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SUMMARY

A brief description of the research carried out by faculty, staff,

and students of the M.I.T. Laboratory for Information and Decision Systems

under ONR Contract N00014-77-C-0224 is described. The period covered in

this status report is from October 1, 1980 through September 30, 1981.

The scope of this contract is the development of an overall failure

detection system design methodology and of methods for fault-tolerant

control. In the following sections we overview the research that has been

performed in these areas during the indicated time period. We have also

included a list of the papers and reports that have been and are being

written as a result of research performed under this contract. In addition,

during the period mentioned above, Prof. Alan S. Willsky, principal investi-

gator for this contract, visited the People's Republic of China and Japan.

A trip report was submitted to the Mathematics Program (Code 432), and a

copy of that report is included as Appendix A to this status report.
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I. Robust Comparison Signals for Failure Detection

As discussed in the preceding progress report [19] for this project,

a key problem is the development of methods for generating comparison

signals that can be used reliably to detect failures given the presence

of system parameter uncertainties. Previously we have made some initial

progress in this area, as is described in [191 and in more detail in the

Ph.D. dissertation of E.Y. Chow [8] and in the paper [161. In this work

we used the idea of redundancy relations which are simply algebraic re-

lationships among system outputs at several times. Using this concept,

we proposed an analytic method for determining the parameters defining a

comparison signal that is optimum in the sense of minimizing the influence

of parameter uncertainties on the value of the signal under normal operation.

This research represented a significant step in increasing our

understanding of robust failure detection and in development a useful,

complete methodology. There were, however, several key limitations to

this earlier work. Specifically,

(a) No algorithmic method existed for identifying and constructing

all possible redundancy relations for a given system.

(b) No method existed for constructing the set of redundancy

relations which can be used to detect a given failure.

More generally, no method existed for finding all sets

of redundancy relations which allow one to detect each

of a set of specified failures and to distinguish among

them.

(c) The optimization formulation developed is complex and its

use for systems of moderate size seemed prohibitive. Also,

the method leads to a choice of comparison signals that

depends upon the system state and input. While this may be
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appropriate in some problems, it is not in many others.

Furthermore the formulation dealt primarily with minimizing

the influence of 'parameter uncertainties on comparison signals

under normal operation. No single, satisfactory formulation

existed for incorporating the performance of the particular

signal choice under both unfailed and failed system conditions.

(d) No coherent picture existed for describing the full range of

possible methods for using a particular redundancy relationship

and for quantitatively relating performance as measured by the

optimization criterion to an actual failure detection algorithm

based on the redundancy relation.

During this past year we have initiated a new, related research pro-

ject aimed at developing algebraic and geometric approaches to overcoming

these limitations. We have identified and begun to develop an extremely

promising approach. Our work to date will be described in some detail

in the forthcoming S.M. thesis proposal of Mr. Xi-Chang Lon [201]. In

this section we will briefly outline the main ideas.

Consider a linear system of the form

x(k+l) = Ax(k) (1.1)

y (k) = Cx(k) (1.2)

For simplicity in our initial discussion here and in the first part of

our research we will not include inputs (and hence will focus on sensor

failures and not on actuator failures). Let y (k) denote an extended

observation vector of length p+l:

y'(k) = [y'(k), y' (k+l),..., y' (k+p)] (1.3)

Any vector



-5-

a' = [a' , a' ]
p pO0 pl" pp

which satisfies

p

a'yp (k) = a'.y(k+i) = 0 (1.4)
pp 1i=0

for all k>0 and all possible x(O) is called a parity vector of length p

and (1.4) is called a parity check of length p.

A first key problem is to identify all possible parity vectors and

to develop algorithms for generating them. The key to this is the

following: define the vector of polynomials

P i
p(z) =- a piz (1.5)

i=0

Then a is a parity vector if and only if there is an nxl vector of poly-

nomials (n is the dimension of x) q(z) so that

p' (z)C(zI-A) = q' (z) (1.6)

or, equivalently, if and only if

[p'(z), -q'(z)]

is in the left null space of the matrix

ZI-A 1

The importance of this result is that the last characterization identifies

the set of parity relations with the left nullspace of a particular poly-

nomial matrix, and, in fact, this allows us to use some of the powerful
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tools of the algebraic theory of linear systems to construct all possible

redundancy relations and, in fact, to find a basis consisting of parity

checks of minimal length. As length directly corresponds to the amount of

memory involved in a parity check one intuitively would prefer short

checks, in order to minimize the effects of parameter uncertainties.

Work is presently continuing in developing algorithms for constructing

parity checks and for finding parity vectors that are useful for particular

failure modes. Specifically, suppose that in addition to the normal operation

model (1.1), (1.2) we also have a set of possible failure models

x(k+l) = A.x(k) (1.7)

y(k) = C.X(k) (1.8)
1

i=l,...,N. Suppose that a vector ap is a valid parity vector, i.e. there

is a q(z) so that [p' (z), -q' (z)] is the left nullspace of

I A C] 1 (1.9)

zI-A

Suppose also that there is no polynomial qi (z) so that [p'(z), -q!(z)] is

in the left nullspace of

InIthis case the paity check (1.4)willgiveavalueofzeroifthereis(1.10)

LZI-A i

In this case the parity check (1.4) will give a value of zero if there is

no failure but will generally give a nonzero value if failure mode i

occurs. Clearly then what we wish to identify are the intersections of

the left nullspaces of the matrices in (1.9) and (1.10). As discussed in
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[20] this can also be used to determine sets of parity checks which can

distinguish among a set of failures. Work is continuing on obtaining

algorithmic solutions.

The research described above is aimed directly at several of the

limitations mentioned earlier. Using the results of this research we have

also initiated research of a more geometric nature that is aimed at over-

coming the remaining limitations. Specifically, it can be seen that the set

of all parity checks of order < p is equivalent to the orthogonal pro-

jection in /R(p+l) (m = dim(y)) onto the orthogonal complement of the

range of the matrix

LPl (1.11)

For example, if y' = (Y1, Y2) and Y2 = ay1, then the geometric picture is
as is illustrated in Figure 1.1.

In terms of this perspective, parameter uncertainties manifest them-

selves as perturbations in the range of the matrix (1.11). For our

example, if a . < a < a , we have the picture depicted in Figure 1.2.mir -- -- max

For this example it intuitively makes sense to use as a parity check the

projection onto a line which is "as orthogonal as possible" to the cone

of possible observation subspaces. One logical criterion is to choose a

line which makes the largest possible angle with the cone -- i.e. which

maximizes the smallest angle of the chosen line with any line in the cone.

The idea just described can be extended to the general case, and the
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optimization problem can be stated in terms of singular values of a parti-

cular matrix. Also, this approach can be viewed as a modification of that

of Chow in that it overcomes the state-dependent nature of the optimum

parity check of Chow. Furthermore, this geometric approach can also be used

to formulate problems which allow one to choose the optimum parity checks

subject not only to performance constraints under normal operation but also

when specific failures occur.

To illustrate the point mentioned at the end of the preceding para-

graph, consider our simple example and suppose that a failure results in

a shift in a. When there are uncertainties in a, this results in a picture

as illustrated in Figure 1.3. Intuitively, we would like to use a parity

check consisting of the orthogonal projection onto a line which makes a

large angle with lines in the unfailed cone and a small angle with lines

in the failed cone. We have obtained a "Neyman-Pearon-like" optimization

formulation for this problem and are presently studying the algorithmic

solution of this problem and the formulation and solution of problems of

distinguishing among a set of possible failures.
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II. Fault-Tolerant Control Systems

In the preceding progress report [191 we outlined several classes of

discrete-time stochastic control problems that are aimed at providing a

framework for gaining an understanding of fault-tolerant optimal control.

These problems involve a finite-state jump process denoting-the operational

status of the system. The system state x evolves according to a linear

stochastic equation parametrized by the finite state process. During the

past year significant progress has been made on the problems described

in [191. These results will be described in detail in the forthcoming

Ph.D. thesis of Mr. H.J. Chizeck [18]. Specifically we have accomplished

the following:

(1) As mentioned in [19], the problem is straightforward when

p is independent of x. However, the qualitative properties

of the solution and of the closed-loop system are suprisingly

complex, and a wide variety of types of behavior can be ob-

tained. We have now derived a series of results and constructed

a set of examples which allow us to understand the possibilities

in more detail.

(2) When the transition probabilities of p depend on x the problem

becomes one of nonlinear stochastic control. This problem

reveals many of the critical properties of fault-tolerant

systems, including hedging and risk-avoidance. In much of our

work in this area we have focussed on the scalar problem where

the dependence of p on x is piecewise-constant. A cursory

glance at this problem indicates that with this formulation

the problem can be solved (via dynamic programming) by ex-

amining a growing (as we go back in time) number of constrained

linear-quadratic problems.

The problem has, however, a significant amount more structure

which we have now characterized. This characterization has
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allowed us to pinpoint the nature of hedging and risk-avoidance

for these systems, to reduce the computational complexity of

the solution by a substantial amount, and to obtain a finite

look-ahead approximation.

(3) We have also completed an investigation of the problem described

in (2) above in the presence of bounded process noise. In

this case the piecewise-quadratic nature of the solution of

(2) is lost in some regions, but the insight from (2) allows

us to obtain an approximation to the cost-to-go which reduces

the problem to one much like that without process noise.

(4) We have also obtained some initial results for the vector version

of the problem of (2). In this case the situation becomes far

more complex, as the regions into which one must divide the

state space at each stage of the algorithm have complex shapes.

Work is continuing on obtaining approximation methods for these

regions much as we did for the costs-to-go in (3).

In addition to these problems we have also made progress in a fault-

tolerant optimal control when we have noisy observations of the state.

Specifically, we have been examining a problem in which a system may switch

from normal operation to a failed condition and where our controller must

decide if and when to switch from a control law optimal for normal opera-

tion (with a criterion specific to normal operation) to one optimal under

failed conditions (perhaps with a different criterion). This is a novel

but exceedingly important sequential decision problem. Specifically,

standard statistical decision problems are aimed at providing a tradeoff

between incorrect decision probabilities and decision delay. For control

problems, these are only indirect performance indicators - e.g. the effect

of a false alarm depends on the performance loss resulting from switching

from the normal control law and the effect of detection delay depends on

the performance loss from using the normal law after the system has failed.
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At this point we have obtained the form of the solution, but much work

remains in developing algorithms and in understanding the nature of the

solution.
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III. Additional Problems in Detection

During the past year we have continued and initiated work along

several directions. Brief descriptions follow:

(1) Decision rules. In the work of Chow described in [8, 17, 19]

we describe an algorithm for computing optimum decision rules.

This algorithm was complex computationally, and extensions to

more involved detection problems using this approach are pro-

hibitively complex. The reason for this is that optimum

algorithms attempt to partition the space of possible condi-

tional probability vectors for the given set of hypotheses into

decision regions. The boundaries of these regions are the points

where two decisions yield exactly equal performance. It is our

opinion that most of the computational complexity is due to

this goal of finding the precise boundaries, which involves

obtaining precise statistical predictions of the evolution of

the conditional probabilities under each hypothesis. We have

recently initiated the investigation of suboptimum algorithms

based on approximate descriptions of the evolution of conditional

probabilities. This formulation offers the possibility of

solving far larger problems at reduced computational cost and

with small and perhaps negligible performance loss. These pos-

sibilities remain to be examined.

(2) Complex decision problems. As discussed in [19] there is an

exceedingly large and rich class of problems that involve con-

tinuous processes coupled together with discrete processes whose

transitions represent events in the observed signals or the

underlying systems. The methods we have developed and are

developing for failure detection represent in some sense a

first step in attacking the simplest problems of this type,

i.e., ones in which we must detected isolated and sporadic

events. We have also initiated investigations of problems in

which we wish to detect and identify sequences of events. Such
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problems are of significance for the reliable control of large

scale systems and, in our opinion, hold the key for solving many

complex signal processing problems. In the preceding progress

report [19] we outlined a generic problem formulation for event-

driven signal generation. During this past year we have built on

this formulation to develop a structure for signal processing

algorithms for event-driven signals. The building blocks for

these algorithms are specialized detection algorithms of the

type one uses for failure detection, and the key problem is one

of developing decision mechanisms based on the outputs of these

simple algorithms. As discussed in [19], the major issue is

one of pruning the tree of possible sequences of events in an

optimum manner. The approximate methods described in (1) above

are potentially of great value for this problem. In addition to

our analytical work, we are also working on several specific

applications. This experience is exceedingly useful in providing

insight into the nature of problems of this type. At this time

we are working on problems of electrocardiogram analysis based

on an event-driven model, efficient edge detection in images,

the detection of objects given remote integral data (which is

of direct application to problems of tomographic tracking of

cold-temperature regions in the ocean), and optimum closed-loop

strategies for searching for objects. The fact that such a wide

variety of problems can be approached essentially from one

unified perspective indicates, we feel, the central importance

of this research effort.

(3) Event-Driven Models for Dynamic Systems. Based on the perspective

in (2), we have initiated a more mathematical aspect of our

research based on the development of simplified event-driven

models for nonlinear systems affected by small amounts of noise

and/or rare events. The motivation for this research is that

the exact analysis of such models or the solutions of problems

of estimation and control for such models may be considerably

more complicated (often these problems are intractable) than
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those for simplified models obtained through asymptotic analysis.

As an example, consider the scalar stochastic system described by

the stochastic differential equation

dx(t) = f(x(t))dt + -dw(t) (3.1)

where

-(x-l) x > 0
f(x) = (3.2)

-(x+l) x < O

This system is characterized by the property that for time inter-

vals that are small the process behaves like a linear process

near one equilibrium or another, while for long times the

aggregate process sgn(x(t)) converges (as -)-0) to a Markov

jump process. Consequently, one might expect that estimation

of x(t) based on measurements of the form

dy(t) = x(t)dt + dv(t) (3.3)

might be accomplished based on viewing the process as the

state of an event-driven linear system. More generally, one can

consider analogous models for other nonlinear systems possessing

multiple equilibria and subject to small noise. We already have

some results along the lines indicated for simple examples, and

we are continuing to investigate more general situations. Note

that the estimation algorithms that result are of precisely the

form considered in (2). It is our feeling that this research

direction represents a very promising approach to obtaining a

substantial extension to the class of estimation problems for

which tractable solutions can be found.
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PERSONNEL

During this time period Prof. Alan S. Willsky (principal investigator),

Dr. Stanley B. Gershwin, Prof. B.C. Levy, Prof. R.R. Tenney, Dr. David

Castanon, Prof. Shankar Sastry, and students X.-L. Lou, H.J. Chizeck, P.C.

Doerschuk, D. Rossi, C. Bunks, and M. Coderch have been involved in research

outlined in this status report. Of these people Prof. Willsky, Dr. Gershwin, and

Dr. Castanon have received financial support under this contract, and Mr.

Lon and Mr. Chizeck have been research assistants supported by this contract.
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This report summarizes the trip of Prof. Alan S. Willsky to the

People's Republic of China and Japan. The primary purposes of this trip

were to participate in the Bilateral Seminar on Control Systems held in

Shanghai, China and the Seventh Triennial World Congress (held in Kyoto,

Japan) of the International Federation of Automatic Control. The following

is the itinerary followed by Prof. Willsky:

August 9-12 Shanghai, China

August 13-16 Xian, China

August 16-19 Beijing, China

August 19-22 Tokyo, Japan

August 22-29 Kyoto, Japan

Prof. Willsky served as technical program chairman for the meeting

in Shanghai and as one of the organizers of the activities of the

official IEEE Control Systems Society delegation during the entire visit

to China. In addition, Prof. Willsky was one of three plenary speakers

during the Bilateral Seminar. The subject of his talk was an introduction

to and survey of methods for the detection of abrupt changes in signals

and systems. Prof. Willsky's research in this field has been and is

presently supported in part by ONR.

The basic purpose of the visit by the IEEE delegation was to establish

ties between the Control Systems Society and the Chinese Association of

Automation and to provide an opportunity for discussion among researchers

from both organizations. To achieve these objectives, the delegation

organizers structured the visit to allow for ample opportunity for dis-

cussion and for members of the IEEE delegation to gain knowledge and under-

standing about China, the Chinese people, and research in China. In addition
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to the 3-day meeting in Shanghai, there were also visits to Xian and Beijing.

Cultural, social, and technical activities were organized in both of these

cities. In Xian the delegation visited Xian Jiaotong University, and

Prof. Willsky was involved in a discussion of implementation issues for

digital control systems. Also involved in this discussion was Dr. Stuart L.

Brodsky of ONR. In Beijing a technical interchange was held at The

Great Hall of the People.

Overall the visit to China was exceedingly worthwhile. The meeting

in Shanghai was a significant success, and the contacts made there will

allow for continued interaction. In particular, a number of Chinese re-

searchers expressed great interest in Prof. Willsky's lecture and provided

him with information and publications concerning research on failure

detection and adaptive control in China. The visit to Xian Jiaotong

University was also valuable, as it provided the opportunity to see one

of China's leading and fastest growing technical universities. Beyond

these specific scheduled events the many informal, unscheduled discussions

at banquets provided further information about research at institutions

that were not visited.

The other major portion of this trip was the IFAC World Congress,

the largest (approximately 1500 attendees) meeting of researchers in auto-

matic control. In addition to presenting a paper on implementation issues

in digital control and attending various technical sessions, Prof. Willsky

also had the opportunity to discuss research topics with researchers from

many countries. In particular, Prof. Willsky engaged in numerous discussions

on problems of abrupt changes, failure detection and fault-tolerant control.

Prof. Willsky spoke with Prof. K. Astrom of Sweden, Prof. L. Ljung of Sweden,
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Dr. F. Pau of France, Prof. V. Utkin of the Soviet Union, and Prof. A. Halme

of Finland, among others. These discussions were of great value in updating

Prof. Willsky's knowledge of related research around the world. In addition,

Prof. Willsky also was able to learn much about the status and direction of

robotics research in Japan. As this represents an important and promising

direction for future research, the opportunity provided by this visit to

Jpan was a significant one.
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Abstract

The formulation of the decision making of a failure detection
process as a Bayes sequential decision problem (BSDP) provides
a simple conceptualization of the decision rule design problem.
As the optimal Bayes rule is not computable, a methodology that
is based on the Baysian approach and aimed at a reduced computa-
tional requirement is developed for designing suboptimal rules.
A numerical algorithm is constructed to facilitate the design and
performance evaluation of these suboptimal rules. The result of
applying this design methodology to an example shows that this
approach is a useful one.

* This work was supported in part by the Office of Naval Research under Contract

No. N00014-77-C-0224 and in part by NASA Ames Research Center under Grant NGL-22-009-124.

1. INTRODUCTION 2. THE BAYESIAN APPROACH

The failure detection and identification (FDI) The BSDP formulation of the FDI problem consists

process involves monitoring the sensor measurements of six elements:
or processed measurements known as the residual [I] 1) 0: the set of states of nature or failure

for changes from its normal (no-fail) behavipr. Re- hypotheses. An element S of 0 may denote a single
sidual samples are observed in sequence. If a failure type i failure of size u occurring at time T(9=

is judged to have occurred and sufficient information (i,r,v)) or the occurrence of a set of failures (pos-
(from the residual) has been gathered, the monitoring sibly simultaneously), i.e. B={(il,T 1 ,v.)._(in,,'
process is stopped. Then, based on the past obser- Vn)}. Due to the infrequent nature of railure, we

vations of residual, an identification of the failure will focus on the case of a single failure.
is made. If no failure has occurred, or if the in- In many applications it suffices to just identify
formation gathered is insufficient, monitoring is not the failure type without estimating the failure size.
interrupted so that further residual samples may be Moreover, it is often true that a detection system
observed. The decision to interrupt the residual- based on (i,t,v) for some appropriate v can also de-

monitoring to make a failure identification is based tect and identify the type of the failure (i,r,u) for
on a compromise between the speed and accuracy of the v>V. Thus, we may use (i,r,V) to represent (i,r).

detection, and the failure identification reflects In the aircraft sensor FDI problem [31, for instance,
the design tradeoff among the errors in failure clas- excellent results were obtained using this approach.

sification. Such a decision mechanism belongs to the Now we have the discrete nature set
extensively studied class of sequential tests or se-
quential decision rules. In this paper, we will em- = {(i,), i=l,...,M, ,2 .....}
ploy the Bayesian Approach [2] to design decision
rules for FDI systems. where we assume there are M different failure types

In Section 2, we will describe the Bayes formu- of interest.
lation of the FDI decision problem. Although the 2) p: the prior probability mass function (PMF)

optimal rule is generally not computable, the struc- over the nature set 0. This PMF represents the a

ture of the Bayesian approach can be used to derive priori-information concerning the failure, i.e. how

practical suboptimal rules. We will discuss the de- likely it is for each type of failure to occur, and

sign of suboptimal rules based on the Bayes formula- when is a failure likely to occur. Because this in-

tion in Section 3. In Section 4, we will report our formation may not be available or accurrate in some

experience with this approach to designing decision cases, the need to specify u is a drawback of the

rules through a numerical example and simulation. Bayes approach for such cases. Nevertheless, we will
see that it can be regarded as a parameter in the de-
sign of a Bayes rule.

In general, u may be arbitrary. Here, we assume
the underlying failure process has two properties:
i) the 'l failures of O are independent of one another,
and ii) the occurrence of each failure i is a
Bernoulli process with (success) parametr oi . The
Bernoulli process (corres-on(ding to the Pois3on proc-
ess in continuous tine) is a common odelL for faiLres
in ph'ysical components: t;h indes-e:> te assurmptl C o
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describes a large class of failures (such as sensor that the residual is affected by the failure in a
failures) while providing a simple approximation for causal manner, its conditional density has the prop-
the others. It is straightforward to show that erty

U~iT)=~ip~lp)i=l . . .M, r=l,2 . .... ,p(r(l), .... r(k)I(i,t))=p(r(l),... ,r(k)|(O,-))

where Tk
M where (0,-) is used to denote the no-fail condition.

P=l - R (1-P.) For the design of suboptimal rules, we will assume
ijl that the residual is an independent Gaussian sequence

M with V(mxm matrix) as the time-independent covariance
Z(i)i(i)- l )-]- 1 function and gi(k-T) as the mean given that the fail-

j=1 ure (i,T) has occurred. With the covariance assumed
to be the same for all failures, the mean function

The parameter p may be regarded as the parameter of g.(k-T), characterizes the effect of the failure
the combined (Bernoulli) failure process - the oc- (1,T), and it is henceforth called the signature of
currence of the first failure; a(i)can be interpreted (i,T) (with g.(k-t)=0, for i=O, or T>k). We have
as the marginal probability that the first failure chosen to study this type of residuals because its
is of type i. Note that the present choice of u in- special structure facilitates the development, of in-
dicates the arrival of the first failure is memory- sights into the design of decision rules. Moreover,
less. This property is useful in obtaining time- the Gaussian assumption is reasonable in many problems
invariant suboptimal decision rules. and has met with success in a wide variety of appli-

3) D(k): the discrete set of terminal actions cations, e.g., [3] [4]. (It should be noted that the
(failure identifications) available to the decision use of more general probability densities for the
maker when the residual-monitoring is stopped at time residual will not add any conceptual difficulty.)
k. An element 6 of D(k)may denote the pair (j,t), 6) c(k,(i,t)): the delay cost function having
i.e. declaration of a type j failure to have occurred the properties:
at time t. Alternatively, 6 may represent an iden-
tification of the j-th failure type without regard c(i,k-) > 0 T<k
for the failure time, or it may signify the presence c(k,(i,T)) =

of a failure without specification of its type or 0 T>k
time, i.e. simply an alarm. Since the purpose of FDI
is to detect and identify failures that have occurred c(i,kl- )>c(i,k 2--) -- kl>k2>
D(k) should only contain identifications that either
specify failure times at/before k, or do not specify After a failure has occurred at x, there is a penalty
any failure time. As a result, the number of ter- for delaying the terminal decision until time k>t
minal decisions specifying failures times grows with with the penalty an increasing function of the delay
k while the number of decisions not specifying any (k-r). In the absence of a failure, no penaltN is
time will remain the same. In addition, D(k) does imposed on the sampling.' In this study we will con-
not include the declaration of no failure, since the sider a delay cost function that is linear in the
residual-monitoring is stopped only when a failure delay, i.e. c(i,k-T)=c(i)(k-T), where c(i) is a posi-
appears to have occurred. tive function of the failure type i, and may be used

4) L(k;9,6): the terminal decision cost func- to provide different delay penalties for different
tion at time k. L(k;e,6) denotes the penalty for types of failures.
deciding 6¢c(k) at time k when the true state of A sequential decision rule naturally consists of
nature is e8(i,T). It is assumed to be bounded and two parts: a stopping rule (or sampling plan) and a
non-negative and have the structure: terminal decision rule. The stopping rule, denoted

by =((0),~(l;r(l)) . ....(k;r(l),...,r(k)),....) is a
rL('(i,),6) T<k, 6cD(k) sequence of functions of the observed residual sam-

ples, with O(k;r() ....,r(k))=l, or 0. When
LF T>k 6eD(k) Q(k;r(l),...,r(k))=l, (0), residual-monitoring or

sampling is stopped (continued) after the k residual
where L(e,6) is the underlying cost function that is samples, r(l),....,r(k) are observed. Alternatively,
independent of k; LF denotes the penalty for a false the stopping rule may be defined by another sequence
alarm, and it may be generalized to be dependent on of functions Y=('(O),O(l;r(l)) ..... (k;r(l).,
6. It is only meaningful for a terminal action r(k)),...), where p(k;r(l),...,r(k))=l (0) indicates
(identification) that indicates the correct failure that residual-monitoring has been carried-on up to
(and/or time) to receive a lower decision cost than and including time (k-l) and will (not) be stopped
one that indicates the wrong failure (and/or time). after time k when residual samples, r(l), ....,r(k) are
We further assume that the penalty due to an incor- observed. The functions i and I? are related to each
rect identification of the failure time is only de- other in the following *-ay
pendent on the error of such an identification. That
is for 6=(j,t), (k;r() .....r()) = (;r() .....r(k))

k-1
L((i,z),(j,t)) = L(i,j,(t-T)) X [l-¢(s,r(1),...,r(s))

S=O
and for G with no time specification with 9(0)=O(0).

The terminal decision rule is a sequence of
L((i,r),f)=~ L(i,c6) functions, D=(d(0),d(l;r(l))...,d(k:rl),.....r(k)),

...), mapping residual samples, r(l),...,r(k) into
5) r(k): the -di;rmensional residual (observa- the terminal action set D(k). The function

tion) seqcutence. We shall let pr()...r(k)l(iT)) d(k;r(l),...,r(k)) represunts the decision rule used
denote their joint conditional density. Assuming to arrive at an action (identification) if sa:iing
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is stoopped at time k and the residual samples, r(l), relationships among the various performance issues.
..,r(k) are observed. The advantage of the indirect approach is that only

As a result of using the sequential decision the total expected cost instead of every individual
rule (1,D), given (i,r) is the true state of nature, performance issue needs to be considered explicitly in
the total expected cost is: designing a sequential rule. The drawback of the ap-

proach, however, lies in the choice of a set of appro-

U0 Ei,r) (~,D)] r{f(k;r(l),...r(k))[c(k,(ir))+ priate cost functions (and sometimes the prior distri-
k=O bution) when the physical problem does not have a nat-

L(k;(i,r),d(k;r(l),.,r(k)))]} .ural set, as it doesn't in general. In this case, the
Bayes approach is most useful with the cost functions

The BSDP is defined as: determine a sequential deci- (and the prior distribution) considered as design
sion rule (Q*,D*) so that the sequential Bayes risk parameters that may be adjusted co obtain an acceptable
Us is minimized, where design.

-M (LThe optimal terminal decision rule D* can be eas-
ily shown to be a sequence of fixed-sample-size tests

Us(t)iEUr)U 0 [(i',r),(,D)] [2]. The determination of the optimal stopping rule

i* is a dynamic programming problem l]. The immense
($*,D*) is called the Bayes Sequential Decision Rule storage and computation required make $* impossible to
(BSDR) with respect to u, and it is optimal in the compute, and suboptimal rules isc be used.
sense that it minimizes the sequential Bayes risk. Despite the impractical nature of its solution,

In the following we will discuss an interpreta-. the BSD? provides a useful framework for designing
cion of the sequential risk for the FDI problem. Let suboptimal decision rules for the FDI problem because
us define the following notation of its inherent characteristic of explicitly weighing

the tradeoffs between detection speed and accuracy (in
terms of the cost structure). A sequential decision

kl0,-o ' rl r rule defines a set of sequential decision regions
S(k,S), and the decision regions corresponding to the

9= U D(k) BSDR yield the minimum risk. From this vantage point,
,=3 the design of a suboptimal rule can be viewed as the

problem of choosing a set of decision regions that

s(',5i~)={[r(1) ...... . ....... ,r(k)l: would yield a reasonably small risk. This is the es-
r r(),d(,r(l), ,r())}, sence of the approach to suboptimal rule design that

we will describe next.

)dr(l) dr(k) 3. SUBOPTIAL RULES

-~i~r)g Xk- ~ -1)) E. r~), r~)The Sliding Window Approximation~(i,*)=~ (k-Tr)(iPF(T)) E t(k r(l),.-,r(k))lE
-k2 F 1STir

( ( 1) r( )) The immense computation associated with the BSDR
is partly due to the increasing number of failure

X Of S j / i.~ ) -1 ' hypotheses as time progresses. The remedy for this
P(( i')'d)= ~ Pr{S(k' )li'}(-PF)- problem is the use of a sliding window to limit the

number of failure hypotheses to be considered at each
where PF(r) is the probability of stopping to declare time. The assumption made under the sliding window
a failure before the failure occurs at I, i.e, the approximation is that essentially all failures can be
probability of false alarm when a failure occurs at detected within W time steps after they have occurred,
time T; P is the set of terminal actions for all times; or that if a failure is not detected within this time
S(k,S) is the region in the sample space of the first it will not be detected in the futur;:. Here, the win-
k residuals where the sequential rule (A,D) yields the dow size W is a design parameter, and it should be
terminal decision S. Clearly, the S(k,5)'s are dis- chosen long enough so that detection and identification
joint sets with respect to both k and S. The expres- of failures are possible, but short enough so that
sions t(i,r) and P((i,T),5) are the conditional ex- implementation is feasible [1]., 
pected delay in decision (i.e. stopping sampling and The sliding window rule (O ,d') divides the sample
making a failure identification) and the-conditional space of the sliding window of residuals (r(k-W+l),
probability of eventually declaring 6, given a type i ...,r(k)}, or equivalently, the space of vectors of
failure has occurred at time x and no false alarm has posterior probabilities, likelihood ratios, or log
been signalled before this time respectively. likelihood ratios (L) of the sliding window of failure
?((i,-),6) is the generalized cross-detection proba- hypotheses into disjoint time-independent sequential
bilitc. Finally, the sequential Bayes risk Us can be decision regions {So,S1 ...,S. Because the residuals
written as are assumed to be Gaussian variables, it is simpler to

work with L (which is related to L by a constant):

i=1 rrL r

Ail where

Equation (1) indicates that the sequential Bayes L-(k)=[L(k;1, r) ... . ,L('' ,))]'
r

-ris is a -eighced combDnation of the condtional false 1
alarn probabilicy, e:<esced deiay to decision and L;i,) r(-- s) (2)

cress-detection probabilities, and the optimal sequen- s=O
-_l rule (Z*,D*) mini-mies such a combination. From Then, the sliding windco- rule states: At each tine

.hi ':,-anttae point, tch cost functions (L and c) and k>.<, we for- cthe d' ecisotr scistl cs L(k) from the win-
-- or dictriD3ution (u) provide for the weighting, dow of resLidaL s .s. if L(Nk) S or i=L,..., or

e bai sa tor nCuirec'cl.c :ecif.'ing the tradeoff ", w; wil stop l eclarc;'; oh,:rwise,
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L(k)cSO, and we will proceed to take one more obser- theses of different failure types.

vation of the residual. The Bayes design problem is The risk for using (4) is

to determine a set of regions {S*,S1 ,... ,SN } that min- , M T-1 MO' U~(~),LF1 T"~~ 1 ,. T- 
imizes the sequential risk UT({Si}). This represents U(f)=LFil (i,r)Z Pr l(k)cSjSo(k-) - }

a functional minimization problem for which a solution M
is generally very difficult to determine. A simpler 
alternative to this problem is to constrain the deci-l T=+ k aX[ iT) ci( Li

sion regions to take on special shapes, {Si(f)}, that

are parameterized by a fixed dimensional vector, f, x Pr (k)cS S(k-l)!i}
of design variables. Then the resulting design pro- 1 ' 0,

blem involves the determination of a set of parameter where
values f* that minimizes the risk UW(f). We will

focus our attention on a special set of parametrized S.(k)-L . (I
sequential decision regions, because they are simple W-1 '' '

and they serve well to illustrate that the Bayes
formulation can be exploited, in a systematic fashion, The probabilities required for calculating the risk

to obtain simple suboptimal rules that are capable of are given by the recursion:

delivering good performance. These decision regions
are: p(LW_l(k+l)lso(k),i,T) =

-1

S(j,t)={L(k) : L(k;j,t)>f(j,t), [£ p(',_l(k)[SO(
k - 1),i T) dL l (k )]

SO
E -(j,t)[L(k;j,t)-f(j,t)]>c l(i,7)[L(k;i,T)-f(i,r), x 0 P(L_l(k+l)!LWl(k),So(k),il) T)'

( tp (3a) P((L),0l(k)lSo(k-l),i, T)dL Wl (k) k>W (5)

S(O,-)={L(k) L: (k;i,t)<f(i,r), Pr{L_l(k)Sj, S0(k-l)[i,T} = Pr({S(k-l)ii,r}-

i=l,...,M, T=O,...,W-l1} (3b) f p(L ,_l(k)ISo(k-l),i,)dLW1 (k), j=,1,...,M (6)

where S(j,t) is the stop-to-declare (j,k-t) region and

S(O,-) is the continue region (see Fig. 1). Generally with

the c's may be regarded as design parameters, but
here, C(j,t) is simply taken to be the standard de- Pr{Lw _(W)cESji,T} = fp(L4 l(W) i,T)d Lw4 (W) (7)

viation of L(k,j,t). Sj

To evaluate UW(f), we need to determine the set For M small, numerical integration of (5)-(7) becomes

of probabilities, {Pr{L(k)eS(j,t),L(k-l)cS(O,-),..., manageable,
L(W)eS(O,-)li,T}, k>W, j=O,1,...,M, t=O,...,W-l1, Unfortunately, the transition density,

which, indeed, is the goal of many research efforts in p(Lw-Il(k+l) W ILWl(k),So(k-1),i,T), required in (5) is

the so-called level-crossing problem [5]. Unfortu- difficult to calculate, because LW_l(k) is not a

nately, useful results (bounds and approximations of Markov process. In order to facilitate computation

such probabilities) are only available for the scalar of the probabilities, we need to approximate the

case [6],[7],[8]. As it stands, each of the proba- transition density. In approximating the required

bilities is an integral of a kNW-dimensional Gaussian transition density for LW_ 1(k) we are, in fact, ap-

density over the compound region S(O,-)x...xS(O,-) proximating the behavior of LW.1. A simple approx-

xS(j,t), which, for large kMW, becomes extremely un- imation is a Gauss-Markov process £(k) that is defined

wieldy and difficult to evaluate. by
The MW-dimensional vector of decision statistics

L(k) corresponds to the NW failure hypotheses, and Z(k+l) = Ae(k) + ,(k+l)

they provide the information necessary for the simul-
taneous identification of both failure type and fail- E{&(k)&'(t)} = BB'uo(k-t)

ure time. In most applications, such as the aircraft
sensor FDI problem [3] and the detection of freeway where A and B are bxM constant matrices and i is a

traffic incidents [4j, where the failure time need not white Gaussian sequence with covariance equal to the

be explicitly identified, the failure time resolution (MxM) matrix BB'. The reason for choosing this model

power provided by the full window of decision statis- is twofold. Firstly, just as LW_l(k), Z(k) is

tics is not needed. Instead, decision rules that Gaussian. Secondly, Z(`) is Markov so that its tran-

employ a few components of L(k) may be used. The sition density can be readily determined. In order to

decision rule of this type considered here consists have Z-(k) behave like Mfl(k), we set the mAtrices A

of sequential decision regions that are similar to and B and the mean of ,; such that

(3) but are only defined in terms of M components of
L(k) E}= Ei, {(k T L -1(k (8)

Sj=_,. l(k) : L(k;j,W-l)>fj E0 _{(k)'(k)}=E,0 _L.(k)L' (k)} (9)
SJJ 1 J, i- , W I

(10)ei
1 (iO,_ £-l)[L(k;IW-l)-fi]>e (i,-l)Lki;-)f E : {Z(k)Z'(k+l)}=E0 {_ 1(k) L, (k+Il)} (10)

(4a)

That is, we have matched the marginal density and the

S0={L._(k) : (k,j,W-1)<f j=1,...,M} (4b) one-step cross-covariance of Z(k) to those of L£_ (k).
It can be shown that (S)-(10) uniquely specify

where S is the stop-to-declarc-failure-j region and -

SO is tne continue region. Tt should be noted that A = Z1 E0
the use of (4) is effective if cross-correlations of 
si.natures among hypotheses of the same failure type BB' = 1 Z 

at different times are smaller than those among hypo-
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(iQ(S('s+l) = Ei.r{L,_(k+l) } - A EwLwl(k)) using r(k) we have to augment the signatures as:

ig'(O),.. ,gi(v-l)]', i=l ..... M. By a proper choice
where of v, the rank of Go can be increased to -' and 3 will

='-l G 1 be invertible.
0-~ ta -l(k) -l(k) } = G G V1

t0O Non-Window Seauential Decision Rules

W-2 ^1 Here we will describe another simple decision
l=E({L _l(k) L l(k+l)} = L Gt-1 V G' rule that has the same decision regions as the simpli-

t=O fied sliding window rule (4), but the vector (z) of M
decision statistics is obtained differently as follows:

O T>k

I k-- -1 z(k+l) = A z(k) + 3 r(k+l) (13)
Z G V G' k =k-W+l-r.<0

(k)} t=O e-Ok t O - where A is a constant stable ?tx/{ matrix, and B is a
'W-1 -1 lxb= constant matrix of rank '.. Unlike the Mar'ov

I Gt Gtz_ ko=k-W+l1-r>0 model Z(k) that approximates Lw_l(k), z(k) is a
=t=O °o realizable Markov process driven by the residual. The

advantages of using z as the decision statistic are:

CG . [gl(t),···., g((t) I]' ......... 1) less storage is required, because residual samples
need not be stored as necessary in the sliding window

.oreover, the matrix A is stable, i.e. the magnitudes scheme, and 2) since z is Markov, the required proba-

of all of the eigenvalues of A are less than unity, bility integrals are of the form. (11) and (12) so that

and 3 is invertible if Go or G. 1 is of rank M. Be- the same integration algorithm can be directly applied

cause 5 is an artificial process (i.e. 5 is not a to evaluate such integrals. (It is possible to use a

direct function of the residuals r(k)) i(k) can never higher order z, but the added complexity will negate

be implemented for use in (4). the advantages.)
We may choose other M.arkov approximations of In order to form. the statistics z, we need to

L-_1(k) that match -the n-step cross-covariance (l<n<W) choose the matrices A and B. WhTen the failure signa-

instead of matching the one-step cross-covariance as tures under consideration are constant biases, B can
in (10). The suitability of a criterion for choosing simply be set to equal Go, and A can be chosen to be

t'e matrices A and B, such as (9) and (10), depends aI, where 0<a<l. Then, the term Br in (13) resembles

directly on the failure signatures under consideration g'V-lr of (2), and it- provides the correlation of the

and may be examined as an issue separate from the residual with the signatures. The time constant

decision rule design problem. Also, a higher order (11/1-a) of z characterizes the memory span of z just

Yzrkov process may be used to approximate LW-1. How- as W characterizes that of the sliding window rules.

ever, the increase in the computational complexity More generally, if we consider failure signatures

_ay negate the benefits of the approximation. that are not constant biases, the choice of A may

Now we can approximate the required probabilities still be handled in the same way as in the constant-
in the risk calculation as bias case, but the selection of a B matrix is more

involved. With some insights into the nature of the

? (k, _(k)E.S ,S(kSl)iT;}:Pr- Z(k)ESjo(k-1)[i,} signatures, a reasonable choice of 3 can often be

made. To illustrate how this may be accomplished, we

j=0,1, ... ,M k>W will consider an example with two failure modes and an
m-dimensional residual vector. Let

and
gl(k-r) = 1

?r(k)c)eSj, So(k-l)li,r}
g2(k-T) = g2(k-r+l )

=?r{So(kc-l) | i,r} f p(Z(k) so(k-1) , i, )d Z (k) (11)
Sj That is, gl is a constant bias, and g2 is a ramp. If

where we have applied the same decision rule to Z(k) B and B2 are not. multiples of each other a simple

as L;_l(k). Therefore, Sj and SQ(k-l) denote the c oice or B is available:
decision regions and the event or continued sampling

up to time k for both LW-1 and i. Assuming B- 1

exists, we have - 1

p(L(k+'l)jSo ('k),i,r) i= [ p(((k)1So(k-l),i,t)dZ(k)]
1 B J

SO
x f p(:(k+l) = [((k+l)-AZ(k)1]i,r) If B =a 3 and B,=a 3, where a1 and ac are scalar con-
SO stands, the above choice of 3 has ra'.k one and is not

p( (k) So(k-l) ,i,0)d(k), k>W (12) useful for identifying either signature. Suppose we
batch process every two residual samples together, i.e.

--̀ ere p(;(k)Ii,r) is the Gaussian density of ;(k) we use the residual sequences r(k)=[r'(2k-l),r'(2k)]',

under the failure (i,r). Now the integrals (11) and k=1,2,.... Then we can set B to be

(12) represent more tractable numerical problems.
in the event that B is not invertible, the tran-

si:ion densic: is degenerace and (12) is very difficult 3'

vented by batch processing the residuals. Thit is, we 2''

-a: consider the modified residual sequence: r(k) =
(r' :(v.-v-vL) ,r' v'v-v+2) .... r'(vk)3' for som.e batch Thus, the first and secn.- rows of capture the con-

e v.0 with k=L,2,... as the new time inde:. In stant-bias and ramp nat ure c r ct
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(and this B has rank two). The use of the modified P (jji)=P (jli) j=0,1,2, t>A (17)
resudual r(k) in this case causes no adverse effect,
since it only lengthens slightly the interval between When the signature of the failure model is a constant
times when terminal decisions may be made. A big in- (including the no-fail case), the reasoning behind
crease in such intervals i.e., the batch processing (14) holds, and we can see that Pt(jli) will reach a
of r(k),...,r(k+v) simultaneously for large v, may steady state value as t (the elaspsed time) increases.
however, be undesirable. For problems where the Then, (17) is a valid approximation for a large A.
signatures vary drastically as a function of the For the case where failure signatures are not constants,
elapsed time, or the distinguishability among failures the probability of continuing after A time steps (for
depends essentially on these variations, the effec- sufficiently large A) may be arbitrarily small. The
tiveness of using z diminishes. In such cases the error introduced by (17) in the risk (and performance
sliding window decision rule should provide better probability) calculation is, consequently, small.
performance because of its inherent nature to look Substituting (17) in (16),- we get
for a full window's worth of signature.

2 2

Probability Calculation Us(f)=PFLF+(l-P F)Z a(i)[c(i)ti+ Z L(i,j)P(i,j)] (18)
An algorithm based on 1-dimensional Gaussian

quadrature formulas [9] has been developed to compute where
the probability integrals of (11) and (12) for the
case M=2. (It can be extended to higher dimension 2 1
with an increase in computation.) The details of this ti - Z t b (tli)+b0 (li) A + 1-P (0i) (19)

quadrature algorithm is described in [1]. Its accu- P t )
racy has been assessed via comparison with Monte Carlo A P(j i)
simulations (see the numerical example). With this P(i,j)= Z b(tli)+b0(li) 1-P (0i) (20)

algorithm we can evaluate the performance probabili-
ties and risks associated with the suboptimal decision PF is the unconditional false alarm probability, i.e.
rules described above. the probability of one false alarm over all time, t.

is the conditional expected delay to decision, given
Risk Calculation that a type i failure has occurred, and P(i,j) is the

In the absence of a failure, the conditional conditional probability of declaring a type j failure,
density has been observed to essentially reach a given that failure i has occurred. From the assumption
steady state at some finite time T>W.1 Then, for k>T that Pr{SO(T)[O,-}1l and the steady condition (14), it
we have can be shown that the-mean time between false alarms is

simply (l-b0)-
1. Now all the probabilities in (18)-

Pr{E(k)cSIj'S (k-l),0O-1 = b. (14) (20) can be computed by using the quadrature algorithm.
3 Note that the risk expression (18) consists only of

Pr{L(k)cS.,(k-l)cSO ... ,Q ()cS 0 S(r-l),i,} = finite suns and it can be evaluated with a reasonable

b (k-0ti i k>>T (15) amount of computational effort. With such an approx-
b -- i- imation of the sequential risk, we will be able to

consider the problem of determining the decision
That is, once steady state is reached, only the rela- regions (the thresholds f) that minimize the risk.
tive time (elapsed time) is important. Generally, It should be noted that we could consider choosing
fialures occur infrequently, and decision rule with a set of thresholds that minimize a weighted combina-
low false alarm probabilities are employed. Thus, it tion of certain detection probabilities (P(i,j)), the
is reasonalbe to assume 1) p<<l ((1 -.p)T 1), and 2) expected detection delay (t.), and the mean time be-
Pr(SO(T) 0,-} = 1. The sequential risk associated tween false alarms ((1 - b 0-l). Although such an
with (4) for M=2 can be approximated by objective function will not result in a Bayesian de-

sign in general, it is a valid design criterion that
W 2 2 ~
(sf)1 P L+(l a(i)E 4 [c(i)t+L(ij)2 2b.(ti) may be useful for some application.

i=l j=l t=0
(16) Risk Minimization

where The risk minimization problem has two features
that deserve special attention. Firstly, the sequen-
tail risk is not a simple function of the threshold f,

'F 1-5 (l-p) and the derivative with respect to f is not readily
available. Secondly, calculating the risk is a costly

Next, we seek to replace the infinite sum over t task. Therefore, the minimum-seeking procedure to be
in (16) by the finite sum up to t=A plus a berm ap- used must require few function (risk) evaluations, and
proximating the remainder of the infinite sum. Sup- it must not require derivatives. The sequence-of-
pose we have been sampling for A steps since the fail- quadratic-programs (SQP) algorithm studied by Winfield
ure occurred. Define: [10] has been chosen to solve this problem, because it

does not need any derivative information and it appears
Pt(j I i)=Pr(Z(t)Sjl.IS 0 (t-l),i,0} j=0,1,2 to require fewer function evaluations than other well-

knou-n algorithms [10]. Furthermtore, the SOP is simple,
If we stop computing the probabilities after Ai, we and it has quadratic convergence. Very briefly, the
may approximate algorithm consists of the following. At each iteration,

a quadratic surface is fitted to the risk function
locally, then the quadratic model is minimized over a
constraint region (hence the name SQP). The risk

1 Unfortunately, we have not been able to prove function is evaluated at this minimum and is used in
the surface fitting of the next iteration. The de-

such convergence behavior using elementary techniques. ails of the apication of QP to risk miniization
More advanced function-theoretic methods may be neces-
sary.
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is reported in [1]. L_ = 9

4. NS.ERICAL EMC PLE L(1,2)=L(2,1)= 10 L(1,1)=L(2,2)=0

Here, we will discuss an application of the sub- c1=c2=i

optimal rule design methodology described above to a
numerical example. We will consider the detection u(i,r)=.5p(1-Q) . i=1,2

and identification of two possible failure modes
(without identifying the failure times). We assume p=.0002 T=8 =8

that the residual is a 2-dimensional vector, and the

vector failure signatures, gl (t), i=1,2, as functions Table 3. Cost Functions and Prior Probability.

of the elapsed time t are shownm in Table 1. The
signature of the first failure mode is simply a con- The results of SW, IMA, and Q20 for the thresholds

stant vector. The first component of g2 (t) is a con- (8.85, 12.051 are shown in Figs. 2-6 (see-(15) for the

scant, while the second component is a ramp. We have definition of notations). The quadrature results Q20

chosen to examine these two types of signature be- are very close to MLA, indicating good accuracy of the

ravior (constant bias and ramp) because they are sim- quadrature algorithm. In comparing SW with iA, it is

lpe and describe a large variety of failure signatures evident that the Markov approximation ('A) slightly

that are commonly seen in practice. For simplicity, under-estimates the false alar- rate of the sliding

we have chosen V, the covariance of r, to be the window rule (SW). However, the response of the Markov

identity matrix. approximation to failures is very close to that of the

W'e will design both a simplified sliding window sliding window rule. In the oresant example, L is

rule (that uses LW- 1) and a rule using the Markov a 7-th. order process, while its approxim-ation Z is

statistic z. The parameters associated with the only of first order. In view of this fact, we can

4L. , Q. and z are shown in Table 2, and the cost conclude that Z provides a very reasonable and useful

Eunctions and the prior probabilities are shown in approximation of LW_1.

Table 3. To facilitate discussions, we will intro- The successive choices of thresholds by SQP for

duce the following terminology. We will refer to a the sliding window rule are plotted in Fig. 7. Note

Monte Carlo simulation of the sliding window rule by 'that we have not carried the SQ? algorithm far enough

S'W, a simulation of the rule using the Markov statis- so that the successive choices of thresholds are, say,

tic z as Markov implementation (ML), and a simulation within .001 of each other. This is because towards

or the nonimplementable decision process using the later iterations the performance indices become rela-

aoproxination Z as Markov approximation (MA). (All tively insensitive to small changes of the f's. This

simulations are based on 10,000 trajectones.) The together with the fact that we are only computing an
notation Q20 refers to the results of applying the approximate Bayes risk means chat fine scale optimi-

quadrature algorithm to the approximation of LW1 by zation is not worthwhile. Therefore, with the approx-
Z. imate risk, the SQP is most efficiently used to locate

the zone where the mini-mu lies. That is, the SQP

[1]~ F .5 1 algorithm is to be terminated when it is evident that

gl91=g2 (t)= |j it has converged into a reasonably small region. ThenL_ _.25 + .25t we may choose the thresholds that give the smallest
risk as the approximate solution of the minimization.

1 01 In the event that thresholds that yield the small-

V= t10Tr o1 est risk do not provide the desired detection perfor-

L0 j1 mance, the design parameters, L, c, u, and W may be
adjusted and the SQP may be repeated to get a new de-

Table 1. F sign. A practical alternative method is to make use
of the list of performance indices (e.g. P(i,j)) that

are generated in the risk calculation, and choose a

W = 8 pair of thresholds that yields the desired performance.

.826 .0581 The performance of the decision rules using L- 1
.826 .058 and z as determined by SQ? are shown in Figs. 8-12.

A =L.116 .837 (The thresholds for LrW_ are (8.85, 12.05] and those
for z are [6.29, 11.69].) We note that MI has a

10 8.5 higher false alarm rate than SW. The speed of detec-
Z0 =8.5 14.75 tion for the two rules is similar. While MI has a

slightly higher type-1 correct detection probability

than SW, SW has a consistently higher b2(t12) (type-2

[2.32 2.01 correct detection probability) than MI. By raising

BB' = 2.01 4.58 the thresholds of the rule using z appropriately, we
2.01 4.58

can decrease the false alar-. rate of MI down to that

0 .875~ 0 [ - 1 .5[ of SW with an increase in detection delay and slightly
;A I .8;5 .875O a == . improved correct detection probability for the type-2

l .875 L.5 2 failure (with ramp signature). Thus, the sliding
window rule is slightly superior to the rule using z

7 =[5.33 6.40 -V-= 1.25 1.50 in the sense that when both are designed to yield a
Z 640 18.13. 1.50 4.75 comparable false alarm rate, the latter will have

16.40 18-13 1.504.25
longer detection delays and slightly lower correct
det=ction probability (for ~ype-2 failure). In view

Table 2. Parameters for L_- Z and z. of the fact that a decisLon rule using z is much
simpler to implement, it is worth: of being considered
as an alternative to the sliding window rule.

FA- 2 \



In summary, the result of applying our decision
rule design method to the present example is very
good. The quadrature algorithm has been shovn to be
useful, and the M1arkov approximation of L£_1 by Z is
a valid one. The SQP algorithm has demon.strated its
simplicity and usefulness through the numerical exam-
pie. Finally, the Markov decision statistic z has slope (,
been shown to be a worthy alternative to the sliding 0,)
window statistic LW-1 

5. CONCLUSION

f(j,t)
A methodology based on the Bayesian approach is

developed for designing suboptimal sequential deci- S(ir)
sion rules. This methodology is applied to a numer- S(o,-)
ical example, and the results indicate that it is
a useful design approach.

f(i,f) ,(k; i,T)
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