DSpace@MIT

MIT Open Access Articles

Search for the isotropic stochastic background using data from Advanced LIGO's second observing run

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published: 10.1103/PHYSREVD.100.061101
Publisher: American Physical Society (APS)
Persistent URL: https://hdl.handle.net/1721.1/136113
Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Search for the isotropic stochastic background using data from Advanced LIGO's second observing run

B. P. Abbott et al. ${ }^{*}$
(LIGO Scientific and Virgo Collaboration)

(Received 14 April 2019; published 4 September 2019)

Abstract

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO's second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of $\Omega_{\mathrm{GW}}<6.0 \times 10^{-8}$ for a frequency-independent (flat) background and $\Omega_{\mathrm{GW}}<4.8 \times 10^{-8}$ at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O 2 sensitivity.

DOI: 10.1103/PhysRevD.100.061101

I. INTRODUCTION

A superposition of gravitational waves from many astrophysical and cosmological sources creates a stochastic gravitational-wave background (SGWB). Sources which may contribute to the stochastic background include compact binary coalescences [1-8], core collapse supernovae [9-14], neutron stars [15-24], stellar core collapse [25,26], cosmic strings [27-31], primordial black holes [32-34], superradiance of axion clouds around black holes [35-38], and gravitational waves produced during inflation [39-47]. A particularly promising source is the stochastic background from compact binary coalescences, especially in light of the detections of one binary neutron star and ten binary black hole mergers [48-55] by the Advanced LIGO detector, installed in the Laser Interferometer Gravitational-wave Observatory (LIGO) [56], and by Advanced Virgo [57] so far. Measurements of the rate of binary black hole and binary neutron star mergers imply that the stochastic background may be large enough to detect with the Advanced LIGO-Virgo detector network [58,59]. The stochastic background is expected to be dominated by compact binaries at redshifts inaccessible to direct searches for gravitationalwave events [60]. Additionally, a detection of the stochastic background would enable a model-independent test of general relativity by discerning the polarization of gravitational waves $[61,62]$. Because general relativity predicts only two tensor polarizations for gravitational waves, any detection of alternative polarizations would imply a modification to our current understanding of gravity [63-65]. For

[^0]recent reviews on relevant data analysis methods, see Refs. [66,67].

In this paper, we present a search for an isotropic stochastic background using data from Advanced LIGO's second observing run (O2). As in previous LIGO and Virgo analyses, this search is based on cross-correlating the strain data between pairs of gravitational-wave detectors [68,69]. We first review the stochastic search methodology and then describe the data and data quality cuts. As we do not find evidence for the stochastic background, we place upper limits on the possible amplitude of an isotropic stochastic background as well as limits on the presence of alternative gravitational-wave polarizations. Upper limits on anisotropic stochastic backgrounds are given in a publication that is a companion to this one [70]. We then give updated forecasts of the sensitivities of future stochastic searches and discuss the implications of our current results for the detection of the stochastic background from compact binaries and cosmic strings. Finally, we present estimates of the correlated noise in the LIGO detectors due to magnetic Schumann resonances [71] and discuss mitigation strategies that are being pursued for future observing runs.

II. METHOD

The isotropic stochastic background can be described in terms of the energy density per logarithmic frequency interval

$$
\begin{equation*}
\Omega_{\mathrm{GW}}(f)=\frac{f}{\rho_{c}} \frac{\mathrm{~d} \rho_{\mathrm{GW}}}{\mathrm{~d} f} \tag{1}
\end{equation*}
$$

where $\mathrm{d} \rho_{\mathrm{GW}}$ is the energy density in gravitational waves in the frequency interval from f to $f+\mathrm{d} f$ and $\rho_{c}=$ $3 H_{0}^{2} c^{2} /(8 \pi G)$ is the critical energy density required for a spatially flat universe. Throughout this work, we will use the value of the Hubble constant measured by the Planck satellite, $H_{0}=67.9 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [72].

We use the optimal search for a stationary, Gaussian, unpolarized, and isotropic stochastic background, which is the cross-correlation search $[66,67,73,74]$ (however, see Ref. [75]). For two detectors, we define a cross-correlation statistic $\hat{C}(f)$ in every frequency bin

$$
\begin{equation*}
\hat{C}(f)=\frac{2}{T} \frac{\operatorname{Re}\left[\tilde{s}_{1}^{\star}(f) \tilde{s}_{2}(f)\right]}{\gamma_{T}(f) S_{0}(f)}, \tag{2}
\end{equation*}
$$

where $\tilde{s}_{i}(f)$ is the Fourier transform of the strain time series in detector $i=\{1,2\}, T$ is the segment duration used to compute the Fourier transform, and $S_{0}(f)$ is the spectral shape for an $\Omega_{\mathrm{GW}}=$ const background given by

$$
\begin{equation*}
S_{0}(f)=\frac{3 H_{0}^{2}}{10 \pi^{2} f^{3}} \tag{3}
\end{equation*}
$$

The quantity $\gamma_{T}(f)$ is the normalized overlap reduction function for tensor (T) polarizations [73], which encodes the geometry of the detectors and acts as a transfer function between strain cross-power and $\Omega_{\mathrm{GW}}(f)$. Equation (2) has been normalized so that the expectation value of $\hat{C}(f)$ is equal to the energy density in each frequency bin

$$
\begin{equation*}
\langle\hat{C}(f)\rangle=\Omega_{\mathrm{GW}}(f) \tag{4}
\end{equation*}
$$

In the limit where the gravitational-wave strain amplitude is small compared to instrumental noise, the variance of $\hat{C}(f)$ is approximately given by

$$
\begin{equation*}
\sigma^{2}(f) \approx \frac{1}{2 T \Delta f} \frac{P_{1}(f) P_{2}(f)}{\gamma_{T}^{2}(f) S_{0}^{2}(f)} \tag{5}
\end{equation*}
$$

where $P_{1,2}(f)$ are the one-sided noise power spectral densities of the two detectors and Δf is the frequency resolution, which we take to be $1 / 32 \mathrm{~Hz}$.

An optimal estimator can be constructed for a model of any spectral shape by taking a weighted combination of the cross-correlation statistics across different frequency bins f_{k},

$$
\begin{align*}
\hat{\Omega}_{\mathrm{ref}} & =\frac{\sum_{k} w\left(f_{k}\right)^{-1} \hat{C}\left(f_{k}\right) \sigma^{-2}\left(f_{k}\right)}{\sum_{k} w\left(f_{k}\right)^{-2} \sigma^{-2}\left(f_{k}\right)} \\
\sigma_{\Omega}^{-2} & =\sum_{k} w\left(f_{k}\right)^{-2} \sigma^{-2}\left(f_{k}\right) \tag{6}
\end{align*}
$$

where the optimal weights for spectral shape $\Omega_{\mathrm{GW}}(f)$ are given by

$$
\begin{equation*}
w(f)=\frac{\Omega_{\mathrm{GW}}\left(f_{\mathrm{ref}}\right)}{\Omega_{\mathrm{GW}}(f)} . \tag{7}
\end{equation*}
$$

The broadband estimators are normalized so that $\left\langle\hat{\Omega}_{\text {ref }}\right\rangle=$ $\Omega_{\mathrm{GW}}\left(f_{\text {ref }}\right)$. By appropriate choices of the weights $w(f)$, one may construct an optimal search for stochastic backgrounds with arbitrary spectral shapes, or for stochastic backgrounds with scalar and vector polarizations.

Many models of the stochastic background can be approximated as a power laws [74,76],

$$
\begin{equation*}
\Omega_{\mathrm{GW}}(f)=\Omega_{\mathrm{ref}}\left(\frac{f}{f_{\mathrm{ref}}}\right)^{\alpha} \tag{8}
\end{equation*}
$$

with a spectral index α and an amplitude $\Omega_{\text {ref }}$ at a reference frequency $f_{\text {ref }}$. As in the search in Advanced LIGO's first observing run (O1) [68], we will take $f_{\text {ref }}=25 \mathrm{~Hz}$, which is a convenient choice in the most sensitive part of the frequency band. While we will seek to generically constrain both Ω_{ref} and α from the data, we will also investigate several specific spectral indices predicted for different gravitational-wave sources. In the frequency band probed by Advanced LIGO, the stochastic background from compact binaries is well approximated by a power law with $\alpha=2 / 3$ [77]. Slow roll inflation and cosmic string models can be described with $\alpha=0$ [78]. Finally, following previous analyses [68], we use $\alpha=3$ as an approximate value to stand in for a variety of astrophysical models with positive slopes, such as unresolved supernovae [11-14].

III. DATA

We analyze data from Advanced LIGO's second observing run, which took place from 16:00:00 UTC on November 30, 2016 to 22:00:00 UTC on August 25, 2017. We crosscorrelate the strain data measured by the two Advanced LIGO detectors, located in Hanford, Washington, and Livingston, Louisiana, in the United States [56]. Linearly coupled noise has been removed from the strain time series at Hanford and Livingston using Wiener filtering [79,80]; see also Refs. [81-83]. By comparing coherence spectra and narrowband estimators formed with and without Wiener filtering, we additionally verified that this noise subtraction scheme does not introduce correlated artifacts into the Hanford and Livingston data.

Virgo does not have a significant impact on the sensitivity of the stochastic search in O 2 because of the larger detector noise, the fact that less than one month of coincident integration time is available, and that fact that the overlap reduction function is smaller for the Hanford-Virgo and Livingston-Virgo pairs than for Hanford-Livingston. Therefore, we do not include Virgo data in the O2 analysis.

The raw strain data are recorded at $16,384 \mathrm{~Hz}$. We first downsample the strain time series to 4096 Hz and apply a 16th-order high-pass Butterworth filter with knee frequency of 11 Hz to avoid spectral leakage from the noise power spectrum below 20 Hz . Next, we apply a Fourier
transform to segments with a duration of 192 s, using 50% overlapping Hann windows, and then we coarse grain six frequency bins to obtain a frequency resolution of $1 / 32 \mathrm{~Hz}$. As in Ref. [68], we observe in the band $20-1726 \mathrm{~Hz}$. The maximum frequency of 1726 Hz is chosen to avoid aliasing effects after downsampling the data.

Next, we apply a series of data quality cuts that remove non-Gaussian features of the data. We remove times when the detectors are known to be unsuitable for science results [84] and times associated with known gravitational-wave events [55]. We also remove times where the noise is nonstationary, following the procedure described in the supplement of Ref. [69] (see also Ref. [68]). These cuts remove 16% of the coincident time, which is in principle suitable for data analysis, leading to a coincident live time of 99 days.

In the frequency domain, we remove narrowband coherent lines that are determined to have instrumental or environmental causes, using the methods described in Ref. [85]. These cuts remove 15\% of the total observing band, but only 4% of the band below 300 Hz , where the isotropic search is most sensitive. The narrow frequency binning of $1 / 32 \mathrm{~Hz}$ was needed to cut out a comb of coherent lines found at integer frequencies. A list of notch filters corresponding to lines which were removed from the analysis is also available on the public data release page [86].

IV. O2 RESULTS

In Fig. 1, we plot the observed cross-correlation spectrum $\hat{C}(f)$ and uncertainty $\sigma(f)$ obtained from Advanced

FIG. 1. The cross-correlation spectrum $\hat{C}(f)$ measured between Advanced LIGO's Hanford and Livingston detectors during its second observing run. The estimator is normalized so that $\langle\hat{C}(f)\rangle=\Omega_{\mathrm{GW}}(f)$ for tensor-polarized gravitational waves. The black traces mark the $\pm 1 \sigma$ uncertainties on the measured cross-correlations. Coherent lines that were identified to have an instrumental cause have been removed from the spectrum. The loss in sensitivity visible at approximately 64 Hz is due to a zero in the tensor overlap reduction function $\gamma_{T}(f)$.

TABLE I. Point estimates and 1σ uncertainties for Ω_{ref} in O 2 , for different power-law models, alongside the same quantities measured in O1 [68]. We also show the minimum contiguous frequency band containing 99% of the sensitivity. For each power law, the maximum of the frequency band is within 5% of the value found in O1. The value of the Hubble constant used in this paper is different than what was used in the O1 analysis [68] ($68 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$), which has led to some differences in the numerical values of the point estimates and error bars that we report for O 1 .

α	$\hat{\Omega}_{\text {ref }}(\mathrm{O} 2)$	$\hat{\Omega}_{\text {ref }}(\mathrm{O} 1)$	O2 sensitive band
0	$(2.2 \pm 2.2) \times 10^{-8}$	$(4.4 \pm 6.0) \times 10^{-8}$	$20-81.9 \mathrm{~Hz}$
$2 / 3$	$(2.0 \pm 1.6) \times 10^{-8}$	$(3.5 \pm 4.4) \times 10^{-8}$	$20-95.2 \mathrm{~Hz}$
3	$(3.5 \pm 2.8) \times 10^{-9}$	$(3.7 \pm 6.6) \times 10^{-9}$	$20-301 \mathrm{~Hz}$

LIGO's O2 run. We only plot the spectrum up to 100 Hz to focus on the most sensitive part of the frequency band. These data are also publicly available on the webpage [86] and can be used to search for stochastic backgrounds of any spectral shape.

We perform several tests that the cross-correlation spectrum is consistent with uncorrelated Gaussian noise. The χ^{2} per degree of freedom for the observed spectrum is 0.94 . The loudest individual frequency bin is 51.53 Hz , with a signal-to-noise ratio $C(f) / \sigma(f)$ of 4.2 . With a total of 46,227 (un-notched) frequency bins, there is a 71% probability that random Gaussian noise would yield an equally loud bin.

In Table I, we list the broadband point estimates and 1σ uncertainties obtained from the O 2 data when assuming power laws with $\alpha=0,2 / 3$, and 3 . Given the uncertainties, uncorrelated Gaussian noise would produce point estimates at least this large with probability $30 \%, 22 \%$, and 21%, respectively. We conclude there is not sufficient evidence to claim detection of the stochastic background.

V. UPPER LIMITS ON ISOTROPIC STOCHASTIC BACKGROUND

Since we do not find evidence for the stochastic background, we place upper limits on the amplitude Ω_{ref}. We use the parameter estimation framework described in Refs. [61,62,76], applied to the cross-correlation spectrum obtained by combining the results from O 1 given in Ref. [68] with those from O 2 which are described above (please see the Supplemental Material [87] for more details). We present results assuming two priors, one which is uniform in $\Omega_{\text {ref }}$ and one which is uniform in $\log \Omega_{\text {ref }}$. We additionally marginalize over detector calibration uncertainties [88]. In O2, we assume 2.6% and 3.85% amplitude uncertainties in Hanford and Livingston, respectively [89,90]. In O1, the calibration uncertainty for Hanford was 4.8% and for Livingston was 5.4% [89]. Phase calibration uncertainty is negligible.

FIG. 2. Posterior distribution for the amplitude $\Omega_{\text {ref }}$ and slope α of the stochastic background, using a prior which is uniform in the logarithm of Ω_{ref}, along with contours with 68% and 95% confidence level, using combined O1 and O2 data. There is a small region of increased posterior probability centered around $\log \Omega_{\mathrm{ref}}=-8$ and $\alpha=2$. This is not statistically significant, and similar-size bumps have appeared in simulations of Gaussian noise. An analogous plot with a prior uniform in $\Omega_{\text {ref }}$ can be found in the Supplemental Material [87].

Figure 2 shows the resulting posterior distribution in the $\Omega_{\text {ref }}$ vs α plane, along with 68% and 95% credibility contours. Table II lists the marginalized 95% credible upper limit on $\Omega_{\text {ref }}$ (for both choices of amplitude prior) as well as the amplitude limits obtained when fixing $\alpha=0,2 / 3$, and 3 .

When adopting a uniform amplitude prior and fixing $\alpha=0$, we obtain an upper limit of $\Omega_{\mathrm{ref}}<6.0 \times 10^{-8}$, improving the previous O 1 result by a factor of 2.8 . The 1σ error bar is 2.2×10^{-8}, a factor of 2.7 times smaller than the equivalent O 1 uncertainty. This factor can be compared with the factor of 2.1 that would be expected based on increased observation time alone, indicating that the search has benefited from improvements in detector noise between O1 and O2. For the compact binary stochastic background model of $\alpha=2 / 3$, we place a limit of $\Omega_{\mathrm{ref}}<4.8 \times 10^{-8}$, and for $\alpha=3, \Omega_{\mathrm{ref}}<7.9 \times 10^{-9}$. Finally, when we marginalize over the power-law index α, we obtain the upper

TABLE II. 95% credible upper limits on $\Omega_{\text {ref }}$ for different power-law models (fixed α) as well as marginalizing over α, for combined O 1 and O 2 data (current limits) and for O 1 data (previous limits) [68]. We show results for two priors, one which is uniform in $\Omega_{\text {ref }}$ and one which is uniform in the logarithm of Ω_{ref}.

	Uniform prior		Log-uniform prior	
α	$\mathrm{O} 1+\mathrm{O} 2$	O 1	$\mathrm{O} 1+\mathrm{O} 2$	O 1
0	6.0×10^{-8}	1.7×10^{-7}	3.5×10^{-8}	6.4×10^{-8}
$2 / 3$	4.8×10^{-8}	1.3×10^{-7}	3.0×10^{-8}	5.1×10^{-8}
3	7.9×10^{-9}	1.7×10^{-8}	5.1×10^{-9}	6.7×10^{-9}
Marg.	1.1×10^{-7}	2.5×10^{-7}	3.4×10^{-8}	5.5×10^{-8}

limit $\Omega_{\mathrm{ref}}<1.1 \times 10^{-7}$. The prior for α is described in the Supplemental Material [87].

VI. IMPLICATIONS FOR COMPACT BINARY BACKGROUND

In Fig. 3, we show the prediction of the astrophysical stochastic background from binary black holes (BBHs) and binary neutron stars (BNSs), along with its statistical uncertainty due to Poisson uncertainties in the local binary merger rate. We plot the upper limit allowed from adding the background from neutron star-black hole (NSBH) binaries as a dotted line. We use the same binary formation and evolution scenario to compute the stochastic background from BBH and BNS as in Ref. [59], but we have updated the mass distributions and rates to be consistent with the most recent results given in Refs. [55,91]. For NSBHs, we use the same evolution with redshift as BNSs. As in Refs. [54], for BBHs, we include inspiral, merger, and ringdown contributions computed in Ref. [92], while for NSBH and BNSs, we use only the inspiral part of the waveform. For the BBH mass distribution, we assume a power law in the primary mass $p\left(m_{1}\right) \propto m_{1}^{-2.3}$ with the secondary mass drawn from a uniform distribution, subject to the constraints $5 M_{\odot} \leq m_{2} \leq m_{1} \leq 50 M_{\odot}$. In Ref. [55], rate estimates were computed by two pipelines, PyCBC [93] and GstLAL [94]. We use the merger rate measured by GstLAL, $R_{\text {local }}=56_{-27}^{+44} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ [55], because it gives a more conservative (smaller) rate estimate. Using the methods described in Ref. [59], the inferred amplitude of the stochastic background is $\Omega_{\mathrm{BBH}}(25 \mathrm{~Hz})=5.3_{-2.5}^{+4.2} \times 10^{-10}$.

For the BNS mass distribution, following the analysis in Ref. [55], we take each component mass to be drawn from a Gaussian distribution with a mean of $1.33 M_{\odot}$ and a standard deviation of $0.09 M_{\odot}$. We use the GstLAL rate of $R_{\text {local }}=920_{-790}^{+2220} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ [55]. From these inputs, we predict $\Omega_{\mathrm{BNS}}(25 \mathrm{~Hz})=3.6_{-3.1}^{+8.4} \times 10^{-10}$. Combining the BBH and BNS results yields a prediction for the total SGWB of $\Omega_{\text {BBH }+\mathrm{BNS}}(25 \mathrm{~Hz})=8.9_{-5.6}^{+12.6} \times 10^{-10}$. This value is about a factor of 2 smaller the one in Ref. [59], due in part to the decrease in the rate measured after analyzing O 1 and O 2 data with the best available sensitivity and data analysis techniques.

For NSBH, we assume a delta function mass distribution, where the neutron star has a mass of $1.4 M_{\odot}$ and the black hole has a mass of $10 M_{\odot}$, and we take the upper limit on the rate from GstLAL [55]. The upper limit from NSBH is $\Omega_{\text {NSBH }}(25 \mathrm{~Hz})=9.1 \times 10^{-10}$. We show the sum of the upper limit of $\Omega_{\mathrm{NSBH}}(f)$, with the 90% upper limit on $\Omega_{\mathrm{BBH}+\mathrm{BNS}}(f)$, as a dotted line in Fig. 3.

We also show the power law-integrated (PI) curves [96] of the O 1 and O 2 isotropic background searches. A powerlaw stochastic background that is tangent to a PI curve is detectable with $\mathrm{SNR}=2$ by the given search. We additionally show a projected PI curve based on operating

FIG. 3. Sensitivity curves for O 1 , combined $\mathrm{O} 1+\mathrm{O} 2$, and design sensitivity. A power law stochastic background which lies tangent to one of these curves is detectable with 2σ significance. We have used the Advanced LIGO design sensitivity given in Ref. [95], which incorporates improved measurements of coating thermal noise. Design sensitivity assumes that the LIGO noise curve is determined by fundamental noise sources only. The purple line is the median total stochastic background, combining BBHs and BNSs, using the model described in Ref. [59] with updated mass distributions and rates from Refs. [55,91], and the gray box is the Poisson error region. The dotted gray line is the sum of the upper limit for the BBH + BNS backgrounds with the upper limit on the NSBH background.

Advanced LIGO and Advanced Virgo at design sensitivity for 2 years, with 50% network duty cycle. By design sensitivity, we refer to a noise curve which is determined by fundamental noise sources. We use the Advanced LIGO design sensitivity projection given in Ref. [95], which incorporates improved measurements of coating thermal noise relative to the one assumed in Ref. [58]. This updated curve introduces additional broadband noise at low frequencies relative to previous estimates. As a result, the updated design-sensitivity PI curve is less sensitive than the one shown in Ref. [58].

VII. IMPLICATIONS FOR COSMIC STRING MODELS

Cosmic strings $[97,98]$ are linear topological defects which are expected to be generically produced within the context of grand unified theories [99]. The dynamics of a cosmic string network is driven by the formation of loops and the emission of gravitational waves [100,101]. One may therefore use the stochastic background in order to constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [102,103], for which the string thickness is zero and the intercommutation probability equals unity. Gravitational waves will allow us to constrain the string tension $G \mu / c^{2}$, where μ denotes the mass per unit length. This dimensionless parameter is the single quantity that characterizes a Nambu-Goto string network.

We will consider two analytic models of cosmic string loop distributions [104,105]. The former [104] gives the distribution of string loops of given size at fixed time, under the assumption that the momentum dependence of the loop production function is weak. The latter [105] is based on a different numerical simulation [106] and gives the distribution of non-self intersecting loops at a given time [107].

The corresponding limits found by combining O 1 and O 2 data are $G \mu / c^{2} \leq 1.1 \times 10^{-6}$ for the model of Ref. [104] and $G \mu / c^{2} \leq 2.1 \times 10^{-14}$ for the model of Ref. [105]. The Advanced LIGO constraints are stronger for the model of Ref. [105] because the predicted spectrum is larger at 100 Hz for that model. This can be compared with the pulsar timing limits, $G \mu / c^{2} \leq 1.6 \times 10^{-11}$ and $G \mu / c^{2} \leq 6.2 \times 10^{-12}$, respectively [108].

VIII. TEST OF GENERAL RELATIVITY

Alternative theories of gravity generically predict the presence of vector or scalar gravitational-wave polarizations in addition to the standard tensor polarizations allowed in general relativity. Detection of the stochastic background would allow for direct measurement of its polarization content, enabling new tests of general relativity [61,62].

When allowing for the presence of alternative gravita-tional-wave polarizations, the expectation value of the cross-correlation statistic becomes

$$
\begin{equation*}
\langle\hat{C}(f)\rangle=\sum_{A} \beta_{A}(f) \Omega_{\mathrm{GW}}^{A}(f)=\sum_{A} \beta_{A}(f) \Omega_{\mathrm{ref}}^{A}\left(\frac{f}{f_{\mathrm{ref}}}\right)^{\alpha_{A}}, \tag{9}
\end{equation*}
$$

where $\beta_{A}=\gamma_{A}(f) / \gamma_{T}(f)$ and A labels the polarization, $A=\{T, V, S\}$. The functions $\gamma_{T}(f), \gamma_{V}(f)$, and $\gamma_{S}(f)$ are the overlap reduction functions for tensor, vector, and scalar polarizations [61]. Because these overlap reduction functions are distinct, the spectral shape of $\hat{C}(f)$ enables us to infer the polarization content of the stochastic background. While we use the notation $\Omega_{\mathrm{GW}}^{A}(f)$ in analogy with the general relativity (GR) case, in a general modification of gravity, the quantities $\Omega_{\mathrm{GW}}^{T}(f), \Omega_{\mathrm{GW}}^{V}(f)$, and $\Omega_{\mathrm{GW}}^{S}(f)$ are best understood as a measurement of the two-point correlation statistics of different components of the stochastic background rather than energy densities [109].

Following Refs. [61,62], we compute two Bayesian odds: odds $\mathcal{O}_{\mathrm{N}}^{\mathrm{S}}$ for the presence of a stochastic signal of any polarization(s) vs Gaussian noise and odds $\mathcal{O}_{\mathrm{GR}}^{\mathrm{NGR}}$ between a hypothesis allowing for vector and scalar modes and a hypothesis restricting to standard tensor polarizations. Using the combined O 1 and O 2 measurements, we find $\log \mathcal{O}_{\mathrm{N}}^{\mathrm{S}}=-0.64$ and $\log \mathcal{O}_{\mathrm{GR}}^{\mathrm{NGR}}=-0.45$, consistent with Gaussian noise. Given the nondetection of any generic stochastic background, we use Eq. (9) to place improved upper limits on the tensor, vector, and scalar background amplitudes, after marginalizing over all three spectral indices, using the priors described in the Supplemental

TABLE III. Upper limits on different polarizations. To obtain the upper limits, we assume a log uniform and a uniform prior on the amplitude Ω_{ref} for each polarization, using combined O 1 and O2 data. We assume the presence of a tensor, vector, and scalar backgrounds and then marginalize over the spectral indices and two amplitudes for the three different polarization modes, as described in the main text.

Polarization	Uniform prior	Log-uniform prior
Tensor	8.2×10^{-8}	3.2×10^{-8}
Vector	1.2×10^{-7}	2.9×10^{-8}
Scalar	4.2×10^{-7}	6.1×10^{-8}

Material [87]. These limits are shown in Table III, again for both choices of amplitude prior.

IX. ESTIMATE OF CORRELATED MAGNETIC NOISE

Coherent noise between gravitational-wave interferometers may be introduced by terrestrial sources such as Schumann resonances, which are global electromagnetic modes of the cavity formed by the Earth's surface and ionosphere [71]. These fields have very long coherence lengths [110] and can magnetically couple to the gravita-tional-wave channel and lead to broadband noise that is coherent between different gravitational-wave detectors. As the detectors become more sensitive, eventually this source of correlated noise may become visible to the crosscorrelation search and, if not treated carefully, will bias the analysis by appearing as an apparent stochastic background. Unlike the lines and combs discussed in Ref. [85], we cannot simply remove affected frequency bins from the analysis because Schumann noise is broadband.

Here, we estimate the level of correlated electromagnetic noise (from Schumann resonances or other sources) in O2 following Refs. $[68,111,112]$. We first measure the crosspower spectral density $M_{12}(f)$ between two Bartington Model MAG-03MC magnetometers [113] installed at Hanford and Livingston. We then estimate the transfer function $T_{i}(f)(i=\{1,2\})$ between the magnetometer channel and the gravitational-wave channel at each site, as described in Ref. [114]. Finally, we combine these results to produce an estimate for the amount of correlated magnetic noise, which we express in terms of an effective gravitational-wave energy density $\Omega_{\mathrm{mag}}(f)$,

$$
\begin{equation*}
\Omega_{\mathrm{mag}}(f)=\frac{\left|T_{1}(f)\right|\left|T_{2}(f)\right| \operatorname{Re}\left[M_{12}(f)\right]}{\gamma_{T}(f) S_{0}(f)} \tag{10}
\end{equation*}
$$

We show $\Omega_{\text {mag }}(f)$ in Fig. 4, alongside the measured O1 +O 2 PI curve and the projected design-sensitivity PI curve. The trend for the magnetic noise lies significantly below the $\mathrm{O} 1+\mathrm{O} 2$ PI curve, indicating that correlated magnetic noise is more than an order of magnitude below the sensitivity curve in O 2 , although it may be an issue for future runs.

FIG. 4. Conservative estimate of correlated magnetic noise. We assume a conservative transfer function (TF) based on measurements as described in the text. The first Schumann resonance at 8 Hz is visible, and higher harmonics are below the noise floor. There is a zero of the overlap function at 64 Hz which leads to an apparent feature in $\Omega_{\text {mag }}$. Power line harmonics have been removed, as in the cross-correlation analysis. The two trend lines show power-law fits to the magnetometer spectra, scaled by the O1 (purple dotted) and end-of-O2 (blue dot-dashed) transfer functions. This demonstrates the effect of reducing the magnetic coupling in O 2 . The trend for the noise budget lies well below the solid black O2 PI curve, which indicates that correlated magnetic noise is negligible in O 2 . However, magnetic contamination may be an issue in future observing runs.

Experimental improvements can mitigate this risk by further reducing the coupling of correlated noise. From O1 to O2, for instance, the magnetic coupling was reduced by approximately an order of magnitude, as indicated by the dotted and dot-dashed curves in Fig. 4. Additionally, work is ongoing to develop Wiener filtering to subtract Schumann noise $[110,112,115]$ and to develop a parameter estimation framework to measure or place upper limits on the level of magnetic contamination [116]. This work will take advantage of low noise LEMI-120 magnetometers [117] that were recently installed at both LIGO sites, as described in the Supplemental Material [87].

X. CONCLUSIONS

We have presented the results of a cross-correlation search for the isotropic stochastic background using data from Advanced LIGO's first and second observing runs. While we did not find evidence for the stochastic background, we obtain the most sensitive upper limits to date in the approximately $20-100 \mathrm{~Hz}$ frequency band. We have also placed improved upper limits on the existence of a stochastic background from vector and scalar-polarized gravitational waves.

While the upper limits on the SGWB presented in this work are the strongest direct limits in the frequency band of current ground-based gravitational-wave detectors, other
observations place stronger constraints in other frequency bands. The NANOGrav Collaboration has reported the 95% upper limit of $\Omega_{\mathrm{GW}}<7.4 \times 10^{-10}$ at a frequency of $1 \mathrm{yr}^{-1}$ after marginalizing over uncertainty in the Solar system ephemeris [118]. Combining data from the Planck satellite and the BICEP2/Keck array constrains the tensor-to-scalar ratio from the cosmic microwave background to be $r<0.064$ at 95% confidence at comoving scales of $k=0.002 \mathrm{Mpc}^{-1}$, corresponding to a gravitational-wave frequency of $f_{0.002}=(2 \pi)^{-1} c k=3.1 \times 10^{-18} \mathrm{~Hz}$ [119], assuming the single field slow roll consistency condition. Using Eq. (4) of Ref. [108], this can be converted into the constraint $\quad \Omega_{\mathrm{GW}}(f) \leq 3.2 \times 10^{-16} \times\left(f / f_{0.05}\right)^{-r / 8}[16 / 9+$ $\left.f_{\text {eq }}^{2} /\left(2 f^{2}\right)\right]$, where $f_{\text {eq }}$ is the frequency of a gravitational wave of which the wavelength was the size of the Universe at matter-radiation equality and $f_{0.05}$ is the pivot scale. Combining constraints at different frequency ranges can probe models which span many orders of magnitude in frequency [108,119].

While we have targeted an isotropic, stationary, and Gaussian background, other search techniques can probe backgrounds that violate one or more of these assumptions. Upper limits on an anisotropic gravitational-wave background from O1 were presented in Ref. [120]. Furthermore, non-Gaussian searches targeting the compact binary stochastic background are currently being developed [121-124]. A successful detection of the stochastic background by any of these approaches would offer a new probe of the gravitational-wave sky.

The supporting data for this paper are openly available via the LIGO Document Control Center (DCC) [86].

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The
authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the European Gravitational Observatory (EGO) consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India; the Science \& Engineering Research Board, India; the Ministry of Human Resource Development, India; the Spanish Agencia Estatal de Investigación; the Vicepresidència i Conselleria d'Innovació; Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears; the Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana; the National Science Centre of Poland; the Swiss National Science Foundation; the Russian Foundation for Basic Research; the Russian Science Foundation; the European Commission; the European Regional Development Funds; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund; the Lyon Institute of Origins; the Paris Île-de-France Region; the National Research, Development and Innovation Office, Hungary; the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the Natural Science and Engineering Research Council Canada; the Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, Innovations, and Communications; the International Center for Theoretical Physics South American Institute for Fundamental Research; the Research Grants Council of Hong Kong; the National Natural Science Foundation of China; the Leverhulme Trust, the Research Corporation; the Ministry of Science and Technology, Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/ Germany for provision of computational resources. This article has been assigned the document number LIGOP1800258.
[1] X.-J. Zhu, E. J. Howell, D. G. Blair, and Z.-H. Zhu, Mon. Not. R. Astron. Soc. 431, 882 (2013).
[2] S. Marassi, R. Schneider, G. Corvino, V. Ferrari, and S. P. Zwart, Phys. Rev. D 84, 124037 (2011).
[3] C. Wu, V. Mandic, and T. Regimbau, Phys. Rev. D 85, 104024 (2012).
[4] P. A. Rosado, Phys. Rev. D 84, 084004 (2011).
[5] X.-J. Zhu, E. Howell, T. Regimbau, D. Blair, and Z.-H. Zhu, Astrophys. J. 739, 86 (2011).
[6] P. A. Rosado, Phys. Rev. D 84, 084004 (2011).
[7] S. Marassi, R. Schneider, G. Corvino, V. Ferrari, and S. Portegies Zwart, Phys. Rev. D 84, 124037 (2011).
[8] X.-J. Zhu, E. J. Howell, D. G. Blair, and Z.-H. Zhu, Mon. Not. R. Astron. Soc. 431, 882 (2013).
[9] A. Buonanno, G. Sigl, G. G. Raffelt, H.-T. Janka, and E. Muller, Phys. Rev. D 72, 084001 (2005).
[10] P. Sandick, K. A. Olive, F. Daigne, and E. Vangioni, Phys. Rev. D 73, 104024 (2006).
[11] S. Marassi, R. Schneider, and V. Ferrari, Mon. Not. R. Astron. Soc. 398, 293 (2009).
[12] X.-J. Zhu, E. Howell, and D. Blair, Mon. Not. R. Astron. Soc. 409, L132 (2010).
[13] A. Buonanno, G. Sigl, G. G. Raffelt, H.-T. Janka, and E. Müller, Phys. Rev. D 72, 084001 (2005).
[14] P. Sandick, K. A. Olive, F. Daigne, and E. Vangioni, Phys. Rev. D 73, 104024 (2006).
[15] V. Ferrari, S. Matarrese, and R. Schneider, Mon. Not. R. Astron. Soc. 303, 258 (1999).
[16] T. Regimbau and J. A. de Freitas Pacheco, Astron. Astrophys. 376, 381 (2001).
[17] P. D. Lasky, M. F. Bennett, and A. Melatos, Phys. Rev. D 87, 063004 (2013).
[18] P. A. Rosado, Phys. Rev. D 86, 104007 (2012).
[19] X.-J. Zhu, X.-L. Fan, and Z.-H. Zhu, Astrophys. J. 729, 59 (2011).
[20] P. A. Rosado, Phys. Rev. D 86, 104007 (2012).
[21] S. Marassi, R. Ciolfi, R. Schneider, L. Stella, and V. Ferrari, Mon. Not. R. Astron. Soc. 411, 2549 (2011).
[22] E. Howell, T. Regimbau, A. Corsi, D. Coward, and R. Burman, Mon. Not. R. Astron. Soc. 410, 2123 (2011).
[23] C.-J. Wu, V. Mandic, and T. Regimbau, Phys. Rev. D 87, 042002 (2013).
[24] E. Howell, D. Coward, R. Burman, D. Blair, and J. Gilmore, Mon. Not. R. Astron. Soc. 351, 1237 (2004).
[25] K. Crocker, V. Mandic, T. Regimbau, K. Belczynski, W. Gladysz, K. Olive, T. Prestegard, and E. Vangioni, Phys. Rev. D 92, 063005 (2015).
[26] K. Crocker, T. Prestegard, V. Mandic, T. Regimbau, K. Olive, and E. Vangioni, Phys. Rev. D 95, 063015 (2017).
[27] T. Damour and A. Vilenkin, Phys. Rev. D 71, 063510 (2005).
[28] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[29] S. Sarangi and S.-H. H. Tye, Phys. Lett. B 536, 185 (2002).
[30] X. Siemens, V. Mandic, and J. Creighton, Phys. Rev. Lett. 98, 111101 (2007).
[31] B. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. D 97, 102002 (2018).
[32] V. Mandic, S. Bird, and I. Cholis, Phys. Rev. Lett. 117, 201102 (2016).
[33] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Phys. Rev. Lett. 117, 061101 (2016).
[34] S. Wang, Y.-F. Wang, Q.-G. Huang, and T. G. F. Li, Phys. Rev. Lett. 120, 191102 (2018).
[35] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Phys. Rev. Lett. 119, 131101 (2017).
[36] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Phys. Rev. D 96, 064050 (2017).
[37] X.-L. Fan and Y.-B. Chen, Phys. Rev. D 98, 044020 (2018).
[38] L. Tsukada, T. Callister, A. Matas, and P. Meyers, Phys. Rev. D 99, 103015 (2019).
[39] R. Bar-Kana, Phys. Rev. D 50, 1157 (1994).
[40] A. A. Starobinskiĭ, Sov. J. Exp. Theor. Phys. 30, 682 (1979).
[41] R. Easther, J. T. Giblin, Jr., and E. A. Lim, Phys. Rev. Lett. 99, 221301 (2007).
[42] N. Barnaby, E. Pajer, and M. Peloso, Phys. Rev. D 85, 023525 (2012).
[43] J. L. Cook and L. Sorbo, Phys. Rev. D 85, 023534 (2012).
[44] A. Lopez and K. Freese, J. Cosmol. Astropart. Phys. 01 (2015) 037.
[45] M. S. Turner, Phys. Rev. D 55, R435 (1997).
[46] R. Easther and E. A. Lim, J. Cosmol. Astropart. Phys. 04 (2006) 010.
[47] S. G. Crowder, R. Namba, V. Mandic, S. Mukohyama, and M. Peloso, Phys. Lett. B 726, 66 (2013).
[48] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119, 141101 (2017).
[49] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Astrophys. J. Lett. 851, L35 (2017).
[50] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 118, 221101 (2017).
[51] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 241103 (2016).
[52] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 061102 (2016).
[53] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Astrophys. J. Lett. 832, L21 (2016).
[54] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 119, 161101 (2017).
[55] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), arXiv:1811.12907.
[56] J. Aasi et al., Classical Quantum Gravity 32, 074001 (2015).
[57] F. Acernese et al., Classical Quantum Gravity 32, 024001 (2015).
[58] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 116, 131102 (2016).
[59] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 120, 091101 (2018).
[60] T. Callister, L. Sammut, S. Qiu, I. Mandel, and E. Thrane, Phys. Rev. X 6, 031018 (2016).
[61] T. Callister, A. S. Biscoveanu, N. Christensen, M. Isi, A. Matas, O. Minazzoli, T. Regimbau, M. Sakellariadou, J. Tasson, and E. Thrane, Phys. Rev. X 7, 041058 (2017).
[62] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 120, 201102 (2018).
[63] D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, Phys. Rev. Lett. 30, 884 (1973).
[64] D. M. Eardley, D. L. Lee, and A. P. Lightman, Phys. Rev. D 8, 3308 (1973).
[65] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[66] J. D. Romano and N. J. Cornish, Living Rev. Relativity 20, 2 (2017).
[67] N. Christensen, Rep. Prog. Phys. 82, 016903 (2019).
[68] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 118, 121101 (2017).
[69] B. P. Abbott et al., Nature (London) 460, 990 (2009).
[70] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. D 100, 062001 (2019).
[71] W. Schumann, Z. Naturforsch. A 7, 250 (1952).
[72] P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).
[73] N. Christensen, Phys. Rev. D 46, 5250 (1992).
[74] B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999).
[75] Strictly speaking, the optimal search would also include the detector autocorrelation in the likelihood, effectively describing subtraction of the noise power spectrum. However, in practice, the Advanced LIGO noise spectrum is not known well enough for this approach to be effective.
[76] V. Mandic, E. Thrane, S. Giampanis, and T. Regimbau, Phys. Rev. Lett. 109, 171102 (2012).
[77] T. Regimbau, Res. Astron. Astrophys. 11, 369 (2011).
[78] C. Caprini and D. G. Figueroa, Classical Quantum Gravity 35, 163001 (2018).
[79] J. C. Driggers et al. (LIGO Scientific Collaboration), Phys. Rev. D 99, 042001 (2019).
[80] D. Davis, T. J. Massinger, A. P. Lundgren, J. C. Driggers, A. L. Urban, and L. K. Nuttall, Classical Quantum Gravity 36, 055011 (2019).
[81] J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, Rev. Sci. Instrum. 83, 024501 (2012).
[82] G. D. Meadors, K. Kawabe, and K. Riles, Classical Quantum Gravity 31, 105014 (2014).
[83] V. Tiwari et al., Classical Quantum Gravity 32, 165014 (2015).
[84] More precisely, we require that both detectors are in observing mode and that no Category 1 vetoes are applied [125].
[85] P. Covas et al. (LSC Instrument Authors), Phys. Rev. D 97, 082002 (2018).
[86] LIGO Scientific and Virgo Collaborations, Data for A search for the isotropic stochastic background using data from Advanced LIGO's second observing run, 2019 Data, https://dcc.ligo.org/LIGO-T1900058/public (2019).
[87] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevD.100.061101 for more details on our parameter estimation framework, and a comparison of LEMI and Bartington magnetometers for measuring Schumann resonances.
[88] J. T. Whelan, E. L. Robinson, J. D. Romano, and E. H. Thrane, J. Phys. Conf. Ser. 484, 012027 (2014).
[89] C. Cahillane et al. (LIGO Scientific Collaboration), Phys. Rev. D 96, 102001 (2017).
[90] A. Viets et al., Classical Quantum Gravity 35, 095015 (2018).
[91] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), arXiv:1811.12940.
[92] P. Ajith et al., Phys. Rev. D 77, 104017 (2008).
[93] S. A. Usman et al., Classical Quantum Gravity 33, 215004 (2016).
[94] C. Messick et al., Phys. Rev. D 95, 042001 (2017).
[95] L. Barsotti, P. Fritschel, M. Evans, and S. Gras, https://dcc .ligo.org/T1800044-v5/public.
[96] E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013).
[97] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[98] A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, England, 2000).
[99] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D 68, 103514 (2003).
[100] T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052 (1985).
[101] M. Sakellariadou, Phys. Rev. D 42, 354 (1990); 43, 4150 (E) (1991).
[102] Y. Nambu, Lectures at the Copenhagen Symposium, 1970 (unpublished).
[103] T. Goto, Prog. Theor. Phys. 46, 1560 (1971).
[104] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Phys. Rev. D 89, 023512 (2014).
[105] L. Lorenz, C. Ringeval, and M. Sakellariadou, J. Cosmol. Astropart. Phys. 10 (2010) 003.
[106] C. Ringeval, M. Sakellariadou, and F. Bouchet, J. Cosmol. Astropart. Phys. 02 (2007) 023.
[107] These models are dubbed model $M=2$ and model $M=3$ in Ref. [31]. We do not discuss model $M=1$ of Ref. [31], which assumes that all loops are formed with the same relative size, since such a hypothesis is not supported by any numerical simulation of Nambu-Goto string networks.
[108] P. D. Lasky et al., Phys. Rev. X 6, 011035 (2016).
[109] M. Isi and L. C. Stein, Phys. Rev. D 98, 104025 (2018).
[110] M. W. Coughlin et al., Phys. Rev. D 97, 102007 (2018).
[111] E. Thrane, N. Christensen, and R. Schofield, Phys. Rev. D 87, 123009 (2013).
[112] E. Thrane, N. Christensen, R. M. S. Schofield, and A. Effler, Phys. Rev. D 90, 023013 (2014).
[113] http://www.bartington.com.
[114] https://alog.ligo-wa.caltech.edu/aLOG/index.php? callRep=39199.
[115] M. W. Coughlin et al., Classical Quantum Gravity 33, 224003 (2016).
[116] P. M. Meyers, Cross-correlation searches for persistent gravitational waves with Advanced LIGO and noise studies for current and future ground-based gravita-tional-wave detectors, Ph.D. thesis, University of Minnesota, 2018.
[117] http://www.lemisensors.com.
[118] Z. Arzoumanian et al. (NANOGRAV Collaboration), Astrophys. J. 859, 47 (2018).
[119] Y. Akrami et al. (Planck Collaboration), Astrophys. Space Sci. 364, 69 (2019).
[120] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Phys. Rev. Lett. 118, 121102 (2017).
[121] E. Thrane, Phys. Rev. D 87, 043009 (2013).
[122] L. Martellini and T. Regimbau, Phys. Rev. D 89, 124009 (2014).
[123] L. Martellini and T. Regimbau, Phys. Rev. D 92, 104025 (2015).
[124] R. Smith and E. Thrane, Phys. Rev. X 8, 021019 (2018).
[125] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Classical Quantum Gravity 35, 065010 (2018).
B. P. Abbott, ${ }^{1}$ R. Abbott, ${ }^{1}$ T. D. Abbott, ${ }^{2}$ S. Abraham, ${ }^{3}$ F. Acernese, ${ }^{4,5}$ K. Ackley, ${ }^{6}$ C. Adams, ${ }^{7}$ V. B. Adya, ${ }^{8,9}$ C. Affeldt, ${ }^{8,9}$ M. Agathos, ${ }^{10}$ K. Agatsuma, ${ }^{11}$ N. Aggarwal, ${ }^{12}$ O. D. Aguiar, ${ }^{13}$ L. Aiello,,${ }^{14,15}$ A. Ain, ${ }^{3}$ P. Ajith, ${ }^{16}$ G. Allen, ${ }^{17}$ A. Allocca, ${ }^{18,19}$ M. A. Aloy, ${ }^{20}$ P. A. Altin, ${ }^{21}$ A. Amato, ${ }^{22}$ A. Ananyeva, ${ }^{1}$ S. B. Anderson, ${ }^{1}$ W. G. Anderson, ${ }^{23}$ S. V. Angelova, ${ }^{24}$ S. Antier, ${ }^{25}$ S. Appert, ${ }^{1}$ K. Arai, ${ }^{1}$ M. C. Araya, ${ }^{1}$ J. S. Areeda, ${ }^{26}$ M. Arène, ${ }^{27}$ N. Arnaud, ${ }^{25,28}$ K. G. Arun, ${ }^{29}$ S. Ascenzi,,${ }^{30,31}$ G. Ashton, ${ }^{6}$ S. M. Aston, ${ }^{7}$ P. Astone, ${ }^{32}$ F. Aubin, ${ }^{33}$ P. Aufmuth, ${ }^{9}$ K. AultONeal, ${ }^{34}$ C. Austin, ${ }^{2}$ V. Avendano, ${ }^{35}$ A. Avila-Alvarez, ${ }^{26}$ S. Babak, ${ }^{36,27}$ P. Bacon, ${ }^{27}$ F. Badaracco, ${ }^{14,15}$ M. K. M. Bader, ${ }^{37}$ S. Bae, ${ }^{38}$ P. T. Baker, ${ }^{39}$ F. Baldaccini, ${ }^{40,41}$ G. Ballardin, ${ }^{28}$ S. W. Ballmer, ${ }^{42}$ S. Banagiri, ${ }^{43}$ J. C. Barayoga, ${ }^{1}$ S. E. Barclay, ${ }^{44}$ B. C. Barish, ${ }^{1}$ D. Barker, ${ }^{45}$ K. Barkett, ${ }^{46}$ S. Barnum, ${ }^{12}$ F. Barone, ${ }^{4,5}$ B. Barr, ${ }^{44}$ L. Barsotti, ${ }^{12}$ M. Barsuglia, ${ }^{27}$ D. Barta, ${ }^{47}$ J. Bartlett, ${ }^{45}$ I. Bartos, ${ }^{48}$ R. Bassiri, ${ }^{49}$ A. Basti, ${ }^{18,19}$ M. Bawaj, ${ }^{50,41}$ J. C. Bayley, ${ }^{44}$ M. Bazzan, ${ }^{51,52}$ B. Bécsy, ${ }^{53}$ M. Bejger, ${ }^{27,54}$ I. Belahcene, ${ }^{25}$ A. S. Bell, ${ }^{44}$ D. Beniwal, ${ }^{55}$ B. K. Berger, ${ }^{49}$ G. Bergmann, ${ }^{8,9}$ S. Bernuzzi, ${ }^{56,57}$ J. J. Bero, ${ }^{58}$ C. P. L. Berry, ${ }^{59}$ D. Bersanetti, ${ }^{60}$ A. Bertolini, ${ }^{37}$ J. Betzwieser, ${ }^{7}$ R. Bhandare, ${ }^{61}$ J. Bidler, ${ }^{26}$ I. A. Bilenko, ${ }^{62}$ S. A. Bilgili, ${ }^{39}$ G. Billingsley, ${ }^{1}$ J. Birch, ${ }^{7}$ R. Birney, ${ }^{24}$ O. Birnholtz, ${ }^{58}$ S. Biscans, ${ }^{1,12}$ S. Biscoveanu, ${ }^{6}$ A. Bisht, ${ }^{9}$ M. Bitossi, ${ }^{28,19}$ M. A. Bizouard, ${ }^{25}$ J. K. Blackburn, ${ }^{1}$ C. D. Blair, ${ }^{7}$ D. G. Blair, ${ }^{63}$ R. M. Blair, ${ }^{45}$ S. Bloemen, ${ }^{64}$ N. Bode, ${ }^{8,9}$ M. Boer, ${ }^{65}$ Y. Boetzel, ${ }^{66}$ G. Bogaert,,${ }^{65}$ F. Bondu, ${ }^{67}$ E. Bonilla, ${ }^{49}$ R. Bonnand, ${ }^{33}$ P. Booker,,8,9 B. A. Boom, ${ }^{37}$ C. D. Booth, ${ }^{68}$ R. Bork, ${ }^{1}$ V. Boschi, ${ }^{28}$ S. Bose, ${ }^{69,3}$ K. Bossie, ${ }^{7}$ V. Bossilkov, ${ }^{63}$ J. Bosveld, ${ }^{63}$ Y. Bouffanais, ${ }^{27}$ A. Bozzi, ${ }^{28}$ C. Bradaschia, ${ }^{19}$ P. R. Brady, ${ }^{23}$ A. Bramley, ${ }^{7}$ M. Branchesi, ${ }^{14,15}$ J. E. Brau, ${ }^{70}$ T. Briant, ${ }^{71}$ J. H. Briggs, ${ }^{44}$ F. Brighenti, ${ }^{72,73}$ A. Brillet, ${ }^{65}$ M. Brinkmann, ${ }^{8,9}$ V. Brisson, ${ }^{25, a}$ P. Brockill, ${ }^{23}$ A. F. Brooks, ${ }^{1}$ D. D. Brown, ${ }^{55}$ S. Brunett, ${ }^{1}$ A. Buikema, ${ }^{12}$ T. Bulik, ${ }^{74}$ H. J. Bulten, ${ }^{75,37}$ A. Buonanno, ${ }^{36,76}$ D. Buskulic, ${ }^{33}$ C. Buy, ${ }^{27}$ R. L. Byer, ${ }^{49}$ M. Cabero, ${ }^{8,9}$ L. Cadonati, ${ }^{77}$ G. Cagnoli, ${ }^{22,78}$ C. Cahillane, ${ }^{1}$ J. Calderón Bustillo, ${ }^{6}$ T. A. Callister, ${ }^{1}$ E. Calloni, ${ }^{79,5}$ J. B. Camp,,80 W. A. Campbell, ${ }^{6}$ M. Canepa, ${ }^{81,60}$ K. C. Cannon, ${ }^{82}$ H. Cao, ${ }^{55}$ J. Cao, ${ }^{83}$ E. Capocasa, ${ }^{27}$ F. Carbognani, ${ }^{28}$ S. Caride, ${ }^{84}$ M. F. Carney, ${ }^{59}$ G. Carullo, ${ }^{18}$ J. Casanueva Diaz, ${ }^{19}$ C. Casentini, ${ }^{30,31}$ S. Caudill, ${ }^{37}$ M. Cavaglià,,${ }^{85}$ F. Cavalier, ${ }^{25}$ R. Cavalieri, ${ }^{28}$ G. Cella, ${ }^{19}$ P. Cerdá-Durán, ${ }^{20}$ G. Cerretani, ${ }^{18,19}$ E. Cesarini, ${ }^{86,31}$ O. Chaibi, ${ }^{65}$ K. Chakravarti, ${ }^{3}$ S. J. Chamberlin, ${ }^{87}$ M. Chan, ${ }^{44}$ S. Chao, ${ }^{88}$ P. Charlton, ${ }^{89}$ E. A. Chase, ${ }^{59}$ E. Chassande-Mottin, ${ }^{27}$ D. Chatterjee, ${ }^{23}$ M. Chaturvedi, ${ }^{61}$ B. D. Cheeseboro, ${ }^{39}$ H. Y. Chen, ${ }^{90}$ X. Chen, ${ }^{63}$ Y. Chen, ${ }^{46}$ H.-P. Cheng, ${ }^{48}$ C. K. Cheong, ${ }^{91}$ H. Y. Chia, ${ }^{48}$ A. Chincarini, ${ }^{60}$ A. Chiummo, ${ }^{28}$ G. Cho, ${ }^{92}$ H. S. Cho, ${ }^{93}$ M. Cho, ${ }^{76}$ N. Christensen, ${ }^{65,94}$ Q. Chu, ${ }^{63}$ S. Chua, ${ }^{71}$ K. W. Chung, ${ }^{91}$ S. Chung, ${ }^{63}$ G. Ciani, ${ }^{51,52}$ A. A. Ciobanu, ${ }^{55}$ R. Ciolfi, ${ }^{95,96}$ F. Cipriano, ${ }^{65}$ A. Cirone, ${ }^{81,60}$ F. Clara, ${ }^{45}$ J. A. Clark, ${ }^{77}$ P. Clearwater, ${ }^{97}$ F. Cleva, ${ }^{65}$ C. Cocchieri, ${ }^{85}$ E. Coccia, ${ }^{14,15}$ P.-F. Cohadon, ${ }^{71}$ D. Cohen, ${ }^{25}$ R. Colgan, ${ }^{98}$ M. Colleoni, ${ }^{99}$ C. G. Collette, ${ }^{100}$ C. Collins, ${ }^{11}$ L. R. Cominsky, ${ }^{101}$ M. Constancio Jr., ${ }^{13}$ L. Conti, ${ }^{52}$ S. J. Cooper, ${ }^{11}$ P. Corban, ${ }^{7}$ T. R. Corbitt, ${ }^{2}$ I. Cordero-Carrión,,102 K. R. Corley, ${ }^{98}$ N. Cornish, ${ }^{53}$ A. Corsi, ${ }^{84}$ S. Cortese, ${ }^{28}$ C. A. Costa, ${ }^{13}$ R. Cotesta, ${ }^{36}$ M. W. Coughlin, ${ }^{1}$ S. B. Coughlin, ${ }^{68,59}$ J.-P. Coulon, ${ }^{65}$ S. T. Countryman, ${ }^{98}$ P. Couvares, ${ }^{1}$ P. B. Covas, ${ }^{99}$ E. E. Cowan, ${ }^{77}$ D. M. Coward, ${ }^{63}$ M. J. Cowart, ${ }^{7}$ D. C. Coyne, ${ }^{1}$ R. Coyne, ${ }^{103}$ J. D. E. Creighton, ${ }^{23}$ T. D. Creighton, ${ }^{104}$ J. Cripe, ${ }^{2}$ M. Croquette, ${ }^{71}$ S. G. Crowder, ${ }^{105}$ T. J. Cullen, ${ }^{2}$ A. Cumming, ${ }^{44}$ L. Cunningham, ${ }^{44}$ E. Cuoco, ${ }^{28}$ T. Dal Canton, ${ }^{80}$ G. Dálya, ${ }^{106}$ S. L. Danilishin, ${ }^{8,9}$ S. D'Antonio, ${ }^{31}$ K. Danzmann,,${ }^{9,8}$ A. Dasgupta, ${ }^{107}$ C. F. Da Silva Costa, ${ }^{48}$ L. E. H. Datrier, ${ }^{44}$ V. Dattilo, ${ }^{28}$ I. Dave, ${ }^{61}$ M. Davier, ${ }^{25}$ D. Davis, ${ }^{42}$ E. J. Daw, ${ }^{108}$ D. DeBra, ${ }^{49}$ M. Deenadayalan, ${ }^{3}$ J. Degallaix, ${ }^{22}$ M. De Laurentis, ${ }^{79,5}$ S. Deléglise, ${ }^{71}$ W. Del Pozzo, ${ }^{18,19}$ L. M. DeMarchi, ${ }^{59}$ N. Demos, ${ }^{12}$ T. Dent, ${ }^{8,9,109}$ R. De Pietri, ${ }^{110,57}$ J. Derby, ${ }^{26}$ R. De Rosa, ${ }^{79,5}$ C. De Rossi, ${ }^{22,28}$ R. DeSalvo, ${ }^{111}$ O. de Varona, ${ }^{8,9}$ S. Dhurandhar, ${ }^{3}$ M. C. Díaz, ${ }^{104}$ T. Dietrich, ${ }^{37}$ L. Di Fiore, ${ }^{5}$ M. Di Giovanni, ${ }^{112,96}$ T. Di Girolamo, ${ }^{79,5}$ A. Di Lieto, ${ }^{18,19}$ B. Ding, ${ }^{100}$ S. Di Pace, ${ }^{113,32}$ I. Di Palma, ${ }^{113,32}$ F. Di Renzo, ${ }^{18,19}$ A. Dmitriev, ${ }^{11}$ Z. Doctor, ${ }^{90}$ F. Donovan, ${ }^{12}$ K. L. Dooley, ${ }^{68,85}$ S. Doravari, ${ }^{8,9}$ I. Dorrington, ${ }^{68}$ T. P. Downes, ${ }^{23}$ M. Drago, ${ }^{14,15}$ J. C. Driggers, ${ }^{45}$ Z. Du, ${ }^{83}$ J.-G. Ducoin, ${ }^{25}$ P. Dupej, ${ }^{44}$ I. Dvorkin, ${ }^{36}$ S. E. Dwyer, ${ }^{45}$ P. J. Easter, ${ }^{6}$ T. B. Edo, ${ }^{108}$ M. C. Edwards, ${ }^{94}$ A. Effler, ${ }^{7}$ P. Ehrens, ${ }^{1}$ J. Eichholz, ${ }^{1}$ S. S. Eikenberry, ${ }^{48}$ M. Eisenmann, ${ }^{33}$ R. A. Eisenstein, ${ }^{12}$ R. C. Essick, ${ }^{90}$ H. Estelles, ${ }^{99}$ D. Estevez, ${ }^{33}$ Z. B. Etienne, ${ }^{39}$ T. Etzel, ${ }^{1}$ M. Evans, ${ }^{12}$ T. M. Evans, ${ }^{7}$ V. Fafone, ${ }^{30,31,14}$ H. Fair, ${ }^{42}$ S. Fairhurst, ${ }^{68}$ X. Fan,,83 S. Farinon, ${ }^{60}$ B. Farr, ${ }^{70}$ W. M. Farr, ${ }^{11}$ E. J. Fauchon-Jones, ${ }^{68}$ M. Favata, ${ }^{35}$ M. Fays, ${ }^{108}$ M. Fazio, ${ }^{114}$ C. Fee, ${ }^{115}$ J. Feicht, ${ }^{1}$ M. M. Fejer, ${ }^{49}$ F. Feng, ${ }^{27}$ A. Fernandez-Galiana, ${ }^{12}$ I. Ferrante, ${ }^{18,19}$ E. C. Ferreira, ${ }^{13}$ T. A. Ferreira, ${ }^{13}$ F. Ferrini, ${ }^{28}$ F. Fidecaro, ${ }^{18,19}$ I. Fiori, ${ }^{28}$ D. Fiorucci, ${ }^{27}$ M. Fishbach, ${ }^{90}$ R. P. Fisher, ${ }^{42,116}$ J. M. Fishner, ${ }^{12}$ M. Fitz-Axen, ${ }^{43}$ R. Flaminio, ${ }^{33,117}$ M. Fletcher, ${ }^{44}$ E. Flynn, ${ }^{26}$ H. Fong, ${ }^{118}$ J. A. Font, ${ }^{20,119}$ P. W. F. Forsyth, ${ }^{21}$ J.-D. Fournier, ${ }^{65}$ S. Frasca, ${ }^{113,32}$ F. Frasconi, ${ }^{19}$ Z. Frei, ${ }^{106}$ A. Freise, ${ }^{11}$ R. Frey, ${ }^{70}$ V. Frey, ${ }^{25}$ P. Fritschel, ${ }^{12}$ V. V. Frolov, ${ }^{7}$ P. Fulda, ${ }^{48}$ M. Fyffe, ${ }^{7}$ H. A. Gabbard, ${ }^{44}$ B. U. Gadre, ${ }^{3}$ S. M. Gaebel, ${ }^{11}$ J. R. Gair, ${ }^{120}$ L. Gammaitoni, ${ }^{40}$ M. R. Ganija, ${ }^{55}$ S. G. Gaonkar, ${ }^{3}$ A. Garcia, ${ }^{26}$ C. García-Quirós, ${ }^{99}$ F. Garufi, ${ }^{79,5}$ B. Gateley, ${ }^{45}$ S. Gaudio, ${ }^{34}$ G. Gaur, ${ }^{121}$ V. Gayathri, ${ }^{122}$ G. Gemme, ${ }^{60}$ E. Genin, ${ }^{28}$ A. Gennai, ${ }^{19}$ D. George, ${ }^{17}$
J. George, ${ }^{61}$ L. Gergely, ${ }^{123}$ V. Germain, ${ }^{33}$ S. Ghonge, ${ }^{77}$ Abhirup Ghosh, ${ }^{16}$ Archisman Ghosh, ${ }^{37}$ S. Ghosh, ${ }^{23}$ B. Giacomazzo, ${ }^{112,96}$ J. A. Giaime, ${ }^{2,7}$ K. D. Giardina, ${ }^{7}$ A. Giazotto, ${ }^{19, a}$ K. Gill, ${ }^{34}$ G. Giordano, ${ }^{4,5}$ L. Glover, ${ }^{111}$ P. Godwin, ${ }^{87}$ E. Goetz, ${ }^{45}$ R. Goetz, ${ }^{48}$ B. Goncharov, ${ }^{6}$ G. González, ${ }^{2}$ J. M. Gonzalez Castro, ${ }^{18,19}$ A. Gopakumar, ${ }^{124}$ M. L. Gorodetsky, ${ }^{62}$ S. E. Gossan, ${ }^{1}$ M. Gosselin, ${ }^{28}$ R. Gouaty, ${ }^{33}$ A. Grado, ${ }^{125,5}$ C. Graef, ${ }^{44}$ M. Granata, ${ }^{22}$ A. Grant,,${ }^{44}$ S. Gras, ${ }^{12}$ P. Grassia, ${ }^{1}$ C. Gray, ${ }^{45}$ R. Gray, ${ }^{44}$ G. Greco, ${ }^{72,73}$ A. C. Green, ${ }^{11,48}$ R. Green, ${ }^{68}$ E. M. Gretarsson, ${ }^{34}$ P. Groot,,${ }^{64}$ H. Grote, ${ }^{68}$ S. Grunewald, ${ }^{36}$ P. Gruning, ${ }^{25}$ G. M. Guidi, ${ }^{72,73}$ H. K. Gulati, ${ }^{107}$ Y. Guo, ${ }^{37}$ A. Gupta,,${ }^{87}$ M. K. Gupta, ${ }^{107}$ E. K. Gustafson, ${ }^{1}$ R. Gustafson, ${ }^{126}$ L. Haegel, ${ }^{99}$ O. Halim,,${ }^{15,14}$ B. R. Hall, ${ }^{69}$ E. D. Hall, ${ }^{12}$ E. Z. Hamilton, ${ }^{68}$ G. Hammond, ${ }^{44}$ M. Haney, ${ }^{66}$ M. M. Hanke, ${ }^{8,9}$
J. Hanks, ${ }^{45}$ C. Hanna, ${ }^{87}$ O. A. Hannuksela, ${ }^{11}$ J. Hanson, ${ }^{7}$ T. Hardwick, ${ }^{2}$ K. Haris,,${ }^{16}$ J. Harms, ${ }^{14,15}$ G. M. Harry, ${ }^{127}$ I. W. Harry,,${ }^{36}$ C.-J. Haster, ${ }^{118}$ K. Haughian, ${ }^{44}$ F. J. Hayes, ${ }^{44}$ J. Healy, ${ }^{58}$ A. Heidmann, ${ }^{71}$ M. C. Heintze, ${ }^{7}$ H. Heitmann, ${ }^{65}$ P. Hello, ${ }^{25}$ G. Hemming, ${ }^{28}$ M. Hendry, ${ }^{44}$ I. S. Heng, ${ }^{44}$ J. Hennig, ${ }^{8,9}$ A. W. Heptonstall, ${ }^{1}$ Francisco Hernandez Vivanco, ${ }^{6}$ M. Heurs, ${ }^{8,9}$ S. Hild, ${ }^{44}$ T. Hinderer, ${ }^{128,37,129}$ D. Hoak, ${ }^{28}$ S. Hochheim, ${ }^{8,9}$ D. Hofman, ${ }^{22}$ A. M. Holgado, ${ }^{17}$ N. A. Holland, ${ }^{21}$ K. Holt, ${ }^{7}$ D. E. Holz, ${ }^{90}$ P. Hopkins, ${ }^{68}$ C. Horst, ${ }^{23}$ J. Hough, ${ }^{44}$ E. J. Howell,,${ }^{63}$ C. G. Hoy, ${ }^{68}$ A. Hreibi, ${ }^{65}$ E. A. Huerta, ${ }^{17}$ D. Huet, ${ }^{25}$ B. Hughey, ${ }^{34}$ M. Hulko, ${ }^{1}$ S. Husa, ${ }^{99}$ S. H. Huttner, ${ }^{44}$ T. Huynh-Dinh, ${ }^{7}$ B. Idzkowski, ${ }^{74}$ A. Iess, ${ }^{30,31}$ C. Ingram, ${ }^{55}$ R. Inta, ${ }^{84}$ G. Intini, ${ }^{113,32}$ B. Irwin, ${ }^{115}$ H. N. Isa, ${ }^{44}$ J.-M. Isac, ${ }^{71}$ M. Isi, ${ }^{1}$ B. R. Iyer, ${ }^{16}$ K. Izumi, ${ }^{45}$ T. Jacqmin, ${ }^{71}$ S. J. Jadhav,,${ }^{130}$ K. Jani, ${ }^{77}$ N. N. Janthalur, ${ }^{130}$ P. Jaranowski, ${ }^{131}$ A. C. Jenkins, ${ }^{132}$ J. Jiang, ${ }^{48}$ D. S. Johnson, ${ }^{17}$ A. W. Jones, ${ }^{11}$ D. I. Jones, ${ }^{133}$ R. Jones, ${ }^{44}$ R. J. G. Jonker, ${ }^{37}$ L. Ju, ${ }^{63}$ J. Junker, ${ }^{8,9}$ C. V. Kalaghatgi, ${ }^{68}$ V. Kalogera, ${ }^{59}$ B. Kamai, ${ }^{1}$ S. Kandhasamy, ${ }^{85}$ G. Kang, ${ }^{38}$ J. B. Kanner, ${ }^{1}$ S. J. Kapadia, ${ }^{23}$ S. Karki, ${ }^{70}$ K. S. Karvinen, ${ }^{8,9}$ R. Kashyap, ${ }^{16}$ M. Kasprzack, ${ }^{1}$ S. Katsanevas, ${ }^{28}$ E. Katsavounidis, ${ }^{12}$ W. Katzman, ${ }^{7}$ S. Kaufer, ${ }^{9}$ K. Kawabe, ${ }^{45}$ N. V. Keerthana, ${ }^{3}$ F. Kéfélian, ${ }^{65}$ D. Keitel, ${ }^{44}$ R. Kennedy, ${ }^{108}$ J. S. Key, ${ }^{134}$ F. Y. Khalili, ${ }^{62}$ H. Khan, ${ }^{26}$ I. Khan, ${ }^{14,31}$ S. Khan, ${ }^{8,9}$ Z. Khan, ${ }^{107}$ E. A. Khazanov, ${ }^{135}$ M. Khursheed, ${ }^{61}$ N. Kijbunchoo, ${ }^{21}$ Chunglee Kim, ${ }^{136}$ J. C. Kim, ${ }^{137}$ K. Kim, ${ }^{91}$ W. Kim, ${ }^{55}$ W. S. Kim, ${ }^{138}$ Y.-M. Kim, ${ }^{139}$ C. Kimball, ${ }^{59}$ E. J. King, ${ }^{55}$ P. J. King, ${ }^{45}$ M. Kinley-Hanlon, ${ }^{127}$ R. Kirchhoff, ${ }^{8,9}$ J. S. Kissel, ${ }^{45}$ L. Kleybolte, ${ }^{140}$ J. H. Klika, ${ }^{23}$ S. Klimenko, ${ }^{48}$ T. D. Knowles, ${ }^{39}$ P. Koch, ${ }^{8,9}$ S. M. Koehlenbeck, ${ }^{8,9}$ G. Koekoek, ${ }^{37,141}$ S. Koley, ${ }^{37}$ V. Kondrashov, ${ }^{1}$ A. Kontos, ${ }^{12}$ N. Koper, ${ }^{8,9}$ M. Korobko, ${ }^{140}$ W. Z. Korth, ${ }^{1}$ I. Kowalska, ${ }^{74}$ D. B. Kozak, ${ }^{1}$ V. Kringel, ${ }^{8,9}$ N. Krishnendu, ${ }^{29}$ A. Królak, ${ }^{142,143}$ G. Kuehn, ${ }^{8,9}$ A. Kumar,,130 P. Kumar, ${ }^{144}$ R. Kumar, ${ }^{107}$ S. Kumar, ${ }^{16}$ L. Kuo, ${ }^{88}$ A. Kutynia, ${ }^{142}$ S. Kwang, ${ }^{23}$ B. D. Lackey, ${ }^{36}$ K. H. Lai, ${ }^{91}$ T. L. Lam, ${ }^{91}$ M. Landry, ${ }^{45}$ B. B. Lane, ${ }^{12}$ R. N. Lang, ${ }^{145}$ J. Lange,,${ }^{58}$ B. Lantz, ${ }^{49}$ R. K. Lanza, ${ }^{12}$ A. Lartaux-Vollard, ${ }^{25}$ P. D. Lasky, ${ }^{6}$ M. Laxen, ${ }^{7}$ A. Lazzarini, ${ }^{1}$ C. Lazzaro, ${ }^{52}$ P. Leaci, ${ }^{113,32}$ S. Leavey, ${ }^{8,9}$ Y. K. Lecoeuche, ${ }^{45}$ C. H. Lee, ${ }^{93}$ H. K. Lee, ${ }^{146}$ H. M. Lee, ${ }^{147}$ H. W. Lee, ${ }^{137}$ J. Lee, ${ }^{92}$ K. Lee, ${ }^{44}$ J. Lehmann, ${ }^{8,9}$ A. Lenon, ${ }^{39}$ N. Leroy, ${ }^{25}$ N. Letendre, ${ }^{33}$ Y. Levin, ${ }^{6,98}$ J. Li, ${ }^{83}$ K. J. L. Li, ${ }^{91}$ T. G. F. Li, ${ }^{91}$ X. Li ${ }^{46}$ F. Lin, ${ }^{6}$ F. Linde, ${ }^{37}$ S. D. Linker, ${ }^{111}$ T. B. Littenberg, ${ }^{148}$ J. Liu, ${ }^{63}$ X. Liu, ${ }^{23}$ R. K. L. Lo, ${ }^{9111}$ N. A. Lockerbie, ${ }^{24}$ L. T. London, ${ }^{68}$ A. Longo, ${ }^{149,150}$ M. Lorenzini, ${ }^{14,15}$ V. Loriette, ${ }^{151}$ M. Lormand, ${ }^{7}$ G. Losurdo, ${ }^{19}$ J. D. Lough, ${ }^{8,9}$ C. O. Lousto, ${ }^{58}$ G. Lovelace, ${ }^{26}$ M. E. Lower, ${ }^{152}$ H. Lück, ${ }^{9,8}$ D. Lumaca, ${ }^{30,31}$ A. P. Lundgren, ${ }^{153}$ R. Lynch, ${ }^{12}$ Y. Ma, ${ }^{46}$ R. Macas, ${ }^{68}$ S. Macfoy, ${ }^{24}$ M. MacInnis, ${ }^{12}$ D. M. Macleod, ${ }^{68}$ A. Macquet, ${ }^{65}$ F. Magaña-Sandoval, ${ }^{42}$ L. Magaña Zertuche, ${ }^{85}$ R. M. Magee,,${ }^{87}$ E. Majorana, ${ }^{32}$ I. Maksimovic, ${ }^{151}$ A. Malik,,${ }^{61}$ N. Man,${ }^{65}$ V. Mandic, ${ }^{43}$ V. Mangano, ${ }^{44}$ G. L. Mansell,,45,12 M. Manske, ${ }^{23,21}$ M. Mantovani, ${ }^{28}$ F. Marchesoni, ${ }^{50,41}$ F. Marion, ${ }^{33}$ S. Márka, ${ }^{98}$ Z. Márka, ${ }^{98}$ C. Markakis, ${ }^{10,17}$ A. S. Markosyan, ${ }^{49}$ A. Markowitz, ${ }^{1}$ E. Maros, ${ }^{1}$ A. Marquina, ${ }^{102}$ S. Marsat, ${ }^{36}$ F. Martelli, ${ }^{72,73}$ I. W. Martin, ${ }^{44}$ R. M. Martin, ${ }^{35}$ D. V. Martynov, ${ }^{11}$ K. Mason, ${ }^{12}$ E. Massera, ${ }^{108}$ A. Masserot, ${ }^{33}$ T. J. Massinger, ${ }^{1}$ M. Masso-Reid, ${ }^{44}$ S. Mastrogiovanni, ${ }^{113,32}$ A. Matas, ${ }^{43,36}$ F. Matichard, ${ }^{1,12}$ L. Matone, ${ }^{98}$ N. Mavalvala, ${ }^{12}$ N. Mazumder, ${ }^{69}$ J. J. McCann, ${ }^{63}$ R. McCarthy, ${ }^{45}$ D. E. McClelland, ${ }^{21}$ S. McCormick, ${ }^{7}$ L. McCuller, ${ }^{12}$ S. C. McGuire, ${ }^{154}$ J. McIver, ${ }^{1}$ D. J. McManus, ${ }^{21}$ T. McRae, ${ }^{21}$ S. T. McWilliams, ${ }^{39}$ D. Meacher,,${ }^{87}$ G. D. Meadors, ${ }^{6}$ M. Mehmet,,${ }^{8,9}$ A. K. Mehta, ${ }^{16}$ J. Meidam, ${ }^{37}$ A. Melatos, ${ }^{97}$ G. Mendell,,${ }^{45}$ R. A. Mercer, ${ }^{23}$ L. Mereni, ${ }^{22}$ E. L. Merilh, ${ }^{45}$ M. Merzougui, ${ }^{65}$ S. Meshkov, ${ }^{1}$ C. Messenger, ${ }^{44}$ C. Messick, ${ }^{87}$ R. Metzdorff, ${ }^{71}$ P. M. Meyers, ${ }^{97}$ H. Miao, ${ }^{11}$ C. Michel, ${ }^{22}$ H. Middleton,,${ }^{97}$ E. E. Mikhailoo, ${ }^{155}$ L. Milano, ${ }^{79,5}$ A. L. Miller, ${ }^{48}$ A. Miller, ${ }^{113,32}$ M. Millhouse, ${ }^{53}$ J. C. Mills, ${ }^{68}$ M. C. Milovich-Goff, ${ }^{111}$ O. Minazzoli, ${ }^{65,156}$ Y. Minenkov, ${ }^{31}$ A. Mishkin, ${ }^{48}$ C. Mishra, ${ }^{157}$ T. Mistry, ${ }^{108}$ S. Mitra, ${ }^{3}$ V. P. Mitrofanov, ${ }^{62}$ G. Mitselmakher, ${ }^{48}$ R. Mittleman, ${ }^{12}$ G. Mo,${ }^{94}$ D. Moffa, ${ }^{115}$ K. Mogushi, ${ }^{85}$ S. R. P. Mohapatra, ${ }^{12}$ M. Montani, ${ }^{72,73}$ C. J. Moore, ${ }^{10}$ D. Moraru, ${ }^{45}$ G. Moreno, ${ }^{45}$ S. Morisaki, ${ }^{82}$ B. Mours, ${ }^{33}$ C. M. Mow-Lowry, ${ }^{11}$ Arunava Mukherjee, ${ }^{8,9}$ D. Mukherjee, ${ }^{23}$ S. Mukherjee, ${ }^{104}$ N. Mukund, ${ }^{3}$ A. Mullavey, ${ }^{7}$ J. Munch, ${ }^{55}$ E. A. Muñiz, ${ }^{42}$ M. Muratore, ${ }^{34}$ P. G. Murray ${ }^{44}$ A. Nagar, ${ }^{86,158,159}$ I. Nardecchia, ${ }^{30,31}$ L. Naticchioni, ${ }^{113,32}$ R. K. Nayak, ${ }^{160}$ J. Neilson, ${ }^{111}$ G. Nelemans, ${ }^{64,37}$ T. J. N. Nelson, ${ }^{7}$ M. Nery, ${ }^{8,9}$ A. Neunzert, ${ }^{126}$ K. Y. Ng, ${ }^{12}$ S. Ng, ${ }^{55}$ P. Nguyen, ${ }^{70}$ D. Nichols, ${ }^{128,37}$ S. Nissanke, ${ }^{128,37}$ F. Nocera, ${ }^{28}$ C. North, ${ }^{68}$ L. K. Nuttall, ${ }^{153}$ M. Obergaulinger, ${ }^{20}$ J. Oberling, ${ }^{45}$ B. D. O'Brien, ${ }^{48}$ G. D. O'Dea, ${ }^{111}$ G. H. Ogin, ${ }^{161}$ J. J. Oh, ${ }^{138}$ S. H. Oh, ${ }^{138}$ F. Ohme,,${ }^{8,9}$ H. Ohta, ${ }^{82}$ M. A. Okada, ${ }^{13}$ M. Oliver, ${ }^{99}$ P. Oppermann, ${ }^{8,9}$ Richard J. Oram, ${ }^{7}$ B. O'Reilly, ${ }^{7}$ R. G. Ormiston, ${ }^{43}$ L. F. Ortega, ${ }^{48}$ R. O'Shaughnessy, ${ }^{58}$ S. Ossokine, ${ }^{36}$
D. J. Ottaway, ${ }^{55}$ H. Overmier, ${ }^{7}$ B. J. Owen,,${ }^{84}$ A. E. Pace,,${ }^{87}$ G. Pagano, ${ }^{18,19}$ M. A. Page, ${ }^{63}$ A. Pai,,${ }^{122}$ S. A. Pai, ${ }^{61}$ J. R. Palamos, ${ }^{70}$ O. Palashov, ${ }^{135}$ C. Palomba, ${ }^{32}$ A. Pal-Singh, ${ }^{140}$ Huang-Wei Pan, ${ }^{88}$ B. Pang, ${ }^{46}$ P. T. H. Pang, ${ }^{91}$ C. Pankow, ${ }^{59}$ F. Pannarale, ${ }^{113,32}$ B. C. Pant, ${ }^{61}$ F. Paoletti, ${ }^{19}$ A. Paoli, ${ }^{28}$ A. Parida, ${ }^{3}$ W. Parker, ${ }^{7,154}$ D. Pascucci, ${ }^{44}$ A. Pasqualetti, ${ }^{28}$ R. Passaquieti, ${ }^{18,19}$ D. Passuello, ${ }^{19}$ M. Patil, ${ }^{143}$ B. Patricelli, ${ }^{18,19}$ B. L. Pearlstone, ${ }^{44}$ C. Pedersen, ${ }^{68}$ M. Pedraza, ${ }^{1}$ R. Pedurand, ${ }^{22,162}$ A. Pele, ${ }^{7}$ S. Penn, ${ }^{163}$ C. J. Perez, ${ }^{45}$ A. Perreca, ${ }^{112,96}$ H. P. Pfeiffer,,${ }^{36,118}$ M. Phelps, ${ }^{8,9}$ K. S. Phukon, ${ }^{3}$ O. J. Piccinni, ${ }^{113,32}$ M. Pichot,${ }^{65}$ F. Piergiovanni, ${ }^{72,73}$ G. Pillant, ${ }^{28}$ L. Pinard, ${ }^{22}$ M. Pirello, ${ }^{45}$ M. Pitkin,,${ }^{44}$ R. Poggiani,,${ }^{18,19}$ D. Y. T. Pong, ${ }^{91}$ S. Ponrathnam, ${ }^{3}$ P. Popolizio, ${ }^{28}$ E. K. Porter, ${ }^{27}$ J. Powell, ${ }^{152}$ A. K. Prajapati, ${ }^{107}$ J. Prasad, ${ }^{3}$ K. Prasai, ${ }^{49}$ R. Prasanna, ${ }^{130}$ G. Pratten, ${ }^{99}$ T. Prestegard, ${ }^{23}$ S. Privitera, ${ }^{36}$ G. A. Prodi, ${ }^{12,96}$ L. G. Prokhorov, ${ }^{62}$ O. Puncken, ${ }^{8,9}$ M. Punturo, ${ }^{41}$ P. Puppo, ${ }^{32}$ M. Pürrer, ${ }^{36}$ H. Qi, ${ }^{23}$ V. Quetschke, ${ }^{104}$ P. J. Quinonez, ${ }^{34}$ E. A. Quintero, ${ }^{1}$ R. Quitzow-James, ${ }^{70}$ F. J. Raab, ${ }^{45}$ H. Radkins, ${ }^{45}$ N. Radulescu, ${ }^{65}$ P. Raffai, ${ }^{106}$ S. Raja, ${ }^{61}$ C. Rajan, ${ }^{61}$ B. Rajbhandari, ${ }^{84}$ M. Rakhmanov, ${ }^{104}$
K. E. Ramirez, ${ }^{104}$ A. Ramos-Buades, ${ }^{99}$ Javed Rana, ${ }^{3}$ K. Rao, ${ }^{59}$ P. Rapagnani, ${ }^{113,32}$ V. Raymond, ${ }^{68}$ M. Razzano, ${ }^{18,19}$ J. Read, ${ }^{26}$ T. Regimbau, ${ }^{33}$ L. Rei, ${ }^{60}$ S. Reid, ${ }^{24}$ D. H. Reitze, ${ }^{1,48}$ W. Ren, ${ }^{17}$ F. Ricci, ${ }^{113,32}$ C. J. Richardson, ${ }^{34}$ J. W. Richardson, ${ }^{1}$ P. M. Ricker,,${ }^{17}$ K. Riles, ${ }^{126}$ M. Rizzo, ${ }^{59}$ N. A. Robertson, ${ }^{1,44}$ R. Robie, ${ }^{44}$ F. Robinet, ${ }^{25}$ A. Rocchi, ${ }^{31}$ L. Rolland, ${ }^{33}$ J. G. Rollins, ${ }^{1}$ V. J. Roma, ${ }^{70}$ M. Romanelli, ${ }^{67}$ J. D. Romano, ${ }^{84}$ R. Romano, ${ }^{4,5}$ C. L. Romel, ${ }^{45}$ J. H. Romie, ${ }^{7}$ K. Rose, ${ }^{115}$ D. Rosińska, ${ }^{164,54}$ S. G. Rosofsky, ${ }^{17}$ M. P. Ross, ${ }^{165}$ S. Rowan, ${ }^{44}$ A. Rüdiger, ${ }^{8,9, a}$ P. Ruggi, ${ }^{28}$ G. Rutins, ${ }^{166}$ K. Ryan, ${ }^{45}$ S. Sachdev, ${ }^{1}$ T. Sadecki, ${ }^{45}$ M. Sakellariadou, ${ }^{132}$ L. Salconi, ${ }^{28}$ M. Saleem, ${ }^{29}$ A. Samajdar, ${ }^{37}$ L. Sammut, ${ }^{6}$ E. J. Sanchez, ${ }^{1}$ L. E. Sanchez, ${ }^{1}$ N. Sanchis-Gual, ${ }^{20}$ V. Sandberg, ${ }^{45}$ J. R. Sanders, ${ }^{42}$ K. A. Santiago, ${ }^{35}$ N. Sarin, ${ }^{6}$ B. Sassolas, ${ }^{22}$ B. S. Sathyaprakash, ${ }^{87,68}$ P. R. Saulson, ${ }^{42}$ O. Sauter, ${ }^{126}$ R. L. Savage, ${ }^{45}$ P. Schale, ${ }^{70}$ M. Scheel, ${ }^{46}$ J. Scheuer, ${ }^{59}$ P. Schmidt, ${ }^{64}$ R. Schnabel, ${ }^{140}$ R. M. S. Schofield, ${ }^{70}$ A. Schönbeck, ${ }^{140}$ E. Schreiber, ${ }^{8,9}$ B. W. Schulte, ${ }^{8,9}$ B. F. Schutz, ${ }^{68}$ S. G. Schwalbe, ${ }^{34}$
J. Scott, ${ }^{44}$ S. M. Scott, ${ }^{21}$ E. Seidel, ${ }^{17}$ D. Sellers, ${ }^{7}$ A. S. Sengupta, ${ }^{167}$ N. Sennett, ${ }^{36}$ D. Sentenac, ${ }^{28}$ V. Sequino, ${ }^{30,31,14}$ A. Sergeev, ${ }^{135}$ Y. Setyawati, ${ }^{8,9}$ D. A. Shaddock, ${ }^{21}$ T. Shaffer, ${ }^{45}$ M. S. Shahriar, ${ }^{59}$ M. B. Shaner, ${ }^{111}$ L. Shao, ${ }^{36}$ P. Sharma, ${ }^{61}$ P. Shawhan, ${ }^{76}$ H. Shen, ${ }^{17}$ R. Shink, ${ }^{168}$ D. H. Shoemaker, ${ }^{12}$ D. M. Shoemaker, ${ }^{77}$ S. ShyamSundar, ${ }^{61}$ K. Siellez, ${ }^{77}$ M. Sieniawska, ${ }^{54}$ D. Sigg, ${ }^{45}$ A. D. Silva, ${ }^{13}$ L. P. Singer, ${ }^{80}$ N. Singh, ${ }^{74}$ A. Singhal, ${ }^{14,32}$ A. M. Sintes, ${ }^{99}$ S. Sitmukhambetov,,${ }^{104}$ V. Skliris, ${ }^{68}$ B. J. J. Slagmolen, ${ }^{21}$ T. J. Slaven-Blair, ${ }^{63}$ J. R. Smith, ${ }^{26}$ R. J. E. Smith, ${ }^{6}$ S. Somala, ${ }^{169}$ E. J. Son, ${ }^{138}$ B. Sorazu, ${ }^{44}$ F. Sorrentino, ${ }^{60}$ T. Souradeep, ${ }^{3}$ E. Sowell, ${ }^{84}$ A. P. Spencer, ${ }^{44}$ A. K. Srivastava, ${ }^{107}$ V. Srivastava, ${ }^{42}$ K. Staats, ${ }^{59}$ C. Stachie, ${ }^{65}$ M. Standke, ${ }^{8,9}$ D. A. Steer, ${ }^{27}$ M. Steinke, ${ }^{8,9}$ J. Steinlechner, ${ }^{140,44}$ S. Steinlechner, ${ }^{140}$ D. Steinmeyer, ${ }^{8,9}$ S. P. Stevenson, ${ }^{152}$ D. Stocks,49 R. Stone,,104 D. J. Stops, ${ }^{11}$ K. A. Strain, ${ }^{44}$ G. Stratta, ${ }^{72,73}$ S. E. Strigin, ${ }^{62}$ A. Strunk, ${ }^{45}$ R. Sturani, ${ }^{170}$ A. L. Stuver,,171 V. Sudhir, ${ }^{12}$ T. Z. Summerscales, ${ }^{172}$ L. Sun, ${ }^{1}$ S. Sunil, ${ }^{107}$ J. Suresh, ${ }^{3}$ P. J. Sutton, ${ }^{68}$ B. L. Swinkels, ${ }^{37}$ M. J. Szczepańczyk, ${ }^{34}$ M. Tacca, ${ }^{37}$ S. C. Tait, ${ }^{44}$ C. Talbot,,${ }^{6}$ D. Talukder, ${ }^{70}$ D. B. Tanner, ${ }^{48}$ M. Tápai, ${ }^{123}$ A. Taracchini, ${ }^{36}$ J. D. Tasson, ${ }^{94}$ R. Taylor, ${ }^{1}$ F. Thies, ${ }^{8,9}$ M. Thomas, ${ }^{7}$ P. Thomas, ${ }^{45}$ S. R. Thondapu, ${ }^{61}$ K. A. Thorne, ${ }^{7}$ E. Thrane, ${ }^{6}$ Shubhanshu Tiwari, ${ }^{12,96}$ Srishti Tiwari, ${ }^{124}$ V. Tiwari, ${ }^{68}$ K. Toland, ${ }^{44}$ M. Tonelli, ${ }^{18,19}$ Z. Tornasi, ${ }^{44}$ A. Torres-Forné, ${ }^{173}$ C. I. Torrie, ${ }^{1}$ D. Töyrä, ${ }^{11}$ F. Travasso, ${ }^{28,41}$ G. Traylor, ${ }^{7}$ M. C. Tringali, ${ }^{74}$ A. Trovato, ${ }^{27}$ L. Trozzo, ${ }^{174,19}$ R. Trudeau, ${ }^{1}$ K. W. Tsang, ${ }^{37}$ M. Tse, ${ }^{12}$ R. Tso, ${ }^{46}$ L. Tsukada, ${ }^{82}$ D. Tsuna, ${ }^{82}$ D. Tuyenbayev,,${ }^{104}$ K. Ueno, ${ }^{82}$ D. Ugolini,,${ }^{175}$ C. S. Unnikrishnan, ${ }^{124}$ A. L. Urban, ${ }^{2}$ S. A. Usman, ${ }^{68}$ H. Vahlbruch, ${ }^{9}$ G. Vajente, ${ }^{1}$ G. Valdes, ${ }^{2}$ N. van Bakel,,${ }^{37}$ M. van Beuzekom, ${ }^{37}$ J. F. J. van den Brand, ${ }^{75,37}$ C. Van Den Broeck, ${ }^{37,176}$ D. C. Vander-Hyde, ${ }^{42}$ J. V. van Heijningen, ${ }^{63}$ L. van der Schaaf, ${ }^{37}$ A. A. van Veggel, ${ }^{44}$ M. Vardaro,,${ }^{51,52}$ V. Varma, ${ }^{46}$ S. Vass, ${ }^{1}$ M. Vasúth, ${ }^{47}$ A. Vecchio, ${ }^{11}$ G. Vedovato, ${ }^{52}$ J. Veitch,,${ }^{44}$ P. J. Veitch, ${ }^{55}$ K. Venkateswara, ${ }^{165}$ G. Venugopalan, ${ }^{1}$ D. Verkindt, ${ }^{33}$ F. Vetrano, ${ }^{72,73}$ A. Viceré, ${ }^{72,73}$ A. D. Viets, ${ }^{23}$ D. J. Vine, ${ }^{166}$ J.-Y. Vinet, ${ }^{65}$ S. Vitale,,12 T. Vo, ${ }^{42}$ H. Vocca,,${ }^{40,41}$ C. Vorvick, ${ }^{45}$ S. P. Vyatchanin, ${ }^{62}$ A. R. Wade, ${ }^{1}$ L. E. Wade, ${ }^{115}$ M. Wade, ${ }^{115}$ R. Wale,,${ }^{37}$ M. Walker, ${ }^{26}$ L. Wallace, ${ }^{1}$ S. Walsh, ${ }^{23}$ G. Wang, ${ }^{14,19}$ H. Wang, ${ }^{11}$ J. Z. Wang, ${ }^{126}$ W. H. Wang, ${ }^{104}$ Y. F. Wang, ${ }^{91}$ R. L. Ward, ${ }^{21}$ Z. A. Warden, ${ }^{34}$ J. Warner, ${ }^{45}$ M. Was, ${ }^{33}$ J. Watchi, ${ }^{100}$ B. Weaver, ${ }^{45}$ L.-W. Wei, ${ }^{8,9}$ M. Weinert, ${ }^{8,9}$ A. J. Weinstein, ${ }^{1}$ R. Weiss, ${ }^{12}$ F. Wellmann, ${ }^{8,9}$ L. Wen, ${ }^{63}$ E. K. Wessel, ${ }^{17}$ P. Weßels, ${ }^{8,9}$ J. W. Westhouse, ${ }^{34}$ K. Wette, ${ }^{21}$ J. T. Whelan, ${ }^{58}$ B. F. Whiting, ${ }^{48}$ C. Whittle, ${ }^{12}$ D. M. Wilken, ${ }^{8,9}$ D. Williams, ${ }^{44}$ A. R. Williamson, ${ }^{128,37}$ J. L. Willis, ${ }^{1}$ B. Willke, ${ }^{8,9}$ M. H. Wimmer, ${ }^{8,9}$ W. Winkler, ${ }^{8,9}$ C. C. Wipf, ${ }^{1}$ H. Wittel, ${ }^{8,9}$ G. Woan, ${ }^{44}$ J. Woehler, ${ }^{8,9}$ J. K. Wofford, ${ }^{58}$ J. Worden,,45 J. L. Wright, ${ }^{44}$ D. S. Wu, ${ }^{8,9}$ D. M. Wysocki, ${ }^{58}$ L. Xiao, ${ }^{1}$ R. Xu, ${ }^{105}$ H. Yamamoto, ${ }^{1}$ C. C. Yancey, ${ }^{76}$ L. Yang,,${ }^{114}$ M. J. Yap, ${ }^{21}$ M. Yazback, ${ }^{48}$ D. W. Yeeles, ${ }^{68}$ Hang Yu, ${ }^{12}$ Haocun Yu, ${ }^{12}$ S. H. R. Yuen, ${ }^{91}$ M. Yvert, ${ }^{33}$ A. K. Zadrożny,,${ }^{104,142}$ M. Zanolin, ${ }^{34}$ T. Zelenova, ${ }^{28}$ J.-P. Zendri, ${ }^{52}$ M. Zevin, ${ }^{59}$ J. Zhang, ${ }^{63}$ L. Zhang, ${ }^{1}$ T. Zhang, ${ }^{44}$ C. Zhao, ${ }^{63}$ M. Zhou, ${ }^{59}$ Z. Zhou, ${ }^{59}$ X. J. Zhu, ${ }^{6}$ M. E. Zucker, ${ }^{1,12}$ and J. Zweizig ${ }^{1}$
(LIGO Scientific and Virgo Collaboration)
${ }^{1}$ LIGO, California Institute of Technology, Pasadena, California 91125, USA
${ }^{2}$ Louisiana State University, Baton Rouge, Louisiana 70803, USA
${ }^{3}$ Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
${ }^{4}$ Università di Salerno, Fisciano, I-84084 Salerno, Italy
${ }^{5}$ INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
${ }^{6}$ OzGrav, School of Physics \& Astronomy, Monash University, Clayton 3800, Victoria, Australia
${ }^{7}$ LIGO Livingston Observatory, Livingston, Louisiana 70754, USA
${ }^{8}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
${ }^{9}$ Leibniz Universität Hannover, D-30167 Hannover, Germany
${ }^{10}$ University of Cambridge, Cambridge CB2 1TN, United Kingdom
${ }^{11}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{12}$ LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{13}$ Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
${ }^{14}$ Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy
${ }^{15}$ INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy
${ }^{16}$ International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
${ }^{17}$ NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
${ }^{18}$ Università di Pisa, I-56127 Pisa, Italy
${ }^{19}$ INFN, Sezione di Pisa, I-56127 Pisa, Italy
${ }^{20}$ Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain
${ }^{21}$ OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
${ }^{22}$ Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
${ }^{23}$ University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
${ }^{24}$ SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
${ }^{25}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France
${ }^{26}$ California State University Fullerton, Fullerton, California 92831, USA
${ }^{27}$ APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
${ }^{28}$ European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
${ }^{29}$ Chennai Mathematical Institute, Chennai 603103, India
${ }^{30}$ Università di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{31}$ INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
${ }^{32}$ INFN, Sezione di Roma, I-00185 Roma, Italy
${ }^{33}$ Laboratoire d'Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
${ }^{34}$ Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
${ }^{35}$ Montclair State University, Montclair, New Jersey 07043, USA
${ }^{36}$ Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
${ }^{37}$ Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands
${ }^{38}$ Korea Institute of Science and Technology Information, Daejeon 34141, South Korea
${ }^{39}$ West Virginia University, Morgantown, West Virginia 26506, USA
${ }^{40}$ Università di Perugia, I-06123 Perugia, Italy
${ }^{41}$ INFN, Sezione di Perugia, I-06123 Perugia, Italy
${ }^{42}$ Syracuse University, Syracuse, New York 13244, USA
${ }^{43}$ University of Minnesota, Minneapolis, Minnesota 55455, USA
${ }^{44}$ SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{45}$ LIGO Hanford Observatory, Richland, Washington 99352, USA
${ }^{46}$ Caltech CaRT, Pasadena, California 91125, USA
${ }^{47}$ Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
${ }^{48}$ University of Florida, Gainesville, Florida 32611, USA
${ }^{49}$ Stanford University, Stanford, California 94305, USA
${ }^{50}$ Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
${ }^{51}$ Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
${ }^{52}$ INFN, Sezione di Padova, I-35131 Padova, Italy
${ }^{53}$ Montana State University, Bozeman, Montana 59717, USA
${ }^{54}$ Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland

[^1][^2][^3]${ }^{a}$ Deceased.

[^0]: *Full author list given at end of the article.

[^1]: ${ }^{55}$ OzGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
 ${ }^{56}$ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
 ${ }^{57}$ INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
 ${ }^{58}$ Rochester Institute of Technology, Rochester, New York 14623, USA
 ${ }^{59}$ Center for Interdisciplinary Exploration \& Research in Astrophysics (CIERA), Northwestern University, Evanston, Illinois 60208, USA
 ${ }^{60}$ INFN, Sezione di Genova, I-16146 Genova, Italy
 ${ }^{61}$ RRCAT, Indore, Madhya Pradesh 452013, India
 ${ }^{62}$ Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
 ${ }^{63}$ OzGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
 ${ }^{64}$ Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands
 ${ }^{65}$ Artemis, Université Côte d'Azur, Observatoire Côte d'Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France
 ${ }^{66}$ Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
 ${ }^{67}$ Univ Rennes, CNRS, Institut FOTON-UMR6082, F-3500 Rennes, France
 ${ }^{68}$ Cardiff University, Cardiff CF24 3AA, United Kingdom
 ${ }^{69}$ Washington State University, Pullman, Washington 99164, USA
 ${ }^{70}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{71}$ Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France
 ${ }^{72}$ Università degli Studi di Urbino 'Carlo Bo,' I-61029 Urbino, Italy
 ${ }^{73}$ INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
 ${ }^{74}$ Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
 ${ }^{75}$ VU University Amsterdam, 1081 HV Amsterdam, Netherlands
 ${ }^{76}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{77}$ School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
 ${ }^{78}$ Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
 ${ }^{79}$ Università di Napoli 'Federico II,' Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
 ${ }^{80}$ NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
 ${ }^{81}$ Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy
 ${ }^{82}$ RESCEU, University of Tokyo, Tokyo, 113-0033, Japan
 ${ }^{83}$ Tsinghua University, Beijing 100084, China
 ${ }^{84}$ Texas Tech University, Lubbock, Texas 79409, USA
 ${ }^{85}$ The University of Mississippi, University, Mississippi 38677, USA
 ${ }^{86}$ Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", I-00184 Roma, Italyrico Fermi, I-00184 Roma, Italy
 ${ }^{87}$ The Pennsylvania State University, University Park, Pennsylvania 16802, USA
 ${ }^{88}$ National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
 ${ }^{89}$ Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
 ${ }^{90}$ University of Chicago, Chicago, Illinois 60637, USA
 ${ }^{91}$ The Chinese University of Hong Kong, Shatin, NT, Hong Kong
 ${ }^{92}$ Seoul National University, Seoul 08826, South Korea
 ${ }^{93}$ Pusan National University, Busan 46241, South Korea
 ${ }^{94}$ Carleton College, Northfield, Minnesota 55057, USA
 ${ }^{95}$ INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
 ${ }^{96}$ INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
 ${ }^{97}$ OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia
 ${ }^{98}$ Columbia University, New York, New York 10027, USA
 ${ }^{99}$ Universitat de les Illes Balears, IAC3-IEEC, E-07122 Palma de Mallorca, Spain
 ${ }^{100}$ Université Libre de Bruxelles, Brussels 1050, Belgium
 ${ }^{101}$ Sonoma State University, Rohnert Park, California 94928, USA
 ${ }^{102}$ Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain
 ${ }^{103}$ University of Rhode Island, Kingston, Rhode Island 02881, USA
 ${ }^{104}$ The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA
 ${ }^{105}$ Bellevue College, Bellevue, Washington 98007, USA
 ${ }^{106}$ MTA-ELTE Astrophysics Research Group, Institute of Physics, Eötvös University, Budapest 1117, Hungary
 ${ }^{107}$ Institute for Plasma Research, Bhat, Gandhinagar 382428, India
 ${ }^{108}$ The University of Sheffield, Sheffield S10 2TN, United Kingdom

[^2]: ${ }^{109}$ IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain
 ${ }^{110}$ Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma,
 I-43124 Parma, Italy
 ${ }^{111}$ California State University, Los Angeles, 5151 State University Dr, Los Angeles, California 90032, USA
 ${ }^{112}$ Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
 ${ }^{113}$ Università di Roma 'La Sapienza,' I-00185 Roma, Italy
 ${ }^{114}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{115}$ Kenyon College, Gambier, Ohio 43022, USA
 ${ }^{116}$ Christopher Newport University, Newport News, Virginia 23606, USA
 ${ }^{117}$ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
 ${ }^{118}$ Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
 ${ }^{119}$ Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
 ${ }^{120}$ School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
 ${ }^{121}$ Institute Of Advanced Research, Gandhinagar 382426, India
 ${ }^{122}$ Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
 ${ }^{123}$ University of Szeged, Dóm tér 9, Szeged 6720, Hungary
 ${ }^{124}$ Tata Institute of Fundamental Research, Mumbai 400005, India
 ${ }^{125}$ INAF, Osservatorio Astronomico di Capodimonte, I-80131, Napoli, Italy
 ${ }^{126}$ University of Michigan, Ann Arbor, Michigan 48109, USA
 ${ }^{127}$ American University, Washington, DC 20016, USA
 ${ }^{128}$ GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
 ${ }^{129}$ Delta Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam, Netherlands
 ${ }^{130}$ Directorate of Construction, Services \& Estate Management, Mumbai 400094 India
 ${ }^{131}$ University of Biatystok, 15-424 Biatystok, Poland
 ${ }^{132}$ King's College London, University of London, London WC2R 2LS, United Kingdom
 ${ }^{133}$ University of Southampton, Southampton SO17 1BJ, United Kingdom
 ${ }^{134}$ University of Washington Bothell, Bothell, Washington 98011, USA
 ${ }^{135}$ Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
 ${ }^{136}$ Ewha Womans University, Seoul 03760, South Korea
 ${ }^{137}$ Inje University Gimhae, South Gyeongsang 50834, South Korea
 ${ }^{138}$ National Institute for Mathematical Sciences, Daejeon 34047, South Korea
 ${ }^{139}$ Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
 ${ }^{140}$ Universität Hamburg, D-22761 Hamburg, Germany
 ${ }^{141}$ Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands ${ }^{142}$ NCBJ, 05-400 Świerk-Otwock, Poland
 ${ }^{143}$ Institute of Mathematics, Polish Academy of Sciences, 00656 Warsaw, Poland
 ${ }^{144}$ Cornell University, Ithaca, New York 14850, USA
 ${ }^{145}$ Hillsdale College, Hillsdale, Michigan 49242, USA
 ${ }^{146}$ Hanyang University, Seoul 04763, South Korea
 ${ }^{147}$ Korea Astronomy and Space Science Institute, Daejeon 34055, South Korea
 ${ }^{148}$ NASA Marshall Space Flight Center, Huntsville, Alabama 35811, USA
 ${ }^{149}$ Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, I-00146 Roma, Italy
 ${ }^{150}$ INFN, Sezione di Roma Tre, I-00146 Roma, Italy
 ${ }^{151}$ ESPCI, CNRS, F-75005 Paris, France
 ${ }^{152}$ OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia
 ${ }^{153}$ University of Portsmouth, Portsmouth, PO1 3FX, United Kingdom
 ${ }^{154}$ Southern University and A\&M College, Baton Rouge, Louisiana 70813, USA
 ${ }^{155}$ College of William and Mary, Williamsburg, Virginia 23187, USA
 ${ }^{156}$ Centre Scientifique de Monaco, 8 quai Antoine Ier, MC-98000, Monaco
 ${ }^{157}$ Indian Institute of Technology Madras, Chennai 600036, India
 ${ }^{158}$ INFN Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
 ${ }^{159}$ Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
 ${ }^{160}$ IISER-Kolkata, Mohanpur, West Bengal 741252, India
 ${ }^{161}$ Whitman College, 345 Boyer Avenue, Walla Walla, Washington 99362 USA
 ${ }^{162}$ Université de Lyon, F-69361 Lyon, France
 ${ }^{163}$ Hobart and William Smith Colleges, Geneva, New York 14456, USA
 ${ }^{164}$ Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland
 ${ }^{165}$ University of Washington, Seattle, Washington 98195, USA

[^3]: ${ }^{166}$ SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
 ${ }^{167}$ Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
 ${ }^{168}$ Université de Montréal/Polytechnique, Montreal, Quebec H3T 1J4, Canada
 ${ }^{169}$ Indian Institute of Technology Hyderabad, Sangareddy, Khandi, Telangana 502285, India
 ${ }^{170}$ International Institute of Physics, Universidade Federal do Rio Grande do Norte,
 Natal RN 59078-970, Brazil
 ${ }^{171}$ Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA
 ${ }^{172}$ Andrews University, Berrien Springs, Michigan 49104, USA
 ${ }^{173}$ Max Planck Institute for Gravitationalphysik (Albert Einstein Institute),
 D-14476 Potsdam-Golm, Germany
 ${ }^{174}$ Università di Siena, I-53100 Siena, Italy
 ${ }^{175}$ Trinity University, San Antonio, Texas 78212, USA
 ${ }^{176}$ Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747
 AG Groningen, Netherlands

