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SUMMARY
Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and
diversity.Whether bacterial genomesmay also adapt to the industrialization of their host populations remains
largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer
(HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrial-
ization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT
occurs at high frequency within individuals. Comparison across human populations reveals that industrial-
ized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level
of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based
on host lifestyle and that high rates of HGT may be a recent development in human history linked to
industrialization.
INTRODUCTION

Transitioning from nonindustrialized to industrialized lifestyles is

associated with changes in gut microbiome composition and

decreased bacterial species diversity (Brewster et al., 2019;
Cell 184, 2053–2067, A
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Hansen et al., 2019; McDonald et al., 2018; Pasolli et al., 2019;

Schnorr et al., 2014; Sonnenburg and Sonnenburg, 2019b;

Yatsunenko et al., 2012). While the precise causes of these

changes are unknown, factors associated with the development

of industrialized societies such as sanitation, the consumption of
pril 15, 2021 ª 2021 The Authors. Published by Elsevier Inc. 2053
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2021.02.052&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tommi Vatanen,3,4,22 Shani Sigwazi,4,23 Audax Mabulla,4,24 Manuel Domı́nguez-Rodrigo,4,25,26 Yvonne A. Nartey,4,27

Adwoa Agyei-Nkansah,4,28 Amoako Duah,4,29 Yaw A. Awuku,4,30 Kenneth A. Valles,4,31 Shadrack O. Asibey,4,32

Mary Y. Afihene,4,33 Lewis R. Roberts,4,34 Amelie Plymoth,4,27 Charles A. Onyekwere,4,35 Roger E. Summons,4,5

Ramnik J. Xavier,3,4,36,37 and Eric J. Alm1,2,3,4,40,*
22The Liggins Institute, University of Auckland, Auckland 1023, New Zealand
23Tumaini University Makumira, Arusha, Tanzania
24Department of Archaeology and Heritage Studies, University of Dar es Salaam, Tanzania
25Prehistory Unit, Department of History and Philosophy, University of Alcalá, Alcalá de Henares, Madrid, Spain
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processed food, higher frequency of caesarean section, and

increased use of antibiotics likely play key roles in remodeling

the gut microbiome (Sonnenburg and Sonnenburg, 2019a).

These perturbations in the gut ecosystem can occur shortly after

individuals transition from nonindustrialized to industrialized

areas and persist for years (Vangay et al., 2018), further confirm-

ing that lifestyle strongly influences the function of our gut micro-

biome. However, the effects of host and environmental factors

associated with industrialized lifestyles on individual gut bacte-

rial genomes are poorly characterized.

Bacteria can use horizontal gene transfer (HGT) to adapt

rapidly to unstable environments through the acquisition of

new functions. Mammalian gut bacteria have experienced

frequent HGT events over millions of years of evolution (Hehe-

mann et al., 2010; Smillie et al., 2011). Previous studies of spe-

cific bacterial species showed that HGT can occur and be

conserved in the gut microbiome within a single individual

(Coyne et al., 2014; Garud et al., 2019; Munck et al., 2020; Yaffe

and Relman, 2020; Zhao et al., 2019; Zlitni et al., 2020), espe-

cially when there is strong selection for target functions such

as antibiotic resistance (Forsberg et al., 2012; Lopatkin et al.,

2017; Modi et al., 2013). Yet, it remains unclear whether HGT

can occur broadly enough to impact gut microbiome function

over an individual’s lifetime, such as in response to significant

lifestyle changes, or whether microbiomes primarily acquire

new functions through the acquisition of new strains. It was pre-

viously observed that individual bacterial strains can reside

within a host microbiome for decades (Faith et al., 2013). If

the rate of gene transfer is sufficiently rapid, then a microbiome

that is ‘‘stable’’ in terms of bacterial populations (Faith et al.,

2013; Gibbons et al., 2017; Mehta et al., 2018) could nonethe-

less evolve in response to host-specific environmental perturba-

tions through HGT, perhaps in response to changes in host

lifestyle.
2054 Cell 184, 2053–2067, April 15, 2021
In a previous study (Smillie et al., 2011), we found high levels of

HGTs in the human microbiome involving >500-bp-length se-

quences with >99% similarity. Those results lacked the temporal

resolution and the diversity in human populations necessary to

address the questions of timescales and host lifestyle. Over

short evolutionary timescales, the substitution rate of many bac-

terial species typically falls in the range of �1 SNP/genome/year

(Didelot et al., 2016; Drake, 1991; Duchêne et al., 2016; Zhao

et al., 2019). Assuming this rough molecular clock approxima-

tion, and a genome size of 106 bp, the HGTs we detected using

those criteria (>500 bp, >99% similarity) were consistent with

transfer events that occurred between 0 and 10,000 years ago

(see STAR Methods). Variations in the molecular clock across

species and genomic regions may shorten or expand this time

interval. In any case, our previous results could not constrain

the dates of HGT that occurred more recently than the rise of

modern industrialization, dated to the 18th–19th century (de

Vries, 1994). To answer the question of whether commensal

strains can frequently acquire new functionality through HGT

within an individual, such that recent adaptations to industrializa-

tion are detectable in contemporary bacterial genomes, more

precise estimates of the rate and extent of HGT are needed.

Existing reference isolate genomes (Browne et al., 2016; Faith

et al., 2013; Forster et al., 2019; Goodman et al., 2011; Zou et al.,

2019) originate almost exclusively from industrialized popula-

tions and, for the vast majority of strains, from different individ-

uals, making investigation of within-person HGT impossible.

Here, we present the Global Microbiome Conservancy (GMbC)

isolate collection, composed of >4,000 cultured, isolated, and

sequenced gut bacteria from diverse industrialized and nonin-

dustrialized populations, including rich sets of strains from single

individuals. We used these genomes to investigate the rate

and patterns of gene transfers that occurred very recently

in human history. We show that HGTs can occur at high and
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heterogeneous frequency within individuals, and we report

elevated rates of gene transfer in industrialized populations.

RESULTS

A diverse collection of bacterial isolate genomes from
worldwide gut microbiomes
We cultured, isolated, and whole-genome sequenced 4,149 gut

bacteria from 37 individuals from 14 distinct populations with

different levels of industrialization (Figures 1A and 1B). Bacteria

were isolated from stool samples under anaerobic conditions,

using previously published protocols (Poyet et al., 2019). We

combined these GMbC genomes with a set of 3,632 isolate ge-

nomes from the Broad Institute-OpenBiome Microbiome Library

(BIO-ML) genome collection that we recently generated from 11

urban American donors (Poyet et al., 2019), yielding a dataset of

7,781 isolate genomes. We then divided our cohort of 48 individ-

uals according to two different parameters, which we defined as:

‘‘urban’’ versus ‘‘rural’’ (based on local population density)

(SEDAC Population Estimation Service, 2015), and ‘‘industrial-

ized’’ versus ‘‘nonindustrialized’’ (based on the Human Develop-

ment Index [HDI] at the country level) (United Nations Develop-

ment Program, 2020). For the purposes of this analysis, we

used HDI as a proxy for industrialization because it reflects pa-

rameters that are relevant to health and the microbiome, such

as the consumption of processed foods, rates of noncommuni-

cable diseases, sanitation infrastructure, and health expenditure

(United Nations Development Program, 2020). This classification

system yielded four groups of different lifestyles: rural nonindus-

trialized, urban nonindustrialized, rural industrialized, and urban

industrialized (see Figures 1A, 1B, S1A, and S1B and Table S1

for descriptions of population metadata and microbiome com-

positions). The nonindustrialized rural cohort includes popula-

tions with diverse subsistence strategies, including hunter-gath-

erers, pastoralists, fishermen, and farmers (Figure 1B).

We grouped our 7,781 isolate genomes into species clusters

based on genomic similarity, using the Mash distance as a proxy

for average nucleotide identity (see STAR Methods). This identi-

fied 339 bacterial species across 6 phyla, grouping into 73

known and 88 unknown genera (see Figure 1C and Table S2

for culturing data and genome assembly statistics). Comparing

our genome collection to the Unified Human Gastrointestinal

Genome (UHGG) database (see STAR Methods; Almeida et al.,
Figure 1. Assembly of a geographically, phylogenetically, and ecologic

(A) Samples were collected from 15 communities in the USA, Canada, Finland,

cations of sampling sites. Participants represented four different lifestyle categori

Finland; 5 rural industrialized (RI) individuals in the USA, arctic Finland, and the Ca

and Ghana; and 23 rural nonindustrialized (RN) individuals in Cameroon, Tanzan

(B) Distribution of isolate genomes across countries, lifestyles, and subsistence

(C) Phylogenetic tree of representative genomes of all 339 species in our isolate ge

our work, did not have representative genomes among the cultured bacteria of hu

genomes across all species in the GMbC + BIO-ML collection.

(D) Genomic distance between each representative genome of the GMbC + BIO

dots show results with all UHGG genomes, which includes metagenome-assemb

cultivated bacteria of human gut origin. The red dash line shows the threshold (D

(E) In vivo abundance of all species in the GMbC + BIO-ML collection. Individuals a

purple). Species that were not detected by Kraken2 (low abundance or no close r

Kraken2 are shown as triangles.
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2021), which comprises the largest set of human gut bacterial

genomes, we found that 13% of the species in our collection

have no representatives among all characterized UHGG species

(which include species defined from metagenomic data alone),

and 41% have no representatives among the set of previously

cultivated human gut species (Figure 1D). We sampled a median

of 93 isolate genomes and 17 species per individual, covering a

wide range of within-person bacterial taxonomies and in vivo

abundances (Figure 1E; Table S1), providing within-person

genomic and ecological diversity for high-resolution investiga-

tion of HGTs.

Individual gut microbiomes harbor extensive
recent HGTs
We first detected and quantified HGT events that occurred

recently in human history. We screened all genomes for large

blocks of 100% identical DNA that were shared between any

pairs of genomes of different species, retaining blocks larger

than 500 bp (hereafter named ‘‘500bp+ HGTs’’) or larger than

10 kb (‘‘10kb+ HGTs’’). HGT is the best explanation for these ob-

servations compared to vertical inheritance, as the expected

number of mutations between highly conserved and vertically in-

herited ribosomal genes of different species far exceeds the

threshold (0 SNP) used in our heuristic to retain candidate

HGTs (Figure S1C). 10-kb+ HGTs that do not contain any muta-

tions correspond to events that occurred between 0 and �100

years ago (see STAR Methods). Thus, these 10kb+ HGTs likely

occurred over the most recent two or three human generations,

including within the sampled individuals. We removed putative

contaminants from the analysis by filtering out HGTs with low

relative sequencing coverage (i.e., compared to the coverage

of the two genomes under consideration; see STAR Methods),

resulting in a set of HGTs with median relative coverage of

1.13 (Figure S1D). We found that 90% (7,031/7,781) and 53%

(4,096/7,781) of our genomes are involved in at least one

500bp+ HGT and one 10kb+ HGT, respectively (Figure 2A; Table

S3), covering a diversity of taxonomic groups (Figure 2B). HGTs

included genes that are involved in a variety of cellular, meta-

bolic, and informational functions (Figure S1E), with selfish

element and phage/conjugative transposon functions being en-

riched in the set of 500bp+ HGTs and 10kb+ HGTs, respectively

(Figure S1F). Many of the genes carried by within-person 10kb+

HGTs segregate at high frequencies in bacterial populations
ally diverse collection of human gut bacterial isolate genomes

Cameroon, Tanzania, Ghana, and Nigeria. Red dots show the geographic lo-

es: 14 urban industrialized (UI) individuals in the USA and eastern and southern

nadian arctic; 6 urban nonindustrialized (UN) individuals in Cameroon, Nigeria,

ia, and Ghana. See Table S1 for further individual metadata.

strategies.

nome collections (GMbC + BIO-ML). The inner ring shows species that, prior to

man gut origin in the UHGG database. The outer ring shows the distribution of

-ML collection and the closest representative in the UHGG database. Orange

led genomes (MAGs). Green dots show comparisons only with genomes from

= 0.05) that is classically used to delineate species.

re colored by lifestyle category (UI in orange, RI in green, UN in blue, and RN in

epresentatives in genome collections) are shown as dots; species detected by



Figure 2. Diverse human gut bacteria recently engaged in frequent HGT

(A) Phylogenomic tree of the 7,781 human gut bacterial isolates that we analyzed in this study, whichwere sampled from 15 human populations. The tree has been

reconstructed by maximum likelihood with a multiple sequence alignment of ribosomal protein-coding genes. Branches are colored by phylum and branch

lengths are expressed in expected number of substitutions per site. The inner (purple) and outer (blue) rings show genomes in which at least 1 HGT larger than

500 bp and 10 kb was detected, respectively.

(B) Networks of within-person HGT frequency derived from 500bp+ (left) and 10kb+ (right) HGTs. Vertices represent bacterial species and are colored by phylum.

Edge width is proportional to the average within-person HGT frequency between the two connected species. Colored edges show within-phylum HGTs, while

gray edges represent between-phylum HGTs.
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within each host, suggesting potential fixation (Figure S1G).

However, the majority of transferred genes are found at low fre-

quency, reflecting their recent acquisition in the population

(Figure S1G).

To test whether these HGTs occurred recently, we compared

the frequency and count of 10kb+ HGTs observed between

bacteria isolated from a single individual with that observed be-

tween the same bacteria from different individuals (see STAR

Methods). We hypothesized that if transfers occur frequently

within individual microbiomes, then we would observe higher

levels of transfer between strains isolated from a single host.

Alternatively, if transfers rarely occur (i.e., at rates slower than

strain turnover), then we would observe similar levels of HGT be-

tween bacteria regardless of whether they were isolated from the

same host. Importantly, both within-person and between-people

HGTs include some background level of more ancient HGT (e.g.,

very slowly evolving genomic regions that are still 100% similar

over the 10kb+ region) that do not result from direct sharing be-

tween two co-residing species in present microbiomes. Bacte-

rial species that share genes directly, however, will only be

found in within-person comparisons. The difference between

the within-person and between-people HGTs reflects the very

recent HGTs that occurred within individuals and thus can be

quantified. We found that bacterial species pairs sampled within

individuals aremore likely to share recently transferred DNA than

the same species pairs sampled from two different people; using

a Poisson distribution, we compared the observed count of HGT

events for pairs of species sampled within individual people to its

expected value based on HGT frequencies of the same species

pairs found between people (Figure 3A; p value < 2.2 3 10�308).

This comparison allows us to correct for differences in the num-
ber of both genome and individual pairs being sampled between

the two categories (within person versus between people) (see

statistical analyses in STAR Methods). We also randomly down-

sampled our data to further control for the unequal sampling of

genomes across individual pairs (see statistical analyses in

STAR Methods), which confirmed that observed HGT counts

within individual people are higher than expected HGT counts

(100 random replicates, Welsh t test, t = 259.56, df = 102.44,

p value = 3.3 3 10�146; see Table S4).

We next controlled for the effect of phylogeny on this result, as

more closely related species are more likely to engage in HGT

(Smillie et al., 2011) and could be unevenly distributed between

within-person and between-people categories. In our data,

phylogenetic relatedness strongly associates with HGT fre-

quency (generalized linear mixed effects [GLME] models; n (spe-

cies pairs) = 3,667; odds ratio [OR] = 0.02; 95% confidence inter-

val [CI] = 0.01–0.06; combined with a likelihood ratio test ([LRT],

c2 = 62.96; p value = 2.1 3 10�15) but does not confound our

result; the within-person HGT is significantly higher than the be-

tween-people HGT across phylogenetic distance bins (Fisher’s

method; c2 = 204.5 and p value = 7 3 10-28 for 10kb+ HGTs;

c2 = 149.1 and p value = 1.8 3 10–14 for 500bp+ HGTs) (Fig-

ure 3B). In addition, the higher levels of within-person HGTs

are also observed when looking at the larger set of 500bp+

HGTs (Poisson distribution, p value < 2.2 3 10�308) (Figures 3A

and S2J). We also investigated whether the higher within-person

HGT that we observed at the aggregate level was present in in-

dividual populations as well. Performing our analyses for each of

the sampled countries or ethnic groups containing more than

four individuals separately, we found that this observation was

replicated in each individual group (Figures S2A–S2I). In
Cell 184, 2053–2067, April 15, 2021 2057
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addition, we controlled for the effect of the in vitro culturing of

bacteria on the quantification of HGTs, as bacteria co-cultured

on the same plate or in the presence of antibiotics could experi-

ence HGTs that do not reflect in vivo events. We did not find any

significant increase in HGT for genome pairs grown on the same

plate or in the presence of antibiotics (see STAR Methods and

Table S4 for all statistical comparisons).

The signal of HGT enrichment within individuals compared to

its expected value suggests that a broad and diverse set of bac-

terial species very recently engaged in HGT and that HGTs can

rapidly accumulate in bacterial pangenomes. Strictly speaking,

we cannot yet distinguish between individual transfers that

occurred in the host of origin from those that may have occurred

in a host’s parent or evengrandparent. However, host intergener-

ational co-transmission of species involved in past HGTs must

occur to observe ancient HGT events in today’s microbiome.

To be counted in our analyses, these HGTs must also not expe-

rience any mutation. We used a simulation approach to quantify

the amount of HGTs in the host of origin (generation 0, sampled

at present time) thatwould represent pastHGTevents originating

from previous generations and that would not have experienced

any mutation (see STAR Methods). We used a previously pub-

lished rate of mother-to-infant strain transmission, estimated to

be�16% (Ferretti et al., 2018), to fix the rate of intergenerational

species transmission in our simulations. We also simulated data

using amore extreme rate of 50%of species transmission across

generations. We found that the number of HGTs rapidly decays

across generations (Figure 3C). In total, the amount of 100%

similar HGTs observed at present generation that originate from

ancient generations is �3% with the 16% probability of vertical

species transmission and �25% when considering the extreme

probability of 50% species transmission. These results strongly

suggest that the vast majority of HGTs being seen in within-per-

son species comparisons occurred during the present genera-

tion (i.e., during the lifetime of each sampled individual).

We next investigated whether, within people, bacterial species

engage in the transfer of gene functions that may impact bacte-
Figure 3. HGTs accumulate rapidly within the gut microbiome of indiv

(A) HGT frequencies within and between people were computed using the whole s

people pairs, respectively. Each solid line represents a bacterial species pair sam

two categories of pairs of individuals. The order in which lines are displayed is at ra

difference) to red (within-person HGT frequency is higher than between-people

person), with darker colors representing greater differences. Barplots show th

compared to their expected values (see STAR Methods). The number of species

(B) Association betweenHGT frequency and phylogenetic distance of species pair

aa/site; bands represent confidence intervals calculated from the standard errors

Within-person HGT frequencies are compared to between-people HGTs with the

(C) Host generation in which observed HGTs detected in the microbiome in gen

results obtained when setting the intergenerational transmission of bacterial spec

calculated HGT percentages.

(D) ‘‘Upset’’ plot showing the intersections between the sets of species pairs invo

the bottom show the relative intersection sizes for Firmicutes and Bacteroidetes

(E) Within-person acquisition of genes in Bacteroides vulgatus genomes over the

isolates sampled across all individuals in our dataset, with isolates in blue being lo

Middle and right panels showgene presence/absence in am genomes (rows), sort

were absent in the pangenome at the first time point. See Figure S3 and Table S

(F) Within-person rates of gene gain (left) and loss (right) in the pangenome (expr

(G) Correlation between within-person rates of gene gain and gene loss in pange

loss. The yellow line shows the y = x line.
rial metabolism or host physiology. To test this, we looked at

within-person transferred genes involved in antibiotic resistance

(antibiotic resistance genes [ARGs]), carbohydrate degradation

(carbohydrate active enzyme [CAZyme]), and virulence. We

found hundreds of species pairs engaging in the transfer of at

least one of these three functions, with the majority of species

pairs exchanging multiple functions (Figure 3D), an observation

relevant to both Firmicutes and Bacteroides species pairs

(Figure 3D).

Bacterial species acquire genes at high and
heterogenous frequency within individual people
Next, we hypothesized that if bacteria frequently acquire new

genes within each person, then their pangenomes should exhibit

strong variations in gene content over time. To directly measure

the rate of within-person gene acquisition, we analyzed the gene

repertoires of isolate genomes that were longitudinally sampled

over the course of �6–18 months in two previous studies: 198

isolate genomes from five species (Bacteroides fragilis, Bacter-

oides vulgatus, Bacteroides ovatus, Bifidobacterium longum,

and Akkermansia muciniphila) sampled in one individual (Poyet

et al., 2019) and 191 Bacteroides fragilis isolate genomes

sampled in five additional people (Zhao et al., 2019; Figures 3E

and S3; Table S5). As strain replacement between time points

can contribute to pangenome diversity, we used SNPs and

phylogenetic reconstructions to restrict our quantification of

the dynamics of gene repertoires to clades of closely related ge-

nomes that diversified within their host following initial coloniza-

tion of the gut (see STAR Methods, Figures 3E and S3, and

phylogenetic trees reconstructed in Zhao et al., 2019). We also

controlled for differences in genome set sizes and genome

coverage between time points (see STAR Methods and Fig-

ure S3J) and accounted for read coverage information at the in-

dividual gene level to derive the final gene presence/absence

profile of a given genome (see STAR Methods). We first quanti-

fied the rates at which new genes are gained in the pangenome

of these five species between any two time points. For each
idual people

et of 7,781 genomes and were averaged across all within-person and between-

pled both within and between individuals and connects HGT frequencies in the

ndom. Differences in HGT frequency are colored along a gradient from gray (no

) or from gray to blue (between-people HGT frequency is higher than within-

e observed total HGTs for bacterial species pairs found within individuals,

and genome pairs for each comparison are listed in Table S3.

s (LOESS regression; distances derived from the tree in Figure 2A, expressed in

). Bars show the average HGT frequencies across all species pairs in each bin.

Fisher’s method to combine p values (see STAR Methods).

eration 0 (present time) occurred in our simulation. Light and dark bars show

ies to 16% and 50%, respectively. Error bars represent standard deviations for

lved in within-person HGTs of ARG, CAZyme, and virulence genes. Barplots in

species pairs.

course of 358 days. The tree depicts the relationships between all B. vulgatus

ngitudinally sampled in individual ‘‘am’’. IDs of other individual hosts are shown.

ed by sampling times. The right panel is a zoom-in of the set of gene families that

5 for data and results on additional species.

essed as number of events/year).

nomes. The blue line represents the linear regression between gene gain and
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species in a single individual, we found that the rate of gene

acquisition in the pangenome is heterogeneous over time (Fig-

ure 3F), varying from tens to hundreds of gene gains per year.

This suggests that gene transfers do not accumulate in a

clock-like fashion, probably because one HGT event can include

a single gene or a large plasmid. Our results further show that

average rates of gene gain in the pangenome per year are het-

erogeneous across species; Bacteroides species acquire new

genes in their pangenome at higher rates compared to

B. longum and A. muciniphila (238 ± 132 genes/year for

B. vulgatus, 353 ± 412 genes/year for B. ovatus, and 161 ± 124

genes/year for B. fragilis compared to 74 ± 25 genes/year for

B. longum and 34 ± 20 genes/year for A. muciniphila) (Figure 3F;

Table S5). These rates, which are directly estimated from longi-

tudinal data, mirror those calculated from our cross-sectional

inference in Figure 3A. Using the set of within-person HGTs,

we calculated the average HGT frequency across all genome

pairs involving either B. vulgatus, B. ovatus, B. fragilis,

B. longum, and A. muciniphila. We confirmed that Bacteroides

species engage more frequently in HGT compared to

B. longum and A. muciniphila, with average HGT frequencies

equal to 2.2%, 2.3%, 0.85%, 0.04%, and 0.06% for 10kb+

HGTs in B. vulgatus, B. ovatus, B. fragilis, B. longum, and

A. muciniphila, respectively, and 8.6%, 10.1%, 6.0%, 0.81%,

and 1.64% for 500bp+ HGTs, respectively. As expected, rates

of gene gains are strongly correlated with rates of gene loss (Fig-

ure 3G; Spearman correlation, S = 1,188, rho = 0.76, p value =

2.3 3 10�6), ultimately maintaining overall proteome sizes (Mira

et al., 2001). Altogether, our results suggest that a variety of

gene functions are horizontally exchanged in the gut microbiome

of each individual host and at rates that may be sufficiently high

to reshape the functions of gut bacterial populations during an

individual’s lifetime.

HGT occurs at higher frequency in the gut microbiomes
of industrialized populations
Having found that HGT occurs frequently within individuals, we

next investigated the extent to which HGT rates and functions

vary across human populations that have different levels of

industrialization. For this, we looked at the bacterial species

pairs in our dataset that are shared by pairs of population groups

along our gradient of industrialization and urbanization, which

comprises four lifestyle categories (Figure 4A; Tables S1 and

S6). This approach allowed us to compare populations with

both major and more modest differences in lifestyle. This anal-

ysis also restricts HGT comparisons to species pairs that are

shared between two host populations. As a consequence, we

used a more inclusive definition of HGT (the set of 500bp+

HGTs) for this analysis tomake up for the loss of statistical power

that resulted from comparing populations two at a time.

We found that species pairs sampled in the urban industrial-

ized populations exchanged genes more frequently than when

they occurred in the rural nonindustrialized group. The number

of observed HGTs found in species pairs of the urban industrial-

ized group was compared to the expected number of events,

based on the HGT frequency of the same species pairs in the ru-

ral nonindustrialized populations (p value < 2.2 3 10�308) (Fig-

ure 4B). These results hold whether averaging both within-per-
2060 Cell 184, 2053–2067, April 15, 2021
son and between-people HGTs or only within-person HGTs

(Figure 4B). We also randomly downsampled the data to control

for the unequal sampling of genomes across individual pairs (see

statistical analysis in STAR Methods), which confirmed that

observed HGT counts in the urban industrialized group are

higher than expected HGT counts (100 random replicates,Welsh

t test, t = 225.04, degrees of freedom [df] = 154.8, p value = 1.23

10�196; see Table S4). To check whether these effects were

driven by outlier individuals rather than population-level differ-

ences, we shuffled membership of individuals across groups

(either by shuffling the lifestyles of individuals or pairs of individ-

uals) and re-ran the analysis; the true urban industrialized cohort

still had significantly higher rates of HGT than the randomly

created groups (1,000 permutations each, p values < 0.001;

see Figure S4). This effect also holds when restricting the anal-

ysis to each type of subsistence strategy (e.g., hunter-gatherer,

pastoralist, or farmer) within the rural nonindustrialized cohort,

which we compared individually to the urban industrialized

group (Figures S5A–S5D).

Along our lifestyle gradient (Figure 4A), we consistently found

that HGTs aremuchmore frequent among the industrialized and/

or urban populations across all pairwise group comparisons

(Figures 4C and S5E). This effect was observed across different

comparison metrics, such as the average difference in HGT fre-

quency and the count and proportion of species pairs with higher

HGT frequency (Figures 4D–4F).

We then controlled for different microbial and ecological

factors that could confound this effect of lifestyle on HGT

frequencies, such as bacterial phylogeny, bacterial cell wall ar-

chitecture, and, more importantly, differences in species abun-

dances between cohorts. We hypothesized that pairs of highly

abundant species in a given ecosystem would have a higher

probability of gene exchange compared to pairs involving at

least one low-abundance species, independent of their phyloge-

netic distance. This hypothesis has never been directly tested,

because datasets that paired in-depth genomic sampling with

accurate abundance estimates did not yet exist. To test the

abundance hypothesis, we calculated the average abundance

of each bacterial species within each person (see STARMethods

and Figure 1E). To test for the effect of cell wall architecture, we

used reference Gram staining data for each bacterial species as

a proxy of cell wall architecture. We used GLME models com-

bined with LRTs on the complete dataset to measure the effect

of host lifestyle on HGT frequencies while also accounting for

the aforementioned factors (see STAR Methods). We confirmed

a significant association between lifestyle and HGT frequency

(n (species pairs) = 10,104; OR for the industrialized lifestyle =

1.99; 95% CI = 1.96–2.03; LRT, c2 = 6629.4, p value < 2.2 3

10�308). We also found that species abundance is a strong deter-

minant of HGT (n = 10,104; OR for lowly abundant species =

0.40; 95% CI = 0.39–0.43; LRT, c2 = 3225.4, p value < 2.2 3

10�308), even after accounting for the effect of other factors in

the GLMEmodels (Figure 5A). Abundant bacteria are more likely

to engage in HGT with other abundant bacteria, which is consis-

tent with the canonical mechanisms of HGT (e.g., conjugation,

transformation, and transduction; Thomas and Nielsen, 2005)

that involve cell-to-cell contact or access to free DNA in the envi-

ronment. In addition, we found that Gram-negative bacteria
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Figure 4. Higher HGT frequency in the gut microbiomes of industrialized populations

(A) Lifestyle pairs used to measure the effect of industrialization and urbanization on HGT frequencies. See Table S1 for population groupings.

(B) Comparison of HGT frequencies for pairs of species sampled in both the UI and RN groups, averaged across all pairs of people. Each line represents a species

pair. The order in which lines are displayed is at random. Differences in HGT frequency between the two groups are colored along a gradient from gray

(no difference) to purple (higher HGT frequency in the UI group) or from gray to green (higher HGT in the RN group). Barplots show the observed total HGT found in

the UI group compared to their expected value (see STAR Methods). The number of species pairs and genomes for each comparison and category are listed in

Table S6.

(C) HGT counts compared across all lifestyle pairs. For lifestyle pairs involving the UI group (left barplot), we computed the observed total HGTs of bacterial

species pairs sampled in both groups and generated an expected total HGT value for the UI group. The ratios of observed versus expected HGT counts for the UI

group were computed for each lifestyle pair and are shown relative to the UI group. We used the same approach for lifestyle pairs involving the RI group (middle

barplot) and the UN group (right barplot). See Figure S5C for the comparison of all raw HGT counts. *p value < 2.2 3 10�308.

(D) Heatmap of the average difference in HGT frequency across all lifestyle pairs. Columns are compared against rows, with positive differences indicating higher

HGT frequencies in lifestyles described in columns.

(E) Heatmap of the difference in the absolute count of bacterial species pairs with higher HGT frequency, across all lifestyle pairs. Columns are compared against

rows, with positive counts indicating a higher number of bacterial species pairs with higher HGT frequency in lifestyles described in columns. Species pairs with

no HGT observed in neither category of lifestyle pairs were excluded from the counts.

(F) Heatmap of the proportion of bacterial species pairs with higher HGT frequency, across all lifestyle pairs. Columns are compared against rows, with pro-

portions higher than 50% indicating a higher proportion of bacterial species pairs with higher HGT frequency in lifestyles described in columns. Species pairs with

no HGT observed in neither category of lifestyle pairs were excluded from the counts.
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A B Figure 5. Highly abundant bacteria and Gram-

negative bacteria are associated with higher

rates of HGT

(A) Contribution of bacterial species abundance to

HGT frequency, considering different species abun-

dance bins (LOESS regression; see STAR Methods).

(B) Contribution of cell wall architecture to HGT fre-

quency (LOESS regression; see STAR Methods).
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engage more frequently in HGTs than Gram-positive bacteria

(N = 10,104; OR for Gram-negative bacteria = 9.2; 95%

CI = 6.6–12.8; LRT, c2 = 166.3, p value = 4.73 10�38; Figure 5B).

This intriguing result motivates further investigation to under-

stand the mechanisms driving increased rates of HGT between

intestinal Gram-negative bacteria.

Functions of recent HGTs reflect host lifestyle
We reasoned that if HGT can occur rapidly in response to

changes in host lifestyle, then the type of genes being trans-

ferred should reflect the selective pressures associated with

different populations (Brito et al., 2016). We first compared

the profile of HGTs across broadly defined functional cate-

gories using species pairs found across different lifestyles.

We found significant differences in HGT functions, with the rural

nonindustrialized cohort having the most different profile

compared to other lifestyles (Figure 6; c2 goodness-of-fit test,

p values < 0.001).

We then focused on genes involved in key functions that

likely differ across populations, such as antibiotic resistance,

CAZyme, and virulence genes. We also looked at genes involved

in the function of mobile genetic systems (such as phages, plas-

mids, and transposons). We found that gut bacteria in industrial-

ized populations tend to have higher rates of gene exchange for

genes involved in plasmids and transposons (Figure S6B; two-

proportions Z-tests, corrected p values < 0.001). This finding is

consistent with the elevated rates of HGT that we observed in

the gut microbiomes of these individuals (Figure 4). In almost

all comparisons, nonindustrialized cohorts, who generally

consume larger amounts of nondigestible fiber (Makki et al.,

2018; Smits et al., 2017), harbored gut bacteria that exchanged

CAZyme genes at higher frequencies than individuals living in

industrialized and/or urban regions (Figure 6). High transfer rates

of antibiotic resistance genes were also found in the gut micro-

biomes of both urban and rural nonindustrialized populations,

which correlates with the higher environmental prevalence of

ARGs in low- and middle-income countries (Hendriksen et al.,

2019; Pehrsson et al., 2016). This is further consistent with

studies showing that antimicrobial resistance is increasing in

livestock from low- and middle-income regions (Van Boeckel

et al., 2019).
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We found that the Datoga, Tanzanian pas-

toralists who primarily raise cattle and

consume high levels of meat and dairy prod-

ucts from their animals, had the highest levels

of ARG transfers (Figure S6C). Like other

pastoral farmers in northern Tanzania, they

frequently administer antibiotics to their
herds (Caudell et al., 2017; Sieff, 1999). Our results suggest

that these recent agricultural practices rapidly altered the fitness

landscape in the guts of the Datoga people and have impacted

the patterns of gene transfers within their microbiomes. As the

use of commercial antimicrobials is now widespread among

pastoralist populations in developing countries, similar effects

may occur in many populations worldwide, with broader impact

on the spread of antimicrobial resistance outside the clinic.

DISCUSSION

This article reports a large-scale genomic investigation of the ef-

fects of industrialization and urbanization on HGTs in the human

gut microbiome. Taken together, our results suggest that HGT

occurs frequently within individual gut microbiomes and with

higher frequencies in industrialized populations. These results

indicate that transitioning to industrialized (and urban) lifestyles

resulted in an increase in gene transfers within the gut micro-

biome. One possible explanation for this observation could be

that increased population density and/or perturbations in the

gut ecosystem associated with the consumption of processed

foods and increased sanitation promote more frequent gene ex-

change in the gut microbiome. The overall elevated frequency of

HGTs in industrialized microbiomes could also indirectly result

from the shifts in microbiome composition that occur when tran-

sitioning to industrialized lifestyles (Vangay et al., 2018), result-

ing in new assortments of species that frequently exchange

genes. However, our analyses captured an intrinsic response

of bacterial genomes to industrialization, as our HGT estimates

were calculated for pairs of species that were present across

different lifestyles, in all pairs of population groups under

comparison.

Microbiome perturbations that occur during adaptation to

industrialization are hypothesized to contribute both to the

establishment of low-grade chronic intestinal inflammation in

healthy individuals and to the higher incidence of inflammation-

associated diseases of the industrialized world, such as inflam-

matory bowel disease (Sonnenburg and Sonnenburg, 2019b). In-

flamed environments drive changes in species composition by

favoring the bloom of oxygen-tolerant and pathogenic species

that are particularly prone to engage in HGT (Zeng et al., 2017),



Figure 6. Functions of recently transferred genes are associated with host lifestyle

Functional profiles of transferred genes were compared across our gradient of industrialization and urbanization. COG profiles were compared using c2

goodness-of-fit tests (***p values < 0.001); HGT frequencies for ARG, CAZyme, and virulence genes were compared for all lifestyle pairs using two-proportion

Z-tests followed by Bonferroni correction for multiple tests (**p values < 0.01; ***p values < 0.001). For a given cohort pair of different lifestyles, functions were

averaged across all pairs of individuals in each cohort. In addition, for any given cohort comparison, frequencies of HGT functions were calculated using only

species pairs that were sampled in both cohorts. Because sets of co-sampled species change across pairwise cohort comparisons, the functional HGT profile of

a given cohort differs slightly from one cohort pair to another. However, these differences are nonsignificant (Levene’s test for homogeneity of variance, p value =

0.17; see Figure S6A), suggesting that our functional HGT profiles are not biased by differences in species sampling.
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such as Enterobacteriaceae. In a mouse colitis model, Salmo-

nella enterica and Escherichia coli were previously shown to

bloom and to engage in HGT (Stecher et al., 2012). Further inves-

tigations are needed to illuminate how inflammation could drive

the increase in HGT in the industrialized microbiome.

Numerous studies have investigated how changes in diet and

clinical practices, such as fecal microbiota transplants (Li et al.,

2016; Smillie et al., 2018), impact the composition of the gut mi-

crobiome, but inferring mechanistic understanding from compo-

sitional changes is difficult. Our study reveals that HGTwithin the

gut microbiome reflects the unique selective pressures of each

human host. Thus, HGT patterns can be used to identify selec-

tive forces acting within each individual and thereby to gain a

more mechanistic understanding of these events. Our results

also show that whole-genome sequencing data provide informa-

tion on individual microbiome function at a level of precision that

popular approaches, such as 16S amplicon and metagenomic

sequencing, cannot achieve. Finally, the high rate of HGT in

the human gut may be a recent development in response to

the industrialized lifestyle, accompanied by changes in the func-

tion of genes being exchanged. Further work is needed to appre-

ciate the consequences of these shifts in HGT frequency and

function for human health.

Limitations of study
Our study has limitations. First, our sampling design did not allow

us to quantify rates of gene acquisition in nonindustrialized indi-

viduals. Many nonindustrialized populations have seasonal vari-

ations in diet and social activities, which are reflected in seasonal

variations in microbiome compositions (Smits et al., 2017). It is

likely that variations in these environmental factors also impose

varying selective pressures on gut bacteria. Investigating such

effects on the frequency and patterns of HGTs would greatly

contribute to our understanding of how the gut microbiome re-

sponds to lifestyle. Second, we did not examine themechanisms

by which lifestyle-associated factors may drive increased HGT in

the gut microbiome of industrialized populations.
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Bacterial strains

From GMbC individuals This paper, see Table S2 dbGaP Study ID: 38715, Accession: phs002235.v1.p1

From USA individuals of the Boston area Poyet et al., 2019 NCBI, BioProject PRJNA544527

Critical commercial assays

DNeasy PowerSoil Kit QIAGEN Cat No./ID: 12955-4

DNeasy UltraClean 96 Microbial Kit QIAGEN Cat No./ID: 10196-4

Nextera� DNA Sample Preparation Kit Illumina Cat No./ID: FC-121-1031

Deposited data

Metagenomes and isolate genomes from

GMbC individuals

This paper dbGaP Study ID: 38715, Accession: phs002235.v1.p1

Metagenomes and isolate genomes from

USA individuals

Poyet et al., 2019 NCBI, BioProject PRJNA544527

Software and algorithms

cutadapt (version 1.12) Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

Trimmomatic (version 0.36) Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

SPAdes (version 0.3.9.1) Bankevich et al., 2012 https://github.com/ablab/spades

SSPACE (version 3.0) Boetzer et al., 2011 https://github.com/nsoranzo/sspace_basic

GapFiller (version 1-10) Nadalin et al., 2012 https://sourceforge.net/projects/gapfiller/

BBmap (version 37.68) BBMap – Bushnell B. –

https://sourceforge.net/

projects/bbmap/

https://jgi.doe.gov/data-and-tools/bbtools/

Prokka (version 1.12) Seemann, 2014 https://github.com/tseemann/prokka

CheckM (version 1.0.7) Parks et al., 2015 https://github.com/Ecogenomics/CheckM/wiki

Mash (version 1.1.1) Ondov et al., 2016 https://mash.readthedocs.io/en/latest/

micropan R package Snipen and Liland, 2015 https://cran.r-project.org/web/packages/micropan/

index.html

Diamond (version 0.8.22.84) Buchfink et al., 2015 https://github.com/bbuchfink/diamond

Mafft (version 7.310) Nakamura et al., 2018 https://mafft.cbrc.jp/alignment/software/

BMGE (version 1.12) Criscuolo and Gribaldo, 2010 ftp://ftp.pasteur.fr/pub/gensoft/projects/BMGE/

Seaview (version 4.7) Gouy et al., 2010 http://doua.prabi.fr/software/seaview

FastTree (version 2.1.10) Price et al., 2010 http://www.microbesonline.org/fasttree/

Roary (version 3.11.2) Page et al., 2015 https://github.com/sanger-pathogens/Roary

Gubbins (version 2.2.0) Croucher et al., 2015 https://sanger-pathogens.github.io/gubbins/

SNP-sites (version 2.4.1) Page et al., 2016 https://github.com/sanger-pathogens/snp-sites

Blastn (version 2.6.0) Camacho et al., 2009 https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

LATEST/

Trim Galore (version 0.5.0) https://www.bioinformatics.

babraham.ac.uk/

projects/trim_galore/

https://github.com/FelixKrueger/TrimGalore

Fastuniq (version 1.1) Xu et al., 2012 https://sourceforge.net/projects/fastuniq/

BWA (version 0.7.13) Li and Durbin, 2009 https://github.com/lh3/bwa

Kraken2 (version 2.0.8-beta) Wood et al., 2019 https://github.com/DerrickWood/kraken2/wiki

Bracken (version 2.5) Lu et al., 2017 https://github.com/jenniferlu717/Bracken

vegan R package Oksanen et al., 2019 https://cran.r-project.org/web/packages/vegan/index.html

Prodigal (version 2.6.3) Hyatt et al., 2010 https://github.com/hyattpd/Prodigal
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vsearch (version 2.3.4) Rognes et al., 2016 https://github.com/torognes/vsearch

eggNOG-mapper Huerta-Cepas et al., 2017 http://eggnog5.embl.de/

InterProScan (version 5.36-75.0) Jones et al., 2014 https://www.ebi.ac.uk/interpro/search/sequence/

Hmmer3 (version 3.1b2) Mistry et al., 2013 http://hmmer.org/

lme4 R package Bates et al., 2015 https://cran.r-project.org/web/packages/lme4/index.html

lmtest R package Zeileis and Hothorn, 2002 https://cran.r-project.org/web/packages/lmtest/index.html

Other

NCBI Genome database NCBI Resource Coordinators, 2016 ftp://ftp.ncbi.nlm.nih.gov/genomes/

RiboDB database Jauffrit et al., 2016 https://umr5558-bibiserv.univ-lyon1.fr/

Resfam database Gibson et al., 2015 http://www.dantaslab.org/resfams

dbCAN database Yin et al., 2012 http://bcb.unl.edu/dbCAN/
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Eric J Alm.

Materials availability
Bacterial strains generated in this study are available upon request to the Lead Contact, Eric J Alm.

Data and code availability
Generated data (raw reads and genome assemblies for GMbC isolates and shotgun metagenomic data for GMbC individuals) are

available online on the dbGaP server (Study ID: 38715; Accession: phs002235.v1.p1). Metagenomes and isolate genomes of USA

individuals from the Boston area are available on the NCBI (BioProject PRJNA544527).

Scripts and command lines used to process the sequencing and genomic data are available at https://github.com/almlab/

GMbC_HGTs

HGT data (genomic coordinates, species, individual host, length, functional annotations) are available on theOpen Science Frame-

work at https://osf.io/pr2fw/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts
Stool samples from 37 healthy individuals recruited worldwide as part of the Global Microbiome Conservancy project (http://

microbiomeconservancy.org) were obtained from Inuit individuals in Canadian Arctic, Sami and Finnish individuals in Finland, Beti

and Baka individuals in Cameroon, Hadza and Datoga individuals in Tanzania, individuals from the North Plain Tribes in Montana

(USA), Igbo and Yoruba individuals in Nigeria and Ashanti, Fante, Ga and Ahafo individuals in Ghana. Recruited individuals were

not involved in prior procedures and did not consume antibiotics during the three months prior to recruitment. Written informed con-

sent was obtained from all participants. Research & ethics approvals were obtained from theMIT IRB (protocol #1612797956), aswell

as in each sampled country prior to the start of sample collection, from the following local ethics committees: Chief Dull Knife College

(Montana), protocol #FWA00020985; Comite National d’Ethique de la Recherche pour la Sante Humaine (Cameroon), protocol

#2017/05/901/CE/CNERSH/SP; Nunavut Research Institute (Canada), protocol #0205217N-M; National Institute for Medical

Research (Tanzania), protocol #NIMR/HQ/R.8a/Vol. IX/2657; Coordinating Ethics Committee of Helsinki and Uusimaa Hospital Dis-

trict (Finland), protocol #1527/2017; CapeCoast Teaching Hospital Ethical ReviewCommittee (Ghana), protocol #CCTHERC/RS/EC/

2016/3; Committee on Human Research, Publication and Ethics of the Komfo Anokye Teaching Hospital (Ghana), protocol #CHRPE/

AP/398/18; National Health Research Ethics Committee of Nigeria (Nigeria), protocol #NHREC/01/01/2007-29/04/2018.

Samples from 11 additional USA individuals that we previously recruited in the Boston area (Poyet et al., 2019) were included in the

study, providing a dataset of 48 individuals from 15 populations. Both male (54%) and female (46%) participants were recruited. The

average age of participants is 33 yo (18-55 yo). We divided our cohort into four groups of different lifestyles: rural non-industrialized,

urban non-industrialized, rural industrialized and urban industrialized according to two different parameters: the population density

(SEDAC Population Estimation Service, 2015), and the level of industrialization based on the Human Development Index at the coun-

try level (United Nations Development Program, 2020). Table S1 contains metadata information about each subject enrolled in

this study.
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Sample collection
Participants produced a fecal sample in a sterile container that was immediately returned to researchers in the field. Raw stool was

diluted 1:5 in 25% pre-reduced (anaerobic) glycerol solution containing acid-washed glass beads, and were immediately homoge-

nized and aliquoted into cryogenic 2mL tubes. Stool samples aliquoted in cryoprotectant were immediately flash frozen in the field

at �196C, using a cryoshipper tank. Samples were then shipped to MIT for processing, culturing and storage. Table S2 contains

culturing information for each bacterial isolate cultured and analyzed in this study.

Isolate genome dataset
In this study, we sequenced the genome of 4,149 gut bacterial isolates that we cultured from the stool sample of 37 individuals. We

completed our genome dataset with the 3,632 isolate genomes of the BIO-ML collection that we previously generated (Poyet et al.,

2019) to generate a total set of 7,781 isolate genomes. Table S2 contains metadata for each of the 7,781 isolates, and Table S5 pro-

vides information about the genomes that were used in the longitudinal analysis.

METHOD DETAILS

DNA extraction, library construction and Illumina sequencing for shotgun metagenomics
We used the DNeasy PowerSoil Kit (QIAGEN) with manufacturers’ protocols to extract microbial genomic DNA from stool samples.

Genomic DNA libraries were constructed from 1.2ng of cleaned DNA using the Nextera DNA Library Preparation kit (Illumina) accord-

ing to the manufacturer’s recommended protocol, with reaction volumes scaled accordingly. Prior to sequencing, libraries were

pooled by collecting equal quantity of each library from batches of 94 samples. Insert sizes and concentrations of each pooled library

were determined using an Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). Paired-end sequencing (2x150-bp reads) was

performed using an Illumina NextSeq 500 instrument (Illumina Inc) at the Broad Institute.

Culturing and isolation of bacterial isolates
To culture and isolate the 4,149 bacterial strains generated in this study, we used stool samples collected from 37 individuals across

14 human populations. To obtain an exhaustive representation of the diversity of human gut bacteria, human fecal samples were

processed anaerobically at every step in a chamber, using gas monitors controlling physico-chemical conditions (5% Hydrogen,

20% Carbon dioxide, balanced with Nitrogen). Human fecal samples were diluted in pre-reduced PBS (with 0.1% L-cysteine hydro-

chloride hydrate). Diluted samples were then plated onto pre-reduced agar plates and incubated anaerobically at 37�C for 7 to

14 days. Both general (nonselective) and selective media were used to culture diverse groups of organisms. We used different

culturing media, combined with antibiotic, acid, and ethanol treatments to isolate 4,149 bacterial strains. See Table S2 for culturing

media used in this study and other metadata for each isolate. After incubation, bacteria were isolated by picking individual colonies

with an inoculation loop. They were streaked onto a second pre-reduced agar plate to increase colony purity. After 2 days of incu-

bation at 37�C, one colony was re-streaked again onto a third agar plate for 2 additional days of incubation. One colony from each

individual streak was then inoculated in liquid media in a 96-well culture plate. After 2 days of anaerobic incubation at 37�C, the
taxonomy of the isolate was identified using 16S rRNA gene Sanger sequencing (starting at the V4 region). We first amplified the

full 16S rRNA gene by PCR (27f 50-AGAGTTTGATCMTGGCTCAG-30 - 1492r 50-GGTTACCTTGTTACGACTT-30) and then generated

a �1kb long sequence by Sanger reaction (u515 50-GTGCCAGCMGCCGCGGTAA-30). All isolates are stored in �80�C freezers in a

pre-reduced cryoprotectant glycerol buffer.

DNA extraction, library construction and Illumina sequencing of whole genomes
We used the DNeasy UltraClean96 MicrobioalKit (QIAGEN) kit to extract whole genome DNA from isolate colonies, following man-

ufacturers’ protocols. Genomic DNA libraries were constructed from 1.2ng of DNA using the Nextera DNA Library Preparation kit

(Illumina), following the manufacturer’s protocol, with reaction volumes scaled accordingly. Prior to sequencing, we pooled on

average 250 samples with equal quantities of DNA. Insert size and concentration of each pooled library were determined using an

Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). Paired-end (2x150bp) reads sequencing was performed using an Illumina

NextSeq 500 instrument (Illumina Inc) at the Broad Institute.

Draft assembly and annotation of whole genome sequences
All parameters used to generate whole genome assemblies from 2x150bp paired-end data and used to perform downstream

genomic analyses are embedded in the method descriptions below.

Briefly, reads were first demultiplexed using in-house scripts. We used cutadapt v1.12 (Martin, 2011) to remove barcodes and Il-

lumina adapters (with parameters -a CTGTCTCTTAT -A CTGTCTCTTAT). We used Trimmomatic v0.36 (Bolger et al., 2014) for the

quality filtering of data (with parameters PE -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:5:20 MINLEN:50). Reads were

assembled de novo into contigs using SPAdes v.3.9.1 (Bankevich et al., 2012) (with parameter–careful). To iteratively improve

genome assemblies, we used SSPACE v3.0 (Boetzer et al., 2011) and GapFiller v1-10 (Nadalin et al., 2012) to scaffold contigs

and to fill sequence gaps (with default parameters). Scaffolds smaller than 1kb were removed from genome assemblies. We aligned

all reads back to the assembly to compute genome coverage using BBmap v37.68 (https://jgi.doe.gov/data-and-tools/bbtools/) and
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the covstats option (with default parameters). The final assemblies were annotated using Prokka v1.12 (Seemann, 2014) (with default

parameters).

Assessing assembly quality
We measured genome assembly statistics using CheckM v1.0.7 (Parks et al., 2015) (with parameters lineage_wf–tab_table -x fna

Prokka_annotations/). All summary and quality statistics can be found in Table S2. The median assembly completeness of all

7,781 genomes is 99.33%, the median contamination is 0.3%, the median scaffold N50 is 144kb, and the median coverage is 120X.

Clustering genomes into species
We used whole genomic information to group genomes into species clusters. We used an open-reference approach and computed

all-against-all genomic distances usingMash (Ondov et al., 2016) (with default parameters). AMash distance lower than 0.05 is equiv-

alent to using an Average Nucleotide Identity higher than 95%, which is a standard threshold for delineating species (Konstantinidis

and Tiedje, 2005).We used an unsupervised hierarchical clustering approach to group genomes that hadMash distances% 0.05 into

taxonomic units using the bClust function from the micropan R package (Snipen and Liland, 2015). We then measured the genetic

distance between the representative genome of each species cluster (defined as the genome with the highest N50) and 79,226 non-

contaminated complete and draft genomes downloaded from the NCBI FTP repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/) on

March 27th, 2017 (NCBI Resource Coordinators, 2016). Clusters with a Mash distance to NCBI genomes lower than 0.05 were as-

signed the taxonomy of the closest reference genome (wemanually curated Mash results to assign a taxonomy to each cluster when

NCBI taxonomies were incomplete or incorrect). All genome taxonomies are compiled in Table S2.

Comparison to the UHGG database
We compared the GMbC genome collection to the Unified Human Gastrointestinal Genome (UHGG) database, which comprises the

largest set of human gut bacterial genomes, with the vast majority being metagenome-assembled genomes from uncultivated bac-

terial species (Almeida et al., 2021). We measured genomic distances between our representative genomes and all UHGG represen-

tative genomes with Mash, and counted the number of species that had not been previously sequenced or cultured, using a Mash

threshold of 0.05.

Phylogenetic reconstructions
To reconstruct the phylogenomic tree of all 7,781 genomes, we first built a concatenated alignment of 47 nearly universal and single-

copy ribosomal protein families. We used Diamond v0.8.22.84 (Buchfink et al., 2015) (with parameters blastx —more-sensitive -e

0.000001 —id 35 —query-cover 80) to BLAST all 7,781 proteomes against the RiboDB database (v1.4.1) of bacterial ribosomal pro-

tein genes (Jauffrit et al., 2016). We excluded proteins bL17, bS16, bS21, uL22, uS3 and uS4, as they were not sufficiently distributed

across all genomes. In each RiboDB gene family, we excluded genomes that contained gene duplicates. Then, we aligned all protein

families individually with Mafft v7.310 (Nakamura et al., 2018) (with parameter —auto). We filtered out misaligned sites using BMGE

v1.12 (Criscuolo andGribaldo, 2010) (with parameters -t AA -g 0.95 -mBLOSUM30) and concatenated all individual alignments using

Seaview v4.7 (Gouy et al., 2010). We reconstructed the phylogenomic tree using FastTree v2.1.10 (with parameters -lg –gamma)

(Price et al., 2010). To reconstruct phylogenetic trees of B. vulgatus, B. ovatus, B. longum and A. muciniphila (Figure 3 and Figure S3),

we reconstructed the alignment of core protein-coding genes with Roary v3.11.2 (Page et al., 2015), removed recombining regions

with Gubbins v2.2.0 (Croucher et al., 2015), extracted SNPs with SNP-sites v2.4.1 (Page et al., 2016) and inferred the tree with

FastTree.

Detection and age of HGTs
In this study, we focus on transfers occurring between bacterial species, ignoring within-species gene recombination events. We

looked for gene transfers that occurred between genomes of different bacterial species. We used Blast (blastn, v2.6.0) (Camacho

et al., 2009) to systematically detect blocks of DNA that are shared by two genomes of different species. We retained blast hits

with 100% similarity and that are larger than 500bp. To further increase the likelihood of looking at transfer events that occurred

on timescales compatible with human lifetime, we focused many of our analyses on transferred blocks that are larger than 10kb.

To remove putative contaminants from our set of blast hits when calculating HGT frequencies, we removedHGTs that involve contigs

with both k-mer assembly coverage lower than 3 (as provided by SPAdes) and a relative read coverage lower than 0.2 compared to

the average genome coverage in at least one of the two compared genomes.

Assuming a genome size in the order of 106 bp andmolecular clock of 1 SNP/genome/year (Didelot et al., 2016; Drake, 1991; Duch-

êne et al., 2016; Zhao et al., 2019), HGTs larger than 500bp with > 99% similarity are consistent with transfer events that occurred

between 0 and 10,000 years ago: this time interval corresponds to the time during which a 500bp sequence can accumulate a

maximum of 1% sequence divergence, i.e., 5 SNPs. When considering 10kb+ HGTs with 100% similarity, it would take 1 year for

a 10kb HGT to accumulate 10�2 SNPs, which corresponds to taking 100 years to experience 1 SNP and to be filtered out from

our analysis. As such, our 10kb+ HGTs, which do not contain any mutations, correspond to events that occurred between

0 and �100 years ago.
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Calculating HGT counts and frequencies
To avoid inflating estimations of HGT counts and frequencies, we did not consider the absolute number of distinct blast hits between

two genomes, as poor assembly or genomic processes, such as transposition, might result in splitting a single large HGT into many

smaller apparent HGT events. Instead, we used a conservative approach to quantify HGTs that was previously published (Smillie

et al., 2011), defining the HGT count as the number of between-species genome pairs that share at least one HGT (either one

500bp+ or 10kb+ HGT). To measure the frequency of HGT between two species, we then divided the HGT count by the total number

of between-species genome pairs.

Simulation of HGT transmission across host generations
To simulate the fraction of 100% similar HGTs seen in the present generation 0 (HGT0s) that would result from HGT events that

occurred in past generation, we simulated a population of constant size with N species in each individual. As the median number

of species in the microbiome of our sampled individuals is 187 based on Kraken2 metagenomic profiles, we fixed N = 200. At

each generation, each pair of species had an H% probability to engage in HGT. In our dataset, the average proportion of species

pairs engaging in HGT is 0.885. We then chose to fix H to 9%. In a previous report (Ferretti et al., 2018), the intergenerational

mother-to-infant rate of strain transmission was found to be 16%. In our simulation, we compared a 16% rate of species transmission

to the next host generation to a more extreme rate of 50%. So each species had a probability to transmit into the next generation

drawn from one of two possible distributions:

d B(2,11), each species probability to transmit into offspringwas chosen from aBeta distribution with parameters ⍺ = 2 and b = 11

d B(2,2), each species probability to transmit into offspring was chosen from a Beta distribution with parameters ⍺ = 2 and b = 2

We chose a Beta distribution to allow for some species to have an increased probability to transfer into later generations, even

though the overall average was fixed at �16% for B(2,11) and 50% for B(2,2).

We then run the simulation across 5 generations, and recorded the generation of origin of each HGT. At the last generation

(generation 0, corresponding to the generation at present time), we calculated the fraction of observed HGTs in the microbiome

that occurred at each generation. We run 100 simulation replicates for each possible distribution of vertical transmission of strains

into offspring. Simulations were run in Python.

Calculating gene gain and loss rates in the pangenome
We used Prokka gene annotations and Roary to reconstruct the core-genome alignment and the host individual-specific gene rep-

ertoires for B. vulgatus, B. ovatus, B. longum and A. muciniphila genomes that were longitudinally sampled in individual am (Poyet

et al., 2019), and for B. fragilis genomes that were longitudinally sampled in individuals L01, L03, L04, L05, L06, L07 (Zhao et al.,

2019). Note that individual am from (Poyet et al., 2019) and L01 from (Zhao et al., 2019) are the same individual. We used the following

options with Roary: -e -n -z -i 90 -cd 95.We restricted our analysis to closely-related genomes that diversified within the host of origin

upon colonization of the gut: genomes from individual am differed by 111, 42, 2,328 and 338 SNPs for B. vulgatus, B. ovatus, B. lon-

gum and A. muciniphila, respectively. When looking at genomes from all host individuals, isolate genomes differed by 68,746,

202,262, 51,064 and 33,793 SNPs, respectively. In addition, all B. fragilis genomes from the same individual differed by less than

100 SNPs, while those from different individuals differed by more than 10,000 SNPs (Zhao et al., 2019). This pattern suggests that

we are only including closely-related genomes, limiting the potential impact of co-colonization of different major lineages or strain

replacement on the analysis of the dynamics of gene gain and loss over time. We filtered genomes that had genome completeness

as measured by CheckM below 99% out of the gene tables. For each species within each individual, we excluded genomes with low

average coverage. With the final set of genomes, we checked whether the genome coverage was different across time points, as this

could bias estimations of gene presence/absence profiles and gene gain/loss rates in pangenomes. We found that, for each species

within each individual, genome coverage was homogeneous across time points (Kruskal-Wallis tests, see Figure S3J). Genome as-

semblies used to calculate gene gain and loss rates for each species within each individual is listed in Table S5.

Because of assembly errors, genes truly ‘present’ in a genome may not have been detected in the assembly by Prokka, and were

later called ‘absent’ by Roary. We confirmed the presence and absence of genes in a given genome by mapping reads of each

genome onto each gene sequence inferred by Prokka. For genes initially called ‘absent’ in a given genome but ‘present’ in other ge-

nomes, we used a representative sequence of this gene for mapping. To call for the presence of a gene in a genome, genes must be

covered by a minimum of 20 reads over 90% of their length, and have a minimum relative coverage of 0.2 compared to the average

genome coverage. To call ‘present’ a gene that was initially called ‘absent’, the gene was also required to have less than 30% ambig-

uous mappings to be called ‘present’, in addition to the criteria listed above.

To measure rates of gene gain and loss in the pangenome of each species between two time points, we identified the set of gene

families that were absent in all genomes at initial sampling and present in at least 1 genome at the later time point. We repeated this

procedure for all pairs of time points, andwe normalized the rates of gene gain and loss to a number of events per year. We employed

the same strategy for calculating rates of gene loss. When measuring differences in pangenome gene repertoires between two time

points, we downsampled genomes at each time point to perform comparisons with the same number of genomes.
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Analysis of metagenomic data
Metagenomic data were quality-filtered with Trim Galore v0.5.0 and Trimmomatic (same options as with isolate genomic sequencing

data), dereplicated with FastUniq v1.1 (Xu et al., 2012) (default parameters) and mapped against the hg38 human reference genome

with BWA v0.7.13 (Li and Durbin, 2009) (default options) to remove human reads. We used Kraken2 v2.0.8-beta (Wood et al., 2019)

with default options and the Kraken2 database to call for taxonomies. We then used Bracken v2.5 (Lu et al., 2017) to refine Kraken2

taxonomic profiles at the species level, with the following options: -t 20 -k 35 -l 150. We rarefied the OTU (species) table, by down-

sampling reads to the minimum number of reads among all samples. Wemeasured beta-diversities with the Bray-Curtis dissimilarity

metric using the ‘vegdist’ function from the ‘vegan’ R package (Oksanen et al., 2019). Metagenomic data were not used to recon-

struct metagenome-assembled genomes, as only genome assemblies generated from isolate bacteria were analyzed in this study.

Measuring the abundance of isolate genomes
We measured average species abundances of isolates within each individual host. For species with more than five isolate genomes

per individual, we randomly selected 5 genomes to compute the average abundance. For species with less than five isolate per in-

dividual, we used all isolates to calculate the average abundance. We mapped metagenomic data generated from the same individ-

ual host against each isolate genome, and used the per base coverage K, the average read length L, the size of each genome S and

the total number of reads T in the shotgun data to calculate the relative abundance A of each genome in the metagenome with

A = (K*S/L) / T. We used a threshold of 1% to define lowly and highly abundant bacteria. Results on the effect of abundance on

HGT frequency (Figure 5A) hold true when using a 5% threshold to define high abundance (GLME, OR for lowly abundant species =

0.47; CI (95%) = 0.45 - 0.48; LRT, c2 = 2668.1, p value = 1.5x10-71).

Assigning Gram stain to bacterial species
We used Gram staining data from reference microbiology databases (ATCC, https://www.lgcstandards-atcc.org:443/en.aspx;

DSMZ, https://www.dsmz.de/) & the Microbe Directory database (https://microbe.directory) and from publications characterizing

the phenotype of bacterial isolates to assign a consensus Gram stain to each of our bacterial species. Species with contradictory

Gram staining information or with unknown taxonomy were excluded from the analysis of the correlation between HGT frequency

and cell wall architecture. Our data recapitulate what we know from the literature (Garrity, 2005; Krieg et al., 2011): Bacteroidetes

are Gram-; Bifidobacterium are Gram+; Firmicutes are Gram+, to the exception of Negativicutes species, which are known diderm

bacteria, and of a few other species; Fusobacterium are Gram-; Akkermansia are Gram-; Proteobacteria are Gram-.

Annotating transferred genes
Functional annotation followed the basic approach described previously (Brito et al., 2016). Briefly, CDSwere assigned to all 500bp+

HGTs using Prodigal v2.6.3 (Brito et al., 2016; Hyatt et al., 2010) in metagenomemode to capture gene fragments. The resultant CDS

were dereplicated and clustered at 90% nucleotide identity using vsearch v2.3.4 (Rognes et al., 2016). These gene centroids were

used for subsequent functional annotation steps. Both eggNOG-mapper (Huerta-Cepas et al., 2017) and InterProScan v5.36-75.0

(Jones et al., 2014) were used to assign putative function predictions to gene centroids. For additional classification of antibiotic

resistance genes and carbohydrate active enzymes, hmmer3 v3.1b2 (Mistry et al., 2013) was used with the Resfam (Gibson et al.,

2015) and dbCAN (Yin et al., 2012) hmm databases with a cutoff e-value of 1e-5 and score of 22. Text mining with a set of regular

functional annotations that we previously used (Brito et al., 2016) was employed to determine the assignment of genes into the

following categories: phage, plasmid, transposons, and antibiotic resistance.

To investigate whether, within people, bacterial species engage in the transfer of gene functions that may impact bacterial meta-

bolism or host physiology, we looked at within-person transferred genes involved in antibiotic resistance (ARG), carbohydrate degra-

dation (CAZyme) and virulence.We chose these functions in part because they seemed likely to reflect relevant selective pressures in

the human host, and also because there exist well curated databases of annotated genes. In Figure 3D (‘Upset’ plot), each row cor-

responds to a function set, and each column corresponds to an interaction configuration. Empty cells (light-gray) indicate that the set

is not part of the intersection, and filled (black) cells show sets that participate in the intersection. Barplots on the top and right of the

matrix layout show absolute counts of species pairs for each intersection and each set, respectively.

QUANTIFICATION AND STATISTICAL ANALYSES

When the R output of a p value calculation equalled to 0, we used the smallest double-precision machine number, which is

2.2*10�308. Such p values are shown with an asterisk in figures.

Comparing HGT frequencies and counts
Statistical analyses were performed in R. When comparing HGTs between two categories, e.g., within-person versus between-peo-

ple or Urban industrialized versus Rural non-industrialized, the numbers of genome and individual pairs for any pair of bacterial spe-

cies that were sampled are different between the two categories. This difference in sampling could interfere with comparisons of HGT

frequencies. To correct for differences in sampling, we employed the following approach. Consider the comparison of within-person

to between-people HGTs: we calculated, for each species pair, the observedwithin-person HGT count (corresponding to the number
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of within-person genome comparisonswith at least 1HGT) and the expectedwithin-personHGT count based on the between-people

HGT frequency of the same species pair. We then summed observed and expected HGT counts across all species pairs and

compared the observed total HGT count within individual people to its expected value based on the amount of transfer seen between

individuals, and calculated a p value using the Poisson distribution (ppois R function). The same approach was used to compare HGT

counts of the same species pairs found in different cohorts that have different lifestyles (Figure 4), for instance to compare counts of

HGT in the Urban & Industrialized cohort to the Rural & Non-industrialized cohort. This approach allows us to control for differences in

the number of genome, species and individual pairs sampled between two compared cohorts (within-person versus between-people

or Urban & Industrialized versus Rural & Non-industrialized). Note that whenmeasuring the effect of lifestyle on HGT, observed HGTs,

expected HGTs and p values were calculated for each pair of cohorts (4 lifestyle categories, 6 cohort pairs in total). Also, as this anal-

ysis is a-symmetrical, we also performed all our tests in the other direction, i.e., testing whether the observed between-people HGT

count is lower than the expected between-people HGT count based on within-person HGT frequencies (118,210 versus 671,160,

p value < 2.2*10�308); and whether the observed Rural & Industrialized HGT count is lower than the expected count based on Urban &

Industrialized HGT frequencies (42,254 versus 66,276, p value < 2.2*10�308).

We also controlled for the effect of including multiple genome pairs of the same species pairs sampled in individuals when

comparing total observed and expected HGT counts. We downsampled our dataset by randomly drawing a single genome pair

per species pair and per individual pair. We run this control for the comparison of within-person to between-people HGTs, and for

the comparison of Urban & Industrialized (UI) to Rural & Non-industrialized (RN) HGTs. For each comparison, we run 100 random

replicates. For each replicate, we calculated the total observed and expected HGT counts for the within-person category or the

UI group, as described above. We then compared the distributions of observed and expected HGTs with a Welsh t test. Results

are shown in Table S4.

Calculating the frequency of transferred genes within bacterial populations
The population frequency of a given mobile gene carried by a 10kb+ HGT detected in a given species and in a given individual was

calculated by counting the number of genomes carrying this mobile gene, divided by the total number of genomes of this species in

this individual. Only species with a minimum of 10 genomes in each individual were included.

Controlling for the effect of phylogeny on within-person versus between-people HGT
To measure the difference between within-person and between-people HGT across phylogenetic distance bins (Figure 3B), we

compared for each separate bin the total observed within-person HGT count across all species pairs to its expected count value

based on the between-people HGT frequencies of the same species pairs in that bin, with a Poisson distribution. P values were

then combined into a single p value with Fisher’s method (‘sumlog’ function from the ‘metap’ R package).

Controlling for the effect of in vitro culturing
To control for the effect of in vitro culturing on the estimation of within-person HGTs and its comparison with between-people HGTs,

we used our set of 10kb+ HGTs to test (i) whether within-person HGTs are more frequent when genome pairs are sampled from the

same versus different culturing plates and (ii) for genome pairs isolated from the same plate, whether HGTs are more frequent when

genome pairs are sampled from amedia containing antibiotics. These tests control for (i) HGTs that may occur during the culturing on

the plate and (ii) HGTs that may be triggered by antibiotics present in the media. We compared HGTs for all bacterial species pairs

from each individual host that were sampled in both categories of each of the aforementioned variables being tested. As we are

comparing HGTs for genome pairs from the same species pairs sampled from the same individual, we do not need to control for

differences in bacterial phylogenetic distances or abundances. We compared the total observed HGT counts for genome pairs

cultured within the same plate to its total expected value based on the HGT frequency of genome pairs of the same species being

cultured from different plates, using a Poisson distribution. We used the same approach for genome pairs being grown on antibiotic-

containing media versus without antibiotics. We also correlated observed to expected HGT counts for each species pair using a

Pearson correlation. Finally, we also compared within-plate to between-plate HGT frequencies and with-antibiotics versus

without-antibiotics HGT frequencies using paired Wilcoxon tests. All results are shown in Table S4.

Permutation test to compare HGTs from populations with different lifestyles
We also used a permutation test to compare HGTs in two cohorts of different lifestyles. We defined the statistic S = (HGTcounts_ob-

served - HGTcounts_expected) / HGTcounts_expected. For the more industrialized and urban cohort, HGTcounts_observed >

HGTcounts_expected. We tested if the difference between observed and expected counts is higher with real data than under a

null hypothesis. We computed the null distribution of S by rearranging the lifestyle labels of either each individual participant, or

each pair of participant before calculating average HGT frequencies. The value of S obtained with real data was then compared

to the null distribution to calculate the p value. Null distributions of S for these tests are shown in Figure S4.

Measuring the effect of bacterial phylogeny, abundance and cell-wall architecture on HGT
The effect of phylogeny on HGT frequencywasmeasured using Generalized LinearMixed Effects (GLME)models, assuming an inter-

cept that is different for each pair of species. We also accounted for the effects of bacterial abundance and cell-wall architecture
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(Gram-negative versusGram-positive) in themodels.We used the lme4R package (Bates et al., 2015) (glmer function) to fit theGLME

models, and used Likelihood Ratio Tests (with the lmtest package and the lrtest function; Zeileis and Hothorn, 2002) to calculate the p

value for phylogeny. Confident intervals for odds ratios were calculated with the Wald method.

We defined the following variables:

d phylogeny: Continuous variable. Phylogenetic distance between two species derived from the phylogenomic tree shown in

Figure 2A.

d abundance: Discrete variable. Abundance category for each pair of species in each sampled host individual, derived from the

abundance category of each individual species. We used a threshold of 1% relative abundance to classify species as highly or

lowly abundant in each individual.

d gram_staining: Discrete variable. Gram staining category for each pair of species derived from the individual Gram staining of

each individual species.

d hgt_freqs: Continuous variable. Average within-person HGT frequency for each individual species pair. Average within-person

HGT frequencies were calculated for each population separately, to account for population-level differences.

d species_pairs: Discrete variable. Names of species pairs. Because we calculated within-person HGT frequencies on a per-

population basis, a given species pair can be represented multiple times in the model. We accounted for this by considering

the variable species_pairs as a random effect term in the GLME models.

We fitted the following models, with HGT frequencies either derived from the dataset of 10kb+ HGTs or from the dataset of

500bp+ HGTs:

model1 = glmer(hgt_freqs �phylogeny + abundance + gram_staining + (1|species_pairs), family = ’’binomial’’)

model2 = glmer(hgt_freqs �abundance * gram_staining + (1|species_pairs), family = ’’binomial’’)

To assess whether phylogeny is significantly contributing to HGTs, we performed the following LRT:

Phylogeny: LRT_phylogeny = lrtest(model1, model2)

To measure the effect of lifestyle on HGT with the dataset of 500bp+ HGTs, while controlling for the effects of phylogeny, abun-

dance and cell-wall architecture, we defined the discrete variable ‘lifestyle’ as the level of host industrialization associated with the

sampled species pair (i.e., ‘industrialized’ or ‘non-industrialized’), and run the following GLME models:

model3 = glmer(hgt_freqs �phylogeny + abundance + gram_staining + lifestyle + (1|species_pairs), family = ’’binomial’’)

model4 = glmer(hgt_freqs �abundance + gram_staining + lifestyle + (1|species_pairs), family = ’’binomial’’)

model5 = glmer(hgt_freqs �phylogeny + gram_staining + lifestyle + (1|species_pairs), family = ’’binomial’’)

model6 = glmer(hgt_freqs �phylogeny + abundance + lifestyle + (1|species_pairs), family = ’’binomial’’)

model7 = glmer(hgt_freqs �phylogeny + abundance + gram_staining + (1|species_pairs), family = ’’binomial’’)

We run the following LRTs to evaluate the contribution of each factor to HGT:

Phylogeny: LRT_phylogeny = lrtest(model3, model4)

Abundance: LRT_abundance = lrtest(model3, model5)

Cell-wall architecture: LRT_cell-wall = lrtest(model3, model6)

Lifestyle: LRT_lifestyle = lrtest(model3, model7)
Comparing functional profiles of HGTs
Profiles of COG functional categories were compared using a chi-square Goodness-of-fit test (chisq.test function). HGT frequencies

of phage, plasmid, transposon, ARG, CAZyme and Virulence genes were compared between host populations of different lifestyles

(Figure 6) using two-proportions Z-tests (prop.test function), and a Bonferroni correction for multiple tests (p.adjust function).

LOESS regressions
LOESS regressions were calculated with the ggplot2 package (Figures 3 and 5). HGT frequencies at phylogenetic distances lower

than the smallest between-species distances (left part of the curves) are extrapolated. Bands represent confidence intervals calcu-

lated from the standard errors.
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Figure S1. Sampled microbiomes and horizontal gene transfers, related to Figures 1 and 2

(A) Microbiome profiles of the 48 individuals, derived from metagenomic sequencing data and Kraken2 abundances. Only species with abundances higher than

1% are shown. (B) Microbiome compositions of the 48 individuals in our cohort cluster by geography (left) and lifestyle (right) (Adonis test, p value = 0.001).

Bacterial species compositions were derived from metagenomic data, using Kraken2. (C) Distribution of SNP counts across vertically-transmitted ribosomal

protein coding genes. HGTs were called by detecting 100% similar blocks of DNA larger than 500bp or 10kb occurring in genomes of different bacterial species.

To confirm that this workflow detects true HGTs and not scenarios of vertical inheritance along bacterial lineages, we determined the distribution of SNPs in

vertically-transmitted and slowly-evolving genes. For each species pair in which we found HGT candidates, we calculated the number of SNPs between shared

ribosomal genes, and normalized this count to a number of SNPs per 10kb. On average, 3,146 SNPs per 10kb exist in ribosomal genes of two different species, far

more than the threshold that we used to conserve blast hits in our dataset (0 SNPs). To obtain the number of SNPs per 500 bp that is relevant to our second length

criteria to filter blast hits (500bp), simply divide numbers by a factor of 20. Only 1 species pair out of 5,304 has a number of SNPs per 500bp below 1 (n = 0.94).

(D) Relative coverages of each HGT. Our pipeline detected a total of 5,267,297 500bp+ HGTs. The coverage of each HGT in all isolate genome pairs in which they

were detected was calculated using Bowtie2 and was compared to the average coverage of each genome. In this density plot, each dot is an HGT, and relative

coverages are shown on a log scale. Density of points is represented along a gradient color from blue (low density) to red (high density). The median relative

coverage across all 5,267,297 500bp+ HGTs is 1.13. Dashed lines show the threshold (0.2) used to exclude HGTs from the dataset. The vast majority of HGTs

have a relative coverage compared to the rest of the genome around 1. (E) CDSs were called using Prodigal on the set of 5,267,297 500bp+ HGTs, and on the set

of 200,458 10kb+ HGTs. CDSs were annotated with eggNOG and Interproscan. In this figure, COG functional categories are represented. (F) Proportion of

genome pairs engaging in HGTs that include genes annotated with selfish element, phage and conjugative transposon functions in the set of 500bp+ and 10kb+

HGTs. HGT counts for each function category represents the number of genome pairs involved in at least 1 HGT containing at least 1 gene annotated with one of

the three functions.We calculated the proportion by dividing these HGT counts by the total number of genome pairs. The category of Selfish and homing elements

include HGTs with genes annotated with intein or intron (e.g., Group II introns) functions. (G) The population frequency of a given mobile gene detected in a given

species in a given individual was calculated by counting the number of genomes carrying this mobile gene, divided by the total number of genomes of this species

in this individual. Only species with a minimum of 10 genomes were considered. We found that the vast majority of these (very recently) transferred genes

segregate at low frequency and are not fixed in bacterial populations.
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Figure S2. Extensive within-person gene transfers in the gutmicrobiome is foundwhen looking at different resolutions of geography, human

population and size of HGTs, related to Figure 3A

(A–E) HGT frequencies calculated within and between people are shown for each country with at least 4 sampled individuals (USA (A), Finland (B), Tanzania (C),

Ghana (D) and Cameroon (E)). Canada and Ghana are excluded (N individuals < 4). HGT frequencies were calculated with the set of 10kb+ HGTs. Each solid line

represents a bacterial species pair sampled in both within and between individuals. Differences in HGT frequency are colored along a gradient from gray (no

difference) to red (within-people HGT frequency is higher than between-people) or from gray to blue (between-people HGT frequency is higher than within-

people), darker colors representing higher differences. The barplot shows the observed total HGT in bacterial species pairs found within individual people (left

bar), compared to its expected value (right bar) based on HGT frequencies of the same species pairs found between people. Observed and expected HGTs were

compared with a Poisson distribution to calculate the p value of a one-sided test (*: p value < 2.2x10�308). (F–I) HGT frequencies calculated within-person and

between-people are shown for each ethnic group with at least 4 sampled individuals (Multi-ethnic cohort in the Boston area (F), Hadza hunter-gatherers in

Tanzania (G), Datoga pastoralists in Tanzania, (H) and Beti farmers in Cameroon (I)). Ashanti, Fante, Yoruba, Ahafo, Ga, Northern Cheyenne, Sami and Inuit people

are excluded (N individuals < 4). As in panels A–E, line plots show HGT frequencies for each species pairs sampled both within-person and between-people, and

barplots show observed and expected numbers of within-person HGTs (*: p value < 2.2x10�308). (J) Comparison of within-person and between-people HGT

frequencies calculated from the whole set of 5,267,297 500bp+ HGTs.
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Figure S3. Within-person gene gains in bacterial pangenomes, related to Figure 3E

Isolates of Bacteroides ovatus (A), Bifidobacterium longum (B) and Akkermansia muciniphila (C) were longitudinally sampled in individual am (USA) (Poyet et al.,

2019). Isolates ofBacteroides fragilis (D–I) were longitudinally sampled in individuals L01, L03, L04, L05, L06 and L07 in another previous study (Zhao et al., 2019).

Note that individuals am from Poyet et al. (2019) and L01 from Zhao et al. (2019) are the same individual. For each species, a core-SNP phylogenetic tree was

reconstructed to depict the relationship between all isolates of this species that we have in our genome collection. In A), B) and C), blue clades show the isolates

that were sampled from individual am. The IDs of the other individual hosts are shown next to each corresponding clade of isolates. Trees for B. fragilis isolates in

individuals L01, L03, L04, L05, L06 and L07 are shown in Zhao et al. (2019) - corresponding figures are indicated on the left of panels D) to I). All trees strongly

suggest that isolates originate from a single colonization event and diversified within each sampled individual. In all panels, middle and right heatmaps show gene

presence/absence in all isolate genomes (rows), sorted by sampling times. The number of days elapsed since original sampling are shown for each time point. In

each panel, the heatmap on the right is a zoom-in on the set of gene families (orange box in the middle panel) that were absent in the pangenome of the first time

point, and gained in the pangenome later in time within each individual. Table in panel J) shows the comparison of the genome coverage across time points for

each species in each individual (Kruskal-Wallis test). In all cases, the genome coverage is not statistically different across time points.
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Figure S4. The signal for elevated HGT in urban industrialized populations is robust to heterogeneities in HGT across individuals, related to

Figure 4B

Permutation tests to compare HGT amounts in the urban industrialized (UI) cohort to HGTs in the rural non-industrialized (RN) cohort. Expected HGTs for the

urban industrialized cohort are based on the HGT frequencies of the same species pairs found in the RN cohort. HGT frequencies were calculated by averaging

HGT frequencies across all pairs of individuals within each cohort (both within and between-people pairs). We defined the statistic S as in the figure, and we

calculated Sobs from real data (red vertical lines). We compared this statistic to a null distribution obtained by shuffling either the lifestyle of pairs of individuals (left

histogram) or the lifestyle of individuals (right histogram) before calculating averages of HGT frequencies. For each permutation, cohort sizes (number of people

pairs) were fixed to observed sizes. 1,000 permutations were performed in each case. Both p values are < 0.001.
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Figure S5. Elevated HGT frequency in the gut microbiome of individuals living in industrialized and urban populations, related to Figures 4B

and 4C

Gut bacterial species in urban industrialized (UI) individuals exchange genes at higher frequency than in rural non-industrialized (RN) communities (Figure 4B).

This effect holds true when comparing the UI cohort to every individual rural non-industrialized ethnic group that have specific lifestyles (Beti, farmers (A); Baka,

hunter-gatherers & farmers (B); Hadza, hunter-gatherers (C); Datoga, pastoralists (D). See legend of Figure 4B for legends of line and bar plots (panels A to D). (E)

This panel presents raw results complementing Figure 4C in the main text, which shows the comparison of HGT frequencies of all species pairs shared between

pairs of cohorts having different lifestyles, along a gradient of industrialization and urbanization. See legend of Figure 4B for legends of line and bar plots. For each

lifestyle comparison, the left barplot shows HGT counts when considering both within and between-people HGTs, and the one on the right is for within-people

HGTs only (*: p value < 2.2x10�308). Ratios of observed versus expected HGT counts were computed for each cohort pair, and these ratios were compared to the

Industrialized & Urban cohort to produce the barplot shown in Figure 4C.
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Figure S6. Transferred functions across host lifestyles, related to Figure 6
(A) Homogeneity of frequencies for HGT functions across pairs of bacterial species in the gut microbiome. When comparing functions of transferred coding

sequences between two cohorts (e.g., Urban & Industrialized versus Rural & Non-industrialized), we looked at functions exchanged across pairs of species of our

isolate collection that are shared by the two cohorts. Consequently, pairs of species being compared are different across pairs of cohorts. We used the Levene’s

test for Homogeneity of Variance to assess whether, for any given cohort, the different sampling of species pairs across pairwise cohort comparisons resulted in

differences in frequencies of transferred ARG, CAZyme and virulence genes. Overall, we found that the frequency of each these three functions is homogeneous

across cohort comparisons (e.g., UI versus RI, UI versus UM and UI versus RN) (df = 11, F value = 1.5643, p value = 0.17). In this figure, the three functions are

represented in columns. Each row represents the frequency of transferred genes for a given cohort (e.g., UI - Urban & Industrialized cohort) when it is compared to

the three other cohorts (e.g., IR, NU and NR). (B) Profiles of frequencies for plasmid, transposon and phage genes were compared for all lifestyle pairs using two-

proportions Z-tests followed by a Bonferroni correction for multiple tests (*p values < 0.05; **p values < 0.01; ***p values < 0.001. For a given lifestyle pair,

frequencies were averaged across all pairs of individuals in each lifestyle category. In addition, for any given cohort comparison, frequencies of HGT functions

were calculated using only species pairs that were sampled in both cohorts. Genes involved in plasmid and transposon functions are frequently transferred

across all cohorts, suggesting that themajority of recent HGTs occur through the exchange of these genetic systems. Overall, we observe a trend for an increased

frequency of transferred plasmids and transposons in industrialized and/or urban cohorts as compared to non-industrialized and/or rural cohorts. (C) We

compared the frequency of transferred antibiotic resistance genes in the Urban & Industrialized cohort to three other rural and non-industrialized cohorts having

different lifestyles: the Hadza, who are Hunter-gatherers, the Beti, who are farmers, and the Datoga, who are pastoralists, and who frequently use antibiotics for

their livestocks. We observe that all rural and non-industrialized cohorts consistently exchange ARG more frequently than in the urban and industrialized cohort

(see Figure 6), and that the Datoga is the population that recently experienced the highest frequency of ARG transfers.
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