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ARTICLE OPEN

Fast and interpretable classification of small X-ray diffraction
datasets using data augmentation and deep neural networks
Felipe Oviedo 1, Zekun Ren2, Shijing Sun1, Charles Settens1, Zhe Liu1, Noor Titan Putri Hartono 1, Savitha Ramasamy3,
Brian L. DeCost4, Siyu I. P. Tian 1, Giuseppe Romano1, Aaron Gilad Kusne4 and Tonio Buonassisi1,2

X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel
thin-film materials. We propose a machine learning-enabled approach to predict crystallographic dimensionality and space group
from a limited number of thin-film XRD patterns. We overcome the scarce data problem intrinsic to novel materials development by
coupling a supervised machine learning approach with a model-agnostic, physics-informed data augmentation strategy using
simulated data from the Inorganic Crystal Structure Database (ICSD) and experimental data. As a test case, 115 thin-film metal-
halides spanning three dimensionalities and seven space groups are synthesized and classified. After testing various algorithms, we
develop and implement an all convolutional neural network, with cross-validated accuracies for dimensionality and space group
classification of 93 and 89%, respectively. We propose average class activation maps, computed from a global average pooling
layer, to allow high model interpretability by human experimentalists, elucidating the root causes of misclassification. Finally, we
systematically evaluate the maximum XRD pattern step size (data acquisition rate) before loss of predictive accuracy occurs, and
determine it to be 0.16° 2θ, which enables an XRD pattern to be obtained and classified in 5.5 min or less.

npj Computational Materials            (2019) 5:60 ; https://doi.org/10.1038/s41524-019-0196-x

INTRODUCTION
High-throughput material synthesis and rapid characterization are
necessary ingredients for inverse design and accelerated material
discovery.1,2 X-ray diffraction (XRD) is a workhorse technique to
determine crystallography and phase information, including
lattice parameters, crystal symmetry, phase composition, density,
space group, and dimensionality.3 This is achieved by comparing
XRD patterns of candidate materials with the measured or
simulated XRD patterns of known materials.4 Despite its indis-
pensable utility, XRD is a common bottleneck in materials
characterization and screening loops: 1 hour is typically required
for XRD data acquisition with high angular resolution, and another
1–2 hours are typically required for Rietveld refinement by an
expert crystallographer, assuming the possible crystalline phases
are known. It is widely recognized that machine learning methods
have potential to accelerate this process; however, practical
implementations have thus far focused on well-established
materials,5–7 require combinatorial datasets spanning among
various phases,8,9 or require large datasets,5,10 whereas material
screening using the inverse design paradigm often involves less-
studied materials, spanning multiple classes of different material/
phase compositions, and smaller prototype datasets.
Typically, experimental XRD pattern data are analyzed by

obtaining descriptors such as peak shape, height, and position.
Matching descriptors of the test pattern to known XRD patterns in
crystalline databases allows the identification of the compound of
interest.4 Refinement methods such as Rietveld refinement and
Pawley refinement have been used for decades to analyze

experimental XRD patterns.4 For novel compounds in thin-film
form, however, the use of Rietveld refinement is limited due to the
lack of reference patterns in material databases, as well as
unknown film textures. The direct-space method, statistical
methods, and the growth of single crystals have been used to
obtain crystal symmetry information for novel materials,7,11–14 but
the significant iteration time, feature engineering, human
expertise, and knowledge of specific material required makes
these methods impractical for high-throughput experimentation,
where sample characterization rates are of the order of one
material per minute or faster,2,15 explored over various material
families.
An alternative approach consists in using machine learning

methods to obtain more robust spectral descriptors and quickly
classify crystalline structure based on peak location and shape in
the XRD pattern. Breakthrough methods have been developed for
the similar problem of phase attribution in combinatorial
alloys,16,17 but only few studies have been developed for
solution-processed material screening, such as perovskite screen-
ing, where phase attribution is usually not as important as correct
classification of materials into groups according to crystal
parameters. The most successful methods10,18 for material screen-
ing use convolutional neural networks (CNNs) trained with
hundreds of thousands of XRD powder patterns simulated with
data from the Inorganic Crystalline Structure Database (ICSD).
Further CNN and other deep learning algorithms have been
employed to obtain crystalline information for other kinds of
diffraction data.19–21 In a couple studies, noise-based data
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augmentation, a common technique of image preprocessing for
machine learning, has been used to avoid overfitting in a broader
kind of X-ray characterization problems20,22,23 and more broadly in
other fields such as Tramission Electron Microscopy imaging;21

however, the augmentation procedure has not been based in
physical knowledge of actual experimental samples. Furthermore,
the best-performing machine learning methods developed up-to-
date for XRD analysis do not allow any kind of interpretation by
the experimentalists,10 hindering improvements of experimental
design.
While similar approaches produce good results for crystal

structure classification, we have found that applying them to high-
throughput characterization of novel solution-processed com-
pounds is generally not practical, given the limited access to large
datasets of clean, preprocessed, relevant, XRD spectra. Further-
more, most materials of interest developed in high-throughput
synthesis loops are thin-film materials. The preferred orientation of
the crystalline planes in thin-films causes their experimental XRD
patterns to differ from the thousands of simulated XRD powder
patterns available in most databases.24,25 Thin-film compounds
usually will present spectrum shifting and periodic scaling of
peaks in preferred orientations, reducing the accuracy of machine
learning models trained with powder data,8,9,26 even in the cases
when noise-based data augmentation techniques are used.18

Considering these challenges, we propose a supervised
machine learning framework for rapid crystal structure identifica-
tion of novel materials from thin-film XRD measurements. For this
work, we created a library of 164 XRD patterns of thin-film halide
materials extracted from the >100,000 compounds available in the
ICSD27; these 164 XRD patterns include lead halide perovskite28,29

and lead-free perovskites-inspired materials.30 These XRD patterns
were manually classified among different crystal dimensionalities
using ICSD information. Based on this small dataset of relevant
XRD powder patterns extracted from the ICSD and an additional
115 experimental XRD patterns, we propose a model-agnostic,
physics-informed data augmentation to generate a suitable and
robust training dataset for thin-film materials, and subsequently
test the space group and dimensionality classification accuracy of
multiple machine learning algorithms. A one-dimensional (1D)
implementation of an “all convolutional neural network” (a-CNN)31

is proposed, implemented and identified as the most accurate and
interpretable classifier for this problem. We propose a new way to
use class activation maps (CAMs),32 computed from the weight
distribution of a global average pooling layer and adapted to the
context of our problem, to provide interpretability of root causes
of classification success or failure to the experimentalist. Subse-
quently, the effect of the augmented dataset size and the XRD
pattern granularity is investigated. Our proposed methodology
could be applied to other crystal descriptors of thin-film materials,
such as lattice parameters or atomic coordinates, as long as
labeled information is available.
Our contributions can be summarized as: (a) development of

physics-informed data augmentation for thin-film XRD, which
successfully addresses the sparse/scarce data problem, breaching
the gap between the thousands of XRD patterns in crystalline
databases and real thin-film materials, (b) development of highly
interpretable, highly accurate, a-CNN for XRD material screening,
(c) proposal of average class activation maps as a feasible
interpretability tool in CNNs trained on spectral data.

RESULTS AND DISCUSSION
Framework for rapid XRD classification
The framework developed for rapid classification of XRD thin-film
patterns according to crystal descriptors is shown in Fig. 1a. The
methodology makes use of both experimental and simulated XRD
patterns to train a machine learning classification algorithm. A

simulated dataset is defined by extracting crystal structure
information from the ICSD. The experimental dataset consists of
a set of synthesized samples, which are manually labeled for
training and testing purposes. The datasets are subjected to data
augmentation based on the three spectral transformations shown
in Fig. 2.
The crystal descriptors of interest, space group and crystal

dimensionality, are chosen because of their importance for
material screening in accelerated material development. In many
inorganic material systems, the crystalline dimensionality—i.e., a
generalization of the crystalline symmetry into 0-dimensional (0D),
1D, 2D, or 3D symmetry— constitutes a figure of merit for
experimental material screening as it correlates with observed
charge-transport properties.33 In perovskites and perovskites-
inspired materials, for instance, 3D crystalline structures have
been shown to have good carrier-transport properties for solar
cells and light-emitting diode applications,33,34 whereas 3D–2D
mixtures have been found to have greater stability in lead halide
perovskites than pure-phase 3D crystals.35 With further detail, the
space group number describes the standardized symmetry group
of a configuration in space, classifying crystal symmetries into 230
groups. Identifying the space group number of a sample provides
crystal information beyond dimensionality, including atomic
bonding angles and relative distances, which are believed to be
of importance for predicting material properties.36 In this specific
study, the framework relies on the relation between XRD patterns
and the crystal descriptors of interest. For example, among
perovskite-inspired materials for photovoltaic applications, 3D
cubic lead halide perovskites of multiple compositions show
distinct features in their XRD patterns compared with 2D layered
bismuth perovskites.37,38

Typically, the powder XRD pattern is used to identify space
group through Rietveld refinement, but the compression of
crystalline 3D crystallographic information into a 1D diffraction
pattern causes the space group to be impossible to determine
unambiguously in certain low-symmetry phases, independently of
the measurement technique.39 In this work, the space groups of
interest are able to be determined from XRD information only.
To better account for noise measurement and the physical

difference between randomly oriented powder patterns and
experimental thin-film patterns, the patterns were subjected to a
process of data augmentation based on domain knowledge.
Subsequently, both augmented experimental and simulated XRD
pattern datasets are used for testing, training and cross-validation
of machine learning algorithms.
Figure 1b shows the architecture of the final a-CNN, which is

proposed and identified as the best-performing machine learning
algorithm in subsequent sections.

Experimental measurement and labeling of XRD patterns
The experimental dataset consists of 75 XRD patterns for
dimensionality classification, summarized in Supplementary Table
S1, and 88 XRD patterns for space group classification, summar-
ized in Supplementary Table S2. A total of 115 unique labeled XRD
patterns are considered among both datasets. For this work,
perovskites-inspired 3D materials based on lead halide perovskites
(space group Pm3m), tin halide perovskite (I4/mcm), cesium silver
bismuth bromide double perovskite (Fm3m), bismuth and
antimony halide 2D (P3m1, Pc, P21=a), and 0D (P63/mmc)
perovskite-inspired materials are synthesized and used as training
and testing dataset. The details of the synthesis and characteriza-
tion methodology are described in great detail in our experi-
mental study.40 Supplementary Fig. S1 shows the t-Distributed
Stochastic Neighbor Embedding representation of the XRD
patterns labeled with dimensionality and space group, providing
evidence of the complexity of the classification problem.
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In this case, Rietveld refinement is restricted due to the
unknown preferred orientation and texture of the thin-film
samples. In consequence, the XRD patterns are subjected to peak
indexing and the dimensionality and space group are labeled
based on ICSD data.

Data mining and simulation of XRD patterns
The simulated training dataset consists of 164 compounds
extracted from ICSD with a similar composition, expected crystal
symmetry, and space group as the synthesized materials of
interest. All the possible single, double, ternary, and quaternary
combinations of the elements of interest were extracted during
database mining. The compositions of all the materials of interest
along with labeled dimensionality and space group information is
available in Supplementary Table S3. The fundamental crystal
descriptors extracted from the material database are used to
simulate XRD powder patterns with random crystalline orienta-
tions, as explained in the Methods section.

Data augmentation based on domain knowledge
Experimental thin-film XRD patterns vary greatly compared to
simulated, idealized, randomly oriented XRD patterns. Due to
expansions and contractions in the crystalline lattice, XRD peaks
shift along the 2ϴ axis according to the specific size and location
of the different elements present in a compound, while
maintaining similar periodicity based on crystal space
group.3,8,26,41 In addition, for thin-film samples, the XRD pattern
can be shifted due to strain in the film induced during the
fabrication process.42 Polycrystalline thin-films are also known to
have preferred orientations along certain crystallographic planes.
The preferred orientation is influenced by the crystal growth
process and the growth substrate,24 and is common for most
solution-processing and vapor-deposition fabrication methods.
Ideal random powders contain multiple grains without any
preferred global orientations, thus all crystallographic orientations
are represented evenly in the peak intensity and periodicity of the
XRD pattern. As a consequence of their preferred orientations
along crystallographic planes, thin-film XRD relative peak inten-
sities are scaled up periodically in the preferred plane orientation,
and scaled down periodically or even eliminated in the non-
preferred orientations.
To increase the size and robustness of the limited training

dataset and to account for these fundamental differences
between real thin-films and simulated XRD powder patterns, we
perform a three-step data augmentation procedure based on
physical domain knowledge:

(1) Peak scaling, (2) Peak elimination, and (3) Pattern shifting.
These transformation are described in detail in Methods. Figure 2
summarizes the data augmentation steps and its effects on a
representative pattern. Given the hyperparameters S and ε in Eqs.
1–3 in the Methods section, 2000 patterns are augmented from
the simulated dataset, and 2000 patterns are augmented from
experimentally measured spectra.
We choose to perform physics-informed data augmentation

instead of explicit regularization for the following reasons: (1) data
augmentation has been found to be more robust at avoiding
overfitting than explicit regularization when using convolutional
neural networks,43 (2) data augmentation is model-agnostic,
allowing our approach to successfully bridge the gap between
experimental XRD patterns and thousands of XRD patterns
available in databases without depending on a specific model
that might not generalize well in all cases (no-free-lunch theorem),
and (3) physics-informed data augmentation allows high inter-
pretability, and is found to be more robust than traditional noise-
based data augmentation approaches (Supplementary Table S6).

Classification results and a-CNN
Preprocessed, augmented experimental data, and augmented
simulated data are fed into various supervised machine learning
algorithms for training and testing purposes. The best-performing
algorithm is evaluated. The XRD patterns are classified into three
crystal dimensionalities (0D, 2D, and 3D) and seven space groups (
Pm3m, I4/mcm, Fm3m; P3m1, Pc, P21/a, and P63/mmc).
For this purpose, we represent the XRD pattern as either a

vector or a time series. For each kind of data representation,
different classification algorithms are considered. Using a vector
representation of the XRD pattern, the following classification
methods are tested: Naive Bayes, k-Nearest Neighbors, Logistic
Regression, Random Forest, Decision Trees, Support Vector
Machine, Gradient Boosting Decision Trees, a Fully Connected
Deep Neural Network, and an a-CNN with a global pooling
layer.44–46 The XRD patterns are also analyzed as a time series with
a normalized Dynamic Time Warping (DTW) distance metric47

combined with a k-Nearest Neighbors classification algorithm,
which was found in literature as the most adequate metric for
measuring similarity among metal-alloy XRD spectra.7,26

The problem of novel material development is inherently a
multi-class classification problem, in which the classes for training
and testing purposes can often be imbalanced as some material
families are better characterized than others (e.g., lead-based
perovskites are better represented in material databases than
newer lead-free perovskites).38 Common metrics for binary
classification such as accuracy might not be the most adequate

Fig. 1 General framework and a-CNN architecture. a Schematic of our X-ray diffraction data classification framework, with physics-informed
data augmentation. b Schematic of the best-performing algorithm, our all convolutional neural network
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in this context.45 The final choice for adequate metrics depends on
the relative importance of false positive and false negatives in
minority and majority classes, according to the goals of the
experimentalist. For method development in this work, we
consider the following metrics: subset accuracy, defined as the
number of correctly classified patterns among all test patterns,
and F1 score. F1 score in this problem can be interpreted as the
weighted harmonic mean of precision and recall; the closer it is to
1.0, the higher the classifier’s precision and recall.45 Intuitively,
precision is the ability of the classifier not to produce a false
positive, whereas recall is the ability of a classifier to find all the
true positives. An F1 metric is calculated for each class label, and it
is combined into an overall score by taking either the micro or the
macro average of the individual scores. The macro average
calculates the mean of the metrics of all the individual classes,
hence treating all classes equally. The micro average adds the
individual contribution of all samples to compute the overall
metric.
When there is class imbalance, accuracy and F1 micro score

characterize the classifier’s performance over all classes, whereas
F1 macro emphasizes the accuracy on infrequent classes.45 Thus, a
natural choice for high-throughput experiments across multiple
material classes seems to be accuracy/F1 micro score, except in
those cases when we are especially interested in analyzing an
infrequent material class, being F1 macro a more representative
metric in that case. In this work, we choose to report the
classification accuracy and both F1 micro and F1 macro, whereas
recall and precision results are included in the Supplementary
Information (Supplementary Tables S4 and S5).
We measure the performance of the dimensionality and space

group classification methods based on three different approaches
of splitting the training and testing datasets:
Case 1: Exclusively simulated XRD patterns are used for testing

and training. Fivefold cross-validation is performed.
Case 2: The simulated XRD patterns are used for training, and

the experimental patterns for known materials are used for
testing.

Case 3: All of the simulated data and 80% of the experimental
data are used for training, and 20% of the experimental data are
used for testing. Fivefold cross-validation is performed.
Each one of the training/testing cases mentioned earlier are

tested for crystal dimensionality and space group prediction
accuracy and micro/macro F1 score. The results are reported in
Table 1. In each cell, the crystal dimensionality classification metric
is reported first, followed by the metric for space group
classification. Case 1, presenting fivefold cross-validation results
of the simulated dataset, has the highest accuracy as it does not
predict any experimental data and thus is free of experimental
errors for both crystal descriptors. Case 2 performs the experi-
mental prediction solely based on simulated patterns, thus having
the lowest accuracy. Finally, Case 3 has a significant higher
accuracy than Case 2 for both crystal dimensionality and space
group prediction. F1 scores follow these trends as well.
In general, the model’s accuracy and F1 score is lower for space

group classification than that for crystal dimensionality classifica-
tion. This discrepancy is caused by the lower number of per-class
labeled examples for space group classification compared to
crystal dimensionality classes. Class imbalance can also system-
atically affect the training performance of the classifier, to avoid
this issue, we performed an oversampling test with synthetic
training data according to,48,49 and observed little discrepancy of
accuracy between the balanced and imbalanced datasets after
fivefold cross-validation.
The use of experimental data as part of the training set

increases the model’s accuracy and robustness. This fact can be
explained by the high variability of experimental thin-film XRD
patterns, even after data preprocessing. The relatively high
accuracy with the relatively small number of experimental samples
(on the order of 10–102) confirms the potential of our data
augmentation strategy to yield high predictive accuracies even
with small datasets. Supplementary Table S6 in the Supplementary
Information compares our strategy with traditional noise-based
augmentation approaches, and shows an average increase of
classification accuracy of >12% absolute.

Fig. 2 Physics-informed data augmentation: schematic of the physics-informed data augmentation algorithm, which accounts for the
particularities of thin-film XRD spectra, as described by the subsequent transformations stated in Eqs. 1–3

F. Oviedo et al.

4

npj Computational Materials (2019)    60 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Naturally, the F1 macro score is systematically lower than the F1
micro score, reflecting the impact of misclassification of those
dimensionality and space group classes with less training
examples. However, the F1 macro score is still fairly high for most
classifiers. This fact reflects the importance of adequate experi-
mental design to achieve good generalization among classes.
For all three test cases, the a-CNN classifier performs better than

any other classification technique. The 1D a-CNN architecture
implemented is composed of three 1D convolutional layers, with
32 filters each, and strides and kernel sizes of 8, 5, and 3 units,
respectively. The activation function between layers is ReLu. A
global average pooling layer50 (acting as a weak regularizer) and a
final dense layer with softmax activation is used. The loss function
minimized is binary cross entropy. We use early stopping with a
batch size of 128 during training, and use the Adam optimizer
algorithm to minimize the loss function. The CNN is implemented
in Keras 2.2.1 with the Tensorflow background. Figure 1b contains
a schematic of the proposed a-CNN architecture.
Our a-CNN architecture, in contrast with other CNNs, does not

have max pooling layers between convolutional layers, and also
lacks a set of dense layers in the final softmax classification layer.
These modifications, in contrast with the architectures used in,10,18

significantly reduces the number of parameters in the neural
network, allows faster and simpler training, and are less prone to
overfitting. Another advantage of our implementation is the
possibility to extract CAMs from the weight distribution of the
global average pooling layer. This characteristic of the network,
properly adapted to our problem, allows us to visualize how the
classified XRD patterns are mapped to the weight distribution at
the end of the a-CNN. The results are further discussed in the
interpretability subsection.
The a-CNN trained after data augmentation has an accuracy of

>93 and 89% for crystal dimensionality and space group
classifications, respectively. As far as we know, the accuracy is
among the highest described in literature for space group
classification algorithms, comparable to those trained with
thousands of ICSD patterns and manual labeling by human
experts,10,51 and is also comparable to similar approaches in other
kinds of diffraction data.8,19 The neural network seems to be the
most adequate method for high-throughput synthesis and
characterization loops, as it also performs relatively well in terms
of algorithm speed and in conditions of class imbalance. In the
future, our methodology can be extended to other materials

systems, and may include other crystal descriptors as predicted
outputs, such as lattice parameters and atomic coordinates.
Furthermore, the a-CNN performs better than the traditional k-

nearest neighbors method using DTW. In our test case and
dataset, the differences between thin-film and powder spectra
seem not to be captured properly by DTW alone. Arguably, DTW
could be more useful if a larger XRD thin-film pattern dataset is
available for k-Nearest Neighbors classification, or if it exists
greater similarity between XRD patterns of the same class,
allowing the DTW warping path to be better captured within
the DTW window under consideration.26 CNNs have been found
to perform better than DTW for classification of time series, which
is consistent with our results.52

Effect of augmented dataset size. The size of the dataset is critical
for obtaining a high accuracy and F1 score. To explore the effect of
augmented dataset size, the a-CNN accuracy was computed for
various combinations of augmented experimental patterns (i.e.,
number of augmented XRD spectra originated from the 88
measured spectra, varying S and ε in Eqs. 1–3) and augmented
simulated dataset sizes (i.e., number of augmented XRD spectra
originating from the 164 simulated ICSD spectra). Figure 3a, b
summarizes this sensitivity analysis for Case 3 training/testing
conditions for dimensionality and space group classification.
Twenty different fivefold cross-validation runs were performed to
calculate the 1-standard deviation error bars for each data point.
In general, as the size of the experimental and augmented

datasets increase, the mean accuracy quickly approaches the
asymptotic accuracy reported in Table 1. This trend reaffirms and
quantifies the importance of data augmentation for the predictive
accuracy of our model.
The critical augmented dataset size seems to be around 700

augmented spectra. The model’s accuracy is more sensitive to the
augmented experimental dataset size, likely because most of the
dataset variance comes from the experimental XRD patterns. The
data augmentation of the simulated dataset causes the accuracy
to grow monotonically in Fig. 3b; however, this trend is not
satisfied in the case of Fig. 3a, where no augmented simulated
data seems on average to perform the best. We hypothesize that
augmenting simulated data could actually introduce excessive
noise to the model, hampering classification when the number of
possible classes is small.
Figure 3 illustrates that if no data augmentation is used (i.e., the

origin, 0, 0), the predictive accuracy could be below 50% for space

Table 1. Results of the ML algorithms under consideration

Method Case 1 accuracy [%] Case 2 accuracy [%] Case 3 accuracy [%] Case 3 micro
F1 score

Case 3 macro
F1 score

Naive Bayes 84.9/81.2 66.7/25.5 83.3/60.5 0.833/0.605 0.830/0.433

K-nearest neighbors 95.1/93.2 68.3/21.2 83.3/74.5 0.833/0.745 0.820/0.621

K-nearest neighbors with dynamic time
warping

96.0/94.1 75.3/78.5 86.6/80.1 0.866/0.801 0.836/0.645

Logistic regression 92/82.3 68.3/13.9 91.7/76.6 0.917/0.766 0.847/0.601

Random forest 93.8/81.6 63.3/56.2 83.3/82.1 0.833/0.821 0.827/0.597

Decision tree 87.1/80.7 45.2/31.2 81.7/69.1 0.817/0.691 0.793/0.550

Support vector machine 94.4/93.7 67.1/67.3 88.1/78.5 0.881/0.785 0.805/0.659

Gradient boosting regression trees 96.2/92.1 62.1/62.1 89.7/81.1 0.897/0.811 0.866/0.653

Dense neural network 99.2/98.1 84/75.4 92.1/84.1 0.921/0.841 0858/0.695

All convolutional neural network (a-CNN) 99.1/99.1 83.7/80.2 92.9/89.3 0.929/0.893 0.859/0.714

Reported average accuracy, micro and macro F1 score for dimensionality/space group classification after fivefold cross-validation for each classification
algorithm and case. In Case 1, exclusively simulated XRD patterns are used for testing and training. In Case 2, the simulated XRD patterns are used for training,
and the experimental patterns for known materials are used for testing. In Case 3, all of the simulated data and 80% of the experimental data are used for
training, and 20% of the experimental data are used for testing. The best performing algorithm is our a-CNN architecture
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group and below 70% for dimensionality. Our physics-informed
data augmentation directly increase accuracy by up to 23% in the
case of dimensionality and 19% in the case of space group
classification. This result reinforces the need for data augmenta-
tion for sparse/scarce datasets, as is typical with early-stage
material development.

Impact of data coarsening. To evaluate the trade-offs between
accuracy and XRD acquisition speed, we investigate how data
coarsening of the XRD pattern impacts the accuracy of ML
algorithm prediction. In Fig. 4, we report Case 3 accuracy with
increasing 2ϴ angle step size. The baseline step size of the 2ϴ
scan in our XRD patterns is 0.04°. Data coarsening is performed by
selectively removing the data with increasing step sizes and
rerunning the augmentation and classification algorithms. For
crystal dimensionality and space group classification, the highest
accuracies are achieved at 0.04–0.08°, whereas 85%+ accuracy is
achieved when the 2ϴ step size is 0.16° or less for both cases.

Using the larger step size, the XRD pattern acquisition time can be
reduced by 75%, allowing the full spectra to be measured and
classified in <5.5 min with our tool setup.

Interpretability using CAMs. Class activation maps (CAM) are
representations of the weights in the last layer of a CNN, before
performing classification. A CAM for a certain class and pattern
indicates the main discriminative regions (in our case, peak and
series of peaks in the XRD pattern) that the network uses to
identify that class.32 Details of the CAM computation are included
in the Methods section.
A similar approach has been followed to interpret and improve

object recognition in images and videos using 2D CNNs.32 A single
pattern or image produces a unique CAM revealing the main
discriminative features. In addition, in the context of our problem, we
propose to generalize CAMs to all training samples within a class by
averaging over each of the computed CAM weights for all training
samples within a class, as explained in the Methods section. This
averaging procedure is justified as the location and periodicity of
discriminative peaks within a class varies only slightly along all
labeled samples in the training set, and can be extended to many
spectral measurement techniques. This average CAM allows to
visualize the main discriminative features of an XRD pattern that
were used to classify all the training data belonging to a certain class.
By comparing the CAM for a single pattern with the average CAM

for given class, we can identify the root causes of correct and
incorrect classification by the a-CNN. Figure 5 illustrates this
procedure for XRD patterns of space group classes Class 2 (P21/a)
and Class 6 (Pm3m). Figure 5a, b shows the average CAM maps of
Class 6 and Class 2 space groups. Figure 5c shows the CAM of an
individual, correctly classified XRD pattern. If we compare the
individual CAM with Class 6 Average CAM, we can see that the neural
network is identifying the same reference pattern as most of Class
6 samples, which translates into classification as Class 6. In contrast,
Fig. 5d shows an incorrectly classified XRD pattern, which was
determined to belong to Class 6 by the CNN, when in reality it
belongs to Class 2. A comparison of the individual CAM with the
average CAMs of classes 6 and 2 reveals that the misclassified CAM is
more similar to Fig. 5a than Fig. 5b. A closer look to the misclassified
patterns, shows that the periodicity of peaks before 30° and the
relative lack of peaks between 30° and 50° (likely caused by mixed
phases), are causing the misclassification.

Fig. 4 Reducing XRD pattern acquisition time: simulation of the
trade-off between XRD pattern acquisition rate and predictive
accuracy. Accuracies for crystal dimensionality and space group
predictions are estimated by coarsening the XRD spectrum 2ϴ step
size for Case 3 conditions. The error bars correspond to one
standard deviation from the mean

Fig. 3 Accuracy of the a-CNN model with augmented data: line plot
showing mean Case 3 a-CNN accuracy, as a function of the number
of augmented patterns (Methods, Eqs. 1–3) included in the training
set, for (a) dimensionality classification and (b) space group
classification. The x axis shows augmented experimental data
(based on the original experimental XRD patterns), and the legend
shows simulated data (based on the 164 simulated powder
diffraction patterns obtained from the ICSD). The error bars
correspond to one standard deviation from the mean
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Several representative misclassification cases are identified and
included in the Section VII of Supplementary Information. In our
work, by comparing the CAM of wrongly classified cases with the
average CAM of all training data within certain class, we conclude
there are three main causes for failed classification. The first cause
is the mixture of phases in the sample, which increases the chance
of the CAM of a particular pattern differing from the average class
CAM. The second cause is lack of XRD patterns in the per-class
training data. We only have <5 patterns in certain space group
classes, thus the average CAM of minority classes has only a limited
number of discriminative features compared to majority classes,
increasing the testing error. The third cause of misclassification is
missing peaks, or too few peaks, present in the XRD pattern;
because of the lack of enough discriminative features, the CAM of
the incorrectly labeled pattern could be ambiguously similar to two
or more average class CAMs, causing the misclassification.
After the experimentalist identifies these root causes of error,

they can be mitigated by increasing the number of experimental
training points for certain classes or increasing the phase purity of
the material coming from the synthesis and solution-processing
procedure.

Summary of contributions. In this work, we develop a supervised
machine learning framework to screen novel materials based on
the analysis of their XRD spectra. The framework is designed
specifically for cases when only sparse datasets are available, e.g.,
early-stage high-throughput material development and discovery
loops. Specifically, we propose a physics-informed data

augmentation method that extends small, targeted experimental
and simulated datasets, and captures the possible differences
between simulated XRD powder patterns and experimental thin-
film XRD patterns. A few thousand augmented spectra are found
to increase our classification accuracy from <60 to 93% for
dimensionality and 89% for space group. The F1 macro score is
also over 0.85 for various algorithms, reflecting the model’s
capacity to deal with significantly imbalanced classes.
When trained with both augmented simulated and experi-

mental XRD spectra, a-CNNs are found to have the highest
accuracy/F1 macro score among the many supervised machine
learning methods studied. Our proposed a-CNN architecture
allows high performance and interpretably through CAMs. The
use of our proposed average CAMs, allow to identify the root
cause of misclassification, and allow the design of a robust
experiment. Furthermore, we find that the neural network model
tolerates coarsening of the training data, providing future
opportunities for online learning, i.e., the on-the-fly adaptive
adjustment of XRD measurement parameters by taking feedback
from machine learning algorithms.15

Our approach can be extended to XRD-based high-throughput
screening of any kind of thin-film materials, beyond perovskite
and perovskite-inspired materials. Since most material databases
lack information for various kinds of novel materials, the data
augmentation approach to tackle data scarcity can be broadly
applied. The underlying difference between XRD patterns of thin-
films and powders is common to a broad range of materials and is
commonly seen in most thin-film characterization experiments.

Fig. 5 Class activation maps for misclassification interpretability: class activation maps (CAMs) generated by the a-CNN architecture,
representing space group classification of Class 2 (P21/a) and Class 6 (Pm3m). (a, b) correspond to maps generated by averaging all training
samples in a certain class, whereas (c, d) correspond to the CAMs of correctly classified and incorrectly classified individual patterns,
respectively. The correctly predicted pattern of (c) is explained by the similarity of its CAM to the average CAM of Class 6; whereas, the
incorrectly prediction (d) can be explained by comparing its CAM with the average CAMs of classes 2 and 6
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The high interpretability of our approach could allow future work
in semi-supervised or active learning, allowing the CAM maps to
guide manual XRD refinement or actual XRD experiments. The
framework may also be extended beyond XRD classification, to
any spectrum containing information-rich features that require
classification (XPS, XRF, PL, mass spectroscopy, etc.). The
advantages of our approach include: (1) interpretable error
analysis; (2) a data augmentation strategy that enables fast and
accurate classification, even with small and imbalanced datasets.

METHODS
Measurement and preprocessing of experimental XRD patterns
The XRD patterns for each sample are obtained by using a parallel beam,
X-ray powder diffraction Rigaku SmartLab system53 with 2ϴ angle from 5
to 60° with a step size of 0.04°. The tool is configured in a symmetric setup.
We preprocess the raw XRD patterns to reduce the experimental noise and
the background signal. For this purpose, the background signal is
estimated and subtracted along the 2ϴ axis, and the spectrum is
smoothed conserving the peak width and relative peak size applying the
Savitzky-Golay filter.54 A representative example of a preprocessed and raw
XRD spectra is included in Supplementary Fig. S2.

Simulation of powder XRD patterns
The powder XRD simulations are carried out with Panalytical Highscore
v4.7 software based on the Rietveld algorithm implementation by Hill and
Howard.55,56 The XRD crystal is assumed to have fully random grain
orientations. The unit cell lattice parameters, atomic coordinates, atomic
displacement parameters, and space group information are considered for
the structure factor calculation in the Rietveld model.

Physics-informed data augmentation
Suppose we describe the series of peaks in an XRD pattern by a discrete
function 2θð Þ : I ! Rþ , which maps a set of discrete angles I to positive
real numbers Rþ corresponding to peak intensities. We augment the data
through the following sequential process of transformations Φ1

S;c;Φ
2
S , and

Φ3
ε :
Random peak scaling is applied periodically along the 2ϴ axis to

account for different thin-film preferred orientations. A subset of random
peaks at periodic angles S is scaled by factor c, such that

Φ1
S;c ¼ c � f jSþf jInS (1)

Random peak elimination (with a different randomly selected S than Eq.
1) is applied periodically along the 2ϴ axis, to account for different thin-
film preferred orientations, such that

Φ2
S ¼ 0 � f jSþf jInS (2)

Pattern shifting by small random value ε along the 2ϴ direction to allow
for different material compositions and film strain conditions, such that

Φ3
ε ¼ f 2θ� εð Þ (3)

CAMs
We perform global average pooling in the last convolutional layer. The
pooling results are defined as

P

x
fk xð Þ where fk (x) is the activation of unit k

at convolution location x. The pooling results
P

x
fk xð Þ are subsequently fed

into the softmax classifier. The class confidence score, thus can be
computed as:

Sc ¼
X

k
wc
k

X

x
fk xð Þ ¼

X

x

X

k
wC
k fk xð Þ (4)

We define MC xð Þ ¼ P
k w

c
kfk xð Þ, as the CAM for class C, where wC

k is the
weight of unit k of the last convolution layer of class C. Therefore, Sc can be
rewritten as:

Sc ¼
X

x
Mc xð Þ (5)

MC (x) directly indicates the importance of the activation at the discrete
location x for a given XRD pattern in class C.
In the context of XRD and other spectral measurements, the location of

relevant intensity peaks is likely to be displaced only little from sample to
sample within a certain class. Thus, the CAMs for all samples within a class

are similar, and could be averaged to obtain the discriminative features
during activation. Thus, we can define average CAMs for class C as MC xð Þ:

MC xð Þ ¼ 1
n

Xn

i¼02C
MCi xð Þ (6)

where n corresponds to the training patterns labeled as class C.

DATA AVAILABILITY
The experimental dataset analyzed during the current study is available in the
following GitHub repository: [https://github.com/PV-Lab/AUTO-XRD/tree/master/
Datasets/Experimental]. The simulated and labeled data that support the findings
of this study is available from the Inorganic Crystalline Structure Database (ICSD), but
restrictions apply to the availability of these data, which were used under license for
the current study, and so are not publicly available. Data are, however, available from
the authors upon reasonable request and with permission of ICSD.

CODE AVAILABILITY
The codes used for preprocessing, data augmentation, and classification are available
in the GitHub repository [https://github.com/PV-Lab/AUTO-XRD/]. The classification
algorithms are implemented using scikit-learn 0.2045 and the fastdtw python library.
The a-CNN is implemented using Keras with the Tensorflow background.
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