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Deep generative model embedding of single-cell
RNA-Seq profiles on hyperspheres and hyperbolic
spaces

Jiarui Ding® "™ & Aviv Regev(® 23

Single-cell RNA-Seq (scRNA-seq) is invaluable for studying biological systems. Dimension-
ality reduction is a crucial step in interpreting the relation between cells in scRNA-seq data.
However, current dimensionality reduction methods are often confounded by multiple
simultaneous technical and biological variability, result in “crowding” of cells in the center of
the latent space, or inadequately capture temporal relationships. Here, we introduce scPhere,
a scalable deep generative model to embed cells into low-dimensional hyperspherical or
hyperbolic spaces to accurately represent scRNA-seq data. ScPhere addresses multi-level,
complex batch factors, facilitates the interactive visualization of large datasets, resolves cell
crowding, and uncovers temporal trajectories. We demonstrate scPhere on nine large
datasets in complex tissue from human patients or animal development. Our results show
how scPhere facilitates the interpretation of scRNA-seq data by generating batch-invariant
embeddings to map data from new individuals, identifies cell types affected by biological
variables, infers cells’ spatial positions in pre-defined biological specimens, and highlights
complex cellular relations.
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ARTICLE

ingle-cell ~ genomics—especially  single-cell RNA-seq

(scRNA-seq)—has opened the way to a comprehensive

analysis of the relationship between cells, including their
different types, states, physiological transitions, differentiation
trajectories, and spatial positions!~3. Although scRNA-seq data-
sets have high dimensionality, their intrinsic dimensionality is
typically low, because many genes are co-expressed and a few
variables, such as cell type, a gene program, or the number of
detected transcripts, could explain a substantial portion of the
variation in a dataset. As a result, dimensionality reduction, fol-
lowed by visualization or downstream analyses has become a key
strategy for exploratory data analysis in single-cell genomics®>.

Recently, deep-learning models®, especially (variational)
autoencoders’?, have been used for dimensionality reduction
prior to visualization or downstream analyses, such as
clustering!0-1>. This leverages their ability to model large-scale
high-dimensional data and their flexibility in incorporating dif-
ferent factors, especially batch effects in the modeling framework.
Moreover, such models can provide an end-to-end, single process
for analyses that otherwise require multiple separate steps, each
with its own method or algorithm, including batch correction,
dimensionality reduction, and visualization.

However, standard variational autoencoders (VAEs) have
several shortcomings when modeling and analyzing scRNA-seq
data. First, they assume a multidimensional normal prior for the
low-dimensional latent variables, which unfortunately encourages
the low-dimensional representations of all cells to the group in
the center of the latent space, even for data consisting of distinct
cell types. This is especially true if the model is trained long
enough, such that the posterior distributions gradually approx-
imate the prior distribution. (Cell crowding also afflicts general-
purpose data visualization tools such as #-stochastic neighbor-
hood embedding (¢-SNE)!6, once the large datasets consist of
hundreds of thousands of cells!”18.) A second challenge arises
from using the cosine to measure the distance between two
cells!®-2! for very sparse droplet-based scRNA-seq data (>90%
genes with zero counts in a typical cell profile). Because the cosine
distance between two cell vectors is their Euclidean distance after
normalizing the two cell vectors to have a unit €2 norm, the cells
lie on the surface of a unit hypersphere with a dimensionality of
D — 1, where D is the number of measured genes. Embedding
data distributed on a hypersphere to a Euclidean space introduces
significant distortion for commonly used dimensionality reduc-
tion tools??, and standard variational autoencoders also fail to
model such data?3. Moreover, the Euclidean geometry is not
optimal for representing hierarchical, branched developmental
trajectories®4=2. Third, in practice, current applications of VAEs
for scRNA-seq data can only handle a single-batch vector (factor),
whereas biologically relevant datasets typically have multiple such
factors, both technical (e.g., replicate or study) and biological
(e.g., patient, tissue location, disease status). Such complex mul-
tilevel factors are not well-handled by current batch-correction
methods in single-cell genomics, either VAEs or other
approaches>!2:27-31 but addressing them is critical for integra-
tion across studies, interpretation of the impact of various factors
on cells in complex tissues, and the ultimate assembly of large
tissue atlases.

Here, we present alternative approaches for embedding of cells
into hyperspherical or hyperbolic spaces based on deep-
generative models, to better capture their inherent properties,
tackle complex batch effects, generate references, and perform
diverse analyses. For general scRNA-seq data, we minimize the
distortion by embedding cells to a lower-dimensional hyper-
sphere instead of a low-dimensional Euclidean space??, using von
Mises—Fisher (vMF) distributions on hyperspheres as the pos-
teriors for the latent variables23-3233. Because the prior is a

uniform distribution on a unit hypersphere and the uniform
distribution on a hypersphere has no centers, points are no longer
forced to cluster in the center of the latent space. For repre-
sentation and inference of hierarchical, branched developmental
trajectories, we embed cells to the hyperbolic space of the Lorentz
model and visualize the embedding in a Poincaré disk?»2>34,
Using nine diverse datasets from human and model organisms,
we demonstrate scPhere’s superior performance on key existing
use cases as well as emerging applications, including processing
large scRNA-seq datasets with complex multilevel batch effects,
visualizing cell profiles from highly complex tissues and devel-
opmental processes, building batch-invariant reference models to
which new data can be readily mapped, identifying the cells
impacted by specific biological factors, and mapping cells to
spatial positions. Overall, our model provides enhanced repre-
sentation, complex batch correction, reference-generation,
visualization, and an interpretation tool for single-cell genomics
research.

Results

Mapping scRNA-seq data to hyperspherical or hyperbolic
latent spaces. We developed scPhere (pronounced “sphere”), a
deep-learning method that takes scRNA-seq count data and
information about multiple known confounding factors (e.g.,
batches, conditions) and embeds the cells to a hyperspherical or
hyperbolic latent space (Fig. la, “Methods”). We reasoned that
scPhere would allow cells to be embedded more appropriately
because they will not be constrained to aggregate in the center. In
cases where we expect a branching structure with a large number
of trajectories, hyperbolic spaces are particularly suitable, because
the exponential volume growth of hyperbolic spaces with radius
confers them enough capacity to embed trees, which have
exponentially increasing numbers of nodes with depth. For 3D
visualization, scPhere places cells on the surface area of a sphere
(but not inside the sphere), such that we only need to rotate the
sphere to see all cells, avoiding the common challenge of
exploring the interior of 3D embeddings. The scPhere package
renders all 3D plots for interactive visualizations of millions of
cells with the rapid rgl R package, with web graphics library files,
which can be opened in a browser for exploration. Alternatively,
one can convert the 3D coordinates to 2D, based on various
projection methods, such as the recent Equal Earth map projec-
tion method?.

Specifically, scPhere takes as input an scRNA-seq dataset D =
{(x;, 7)1, with N cells, where x; is the UMI count vector of D
genes in cell 4, and y, is a categorical vector specifying the batch in
which x; is measured, and models the x; UMI count distribution
as governed by a latent low-dimensional random vector z; and by
y; (Fig. 1a, “Methods”). Note that y; can account for multilevel
confounding factors, for example, patient, disease status, and lab
protocol. The scPhere model assumes that the latent low-
dimensional random vector z; is distributed according to a prior,
with the joint distribution of the whole model factored as
p(y;:19,)p(z;10)p(x;ly;, 2;,0;), where p(y;|0;) is the categorical
probability mass function (constant for our case, as y,; is
observed). For hyperspherical latent spaces, scPhere uses a
uniform prior on a hypersphere for p(z;0;); for hyperbolic
latent spaces, it uses a wrapped normal distribution in
the hyperbolic space as the prior. For the observed raw UMI
count inputs, we assume a negative-binomial distribution:

D
px;ly;z;,0,) =11 NBC(x; |4y , >0y, 4,)> With parameters specified
]:1 [ (R

by a neural network. The inference problem is to compute the
posterior distribution p(z;|y;, x;, 0;), which is assumed to be a von
Mises—Fisher distribution for hyperspherical latent spaces, and a
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Fig. 1 ScPhere model. a, b Method overview. a ScPhere takes as input scRNA-seq measurements and multilevel technical or biological batch effects (e.g.,
replicate patient, disease) and learns cells’ latent structure accounting for the batch effects. b The learned scPhere model and the low-dimensional latent
representations of cells are used for diverse queries, including (1) identifying the influence of a biological factor on expression, (2) generating a batch-
invariant reference and mapping new datasets to the reference, and (3) mapping cells to their spatial locations.

wrapped normal distribution for hyperbolic latent spaces. Because
it is intractable to compute the posterior, the scPhere model uses
a variational distribution q(z;|y;,x;,$;) to approximate the
posterior (Fig. la, “Methods”). When a hyperspherical latent
space is used, x; is first log-transformed and scaled to have a unit
€2 norm for inference, otherwise x; is only log-transformed but
not scaled. The parameters ¢; of the variational distribution are
(continuous) functions of x; and y, parameterized by a neural
network with parameter ¢. As a deep-learning model trained by
mini-batch stochastic gradient descent, scPhere is especially
suited to process large scRNA-seq datasets with complex
multilevel batch effects and facilitates emerging applications
(Fig. 1b). We provide full details in the “Methods” section.

ScPhere visualizes large datasets with multiple cell types and
hierarchical structures without cell crowding. Applying scPhere
to scRNA-seq data shows that its spherical latent variables help
address the problem of cell crowding in the origin and that it
provides excellent visualization for data exploration, with easily
interpretable latent variable posterior means of cells.

To illustrate this, we applied scPhere to six scRNA-seq datasets
from human and mouse, spanning from small (thousands) to
very large (hundreds of thousands) of cells from one or multiple
tissues, and with a small (two) to very large (dozens) of expected
cell types. We compared scPhere’s visualization with a hyper-
spherical latent space to scPhere’s VAE but with a Euclidean
embedding, as well as to three major general-purpose data
visualization tools commonly applied to scRNA-seq data:

t-SNE16, UMAP3%, and PHATEY. The “small” datasets were:
(1) a blood cell dataset3® with only 10 erythroid cell profiles and
2293 CD14" monocytes; (2) 3314 human lung cells®®, (3) 1378
mouse white adipose tissue stromal cells?, and (4) 1755 human
splenic nature killer cells spanning four subtypes*!. The “large”
datasets were: (1) 35,699 retinal ganglion cells in 45 cell subsets*2
and (2) 599,926 cells spanning 102 subsets across 59 human
tissues in the Human Cell Landscape*3

Applying scPhere with a hyperspherical latent space to each of
the “small” datasets readily distinguished cell subsets, and
moreover, the posterior means of cells typically did not overlap,
which helped ensure that we can discern individual cells without
occlusion. In each case, cells of the same type were close to each
other on the surface of a sphere, and yet generally two cells were
distinguishable, even by eye (Supplementary Fig. la-d). Con-
versely, when we used a standard multivariate normal prior, the
posterior means of the latent variables were centered at the origin,
leading to crowding (Supplementary Fig. le-h). Thus, in the
Euclidean space, the closer the cells were to the center, the higher
were their densities, a problem persisting in both 2D (Supple-
mentary Fig. le-h) and 3D (Supplementary Fig. 1i-1), even with
rotation of the 3D space. In particular, similar cell types were very
close to each other in the Euclidean space (e.g., APC and FIP,
Supplementary Fig. 1g), and rare cell types became “outliers”
(hNK_Sp3 and hNK_Sp4, Supplementary Fig. 1h). Notably,
although there were discrete cell types in these datasets, even
scPhere with hyperbolic latent spaces performed well (Supple-
mentary Fig. 2a). Overall, +-SNE, UMAP, and PHATE? generally
worked well for these smaller datasets without batch effects
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Fig. 2 ScPhere resolves the cell-crowding problem and preserves hierarchical global structures in visualizing large scRNA-seq data. a-p ScPhere learns
latent representations that provide excellent visualization of local and global structure, even in very large datasets. Shown are scPhere posterior means of
cells in a sphere projected to 2D by the Equal Earth map projection method (a, e, i, m), scPhere learned representations in the Poincaré disk (b, f, j, n), 2D t-
stochastic neighborhood embeddings (t-SNE) (¢, g, k, 0), and 2D uniform manifold approximation and projections (UMAP) (d, h, I, p), for 45 mouse retinal
ganglion cells (RGCs) (a-h), and 102 Human Cell Landscape clusters (i-p) with cells colored by either cluster membership (a-d, i-I), or by major cell types
(e-h, m-p; clusters that cannot be assigned to major cell types are numbered).

(Supplementary Fig. 2b-d), with some minor challenges (e.g.,
mixing of mouse adipose doublets and macrophages by UMAP,
Supplementary Fig. 2c), and PHATE—designed for development
trajectories—connecting cells inaccurately when only discrete cell
types are present (Supplementary Fig. 2d).

ScPhere’s advantages compared to other approaches were
particularly pronounced when applied to datasets with a larger
number of cells and clusters: mouse retinal ganglion cells
(RGCs)*? and the Human Cell Landscape*3. While scPhere (with
either spherical or hyperbolic latent space and default parameters
throughout), t-SNE and UMAP all discerned well individual cell
types among RGCs (Fig. 2a-h and Supplementary Fig. 3a—c) and
the Human Cell Landscape (Fig. 2i-p and Supplementary
Fig. 3d-f), scPhere best preserved the hierarchical global structure
in these data, grouping together sets of clusters of different
subtypes of each major type (Fig. 2e-h, m-p). For example,
among RGCs, all Cartpt-RGC clusters were in one part of the
scPhere embedding (Fig. 2e, f), but in different parts of the +-SNE
and UMAP embeddings (Fig. 2g, h). Similarly, most of the 102-
cell clusters in the Human Cell Landscape organize in the scPhere
embedding by their six major cell groups (fetal stromal cells, fetal
epithelial cells, adult endothelial cells, endothelial cells, adult

stromal cells, and immune cells) (Fig. 2m, n), but were more
spread in different parts of the t~-SNE and UMAP representations
(Fig. 20, p). ScPhere outperformed other methods in preserving
the hierarchical global structure, based on global k-NN accuracies
on both the RGC and the HCL datasets (scPhere: 73.53% and
92.21%, t-SNE: 47.06% and 79.22%; UMAP:52.94% and 83.12%,
Supplementary Fig. 3b, e, “Methods”). Moreover, with this large
number of cells, t-SNEs were increasingly “crowded”!”-18, such
that where even very distinct cell types were very close to each
other in 2D (Fig. 2k), and cells from multiple clusters appeared
mixed in the UMAP (Fig. 21), as reflected both visually and based
on mean Silhouette scores (Mann-Whitney U test, FDR < 0.0001,
Supplementary Fig. 3f, “Methods”). ScPhere did not suffer from
these problems, partially because it was trained using mini-
batches, while -SNE and UMAP were learned using all the data,
and their parameters (especially the perplexity parameter of t-
SNE) have to be adapted to this larger number of cells, but
increasing the perplexity parameter makes -SNE computationally
expensive!8. (In our analyses, we used a list of perplexity
parameters that already grow with the number of cells!3; the cell-
crowding problem suggests that much larger perplexity para-
meters are required.) By contrast, scPhere was trained with
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default parameters and is scalable to process a large number of
cells, with a time complexity that is linear with the number of
input cells (Supplementary Fig. 4a-i, “Methods”). Embedding
cells into the Euclidean space performed worse than embedding
cells into hyperspherical latent spaces in terms of discerning
discrete cell types or in preserving their hierarchical organization
(Supplementary Fig. 3g-j), because the normal prior encourages
the posterior means of cells to be centered at the origin. As
expected, PHATE did not perform well for these large datasets of
mostly discrete cell types (Supplementary Fig. 3k-n).

ScPhere effectively models complex, multilevel batch, and
other variables. Single-cell profiles in realistic biological datasets
are typically impacted by diverse factors, including technical
batch effects in separate experiments and different lab protocols,
as well as biological factors, such as interindividual variation, sex,
disease, or tissue location. However, most batch-correction
methods>!2-27-29:31 handle only one batch variable (which often
is technical in practice) and may not be well-suited to the
increasing complexity of current datasets. ScPhere however can
learn models of data with multiple variables.

To assess its ability to performed batch correction, we applied
scPhere to a dataset of 301,749 cells we previously profiled in a
complex experimental design from the colon mucosa of 18
patients with ulcerative colitis (UC), a major type of inflamma-
tory bowel diseases (IBD), and 12 healthy individuals*%. In
addition to each individual patient biopsy being a batch, there
were many other factors to consider: individuals were either
healthy or with UC, cells were collected separately from the
epithelial and lamina propria fractions of each biopsy, there were
two replicate biopsies for each healthy individual and as a pair of
inflamed and uninflamed biopsies for the UC patients (for a few
UC patients, there were replicate inflamed and/or replicate
uninflamed biopsies)*4, and, finally, samples were collected at two
time periods, separated by over a year (analyzed as train and test
data in the original study*$). Notably, these factors had a
substantial impact on the cells’ profiles and ability to integrate the
data, which required a large number of dedicated and iterative
steps in the original study*#, with optimization for the specific
dataset. To test scPhere, we applied it with default parameters, in
a single end-to-end process, assessed its results biologically, and
compared its performance to that of three leading batch-
correction methods—Harmony3%, LIGER?’, and Seurat3 CCA®
(the latter two can handle only one batch factor, which we chose
to be the individual#4, as is the common practice; “Methods”).

Analyzing cells with the patient origin as the batch vector, not
only recapitulated the main cell groups in our initial study** but
was highly refined, allowing us to better visually explore cellular
relations (Fig. 3a-c and Supplementary Movies 1-4). For
example, in the stromal and glial cells, endothelial cells and
microvascular cells were close to each other, and adjacent to
postcapillary venules. Conversely, these distinctions can barely be
discerned in a UMAP plot of the same data, where endothelial
and microvascular cells were very close (Supplementary Fig. 5a;
using the 20 batch-corrected components by either Harmony?,
Seurat3 CCA>, or LIGER? as inputs). Among fibroblasts, cells
arranged in a manner that mirrored their position along the
crypt-villus axis, from RSPO3TWNT2B™ cells (which support the
ISC niche**), to WNT2B™ cells, to WNT5B™ cells. Strikingly, the
inflammatory fibroblasts, which are unique to UC patients#4,
were readily visible (Fig. 3a, light blue), and were both distinctive
from the other fibroblasts, while spanning the range of the
“crypt-villus axis” (as shown experimentally**). ScPhere’s batch
correction on this complex dataset (30 patients with disease and
location factors) performed better than Harmony, Seurat3 CCA,

and LIGER based on classification accuracies of cell types for
stromal, epithelial, and immune cells (Fig. 3d-f, Supplementary
Figs. 6-9, either k-nearest neighbors (k-NN) or logistic regression;
we omitted Seurat3 CCA results for immune cells with >200,000
cells and 30 batches, as it failed to complete.). ScPhere performed
well even when using fewer latent variables, which avoids the
component-collapse problem in VAEs (Supplementary Fig. 10,
“Methods”).

ScPhere’s ability to correct for multiple confounding factors
simultaneously (which is not readily possible with many other
batch-correction methods>1%27-29) helps to understand the
impact of biological factors. For example, when using both
patient origin and disease status (healthy, uninflamed, inflamed)
as the batch vector in the stromal cells, scPhere largely merged the
inflammatory fibroblasts with WNT2B* fibroblasts (Fig. 3g and
Supplementary Movie 2). When analyzing epithelial cells, adding
anatomical regions as a component of the batch vector, the cells
were grouped solely by types (e.g., stem cells separate from TA2
cells, Fig. 3h, i), whereas anatomical regions dominated the cells,
which organized in two respective parallel tracts in some regions
of the sphere (Fig. 3j, k). Cell types that were mostly from one
region (e.g., tuft cells, mostly from epithelial fractions) remained
grouped distinctly (Fig. 3j, k). Similarly, when we did not use
disease status (healthy, uninflamed, or inflamed) as a component
of the batch vector, some cell types (e.g, TA2, immature
enterocytes, and enterocytes) had “outliers” mapped to low-
density regions of the sphere (Fig. 31), mostly from UC samples
(Fig. 3m), but the cells formed more compact clusters once
disease status was included (Supplementary Fig. 5b), with good
mixing between the cells from different disease states and patients
(Supplementary Fig. 5¢, d). This suggested that those cells may be
impacted by the disease.

When learning a scPhere model that included patient, disease
status, and the anatomical region as the batch vectors, epithelial
(Fig. 3b) and immune (Fig. 3c) cells grouped visually by type,
with accurate cell classification (Fig. 3e, f), and the influence of
region, disease status, and the patient was largely removed (Fig. 3i
and Supplementary Fig. 5¢, d). For example, epithelial cells were
ordered in a manner consistent with their development (Fig. 3b
and Supplementary Movie 3), and CD8TIL17t T cells were
nestled between CD8™ T cells and activated CD4™ T cells in a
manner that was intriguing and consistent with the mixed
features of those cells** (Fig. 3c).

ScPhere’s abilities were particularly strong when analyzing all
immune, stromal, and epithelial cells simultaneously (Fig. 3n, o,
Supplementary Fig. 5e, and Supplementary Movie 4), demon-
strating its capacity to embed large numbers of cells of diverse
types, states, and proportions. Conversely, using -SNE or UMAP
with Harmony batch-corrected results of all cells as input led to
an unsuccessful visualization (Fig. 3p, q): many cell subtypes from
the same general compartment became indistinguishable (e.g.,
clumping WNT2B fibroblasts, RSPO3™ fibroblasts, and inflam-
matory fibroblasts), others were inexplicably split (plasma cells,
which are very abundant), and yet others were adjacent even from
different lineages. These results demonstrate the superior
performance of scPhere compared to the combination of
Harmony’s batch correction and t-SNE or UMAP’s visualization
when analyzing large datasets with a large number of cells and cell
types, multilevel batch effects, and complex structures (discrete
cell types, continuous developmental trajectories, dominant, and
rare cell subsets).

ScPhere preserves the structure of scRNA-seq data even in very
low-dimensional spaces. We systematically assessed scPhere’s
performance when embedding in a latent space with few
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dimensions, comparing the k-NN classification accuracy of
scPhere with hypersphere embedding to a standard normal prior
and normal posteriors, which embeds cells in a Euclidean latent
space, as well as to -SNE, UMAP, and PHATE (holding out cells
from one patient at a time for testing). We used the UC dataset,
for each of the three major cell compartments separately, with the
labels from the original study®3. For +-SNE, UMAP, and PHATE,
we used 20D or 50D Harmony batch-corrected principal com-
ponents (PCs) (as Harmony can correct multilevel batch effects
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and performed equally or better than LIGER?® or Seurat3 CCA®
on this dataset; Supplementary Figs. 6-9).

Compared to using a Euclidean latent space, when using only
two dimensions (Supplementary Figs. 6-8), scPhere performed
significantly better, across all ks (FDR < 0.05, paired ¢ test, two-
tailed), suggesting that a hyperspherical latent space introduced
less distortions, and is useful for data visualization. As expected,
k-NN classification accuracies increased with the number of
latent dimensions (Supplementary Figs. 6-8).
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Fig. 3 ScPhere addresses complex technical and biological batch for visualization and analysis in colon biopsies from healthy individuals and UC
patients. a-c ScPhere embedding accounting for the patient, location, and disease status. Spherical embedding of scRNA-seq profiles of (a) stromal, (b)
epithelial, and (¢) immune cells, colored by cell subset. For stromal cells, the batch vector includes only the patient. For epithelial and immune cells, patient,
disease, and location are used as the batch vector. d-f Successful batch correction as reflected by k-NN classification accuracies in low dimensions. k-
nearest neighbor classification accuracy (y axis) of (d) stromal, (e) epithelial, or (f) immune cell types, for different k's (x axis), when testing on the cells
from one patient, after training on the cells from all other patients, with each of several methods (color legend). Boxplots denote the medians and the
interquartile ranges (IQRs). The whiskers of a boxplot are the lowest datum still within 1.5 IQR of the lower quartile and the highest datum still within 1.5
IQR of the upper quartile. g-m Identifying the influence of a factor on gene expression by choosing the set of batch vectors for scPhere analysis. g ScPhere
embedding of stromal cells, with both patient and disease as the batch vector, where inflammatory fibroblasts (light blue) overlap other fibroblasts.
h-m ScPhere embedding of epithelial cells, with either patient, disease, and location (h, i), patient and disease (j, k), or patient and location (I, m) as the
batch vector. n, o Successful embedding of the entire dataset. ScPhere embedding (n) and its Equal Earth map projection (o) with all 300,000 stromal,
epithelial, and immune cell profiles, colored by cell subset, with the patient, disease, and location as batch vector. p, q Limited ability of t-SNE and UMAP to
visualize the full colon dataset. t-SNE (p) or UMAP (q) embedding of all 300,000 epithelial, stromal, and immune cell profiles, with Harmony batch-

corrected data as input.

Overall, scPhere performed as well as t-SNE and UMAP based
on k-NN accuracy or multinomial logistic regression classification
accuracies, and it performed especially well for the cases with
multilevel batch effects (Supplementary Figs. 7, 9b). ScPhere with
hyperspherical latent spaces of dimensionality M did system-
atically better than scPhere with Euclidean latent spaces of either
dimensionality of M or M + 1 (M > 3; Supplementary Fig. 7a, b).
While k-NN accuracies increased for all methods at five latent
dimensions, further increasing the latent dimensionality did not
yield substantial improvements, and with further growth even
decreased accuracies. Notably, even by using a 50D latent space,
the k-NN accuracies from Harmony were worse than those from
scPhere with a 5D-latent space, suggesting that scPhere captures
structures in scRNA-seq data with multiple batch effects. We
observed similar results for stromal (Supplementary Fig. 6) and
immune (Supplementary Fig. 8) cells, and when using multi-
nomial logistic regression instead of k-NN accuracies (Supple-
mentary Fig. 9).

ScPhere’s decoder that outputs a UMI count vector for each
input cell can be used to impute and denoise expression values,
either by sampling from the negative binormal distribution or by
using the means. For example, when using the original UMI
count data from CD8T T cells in the UC dataset, CD8A and
CD8B had a Pearson correlation coefficient of only 0.27, but their
decoder outputs had a Pearson correlation coefficient of 0.81
(Supplementary Fig. 11a). The CD4 gene, which is not expressed
in CD8* T cells, was lowly expressed in both the original data
and the decoder outputs, suggesting the decoder outputs did not
introduce false positives.

Querying scPhere models to recover cells impacted by different
biological factors. We next used scPhere’s ability to correct for
multilevel batch effects to determine which cell types were mostly
influenced by specific biological factors, such as disease. We
performed two analyses for this task. In the first approach, based
on scPhere’s ability to generate denoised outputs (Fig. 1b and
Supplementary Fig. 11a), we provided both disease (healthy,
uninflamed, or inflamed) and patient as the batch vector when
learning a latent embedding, and obtained denoised outputs for
the cells from inflamed tissues either with the original batch
vector or when artificially setting “inflamed” to “healthy” in the
disease batch vector (Fig. 1b). Applied to stromal and glia cells
(on a 5-hypersphere), the inflammatory fibroblasts were recov-
ered as mostly influenced by inflammation, as reflected by low
correlations between the two denoised outputs (Fig. 4a). In the
second approach (Fig. 4b), we trained k-NN classifiers using cells
from both healthy and noninflamed tissue to predict cell types for
cells from inflamed tissue (in the 5D hyperspherical latent space).
Cell types with low true-positive rates (TPR) were likely to be the

most influenced by disease (inflammation). Indeed, inflammatory
fibroblasts had very low TPRs compared to other cell types
(~20%, Fig. 4c), with most misclassified as WNT2B™ fibroblasts,
and ~10% as WNT5B* fibroblasts (Supplementary Fig. 11b),
helping assess their likely origins. The results were consistent if
we only considered high-confident cells that were correctly clas-
sified when the patient was the only batch vector for scPhere
analysis (Supplementary Fig. 11c).

Batch-invariant scPhere builds atlases for annotation of unseen
data. As a parametric model, we can train scPhere to co-embed
unseen (test) data to a latent space learned from training data
only. To demonstrate this, we first performed a tenfold cross-
validation analysis, where we partitioned the colon fibroblasts and
glial cells into ten roughly equally sized subsamples, held out one
subsample as out-of-sample evaluation data, and used the
remaining nine subsamples as training data to select variable
genes and learn different scPhere models to embed cells on a 5D
hypersphere. We then trained a k-NN classifier on the 5D
representations of the training data and used the k-NN classifier
to classify the 5D representations of the out-of-sample evaluation
data. We repeated this process ten times with each of the ten
subsamples used exactly once as the out-of-sample validation
data. The k-NN classifiers had a median accuracy of 0.834-0.853
(k=5 or 65, respectively, Supplementary Fig. 11d). By compar-
ison, when we repeat this process but using pre-computed 5D
representations from all fibroblasts and glia cells, accuracy was
similar (0.847-0.860, the minimal two-tailed Wilcoxon signed-
rank test FDR = 0.036, and for two k’s, the FDRs >0.05, Sup-
plementary Fig. 11d).

Next, we used scPhere to map cells from unseen patients, a key
use case as multiple studies need to be integrated, by training a
“batch-invariant” scPhere model (“Methods”) that takes the gene
expression vectors of cells (without batch vectors, the batch
vectors were only used in the decoder part of scPhere to retain its
batch-correction capabilities) as inputs and maps them to a 5D
hyperspherical latent space. As a test case, we learned a batch-
invariant scPhere model for stromal, epithelial, or immune cells
in the 18 patients training data of the UC dataset (as in the
original study**) and used it to map the cells from the 12 patients
test data. There were multiple technical differences between the
test and training data (collected nearly 2 years apart, all test cell
libraries with 10x Chromium v2 chemistry, 15 of 18 training
patient cell libraries with 10x Chromium vl; all test data
sequenced with NextSeq but 3 of 18 training patients with HiSeq).
We then trained k-nearest neighbor (k-NN) classifiers (k =25)
(using the labels from the original study?)) on the 5D
representations of the training data and applied the k-NN
classifiers to the 5D representations of the test data. ScPhere’s
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mapping of the test data was highly successful (Fig. 4d-f), with
accuracies similar to those obtained when applying this process to
representations from all cells (all 30 patients). Specifically, batch-
invariant scPhere had accuracies of 0.79, 0.83, and 0.82 for
stromal, epithelial, and immune cells, respectively, whereas a
model trained on the full dataset had respective accuracies of 0.80,

0.87, and 0.80 (Fig. 4g).

Clustering cells following scPhere embeddings. To demonstrate
how scPhere impacts clustering analysis, we clustered (using the
Louvain algorithm*>46) the embeddings of cells on the surface of

8

5D hyperspheres and compared them to the clusters in the ori-
ginal study** (where only patients were used as the batch vector
and variable genes were selected for each patient separately to
compute a census of batch-insensitive variable genes*4). For
example, stroma and glia cells were partitioned into 18 clusters
(Supplementary Fig. 12a), which were largely consistent with the
original analysis** with some minor exceptions: RSPO3™ fibro-
blasts included cells from the original WNT2BT Fos-lo cluster,
and some of the inflammatory fibroblasts were in the WNT2B*
fibroblast clusters, highlighting their molecular similarity. We
obtained similar results with epithelial and immune cells
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Fig. 4 Using complex batch vectors to pinpoint cell types impacted by biological factors and to generate a batch-invariant reference atlas.

a-c Identification of cells impacted by disease using scPhere. a Imputation-based approach. Following the approach in Fig. 1b (subpanel (1)), shown is the
distribution of Pearson correlation coefficients (x axis) for each cell (dot) in each type (y axis) between scPhere’s denoised outputs using either the true
disease batch vector or when “inflamed” was set to “healthy” in the disease batch vector. Boxplots denote the medians (labeled above) and the
interquartile ranges (IQRs). The whiskers of a boxplot are the lowest datum still within 1.5 IQR of the lower quartile and the highest datum still within 1.5
IQR of the upper quartile. Violin plot width is based on a Gaussian kernel density estimation of the data. b, ¢ Classification-based approach. b Training a
classifier to infer the influence of disease on gene expression. ¢ k-nearest neighbor classification true-positive rates (TPRs) (y axis) for different k's (x axis)
on cells from different subsets (color legend) from inflamed tissues with a model trained using cells from healthy and noninflamed tissues. d-g Batch-
invariant scPhere. d-f Confusion matrices of the overlap in cells (row-centered and scaled Z-score, color bar) between “true” cell types from the original
study#4 (rows) and cell assignment by k-NN classifications (k = 25, columns) from either batch-invariant scPhere trained only on training set cells (left) or
on all cells (right) for stromal (d), epithelial (), or immune (f) cells. CD69" mast cells and MThi cells were observed in the training data only. g The k-NN

accuracies (y axis) from the confusion matrices in (d-f).

(Supplementary Fig. 12b, ¢ and Supplementary Movie 5), or when
we used cell embeddings on the surface of a 10D hypersphere for
stromal cells (Supplementary Fig. 12d), consistent with our
classification results (Fig. 3d-f). As we corrected for the influences
of the region, disease, and patient, some immune cells with very
similar molecular but preferentially associated with different
regions (e.g., CD69~ and CD69" mast cells, Supplementary
Fig. 12e) or disease (cycling monocytes and macrophages, Sup-
plementary Fig. 12f) were merged in one cluster. Notably, rare cell
types were also distinct in the low-dimensional space, including
cells that were missed in the original analysis (e.g., a small cluster
of platelets; Supplementary Fig. 12g, cluster 33; a B-cell cluster 34
exclusively expressing IGLC7 and a monocyte cluster 28 expres-
sing FCGR3A and RHOC). UMAP, PHATE, and scPhere with
normal latent variables (all in 5D) did not perform as well in
some cases (Supplementary Fig. 13a-c), both by biological
inspection, and by Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) (Supplementary Fig. 13d). For
example, M-cells and TA2 cells were mixed in PHATE-based
clustering (Supplementary Fig. 13b), and CD8% IL17+ T cells and
CD4™ activated T cells were mixed in UMAP based clustering, as
were CD4" PD17 cells and T, (Supplementary Fig. 13c).

Inferring spatial locations by embedding cells on a sphere. The
scPhere model is flexible and can be extended to additional
applications, including to infer the spatial locations of cells in a
tissue with the appropriate structure. To demonstrate this we
focused on cells of zebrafish embryos at 50% epiboly, which are
distributed on the surface of a hemisphere (or quarter sphere
because of the symmetry of cell distributions), with gene
expression gradients across the dorsal-ventral axis (right to left)
and marginal-animal (bottom to top) axis (Fig. 5a), as well as
other, punctate or salt-and-pepper patterns®’.

To map cells to a quarter sphere we forced two components of
the 3D coordinates to be positive, as well as augmented the
scPhere objective function to incorporate information from
landmark genes (Fig. 1b, “Methods”), such that we encourage a
cell expressing a given marker gene to be map within the
annotated portion of the quarter sphere expressing this gene (in
an 8 x 8 grid*). Specifically, for a cell expressing a marker gene
and mapped to the quarter sphere, this modified procedure
calculates the distances between its position and its annotated
expression map on the grid, and minimizes the minimum of the
distances. For each cell in a mini-batch training, we then calculate
the sum of the minimum distances of all marker genes. The final
objective function is the original scPhere objective function plus
the calculated mean of the sum of minimal distances in a cell
across all cells and the sum of all distances in a mini-batch
training. Importantly, even if the landmarks themselves were not
measured at single-cell resolution, scPhere only uses them as

weak supervision, and directly maps cells on the surface
continuously, rather than to bin.

This simple modification enables scPhere to spatially map the
cells successfully. We trained scPhere with only 1406 zebrafish
embryonic cells*® and 11 landmark genes*” (Fig. 5a, “Methods”),
spanning ventral, animal ventral, dorsal, animal dorsal, and
marginal genes (but not animal) on an 8 x 8 grid on the quarter
sphere?’. The ventral gene marker cdx4, dorsal gene marker gsc,
and marginal gene marker osrl were expressed in their expected
regions (Fig. 5b), as was the animal marker gene, sox3, even
though we did not use any animal genes in the training (Fig. 5b).
After mapping cells to the quarter sphere, we next calculated the
spatial gene expression patterns?’, and the results (Fig. 5c)
matched the expected patterns (Fig. 5a). We then used the trained
scPhere model to map 3820 cells from another three batches
(Fig. 5d), obtaining consistent spatial patterns (Fig. 5b). Finally,
from the mapped cells, we could correctly predict patterns for
genes not included in the training, including salt-and-pepper
patterns and random sparse patterns for “apoptotic-like” cells
(Supplementary Fig. 14). Notably, this mapping approach can be
extended to nonspherical shapes by transforming the cells
distributed on a plane to complex shapes (see “Discussion”).

Embedding cells in a hyperbolic space for trajectory discovery
and interpretation. When cells are expected to show develop-
mental trajectories, such as from adult stem cells to differentiated
cells, scPhere can embed them into a hyperbolic space of the
Lorentz model?42%, and optionally convert the coordinates in the
Lorentz model to the Poincaré disk for 2D visualization344°,
Moreover, if we position the expected root cells of the develop-
mental process at the center of a Poincaré disk, then the distance
of each cell from the center can be thought of as a
pseudotime20-26:0, For a specific cell type, we can see cells pro-
gress with distance and angles continuously in the Poincaré disk.
We can also encourage mapping root cells (if they are known a
priori) to the origin of the Lorentz model during training.
Applying this first to colon epithelial cells, we readily discerned
developmental ordering from intestinal stem cells to terminally
differentiated cells in either the Poincaré disk (Fig. 6a), with stem
cells at the center of the disk for intuitive interpretation, or in the
Lorentz model (Supplementary Fig. 15a): the two major cell
development trajectories are clearly delineated (Fig. 6a, arrows
connecting median coordinates of cells of different types) and M-
cells and Best™ enterocytes are close to each other. PHATE3’
visualization using the 5D representations of cells in the Lorentz
model as inputs recapitulated the results from the 2D
representations (Supplementary Fig. 15b). In contrast, develop-
mental trajectories were less apparent when we embedded cells in
Euclidean space (Fig. 6b) or when we used PHATE multi-
dimensional scaling on the 5D representations of cells in the
Euclidean space (Supplementary Fig. 15¢), with cells in the two
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Fig. 5 Spatial mapping with scPhere. Representative marker gene expression from zebrafish in 50% epiboly on quarter spheres (a, €) and scPhere inferred
spatial locations colored by marker gene expression (b, d) for the original marker expression (a) inferred expression after mapping cells to quarter spheres
(c), and for 1406 cells in the training set (b) or another 3820 cells from three test batches (d).

major developmental branches being close to each other. 2D
visualization with t-SNE, UMAP, and PHATE was reasonable
(Supplementary Fig. 15d-f), although the ¢-SNE had some small
spurious clusters, in the UMAP cycling TAs were intermediate
between stem cells and secretory TAs (which can differentiate
directly), and in PHATE several cell types were merged (M-cells
and TA2 cells, tuft and enteroendocrine cells).

Next, we analyzed 86,024 C. elegans embryonic cells®! collected
along a time course from <100 min to >650 min after each
embryo’s first cleavage, finding that cells were ordered neatly in
the latent space by both time and lineage, from a clearly
discernible root at time 100-130 at the center of the Poincaré disk
(cells from <100 were mostly unfertilized germline cells,
“Methods”) to cells from time >650 near the border of the
Poincaré disk (Fig. 6¢, d and Supplementary Fig. 16) or away
from the origin in the Lorentz model (Supplementary Fig. 17a, b).
Within the same cell type, cells were ordered by embryo time in
the Poincaré disk (Fig. 6d) or in the Lorentz model (Supplemen-
tary Fig. 17a, b). After first appearing along a developmental
trajectory, cells of the same type progressed with embryo time,
forming a continuous trajectory occupying a range of angles. For

example, the cells of the body wall muscle (BWM, the most
abundant cell type in this dataset, Supplementary Fig. 16) first
appeared at embryo time 130-170 in a separable position (bottom
left of the Poincaré disk, Fig. 6e), and then “advance” toward
bottom right of the Poincaré disk in a continuous progression but
in a manner aligned with embryo time (ie., from 170-210 to
>650) and lineages (i.e., from first row and second row BWMs
(MS lineage) to anterior (MS to D lineage), and to posterior
BWMs (C lineage)®!, Supplementary Fig. 17c). Moreover,
different cell types (e.g., ciliated amphid neurons, ciliated
nonamphid neurons, hypodermis, G2 and W blasts, seam cells,
body wall muscle) that appeared at slightly different embryonic
time points, had their origins around the same region and
progressed with embryonic time in a similar way, forming a
continuous trajectory but at a different angle and/or distance
ranges from the center (Fig. 6d, arrows). Accordingly, cells’
distances to the origin were correlated with their embryonic time
(Pearson correlation coefficients = 0.55, Supplementary Fig. 17d).
For a few rare cell types that appeared relatively late in a
developmental trajectory, such as coelomocytes (appearing in
270-330), their distances to the origin could be negatively
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Fig. 6 Embedding cells in the hyperbolic space for trajectory discovery and interpretation. a, b Major development trajectories of colon epithelial cells
are discerned from embeddings in the Poincaré disk. Single-epithelial cell profiles (dots) annotated by type as embedded in a Poincaré disk (a) or the

Euclidean space (b). Arrows point to the next cell type in the development trajectory. c-f Embedding of cells from a C. elegans embryonic time course

highlights developmental timing and differentiation to subsets. Single-cell profiles (dots) annotated by either time (¢, e) or cell type (d, f) in a hyperbolic
space of the Poincaré disk (¢, d) or in a 2D UMAP (with 50 principal components, batch-corrected by Harmony) (e, ). Arrows connect the median

coordinates of cells of a type in two consecutive time points.

correlated with embryonic times, and re-centering their embed-
dings can help interpret their trajectories “locally”.

These patterns are harder to discern in UMAP, ¢-SNE, or
PHATE (Fig. 6e, f, with 50 batch-corrected PCs by Harmony as
inputs; Supplementary Figs. 18a, b and 19), where cells from
consecutive time points were compacted, cells that appeared early
were relatively distant from each other in the embeddings, and
temporal progression was not in the same direction. Moreover,
when we quantify time continuity, by comparing the k-nearest
neighbor time point classification accuracies (in a tenfold cross-
validation analysis), accuracies from scPhere (in 2D) were higher
than those from t-SNE, UMAP, and PHATE (in 2D, Supple-
mentary Fig. 18c). Thus, a scPhere model with a hyperbolic latent
space learned smooth (in time) and interpretable cell trajectories

and helped represent developmental and other temporal
processes.

Discussion

We introduced scPhere, a deep-generative model to embed single
cells on hyperspheres or in hyperbolic spaces to enhance
exploratory data analysis and visualization of cells from single-cell
studies, especially with complex, multilevel batch factors. ScPhere
provides more readily interpretable representations, and avoids
occlusion, as we demonstrate in diverse systems, and, when
embedding cells in hyperbolic spaces, it helps studying develop-
mental trajectories. In this latter case, in addition to providing
compelling visualizations compared to state-of-the-art methods,
by placing root cells at the center of a Poincaré disk, we derived a
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natural definition for pseudotime as the distance to the center.
The cells of type progress continuously with distance and angle in
the Poincaré disk.

A major advantage of scPhere is in effectively accounting for
multilevel complex batch effects, which we show disentangles cell
types from patients, diseases, and location variables. We can
harness this ability in several ways: to visualize and cluster cells
while controlling for one or more factors, and examining the
influence of any combination of them; to investigate which cell
types are most affected by a factor (e.g., disease status, or loca-
tion); or to generate batch-invariant reference embeddings, to
which additional data can be mapped from new individuals,
samples or conditions. In this study, we parameterize the dis-
persion parameters of the negative-binomial distributions as
functions of cell count vectors. We may let the dispersion para-
meters as fixed values and optimize them directly for some tasks
(not functions of cell count vectors). ScPhere’s ability to handle
complex batch factors is an advantage over previous methods for
batch correction (e.g., SAUCIE?, scVI'2, LIGER?, Seurat3
CCASJ, fastMNN!®, Scanorama?8, and Conos3!), which handle
only one batch vector. Indeed, in our benchmarking with IBD
cells with 30 patients, three disease statuses, and two spatial
locations, scPhere performed better than state-of-the-art batch-
correction methods such as Harmony, Seurat3 CCA, LIGER. In
the future, we can leverage supervised information to further
estimate the uncertainty of aligning cells from batches. In addi-
tion, as a parametric model, scPhere can naturally co-embed
unseen (test) data to a latent space learned from training data
only, and denoise expression data successfully.

ScPhere is especially useful for analyzing large scRNA-seq
datasets: It is efficient, as it scales linearly with the number of
input cells; it does not suffer from “cell-crowding” even with large
numbers of input cells; and it better preserves hierarchical, global
structures in data than competing methods. Finally, by learning a
“batch-invariant” encoder that takes gene expression as inputs to
learn latent embeddings, it forms a reference to annotate new
profiled cells from future studies®. This is another major
advantage over nonparametric methods such as t-SNE, UMAP,
and Poincaré maps, which do not have a natural way to embed
new data, especially in the presence of batch effects, and have
scalability issue. These features should make it well-suited for the
challenge of building a comprehensive reference map, in health
studies, such as the Human Cell Atlas?, as well as in diseases, such
as in the Human Tumor Atlas Network?3.

The scPhere model is robust to hyperparameters. Here, we
used the same hyperparameters for scPhere analyses for all nine
datasets (varying from ~1000 to >300,000 cells), whereas some
previous studies”* showed that classical variational autoencoders
could be sensitive to hyperparameters. ScPhere’s robustness may
stem from the robust negative-binomial distribution for modeling
UMI counts, or from the use of non-Euclidean latent spaces to
help solve the cell-crowding problem in the latent space.

One key extension we have shown for scPhere is modifying it
to spatially map cells. As our first example, we mapped zebrafish
embryonic cells to a quarter sphere to infer the spatial locations of
cells in a tissue, because a sphere is an appropriate model at this
developmental phase. The only extra input we provided was the
(binned) spatial expression patterns of a handful of landmark
genes?’. The resulting model retains scPhere’s scalability and
parametric nature, which allows mapping new cells. Importantly,
this approach can be readily extended to other tissues with
complex, nonspherical shapes (e.g., the mouse hippocampus), by
transforming the cells distributed on a plane to such complex
shapes, using methods such as normalizing flow>>. Our approach
to spatial mapping is distinct in that we use the global shape of
the physical space as a constraint, whereas most approaches do

not consider this at all, and those that do, like novoSPARC?®, only
incorporate continuity assumptions, which cannot capture many
spatial patterns.

ScPhere can be extended in several other ways. When cell type
annotations or cell-type marker genes for some of the analyzed
cells are available, we can include semi-supervised learning to
annotate cell types°’->8. Although scPhere showed promising
denoising results, further studies are required to explore its
abilities in imputing missing counts in scRNA-seq data and
removing ambient RNA contamination®>®. Given the rapid
development of spatial transcriptomics®12, single-cell ATAC-
seq®3%4, and other complementary measurements, scPhere can be
extended for integrative analysis of multimodal data. We can also
learn discrete hierarchical trees for better interpreting develop-
mental trajectories, use more complex topological latent spaces
such as tori with diffuse VAEs®, and even learn optimal latent
spaces using mixture curvature VAEs®®, Additional developments
can extend scPhere to model perturbation data. Moreover, there
are not yet many tools to process data distributed in the hyper-
bolic space, such as efficient k-NN search tools, and future studies
can address this gap. Given its scope, flexibility, and extensibility,
we foresee that scPhere will be a valuable tool for large-scale
single-cell and spatial genomics studies.

Methods

Mapping scRNA-seq data to a hyperspherical latent space. ScPhere received as
input a scRNA-seq dataset D = {(x;,y,), }, where x; € R” is the gene expression
vector of cell i, D is the number of measured genes, y; is a categorical variable
vector specifying the batch in which x; is measured, and N is the number of cells.
Although x; is high-dimensional, its intrinsic dimensionality is typically much
lower. We therefore assume that the x; distribution is governed by a much lower-
dimensional vector z;, and the joint distribution is factorized as follows (Fig. 1a):

P(X;,¥:,2,10,) = p(y;10,)p(z;10,)p(x;ly;, 2;, 6;)

Here p(y;|0;) is the categorical distribution, p(z;|6;) is the prior distribution for
z; (z; € RM, 2"z = 1, M « D), which is assumed to be a uniform distribution on a

Mo\ —1
hypersphere with density (i((’;;/;;) . For notational simplicity, we use bold font 6;

to represent the parameters of each distribution, e.g., the parameters 0, in p(y;|0;)
and p(z;|0;) are the parameters of the two distributions and should be different.

For scRNA-seq data, the observed Unique Molecular Identifier (UMI) count of
gene j in cell i has typically been assumed to follow a zero-inflated negative-
binomial (ZINB) distribution! 1267, However, a recent study suggests that zero
inflation is an artifact of normalizing UMI counts®®, and negative-binomial
distributions generally fit the UMI counts well®®-71. We, therefore, assume a
negative-binomial distribution of observations in this study:

D
px;ly; z,0) = ]1 NB(x;;ly, 5+ 0y, 2)
=1

The negative-binomial parameters mean Hy, >0 and dispersion o, , >0 are

specified by a model neural network (decoder), which can model complex
nonlinear relationships between the latent variables and the observations.

We next want to compute the posterior distribution p(z;ly;,x;, 9;), which is
assumed to be a von Mises—Fisher (vMF) distribution on a unit hypersphere of
dimensionality M — 1: S™! = {z]z € RM 27z = 1}. We turn to variational
inference to find a q(z;]y;, x;, ;) to approximate the posterior, since exact inference
is intractable, given that the model is parameterized by a neural network. In
addition, the number of parameters to estimate grows with the number of cells,
because each cell has a “local” distribution with parameter ¢;. To scale to large
datasets, variational autoencoders use an inference neural network (encoder, with a
fixed number of parameters) to output the “local” parameter ¢; of each cell.
Therefore, the learning objective is to find the model neural network and the
inference neural network parameters to maximize the evidence lower bounds:

Z(6;,¢;) = *K"“(‘Z(ZJYNXI'«,¢i)”P(Zi|ei)) + gy, x.00PXilYi 21,091 (1)

The Kullback-Leibler (KIL) divergence’? in Eq. (1) can be calculated
analytically (below). We use Monte-Carlo integration (sampling from the vMF
distribution q(z;y;,x;, ¢,)) to calculate the second term.

To make scPhere robust to small perturbations (e.g., sequencing depth) and to
stabilize training, we add a penalty term to the objective function in Eq. (1).
Specifically, for each gene expression vector x;, we downsample x; by keeping 80%
(downsampling ratio 20%) of its UMIs to produce x;. The latent representations of x;
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M
and X; are z; and Z;, respectively. The penalty term is defined as — > (z; i Z j)z as
=

we want z; and Z; to be close. Even when increasing the downsampling ratio to 50 or
80%, scPhere (with hyperspherical latent spaces, such that the distance between two
points is less than or equal to 2) produced similar results as reflected by k-NN
accuracies (Supplementary Fig. 20a). K-NN accuracies were the lowest when
removing this penalty term (i.e., downsampling ratio = 0). For hyperbolic latent
spaces, adding this term helps stabilize training. Otherwise, the ELBO is more likely to
become NA during training. For example, for the mouse retina neurons dataset, the
ELBO became NA after training ~80,000 mini-batches without this penalty term.
The von Mises-Fisher (vMF)7? distribution represents angular observations as
points on the surface of a unit-radius hypersphere. Let z be a M-dimensional
random vector with unit radius (z"z = 1), then its probability density function is:

VME(z|, ) = C,,(k)exp(xu’z)
Co) = M7 @) ™MP1, ()

where p"u = 1 is the mean direction vector (not the mean) and « >0 is the
concentration parameter. The greater the value of «, the higher the concentration

of distribution around the mean direction vector p. When x = 0, vMF(z|y, 0) =

T(M/2)
constant normalization factor and I,,(-) is the modified Bessel function of the first
kind of order v/4: I, (k) = (5" 372, %
I(x) = [0 s leds.

For random vectors distributed on the surface of a hypersphere, a natural prior
is the uniform distribution, which is the vMF distribution with zero concentration
vMF(z|p, 0). In this case, the Kullback-Leibler (KIL) divergence®? can be written in
closed-form:

M2y ~1 - .
(2(” )> is the uniform distribution on the unit hypersphere S*~'. C, (k) is a

The Gamma function is defined as

ME(z]g,
KIL(vMF(z|y, )| [vMF(z|y, 0)) = /S»H VMEF(z|p, K)Iong
= /SM,lvMF(z\p, ©)(logC (k) + xu"z + log2 + log(m)M /2 — logl'(M/2))dz
+ log2 + log(m)M /2 — logI'(M /2)

Ly)a(x)
= logCy () + xp p—"L——
gCh(x) ””1/,1(@

M/2

@

with

logCy (k) = (M/2 — Dlog (x) — (M/2)log(2m) — log(l )/, 1 (x))

Notice that Eq. (2) is independent of the mean direction vector pas p ' = 1, so
we only need to take the derivative of Eq. (2) w.r.t k¥ during optimization. In other
words, minimizing the KIL divergence only forces the concentration parameter
to be close to zero but without any forces on the mean direction vector. This is
different from using a location-scale family of priors, such as a standard normal
prior, where the prior encourages the posterior means of all points to be close to
zero. When v < «, I, (k) overflows quite rapidly with x. To avoid numeric
overflow, we use the exponentially scaled modified Bessel function e™*I, (k) in

calculations (the scaling is motivated by the asymptotic expansion of I, (k) ~
e 2mr) Y2 X ()t for k — 0075). The first-order derivative of the
t

exponentially scaled modified Bessel function is

de ™I, (k)

_x v
. ¢ (—IU(K)JrI,,,l(K) *;IU(K))

Previous work has used vMF distribution as the latent distribution for
variational autoencoders2>3233, but only the spherical variational auto-encoder?3
learns the concentration parameter «.

Samples from vMF distributions can be obtained through a rejection sampling
scheme’®77. The algorithm is based on the theorem”” that a M-dimensional vector
z = (v/1 — @>vT, w)" has a vMF distribution with direction vector (0, ... ,1)T €
SM=! and concentration parameter « if @ has a univariate density function with the
following density function:

e"“’(l _ wZ)(M—3)/2

7@{8(%7%(1\4_1)),we(fl,l),MZZ 3)

flw) =

SM~2, C_ is a normalization term such that

rrQ) - :
Toty) 18 the Beta function. The

vector v is uniformly distributed in S*~2 and can be sampled from a standard
normal distribution in M — 1 dimensions and then we normalize the resulting
sample to unit length.

where v is uniformly distributed in
f(w) is a legitimate density function, and B(x, y) =

We then use rejection sampling to sample w from the univariate distribution in
Eq. (3). The envelope function used for rejection sampling is defined as

2pM-1/2 (1 — ) M-I/
(w) = —, we(=1,1),M=>2
O TBEM =DM - D)+ b — (1~ bw)™ L
)
Where the term”8 b = Ml To sample from g(w), we can first sample

21t A/ A2 H(M—1)7
£~ Beta(@ , %) and pass the sample ¢ to the invertible function h(e) =
1—(1—b)e
1-(1+b)e
the rule of transforming a continuous random variable with an invertible function.
A sample w is accepted if kw + (M — 1)log(1l — xyw) — ¢ 2log(u), where x, = }fi,
and ¢ = xx, + (M — 1)log(1 — x2) and u is sampled from a continuous uniform
distribution with support in (0, 1). The vector 2 = (v/1 — w?v", w)” is a sample

1—(1—b)e
1-(1+b)e"

is distributed according to Eq. (4) based on

We can easily prove that w =

from vME(Z'|e,, k), where e; = (0, ..., 1T € SM~!. We can then rotate z/ using a
Householder matrix I — uu” to get a sample from vMF((z|p, )23, where I is the
identify matrix of rank M and u = ”z:—:ﬁ”, where || - || is the Euclidean norm.

Overall, the samples from a Beta distribution are transformed and accepted or
rejected by the rejection sampling scheme, and combined with samples v from a
uniform distribution in ™2, The combined samples are further transformed to
generate samples from the desired vMF distribution. Remarkably, previous work
has shown that this reparameterization approach still holds for these samples?3 and
can be used to optimize the vMF parameters p and «, which are the outputs of the
inference neural network (encoder).

For visualization purposes, we typically set M = 3. Then the univariate density
function becomes f(w) = Ch%;(;l) == = e where sinh(-) is the
hyperbolic sine function. We can directly draw samples from this density function
by transforming a sample &, generated from a continuous uniform distribution
& ~ Unif(0, 1) using the inverse cumulative function
F(t) = f;:_l S € dw = m(e‘“ — 7). Specifically, we can use the
following algorithm to generate a sample from f(w):

£~ Unif(0, Do = F () = 1.4 08 TR

Poincaré ball and Lorentz model of the hyperbolic space. The Poincaré ball
model represents the hyperbolic space as the interior of a unit ball in the Euclidean
space: P =z e RM| | 2| <1,2,=0,M € Z", where z = (2, ... , z),)". The
distance between two points z,;,z,€P is defined as:

2z — 5’ )
(1= 1 2, 1A= 1| 2,1%)

where cosh™(z) = In(z + +/z% — 1) is the inverse hyperbolic cosine function,
which is monotonically increasing for z>1. The symbol || - || represents the
Euclidean norm. Notice that cosh (1 + z) = In(1 + z + v/z% + 2z), which
approximates /2z when limz — 0 and In(2z) for limz — +00. When both z,; and
z, are close to the origin with zero norm,

d(z,,2,) ~ cosh™ (142 || 2, — 2,||*) & 2 || 2, — 2, ||. Therefore, the Poincaré ball
model resembles Euclidean geometry near the center of the unit hyperball. The
induced norm of a point zelP is

1 2
Il zllp = cosh™ (ﬂ>

dp(z,,2,) = cosh™! <1 +

1- | 2|
As z moves aways from the origin and approaches the border with || z ||~ 1, the
induced norm || z||p grows exponentially. Hyperbolic geometry is useful to
represent data with an underlying approximate hierarchical structure.
The Lorentz model is a model of the hyperbolic space and points of this model

M
satisfy H™ = {z € RM*|2,>0, (z,2); = —1}, where (z,2/) 1y = —2y2o/ + i; 2,2,/

is the Lorentzian inner product (or Minkowski inner product when z € R*). The
special one-hot vector y, = (1,0, ... 07 is the origin of the hyperbolic space. The
distance between two points of the Lorentz model is defined as:

di(2,,2,) = cosh™ (—(z,,2,)11)
The tangent space of H™ at point p € H™ is defined as
fMHM = {z|(w, z) gy = 0}, i.e,, all the vectors that pass point p and are orthogonal

to vector p based on the Lorentzian inner product. A point (zy,7;, ... ;)" in the
Lorentz model can be conveniently mapped to the Poincaré ball2! for visualization:

(0.’(Z1’ ?ZM)T>
zp+1

We discard the first element as it is a constant of zero.

We used wrapped normal priors and wrapped normal posteriors defined in the
Lorentz model to embed cells to a hyperbolic space?>347. A wrapped normal
distribution in H™ is constructed by first defining a normal distribution on the
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tangent space 7, HM (a Euclidean subspace in R™™) at the origin p, =
1,o,... ,O)T of the hyperbolic space. Samples from a normal distribution on the
tangent space are parallel-transported to desired locations and further projected
onto the final hyperbolic space?.

We used a set of invertible functions to transform samples from a normal
distribution .47(z|0,I,,0) in RM to samples from a wrapped normal distribution in
H™ with mean of y, where 6 € R is the standard deviation of components z, to
2> Tespectively, and I, is the identity matrix in R2555, First, let z, = (0,2,/)",
which can be considered as a sample vector from 77, H™, where zy/ is sampled
from ./"(z|0,I,,0). Next, z, is parallel-transported to vector z, in the tangent space
T FHM at y, in a parallel manner (i.e., z, and z, pointing in the same direction
relative to the geodesic between p, and p) and vector norm preserving (i.e.,

(29, 20) 1 = <Zl7zl)H)25’802
z, =12)+ 7“;’_2’?)1“ (0 + W)

with & = — (g, g

Finally, the exponential map projects vector z, in the tangent space
T I‘]H[M back to the hyperbolic space by:

24,25,79

. z
2z = cosh(|| 2, [l ) p + sinh (]| 2,1l 5) ol lH]{[
1

such that the vector norm is preserved: || z, |y = \/(z;,2,) g = du(p, 2).
The likelihood after the invertible transformations can be calculated by

o o
log p(z) = logp(z,) — log <det (a_zzl> ) —log <det <a—2> )

inh
= logp(zy) — (d — 1)log (W)
1

The encoder outputs a vector h in the tangent space at the origin (7, HM, so

[ hllzz = hll,) and can be mapped to HM using the exponential map (the first
zero element of h is omitted) to get u:

h
n= (Cosh(ll hil,), sinh(]| h“z)—>
Il bl

Given a sample z from the wrapped normal distribution, we need to evaluate its
density logp(z) for calculating the KIL-divergence term of the ELBO. We can use
the inverse exponential map and the inverse parallel transport to compute the
corresponding z, and z,, respectively, for evaluating the density:

-1

o= B, gy
VB -1

7= 7, + <P:vi1iﬂ (n+u,)

where f = —(u,z); and o = —(u,, p) ;. We now have all the ingredients to
compute Eq. (1) for each training point.

Model structure. As single-cell data are sparse, with typically >90% genes with
zero counts in each cell, we used softmax as the activation function to estimate the
means of the negative-binomial distributions and help generate sparse outputs
from the decoders. The softmax function outputs a vector of positive numbers with
a sum of one, and this vector is multiplied by the size vector of a cell (the sum of
UMI counts for that cell) to get the means of the negative-binomial distribution of
each gene in that cell. We used the exponential linear unit (ELU)8! activation
functions for hidden layers, as it has been shown to improve convergence of
stochastic gradient optimizations.

For all experiments, we used a three-layered encoder network (128-64-32) and
a two-layered decoder network (32-128). The dimensionality z of the stochastic
layer was typically two for visualization purposes. When comparing scPhere with
different latent spaces, we kept all other factors the same. We used the Adam
stochastic optimization®? algorithm with a learning rate of 0.001. For datasets with
<10,000 cells, we trained models for 2000 epochs. For datasets with >10,000 cells
but <100,000 cells, we trained models for 500 epochs, and for the large number of
immune cells with more than 2,000,000 cells, we trained models for 250 epochs.
Using the UC epithelial cells as an example, we provided the average ELBO changes
with training mini-batches for different latent dimensionalities. For scPhere models
with different latent spaces, training was quite stable and converged rapidly, at least
for the configurations we used (Supplementary Fig. 20b). For scPhere with
hyperbolic latent spaces, training converged a bit more slowly when we increased
the dimensionality of the latent spaces, compared to training using other latent
spaces.

For our current implementation, we did not introduce an early stop but trained
scPhere for a given number of epochs. Larger datasets may require a smaller
number of training epochs compared with smaller datasets (e.g., 1000 cells).
Training time also depended on the number of genes used. For example, when
using the IBD immune cells, time grew linearly with the number of mini-batches in
training, taking only 2.45 min to train scPhere for 16,450 mini-batches

(Supplementary Fig. 4a). We can estimate the number of cells equivalent with the
mini-batch size (128) and number of mini-batches in training (Supplementary
Fig. 4b). Importantly, we obtained good embedding for the 210,614 immune cells,
even when we only train the model for ten epochs (16,450 mini-batches, 2.45 min,
Supplementary Fig. 4c—i). All the experiments were run using a Mac desktop
computer with 32 GB of RAM, 4.2 GHz four-core Intel i7 processor with 8 MB
cache and no GPUs were used.

Parameter setting for other methods used in comparisons. For t-SNE, we
followed the previous approach optimized for visualizing scRNA-seq datal8, i.e.,
using PCA initiation, a high learning rate, and multi-scale similarity kernels. We
also used the Fit-SNE package®3, as previously described!.

For UMAP, we used the Seurat UMAP wrapper® and adapted its parameter
setting to run UMAP, with the “min.dist” parameter set to 0.3 and the “spread”
parameter set to 1.

For PHATE?’, we followed its tutorial and used the default parameter settings.

For these three methods, we used 50 principal components as inputs by default.
Because PHATE had very long run times for large datasets, for the IBD immune
cells we only ran PHATE with 2D latent spaces.

For the three batch-correction methods, Harmony?3(, Seurat3 CCA?®, and
LIGER?, we followed their tutorials and used the default parameter settings.
Because both Seurat3 CCA and LIGER only handle one batch vector, we used
patient, which is the major batch factor for the UC data. Seurat3 CCA encountered
scalability/stability issue for the immune cells with >200,000 cells and 30 batches
(patients) and failed after running >90 h. We thus removed Seurat3 CCA from the
immune cell comparison (Supplementary Fig. 8).

Quantifying global, hierarchical structure preservation. The preservation of
global hierarchical structures for each embedding method was quantified by using a
“global k-NN accuracy” metric, where k-NN classifiers (leave-one-out cross-vali-
dation, k=3 and 5 for the RGC and HCL datasets, respectively) were trained on
condensed datasets, where each point was the center of a cluster, and the classifiers
were used to classify each cluster, which was represented by its cluster center, to the
major cell types (groups).

To quantify cell crowding, we used silhouette values. When cells are more
crowded, within-cluster and between-cluster distances between cells are more
similar to each other, leading to smaller silhouette values. For the HCL dataset with
599,926 cells, silhouette values were calculated from 50 repeated runs, each run
with 20,000 randomly sampled cells as inputs.

The embeddings were visualized on a 3D sphere using the rgl package®* from R,
with the interactive 3D scatter plots saved as web graphics library files that can be
opened in a browser. The rgl package uses OpenGL as the rendering backend and
can be used to rapidly and interactively visualize 3D scatter plots with millions of
cells in a browser.

To learn scPhere models that are invariant to the batch vectors and can be used
to map cells from completely new batches, when training scPhere, we use a scPhere
encoder (the encoder part of the scPhere model is used to map new data after a
scPhere model is trained) to map a gene expression vector to the low-dimensional
representation directly without using the batch vector as an input to the encoder.
The batch vector is only used in the decoder that took both the latent
representation of a cell and its cell batch vector as input to output the recovered
gene expression vector during training scPhere. We call this modality of scPhere
with no batch vectors for the encoder “batch-invariant” scPhere, as it learns latent
representations that are invariant to the batch vectors.

The component-collapse problems in VAE. We examined if scPhere with a high-
dimensional latent variable (z) has the “component-collapse” problem33, where the
generative model (decoder) simply ignores some components of the latent vari-
ables, such that the posteriors of these components match the prior.

For Euclidean latent spaces, we observed the component-collapse problem
when we used either 10D or 20D, where the means of the absolute values of some
components were close to zero—the mean of the standard normal distribution
(Supplementary Fig. 10a). Therefore, the effective numbers of components by using
10D and 20D dimensional latent spaces were only six and seven, respectively.

For hyperspherical latent spaces, because the prior has no centers and all
components shared the same concentration parameter, we did not observe
component-collapse, so potentially we can get a larger number of effective latent
components compared with using Euclidean latent spaces. However, when using
20D hyperspherical latent spaces, the estimated vMF concentration parameters
were lower compared to the case with latent variables on 5-spheres (Supplementary
Fig. 10b), suggesting higher uncertainties of the embedding when using latent
variables on a 20-sphere. Moreover, some components of the latent representations
became highly correlated when we embedded cells on a 20-sphere (Supplementary
Fig. 10c). By using the hyperbolic latent spaces, we also observed co-linear
components with 5D-latent spaces.

Datasets. The cord blood mononuclear cell dataset?” consists of 8617 cells, including
8009 cord blood mononuclear cells and 608 mouse 3T3 fibroblasts, produced by the
CITE-seq protocol*® on the 10x Chromium (v2) platform®. We only used the 2293
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CD147" erythroid cells and the first 10 erythrocytes in the dataset. Based on the
Seurat® tutorial (https://satijalab.org/seurat/v3.0/multimodal_vignette.html), we used
the 2000 highly variable genes in this study.

Human splenic NK cells were from a study profiling human and mouse splenic
and blood NK cells*!, and profiled by 10x Chromium (v2). We used the 1755
human splenic NK cells from donor one in this study. We selected 2724 highly
variable genes and partitioned the 1755 cells into four groups, labeled them as
hNK_Sp1, hNK_Sp2, hNK_Sp3, hNK_Sp4, as in the original study‘“.

Human lung cells were from asthma patients and healthy controls®?, and
profiled by either 10x Chromium or Drop-seq®. We used the 3314 cells from a
donor prepared by the Drop-seq protocol that can be accessed from GEO:
GSE130148.

The mouse white adipose tissue stromal cell dataset contains 1378 cells from
mouse white adipose tissue*? profiled by 10x Chromium (v2). In the original study,
the authors only analyzed 1045 tdTomato- mGFP+ cells and identified adipocyte
precursor cells (APC), fibro-inflammatory progenitors (FIP), committed
preadipocytes, and mesothelial cells. We analyzed all the cells and further identified
pericytes, macrophages, and two groups of doublets.

The reginal ganglion cell atlas dataset consists of 35,699 mouse retinal ganglion
cells profiled by 10x Chromium (v2)#2. The original analysis identified 45 clusters,
and one cluster consisted of two cell types.

We used 599,926 human cell landscape cells*? from human fetal or adult tissues
profiled by the Microwell-Seq platform®’. These cells were portioned into 102
clusters, and 77 of 102-cell clusters can be grouped into six major cell groups: fetal
stromal cells, fetal epithelial cells, adult endothelial cells, endothelial cells, adult
stromal cells, and immune cells.

The cells of the colon mucosa were from 68 biopsies, collected from 18
ulcerative colitis patients and 12 healthy individuals*4, and profiled by 10x
Chromium (either v1 or v2). After filtering likely low-quality cells (clusters), we
obtained a total of 301,749 cells (26,678 stromal cells and glia, 64,457 epithelial
cells, and 210,614 immune cells as annotated in the original study*4). The cells span
12 stromal cell types/states, 12 epithelial cell types/states, and 23 immune cell
types/states, identified by unsupervised clustering and manual annotations4. We
used Seurat to select 1307, 1361, and 1068 highly variable genes for the three major
cell types, respectively, for scPhere analyses.

The C. elegans embryonic cell dataset consists of 86,024 cells®! profiled using
10x Chromium (v2). The embryo times were partitioned into 12-time bins, and
63.5% of the cells were assigned to 36 major cell types based on annotation from
GEO: GSE126954. We treated the cells with embryo time in the range 100-130 as
the root cells because embryo time <100 consisted mostly of germline cells that
were also observed in embryo time >650. As the root cells accounted for only
~0.5% of the total cells, it was hard for them to be mapped to the center of the
Lorentz model. We thus changed the scPhere objective function by adding a term
consisting of the distance between the mean position of embeddings of the root
cells to the origin of the Lorentz model.

For the zebrafish embryonic cells, we used the 5226 cells at 50% epiboly*$,
profiled using Drop-seq®®. These cells were from four batches, and we used the
1406 cells from one batch to train scPhere, and the trained model was used to map
the remaining 3820 cells from another three batches. We used Seurat to select 2000
variable genes, added three genes with annotated spatial locations that were not in
the 2000 variable gene list, and used the 2003 genes for analysis. To encourage cells
to map to their spatial locations, we used 11 landmark genes expressed in the
ventral axis: cdx4, evel; animal ventral: bambia; dorsal: gsc, chd; animal dorsal:
foxd3; marginal: osrl, Ift2, Ihxla, wnt8a; and the gene ta which is expressed in
ventral, dorsal, and marginal. These landmark genes were used to calculate a
penalty term added to the scPhere objective function during training.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

We used publicly available datasets in this study (GEO: GSE12695438, GSE11956241,
GSE130148%, GSE11158840, GSE1374002, GSE134355%3, GSE126954°!, GSE1065874%;
Single Cell Portal: SCP259. To make the results presented in this study reproducible, all
processed data are available in the Single Cell Portal (SCP551).

Code availability

The scPhere software package, implemented in TensorFlow, is available free from https://
github.com/klarman-cell-observatory/scPhere, and as a Supplementary Software 1
accompanying this manuscript.
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