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Abstract The recent development of genome editing
technologies has given researchers unprecedented power
to alter DNA sequences at chosen genomic loci, thereby
generating various genetically edited animal models. This
mini-review briefly summarizes the development of major
genome editing tools, focusing on the application of these
tools to generate animal models in multiple species.
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Animal models are invaluable tools for understanding
biology and developing therapies for human diseases. The
capability of making precise alterations at chosen genomic
loci in cells, or the whole animal, has been established and
improved upon at an unprecedented speed, thanks to the
development of genome editing technology. This mini-
review briefly introduces the key developments in genome
editing technology and its applications to animal model
creation. Given that this is a brief review, it is not possible
to include all important contributions here, and we
apologize to those whose work has been unintentionally
omitted.
The capability of precisely editing any position in the

genome has long been a dream of biologists. Recombinant
DNA technology has enabled scientists to engineer DNA
molecules in the test tube with great precision since the
1970s. Transgenes can be expressed by introducing
engineered DNA molecules into different cells. These

DNA fragments become integrated with low efficiency
into the genome of cells, leading to the addition of
constructed genetic information, although at random
locations. The first demonstration that exogenous DNA
could be introduced into early mammalian embryos was
made by Jaenisch and Mintz in 1974[1], followed by the
demonstration of germ line transmission of the exogenous
DNA[2]. Subsequent efforts of Gordon et al. showed that
linear DNA fragments injected into the pronucleus of
mouse embryos can lead to the generation of transgenic
animals[3]. This technology is still being actively used for
expressing exogenous genes in the mouse and other
species. While transgenic animals are useful for expressing
a particular transgene and to generate insertional muta-
tions[4], integration of the DNA into the genome is random
and thus this approach cannot be used to disrupt specific
genes.
The seminal work of Smithies et al.[5] and Thomas

et al.[6] showed that an exogenous DNA fragment could be
precisely integrated into the desired genomic locus via
homologous recombination (HR), a cell-intrinsic DNA
repair mechanism. Although the efficiency of this gene-
targeting technology[7] was initially low, the rare clones
containing the desired targeting event could be enriched
and selected by a variety of elegantly designed strategies,
leading to the derivation of clonal cell lines containing the
desired genetic modification. The combination of gene-
targeting and mouse embryonic stem cell (mESC)
technologies[8] made it possible to generate a mouse
composed entirely of cells containing the designed
predetermined genetic modification[9,10]. While this
approach transformed modern biology and resulted in the
award of a Nobel Prize, its application was limited to mice
and more recently to rats[11], mainly because embryonic
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stem cells with germ line contribution capability have not
been established in most mammalian species. Also, gene
targeting in most human cell types is inefficient, thereby
limiting its application for genetic correction-based
therapy. A means of increasing the efficiency of HR
therefore became a key question for improving the
capability of modifying genomes of all life forms.
First in yeast and then in mammalian cells, pioneering

work on DNA double-stranded break (DSB) repair
demonstrated that site-specific DSB in the genome could
stimulate the rate of local HR by several orders of
magnitude[12,13]. Also, it was shown that, once the DSB
was introduced, in addition to the HR pathway the non-
homologous end joining (NHEJ) pathway could repair the
DSB, often leading to the introduction of small insertions
and/or deletions (indels) at target sites. These results
motivated the development of methods that generate DNA
DSB at a specific locus in the genome. The earlier efforts
were aimed at engineering a class of rare-cutting
endonuclease, meganucleases, that recognize long
stretches of DNA sequences[14]. However, it has been
quite difficult to engineer naturally occurring meganu-
cleases to bind and cleave chosen DNA target sequences
and this has greatly limited their wider application.
Zinc finger proteins (ZFPs) are one of the most abundant

types of proteins in eukaryotes and the largest transcription
factor family in human[15–17]. With the coordination of zinc
ions, each zinc finger domain recognizes a 3–4 bp DNA
sequence, and a combination of several fingers allows for
the recognition of a longer sequence. Zinc finger nuclease
(ZFN) is generated by fusing a zinc finger binding domain
with the FokI nuclease domain. A pair of ZFNs binds to
two proximal sites next to each other, leading to the
homodimerization of FokI, generating site-specific DNA
DSBs in the genome. ZFNs have been used to generate
various indel mutations as well as to stimulate homology-
directed repair (HDR) in different species including human
cells[18]. Upon their injection into the nuclei of Xenopus
oocytes, a pair of ZFNs binding in the opposite direction
induced DNA cleavage efficiently, with the linker between
FokI and ZF domains constraining the spacing of the two
binding sites[19]. Further, by introducing heat-shock
promoter-driven ZFN transgenes into the Drosophila
germline, ZFNs efficiently knocked out endogenous
genes[20] or increased the frequency of targeted integration
of transgenes into the chromosome[21]. Several studies in
2008 showed that direct injection of ZFNs into embryos of
Drosophila and zebrafish could lead to the efficient
generation of gene knockout (KO) animals[22–24]. In
2009, Geurts et al. showed that microinjection of ZFN
into rat zygotes led to the generation of a gene KO rat[25],
demonstrating a powerful strategy to generate gene-edited
animals without limitation due to HR efficiency or
availability of germline contributing embryonic stem cells.
Although a variety of strategies have been established to

generate ZFPs with designed specificity, they often require

significant expertise and intensive screening. This has
limited the wider adoption of ZFN technology within the
scientific community. In 2009, two groups independently
deciphered the mechanism of transcription activator-like
effectors (TALEs) recognizing target DNA sequences and
found a remarkably simple modular recognition
code[26,27]. Depending on the repeat-variable di-residue
(RVD), each module of the highly repetitive TALE DNA
binding domain can specifically recognize one single DNA
base pair. Based on the RVD-nucleotide association, a
TALE DNA binding protein could be generated to
recognize a sequence of choice by simply linking different
modules together. The TALE nuclease (TALEN) system
was readily established by replacing the ZF domain with
the TALE DNA binding domain. The principle of TALEN
is very similar to ZFN with the only difference being that
the DNA binding specificity is determined by the array of
TALE motifs. Soon afterwards, TALEN was shown to
work efficiently in human cells[28,29]. By injecting TALEN
into zygotes, animals with specific gene KO were
generated in various species including non-human
primates[30–34]. Co-injection of donor template into
zygotes leads to efficient HDR, generating animals
with precise nucleotide change and targeted gene
integration[35–37]. Editing mESCs using TALENs gener-
ated the first mouse containing targeted mutations on the Y
chromosome[38]. TALEN was also used in livestock with
well-established cloning technology to generate specific
mutations in somatic cell lines which were then cloned to
generate genetically-modified animals[39,40].
Although TALENs were much easier to generate than

ZFNs, CRISPR (clustered regularly interspaced short
palindromic repeat DNA sequences)-Cas9 readily out-
performed all previous tools for generating designed
double strand breaks and quickly became the method of
choice for genome editing. CRISPR-Cas systems are
adaptive immune defense mechanisms protecting against
invading nucleic acids such as plasmid and phage infection
in a large proportion of bacterial and archaeal species[41].
Through decades of work, people dissected the mechanism
of the CRISPR-Cas system[42], and the biochemical
characterization of the Streptococcus pyogenes and
Streptococcus thermophilus CRISPR systems demon-
strated that Cas9 is an RNA guided DNA endonuclease
that targets specific DNA sequences complementary to the
20 nucleotide sequence residing at the 5′ end of the guide
RNA[43,44]. Upon appropriate codon optimization,
CRISPR-Cas9 was able to efficiently target specific
genomic loci in mammalian cells[45,46]. By simply
designing a 20-nucleotide sequence within single guide
RNA (sgRNA), the Cas9 nuclease-sgRNA complex can
generate DNA DSBs at a specific genomic locus. The ease
of use and robust performance of the CRISPR-Cas9 system
resulted in its rapid adoption by the scientific community.
The efficiency of the CRISPR-Cas9 system makes it

particularly attractive for performing multiplex gene
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editing. By co-expressing multiple sgRNAs, Cas9 can
generate DSBs at multiple chosen loci within the same
cell[46–48]. Following the previous principle established
using ZFN and TALEN, injection of CRISPR-Cas9 into
the zygote leads to highly efficient generation of
genetically-modified animals. Mice carrying multiple
gene KOs or precise nucleotide changes can be derived
within a month[47,49]. A similar approach produced
genetically edited animals from ever-increasing numbers
of species[50–54]. To make the process even simpler, several
groups developed the protocols to deliver CRISPR-Cas9
components into rat and mouse zygotes by electroporation,
which has been successfully adopted by the field[55–59]. In
addition to modifying the genome of the zygote, germline
modification has also been achieved in mice by genome
editing of spermatogonial stem cells. After development to
spermatids and injection into oocytes, animals with
specific genetic modification were derived[60]. By combin-
ing the gene editing and haploid stem cell technologies, an
artificial sperm strategy was established as an efficient
method to generate gene-edited mice[61]. Whether these
strategies can be transferred to other species remains to be
tested.
One of the advantages of the CRISPR-Cas9 system is

the great flexibility of repurposing its function. Cas9 has
two nuclease domains, each capable of cleaving one of the
target DNA strands. When either one of these domains is
mutated, the Cas9-sgRNA complex becomes a sequence
and strand-specific nickase; and when both nuclease
domains are mutated, Cas9 becomes a programmable
DNA binding protein (dCas9) without any endonuclease
activity. Guided by sgRNA, dCas9 fused with different
effector domains can bind to regulatory elements and
regulate transcription, as well as epigenetic modifica-
tions[62,63]. In particular for genome editing, dCas9 or Cas9
nickase fused with single-stranded DNA deaminase was
developed into programmable DNA base editors, which
can make specific nucleotide changes without introducing
DNA DSB or replying on HDR[64]. To construct cytosine
base editors, single-stranded DNA cytosine deaminase was
used to mediate C$G to T$A conversions[65,66]; to generate
adenine base editors capable of converting A$T to G$C,
the DNA adenine deaminase was artificially evolved from
the bacterial tRNA-specific adenosine deaminase TadA[67].
Following the demonstration of efficient base editing in
cultured cells, multiple groups introduced base editors into
the embryos of various species and demonstrated efficient
generation of base-edited animal models[68–73]. These
studies showed that, in general, base editing generated
animals carrying precise single nucleotide editing more
efficiently than previous HDR based genome editing
strategies.
Generation of genetically edited animal models is

becoming much easier with rapidly-improving genome
editing technology. New strategies based on recently
developed prime-editing[74] and newly discovered site-

specific transposon systems[75,76] promise to make even
more sophisticatedly-edited animal models more effi-
ciently in the future.
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