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Abstract

Single-cell RNA sequencing (scRNA-seq) has provided a high-dimensional
catalog of millions of cells across species and diseases. These data have
spurred the development of hundreds of computational tools to derive novel
biological insights. Here, we outline the components of scRNA-seq analyt-
ical pipelines and the computational methods that underlie these steps. We
describe available methods, highlight well-executed benchmarking studies,
and identify opportunities for additional benchmarking studies and com-
putational methods. As the biochemical approaches for single-cell omics ad-
vance, we propose coupled development of robust analytical pipelines suited
for the challenges that new data present and principled selection of analytical
methods that are suited for the biological questions to be addressed.
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1. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies generate datasets that describe the state
of individual cells with unprecedented resolution. Advances in technologies for scRNA-seq have
resulted in increasingly complex datasets with millions of cells and thousands of features captured
per cell (1). The number of single-cell transcriptomes reported has exploded since the introduc-
tion of the technology and has been further fueled by global efforts like the Human Cell Atlas
(2–5). However, unlike their bulk counterparts, scRNA-seq data experience unique challenges
derived from sparsity, heterogeneity, and scale. These data also provide opportunities to derive
novel insights about the behavior of subpopulations of cells. As a consequence of these unique
challenges and opportunities, new computational methods for scRNA-seq have become necessary
for advancing the field of single-cell omics.

A range of technologies are available for users to generate single-cell transcriptomes, and
these technologies have been benchmarked by several groups (6–8). In parallel with the explosive
growth of biochemical methods for single-cell omics, there has been complementary growth
in the number of computational tools available for the analysis of these data (9). The wealth of
computational methods available now places an increasing onus on researchers to choose the
right tools for the job.

Computational methods for scRNA-seq analysis span a range of functions, from alignment to
quantification, batch correction, dimensionality reduction, and clustering (Figure 1). Ultimately,
scRNA-seq analysis requires principled method selection and execution informed by the charac-
teristics of the data and the biological hypotheses (see the sidebar titled Experimental Planning for
Effective Computational Analysis). Here, we review an array of computational methods available
for scRNA-seq analysis, highlight benchmarking studies of existing computational methods, and
identify opportunities for the future.

2. PREPROCESSING

The typical starting point for scRNA-seq data analysis is a sparse gene expression matrix de-
scribing gene abundances per cell. These data are based on the number of reads aligned to each
annotated gene or transcript. Experiments that leverage unique molecular identiers (UMIs) are
not normalized to gene length, whereas full-length protocols normalize to length by converting to
units of transcripts per million. Principled generation of the expression matrix is critical because
it is the foundation for most downstream analyses.

2.1. Alignment and Quantification

High-throughput sequencing data are processed to generate an expression matrix. First, reads
must be appropriated to their respective cellular barcode in a process known as demultiplexing.
The reads are then aligned to a reference genome then quantified per gene or transcript.
Commonly, splice-aware aligners like STAR (10), HISAT2 (11), and Tophat2 (12) are paired
with expression quantification methods like RSEM (13), htseq-count (14), or featureCounts (15).
Newer tools have combined alignment and quantification, such as the Rsubread package (16)
and Cell Ranger pipeline (17). Several parameters can be tuned in these algorithms, primarily
focused on ambiguous or multimapped reads. Van den Berge et al. (18) have reviewed the
logic of and considerations for method selection for alignment, and we refer the reader there.
Recent benchmarking publications from the Human Cell Atlas used zUMIs (19) and scumi (7)
to standardize their benchmarking efforts across most scRNA-seq protocols, even those without
UMIs. Several notable improvements of common tools have focused on efficiency and scalability,
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Figure 1

Single-cell RNA sequencing has seen enormous growth since its first demonstration in 2009, as evidenced by the number of sequenced
cellular transcriptomes reported per study. (a) Number of cells reported per study plotted over time. (b) Quarterly summary of
technologies used per study published. Panel a,b data from Reference 4. (c) Common single-cell RNA sequencing analysis pipeline
annotated with popular approaches and tools.
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EXPERIMENTAL PLANNING FOR EFFECTIVE COMPUTATIONAL ANALYSIS

For successful analyses, there are several factors to consider prior to performing an experiment. Addressing these
issues beforehand can improve the subsequent computational analyses.

Choosing How Many Cells and How Many Reads per Cell

Choosing the number of cells and the depth of sequencing remains a challenging question.While Zhang et al. (25)
have suggested that one read per gene per cell is sufficient to capture a gene’s distribution, this may shift based
on the biological genes and cell types of interest. For instance, more reads may be worthwhile for a time course
experiment, whereas sampling more cells may be preferred for cell type discovery. Recently, Svensson et al. (26)
suggested that there is substantial benefit from increased sequencing depth until 15,000 reads per cell, after which
cell number or sequencing depth provides similar marginal benefit.

Minimizing Batch Effects

Unbalanced experimental design can lead to batch effects confounding computational analyses (27–29). Balancing
experimental conditions across individual technical runs is critical. Several methods have been introduced to identify
and control for batch effects, most notably surface labeling (30, 31). These reagents allow samples to be pooled
for improved experimental design. Employing these strategies can improve analyses, as they can enhance doublet
detection and reduce batch effects.

Identifying Potential Cell Types Present

Although one of the most attractive applications of scRNA-seq is high-dimensional cytometry, prior knowledge of
what cell types are present and their proportions can prove useful. This information can be used to inform filtering
metrics for barcodes and cells, normalization, and rare cell identification. If rare cell types exist and are of interest,
these cells may need to be enriched prior to the experiment (32).

Processing Artifacts

Recently, numerous groups have highlighted the impact of dissociation on cellular profiles (33, 34).O’Flanagan et al.
(34) identified a stress response, including FOS, JUN, and heat shock proteins, mediated by collagenase dissociation
for certain subsets of cells. Considering the effects of sample processing can help identify expression patterns that
may confound clustering and arise in differential expression analysis.

notably STARsolo (10), bustools (20, 21), and Alevin (22). scRNA-seq experiments of thousands
of cells experience additional demultiplexing challenges including sequencing errors and hopping
of barcodes/indices, which can prevent the collapse of reads to their appropriate UMI, cell, and
library barcode. In large-scale, complex experiments, these issues require attention, and several
methods are available to correct for UMI and cellular barcode errors (23) and index hopping (24).

2.2. Quality Filtering

After generation of the expressionmatrix, barcodesmay remain that represent unwanted transcrip-
tomes like doublets, dying cells, or contamination. Singlet identification and ambient correction
can be performed to address these concerns. It can be informative to begin with lenient parame-
ters initially and revisit these steps after developing a sense of the biological structure of the data.
We refer to transcriptional profiles that confidently map to unique barcodes as cells, although we
recognize that confident identification of single cells is a nontrivial challenge.
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2.2.1. Singlet identification. In droplet-based scRNA-seq methods, there are risks that bar-
codes may not represent bona fide cells or that more than one cell may be paired with a single
barcode. These empty droplets and multiple-cell barcodes, called doublets, confuse downstream
analyses by introducing artificial populations of cells. While empty droplet identification meth-
ods like EmptyDrops (35) are typically included in pipelines, doublet identification is not.
For droplet- and array-based methods, computational doublet identification methods include
DoubletFinder (36) and Scrublet (37), which simulate doublets by pairing single cells to classify
true doublets through nearest neighbor approaches. Identification of doublets can be visualized
in low-dimensional space to assess the validity of the results. Several methods such as scSplit (38)
and souporcell (39) have been developed to offer genotype-free demultiplexing and doublet detec-
tion.Unlike demuxlet, souporcell calls genomic variants using realigned reads and clusters these to
identify doublets, demultiplex samples, and account for ambient RNA (39). Identifying potential
doublets is an important step in analyses to avoid potentially confounding profiles in later analyses.

2.2.2. Ambient correction. Ambient RNA captured during scRNA-seq experiments also rep-
resents a technical artifact that can confound downstream analysis. Dissociation of tissue calls
for the assessment of potential ambient RNA contamination originating from abundant RNAs
from lysed or dying cells prior to emulsification. As a result, cells may also contain free-floating
RNA, thus confounding cellular profiles. Vieira Braga et al. (40) utilized SoupX (41) to identify
ambient RNA profiles from empty droplets based on the number of UMIs per barcode. SoupX
also offers a method to correct the expression of single cells that requires prior knowledge about
cluster-specific gene expression to estimate ambient contamination, which may be challenging in
novel applications. Smillie et al. (42) grouped cells based on broad cell types and then compared
expression of established markers within each group to all other types. By fitting a linear model to
this relationship and analyzing the residuals, they identified contaminating genes to be excluded
in differential expression (DE) results. Given the importance of ambient correction as a quality
control consideration, comparatively few applicable methods exist, and the problem would benefit
from further methodological development.

2.2.3. Low-quality cells and genes. It is important to identify low-quality cells and genes that
are present within individual samples in order to ensure effective downstream analyses. Identi-
fying low-quality cells can be challenging and is highly dependent on the biological properties
of the samples being analyzed. It is worth noting that low transcript capture may not always re-
flect technical artifacts and merits careful consideration. Beyond cells with low-quality sequencing
metrics, the percentage of mitochondrial reads is most commonly used to exclude cells. Illicic et al.
(43) used the C1 platform to visually inspect and classify cells before sequencing. They identified
mitochondrial reads as a major predictor of cell quality, reasoning that increased reads indicate
broken or lysed cells prior to mRNA capture. Other gene families such as heat shock proteins
and ribosomal proteins, as well as technical factors such as library size and mapping rates, can
also be used to perform more comprehensive quality control. Genes that are expressed in a low
percentage of cells can also be removed, although this number of cells should also be significantly
less than the expected proportion of rare cell types. It is often desirable to have a less stringent
initial filtering followed by more stringent and specific artifact identification during downstream
analyses like clustering and DE in order to prevent removing bona fide cell profiles.

2.3. Data Sketching and Summarization

Given the growing size of scRNA-seq data (2), some methods have been developed to reduce the
number of data points to consider, thereby minimizing the amount of computational resources
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required for large-scale analysis. One approach, data sketching, is to obtain a small, representative
subset of cells. The simplest sketching strategy is to randomly select a subset of cells, where each
cell has an equal probability of being chosen. Instead of uniform sampling, an efficient density-
aware sampling method called geometric sketching (44) preferentially selects a heterogeneous
subset of cells, therefore preserving rare cell types within the sketch. Another approach to reduce
analytic complexity is to summarize a dataset by first clustering the cells with a scalable algorithm
(Section 5.6) and by then performing further analysis only on the statistics computed for each
cluster of cells, such as average gene expression (45, 46) or gene coexpression (47). Summarizing
data based on clusters of cells has also been used to accelerate algorithms for trajectory analysis
(48). Although summarization methods will lose some amount of information, these approaches
enable the rapid analysis of millions or even billions of cells.

2.4. Imputation

scRNA-seq data are highly sparse (i.e., many gene expression values are measured as zero) and
most nonzero measurements are low abundance (for example, one or two UMI counts), espe-
cially for experiments performed using less efficient scRNA-seq technologies or lower sequencing
depth. Small technical artifacts such as experimental contamination or computational alignment
errors could result in data with a low signal-to-noise ratio (SNR), thus reducing the ability of
downstream analysis to distinguish subtle biological patterns. One approach adopted by some
is to improve the SNR by imputing scRNA-seq signal based on strong, high-abundance signal,
either by amplifying correlated low-abundance signal or even by inferring a positive expression
for values measured as zero by the original experiment (49–53). A separate line of work in the
scRNA-seq quality control literature, however, has focused on profiling imputation methods and
their underlying assumptions, particularly since imputation methods assume different noise mod-
els and the noise patterns themselves can vary greatly among experiments (54, 55). In particular,
Andrews & Hemberg (55) found that all of the imputation methods in their benchmark intro-
duced false positive signal into DE and marker gene analysis. It should be noted that analyses with
low tolerance for false positives can still operate in the high-abundance regime of unimputed data
and obtain informative results. Moreover, increasing the SNR of scRNA-seq experiments when
profiling very subtle biological processes will benefit most from collaborative efforts among data
analysts and technologists, not only with regard to computational signal processing but also in
improvements to the underlying biochemical approaches themselves.

3. ACCOUNTING FOR TECHNICAL AND BIOLOGICAL VARIATION

Several sources of variation (biological and technical) are present in the count matrix. Normaliza-
tion, scaling, variable gene identification, and latent variable modeling are employed to minimize
technical variation, while retaining biological variation (Figure 2). The field has not reached a
consensus on which methods and transformations are most appropriate for scRNA-seq analysis.

3.1. Normalization

Normalization seeks to enable consistent comparison of genemeasurements across cells, including
technical variation due to the number of reads sequenced or the number of transcripts identified
per cell (57–59). Normalization methods are dependent on the specific experimental characteris-
tics of a given study. In software packages like Scanpy, Cell Ranger, and Seurat, gene counts for a
specific cell are normalized by the total number of counts per cell (known as the size factor), scaled
by a factor (commonly around 104 to 106), added to some pseudocount, and then log-transformed
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Figure 2

Inspecting the properties of cellular profiles is critical. (a) A plot of log10(variance) versus log10(mean) highlights the overdispersion
compared to the Poisson model (red). (b) A plot of log-transformed SFTPA1 counts versus unique molecular identifiers (UMIs) per cell
shows a dependence on expression depth that needs to be accounted for. (c) Common visualization and variable gene selection method
(56) for downstream analyses. Data in panels a–c are from lung Drop-seq data from Vieira Braga et al. (40).

(56, 60). Normalizing each cell by its size factor can be impacted by outlier gene expression and
ignores biologically relevant differences in cell size and total mRNA between cell types and states.
Potential artifacts can be introduced by this transformation when size factors are diverse and gene
counts are low (61). Although these methods are popular and perform well (62, 63), additional
methods have proposed various modeling assumptions concerning the sparsity and the underlying
distribution of gene expression within cells. SCnorm (58), scran (61), Linnorm (64), Census (65)
andDESeq2 (66) have all proven successful in certain cases, but the performance of these methods
can vary between datasets (62, 67). Many methods apply a log transformation to the count matrix
to reduce the overall influence of the naturally higher variability of high-abundance genes. Recent
publications highlight issues with this approach; in particular, Townes et al. (68) highlighted that
zero inflation is introduced as data are log-transformed, and as Lun (69) also showed, this can in-
troduce artifacts that resemble heterogeneous structure. Lun suggested filtering out low-quality
cells and increasing the pseudocount added before log transformation (69).

Recently, SCTransform offers a new approach that models the counts per gene as a result of
sequencing depth using a regularized negative binomial model (59). The difference between each
gene’s predicted expression and measured expression thereby represents the biological expres-
sion of the gene within that cell with technical variation removed. These statistical parameters,
such as the expression depth dependence, can be visualized to highlight confounding dependence
pre- and postnormalization. As technologies advance to improve transcript capture, comprehen-
sive benchmarking across normalization methods and technologies is needed to determine best
practices.

3.2. Variable Gene Identification

Identifying highly variable genes is primarily used to focus downstream dimensionality reduction
and clustering on a subset of genes that are responsible for much of the biological variation within
the data. Brennecke et al. (70) introduced the identification of variable genes using the squared
coefficient of variation (CV 2) across cells. A curve is fit to the normalized read counts against the
CV 2 and per-gene CV 2 is tested against a threshold of basal biological-derived variance. Klein
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et al. (71) employed a modification of this model that utilizes a different distribution for their
calculated measure of gene variance above basal noise. Seurat v3 (56) and scran (61) implement
similar strategies, where a loess curve is fitted to the mean of each gene and plotted against its
variance. In contrast, each method utilizes different ranking procedures: scran tests if a corrected
variance for each gene is greater than zero, and Seurat v3 ranks genes based on the variance of
standardized gene values per cell. The number of variable genes selected can range from 500
to 5,000 depending on cutoffs, although 2,000–5,000 variable genes can be selected for complex
data that are properly normalized. Yip et al. (72) evaluated several variable gene selection methods
based on their clustering performance, which favored scran by highlighting broad disagreement
between methods.Given that this benchmarking study also included normalization and only a few
small datasets, more benchmarking of feature selection methods is warranted.

3.3. Integration

While typical unsupervised scRNA-seq methods are designed to find biological structure in the
underlying data, not all of this variation is interesting. For example,multiple technical replicates of
the same biological sample may contain noise patterns specific to experimental batch that are then
reflected in downstream analysis, such as clusters that separate cells according to both cell type
and batch. In addition to batch effect correction, researchers may desire to transform scRNA-seq
data in a way that eliminates other sources of undesired variation, a process termed integration. A
common application of integration is to preserve cell type heterogeneity but remove differences
due to technical effects, like experimental batch or sequencing technology, or biological effects,
like donor variation or evolutionary differences separating biological species. Importantly, inte-
grative methods require specifying what variation to preserve and what variation to remove, which
may vary based on the desired downstream application.

Methods applied to bulk RNA-seq data can also be applied in the scRNA-seq setting. These
include linear systems that model and remove known covariates (73) such as the percentage of
mitochondrial reads, the average expression of curated cell cycle genes (74), and the number of
UMIs per cell. Nonlinear integration methods developed for bulk RNA-seq try to model the
noise distribution associated with known covariates across all of the given observed data (75). Bulk
models, however, often cannot model more complex noise distributions associated with scRNA-
seq data, which contain a more heterogeneous collection of cells (76, 77) and do not scale well to
the large numbers of transcriptomes observed in single-cell experiments.

Many methods have been developed specifically for scRNA-seq dataset integration, in which
intradataset variation is mostly preserved and interdataset variation is prone to be removed. The
most common class of methods for integration are locality based, where locality is typically com-
puted as Euclidean distance in gene expression space, or a similar distance metric. Many locality-
based methods transform data to minimize the distance between the nearest neighbors of cells in
one dataset within another dataset.Haghverdi et al. (76) introduced themnnCorrectmethod based
on a robust nearest neighbor alignment algorithm known as mutual nearest neighbors (MNN) or
best buddies matching (78), in which two cells are aligned across two datasets only if each was a
nearest neighbor of the other. The Scanorama method (79) built upon this MNN-based strategy
to enable practical integration of many large-scale experiments by focusing on computational ef-
ficiency and minimizing overcorrection of interdataset variation. Subsequent methods including
BBKNN (batch-balanced k-nearest neighbors) (80), Conos (clustering on network of samples)
(81), and Seurat v3 (56) have further refined nearest neighbor–based approaches with emphases
on scalability and minimizing overcorrection. Although not based on nearest neighbors matching,
the Harmony method (82) is another locality-based integration method that uses a scalable soft-
clustering approach to iteratively remove distances representing undesired variation among cells.
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Other approaches to integration rely on learning similar structure shared across datasets. The
Seurat v2 method (77) uses canonical correlation analysis to transform datasets into an embedding
space that maximizes the similarity of interdataset structure. The LIGER (linked inference of ge-
nomic experimental relationships) method (83) employs a linear model that decomposes scRNA-
seq data into a signal that is dataset specific and a signal that is shared across all datasets, while the
scVI (single-cell variational inference) method (84) accomplishes a conceptually similar decom-
position but instead uses a latent variable model instantiated by nonlinear neural networks. Rather
than transforming data before applying downstream clustering methods, other methods first clus-
ter datasets separately and then apply locality- or correlation-based approaches to identify similar
clusters across datasets (56, 85). The Coscape method leverages locality in correlation space to
achieve integrative analysis that does not assume all interdataset variation should be removed, en-
abling comparison of datasets separated by meaningful biological variation. For example, Coscape
is able to reconstruct developmental trajectories across temporally diverse studies (47).

Different approaches can quantify the extent of undercorrection, in which unwanted variation
persists after integration, and overcorrection, in which desired variation is removed or obscured by
integration. These strategies first require specifying a label for each cell, where cells with the same
label should be more similar than cells with different labels. The silhouette coefficient (86), used
in several scRNA-seq integration studies (62, 76, 79), assigns a score to each cell that increases if
the cell is close to cells with the same label (based on a distance metric, such as Euclidean distance
in integrated embedding space) and decreases if the cell is close to cells with different labels.Other
approaches to quantifying integration quality have been based on statistical hypothesis testing (63),
information theoretic measurements of diversity (80, 82), and the composition of local nearest
neighborhoods (56, 63). Visualizing integrated datasets, which is reviewed in Section 4.2 below,
can also provide intuition into the transformed data.

Integrative efforts have moved beyond the realm of single-cell transcriptomics to include ad-
ditional genomic, epigenomic, proteomic, and spatial modalities, which has has been reviewed
at length by Stuart & Satija (87). While many integrative challenges are similar to those in the
scRNA-seq setting, a particularly important challenge unique to multimodal integration is weigh-
ing how much information to consider from different data types, especially when measurements
of the same feature disagree across different modalities.

4. DIMENSIONALITY REDUCTION AND REPRESENTATION
LEARNING

scRNA-seq data represent a set of cells wherein each cell is featurized by gene abundances, but
additional transformations of these features such as dimensionality reduction are useful in many
instances as well.

While computational pipelines for gene quantification can often identify transcripts belonging
to the tens of thousands of possible genes within an organism, only a subset of these genes will
be both present in the assayed sample and measured with nontrivial variability. Most genes
will have zero abundance in most or all cells and can be removed with minimal impact to the
results of downstream analysis; however, removing lowly expressed genes does improve the
efficiency of computational analyses, which often have a runtime or memory dependence on
the number of genes considered. Identifying such genes to remove is often as simple as setting a
filter cutoff based on the percentage of cells with nonzero expression or based on a summary of the
total expression of that gene (e.g, mean expression across all cells). Other methods for gene filter-
ing are based on statistical measures of expression variability and are discussed in greater detail in
Section 3.2.
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In addition to removing lowly expressed genes, a key concept underlying further dimensionality
reduction of scRNA-seq data is that cells do not have completely random gene expression values
and are not evenly distributed across all data dimensions.Not only aremany genes lowly expressed,
but many genes have highly correlated expression values across cells, resulting in large amounts
of information redundancy. As a result, the effective dimension of the data is often much lower
than the total number of genes profiled, a property inherent in many types of biological data
(88–90). The scRNA-seq literature sometimes refers to this property as single cells occupying a
“low-dimensional manifold.”

4.1. Linear Decomposition Methods

Many dimensionality reduction techniques aim to learn a compact set of features by combin-
ing information across multiple genes into each individual feature. Most feature summarization
methods are based on linear decomposition models like principal component analysis (PCA; finds
orthogonal features of maximum variation), independent component analysis (finds statistically
independent features that best reconstruct the original data), or nonnegative matrix factorization
(finds features, often interpreted as gene modules, that combine expression across multiple corre-
lated genes); these methods are reviewed in the context of genomic data by Stein-O’Brien et al.
(91). Instead of a cell being featurized by hundreds or thousands of genes, a cell is instead featurized
by a much smaller number of components.

Notably, the analyst must choose the number of decomposition components. This parameter
selection is typically done by comparing the information contained in the original dataset to the
information contained in the lower-dimensional dataset, as quantified by the respective objective
function for each dimensionality reduction method. In nearly all biological data, the amount of
new information captured within the lower-dimensional dataset will decrease as the number of
new components increases (89, 91). To select the number of components, researchers typically
choose a cutoff after which the marginal information gain from using additional components is
minimal, for example, by selecting the number of principal components that captures 95% of the
total dataset variance, or by visually inspecting the value of the objective function as it decreases
with the number of components, as in Reference 83. In general, feature summarization using linear
decomposition methods results in a much more efficient representation that captures much of the
biological variation among cells and reduces the contribution of noisy outlier signal.

4.2. Visualization

An important and ubiquitous dimensionality reduction problem is visualization, which entails
learning a two- or three-dimensional representation of each cell that captures some aspect of
the dataset structure in a more human-intuitive feature space. Visualizations of scRNA-seq data
most often take the form a scatter plot in which each point corresponds to a single cell, which
in many instances results in beautiful, pointillistic displays. Linear decomposition algorithms
(Section 4.1) can be used to learn visualization embeddings; for example,PCA is commonly used to
visualize cells along the two axes corresponding to maximum variability across cells. Nonlinear al-
gorithms can potentially incorporate richer structural information to prevent dense overcrowding
within a visualization but may also introduce unrepresentative distortion; deeper interpretation
of the data should occur in the more informative, higher-dimensional feature space. A common
nonlinear visualization technique is t-distributed stochastic neighbor embedding (t-SNE) (92),
which learns a low-dimensional embedding in which the distribution of pairwise distances among
cells forms a reasonably good information theoretic approximation of the distribution of pairwise
distances in the original, high-dimensional space. t-SNE provides tuning parameters that enable
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users to vary the amount of density distortion, for which a helpful tutorial has been provided by
Wattenberg et al. (93). Additional algorithmic extensions to t-SNE (94–96) have mostly focused
on reducing the runtime and efficiency of the original t-SNE algorithm,which scales quadratically
with the number of cells. A different set of nonlinear visualization approaches are based on the
k-nearest neighbor (KNN) graph in which edges connect a cell to its k-nearest neighbors. A KNN
graph can be visualized according to a force-directed layout (97, 98), inspired by physical simu-
lations of attraction and repulsion, in which unconnected cells are more likely to be separated by
greater distances. The KNN graph can also be converted into a visualizable embedding using the
uniform manifold approximation and projection (UMAP) algorithm (99, 100). UMAP provides a
set of heuristics that, like force-directed embeddings, enable visualization of the KNN graphical
topology, but it is controlled by a set of parameters that enable greater density distortion even in
the presence of KNN graph edges. Other visualization techniques have recently been deveoped
that are designed specifically for single-cell data, in particular for settings in which analysts desire
greater preservation of global structures (101–103).

4.3. Nonlinear Representation Learning

Representation learning beyond dimensionality reduction and data visualization is an exciting and
actively developing field. As discussed in Section 3.3, it is possible to learn embeddings that allow
for data comparison and integration across diverse scRNA-seq studies.Nonlinearmodels, and par-
ticularly deep neural network–based models, have also been used to learn embeddings specifically
applied to other scRNA-seq analytic domains, including imputation and cell type assignment (49,
84, 104). Another notable application involves learning an embedding for a cell or a cell type that
enables useful latent space arithmetic.Nonlinear representation learning techniques in other fields
have demonstrated that it is possible to encode the data into an embedding space in which vector
arithmetic approximates complex transformations in the decoded data space. For example, word
co-occurrence–based embeddings like word2vec (105) andGloVe (106) can capture simple seman-
tic relationships such that embedding(‘king’) − embedding(‘man’) + embedding(‘woman’)

is close to embedding(‘queen’), and similar arithmetic in a latent space of human faces learned
by a variational autoencoder (VAE) (107, 108) has enabled interpolation between a smiling and a
neutral face. In the context of scRNA-seq data, Lotfollahi et al. used a VAE-based model to learn
nonlinear embeddings in which vector arithmetic approximates complex cellular changes includ-
ing drug and infection response (109). As single-cell biological datasets grow larger and more
abundant, algorithms that leverage large amounts of training data to learn complex biological
models will become useful in an increasing variety of tasks.

5. CLUSTERING

One of the goals of scRNA-seq analysis is to describe the heterogeneity of the cells in a sample.
For example, we expect to see both shared and different expression patterns representing cell
types and cell states. Clustering is used to separate cells into these groups to allow for downstream
comparison between groups.

An optimal clustering separates cells of different states into different groups and places cells
of the same type in the same group. Figure 3 demonstrates several ways that this process can
go wrong in scRNA-seq data: undersclustering, overclustering, and cluster splitting. Figure 3a,b
highlights the true clustering of a hypothetical scRNAseq dataset. Cells are underclustered if cells
of different types are assigned to the same cluster, masking variation in the data (Figure 3c). Cells
are overclustered if multiple clusters represent the same cell type (Figure 3e). Cluster splitting
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occurs when some cells of the same type are scattered between different clusters dominated by
other cell types (Figure 3g), a common pitfall in discovering rare cell subsets. Because of the wide
range of cell type proportions in a dataset, it is possible for a single clustering to experience a
combination of these issues, with some cells overclustered, some underclustered, and some cell
types split between several clusters.

scRNA-seq data face several challenges that make out-of-the-box clustering methods from
other fields less applicable. Clustering methods use the similarity between cells defined over a set
of genes to assign cells to clusters, so gene selection has a large influence on clustering results (110).
For example, inclusion of genes whose variation across cells is not informative to the biologically
meaningful clustering could lead to overclustering (Figure 3e). Omission of all genes that distin-
guish cell types leads to underclustering if these cells are similar to another cell type (Figure 3c) or
to cluster splitting if the stochastic expression of genes defining other clusters makes them appear
more similar to several clusters (Figure 3g).

Clustering methods seek to solve this optimization problem by varying clustering algorithms,
feature selection algorithms, and cell–cell similarity metrics. Countless approaches have been pro-
posed that are the result of the combinatorics of the above components (110–112), and method
comparisons emphasize that the choice of the optimal clustering methods depends on the data
(55, 111, 113, 114).

Clustering techniques can be split into several general categories: hierarchical clustering, net-
work community detection, iterative clustering, model-based clustering, spectral clustering, and
consensus clustering (111). While some methods use a combination of these techniques, in this
section we review the ways that these types of techniques avoid overclustering, underclustering,
and cluster splitting. As new clustering techniques emerge and scRNA-seq datasets become larger,
additional comparisons of clustering techniques will be necessary.

5.1. Network Community Detection and Hierarchical Clustering

In network community detection techniques, a graph (i.e., a network) of cells connected by a
measure of their pairwise cell–cell similarity is clustered by identifying densely connected regions
of nodes (60, 115, 116); these methods are therefore sometimes termed graph-based clustering.
Hierarchical clustering comprises either splitting or joining cells iteratively into groups based on
similarity metrics (117, 118).

These clustering approaches require the choice of a cell-to-cell similarity metric that, along
with feature selection, can have a large impact on clustering results. This is reviewed by Kim et al.
(119).While parameters of these clustering methods can usually be tuned to toggle the number of
clusters and deal with over- and underclustering, if the genes that define the difference between
two cell types are excluded, these cell types will not be split and the results will be underclustered.
It is difficult to find an optimal set of genes and parameters that cluster all cells to the optimal
resolution, so clusters are sometimes merged together after overclustering (Figure 3f ). Some
of the popular clustering techniques are network community detection methods, specifically the
Louvain and Leiden methods (116), which are available in the Seurat and scanpy toolkits (60, 115).

5.2. Iterative Clustering and Rare Cell Detection

Since hierarchical clustering and community detection are prone to under- or overclustering, it is
common to take an iterative divide-and-conquer approach, which begins with a coarse separation
of cells and then reclusters each group independently, as reviewed in Reference 111 (Figure 3d).
This iterative reclustering is able to deal with cell types of different resolutions by performing
feature selection again for each individual cluster before further clustering these reduced sets
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(120, 121). Iterative clustering avoids overclustering by halting iterations along one branch when
all meaningful clusters are found and avoids underclustering by continuing to repeat feature se-
lection and clustering until cells are clustered sufficiently. Several clustering methods are available
to automate this scheme (122–124).

Iterative clustering does not avoid splitting rare cell types into different clusters (Figure 3g).
If a cell type is split between clusters at an earlier iteration, even if the genes that discern this
cell type are considered at a later stage of clustering, the low numbers of these rare cells in each
subcluster make them difficult to identify. Some algorithms contain specific optimizations for the
identification of rare cell subsets in the full dataset (Figure 3h) (125–129). These methods can be
incorporated into the iterative clustering approach to identify rare cells before clustering larger
cell types (Figure 3h).

5.3. Model-Based Methods

Model-based clusteringmethods avoid dependence on cell–cell similaritymetrics by directlymod-
eling gene expression as counts and inferring cluster membership from these models. There is
some controversy about the validity of normalizing scRNA-seq count data to continuous values
prior to the selection of variable genes. By avoiding this assumption, model based methods claim
to discover more accurate clusters.

Techniques such as BISCUIT (Bayesian inference for single-cell clustering and imputing)
(130), BAMM-SC (Bayesian mixture model for single-cell sequencing) (131), and Para-DPMM
(parallelized split merge sampling on Dirichlet process mixture model) (132) include inference of
other features beyond cluster assignments such as marker genes and cell trajectories, compensate
for batch correction (131) and technical variation (130), and estimate the uncertainty of cluster
assignments, allowing for soft cluster memberships (130–132). Model-based methods have not
been included in independent benchmarking analyses, so it remains unclear if they show practical
improvements over other techniques.

5.4. Consensus Clustering

Since clustering techniques often give different divisions of clusters, it can be useful to use a
consensus of several techniques (133). These approaches avoid over- and underclustering and
rare cell splitting by using information from multiple resolutions and by using hyperparameter
selections (134) of clusters to define the final clusters. This type of approach could be extended to
use the consensus of multiple gene selection choices to further minimize the splitting of rare cell
types.

5.5. Reference-Assisted Clustering

While unsupervised clustering has been the main focus of scRNA-seq cell type identification
pipelines, recent techniques have proposed taking advantage of biological knowledge to annotate
scRNA-seq cell types through supervised classification. These methods label cells based on their
similarities to transcriptional profiles of cells in the literature (114). This reduces the burden of
manually annotating cell types from lists of marker genes, allows researchers to consider cell types
theywould not ordinarily consider, and removes the feature selection step. Since reference-assisted
clustering labels focuses on identifying those cell types that are present in existing databases, the
methods are unlikely to label new cell types. Additionally, since the databases are usually derived
from different types of technologies, comparisons of scRNA-seq data to the existing data can be
hindered by differences in data types.

352 Hie et al.

, .•
·�-

Review in Advance first posted 
on May 27, 2020. (Changes may 
still occur before final publication.)

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
20

.3
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

73
.1

49
.2

3.
15

0 
on

 0
5/

28
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BD03CH15_Bryson ARjats.cls April 19, 2020 19:27

5.6. Scalability of Clustering Methods

Clustering methods will need to process a rapidly growing number of cells as the throughput of
scRNA-seq methods increases. Calculation of a cell–cell similarity metric between all cells, a com-
mon subroutine within many clustering algorithms, is not computationally scalable to large cell
numbers. Some approaches improve the asymptotic efficiency of hierarchical or graph-based clus-
tering by running the clustering algorithm only on the KNN graph (60), which has a complexity
that scales with the number of cells multiplied by a factor of k, which is typically small (rather
than the graph containing all cell–cell similarities, which scales quadratically with the number of
cells). Other approaches improve efficiency by clustering on downsampled representative subsets
of cells (44, 45, 128) (Section 2.3).

Besides the highly parallelized Para-DPMM (132), model-based methods have difficulty
scaling to large numbers of cells. Some recent approaches using neural networks also model gene
expression as count data and emphasize their scalability to large numbers of cells (135–137).
Petegrosso et al. (111) compared the runtime and clustering performance of several methods on
a dataset of 105 cells, but comparisons with newer methods are needed.

5.7. Cellular Trajectories

Another approach to interrogate the heterogeneity of a scRNA-seq dataset is to arrange cells along
a trajectory. Originally described for cellular differentiation, trajectory inference methods are of-
ten termed pseudotime approaches, although these orderings do not necessarily refer literally to
time (138). These methods aim to arrange cells along an axis of variation that depends on the
choice of both cells and genes.While often applied to cells undergoing differentiation in which a
progenitor cell and a more differentiated cell are found in the data, cell orderings can be meaning-
ful across any number of continua, such as spatial gradients and response to external stimuli (139).

Most trajectory inference methods start by computing cell–cell distances. They then order
the cells in a low-dimensional manifold computed from these distances under the assumption
that adjacent cells in a trajectory will be closer on this manifold. Like clustering, gene selection
influences the ability of these methods to discover cell orderings and biases the types of orderings
they infer.

An extensive benchmarking analysis compared 45 tools for trajectory inference and developed a
package to efficiently runmultiple tools and compare their outputs (140).This analysis emphasized
that method choice depends on the type of trajectory in the data, and running multiple methods
may yield vastly different results.While currently availablemethods are successful at ordering cells
in trajectories that follow one path, the problem of describing more complex trajectory structures
is still an area of development.

Another recent objective in scRNA-seq analysis is to derive insights pertaining to the direc-
tionality of these trajectories. Because a single sample is only a snapshot of cells, it is difficult to
infer with confidence which of many dynamic processes could have led to a cellular trajectory
without some additional information (141). Studies with data from multiple, closely spaced time
points where the trajectory of interest proceeds along the time course can take advantage of re-
cently developed inference methods that use time points to inform the trajectory, such as TASIC
(temporal assignment of single cells) (142) orWaddington-OT (optimal transport) (143). Another
innovative method to attribute dynamics to cellular trajectories is RNA velocity (144). This ap-
proach uses the ratio of spliced and unspliced RNA transcripts in each cell to compute a vector
describing a cell’s current state and future direction. Methods like this show great promise for
enhanced analysis in studies where multiple samples are not available but dynamic processes are
expected.
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6. DIFFERENTIAL EXPRESSION AND GENE SET ENRICHMENT

DE is a common procedure in RNA sequencing, and single-cell analysis presents unique chal-
lenges due to the nature of the data (69). The goal of DE analysis is to identify robust, true ex-
pression differences between two or more groups of interest. The underlying data, the selection of
the comparison groups, and the statistical model or test used all influence the results of differential
gene expression analyses.Many users initially opt for false discovery rate–adjustedWilcoxon rank
sum tests due to their simplicity, speed, and performance (145, 146). Beyond this nonparamet-
ric approach, a plethora of methods have been developed using various modeling approaches to
account for confounding technical factors and improve accuracy. Generalized linear models are
popular [e.g.,Monocle 3 (147),MAST (model-based analysis of single-cell transcriptomics) (148),
DESeq2 (66)] owing to both their flexibility in distribution choice and their ability to account for
other factors that may influence DE results. Unfortunately, p-value inflation is common in DE
analysis, particularly between clusters (149). This continues to pose a challenge for accurate de-
tection of differentially expressed genes. Robust DE analysis is critical, considering the increasing
complexity of test groups, such as multilevel experimental designs and clinical samples.

Several benchmarks offer some idea about the state of tools for DE analysis (145, 150–153).
Early benchmarks fromDalMolin et al. (152) and Jaakkola et al. (151) focused on amixture of bulk
(e.g.,DESeq) and single-cell methods [e.g.,MAST,SCDE (single-cell DE analysis)] benchmarked
against non-UMI datasets. Both made somewhat conflicting statements regarding the suitability
of bulk DEmethods in single-cell analyses, highlighting the need for proper attention in selecting
and applying these tools. In a benchmarking study, 36 tools were tested against each other using
a group of prefiltered and unfiltered full-length and UMI-based datasets (145). Several methods
performed poorly; however, commonly used methods were sufficient in controlling type-1 error.
In fact, the t-test and Wilcoxon rank sum test are ranked highly, along with bulk-based limma
variants and single-cell-focused MAST variants. Vieth et al. (154) performed a more expansive
benchmark, which included both normalization and DE. In contrast to the results in the above-
mentioned benchmarking study (145), MAST performed poorly compared to the other methods.
Unsurprisingly, normalization was a significant factor in DE analysis. For instance, if appropri-
ate normalization was applied, many methods generated similar discrimination for true positives
in both 10x Genomics and Smart-seq2 data (154). Similarly, Hafemeister & Satija demonstrated
that a simple t-test between two equivalent cell types, where UMI counts are downsampled in one
group, identifies many false positive differentially expressed genes (59).

Several groups have proposed new approaches to address shortcomings in DE analysis. Zhang
et al. (155) introduced a method to control for the selection bias that arises as clusters are defined
that generates artificially low p-values and hence false discoveries.They introduced a framework to
correct for the introduction of induced separation with the sample groups.Ntranos et al. (156) re-
visited logistic regression for single-cell data, reasoning that the current scale of sampling enables
appropriate fitting. As an example, Stuart et al. (56) utilized this approach to account for the donor
source of each cell. Crowell et al. (157) offered a new simulation framework,muscat, for looking at
differential states between conditions. They demonstrated definitively that, although extensively
used, the bulk methods edgeR (158) and limma (73) are effective at comparing aggregated sets
of cells between two conditions. These three examples represent expanding areas of research to
control for artificially induced differences, utilize the wealth of information in single-cell data, and
perform accurate testing across sample stratifications.

Trajectory analysis has expanded the potential sample groups, covariates, and null hypotheses
that can be included in differential testing. Van den Berge et al. (159) introduced TradeSeq, a
toolbox of trajectory-based methods that build and expand upon previously published methods.
A generalized additive model as a function of the inferred pseudotime can often be used to
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perform a range of differential tests, both within and between lineages. In their paper, they
intuitively presented the potential comparisons and outcomes with their negative binomial model
(or zero-inflated negative binomial). Cao et al. (147) presented an additional method for both
general cluster-based and trajectory-based differential analysis termed graph autocorrelation
analysis based on Moran’s I metric.

After producing tables of differentially expressed genes between groups of interest, gene set
enrichment facilitates quick interpretation of biological themes. Bulk methods like GSEA (gene
set enrichment analysis) can be applied to these gene sets (160). Strict filtering should be employed
before enrichment to ensure accurate results, considering the additional sources of false positives.
AUCell offers a per-cell enrichment of specific gene sets by calculating the area under the curve
across ranked gene expression versus the number of genes within the gene set (161). This pro-
duces bimodal distributions of gene set scores across all cells, where a proportion of cells have
notable enrichment. Given a particular gene set, Tirosh et al. (74) introduced a scoring method
that averages the expression level of all genes within the gene set, correcting for basal expression
of random control genes in similar expression bins. This method provides a convenient way to
visualize and additionally validate module expression.

Regardless of the tool chosen, p-values must be corrected for multiple hypotheses (162). Addi-
tionally, properly accounting for covariates requires additional attention, highlighted by Luecken
& Theis (149). Before biochemical validation, users should additionally address the count distri-
bution of the gene of interest across various technical factors. Ensuring the tool is appropriately
suited for the statistical characteristics of the data is critical to prevent the generation of inappro-
priate conclusions.

7. NETWORK RECONSTRUCTION

Once cells are organized into clusters and cell types, network reconstruction techniques can be
used to form hypotheses about the underlying behaviors of the cells in these clusters beyond their
marker genes (163). Bulk RNA-seq studies have been widely successful in identifying gene regula-
tory networks (GRNs) using measurements of populations of cells under different conditions, but
network inference methods developed for bulk RNA-seq data are not adept at inferring the types
of networks empowered by scRNA-seq data (164). In single-cell experiments, we can harness the
coexpression of genes in single cells instead of full samples to understand the networks underly-
ing these states (165). This structure enables different types of networks to be considered from
scRNA-seq data: GRNs, gene–gene coexpression networks, and cell–cell interaction networks.

7.1. Gene Regulatory Networks

GRNs are representations of the factors in a cell that control the transcription of genes into
mRNA. In order to describe a causal relationship between one gene product and the transcription
of a gene, researchers must show that perturbing the upstream factor alters the behavior of the
downstream gene. Since scRNA-seq data represent a snapshot of the heterogeneity of cells in a
sample, the lack of stimulation or time variation makes this formal inference of causality impossi-
ble from a single experiment (166, 167). An approximation of causality in differentiation networks
is possible when temporal data are available, such as from a time series experiment (168, 169) or
trajectory inference analysis (170, 171). These approaches assume that a change in expression of
one gene at an earlier time point could indicate that gene as the cause of a change in expression of
a different gene at a later time. Recently, the BEELINE framework has been developed to bench-
mark these scRNA-seq GRN inference approaches using a unified model (172), and it has shown
promising results for GRN inference from scRNA-seq data.
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7.2. Coexpression Networks

While causality or directionality of GRNs is difficult to conclude, scRNA-seq empowers the dis-
covery of gene–gene coexpression networks. These are weighted, undirected networks with genes
connected by a measure of the frequency of their coexpression in single cells. scRNA-seq analysis
methods harness these networks to discover gene modules (173), predict upstream transcription
factors that drive expression (161), provide guilt-by-association indications of gene function, clus-
ter cells based on coexpressed genes (174, 175), and construct interstudy trajectories (47). Inno-
vations in constructing gene–gene coexpression networks, such as optimization of the choice of
coexpression metric (176), will improve these applications, but more work is needed to reach a
consensus on how to build these networks from scRNA-seq data.

7.3. Cell–Cell Interaction Networks

Computational methods have been developed to summarize the possible receptor–ligand interac-
tions to understand cell–cell communication from scRNA-seq data (163).

There are obstacles that have not been addressed despite recent progress in these analyses.
Current techniques rely on curated lists of receptor–ligand pairs,which require effort to create and
are subject to biases toward more heavily researched areas. Some repositories have been created
for this purpose (177). Still, mRNA expression of receptors and ligands is an imperfect measure
of protein expression, as receptor and ligand transcripts are not always detectable in scRNA-seq
data and could be influenced by posttranscriptional regulation. Arneson et al. (178) proposed an
alternative approach to score cells based on expression of genes involved in ligand production or
receptor signaling. Cell–cell interaction networks show promise and have been applied in some
studies with great success. The applicability of these methods to general studies remains unclear
given the lack of benchmarking or ground truth comparisons available for this analysis.

8. CONCLUSIONS AND OUTLOOK

It is an incredibly exciting time in the field of single-cell omics. scRNA-seq has transformed our
understanding of biological systems by providing precision approaches to characterize the tran-
scriptomes of individual cells. At the same time, these methods have presented new challenges and
opportunities for computational methods to robustly derive novel biological insights. Ultimately,
it is important to remember that analysis of single-cell omics data must be conducted with deep
consideration of the biological questions to be answered in the analysis. At times, keeping up
with developments and improvements in the field can be incredibly challenging. As additional
layers of biological information (RNA velocities, protein expression, chromatin accessibility, etc.)
are integrated into single-cell workflows, new computational methods will have to accommodate
the subtleties of these data. Complex experimental designs, especially clinical studies, large-scale
atlases, and multimodal integration will continue to call for principled implementation of these
computational tools. As new tools are developed, we recommend that researchers building
computational tools consider the usability and postpublication development of their packages. In
some cases, packages are difficult to integrate with common workflows in the field, thus hindering
their adoption. Lastly, we believe that benchmarking studies for computational methods with
well-designed biological experiments will have tremendous value going forward. Tools like
Dynverse (140) epitomize our vision for the future of benchmarking of computational methods:
publicly available resources, user-friendly interfaces, and cross-platform compatibility.While it is
difficult to predict the next decade of technological advancements in the field of single-cell omics,
we envision a future where computational methods advance in parallel with the biochemical tools,
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with comprehensive benchmarking, well-documented methods, and new or unexpected biological
insights.

SUMMARY POINTS

1. Single-cell RNA sequencing (scRNA-seq) analysis is influenced by numerous experi-
mental and computational decisions. The choice of computational tools is critical.

2. The field has produced and benchmarked a range of tools for common analyses, although
more comprehensive benchmarks are needed.

3. Analysis requires iterative, principled approaches that are biologically aware.

FUTURE ISSUES

1. Building robust and interpretable models are needed for analyzing scRNA-seq data be-
yond cell and gene clustering.

2. An explosion of computational methods creates challenges for standardization of ana-
lytical methods and ongoing maintenance of existing methods.
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