¼ 109 h−1 M⊙ ðA21Þ

in both our fiducial high-z and low-z FRB models. The
prefactor ηðzÞ is then determined by numerically solving
the equation

ηðzÞ ¼ dn2df
dz

�
Ω
χðzÞ2
HðzÞ

Z
∞

Mf

dM nhðMÞ M
MfðzÞ

�−1
: ðA22Þ

Thus, our FRB redshift distribution and HOD are para-
metrized by ðα; zmax;MfÞ, and the total number of observed
FRBs Nf which determines the proportionality constant
in Eq. (A17).
We model dispersion measures by assuming that the

host DM is a log-normal random variable. That is, the
probability distribution is

pðDhÞ ¼
1

Dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2logD

q exp

�
−
ðlogDh − μlogDÞ2

2σ2logD

�
;

ðA23Þ

where the parameters ðμlogD; σlogDÞ are given by

μlogD ¼
�
4 ðhigh-zFRB modelÞ
6.78 ðlow-zFRB modelÞ ; ðA24Þ

σlogD ¼
�
1 ðhigh-zFRB modelÞ
0.63 ðlow-zFRB modelÞ : ðA25Þ

The FRB DM distribution in both models is shown
in Fig. 1.
We assume that FRBs are observed with a Gaussian

beam with FWHM θf. In the flat-sky approximation,
statistical errors on FRB location ðθx; θyÞ have the
Gaussian probability distribution:

pðθx; θyÞ ¼
4 log 2
πθ2f

exp

�
−4 log 2

θ2x þ θ2y
θ2f

�
: ðA26Þ

By default, we take the FRB angular resolution to be
θf ¼ 1 arcminute.

4. Power spectra

Given the model for halos, FRBs, and galaxies from the
previous sections, we are interested in angular power
spectra of the form CXY

l , where each 2D field X, Y could
be either a galaxy field (denoted g) or an FRB field
(denoted f). We are primarily interested in cross power
spectra Cfg

l , but autospectra (Cff
l , Cgg

l ) also arise when
forecasting signal to noise [e.g., Eq. (46)].
For maximum generality, we assume binned FRB and

galaxy fields. That is, the galaxy field is defined by
specifying a redshift bin ðzmin; zmaxÞ and keeping only
galaxies which fall in this range. Similarly, the FRB field
is defined by keeping only galaxies in the DM bin
ðDmin; DmaxÞ, after subtracting the galactic contribution
DMgal. Note that the unbinned galaxy field can be treated as
a special case, by taking the redshift bin large enough to
contain all galaxies (and analogously for the FRB field).
Before computing the power spectrum CXY

l , we pause to
define some new notation.
For each tracer field X, let N̄XðM; zÞ denote the mean

number of tracers in a halo of massM at redshift z. If X is a
binned galaxy field, in redshift bin ðzmin; zmaxÞ, then
N̄XðM; zÞ is given by

N̄gðM;zÞ ¼
� M

MgðzÞ if M ≥MgðzÞ and z ∈ ½zmin; zmax�
0 otherwise

;

ðA27Þ

generalizing Eq. (A15) for an unbinned galaxy field. If X is
a binned FRB field, in DM bin ðDmin; DmaxÞ, then

N̄fðM; zÞ ¼

8>><
>>:

ηðzÞ M
Mf

RDmax−DiðzÞ
Dmin−DiðzÞ dDhpðDhÞ

if M ≥ Mf

0 if M < Mf

; ðA28Þ

generalizing Eq. (A20) for an unbinned FRB field. Here,
pðDhÞ is the host DM probability distribution in Eq. (A23),
and DiðzÞ is the IGM contribution to the DM at redshift
z [Eq. (5)].
For each tracer field X, let n3dX ðzÞ be the 3D comoving

number density, and let n2dX be the 2D angular number
density. These densities can be written explicitly as follows:

n3dX ðzÞ ¼
Z

dM nhðMÞN̄XðM; zÞ; ðA29Þ

n2dX ¼
Z

dz
χðzÞ2
HðzÞ n

3d
X ðzÞ: ðA30Þ
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Next, for a pair of tracer fields ðX; YÞ, let n2dXY denote the
angular number density of object pairs ðx; yÞ which are
colocated. In our fiducial model, each FRB and galaxy is
randomly placed within its halo, so n2dXY is zero unless
the fields X, Y contain the same objects. That is, if the
galaxy fields in nonoverlapping redshift bins are denoted
g1;…; gM, and the FRB fields in nonoverlapping DM bins
are denoted f1;…; fN , then

n2dfifj ¼ n2dfi δij; n2dgigj ¼ n2dgi δij; n2dfigj ¼ 0: ðA31Þ

One final definition: For each tracer field X, let uXl ðM; zÞ
denote the angular tracer profile sourced by a halo of mass
M at redshift z, normalized to u ¼ 1 at l ¼ 0. The quantity
uXl ðM; zÞ can be written explicitly as

uglðM; zÞ ¼ ũðM; k; zÞk¼l=χðzÞ; ðA32Þ

uflðM; zÞ ¼ blũðM; k; zÞk¼l=χðzÞ; ðA33Þ

in the galaxy and FRB cases, respectively. Here, ũ is the 3D
NFW profile in Eq. (A8), and

bl ≡ exp

�
−

θ2fl
2

16 log 2

�
ðA34Þ

is the Fourier-transformed FRB error distribution from
Eq. (A26).
Armed with the notation above, we can calculate the

power spectrum CXY
l in a uniform way which applies

to all choices of tracer fields X, Y. The calculation
follows a standard halo model approach, and we present
it in streamlined form.
Each tracer field X is derived from a catalog of objects at

sky locations θX1 ;…; θXN . The 2D field X is a sum of delta
functions in real space, or a sum of complex exponentials in
Fourier space:

XðθÞ ¼ 1

n2dX

X
j

δ2ðθ − θXj Þ; ðA35Þ

XðlÞ ¼ 1

n2dX

X
j

e−il·θ
X
j ; ðA36Þ

and likewise for Y. The power spectrum CXY
l is defined by

the equation

hXðlÞ�Yðl0Þi ¼ 1

n2dX n2dY
h
X
jk

eil·θ
X
j −il

0·θYk i

¼ CXY
l ð2πÞ2δ2ðl − l0Þ: ðA37Þ

The double sum
P

jkð� � �Þ can be split into three terms: a
sum over pairs ðj; kÞ of objects in different halos, a sum
over pairs ðj; kÞ of noncolocated objects in the same halo,

and a sum over colocated pairs ðj; kÞ. Correspondingly, the
power spectrum CXY

l is the sum of “2-halo,” “1-halo,” and
“Poisson” terms

CXY
l ¼ CXYð2hÞ

l þ CXYð1hÞ
l þ CXYðpÞ

l ; ðA38Þ

which are given explicitly as follows:

CXYð2hÞ
l ¼ 1

n2dX n2dY

Z
dz

χðzÞ2
HðzÞ n

3d
X ðzÞn3dY ðzÞ

× bXðz;lÞbYðz;lÞPlinðk; zÞ;

CXYð1hÞ
l ¼ 1

n2dX n2dY

Z
dz dM

χðzÞ2
HðzÞ nhðM; zÞ

× N̄XðM; zÞN̄YðM; zÞuXl ðM; kÞuYlðM; kÞ;

CXYðpÞ
l ¼ n2dXY

n2dX n2dY
; ðA39Þ

where in the first line we have defined

bXðz;lÞ≡ 1

n3dX ðzÞ
Z

dMbhðM; zÞnhðM; zÞ

× N̄XðM; zÞuXl ðM; zÞ: ðA40Þ

On large scales (where ul ¼ 1), the quantity bXðz;lÞ
reduces to the bias parameter bXðzÞ defined in Sec. III.
Throughout this paper, we have generally neglected the

Poisson term in Cfg
l , which arises if FRBs are actually

located in survey galaxies (in contrast to the 1-halo term,
which arises if FRBs are in the same halos as the survey
galaxies). This is equivalent to our assumption in Eq. (A31)

that n2dfg ¼ 0. If this assumption is relaxed, then CfgðpÞ
l will

be given by

CfgðpÞ
l ¼ bl

n2dfg
n2df n2dg

; ðA41Þ

where the FRB beam convolution bl has been inserted by
hand into the general expression in Eq. (A39), since the
FRB beam displaces FRBs relative to their host galaxies.

5. Free electrons

When modeling propagation effects (Sec. V), the 3D
galaxy-electron power spectrum Pgeðk; zÞ appears. This can
also be computed in the halo model.
For simplicity, we will assume the approximation that all

electrons are ionized. This is a fairly accurate approxima-
tion: the actual ionization fraction is expected to be ≈90%,
with the remaining 10% of electrons in stars, or “self-
shielding” HI (neutral hydrogen) regions in galaxies.
We will also make the approximation that electrons

have the same halo profiles as dark matter. This is a good
approximation on large scales, but may overpredict Pge on
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small scales by a factor of a few. This happens because dark
matter is pressureless, whereas electrons have associated gas
pressure, which “puffs out” the profile. In this paper our goal
is modeling propagation effects at the order-of-magnitude
level, and it suffices to approximate electron profiles by dark
matter profiles. For a more precise treatment, fitting func-
tions for electron profiles could be used [51].
Under these approximations, Pge is the sum Pge ¼

P1h
ge þ P2h

ge of one-halo and two-halo terms, given by

P1h
geðk; zÞ ¼

1

ρm;0n3dg ðzÞ
Z

dMMnhðM; zÞ

× N̄gðM; zÞũðM; k; zÞ2;
P2h
geðk; zÞ ¼ bgðk; zÞbeðk; zÞPlinðk; zÞ; ðA42Þ

where

beðk; zÞ ¼
1

ρm;0

Z
dMMbhðM; zÞnhðM; zÞũðM; k; zÞ;

bgðk; zÞ ¼
1

n3dg ðzÞ
Z

dM bhðM; zÞnhðM; zÞ

× N̄gðM; zÞũðM; k; zÞ: ðA43Þ

Note that beðk; zÞ → 1 as k → 0. Intuitively, the large-scale
bias of free electrons is 1 in our model because electrons
perfectly trace dark matter (δe ¼ δm).

APPENDIX B: ACCURACY OF THE LIMBER
APPROXIMATION

Throughout the paper, angular power spectra have been
calculated using the Limber approximation [40–42]. Let X,
Y be 2D fields which are obtained from the 3D density field
δlinðxÞ by line-of-sight integration:

XðθÞ ¼
Z

dχWXðχÞδlinðχθÞ;

YðθÞ ¼
Z

dχWYðχÞδlinðχθÞ; ðB1Þ

where WXðχÞ and WYðχÞ are radial weight functions. Then
the Limber approximation is

CXY
l ≈

Z
dχ
χ2

WXðχÞWYðχÞPlinðk; χÞk¼l=χ : ðB2Þ

For example, the 2-halo power spectrum Cfgð2hÞ
l in Eq. (13)

was calculated by applying the Limber approximation with
weight functions

WXðzÞ ¼ bXðzÞ
dn2dX
dz

ðX ∈ ff; ggÞ: ðB3Þ

How accurate is the Limber approximation? For a
detailed analysis, including explicit calculation of sublead-
ing terms, see [52]. At back-of-the-envelope level, the
Limber approximation is accurate if

l ≫
�
d logWX

d log χ
d logWY

d log χ

�
1=2

: ðB4Þ

In most of this paper, the factors ðd logW=d log χÞ are of
order 1, and therefore the Limber approximation is accurate
for l ≫ 1. There is one exception: when we calculate Cfg

l
for a narrow FRB DM slice in our fiducial high-z FRB
model (Sec. II), we have ðd logW=d log χÞ ≈ zf=ðΔzfÞ,
where the mean FRB redshift zf can be as large as 3, and
the width ðΔzfÞ of the FRB redshift distribution can be as
small as 0.1. In this case, the Limber approximation will
still be accurate for l ≫ ð3=0.1Þ1=2 ≈ 6, which is sufficient
for purposes of this paper.
One more subtle point. We sometimes consider the limit

of narrow redshift bins, for example, when computing
Fisher matrix forecasts in Sec. VI. Generally speaking,
the Limber approximation for Cfg

l breaks down when the
redshift bin width ðΔzÞ is taken to zero. However, the
Fisher forecast converges as ðΔzÞ → 0: the Fisher matrix
with ðΔzÞ ¼ 0 is nearly equal to the Fisher matrix with
ðΔzÞ ¼ 0.1 (or smaller), and the Limber approximation is
still accurate at ðΔzÞ ¼ 0.1. This is partly because the low-
l end of harmonic space contains a small area (see, e.g.,
Fig. 8). Therefore, the Limber-approximated narrow-bin
Fisher matrix is a good approximation to the exact Fisher
matrix.
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