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ABSTRACT

In this paper, we study the classical and quantum equivariant
cohomology of Nakajima quiver varieties for a general quiver Q).
Using a geometric R-matrix formalism, we construct a Hopf al-
gebra Yg, the Yangian of (), acting on the cohomology of these
varieties, and show several results about their basic structure the-
ory. We prove a formula for quantum multiplication by divisors
in terms of this Yangian action. The quantum connection can
be identified with the trigonometric Casimir connection for Yo;
equivalently, the divisor operators correspond to certain elements
of Baxter subalgebras of Yg. A key role is played by geomet-
ric shift operators which can be identified with the quantum KZ
difference connection.

In the second part, we give an extended example of the gen-
eral theory for moduli spaces of sheaves on C?, framed at infinity.
Here, the Yangian action is analyzed explicitly in terms of a free
field realization; the corresponding R-matrix is closely related to
the reflection operator in Liouville field theory. We show that
divisor operators generate the quantum ring, which is identified
with the full Baxter subalgebras. As a corollary of our construc-
tion, we obtain an action of the W-algebra W(g[(r)) on the equiv-
ariant cohomology of rank » moduli spaces, which implies certain
conjectures of Alday, Gaiotto, and Tachikawa.
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Chapter 1

Introduction

1.1 Fundamental structures and conjectures

1.1.1

This paper is about the equivariant quantum cohomology of Nakajima quiver
varieties [84, 87]. We see it as part of a larger project [§] which connects
equivariant quantum cohomology of symplectic resolutions with their quan-
tizations and derived autoequivalences. These connections, however, will not
be discussed here.

Here we develop a general structural theory for quantum cohomology of
Nakajima quiver varieties associated to an arbitrary quiver (. We formulate
our answer in terms of a certain Hopf algebra Y, called the Yangian of @,
which acts on the cohomology of Nakajima quiver varieties.

The construction of Yy and an analysis of its basic structure theory is
another objective of this paper and occupies the bulk of its first half. In the
case when @) has no loops, this construction is related to work of Varagnolo
[121] and Nakajima [89], who construct a certain subalgebra of Y via gen-
erators and relations. In this paper, we give an alternative approach which
we will describe shortly.

In the second half of the paper, we work out explicitly what our theory
means for the quiver with one vertex and one loop. In other words, we
work out explicitly the quantum cohomology of the moduli spaces M(r,n)
of framed rank r torsion free sheaves on C?, generalizing the previous work
[103, [73] on the Hilbert schemes of points.

9



1 Introduction 10

1.1.2

Let X be a smooth quasi-projective variety with an action of a reductive
group G. Quantum cohomology is a commutative associative deformation of
ordinary multiplication in equivariant cohomology H¢(X) defined by

(1% 72,73) = Z C]ﬁ <71772,73>5 (1.1)
B5>0

where (71,72) = {4 71 U2 is the standard bilinear form on Hg(X), 3 ranges
over the cone of effective classes in Ho(X,Z), ¢° denotes the corresponding
element of the semigroup algebra of the effective cone, and

<717 V2, 73>5 € HG(pt7 @)

is the virtual count of rational curves of degree [ meeting cycles Poincaré
dual to 71, 72,73 See e.g. [20, [64] for an introduction.

As defined by (L.I), the structure constants of quantum multiplication
are formal power series in ¢°. However, one conjectures that for all equivari-
ant symplectic resolutions, and Nakajima quiver varieties in particular, the
series in ((1.1]) represents a rational function of ¢°. We will prove a slightly
weaker statement below. Thus we get a family of commutative associative
multiplications on H¢(X).

Note that working in equivariant cohomology is crucial as all nonequiv-
ariant counts (yq, e, 73>B vanish for trivial reasons for g # 0.

1.1.3

A basic property of quantum multiplication is that
lxy=7, VyeHgX). (1.2)

For any structure of a commutative associative algebra with unit on a vec-
tor space H, the operators of multiplication form a maximal commutative
subalgebra of End(H).

In particular, the operators of quantum multiplication, for different values
of the quantum parameters ¢, form a by(X)-dimensional family of maximal
commutative subalgebras in the algebra that they all generate. For brevity,
we call these subalgebras the algebras of quantum multiplication. For g = 0,
they specialize to the algebra of classical multiplication in H¢(X).

10



11 1.1 Fundamental structures and conjectures

Not much is known or conjectured about this algebraic structure for gen-
eral X. For Nakajima quiver varieties, by contrast, one expects the following
very strong link with much-studied structures in representation theory and
mathematical physics.

1.1.4

The Nakajima quiver varieties My (v, w) with parameters
vwweN  #eRl, (eC!

are associated to a quiver () with the vertex set I. The quiver () may have
loops and multiple edges. Nakajima varieties have large groups G of auto-
morphism that preserve (or scale, for ( = 0) their natural symplectic formﬂ
By construction, the space

H(w) = @ Hg (Mog(v,w))

will be a module over the Yangian Y. By construction, operators of cup
product by characteristic classes of universal bundles form a commutative
subalgebra in Y.

1.1.5

The algebras Y¢ generalize Yangians of simple finite-dimensional Lie alge-
bras, as defined by Drinfeld [27]. Their origins lie in the theory of quantum
integrable systems, see e.g. [34] 53], 64, [112] for an introduction.

A powerful correspondence between quantum integrable systems and mod-
uli of vacua in supersymmetric gauge theories (of which Nakajima vari-
eties are examples) was proposed in the work of Nekrasov and Shatashvili
[96, 97, 98]. In particular, quantum group actions on their cohomology or
K-theory constructed by Varagnolo and Nakajima fit into this framework.

For us, the main prediction of Nekrasov and Shatashvili is a conjectural
identification of algebras of quantum multiplication with Bazter subalgebras’|
in the Yangian Y.

!Note the quantum product is trivial unless ¢ = 0 because all curve contributions are
proportional to the weight 7 of the symplectic form.
2Also known as Bethe subalgebras.

11



1 Introduction 12

1.1.6

Independently, Bezrukavnikov conjectured a relation between the monodromy
of the quantum differential equation, see below, and autoequivalences
of D Cohg X for symplectic resolutions X, see Section [1.6.2] This was in-
spired, in part, by the work of T. Bridgeland [13, [14], see also [4].

Towards the end of the special 2007/08 year at IAS, it was realized this
conjecture is naturally a composition of two more basic ones. The first,
which is proven in this paper for Nakajima varieties, identifies the quantum
differential equation with the trigonometric Casimir connection for a certain
Lie algebra gg. A related conjecture about quantum cohomology of Laumon
spaces was made in [37].

For finite-dimensional Lie algebras, trigonometric Casimir connections
were defined and studied by Toledano Laredo in [I20]. As explained there,
they are very closely related to the Yangians of the same Lie algebras. This
links the conjectural frameworks of Nekrasov-Shatashvili and Bezrukavnikov.
The trigonometric Casimir connection generalizes the rational Casimir con-
nection studied in [44] 80 119] and also by C. De Concini (unpublished).

After this, the second step of Bezrukavnikov’s conjecture becomes a geo-
metric description of the monodromy of trigonometric Casimir connections.
This could be viewed as a natural extension of the monodromy conjecture
made in [120].

1.1.7

It appears the ideas of both Nekrasov-Shatashvili and Bezrukavnikov may
apply more generally than just for symplectic resolutions. For example, Lau-
mon spaces discussed in [37] have a natural Poisson structure which is not
symplectic.

Similarly, the most general moduli of vacua considered by Nekrasov and
Shatashvili fail all key property of Nakajima varieties: they may not be
smooth, not symplectic, and not resolutions of singularities.

In this paper, we use the existence of a symplectic form and of a proper
map to an affine variety in an essential way. It is would be very interesting
to make our constructions work in greater generality.

12



13 1.2 Baxter subalgebras and quantum multiplication

1.2 Baxter subalgebras and quantum multi-
plication

1.2.1

The construction of Yq and the notion of a Baxter subalgebra are best ex-
plained in the original language of quantum inverse scattering method. The
main ingredient there is an R-matriz, that is, a collection of vector spaces F;
and operator-valued functions

Rp, r,(u) € End(F; ® Fj) (1.3)
which satisfy the Yang-Baxter equation
Ria(u) Ris3(u + v) Roz(v) = Roz(v) Riz(u + v) Ria(u), (1.4)
as operators in F; ® I; ® I, Here
Riy = Rp, p, ® 15, € End(F; ® F; ® Fy),

et cetera. In principle, the argument u could be taken from an arbitrary
abelian group; the case u € C corresponds to Yangians.
For m € End(F) and all W € {F}}, consider the operators

Tp(m,u) =trr (M®1) Rpw(u) € End(W),

where the trace is taken over the first tensor factor. In the formalism of Fad-
deev, Reshetikhin, and Takhtajan [35], these operators generate the Yangian
Y associated to R.

1.2.2

Let & < [[GL(F;) be the centralizer of all R-matrices and take g € &. It
follows at once from the Yang-Baxter equation and invertibility of R that

[Tr, (9, 1), Tr, (g, u2)] = 0. (1.5)

A pictorial proof of this is given in Figure [I.I} This means the operators
Tr(g,u), for fixed g € & and all F € {F;}, u € C generate a commuta-
tive subalgebra of the Yangian. This is what is called a Baxter (or Bethe)
subalgebra.

13



1 Introduction 14

R

Figure 1.1: From the YB equation and [g ® g, R] = 0 we deduce that
Rp, r, conjugates gp, Rp, wgr, Rr, w to the product in the opposite or-
der. Taking the trace over F, ® Fy gives (1.5)).

1.2.3

Assuming for simplicity that & is connected, a natural parameter set for
Baxter subalgebras is a maximal torus

$ < & /Centralizer(Y).

It may be compactified to $ © $) by considering limits of Baxter subalgebras
as g degenerates. To connect with quantum cohomology, we need a map

$ — H*(X,C)/2ri H*(X,Z), (1.6)

that extends to
$ — Kahler moduli space of X .

1.2.4

There is a small, but essential detail in this identification, namely a shift of
origin,
$ 51— miky € H(X,C)/2mi H*(X,Z)
for a certain class
kx € HX(X,Z/2)

that we call the canonical theta characteristic.

When X = T*Y then kx is the pull-back of the canonical class Ky to
X. Nakajima varieties are cotangent bundles only in sense of stacks, but still
kx is well-defined, see Section [2.2.8]

14



15 1.2 Baxter subalgebras and quantum multiplication

1.2.5

It is very convenient to incorporate the shift
¢7 > (1) (1.7)

into the definition of the quantum product. We call it the modified quantum
product.
With this modification, we can use the map

Hy(X,Z) 3¢ — P e pn, (1.8)

dual to (1.6)), to identify operators Tr(g, u) with operators of quantum multi-
plication. Note that a trace over an auxiliary space is an element in the group
algebra C[$)"], or its completion if the auxiliary space is infinite-dimensional.

1.2.6

To turn this into a practical description of the quantum product, one needs
an [R-matrix construction of the Yangian Y.
The main geometric idea is simple and uses the embedding

|| Moc(vi,wi) x Mye(va,wa) = Moc(vi + va,w) (1.9)

Vi+Vve=w

as a fixed point set of a C*-action. This embedding is, of course, well-known
and played a central role in the work of M. Varagnolo and E. Vasserot [122]
123], H. Nakajima [90], and A. Malkin [71]. See in particular the paper [91]
for further developments in this direction, closely related to our construction.

1.2.7

Suppose a torus A acts on a holomorphic symplectic variety X preserving
the symplectic form. Then under fairly general hypotheses listed in Chapter
one can define a collection of maps, called stable envelopes,

Stabe : Hg, (X*) — Hg, (X)

parameterized by certain chambers € in Lie(A). Here Ga denotes the cen-
tralizer of A in G. Stable envelopes enjoy a number of remarkable geometric
properties, see Chapters [3] and

15



1 Introduction 16

For A = C* with fixed points ([1.9)), there are just two chambers +£€ and
one defines
R(u) = Stab”g o Stabg

where u € C = LieA is the equivariant parameter for A. The Yang-Baxter
equation and other expected properties of R-matrices follow easily from gen-
eral properties of stable envelopes. Thus, we have R-matrices (|1.3]) for

{Fi} = {H(W)}wenr -

See Chapter [5| for a precise definition of the corresponding Yangian Y and
Chapter [6] for further discussion of its properties.

1.2.8

Our R-matrices have the form

R(u) =1+ Er +O0(u™?),

u

where h € HZ(pt) is the weight of the symplectic form and
re S2gQ s

is an invariant tensor for a certain Lie algebra g which contains the Kac-
Moody Lie algebra associated to the quiver (). In particular, the action of
go on H(w) generalizes the construction of Nakajima [84, 87]. The action of
go commutes with R-matrices.

If @ is a quiver of finite type then, modulo center, gq is the corresponding
Kac-Moody Lie algebra, but in gaieral it is larger. For example, it may not

be finitely generated like g = gl(1) for the quiver with one vertex and one
loop. We expect the assignment

Q— gg

to behave well with respect to the natural operations on quivers. In partic-
ular, the results of Section relate go/r and gg, where

Q@ =Qr

is a covering of quivers corresponding to I' © m(Q’). An example of this is
the well-known relation between gl(1) and infinite Toeplitz matrices.

16



17 1.2 Baxter subalgebras and quantum multiplication

1.2.9

A maximal torus hg < gq is identified with

where b and 3 act on Hg (Mg (v, w)) by multiplication by linear functions of
v and w, respectively. Note that 3 is central in gg and Y.

1.2.10

The Lie algebra gg acts on H(w) by correspondences of the following shape.
Let 0 # a € N! be a dimension vector and choose wy € N so that wg - v # 0.
For example, one can take wg = ¢; for ¢ € supp a.

For all v, w, there is a canonical Lagrangian cycle

Tywaw, © MV + a,w) x M(v,w) x M(a,wp) .

One can view this cycle as a correspondence between the second and the first
factor in which the third factor is a parameter. This gives a map

He(M(a, wo)) = (80),, » (1.11)

which is surjective unless a < 0, see Proposition [5.3.4] Here

90 = b ®D (90, (1.12)

is the root decomposition of g, that is, the decomposition into the eigenspaces
of the adjoint action of h. Reading the same correspondence ry  q.w, in the
opposite direction produces operators in (gg)

—

1.2.11

From the construction of X = Mj(v,w) as a quotient by the action of
GL(v) = [ [,c; GL(v;), one has tautological bundles V; on X of ranks v; for
1 € I. The corresponding map

7' — Pic(X) = H*(X,7Z)

17



1 Introduction 18

given by det(V;), i € I, is expected to be surjective for all v and an isomor-
phism for v sufficiently large (see Section [1.7] below). Dually, we have

Hy(X,Z) — $H"

where § =~ (C*)! is the torus with the Lie algebra h. Since this matches
(1.8]), we can state the following precise version of the Nekrasov-Shatashvili
principle:

Conjecture 1. The Baxter subalgebras of Y¢q corresponding to g € ) are the
algebras of modified equivariant quantum multiplication for Nakajima vari-
eties.

1.3 Quantum multiplication by divisors

1.3.1

Conjecture [1l may be approached in two steps, the first one being the identi-
fication of operators of quantum multiplication by divisors, that is, elements
of H*(M).

The Yangian Y has a grading which after doubling corresponds to co-
homological degree. In this paper, we prove the following

Theorem 1.3.1. The operators of cohomological degree 2 in the Baxter sub-
algebra are the operators of modified quantum multiplication by elements of

Hg;(M)taut

Here

He(M)tans = Hg(M) (1.13)

is the subalgebra spanned by the characteristic classes of the tautological
bundles. An equality in ((1.13)) is expected.

1.3.2

Theorem means the following concrete formula for quantum multipli-
cation by

Cl()\) = Z )\z C1 (VZ) .

18



19 1.3 Quantum multiplication by divisors

The Lie algebra gg has an invariant bilinear form such that

(8Q)a L (8Q)s, a+pB#0,

see Theorem [5.3.11, Abusing notation, we denote by

{ea} = (9Q)ar {€-a} = (80)-as

dual bases of root subspaces. Note the dimensions of the root spaces, known
as root multiplicities, are finite by surjectivity in ((1.11)).
Theorem is equivalent to the following

Theorem 1.3.2. We have

e1(A) #moit - = 1) U - —h Y (A,a)lf—qa Caboa o, (1.14)

0-a>0

where modified quantum product means the substitution (1.7)), the sum is over
roots of go with multiplicity, and dots stand for a multiple of the identity.

The multiple of the identity left as dots in (1.14]) is uniquely fixed from
equation (|1.2)).

The operator ¢;(\) U lies in the Yangian Y if # > 0 or in a certain com-
pletion of the Yangian for general 6, see Section [10.1.1} Changing 6 corre-
sponds to flops of Nakajima varieties and formula (1.14)) has the expected
flop-covariance.

One can compare to the more abstract structural statement for
quantum multiplication by divisors derived in [12].

1.3.3
For A\ € HZ(X) consider the operators
d
= — — A= 1.15
V=3 (1.15)
acting in H:(X) ® Q(¢°) by
d
—d® = (\ B
e =B
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Note that % = 0 if X is purely equivariant, that is, A\ comes from Hg(pt). Tt
is known very generally that

[Vz\v V,u] =0

for all A, u € HE(X). Hence any section of the projection HZ(X) — H?*(X)
defines a flat connection on a trivial HZ(X)-bundle over H?(X). This connec-
tion is known as the quantum differential equation or Dubrovin connection.

Formula precisely means that the quantum differential equation
for Nakajima varieties is a trigonometric Casimir connection in the sense of
[120]. To be precise, we prove this for H?(X )tau;, which is expected to be the
whole H?(X).

1.3.4

Conjecture [1| would be implied by the affirmative answer to the following

Question 1. Do the operators (1.14)) have a simple joint spectrum ¢ Equiva-
lently, is quantum cohomology of Nakajima varieties generated by tautological
divisors ?

In this paper we treat the following special case.

Theorem 1.3.3. The quantum cohomology of the moduli space of framed
torsion-free sheaves on P? is generated by the divisor.

These moduli spaces are Nakajima varieties associated the quiver of with
one vertex and one loop. Our proof of Theorem is based on an explicit
representation of quantum multiplication by divisor in terms of Heisenberg
operators.

1.4 Shift operators and qKZ

1.4.1

For simplicity, let us replace the group G by its maximal torus T. By con-
struction, the elements of Hy(X)® Q(¢?) are functions on

tx H*(X),

20



21 1.4 Shift operators and qKZ

where t = LieT. The operators ((1.15)) define a flat connection along the
H?(X)-directions. In fact, this is a part of a flat difference-differential con-
nection, in which the difference part corresponds to the lattice

Cochar(T) c t.
The corresponding operators
S(0) € End Hy(X) ® Q[[¢"]]

are known as shift operators because they shift the values of the equivariant
parameters in V). They are constructed geometrically as follows.

1.4.2
Let
c:C* =T

be a cocharacter of T. To it, one associates a nontrivial X-bundle p

X—— X~

|»

Pl

over P!, see Chapter . By definition, rational curves in X~ that map to
the base P! with degree 1 are the o-twisted rational curves in X. Their
enumerative geometry is closely related to the Gromov-Witten theory of X.
In particular, the shift operator S(¢) is constructed from the virtual count of
twisted 2-pointed rational curves with marked points in p~!(0),p~!(0) =~ X,
see Section [B.1.7]

The flatness condition

[V)\,e*% S(a)] ~0

is the € = 1 specialization of Proposition M Here eds is the translation
by o e t.

21



1 Introduction 22

1.4.3

The key step in our proof of Theorem [1.3.2]is an explicit computation of the
shift operators S(o) for certain special cocharacters o.

An action of C* on a symplectic resolution X is called minuscule if
H°(Ox) is generated by functions of weight 0, +1. One easily shows, see
Section 7 that the C*-action from is minuscule. For minuscule o, the
operators S(o) may be computed in term of R-matrices as follows.

1.4.4

A o-fixed point x € X defines a section (, of p. The classes of these sections
[Ce] € Ha(X™, Z)

lie in a single Hy(X,Z)-coset. Thus, up-to an overall multiple, ¢ is a well-
defined function from the set of components of X7 to the group algebra of
Hy(X,Z). In fact, for Nakajima varieties, there is a preferred way to fix the
ambiguity, see Section [9.1.5]

Recall the stable envelope maps

Staby : H1(X7) — H+(X)
and their ratio R, = Stab_! o Stab, . Define
{ = Stab,' oV, o Stab, .
Theorem in Section [9.3]is equivalent to the following

Theorem 1.4.1. For minuscule o, V§ commutes with the difference connec-
tion

Ut +0) = (1)) ¢ R, U(t) (1.16)
where we consider ¥ e H+(X?) ® Q(¢°) as a function of t € t.

Here kx is the canonical theta characteristic discussed in Section [1.2.4].

1.4.5

In the case of (1.9)), we have
¢ =q¢"=¢"®1
where ¢V lies in the torus $) with Lie algebra h. We thus recognize in ((1.16))

the quantum Knizhnik-Zamolodchikov equation of Frenkel and Reshetikhin,
see [47].
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1.4.6

It follows from Theorem that the operator (—1)©*x) ¢¢ R, commutes
with operators of quantum multiplication for minuscule . This plays a key
role in the proof of Theorem|[I.3.2] In other words, we determine the quantum
connection V) through the commuting difference connection.

For this to work, it is important to relate Nakajima varieties with different
framing vectors w as in . For instance, quantum cohomology of the
moduli spaces of framed torsion free sheaves on C? is a object of significant
geometric interest, see below. From our perspective, it is easier to determine
it for general rank then just in the special case of Hilbert schemes.

—

1.5 Yangian of gl(1) and instanton moduli

1.5.1

In the second half of the paper, we make the general theory explicit in the
case of the quiver () with one vertex and one loop. Denote

The corresponding Nakajima variety
M(r,n) = M o(v,w)

is the moduli space of framed rank r torsion-free sheaves F on P? with
c2(F) = n. A framing of a sheaf F, by definition, is a choice of an isomor-
phism

¢:F ‘Loo - O%;

where L, < P? is a fixed line. Usually, the line L, is viewed as the line at
infinity of C2 = P2. The group
G=GL(2) x GL(r)

acts naturally on M(r,n), the first factor acting on C? while the second acts
by changing the framing.

See, for example, [88] for an introduction to the geometry of M(r,n).
It plays an important role in Donaldson theory [26] and in mathematical
approaches to supersymmetric quantum gauge theories, particularly in the
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work of Nekrasov [93]. By a theorem of Donaldson, a dense open subset of
M(r,n), r > 1, that parameterizes locally free sheaves is the moduli space
of framed U (r)-instantons of charge n.

1.5.2

For r = 1, M(r,n) becomes the Hilbert scheme of points, the quantum
cohomology of which was determined in [103], a result that found applications
to the enumerative theories of curves in threefolds [74].

Theorem gives a new proof of this result and extends it to higher
rank. We expect it to play a role in the higher rank Donaldson-Thomas
theory of threefolds. In fact, higher rank DT theory of threefolds was one of
the main motivations for the present work.

1.5.3

In Chapter 12| we relate the Lie algebra gg to the Heisenberg algebra g/[(T)
that acts on the cohomology of M(r,n) by the work of Nakajima [86], Gro-
jnowski [51], and Baranovsky [6].

To be precise, for an arbitrary quiver we discuss two versions of the Yan-
gian: the Yangian Y mentioned above and another, more economical, algebra
Y which we call the core Yangian. They correspond to different normaliza-
tion of R-matrices: those for Y fix vacuum vectors while those for Y scale

them by certain I'-factors, see Section [6.1.10]

— —

For M(r,n), gl(1) < Y, while go < Y is the quotient of gl(1) by the
constant loops gl(1) < gl(1).

1.5.4

Recall that Nakajima’s Heisenberg algebra acts irreducibly on the cohomol-
ogy H(1) of

M(1) =] [M(1,n),

and this identifies H (1) with the standard Fock space of one free boson.
Stable envelopes give a map

H(1)®" — H(r),
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which makes it possible to describe H(r), and the Yangian action on it, in
terms of r free bosons.

In this way, one recovers and generalizes man/y\familiar objects of con-
formal field theory. For example, the Yangian of gl(1) contains the Virasoro
algebra in the Feigin-Fuchs representation.

The quantum integrable system given by the classical, that is ¢ = 0,
product in cohomology, is a certain generalization of the second-quantized
trigonometric quantum Calogero-Sutherland system to r interacting bosonic
fields, see Section [14.2] More generally, a connection between the quantum,
that is ¢ # 0, product in cohomology and a quantum intermediate long-wave
equation is explored in [94].

1.5.5

In the literature, one can find many different ways to construct and study
algebras that may be called a Yangian of g/[(l\), see for example [29] B1] 4T],
30, 68, [79, 108, 109]. Perhaps one of the advantages of our approach is that
our Y(g/[(T)) is obtained by a general procedure, applicable to an arbitrary
quiver.

1.5.6

For us, R-matrices are the main objects of study and those for M(r,n) turn
out to be related to very interesting operators in CFT. Namely, in Section
we relate the R-matrix for Y(gl(1)) to the reflection operator in Liouville
theory. As far as we know, the Yang-Baxter equation satisfied by R has not
been previously explored in the conformal field theory context.

Recall that Theorems|1.3.1jand [1.3.3|identify the glg\ebra of quantum mul-
tiplication for M(r,n) as a Baxter subalgebra in Y(gl(1)). The identification
of R gives a mechanical procedure to write the corresponding commuting
operators in terms of free bosons.

1.5.7

During the workshop at the Simons Center in January 2010, we were asked
by Nakajima and Tachikawa whether our theory can help with some of the
questions raised in the work of Alday, Gaiotto, and Tachikawa [2].
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The connection is, indeed, very strong and some simple appliﬁ_aiions are
immediate. For example, it is easy to describe the image of Y(gl(1)) in its
representation on H(1)®" in terms of the vertex algebra W(g[(r)). This is
discussed in Section [19.2] We anticipate many further applications in this
direction. Similar results have recently been obtained by Schiffman-Vasserot
[109].

Although applications to the conjectures of [2] appear at the end of the
paper, they require very little of the preceding machinery. In particular, this
is about purely classical cohomology of M(r,n), quantum products play no
role.

Classical limits of the formula from which this discussion with Nakajima
and Tachikawa started were later independently found in [28] and also [113].

1.6 Further directions

We conclude this Introduction with a brief discussion of some natural direc-
tions in which one can pursue the results of this paper.

1.6.1 K-theory

In [89], Nakajima constructs an action of U,(gxy) on the equivariant K-
theory of quiver varieties. Here gy, is a Kac-Moody Lie algebra and U, (gxy)
is the quantized universal enveloping of the loop Lie algebra of gyx,. These
algebras are defined by explicit generators and relations, see [89).

A natural extension of the present work to K-theory would produce a
larger Hopf algebra U,(gg), defined in the style of [35] and acting naturally
on Kg(Myg). At least for quiver varieties, one can construct a K-theoretic
analog of stable envelopes, which we expect to be the key ingredient for such
project.

For the Jordan quiver, the K-theoretic R-matrix was computed in [I01].
As expected, it is closely related to the results of [42] [108].

1.6.2 Monodromy of QDE and categorification

The quantum differential equation defines a connection V with regular
singularities on the Kahler moduli space $) of Mg, which is a compactifica-
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tion of the torus $ =~ (C*)’. Consider the regular points
fjreg = {CIGFJWOK qa 7 1}
of this connection. The monodromy of V defines a homomorphism

B = m1(freg) = Y(80)

where bar denotes a certain completion.

A generalization of the Toledano Laredo’s monodromy conjecture for
trigonometric Casimir connections [120], 48] identifies B with what should
be called the quantum Weyl group of U,(gg). It was further conjectured by
Bezrukavnikov that this action of B lifts to

B — Aut Db COhG MQ .

This is known in a handful of cases, in particular for Hilbert schemes of points
of C?%, see [9]. Perhaps a categorical version of stable envelopes, obtained from
the parabolic induction functors for quantizations of Nakajima varieties, is
the proper technical tool to attack these problems.

1.6.3 Higher rank Donaldson-Thomas theory

The quantum cohomology of Hilbert scheme of points of a symplectic surface
S is closely related to the Donaldson-Thomas theory of threefolds fibered in
S over a curve. In particular, in the case of A, surfaces, this point of view
lead to an explicit description of DT invariants of toric threefolds [74].

For higher rank sheaves on ADE surfaces, there is again a close connec-
tion with DT theory, via Diaconescu’s work on ADHM-sheaves [24], see also
[18]. Arguments parallel to those in this paper should give an effective de-
termination of the virtual invariants of the moduli of ADHM sheaves on a
smooth projective curve in terms of our operators of quantum multiplication.

Using a Beilinson-type construction, as in section 7 of [24], the ADHM
moduli spaces can be identified with a certain moduli space of higher-rank
framed complexes on ADE-fibrations over curves.

For general quivers, Theorem implies an identification (up to a scalar
function) between the small J-function and I-function in these geometries
(as defined in [18]),without any change of variables required.
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1.6.4 Hilbert Schemes of points of general surfaces

For a general surface S, quantum cohomology of the Hilbert schemes of points
and DT theory of S-fibrations will diverge and we expect the latter to have a
better structure. However, we expect the classical cohomology Hilb(S) to be
described as a ¢ = 0 Baxter subalgebra for a certain R-matrix. In fact, this
R-matrix should be the reflection operator R associated in Section [13.4]to the
Frobenius algebra H = H(S). This is a joint project with Vivek Shende and
one of its potential goals could be a better structural understanding of some
of the many mysterious universal generating series in the theory through
representation theory of Yangians.

1.6.5 K-theoretic DT theory

Perhaps one of the most challenging projects for the future would be to
upgrade the connection with DT theory of 3-folds to the level of K-theory.
K-theoretic DT invariants are a subject of interest in both mathematics and
theoretical physics, due to their M-theoretic interpretation [95] and their
connection to the motivic DT invariants [75].

1.7 Update

This work reflects what we knew in 2010, with some improvements to ex-
position made during 2010-12. As we revise it in the early 2017, it seems
necessary to add a certain bare minimum of references to subsequent devel-
opments, in particular, in connection with directions for further researched
outlined above. We decided to limit all such updates to this section.

A survey of the progress since 2012 may be found in [99] 100]. In par-
ticular, lectures [99] explain the extension of the present work to equivariant
K-theory, including application to K-theoretic Donaldson-Thomas theory. In
K-theory, the quantum differential equations studied here become quantum
difference equation. Those were determined in [102] for all Nakajima vari-
eties.

The monodromy problem for the quantum difference equations was ana-
lyzed in [I]. This analysis may be directly linked to Bezrukavnikov’s quanti-
zation in characteristic p » 0, to the monodromy conjectures above [9], and
to the categorical stable envelopes [53].
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Chapter 2

Nakajima varieties

In this chapter, we recall definitions and basic facts on the geometry of Naka-
jima quiver varieties. There is a large literature on the subject, although most
of what we need can be found in the original references [84, [87] and papers
of Crawley-Boevey [21], 22]. We also explain some results on natural group
actions on Nakajima quiver varieties.

2.1 Definition

2.1.1

Let @ be a quiver, i.e. an oriented multigraph, with finite vertex set 1. We
allow loops and multiple edges in (). The quiver data is simply the adjacency
matrix

Q = (¢j)iger
where

¢i; = |{edges from i to j}|.

For what follows, we can assume that multiple edges have the same orienta-
tion in ). We also consider quivers () and () with vertex set given by the
union I L I of two copies of the set I and with adjacency matrices

— Q+QT id ~ Q 0
Q:( id o)’ Q:(id 0)'
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2 Nakajima varieties 34

2.1.2

A representation of a quiver is an assignment of a coordinate vector space to
each vertex and of a linear map to each arrow. The dimension of a represen-
tation is an element of N!, where N = Z,.

For v,w € N/, denote by Repg(v,w) the space of representations of the

quiver ) of dimensions v; for ¢ € I and w; for ¢ € I. Using the trace pairing,
we can write

Repg = Reps @ (Rep@>* , (2.1)

which gives this linear space a symplectic form w. This symplectic form is
preserved by the action of

G, =[]GL(v), Gu=]]GL(w).

We can also define an action of the group
H Sp(24::) H GL(gi5) -
i i#j
as follows. Given a vertex 7, loops at this vertex contribute a factor

End(C¥)®% @ its dual = End(C") ® C*%i |

to Repg where the symplectic form is induced by the symmetric trace pairing
on the first factor and the standard symplectic form on the second. The factor
Sps2(2¢;;) acts naturally on the second factor. Similarly, given distinct vertices
1,7, the contribution of edges between these vertices is naturally identified
with
(Hom(C",C") ® C%) @ its dual

and the factor GL(g;;) acts in the natural way. By construction, these groups
also preserves the symplectic form w.

2.1.3

The symplectic form w is scaled by the action of C* scaling the second
summand in (2.1). We denote by & its C*-weight. When there are other
C*’s around, we denote this one by C;'.

We set
Gedge = H Sp(2qu) 1_[ GL(QZJ) X (C;;

i#]
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35 2.1 Definition

As we shall see, this group will act uniformly on all families of quiver varieties
associated to Q).

2.1.4 Weight convention

In this paper, we embed group weights into Lie algebra weights. For example,
we will also use h to denote the generator of the equivariant cohomology of
C;.

2.1.5

Sometimes it is convenient to consider, following Crawley-Boevey, represen-
tations of the quiver Qo with vertex set I 1 {00} and adjacency matrix

Q. = (Q + Q@ W) . (2.2)

w 0
Note that we have a natural identification
RGPQ(V, W) = Reme((v, 1))

Furthermore, this isomorphism is equivariant with the natural action of the
groups above. For the action of G,, on the right-hand side, we define an edge
group G, analogously to the last section, and it contains a copy of both
GW and Gedge‘

2.1.6
Consider the moment map

1t : Repg(v,w) — g7,
for the action of G\, where g, = Lie GG,. Denote by

v = [ganV]J— = g:/l< )

the fixed points of coadjoint action. If we identify gi with g, via the trace
pairing, 3, corresponds to scalar matrices, i.e. a copy of C for every ¢ € 1
such that v; # 0. We consider the preimage

3 = ﬂ_l(ﬁv)'

In general, this may be reducible and nonreduced.
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2.1.7

Note for any = € Repg, , its stabilizers in G, is the quotient of units by
scalars for some associative algebra over C. Hence the G\-stabilizer of z is
finite if and only if it is trivial.

2.1.8

Given 6 € Z!, it defines a character of G, by the convention
(9i) — H(detgz‘)ei e C™.

We define

M, = 3/0G\,
= Proj @ C[3], -

n=0

where the subscript nf denotes the corresponding G, -isotypic component.
The map p descends to a map

My — 3.
Definition 2.1.1. A Nakajima quiver variety is a fiber of this map:

Moe(v,w) =17(C), Ces.

2.2 Basic properties
2.2.1
The following result is proven in [84]

Proposition 2.2.1. For any Q,v, and w there exits a finite set {a;} = NI
such that Mg (v,w) contains a strictly semistable point only if

a-0=qa,-C=0
for some 1.
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37 2.2 Basic properties

These hyperplanes are closely related to the roots of the Lie algebra gg
that will be associated to the quiver @ in Section [5.3] One corollary of this
proposition is that, for # in the complement of these hyperplanes, the natural
map

fi: Mg — 3y

is smooth, although it is possible that the domain is empty.

We also state the following result, which is well-known. Since we do not
use it in the paper, it can be safely skipped. However, we sketch its proof
briefly.

Proposition 2.2.2. If there exists a free G,-orbit contained in 3, then [i is
surjective for all values of 8. The generic fiber is smooth and affine.

Proof. 1f there exists a free orbit, then the moment map g is smooth at any
point of this orbit and, in particular, the image of 3 contains a dense, Zariski-
open set U of 3,. By Theorem 1.2 of [21], after further shrinking, the entire
fiber of any point of U consists of simple representations of ()o,. These are
f-stable for all stability conditions #; consequently, the GIT quotient for any
choice of 0 equals the categorical quotient of the fiber, which is affine. This
proves the second statement.

For the first statement, we use the definition of quiver varieties via hyper-
kahler reduction, as in [84]. Let U, denote the maximal compact subgroup
of G,. If we take the hyperkahler moment map, then the image of the locus
of free U,-orbits contains R! x U < R’ x 3,. Since it is stable with respect
to multiplication by unit quaternions, it contains {#} x 3, for any suitably
generic . Consequently, ji is surjective for general #. Finally, if 0 lies on a
wall on the space of stability conditions,there is a factorization

M@' - ﬂ& — 3v

where 0’ is a nearby stability condition. We can assume i is surjective for 6’
which implies /i is surjective for all 6. [

In this paper, we are mainly interested in the case where 6 is generic in
the sense of Proposition and when ¢ = 0. We say 6 > 0 if §; > 0 for all
i. This condition implies that 6 is generic in the above sense, for arbitrary
quiver () and dimension vectors v, w.
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2.2.2 Group actions

By construction, the group

G = {Gw X Gedg67 C = 07 (23)

GW X Hz Sp(2q”) Hi?’:j GL(qu> ’ C # 0
acts on My (v, w). The larger group also acts on M@ and the map
,E : M& — v ® hil

is G-equivariant.
The action of G is not faithful on My (v, w). The center Z(G,) of G, has
a natural map
b+ Z(G) = Gee

There is also a map
g : Ker(pg) — G

given by constants acting by multiplication on C":.
The images of these maps act trivially on My (v, w), and we could work
with the corresponding quotient groups

tladge = Gledge/Im(pq) , Gy = Gw/Im(7q)

and their product G'.

However, it is sometimes convenient to work with the larger group G since
the tautological bundles considered shortly admit a natural G-equivariant
structure. In practice, most of the geometric calculations and constructions
considered later (e.g. R-matrices, quantum operators) will naturally take
values in G’-equivariant cohomology.

2.2.3 Symplectic resolutions

By construction, Nakajima varieties have an algebraic Poisson structure

which is symplectic on their smooth locus. The group G preserves this sym-

plectic form when ¢ # 0 and scales it by the character A when ( = 0.
Furthermore, they come with a projective map

7 Moc(v,w) = Mo (v,w) = Spec C[M_I(O]GV
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to an affine algebraic variety.

Although 7 is not always birational, it follows from section 10.3 of [84]
that it is birational onto its image. In particular, for 6 generic in the sense of
Proposition , My (v, w) is an equivariant symplectic resolution. When
¢ = 0 it carries a natural torus action that scales w and is an example of the
general theory considered, for example, in [60].

2.2.4 Tautological bundles

As G,-quotients, Nakajima varieties have tautological bundles V; of ranks v;,
1 € I, associated to representations

G, — GL(C").

For uniformity, we consider the (topologically trivial) bundles W;, i € I, of
ranks w; on a similar footing. Since these bundles carry a representation of
G\, their equivariant Chern classes capture the framing weights.

2.2.5 Equivariant lifts
The matrix elements of the matrices
Q+Q", @

are dimensions of vector spaces which naturally carry representations of G,
essentially by the definition of the group G. As a result, we have a natural
lift of Q + QT and @ to matrices with values in the representation ring
Kg(pt). Recall from Section that we embed group weights into Lie
algebra weights. Here we treat h etc. as elements of K¢(pt).

If we endow Kg(pt) with the involution given by taking duals, the Her-
mitian transpose of @) satisfies the relation

@) =hr®Q. (2.4)

where I denotes the character of G associated to C;'.
The Cartan matrix of ) admits an equivariant lift

C=1+n"'—(Q+Q".
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We also set

and define the Hermitian forms
(v,v)g =v*CV (2.5)
((v,w), (V,w'))g = (v,w)* C (v, w').
for v,w, - € Kg(pt)’.
Given an arbitrary G-variety X and
v,w, v, w e Kg(X)!,

the forms (2.5) still make sense and takes values in Kg(X). Of course, very
often, one takes just the nonequivariant specialization of ([2.5]).

2.2.6 Tangent bundle

Given 6 generic, if My (v, w) is nonempty, its dimension is given by
dim Mo (v, w) = [(v,w) [,

with respect to the nonequivariant version of . Using the equivariant lifts

described above, we can identify the K-theory class of the tangent bundle as
follows.

Lemma 2.2.3. For 0 generic, we have the identification
TMoc(v,w) = [[(V, W)

in Kg(Moc(v,w)), where
VW e Ko(Mc(v,w))!

are vectors of tautological bundles.

12, (2.6)

Proof. On the affine space of representations of @, the tangent bundle is
given by

TRepa(v,w) = (Va W)* Q (Va W)

Since the moment map is submersive, the tangent bundle on My (v, w) is
obtained by subtracting off

‘g:/k ® hil — v
which gives the result. O]
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2.2.7 Splitting of tangent bundle

Using the orientation of (), we can define a virtual bundle

T2 = Y (Qij — 6i5) Hom(V;, Vy) + > Hom(W, Vi) € K (M (v, w)).

i3

If H < G denotes the subgroup preserving the decomposition ([2.1)), then the
expression lifts to Ky (My (v, w)) where it satisfies the identity

TMgc(v,w) =T + B @ (TY?)” (2.7)

Nakajima varieties may be viewed as open substacks of the cotangent stacks
stacks

Mo (v,w) ~ T* (Repé /GV>

and the virtual bundle 72 is the pullback of the tangent bundle from the
base in this sense.

2.2.8 Theta characteristic

One notes that
kp =1 (TY?) mod 2 € H*(M,Z/2) (2.8)

is independent of the orientation of (). We call it the canonical theta char-
acteristic of My(v,w). It will be responsible for signs in the formulas for
quantum multiplication.

2.2.9

Alternatively, Nakajima varieties may be defined using representation of the
quiver (), and parameters

500 = _Zvia’-

iel

This is because diagonal scalars in [ [, o, GL(v;) act trivially on represen-
tations of Q).
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2.2.10

Note that for 6 generic,
M@,C(Vu O) = @ (29)

because when w = 0 the action of (G, cannot be free.

2.3 Torus-fixed points

In this section, unless stated explicitly, we assume throughout that 6 is
generic in the sense of Proposition [2.2.1, so My(v,w) is in particular a
smooth holomorphic symplectic variety.

2.3.1

Let
A < Kerh © Geqge % Gy, (2.10)

be a torus. Since A preserves w, its fixed locus My (v,w)* is a smooth
holomorphic symplectic variety. In fact, it is a union of product of smaller
Nakajima varieties, which can be seen as follows.

2.3.2

Take z € Myc(v,w)* and let X € Repg(v,w) be a point above it. The
subgroup

Gw C Gv X Gedge X GW

such that
1-G,—-G"—-A—->1

acts on the orbit of X. Since the G, action is free, we get a map G* — G,
that splits the above sequence. This gives homomorphisms

A 25 Gy % Gegge X Goy — A (2.11)
with identity composition and such that X is fixed by ¢(A).
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2.3.3

A homomorphism ¢ is equivalent to a lift of v, w, and @ to vectors and
matrices with values in Ka(pt), consistent with the embedding (2.10). To
this, one associates a new quiver (), as follows. We set

]¢ =] x A"
where A" is the character group of A, and

(Q¢)(i’/\)?(j’y) = coefficient of v/\ in Qij »

where \,v € A*. This is an infinite quiver with a free action of the group A"
by automorphisms. We take dimension vectors

(Vo) iny = coefficient of A inv;

and similarly for wy. These have finite support, which may be disconnected.
Clearly, representations of quivers factor over connected components of sup-
ports. Finally,

G., = (G)*M ca,

and this defines the pull-back (64, (y) of (6, ().

2.34

We consider two lifts ¢; and ¢o in (2.11]) equivalent if they define the same
action of A on Repg.

Proposition 2.3.1. We have
M@g(v, W)A = |_| qu s
¢/~

where M, is the Nakajima variety associated to the quiver QQy and the data
Vg, Wg, 04, (s above.

Proof. 1t is clear that
Repg(v, w)?A) = Repg, (Vg, W) .
The moment map p takes this fixed locus to

(gi)”™

%
_gV¢
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2 Nakajima varieties 44

and coincides with p4. It remains to check that
O-stability < 0,-stability .

The = implication is trivial. The set of all §-destabilizing subrepresentations
is a projective variety with an action of A. If nonempty, it has an A-fixed
point which is a 6,4-destabilizing subrepresentation. O]

2.3.5

As a first example, take A to be the maximal torus of Gi,,.. Recall that

tdge 18 largest quotient of Geqge that acts nontrivially. We have

AN = Hl(Qaz)

and
Qp — Qu/A" = Q

is the universal abelian cover of (). In particular, for any @, @, is a quiver
without loops at vertices.

2.3.6

The restriction of the tangent bundle of My (v,w) to the A-fixed locus is
given by the same formula , but interpreted in the A-equivariant K-
theory via the map ¢.

Expanding in characters of A, one expresses the A-eigensubundles
in the normal bundle to My (v,w)* in terms of the tautological bundles of

M.

2.3.7

Because the splitting (2.7)) is equivariant with respect to all group actions,
we have

c1(Ny)mod 2 = Ky + K (2.12)

in H2(M”,Z/2) for any torus A that preserves the symplectic form.
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45 2.4 Tensor product of Nakajima varieties

2.4 Tensor product of Nakajima varieties

2.4.1

For this paper, the main example of the above fixed-point construction arises
as follows.
Take a decomposition
W = W/ + W//

and define
Ax>~C* c@G,

as the subgroup that scales the first term in

CY=C"@®C", iel, (2.13)
with weight 1. In other words, we take

w= 2w +w’ e Kex(pt)!
where z is the defining representation. Then the fixed points are precisely

|| MoclV o w') x Mo (v w") = Ma,c(v, w) (2.14)

vV =v
as in (1.9). Indeed, the fixed points in (2.14)) correspond to
v=2zV +V

and all other ones are empty because of ({2.9).

The embedding (2.14) will play a key role in this paper and we call it
tensor product of Nakajima varieties. See Section |5.1] for a discussion of this
term.

2.4.2

For a tensor product of Nakajima varieties, the normal bundle to the fixed
locus is

N=zN,®z'N_
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2 Nakajima varieties 46

where z*! is the torus weight,

_ = Z Hom(W,, V) + 2 Hom(V,, W)@ h™"
_ Z Cy; Hom(V, V) (2.15)
in the K-theory of the fixed locus, where C;; denotes the equivariant Cartan

matrix and

N+ :h_1®N1

2.5 Slices

2.5.1

Recall the affine quotient

Mo =~ (C)/Gy .

Its closed points are the closed G -orbits in p~1({) < Repg, and those cor-

respond to isomorphism classes of semisimple representations of Q or Q..
The natural map

([ M@)g - MO,C‘ (216)

takes a #-semistable representation to its semisimplification, see Proposition
3.20 in [87].

2.5.2

Given X € Mo, it natural to study 7' (X), bearing in mind that it may be
empty. Following Nakajima, see Section 6 in [84], 7' (X) may be described
as (m')~1(0) for a different quiver Q'. Here 0 € Mj ; is the zero representation.

See Proposition 3.2.2 in [89] and Section 4 in [22] for the proof of the
following

Theorem 2.5.1 ([84], 89, 22]). For any X € M (v, w) there exist a quiver
Q' and dimension vectors (V',w') such that:

e an analytic neighborhood U of X in Mgc(v,w) is isomorphic to an
analytic neighborhood U’ of 0 in M (v, w') x CF and

46



47 2.5 Slices

e this isomorphism may be lifted to an isomorphism Lx between (7')~1(U")
and 71 (U) that preserves the fibers of .

These isomorphism are equivariant with respect to the stabilizer G < G of
the representation X.

We call the maps Y x slices and for brevity write them as rational maps
Yx MV, W) x CF -5 M(v,w)

even though this is not what is claimed in Theorem [2.5.1] The integer k that
appears here is the difference in dimensions, see also (2.18) below.

2.5.3

The data Q',v',w’ are constructed as follows. As a representation of Q., X
has a unique decomposition

X=X, o@P x>

el
into nonisomorphic simples X; with multiplicities v,. We denote by

d(X);; = (dimX;),, ielu{wo},jel uwn},

the matrix of their dimension vectors. The subgroup
GL(1) x Gy <« GL(1) x G,

is the stabilizer of X € Repy and the matrix d(X) describes its subgroup
conjugacy class.
The representation X, is distinguished from the rest by

d(X) e =1

)

and then

because (dim X),, = 1.
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2 Nakajima varieties 48

2.54

By definition, I” Ly {0} is the vertex set for the new quiver @/, and v’ is the
new dimension vector. We use the matrix

d: Zl'u{oo} N Zlu{oo}

to transfer the other quiver data to I’ L {co}. For example, we set

It follows that

because v = d(X) - v/ and

Y, Gd(X)i; =0, Vi,

ielui{oo}

by the moment map equation.

2.5.5

The adjacency matrix of )),, and in particular, the new framing vector w’ is
found from the formula

(@,b)q, = (d(X) a,d(X) b)q., , (2.17)

see (2.2)) for the the matrix of this quadratic form.
In the course of the proof, one uses reductivity to write

o =0 ®y
and identifies du~'(g%) = (g, - X)* and
Repg, = (ng)L/gv-X

as GGy x G'-modules, where / denotes the symplectic perpendicular. This

leads to (2.17)).
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49 2.5 Slices

2.5.6
Note that @), may have loops at the distinguished vertex oo, in fact
#{loops at w0} =k = H(dimXoo,w)\% (2.18)

where k is the number from Theorem [2.5.1] These loops contribute a vector
space factor to Repg, because v, = 1. Note that (2.18)) also describes this
vector space as a G-module.

2.5.7
The following is immediate:

Proposition 2.5.2. If X, is the only nonzero representation in X then @)’
is isomorphic to the subquiver of QQ formed by the support of v = v —dim X,
and

w =w—hCdim X, . (2.19)

This also covers the trivial case when X = 0 and d(X);; = 6;;.

2.5.8 Example
Consider the A,-quiver, that is, that is the quiver with

1+hmt —mt
-1 1+nt —nt
—i 1+ ﬁ—l
We fix 1 <7 < j <n and take
w = had; + ad;,
where a is a weight of G\,. For

J
dim X, = ade

k=i

there is a torus fixed representation X, with such dimension. It takes the
framing vector at the jth vertex, applies the arrow in @) to it (j—1) times, and
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2 Nakajima varieties 20

sends it to the framing vector at the ith vertex. Note that the final map in
Hom(V;, W;) has torus weight A%~! and the framing weight fia compensates
for this.

If the other X;’s are zero, we get

W, = a52-,1 + ha5j+1

from formula ([2.19)).

2.5.9 Example

Take the quiver with one vertex and one loop, for which C is a 1 x 1 matrix
C=(1—t)1—t), t1®t=h,
where ¢; and ¢, are the weights of Gegge. For
w=a+at;"t;",
there is a torus-fixed representation X, with
dim Xoo = a(l+t7" + - +47").

Just like in the previous example, it takes a framing vector of weight a and
applies the t;-arrow to it (n — 1)-times (the weights have go change by #;*
every time to compensate for the ¢; weight of the arrow). We find

w o= at;" +aty .

This and the previous example are special cases of slices considered in Section

6.2l

2.5.10

Equivariance in Theorem [2.5.1] means that slices commute with taking fixed
points. That is, if A’ « G’ is a torus preserving the symplectic form then

(20" s (M w) < € My, w)¥

is an isomorphism of open subsets of quiver varieties (the fixed points are
quiver varieties by Proposition [2.3.1)).

20
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In particular, slices are compatible with tensor products, in the sense that
the following diagram commutes

M(wg +w) x C— = =X o M(wg + w) (2.20)
M(wp) x M(w') x C L = M(wp) x M(w)

where the vertical arrows are inclusions of fixed points and the representation
X is padded by zeros as necessary.

2.6 Minuscule coweights

2.6.1

Let X be an algebraic variety. We call an action
o:C* — Aut(X)

minuscule, if the algebra H°(X, Ox) is generated by functions of o-weight
{—1,0,1}. Equivalently, there is an equivariant embedding

X = Spec H'(X,0x) — V

where V' is a linear representation of o with weights in {—1, 0, 1}. This notion
will play a crucial role below.

2.6.2

Proposition 2.6.1. The C*-action corresponding to the tensor product of
Nakajima varieties is minuscule.

Proof. 1t is enough to prove that
C [3]Gv

is generated by the functions of o-weight in {0, £1}. Since G, is reductive,
the natural map

C[Repg]® — C[3]*
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2 Nakajima varieties 52

is surjective.

By the first fundamental theorem of invariant theory, see for example Sec-
tion 9.5 in [125], the G,-invariants are generated by all possible contraction
of tensorial indices. Concretely this means either functions of the form

trPlpz---Pk

where Py, P, ..., P is a closed chain of edges of () starting and ending at a
v-vertex, or any matrix coefficient of

PP, P,
where Py, P, ..., Py is a chain of edges going from one w-vertex to another.
Clearly, the o-weights of all these functions are in {0, £1}. O
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Chapter 3

Stable envelopes

Let a torus A act on a nonsingular quasiprojective algebraic variety X and
let © : XA — X denote the inclusion of the fixed locus. We have a natural
map

U HA(X) — Hay(XR)

of degree 0. Our goal in this section is to construct a reasonably canonical
map in the other direction

Stabe : HA(X?) — Ha(X)

that takes middle degree to middle degree. We will call Stabe() the stable
envelope of v. The main ingredients in its construction will be:

e an A-invariant holomorphic symplectic form w on X,
e a choice of a certain chamber € < a = Lie(A).

Stable envelopes appear to be useful in a broader context than strictly re-
quired for the purposes of the present paper. We therefore discuss them in
that greater generality. For symplectic resolutions, a much simpler approach
may be used, as we explain in Section In many examples, we expect the
stable envelopes to specialize to well-known constructions.

We begin by explaining various conventions we use and recalling several
basic constructions.
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3 Stable envelopes 54

3.1 Assumptions and conventions

3.1.1 Assumptions on X

We assume that X is a nonsingular algebraic variety and w € H°(Q2X) is a
holomorphic symplectic form on X. In addition, we require a proper map

m: X — X (3.1)

to an affine variety Xj.

3.1.2 Group actions

We denote by
AcTcG— Aut(X)

a pair of tori A < T in some reductive group G acting on X. We denote by
a < t g the corresponding Lie algebras. We assume:

e wc HYN%) is an eigenvector of G, fixed by A;
e the proper map 7 is G-equivariant;
e X is a formal T-variety.

See [50] for a discussion of formality. In particular, it implies H1(X) is
free as a module over Hy(pt). While this condition is convenient, we expect
it can be removed with a little care.

We denote by

heg®,

the G-weight of w. By our assumption, A is in the kernel of h.
Example 3.1.1. For X = M(r,n), we take
G=GL(2) x GL(r)

where the first factor acts on P? keeping the line at infinity, while the second
factor acts by changing the framing. We take T to be the maximal torus of G
and A = T nGL(r). The proper map 7 is the map to the Uhlenbeck moduli
space.
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55 3.1 Assumptions and conventions

Example 3.1.2. More generally, for X = M, (v, w) with 6 generic, we take
G as defined in section and T its maximal torus. The proper map w is
the map

7 Mpo(v,w) — Mgo(v,w).

Given a decomposition

we obtain a homomorphism
A={(z1,...,2)} = Gy

given by w = >, w® z; as in Section .

3.1.3 Signs and adjoints

The varieties X we will encounter in the paper have no odd cohomology,
although the following discussion may be easily modified to include odd co-
homology.

When X7 is proper, integration over X

”YHJX’VEQ(")

may be defined as an equivariant residue, making H = H1(X) a commuta-
tive Frobenius algebra over Q(t). In fact, it will prove very convenient to
introduce the following sign twist in the Frobenius trace 7

r(7) = (-1 [ o

X

Recall that X is holomorphic symplectic, so dim X is even. For example, if
X =T*Y and [Y] is the class of the zero section, then

T (V]) =x(v).

In this paper, we define adjoints using 7. Concretely, this means the
following. Consider a T-equivariant cycle, i.e. a Q-linear formal combination
of invariant subvarieties

ZzEaka cﬁxi.
=1
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3 Stable envelopes 56

Notice that we have abused notation to write a cycle as a subset of the
ambient variety.

Fix a subset S < {1,...,n}. Then Z, viewed as a correspondence, defines
a operator
Oz : Hy (H Xi) — Hy (ﬂ XZ) ®Q(Y),
€S ¢S

see Section for further discussion. For example, Z could be the diagonal
A < X x X and then, for S = {1}, ©4 is the identity map.

Using 7, we may move factors X; from the source of the map ©, to the
target, and back. We call these new operators adjoint to ©, and denote
them by (©%)7, to distinguish it from the ordinary permutations of factors.
They acquire a sign (—1)P, where

1 1
€S’ €S
and S’ is the source index set for the map (©z)".

For example, if S = {1, 2} then

(BA) (M ®72) = (—1)%dimx J MUY =T(1Ur)eQt).

X
3.2 Basic constructions

3.2.1 Chamber decomposition

The cocharacters
oc:C* - A
form a lattice of rank equal to the rank of A. We denote
ag = Cochar(A)®z R c a.
Each weight y of A defines a rational hyperplane in this vector space.

Definition 3.2.1. The torus roots are the A-weights {c;} occurring in the
normal bundle to X*A.

The root hyperplanes partition ag into finitely many (open) chambers

Cl]R{\LJOéil = |_|Q:Z
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57 3.2 Basic constructions

Example 3.2.2. In Example we have
XA= || []HIb(C ),

ni+--+np=n

the normal weights « are the roots of GL(r)
a 3 diag(ay,...,a,) — a; —a;,
and the chambers € are the usual Weyl chambers.

Example 3.2.3. Similarly, in Example |3.1.2] we have

Mg,o(v,w)A — |_| M (V(l),W(l)) X oo x M (V(r)’w(r))

v 4y =y
by Proposition and the normal weights are again the roots of GL(r).

The stratification of ag by root hyperplanes coincides with the stratifica-
tion by the dimensions of the fixed-point locus. In particular, if ¢ does not
lie on any hyperplane a; then X7 = XA,

3.2.2 Attracting, or stable, manifolds
Let € be a chamber as above. One says that a point z € X is €-stable if the
limit

lir%a(z) re XA

exists for one (equivalently, all) cocharacter o € €. The value of this limit is
independent of the choice of o € €. We will denote it by limg x.
Given a subvariety Y < X”, we denote by

Attre(Y) = {z |limg(x) e Y}

the set of points attracted to Y by the cocharacters in € We have the
following;:

Lemma 3.2.4. Let Z be a connected component of X*. Then
lime : Attre(Z2) — Z

15 an affine bundle.
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3 Stable envelopes 58

Remark 3.2.5. Note this affine bundle is T-equivariant.

Proof. We apply the classical Bialynicki-Birula theorem to a smooth o-
equivariant projective compactification X < X. We get a diagram

Attrg(Z)(—> Attrg(Z)
liml hml/
77

of o-equivariant maps in which the horizontal arrows are open dense embed-
dings and lim is an affine bundle. Since o acts with positive weights on the
fibers of lim, any nonempty closed subset of the fiber contains the origin.
Therefore, lim is also an affine bundle. O

Example 3.2.6. In Example [3.2.2 take X = M(2,n), € = {a; > as}, and
Z = {FL®F: | F; € Hilb(C*,n;)} .
Then Attre(Z) is a vector bundle with fiber Ext'(Fy, Fi(—1)), where F(—1)

means the twist by minus the line at infinity of P2.

3.2.3 Partial order by attraction

The choice of a chamber € determines a partial ordering on the set
Fix = mo(X*)

of connected components Z of the fixed locus. This is a transitive closure of
the relation
Attre(Z)nZ'# B =272 >7".

Using a projective compactification as in proof of Lemma|3.2.4], one sees that
this is indeed a partial order, that is

Z<Z'andZ <Z=7=17".
Lemma 3.2.7. For any component Z of X the set
Attry(Z) = | | Attre(Z')

Z'<7Z

1s closed in X.
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59 3.2 Basic constructions

We call Attrl(Z) the full attracting set of Z.

Proof. Consider the map (3.1]) and choose an A-equivariant embedding
XO —V

into a linear representation V' of A. Let V¢ < V denote the span of those
weight subspaces that are non-negative on €. We have

W(m) c Xon Vag

for any component Z < XA,
Let x lie in the closure of Attre(Z). Then 7(z) € V5o and the limit

2 = limew € Attre(Z) n XA

exists by the properness of m. Denoting by Z’ € Fix the component that
contains z’ we see that Z’ < Z and so we are done. [

3.2.4 The ample partial order

It will be more convenient to work with a different partial order on Fix which
is a priori finer, that is
<7 =7Z<7,

but is much easier to describe.
Let o € € be a cocharacter and let C' =~ P! be the closure of a og-orbit.

The degree
(AN [C) eZ, XePic(X),

may be computed by equivariant localization in terms of weights of A at the
fixed points of C'. This number must be positive if A is ample.
We therefore choose any A-linearization of an ample line bundle A and
define
7> 7 o <weight A)Z — weight )\‘Z/> )C >0, (3.2)

where weight )\‘ € a* is the weight of the A-action on the fiber of \ re-

z
stricted to fixed point component Z. Note that the ambiguity in the choice
of linearization cancels out of ({3.2)

See also Section [£.8.5] below for a related discussion.
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3 Stable envelopes 60

Example 3.2.8. Recall that, by construction, Nakajima varieties come with
a distinguished ample class, namely

Consider the fixed points of the tensor product action
Zy = Mo c(n,w) x Mg c(v—nw)c Mge(v,w+w) (3.3)

as in (2.14). By construction,

weight c; (V)| =i
n

Therefore
Zy>Zy < 0-n>0-1. (3.4)

In particular, if 6; > 0 for all 7 then Zg = Z, is minimal with respect to the
ample order.

3.2.5 Lagrangian correspondences

Given a holomorphic symplectic variety M with symplectic form w, recall
that a subvariety Z < M is isotropic if the restriction of w to the smooth
locus of L vanishes. It is Lagrangian if it is also middle-dimensional. We say
that a cycle is Lagrangian if each component is Lagrangian.

Let Y be another holomorphic symplectic variety on which group G acts
with the same weight A of the symplectic form wy. Let

Lc X xY

be a T-invariant Lagrangian cycle with respect to the form wy — wy. Recall
that we use < to denote cycles as well as subvarieties.
If L is proper over X, it defines a map

Or : Hi(Y) P Hiy(L) ~% Hy(X)

As an equivariant residue, ©; may be defined with a weaker properness
assumption: T has to have proper fixed points in the fibers of the push-
forward.
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61 3.2 Basic constructions

See, for example, [23] for a general discussion of operators defined by
correspondences. In particular, ©; depends only on the class [L] of L in the
T-equivariant Borel-Moore homology of X x Y. Also

O, 001, = OrryJo12] -
Here the convolution L; o Ly of two cycles is defined by
[L1] o [L2] = (p13)« A™([L1] * [L2])

where the maps
XxYxYxZEXxYxzZP Xx2Z

are the inclusion of the diagonal and the projection, respectively. Here A*
denotes Gysin pullback with respect to a regular embedding. When the
map pi3 is proper on the support of L; Xy Lo, its image is isotropic. As a
consequence, the convolution [L1] o [Ls] is the cycle class of a T-invariant
Lagrangian cycle in X x Z.

3.2.6 Steinberg correspondences

Let L € X x Y be a Lagrangian correspondence as above.

Definition 3.2.9. A Steinberg correspondence is a Lagrangian correspon-
dence

Lc X xY

as above such that there exist proper equivariant maps
X =X, v .. vVvy
to an affine G-variety V' such that

LCXXVY.

The following easy lemma gives a sufficient condition for Steinberg cor-
respondences to be closed under convolution.
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3 Stable envelopes 62

Lemma 3.2.10. Given Steinberg correspondences
L1CX><V1Y, LQCYXVQZ,

the convolution Ly o Ly is a Steinberg correspondence if there exists a com-
mutative diagram of equivariant proper maps

y 2Ly (3.5)

N

Vo—V
with V' affine.

Proof. Both X and Z map admit proper, equivariant maps to V. It is clear
that the assumptions imply

LloLQCXXVZ.
O

We say that two Steinberg correspondences are composable if they satisfy
the sufficient condition described above when they share a common factor.

Example 3.2.11. Fix a quiver @ and dimension vectors v,v(® for i =
1,...,n, such that v > Zv(i), and similarly for w,w®. We have a proper
map

ﬁMe,c (v, W) = Mo, (ZV“*ZW“’) — Moc(v,w)
i=1

where the first map is given by affinization and direct sum, while the second
map is given by taking the direct sum with the zero representation. We
will only consider proper maps to affine varieties of this form or products of
such maps. As a result, if we have two such maps with the same domain, a
commutative diagram of the form always exists since the two targets
can both be included into a still-larger M (v, w). Therefore, the associated
Steinberg correspondences will always be composable.

Given a possibly disconnected variety X, if we have a collection of compos-
able Steinberg correspondences between components of X, we can consider
the subalgebra of End H+(X) that they span. When the context is clear, It
will be called the Steinberg algebra of X.
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63 3.3 Characterization of stable envelopes

3.3 Characterization of stable envelopes

3.3.1 Supports

For the ease of reading formulas, we use restriction signs for the natural re-
striction maps in equivariant cohomology. Given a closed T-invariant subset
Y < X and a class v € Hy(X) we say that + is supported on Y if

=0
7 HL(X\Y)

Equivalently, suppy < Y means that the Borel-Moore class v [X] is pushed

forward under Y — X.

3.3.2 Polarization

Let Z € Fix be a component of X* and let N be the normal bundle to Z in
X. Any chamber € gives a T-invariant decomposition

Ny =N, ®N_

into A-weights that are positive and negative on €, respectively. The sym-
plectic form w gives

(N,)" = N_®@he Kr(2), (3.6)

where A denotes a trivial line bundle with the corresponding action of T.
Because h is trivial on A, the class

62 _ (_1)(codimZ)/26(NZ)

2
= | |a- , 3.7
Hy (pt) ’ (3.7)

is a perfect square. Here +a; € a* are the roots that occur in Ny.

Definition 3.3.1. A choice of a square root € in (3.7)) will be called a polar-
ization of Z in X. The sign in +e(N_) agrees with polarization if +e(N_)
restricts to € in H, (pt).

Example 3.3.2. While polarization is a purely formal choice, geometrically
natural choices save on signs.

For example, if X = T*Y with A-action induced from Y, we can take ¢
to be the product of nonzero A-weights in the fibers of TX — TY.
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3 Stable envelopes 64

More generally, let a cocharacter
c:C*—>T

be such that (h,0) = —1. This generalizes the scaling action of C* in the
fibers of T*Y. Then we can choose the weights in € as the o-negative weights
in the fiber of Nz over some chosen z € Z°.

Example 3.3.3. We have a canonical polarization associated to Nakajima
varieties as follows. Recall from Section that we have a virtual splitting
of the tangent bundle

TMoc(v,w) =T + '@ (TY?)" .

Let € denote the product, weighted by multiplicity, of the nonzero A-weights
in the restriction of (T%/2)¥ to some € Z.

3.3.3 Degree in A
Since A acts trivially on X*, we have
Hy(X*) = Hya(X?) ®cpya C[H] -
While there is no canonical splitting
Clt] = C[t/a] ® Cla] (3.8)

any such splitting leads to the same increasing filtration of H:(X”) by the
degree deg, in Cla]. Clearly,

o Hy(X*) = Hy p(X*) @ Cla]. (3.9)

3.3.4 Characterization

Choose a chamber ¢ c a and an polarization € of X”. The following theorem
is the main result of this section.

Theorem 3.3.4. There exists a unique map of H:(pt)-modules
Stabe,. : H1(X?) — Hy(X)

such that for any Z € Fix and any v € H+/A(Z), the stable envelope I' =
Stabe ,(7y) satisfies:
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65 3.4 Characterization of stable envelopes

(i) supp D" c Attri(Z),
(i) F‘Z = t+e(N_) Uy, according to polarization,
(iii) degp T’
Remark 3.3.5. The chamber and the polarization are independent param-

eters in the construction of Stabg .. The former being much more important
than the latter, we abbreviate

Stab¢ = StabQE y

1 .
5 < zcodimZ’, for any Z' < Z .

once some polarization € has been specified.

Remark 3.3.6. We will see Stabg is given by a Lagrangian correspondence
on X x XA, and, in particular, it maps middle degree to middle degree.

The existence of Stabg will be proven later. We now prove the uniqueness
a map satisfying the conditions of the theorem.
Proof. Let v € H+(X) be supported on a union of attracting sets and satisfy

degp 1"y < % codim 7 ,

for any embedding ¢ : Z < X of a fixed component. We claim this forces
v =0.

Pick a total ordering on Fix refining < and choose Z € Fix so that ~ is
supported on Attr’é(Z ). We can factor ¢ = f3fsf1, where

7 8 Attre(2) & Attrl(Z) 5
Here f; is regular and f5 is open. The support condition on v means that
v [X]=(f3)ra

for a certain Borel-Moore homology class a. Standard excess intersection
arguments then show

() A [2] = e(N-) ~ ff fi
The multiplication by e(N_) is injective on (3.9 and
degp e(N_) = 1 codim Z .
Because this exceeds the degree of the right-hand side, f; f5 o = 0. Since f;
is an isomorphism, this forces f;« to vanish, meaning that «y is supported on
a smaller union of strata. Arguing inductively, we see v = 0.

Now if I';, 'y € H+(X) are two classes satisfying (i)—(iii) then their differ-
ence satisfies the hypothesis above, hence vanishes. O
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3 Stable envelopes 66

3.4 Lagrangian residues

Let L be an A-invariant Lagrangian and let
L: 4 — X

be an embedding of a component of XA. The form *w is symplectic and so
we can talk about isotropic and Lagrangian subvarieties of Z.

Lemma 3.4.1. L n Z is an isotropic subvariety of Z.

Proof. Let W be an irreducible component of W of L n Z. For a general
point w € W, there exists a sequence of points xy,xs,... in the smooth
locus of L approaching w such that limit of 7T}, L exists as k — o0 and
contains the tangent space T;,J/. This can be seen, for instance, by choosing
a Whitney stratification of L for which L n Z is a union of strata. Since
the symplectic form on Z is the restriction of the symplectic form on X, the
lemma follows. O]

Now suppose an polarization ¢ of Z has been chosen.

Lemma 3.4.2. There is a unique Lagrangian cycle Resz L supported on
L n Z such that
(*[L] =e[Resz L] + ...

where dots stand for terms of smaller A-degree.

Proof. The class (*[L] is supported on a subvariety L n Z of dimension at
most %dim Z. Therefore, its A-degree can be at most

codimy L — codimy(L n Z) < 5 codimy Z .

1
2
Assuming L n Z is middle-dimensional, denote by Li, Lo, ... its Lagrangian
irreducible components. We have

L) = DL fit

where f; € Hp(pt) is a homogeneous polynomial of degree %codim x Z and
dots stand for terms of smaller degree.

In order to calculate f;, we shrink X to a neighborhood of a smooth
generic point of L;. Furthermore, we can degenerate to the normal cone of
Z inside X and restrict to a transverse slice through a generic point of L;.
After these simplifications, the following lemma finishes the proof. O
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Lemma 3.4.3. Let V = C" be a vector space equipped with the diagonal
action of A by characters x1,...,Xn- Let X =V @ VY be the symplectic
vector space equipped with the induced action of A and suppose we have a
Lagrangian A-invariant conical subvariety L < X. Then the residue of [L]
at the origin 0 = Z < X s an integer multiple of € = H?zl X;-

Proof. We embed A in T = (C*)"*! the maximal torus of Sp(2n) x C*,
the stabilizer of the line Cw € Q%(X). We can use T to degenerate L via a
family of A-invariant conical subvarieties to a T-invariant conical subvariety
and calculate the residue for this limit. Since T scales w, this limit is still
Lagrangian. On the other hand, the only such T-invariant subvarieties are
unions of Lagrangian coordinate planes. For a Lagrangian coordinate plane,
it is clear that the residue is a product of the characters x; up to a sign. [

Lemma 3.4.4. For any A-invariant Lagrangian L and any chamber €, there
exists a Lagrangian cycle L' supported on Attré(Z) such that

degp t*([L] — [L']) < 3 codim Z .

Proof. We can take L' to be the closure of limy'(+ Resy L), counting multi-
plicity. ]

Lemma 3.4.5. Let L < X be an A-invariant Lagrangian subvariety sup-
ported on Attré(Z). Then there exists a unique Lagrangian cycle L' such

that L' — L is supported on | ), _, Attrk(Z') and

degp 13[L'] < 3 codim Z'

for any Z' < Z.
Proof. The existence follows by induction from Lemma The uniqueness
is shown as in Section [3.3] O

In conclusion, we note that if L is T-invariant, then so are all other
Lagrangians occurring in the above Lemmas.
3.5 Proof of existence

Consider the (possibly disconnected) T-variety X x X” equipped with the
antidiagonal symplectic form (w, —w|xa). We construct Stabe by exhibiting
a correspondence between X” and X.
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3 Stable envelopes 68

Proposition 3.5.1. There exists a T-invariant Lagrangian cycle Stab L¢ on
X x XA, proper over X, with the following properties:

(i) For any Z € Fix, the restriction of L¢ to X x Z is supported on
Attri(Z) x Z;

(ii) the restriction of [Le] to Z x Z equals +e(N_) n [A], according to
polarization, where A is the diagonal;

(iii) for Z' < Z, the restriction of [Le| to Z' x Z has A-degree less than
s codim 7' .

This shows the existence of Stabe by taking the map
Hy(X") — Hy(X)

induced by the correspondence Lg. Properness over X insures this map is
well-defined.

Proof. Fix some Z and let +L be the closure of the preimage of A under the
map

Attre Z x Z — Z x 7,

with sign as above. Then L is a A-invariant Lagrangian supported on Z x
Attr}(Z) which satisfies (i) and (ii). Using Lemma [3.4.5] we can modify it on
lower strata so that to achieve (iii). Repeating this for all Z € Fix, we obtain

a Lagrangian cycle Ly and it remains to check that its support is proper over
X.
As in the proof of Lemma [3.2.7], choose a A-equivariant embedding

m:Xg—V

into a linear representation of A and let V[; = V%, be the subspaces formed
by A-invariant and weights positive on €, respectively. Let

p:Vzo— Wy

be the natural projection. Consider the closed set 7~1(V~q) = X (this is just
the union of all attracting manifolds), along with the morphism

poT: 7T_1(V>0> - V.
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69 3.6 Torus restriction

By construction, the Lagrangian cycle L¢ lies in the fiber product
7 (Vo) xyp X2 X x XA,

Indeed, we construct Ls by starting with the diagonal A = X* x X” and
taking attracting manifolds and closures. The fiber product is closed with
respect to both these operations.

On the other hand, the projection onto the first factor

T (Vo) Xv XA - X

is proper: since the map 7 : X — V is proper, we can reduce the statement
to the claim that
V>O XVO ‘/0 —> V

is proper, which is obvious.
O

We note the following corollary of the proof. It will play an essential role
in proving various properness statements later.

Proposition 3.5.2. Let X, denote the union of all attracting manifolds.
Then
E@ e X+ X Xo XA .

Remark 3.5.3. Suppose X = T*Y where Y is a smooth projective variety
and assume the action of A is induced from an action on Y with isolated fixed
points {pr}. Then a choice of chamber € defines an A-invariant Bialynicki-
Birula stratification of Y by locally closed varieties V. In this case, the
stable envelope map Stabg defines a collection of Lagrangian cycles on X.
These can be identified (up to a sign depending on the polarization) with the
characteristic cycles of the constructible sheaves (jk)!vak where ji denotes
the inclusion into Y. See, in particular, [3] for recent developments in this
direction.

3.6 Torus restriction
Let € be a chamber and let ¢’ = € be a face of some dimension. Consider

a =Span¢ ca
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3 Stable envelopes 70

with associated subtorus A’. The cone € projects to a cone in a/a’ that we
denote by €/¢".
Let € be an polarization of XA — X. We can factor

eE=¢c¢c

into weights that are zero and nonzero on a’, respectively. The factors induce
an polarization of XA ¢ X* and X* < X, respectively. In the following
lemma, we take these induced polarizations.

Lemma 3.6.1. The diagram

Stabg

H (X*) H(X) (3.10)

Stab@/@ Stabc/

H. (XA/

~—r

18 commutative.

Proof. This follows from the uniqueness of the stable envelopes. Let L¢r, Le /e
be the Lagrangian correspondences constructed in Proposition [3.5.1] and
consider their convolution

[Lew] = [Lese] o [Le]

which defines a Lagrangian cycle class in X* x X.

If we can show it satisfies the properties in Proposition [3.5.1] then unique-
ness of Stabg gives the result. In fact, using the definition of the chamber
¢/¢’ most of the properties are immediate. For example, (iii) follows from
the degree constraints of either Lo or Lg/er. n

3.7 Symplectic resolutions

3.7.1

In this paper, we are mainly interested in equivariant symplectic resolutions,
X — X, = Spec H*(Oy),
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71 3.7 Symplectic resolutions

see [60] for a comprehensive discussion. For symplectic resolutions, stable
envelopes are easier to construct and enjoy stronger properties.

In addition to Nakajima quiver varieties My, for 6 generic, examples
of symplectic resolutions include 7%(G/P), where P < G is a parabolic
subgroup.

3.7.2

We begin with the universal deformation of the pair (X, w)

Xe—" X (3.11)

—

[0]—= B =~ H%(X,C),

in which the period map ¢ associates to a deformation (X', w’) the class of
W' in H*(X') = H*(X). This universal deformation may be written down
explicitly for Nakajima varieties and in all other examples, see [60] for further
discussion.

The deformation is G-equivariant, where G acts on the vector space
B by the character A. Therefore, the group

G, =Keri oA
acts on each fiber of ¢.
3.7.3
Suppose we are given a class

aV € Hy(X,7Z)

that is an effective curve class in some fiber (X', w’) # (X,w). Then

fw/:O

and hence deformations with nonzero holomorphic curve classes belong to a
union of hyperplanes in the base B.
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3 Stable envelopes 72

Definition 3.7.1. A coroot hyperplane of X is a hyperplane of B along
which the deformation of X has nonzero holomorphic curve classes.

Over their complement

=5 J )

coroots

the fiber of ¢ is affine. It is an interesting question to find a geometric defini-
tion of coroots of X themselves rather than just their associated hyperplanes.

3.7.4

Consider the diagonal

AO - Xo X go (XO)A7
where X° = ¢ 1(B°). Since the fibers over B° contain no holomorphic cycles,
the inclusion

Attre A° — X° x o (X°)2 (3.12)

is a closed embedding and defines a family of cycles over B°. We denote by
Lo = Attre A°

it closure in X x5 XA. In particular, we can take the A-fixed points
(Be) s X2y X2
|
B

Proposition 3.7.2. For any b € B, the top-dimensional components of
~\A
(Ze) no'w)
are Steinberg correspondences.

Proof. All fibers of ¢ are symplectic resolutions and we can find a universal
proper G-equivariant map 7

X "=

|
id

B——

o=
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73 3.7 Symplectic resolutions

into a vector bundle V over B. The torus A acts trivially on B and we denote
by V¢ the subbundle formed by A-weights that are nonnegative on €. As in
the proof of Proposition |3.5.1] one shows

Lec 7! (‘72()) X XA,
Therefore
(Ze)" = X% i X2,
On the other hand, it is known that the ¢-fibers of
Xx;: XcXxpX

are isomt/ropic.ﬂ Therefore, their intersections with a symplectic subvariety
XA x XA are at most Lagrangian. Their Steinberg property is clear from the
above. [

Remark 3.7.3. This Proposition gives an abundant source of Steinberg
correspondences, as we will see below.

Theorem 3.7.4. The correspondence Lg is the specialization of E¢ to the
central fiber, that is

[E@] = LS [Z@] € H—?M(X X XA)

Proof. 1t suffices to check the right-hand side satisfies the conditions of
Proposition [3.5.1 Properness is shown exactly as in the proof of Propo-
sition [3.5.1] Similarly, conditions (i) and (i) follow from construction.

To show (iii) we the consider inclusion

L x T X x XN, 27,
of an off-diagonal component of X x XA, By Proposition [3.7.2]

Gl Le] =Y filLd+...,  fie HPM™Z (pr),

! This widely known and used statement may be deduced from the results of Kaledin
[61] and Namikawa [92]. Further details may be found in the forthcoming lecture notes of
V. Ginzburg on the subject.
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3 Stable envelopes 74

where L; are the Lagrangian components of the intersection and dots stand
for terms of smaller A-degree. The required degree bound

1
degy fi < 5 codim Z’

follows from a much stronger claim: all f; are divisible by A. We state this
as a separate result. O

For any X, not necessarily a symplectic resolutions, we can write

[Le] = +e(N_) u A + off-diagonal (3.13)

XAx XA
where the second term is a class supported on

| | 20x 2, ZieFix.
Zl<Z2

Theorem 3.7.5. For symplectic resolutions,

[Le] = +e(N_)UA mod hH7 (X" x X*).

XAx XA

Proof. Let Z, Z' be two different components of X A. 'We will show the pull-
back of £ by N N

L2 x 7 X xg XP
is divisible by h, which also completes the proof of the last theorem. We

choose a general line £ © B through the origin in the base of the deformation
and denote by X, the restriction of X to /. We may factor ¢ = 15 0 11 where

Z'x 7 5 (XA % (X)) 2 X xp X1

Only the central fiber of X, contains holomorphic curves. Therefore, if we
consider the connected component W of (X,)* x, (X,)* containing Z x Z’,
the contribution of W to ¢3 [E] is supported over the origin, i.e.

suppyy L;[E] cZ'x 7.
Therefore ¢* [Z] factors through

1 o (11)s = multiplication by A .
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Chapter 4

Properties of R-matrices

4.1 Definition and braid relations

4.1.1
We fix some polarization € and consider the maps
Stabe : Hg, (X*) — Hg, (X)

parameterized by the chambers €. Here Gp is a reductive group which com-
mutes with A and we denote ga = Lie Ga.

The maps Stabe become isomorphisms after inverting e(N_). Therefore
we can make the following

Definition 4.1.1.

Rgr ¢ = Stabg,1 o Stabe € End (HéA(XA)) ®Q (ga) -

4.1.2 Example
Take X = T*P! with the action of A = C* induced from P'. We have

XA = {0, 0}

Let u be the A-weight in TyP!' and let C; < Ga scale the cotangent fibers
with weight —h. Let the polarization € be given by the fibers. Then

Stabe(0) = [P'] + [F,], Stabe(w) = —[F,]
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4  Properties of R-matrices 76

for € = {u > 0} where

)
n

zero section,

fiber over oo € P! .

&
I

Similarly
Stab_g(O) = —[Fo], Stab_e(oo) = []P)l] + [F()] .

For {z1, 2o} = {0, 0}, we have

—u—h 0 —u —h
Stabi@(zj) . = ( —h U) ’ < 0 u-— h) .
Therefore,
1-— %s
R(u) = [k (4.1)

u
where s is the permutation of 0 and oo. Up to proportionality, this is Yang’s
original R-matrix. It is normalized so that R(u) = 1 on the invariants of s.

4.1.3

It will be convenient to represent rational functions appearing in Re ¢ as
formal power series in inverse roots using some splitting (3.8) and
1 1 T x?

- -4
a+r o a? o

Here a € a* is a root, i.e. a weight appearing in the normal bundle to X”, and
x is the (Ga/A)-equivariant Chern root of the corresponding weight subspace
of N_. Since we only inverting e(N_), all denominators occurring in the
R-matrices are of this form.

One should keep in mind that this expansion depends on a splitting
and reexpand accordingly if the splitting is changed.

For a different polarization, the R-matrices differ by conjugation by a
diagonal +1 matrix.

4.1.4 Root R-matrices

Evidently, it is enough to consider R-matrices corresponding to a pair of
chambers €, €’ separated by a wall @« = 0. Here « is a root and we may
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77 4.1 Definition and braid relations

assume that a(€) > 0. Consider the subtorus A, < A with Lie algebra
a, = Kera. We denote

X = XA

For the A/A,-action on X, there are two chambers, namely o = 0. We take
the induced polarization of XA < X and denote by

Ra = R<O,>0 € End(H(’;A (XA)) ® Q(gf’-\/aa)

the corresponding R-matrix.
From Lemma we have the following

Corollary 4.1.2. If € and & are separated by a wall « = 0 then
Rer¢ = R, .

We call operators R, the root R-matrices.

4.1.5 R-matrices for Nakajima varieties

Given a quiver (), vector w, and a generic choice of #, we define

M(w) = | [Mco(v,w), (4.2)

where we dropped the moment map parameters on the left-hand side for
brevity, and define

H(w) = Hg(M(w)).

Consider a tensor product of Nakajima varieties as in Section [2.4] There
are two chambers

C={u>0}, € ={u<0},

where u is the weight of the defining representation of A = {z} = C*. We
denote

ngwu(u) = RQI,Q € EHd(H(WI) ® H(W”)) &® @(U)

the corresponding R-matrix.
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4.1.6

More generally, a decomposition

gives a homomorphism
A={(z1,...,2n)} = Guw
given by w = >7* | w® z as in Section By Proposition
M(w)A = M (W(l)) X oo x M (W(n))
and hence
Ho,( Mw)*) = H (W)@ @ H (w™) .
The walls are the roots of GL(n)
a=a—a;, 1<i<j<n,
and the corresponding fixed loci are of the form

M(w)® = M (W(i) +W(J)) X H M (W(k)) :

k4,5
where A/A, acts only on the first factor. We conclude
R, = me,w(a‘)(ai - aj)ij

where the subscript means that it operates in the ith and jth tensor factors.

4.1.7 Normalization

From definitions, we have the following
Proposition 4.1.3.
Razl—l—O(a’l) , Qa— 0.

In other words, R,, as a formal power series in o~ ! starts with the identity
operator.
For symplectic resolution, we deduce from Theorem [3.7.5

Proposition 4.1.4.
R,=1+0(h), h—0.

In other words, R, acts as identity on Hg, (X*)/hHg, (X*?).
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79 4.2 Changing the torus

4.1.8 Braid relations

Let § < € be a codimension 2 facet and let
€:€07€17"-7€2n =
be the chambers containing § as a facet, in cyclic order around §.

Proposition 4.1.5.
R¢07€1 R€1,¢2 cee R€2n717€2n =1 (43)

This relation, too obvious to be called a theorem, is of fundamental im-
portance for much of what follows.

4.1.9 Example
In the setup of Section 4.1.6| take

§ ={a1 =ay = as}.
Then (4.3)) gives

Rlz(al - a2) R13(a1 - as) 323(% - G3) =
R23(CL2 - a3) R13(Cl1 - a3) R12(a1 - @2) ) (4-4)

which is the Yang-Baxter equations with a spectral parameter.

4.2 Changing the torus

4.2.1

Suppose we have and inclusion of tori
Al (@ A2
where As preserves the symplectic form. Clearly,

roots (A;) = roots (As) al\{O},

and so every chamber €; < a; is contained in at least one closed chamber
¢ < ay. From Lemma [3.6.1, we deduce the following
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Proposition 4.2.1. Let chambers €, & < a; be faces of €, &, < ay, re-
spectively. Then the diagram

Stab¢2/¢1

Hg,, (X*) Hg,, (X*)
R¢’2,€2l lRe’l,cl
. A Stab‘zé/q/1 ) A
HGA2 (X 2) HGA2 (X 1)

18 commautative.

Here Stabg, /¢, really means Stabg, /e, ,, where €, < €, is the minimal face
that contains €.

4.2.2

Note that there could be many walls between €, and €, even when ¢; and
¢! are adjacent. Thus enlarging the torus leads to factorization of root R-
matrices.

4.2.3

In practice, it convenient to reduce to the situation when
dimalzl, dima2=2,

by restricting to root R-matrices for A; and replacing ay, by a generic line in
as/ay, if necessary. Denoting by (uq, ug) the corresponding coordinates in as,
we can go between

62:{U1>>U2>0}, €,2={U2>0>>U1}

by crossing the walls in the decreasing order of u;/us.

4.2.4 Example
We continue with Example 4.1.6| and take

a; = {(al,O,...,O)},
ao Ial@C(O,ag,...,(ln).
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To ensure that ay/a; is generic in a/ay, it is enough to take
Qg > a3 > -+ > Ay, . (4.5)
Then X% = X° while
X" =M (W(l)) x M (W — W(l)) :
In a;, we have two chambers
¢ ={ay >0}, € ={0>a},
corresponding to
Co={a;>ay> ->a,}, €={a> >a,>a}.
in ay. Crossing from €, to @, we get
Rer ¢, = Ry (a1 —ay) - - Ris(ar — ag) Ri2(ar — ag) (4.6)

in the stable basis of Hg, (X) corresponding to the chamber (4.5) in a/a;.
For a different choice of chamber, one reorders the factors accordingly.

4.3 Covers and factorization of R-matrices

4.3.1

It is interesting to elaborate on the factorization considered in Section [4.2]in
the following special case. Let @) be a quiver. We take two vertices i,j €
and

w = ad; + 9;

where a is a weight of A; ~ C*. We have
M(wW)A = M(8;) x M(5;).
The corresponding R matrix
Ry, m;(a) € End(H; @ Hy) ® Q(a), H; = H(4;),

is one of the main building blocks of the theory.
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4.3.2
We take Ay /A; to be the maximal torus of Gedge
= (A2/A1)" = Hi(Q,7Z)

its character group. As explained in Section [2.3.5

M(w)r = M(8;) x M(3)),

and denote by

where M are the quiver varieties associated to the universal abelian cover @
of the quiver Q). N

Here we lift vertices of () to vertices of () that correspond to the trivial
character of Ay/A;. They form a fundamental domain for the action of T'.

4.3.3

The walls in A, that we need to cross are of the form

a=vy, vel, (4.7)
and the corresponding fixed loci are M (w.) where

W, = al.; + 0; .

Recall that I' acts freely on the vertices of @ and the ad,; term in w means
that the corresponding framing arrow goes from a space of weight a to a
space of weight «. On the wall (4.7)) these weights match and we get fixed
points.

4.3.4

To order the walls (4.7)), we pick a generic vector ¢ € ay/a; and order them
in the decreasing order of v(t). Then

Ry, u,(a HR o (@—7) (4.8)

in the stable basis corresponding to Q:Q 5 t and the ordering of the product
is such that we cross the wall with the larger value of ~(t) first.

Here R is the R-matrix for the quiver Q and we use the embedding
Aj — a3 to write arguments of the R-matrices.

The infinite product is locally finite, that is, all but finitely many
factors act trivially on any given cohomology group.
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3 4.4 Covers and factorization of R-matrices

4.3.5

The action of I on @ extends to its action on the corresponding Yangian \7,
which will be defined and discussed in Chapter [5 It satisfies

~

’7(1.)|H(W) = x}H(,y—lw) , TEY,

where the action on framing vectors is by

Note that varieties M(w) and M(y~'w) are naturally isomorphic and the

matrix R is invariant under v ® .
Rewriting (4.8]) in terms of this action, we obtain the following

Theorem 4.3.1. We have
RHi7Hj (a) = H (fy_l ® 1) ’ ﬁHi,Hj (a’ - ’7) (49)
~ell

in the stable basis for the mazimal symplectic torus in Gegge, where the or-
dering of the factors corresponds to choice of a chamber as in Section[4.5.4).

Factorization of this kind play an important role in the theory of quantum
groups, see [32].

4.3.6 Example

Let @ be the quiver with one vertex and one loop. Then

@ZA007

on which the group I' @ Z acts by shifts. This action naturally extends to
an action on

? = Y(g[oo) :

The R-matrix in basic representation of Y (gl ) may be found, for example,
by fusion of R-matrices for fundamental representations. This gives a cer-
tain infinite product formula for the R matrix for ), which is an object of
significant interest.
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4.4 Adjoint operators

In this section, we assume X9 is proper for some g € Ga. As in Section [3.1.3]
this defines the Poincaré pairing

(71772))( = JX 7Y Y2 € Q(QA)

on both X and X*, the sign-twisted trace map 7, and the corresponding
adjoints.
In particular, the adjoint Stabg of the map Stabe is given by the corre-
spondence ) X
,é: (_1)§cod1mX (£¢)21 — XA < X .

Here codim : Fix — Z denotes the codimension of a component of X and
the subscript 21 refers to a permutation of factors.

Note that since L¢ is not proper over X”, equivariant localization is
required to define the adjoint as an operator.

Theorem 4.4.1. For any polarization € and any chamber €, we have
Stab” ;o Stabg = 1.

Proof. Let A : X — X x X be the diagonal map and consider the cycle class
C=A"(LTg x L¢)

on XA x X x XA, where we have pulled back along the internal X x X factor.
By construction,

StabT_c o Stab_¢ = (p13)*(0) (410)

where p;3 is the projection along the middle factor.
We claim C'is proper over X” x X, Indeed, as in the proof of Proposition
3.5.1] we have
EQ e XA XV, 71'71(‘/20) .

Since V2o n Vo = Vg, we conclude
Cc XA xy, 71 (Vo) xyy XA,

whence the claim. Therefore, the composition (4.10) is defined in nonlo-
calized equivariant cohomology and, in particular, has no terms of negative
degree in equivariant parameters.
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85 4.5 Unitarity

On the other hand, we may compute (4.10)) by localization, that is, as a
sum of equivariant residues for all triples (Zy, Z,, Z3) € Fix**. When

ZIZZQZZ37

the stable and unstable Euler classes precisely compensate the denominator
in the localization formula, giving the diagonal as a result. All other residues
have negative A-degree and hence cancel out. ]

Corollary 4.4.2. We have
R], = R,

for any root R-matriz R,,.

Note R, is an operator from Hg, (X*) to itself, so Ry, coincides with the
adjoint with respect to the Poincaré pairing.

4.5 Unitarity

4.5.1

In the theory of quantum groups, an R-matrix
R(u) e End(V®V)® Q(u)
is called unitary if it satisfies
Roi(u) = R(—u)™", (4.11)

where the subscript in R (u) means that we permute the tensor factors. We
will show that R-matrices for Nakajima varieties are unitary.

4.5.2

Consider the following general setup. Let a group of the form
GA =Ax Gl

act on X, where A is a torus preserving the symplectic form w. Define
¢ € Aut Gp by

¢ ’ (CL, g/) = (a_la g/) :
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4  Properties of R-matrices 86

It gives a pull-back map ¢* € End Hg, (X) which is a homomorphism of
algebras. In particular, ¢* is anti-linear over the base ring

¢*(ay) = —ad*(7), aca,
In the cohomology of the fixed locus
Heg, (X%) = He(X™) ® Qla]

the action of ¢* amounts to a — —a, a € a.

4.5.3

Since weights positive on € are precisely the weights negative on —€&, the
following diagram commutes

. StabQ- .
He, (X*) He, (X) (4.12)
o] |
X Stab_ .

Note that Stabg is literally the same correspondence as Stab_¢ for the oppo-
site action.
In particular, for A = C* we conclude

R(—a) = R(a)™*. (4.13)

4.5.4

For tensor products of Nakajima varieties, we have
M(w +w)* = M(w) x M(w), A=C*,

Note, however, from Section that the ordering of factors in the product
above depends on a lift

A—G,

and not just on the image of A in G, modulo the kernel of the action. The

two lifts
1

w+w o ovs. wHz2wW
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87 4.6 Action of Steinberg correspondences

where z € C* give the same action, but different identification of the fixed
locus with the product. From (4.13), the corresponding R-matrices are

R(“) = R(_u)2_117
where u € Lie C*. We thus obtain the following

Proposition 4.5.1. The R-matrices for Nakajima varieties are unitary.

4.6 Action of Steinberg correspondences

We consider the setup of Section [3.2.6 The union of walls for X and Y
defines a partition of a into chambers and we let € be one of those. Let

LCXXVY

be a Ga-invariant Steinberg correspondence.
For any polarization of A-fixed loci, we denote by

F= (_1)codim/2 c

the opposite polarization. Assuming polarizations ex,ey of X?, YA have
been fixed, we take
E=€ExE€Ey

as a polarization of XA x YA < X x Y. Using it, we define the residue

LA = RGSXAXyA L c XA X YA

as a Lagrangian cycle class supported on L*, see Section . As a fixed-point
set of a Steinberg correspondence, L” is Steinberg and hence so is La.

Theorem 4.6.1. The diagram

Stabq

He, (YA) He, (Y) (4.14)
| o
He, (X)) — - He (X)

is commutative for every €. In particular, the Steinberg correspondence Oy,
intertwines the R-matrices of X and Y.
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4  Properties of R-matrices 88

For solutions of the Yang-Baxter equation, an important invariant is their
algebra of symmetries, that is, the commutant of R(u) for all u. Theorem
shows it contains the Steinberg algebra of X for our geometrically constructed
R-matrices.

Proof. We fix one chamber € and define
L' = Stab”,_ 0O, o Stabe., = X* x YA, (4.15)

By Theorem this makes the diagram (4.14]) commute for one particular
chamber €, after tensoring with Q(ga).

We claim the pushforward along X x Y used in the definition of L’ is
proper. This is shown as in the proof of Theorem [£.4.1] Namely, we may
assume V is a linear representation of A. Let

(2o, 2,y,70) € X®P x X xY x YA

be such that
(xer) € L:i(Gv ($, y) € L7 (y7y0) € ﬁg .

It then follows that xg,x, vy, yo map to the same point of Vi = VA, implying
the properness.

Hence L’ is well-defined as a nonlocalized cycle class. It is Ga-invariant
and Lagrangian, being a composition of such classes. It may be computed by
equivariant localization with an arbitrary choice of equivariant parameters.

In particular, we may chose the equivariant parameters to be at infinity
of a. Taking into account the signs in adjoints, we have

[ﬁy]zﬁy[AyA]-f-..., [ﬁX]Zéx[AXA]-l-...,

where dots stand for terms of smaller A-degree. Therefore, at infinity of a,
only these diagonal terms contribute and thus L' is supported on L”. By our
construction,

[L]‘[LA] =¢exéy Respa L+ ... .

We see that polarizations exactly cancel the denominators in localization
formula, thus

L' = La.

Since the original choice of € was arbitrary, the theorem follows. O]
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&9 4.7 Vacuum matrix elements

4.7 Vacuum matrix elements

4.7.1

Let Z € Fix be minimal with respect to the partial order defined by a chamber
¢.

Theorem 4.7.1. If Z € Fix is minimal as above then

e(N+®h
(R—QG : 71772) = JZ MY 2V % )
where Ny are the stable/unstable subbundles of the normal bundle to Z and

In other words, the corresponding matrix elements of R_¢¢ equal the oper-
ator of classical multiplication by the class

e(N, ® h) e(N_)

= H; (Z ocalize
6<N+) G(N_ ® h) € GA( )1 1 d

Proof. We use Theorem and equivariant localization. By minimality of
Z, the attracting set
Attre (Az) c X x Z

is closed and hence is the relevant component of Ly. Further, Z x Z is the
only component of X x Z that this attracting set intersects. The localization
contributions give

(_1)codim(Z)/2 G(N_)2 _ €(N+ ®h) '

eNz) | elN:)

4.7.2

Here e(N4) are equivariant Euler classes, in the sense that they account for
the nontrivial action of A on e(Ny). Since A acts trivially on the base Z,
we may expand e(N4 ) in the characteristic classes of the same bundles with
trivial A-linearization.
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4  Properties of R-matrices 90

For example, if A = C* and it acts on N, by its defining representation
then

e(]e\EN(;))h) =1+ ” rk N_+
(e B n) <o)

where u € a* is the weight of the defining representation.

4.7.3

For example, consider the tensor product of Nakajima varieties as in Example

in Section |3.2.4] If # > 0 then the minimal component in (3.3) is

Zg = Mo c(v,w) = Mg c(v,w +w'), (4.17)
which corresponds to
n=>0
in (3.3). By formula (2.15)), we have
N_‘ — PV (4.18)
Zg

Recall that My (0, w) is a point.

4.7.4

In particular, for moduli spaces of framed sheaves, this embedding takes the
form

M) sF— O @FeM(r+r").
Its normal bundle is
N_ = Extp (0", F(—1)) = Hp,(F(—1))%".
The bundle
Taut = V) = Hp,(F(-1))

is the tautological bundle on the moduli spaces of framed sheaves.

Theorem , combined with , gives an R-matrix formula for the
operators of classical multiplication by characteristic classes of N_. We will
revisit this point below.
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91 4.8 Classical R-matrices

4.7.5

For general 6, the component is not minimal. We therefore adopt the
following terminology:.

For all 8, we will call Zg the vacuum or the lowest weight component. We
will call the minimal component the true vacuum component. For Nakajima
varieties it coincides with Zg if 6 > 0.

When the vacuum Zg is not the true vacuum, the relation between the
vacuum matrix elements of the R-matrix and the operators of classical mul-
tiplication becomes more complicated. It will be explored in Section 4.9,

4.8 Classical R-matrices

4.8.1

In this section, we assume that X is a symplectic resolution. Recall the root
R-matrices and the subtori A, introduced in Section4.1.4l From Propositions
4.1.3] and 4.1.4], it follows that

h
Ry=1+—714+0(a?), (4.19)
«
for a certain operator
ro € End(Hg, (X))
Definition 4.8.1. The operator r, is called the classical R-matrix.
Note that r, does not depend on a choice of a splitting (3.8]).

Proposition 4.8.2. There is a Steinberg correspondence ro, © X* x XA that
defines the operator .

Proof. Let
Stab.g : Hg, (X*) — Hg, (X®),

the map corresponding to the chamber a > 0. By Theorem [4.4.1]

We compute this push-forward by (A/A,)-equivariant localization. From
Theorem [3.7.5], we can write

[Stab>0] |XA><XA = Vdiag T h'Yoff—diag .
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4  Properties of R-matrices 92

Further, by Proposition |3.7.2

1 1 —
2COdll’IlZ 1[0 : /]
zZx7z!

Voft-diag

for a certain Steinberg cycle Cz 2 < Z x Z'. Here codimension is computed
in X and dots stand for terms of smaller degree in «.

It follows that the quadratic in Yofqiag term doesn’t contribute to 7,
while terms linear in v,f.4iag contribute a Steinberg correspondence. Same is
obviously true for the diagonal term. O

4.8.2

Note from the proof of Proposition [4.8.2

kN[ka]

r, = ( Z r—) A + off-diagonal , (4.20)
k

keQxo

where N*l is the A-weight space of the normal bundle to X with weight
ka. This is because the diagonal terms only occurs from the diagonal terms
in the localization formula, that is, from the expansion of

e(N*)?  e(N¢®h)

_ %codim _
O Ny e~ elne)

as in the proof of Theorem 4.7.1l Here the codimension and the normal
bundles are taken in X“.

4.8.3

In particular, for tensor product of Nakajima varieties the normal bundle to
the fixed locus is identified in (2.15)). From (4.20]), we can then identify the
diagonal part of the classical R-matrix

rdiag:ZWi®Vi+ZV1‘®WZ‘—ZC¢]'VZ‘®VJ'. (4.21)
Here v; denotes the operator of multiplication by v; € N and so on.
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93 4.8 Classical R-matrices

4.8.4

The classical R-matrices satisfy a classical version of the braid relation. Con-
cretely, the terms of degree —2 in ay,as,a3 in the expansion of (4.4]) as
a; — aj — o0 give

[r19,T13 + T3] =0

[ros, 12 +113] =0, (4.22)
which is equivalent to the equation
_ _ _ _ — _ r;
[T12,T13] + [T12, Tos] + [T13,T23] =0, T = o —]a< (4.23)
i j

This is know as the classical Yang-Baxter equation with spectral parameter,
see e.g. Section 6.3 in [33].

For brevity, we call r and not T, which contains the exact same informa-
tion, the classical R-matrix. In the conventional terminology [33], T is known
as the classical R-matrix for the Yangian.

4.8.5

Our next goal is to show that the off-diagonal terms in are additive
over the coroot hyperplanes of the symplectic resolution X. This additivity
is best stated in the following language.

Define a map

p : Fix — Pic(X)* ® a*
as follows. Fix an A-linearization for a basis D;, Ds, ... of Pic(X) modulo
torsion and let
n(2)(D) e o’

be the character of A-action in D} ,- I D is ample, this is the moment map
for the corresponding Fubini-Study symplectic (1, 1)-form.

A different choice of the linearization changes p by a translation. In
particular the difference

m(Z) — u(Z') € Pic(X)* @ a”

is defined uniquely. If C' is an irreducible A-invariant curve joining Z and Z’
then by localization

w(Z)—p(Z") = [C]@weight(T,C), p=CnZ. (4.24)
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4  Properties of R-matrices 94

Here [C] € Hy(X,Z) defines an element of Pic(X)* via the natural pairing

(C,D) =degD|c .

4.8.6

Let 3 € Hy(X,7Z) be an effective class such that 3+ is a coroot hyperplane of
X and let Xj be the general fiber over the coroot hyperplane 8+ in .

For any root o, X3 has its own classical R-matrix r,(Xs). The closure
of r,(Xp) defines a Steinberg correspondence r, s in the fibers of

(Xp)" (4.25)

Here X 3 is the restriction of the universal deformation X to the hyperplane
$+. We have the following

Theorem 4.8.3. Let Z,Z' be two different components of X*. If
pZ)-m(2)eQpea
for some 3 such that B+ is a coroot hyperplane then

Iq

z1xz ~ YaBlzixz -
Otherwise, ra} vy 1S emply.

Proof. We first note that for r, to be nonempty, Z and Z’ must lie in the
same component of X*. Therefore, there must exist a chain of A-invariant
rational curves with tangent weights proportional to « that joins Z and Z’.

From (4.24)), we conclude
wZ) —pZ') =y®a

for some v € Ho(X, Q).
To simplify the notation, we will assume that

dim B = 2.
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95 4.9 Classical R-matrices

If dim B > 2, we can pick a general 2-plane in the base B of the universal
deformation and restrict X to it.
We denote by

Xx (XA x727'%x27

the inclusion of an A-fixed component and the fiber over the origin 0 € B,
respectively. Recall that ¢ denotes the projection to B. We claim

¢~ (v*) , 7 is a coroot hyperplane,

4.26
¢*(0),  otherwise, (4.26)

supp L;E - {

where £ is an in Section @

Indeed over a general point of a divisor 3+ < B, 3 is the only effective
cycle in Ho(X). For the support to be nonempty, there must be a chain of
curves of class  joining Z and Z’, whence

wZ) —pm(Z') =p®06

for some 0 € a*. This implies v € QF and and J € Qa.
We can factor the inclusion ¢y as follows

Z’xz&ZéxzﬁﬁZ’xZ,

where Zﬁ denotes the restriction of Z to the divisor B+ < B. From (4.26)),
we conclude

L= Zfi(a) walLi]l + ..., degp fila) = 3 codimZ" — 1, (4.27)

where N N

are certain Steinberg correspondences and dots stand for classes that are
either of smaller A-degree or in the image of ¢5,. Note that

1% 0 19% = multiplication by h?,

and therefore the dots in (4.27) do not contribute to classical R-matrices.
By contrast, the leading term in (4.27)) is what goes into the correspondence
ro . This concludes the proof. O

95



4  Properties of R-matrices 96

4.9 Diagonal matrix elements of R-matrices

4.9.1

To simplify notation, we assume that A =~ C* and that the cocharacter
o € € gives this isomorphism. Let A € Pic(X) be ample and we linearize it so
that its weight is trivial on the vacuum components Zg . We label all other
components Z; of X” by a nonnegative integer k — the weight of ).

By construction, our R-matrix comes with a a block Gauss decomposition

of the form
-1

UOO SOO SOl 502
U10 U11 Sll 512

= Uy Us1 Uso S22 ’ (4.28)

where the blocks are indexed as above and
S,U: Hg, (X*) — Hg, (X?)

is given by
S, U = +u~°4m/2 Rego Stabye ,

according to polarization, where
Res : Hg, (X) — Hg, (X?)
is the restriction map. With this normalization
Sij =06 +O0w™), u— o0, (4.29)

and similarly for Uj;.

4.9.2
Note that (4.28) implies
Roo = Uy Soo (4.30)
which is the content of Theorem The proof of Theorem shows
Uso'Soo 1
U Su e(N-)
Us;' Sno = —e(N_ X0 v (4.31)
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97 4.9 Diagonal matrix elements of R-matrices

as operator on Hg, (X A), where N_ is the unstable part of the normal bundle.

4.9.3
Similarly to (4.30)), one computes, for example

Ry = U ' S11 + Rio Spg' Uno Ro -

In general, the diagonal matrix elements Ry may be computed as follows.
Define N
Uy = Us' Uy

and equate the (k,7) matrix elements in

UR=SES.

Fori=0,...,k— 1, we get the following system of block matrix equations

(T o Oesr) (== (Bro - Rigr) (4.32)
where

Roo ... Rog-1
(=1 | (4.33)
Rr10 - Rro1x
while for ¢ = k, we obtain
Ro
Rix = Ugy Sk — (Uk;o Uk,k—1> :
Ry 1%

Since
|:| =1+0(),

the square matrix (4.33) is invertible as a series in w~'. This proves the
following

Theorem 4.9.1. We have
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where dots stand for a universal noncommutative expression in the coeffi-
cients of the 1/u-expansion of R;;, Ry, 1 < j <k, and of the operators

+1
M , 1< k.
e(N_® h)
Z;
These corrections are found from
) Ro
Ry, = Uk’lekk + (Rho Rk,k—l) |:| . (434)
Ry—1

4.9.4

In particular, Theorem |4.9.1| gives a way to relate operators of classical mul-
tiplication to vacuum matrix elements of R-matrices in the case then the
vacuum is not the true vacuum in the sense of Section [4.7.5l

4.9.5

The relationship in Theorem simplifies for operators of small cohomo-
logical degree because they appear in small coefficients of the 1/u-expansion.
For example, from

Rij=0(™), i#j,
we conclude the following

Proposition 4.9.2.
Uk;jSkk = Ry — Z Ry; R, + O(U_s) .

i<k
4.9.6

For Nakajima varieties Proposition means the following. Recall the
Example in Section and suppose # * 0. Then

Iy <Zg, 0-1<0.

Denote
H(w), = Hg,(Mgc(n,w)).
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99 4.10 Flops and stable envelopes

Consider the matrix element R, of the R-matrix
Ryo: H(w)o ® H(W)y, — H(w)y, @ H(W),—y

and the operator Ry, going in the opposite direction. Then Proposition[4.9.2]
implies

e (N_@) ,
— 2 = Ryy — Ry, R O(u~™ 4.35
- (N? h) 00 6.§n<0 0, ftno + O(u™) (4.35)
where
NZ = PV,

is the unstable normal bundle to Z, as in (4.18]).

Observe that in the sum is effectively over n < v simply because
H(W')y—, = 0if n € v. It is convenient that we don’t have to restrict the
range of summation explicitly.

4.10 Flops and stable envelopes

4.10.1

Let X be a symplectic resolution and let

X=X (4.36)

|

0—— B,
be its deformation. For our present goals, it suffices to take B a generic line

in the base of (3.11) in Section By definition, a flop of X is another
family over the same base B

X ﬂop(_> X flop

|

0B,
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4  Properties of R-matrices 100

together with an isomorphism

)’Z' \X —F> )?ﬁop\Xﬁop

N

B\{0} —*— B\{0}

of families over the punctured base. We require F to:
1) be equivariant with respect to all group actions,
2) preserve the symplectic form,
3) induce identity on the affine quotients.
For symplectic resolutions, 3) implies 2) because it implies the graph of Fis

Lagrangian in the product of fibers.
An example is provided by the natural isomorphism

Mo (v, w) = Moo (v, w)

where 0,0’ are arbitrary, t € B\{0} = C*, and ( is generic.

4.10.2

The closure of the graph of F defines a cycle in X x B )Z'ﬁop, the restriction
of which to the origin defines a G-invariant Steinberg correspondence

F c Xﬂop x X .
For brevity, we denote the induced map
F: Ho(X) = He(Xaop)

by the same letter. This is an isomorphism because both families are topo-
logically trivial.
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101 4.10 Flops and stable envelopes

4.10.3

For example, if @) is the quiver with one vertex and no edges, (v,w) = (1,n)
then this is the classical Mukai flop of

T*P(W¥), 60,

Moolv,w) = {T*IP’(W), 6<0,

where W =~ C" is the framing space and P(WV) is the projective space of lines
through the origin in W. In this case

F =P(W") x P(W) + T*+Universal hyperplane, (4.37)

where T denotes the conormal bundle and P(W) < T*P(W) is the zero
section. Note this cycle is GL(W) x C*-invariant.

4.10.4

Let A © G be a torus preserving the symplectic form. Any such torus acts
trivially on the base B. Since a flop is an A-equivariant isomorphism over
B\{0}, we have a natural bijection

[ Fix(X) = Fix(Xgop)

of components of A-fixed loci. By taking fixed points, F' induces a certain
flop (potentially trivial)
Fi - Zﬂop,f(i) X Zz

of each component of Z;, = XA.

4.10.5

Since flop is a Steinberg correspondence, Theorem implies the following
square commutes for any chamber €

. Stab, .
i, (X% — S (x) (1.35)
jFA jF
. Stab¢7 op .
HGA(XﬂAop) . HGA(XﬂOp> :

Here the cycle Fj is residue of F, it is a Steinberg cycle supported on FA
with signs determined by the polarizations of the fixed loci.
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4  Properties of R-matrices 102

Lemma 4.10.1. The correspondence Fa is the flop of X, up to signs de-
termined by polarization.

Proof. By construction

F =0, j#[f@),
Zﬂop,j X Z;
in A-equivariant cohomology. Therefore F vanishes outside the graph of f.
On the graph of f, the statement holds by definition. O
4.10.6

In the example of the Mukai flop, consider the Lagrangian subvarieties
oy = TP(U) c T*P(W)

corresponding to linear subspaces U < W. In particular, oy is the zero

section while o9 = ¢J. From , one computes
F(oy) = oyr — (=13 Vgy,. . (4.39)
The coefficient of o+ is the sum of
ow oy = (—1)dimP(U)X(]P’(U)) = (—1)¥mV=1 dim U

and the analogous number for a hyperplane section of U.
Let A € GL(W) be a maximal torus with eigenbasis ey, ..., e, € W and
the corresponding fixed points z; = P(Ce;) € P(W). We have

Stab(a:z) = 0oy, + oy,

1> U; = Span(e;, ... ep)
for some choice of chamber and polarization. We see that
F(Stab(z;)) = oyr + oy

where U;-; = W". This is the stable basis for A action on T*P(W") for the
same chamber and suitable polarization.
The induced bijection of fixed loci is

f(xi) = P(C&nisa)
where {&1,...,2,} is the dual basis of W".
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103 4.10 Flops and stable envelopes

4.10.7

Different cones in the space of the stability condition @ give different flops of
a given Nakajima variety. Among them is the maximal flop

Frax © M_gc(v,w) x Mgy (v, w)

that corresponds to the opposite cone of stability conditions. For an arbitrary
symplectic resolution X, one similarly expects to have a flop Fj,.x that takes
the ample cone of X to its opposite.

We next observe that for any chamber €, the map

Stabe : Hg, (X*) — Hg, (X)

is characterized by its behavior near the diagonal and the opposite triangu-
larity of the supports of Stabg and F},., Stabg.

Theorem 4.10.2. The map Stabg is uniquely determined by the the condi-
tions (i), (i) in Theorem together with a symmetric condition for its
maximal flop

supp Fiax © Stabe(Z;) < Attrg(ZﬂopJ‘(i))

Proof. The above support condition is satisfied by (4.38]) and Lemma [4.10.1
Since a maximal flop takes an ample class to minus an ample class while
preserving A-weights, we have

i>j < f)<f0)

in the ample partial ordering, for any €. Thus the supports of Stabe and
FlLax Stabg are triangular the opposite way. Hence

—1

Flox = Stabe g0 o Fraxa © | Stab 4.40

Xop X XA & flop Xop X Xhop A ( ¢ XAXXA) ( )

is a Gauss factorization, and therefore unique. ]
4.10.8

We see from (4.40) that flops give a way to package the information about
stable envelopes that is somewhat different from R-matrices. This packaging
has several convenient features, among them:
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e flops are given by Steinberg correspondences, a very economical and
geometric data,

e the maximal flop F},., can be factored into a product of flops that cross
a single wall in the space of 6’s,

e additional constraints on Fj,,, may be deduced from a noncanonical
isomorphism

Mo c(v,w) = M_p(v,w)

that replaces all quiver data by transposed with respect to some chosen
bilinear form.
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Chapter 5

Yangians

5.1 Tensor products

5.1.1

Let X satisfy the hypotheses of Section By definition, we say that X is
a tensor product and write

X=Xi® - ®X,

if the maximal torus A ¢ PGL(n) acts on X preserving the symplectic form
so that

(1) XA =X x - x X,
(2) the roots of X are the roots a;; of PGL(n),

(3) the corresponding fixed loci are of the form

X = X5 x || Xa
k+#i,j
We view this definition as provisional; perhaps a better set of axioms will
emerge later. Note that neither existence or uniqueness of tensor products is
claimed.

If one requires X to have a unique, up to multiple, holomorphic symplectic
form, then this rules out trivial nonuniqueness of the form

X — X x vector representation of A.
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5.1.2

In the case of quiver varieties, recall M(w) from Section [£.1.5] For any
decomposition

n

i=1

into nonzero terms, we have

M(w) = R M(w;)

corresponding to the decomposition

as in Section 2.4l Here

(21,...,2,) € (C)" =A.

5.1.3

For X = X; ® --- ® X,,, the construction of Chapters [3] and [ gives a set of
R-matrices

Rij(ai—aj) € End(F1®®Fn)®Q(t), E = HGA(Xl)
satisfying the Yang-Baxter equation (4.4)), a familiar setup in quantum inte-

grable systems.

5.1.4

Given an operator
R12<a1 — &2) € End(F1 ® Fg) R

its matrix elements in F) are operators on Fy. Our main interest is the
algebra of operators thus obtained for Nakajima varieties. This algebra is an
example of a Yangian.
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107 5.2 Construction of Yangians

5.2 Construction of Yangians

5.2.1

Yangians are Hopf algebras associated to rational solutions of the Yang-
Baxter equation. There are several ways to describe a Yangian. For us, it is
the so-called RTT=TTR formalism of [35] that arises naturally. We briefly
recall the basics.

For simplicity, we limit the use of the categorical language, even though
many construction and properties are best stated in the language of tensor
categories, see for example [I15].

5.2.2

Let k © Q be a commutative ring without zerodivisors. We write
® =Qr, End= Endy
for brevity. Let {F}} be a collection of free k-modules and let
Ry, (1) € End(F; ® Fy) ()

be collection of operator-valued rational functions of u satisfying the Yang-
Baxter equations ([1.4)). We assume the normalization

R(0) =1.
We also fix £ € k that divides R(u) — 1. In geometric applications, this will
be the weight of the symplectic form.

5.2.3

To this data, one associates a Hopf algebra Y over k that acts on
Fi(u) = F,®k[u]. (5.1)
and more generally on
Fy(u) ®--- @ F, (up) = Fiy ® - @ F, @kluy, ..., up] (5.2)

This action commutes with multiplication by the u;’s, so may be viewed as
a family of Y-modules indexed by A}.
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5.2.4

While Fj[u] is a more logical notation for (5.1]), the use of parentheses is
traditional. The variable v in is called the evaluation parameter, in
reference to the following.

By one of their many definitions, Yangians are Hopf algebra deformations
of U(g[u]), where g is a Lie algebra over k and g[u] is the Lie algebra of g-
valued polynomials in u. The identity map

glu] — g @ k(u]

may be viewed as family of evaluation homomorphisms glu] — g and any
g-module F' can be made a g[u]-module F(u) by pull-back.

5.2.5

A certain care is required if rk F; = oo for some F;. We will always assume a

grading
F- @ (5),
a€eZ™
such that all graded pieces are k-modules of finite rank. We further require
that (E)a # 0 only for « in a translate of a certain nontrivial cone, which
we will assume to be (Zso)" for simplicity.

The R-matrices will always have grading 0. This makes Y a graded al-
gebra and Fj(u), with the grading induced from Fj, a graded module. The
coproduct

A:Y - YRY (5.3)

to be defined below, takes values in the following completed tensor product.
By definition,
YEY - @(Yav),

while

Zycx—ﬁ ®yﬁ € (Y®Y)a
B

if B ranges in a translate of (Zx()™. Such infinite sums act naturally on any
Fi(u1) ® Fj(ug). The iterates of A make ([5.2) tensor products of (5.1)) as
Y-modules.
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109 5.2 Construction of Yangians

5.2.6 Definition
We define Y as the subalgebra

Y < H Endk[ul ..... Un | (El (ul) ® & E (un>> (54)

generated by the following operators. Let

be one of the spaces in (5.4)) where, for brevity, we write Fj, in place of F;, to
denote some element of the set {F;}. Choose an additional F € {F}} called
an auxiliary space and define

RFO(U)aw = RFO,Fn (u - un) T RF07F1 (u - ul) : (56)

Let
m(u) € Fy ® Fy ®k[u]

be a polynomial in u with values in operators in Fj of finite rank. Here
Fy = Homy (Fo, k)

is the graded dual module.
Because m(u) has finite rank and & divides R — 1, the following operator

1
E(m(u)) = — Resy—o trm m(u) Rpyw),w € End(W) (5.7)

is well-defined for all W in (5.5)). Since it comes from an expansion of rational
functions of u — u; as u — o0, it depends polynomially on uq, ..., u,. Thus,
it defines an element of the right-hand side in (5.4]).

By definition, Y is the k-subalgebra in (5.4) generated by 1 and (/5.7]) for
all Fy and all m(u). In English, the Yangian Y is the algebra generated by

all coefficients of the u — o0 expansion of
all matrix coefficients of the operators (5.6)) for

all auxilliary spaces Fj.

Additionally, since all nontrivial matrix elements are divisible by A, we divide
by A in (5.7)).
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5.2.7
The product in (5.4]) includes the the factor W = k corresponding to
{iv,ig, .. in} = .

This 1-dimensional Y-module is the counit of the Yangian.

5.2.8

After inverting A, (5.7) makes sense for any rational function m(u) of u, in
particular,

_ httrm, k=1,
E(mu™) = {O P (5.8)

While such operators are not in Y, they will play a role in computation of
commutation relations ([5.12)) below.

5.2.9 RTT=TTR equation
By construction, (5.7)) extends to a surjection

E : Tensor algebra (P F; ® FY @k[u]) - Y (5.9)
The Yang-Baxter equation shows it factors through the quotient by
(m1(u1) ® ma(u2)) - Rpypy (ur — uz)—
RF1F2 (Ul — UQ) . (mQ(UQ) ®m1(u1)) R mz(u) € Fz ® EV ®k[u] . (510)

This is known as the RTT=TTR relation. The letter T being overused in
this paper, we substitute it in this context by E.

The quotient of the tensor algebra by is of the same size as the
symmetric algebra. This is still very big and below we will discuss how to
write further relations in Yangians.

5.2.10 Filtration in the Yangian
The Yangian Y is filtered by degree in u, that is, by defining

deg E(m(u)) = deg, m(u)
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111 5.2 Construction of Yangians

on the generators of the Yangian. We set deg, 1 = 0.

Equation shows this filtration does not extend to the algebra gen-
erated by these more general operators. Therefore, one has to be careful in
situations where they appear.

Since scalars cancel out of the RTT=TTR equation, it takes the form

[E(m(w)), E(m/(v))] = HE <[ VY (u) @m/(v)D v (5.11)

u—v

where r is the classical R-matrix
h 2
Ru)=14+—-r+0(u")
U

and dots in (5.11)) come from the O(u~?) term above.
Note that in the right-hand side of (5.11)) there are terms of the same
degree as in the left-hand side. They come from the expansion

1 1 v 2
===+
u—v  u  u?  ud

and ((5.8)), giving the right-hand side of the following formula ([5.12)).

Proposition 5.2.1. We have
[E(mu’), E(m'v)] = E ((tr®1) [ryy, m@m/]u'*7) + ... (5.12)
where dots stand for terms of smaller degree in u.

Proof. Were it not for , the right-hand side of would have smaller
total degree in u and v than deg, m(u) + deg, m’(v).

Each application of brings the total degree up by 1. Note, however,
that it can be applied only once and with respect to the variable u, because
all terms in have nonnegative degree in v. Therefore, the dots in (|5.11))
have total degree at most deg, m(u)+deg, m’(v)—1 and can be neglected. [J

5.2.11
Note the commutation relation ((5.12)) has the form

[aui,buj] = [a,b]u't, a,beg,
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of the commutation relations in the Lie algebra of polynomials g[u] with
values in a Lie algebra g.
In fact, one of our goals is to show that for the Yangian associated to a

quiver @)
grY =U(golul)

for a certain Lie algebra gg. Here grY denotes the associated graded of Y
for the filtration by degree in w.

5.2.12 Coproduct

The set of W of the form ([5.5) is closed with respect to tensor product. There
is a corresponding projection

[[EndW — [ End(WeW').
w

ww’

By applying this projection to E(m(u)), it is easy to see that it sends Y to
the image of the map

YRY - [[ End(WeW). (5.13)
w,w!

The completion is needed because matrix elements of Rp, p,or, are infinite
sums of products of matrix elements of Rp, p when dim F{ = o0.

This defines a natural coproduct on Y up to an ambiguity arising
from the kernel of . We will prove at the end of this chapter that Y
is flat over k and that, as a corollary, the map is injective so this
ambiguity does not arise. In the meantime, we only discuss the coproduct as
evaluated on pairs of representations.

The coproduct is not commutative and in general

Fi(ur) ® Fo(us) % Fo(ug) ® Fi(uq)

as Y-modules. However,
Fi(u1) ® F(u2) Qufuyus] k(ur, u2) = Fo(uz) @ Fi(u1) Oxfuy us] k(u, us)
with the explicit intertwiner
R = (12) Rp, p,(ug — ug) .

This follows at once from the Yang-Baxter equation.
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113 5.3 Construction of Yangians

5.2.13 Translation automorphism

All spaces W in (j5.5)) have an automorphism ¢, that acts by
Se(w;)) =u; +c, i=1,2...,

on the variables u; and as identity on F;’s. It preserves Y because it amounts
to a reexpansion of R(u — ¢) in inverse powers of u. We denote the corre-
sponding automorphism of the Yangian also by ..

5.2.14

In the rest of this chapter, we specialize to the case of Nakajima varieties,
see Section |5.1.2l We fix a quiver () and set

k=Hg, (pt,Q),
F=Hg, (M(5:),Q). (5.14)

edge (

Here w = §; is the delta-function at some i € I. Note that in this case
G!, = 1. The tensor product construction will identify

He, (M(W)*) = ) Fi(uin) ® -+ ® Fi(uiw,)

el
where A c G,, is a maximal torus and

Uix
U;
i egl(W), iel,

are the equivariant parameters for the group G,,.

The collection (j5.14) can be enlarged by allowing arbitrary dimension
vectors w in place of §;. This does not change the Yangian Y because, as
we will see, Y already injects into the endomorphisms of tensor products of
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5.3 The Lie algebra gg

5.3.1

Let go < Y be the span of operator E(my), where my is constant polynomial
in w. In other words, g¢ is spanned by the matrix elements of the classical
R-matrix r. Formula (5.12)) shows g is a Lie algebra. The following is clear

Proposition 5.3.1. All elements of £ € gg are primitive, that is,
AL =E@1+1®¢E,
when evaluated on pairs of representations. In particular,

[A¢R] =0,
[AE 1] =0, (5.15)

that is, go commutes with R-matrices.

We expect that gg is the Lie algebra of primitive elements of Y.

5.3.2
As defined, g¢ is a Lie algebra over k. We expect a natural isomorphism
90 = (80)¢ ®o k

for a certain Lie algebra over Q. We think the required Q-structure may be
constructed using the Decomposition Theorem.

5.3.3

The identity
R(U)_l = R(—u)12

from Section implies the symmetry of r, that is,

rww' =Tw w -

after identifying W ® W/ and W/ @ W.
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115 5.3 The Lie algebra gg

5.3.4
It follows from formula (4.21)) that

EQCQQ

where EQ acts by linear functions of v and w. Linear functions can be taken
with k-coefficients or Q-coefficients, and this defines EQ as k-submodule with

a canonical Q-submodule. All structures in EQ are defined over Q.

Recall the quadratic forms with values in K¢(pt). Here we evaluate
them at 1 € G, in other words, we use the nonequivariant Cartan matrix.
The inverse of the nondegenerate form (-, - )5 from defines a bilinear

form (-, - )5 on EQ. From (4.21]) we conclude
ielul
where '
(hi, B )5 = 04
and dots stand for off-diagonal elements. Note that, with our conventions,

dim b, = 2/1|.

While this looks unusual from the perpective of finite-dimensional Lie theory
(in which Cartan matrices are nondegenerate), this is very convenient and
has been used before e.g. in [43].

By construction, off-diagonal elements have a nonzero commutator with
EQ acting in one of the tensor factors. We deduce the following

Proposition 5.3.2. EQ s a maximal commutative subalgebra of g¢.

5.3.5
For brevity, we write b = EQ, g = go- By Proposition 7 we can write
g=hoPy, (5.16)
n#0

where n € Z! and g, is spanned by ¢ such that
§: Hg(M(w,v)) = Hg(M(w,v +1n)).
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The vectors 7 such that g, # 0 are called the roots of g. Clearly

[gom gﬂ] < Ba+8 - (517)

We call a root 1 positive if n e N,

5.3.6

The decomposition (5.16) parallels the root decomposition for Kac-Moody
Lie algebras. As for a Kac-Moody Lie algebra, we define the coroot

hy = Cneh
for every root n. These satisfy
(@, B)g = alhg) = (ha, hg)g - (5.18)

Proposition 5.3.3. Let n be a root and consider the commutator map

Iy & 9 — b .
Its image is k h,, and this gives an embedding
oy — 97, = Hom(g_,, k).

Later we will see that, in fact, this gives an isomorphism g, =~ g¥, .

Proof. Take £ € g,, and consider the (7, 0)-weight space in (5.15)). One of the

terms is

(o1 men] - —coX nmi - —cah,

We conclude

[1®& 1, ] =@y, (5.19)

where r, _, denotes the corresponding weight component. Both claims fol-
lows from this. O
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117 5.3 The Lie algebra gg

5.3.7

By construction, g comes with modules F,, containing vectors |w) of lowest
weight, that is,
gy lW) =0, 740, (5.20)

Recall that 1 > 0 means n € N/. Also
hiwy =w(h)w), heb

and |w) is the unique, up to multiple, vector of weight w. We denote by
F.(n) c F, the subspace of weight w 4+ 1. The g-action gives maps

gy — Fw(n), 9-y = Fu(n)” (5.21)
that take £ € g, to € |w) and dually for g_,,.

Proposition 5.3.4. If n € 0 and w(h,) # 0 then the maps (5.21)) are injec-
tive.

Proof. Take { € g, and &' € g_,,. Then

§¢lwy = [€, €] lwy = w ([£,€]) [w)

where the step in the middle follows from (5.20)). Now the claim follows from
Proposition [5.3.3| O

Corollary 5.3.5. All roots spaces are k-modules of finite rank.

Corollary 5.3.6. All roots are either positive or negative.

5.3.8
The (n, —n)-weight component of r defines a map
Fu(0) ® Fu(n) — Fu(n) ® Fu(0) .
Since F(0) = k, this gives an operator
Py - Fu(n) — Fu(n).

Proposition 5.3.7.
P2 = —w(hy)P,. (5.22)
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Proof. Follows from considering the map
Fu(0) ® Fu(0) ® Fu(n) = Fu(n) ® Fu(0) ® Fu(0)

given by (4.22)). O
Proposition 5.3.8. If n > 0 and w(h,) # 0 then image of (5.21)) is the
image of Py and Py, respectively.

Here P denotes the transpose map between the dual modules.

Proof. Apply both sides of (5.19)) to |w) ® |w). O

Corollary 5.3.9. The root subspaces g+, are dual projective modules over
k. The classical r-matrix

Iy —n €0y XFy

15 the canonical element of this tensor product.

Corollary 5.3.10. The commutator pairing from Proposition |5.3.5 is per-
fect.

5.3.9

We summarize the preceding discussion in the following

Theorem 5.3.11. All roots of gg are either positive or negative. All roots
spaces are projective k-modules of finite rank. The Lie algebra gg has an
invariant bilinear form (-, -)g such that r is the corresponding invariant
tensor. With respect to this form, g, = g, .

Since for Nakajima varieties k is a polynomial ring, the modules g, are free.

Consequently, we can choose bases {eg)} of the root spaces so that

(6(i), e(ﬁj))g = 5,1’_5 . 51"1' .

«

Correspondingly, we write
r=>heh+> el (5.23)
a#0 1

One should bear in mind, however, that it is the invariant tensor r that
is canonically defined, while choosing bases of root spaces is a matter of
convenience.
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5.3.10
For future use, we record here the following easy lemma:

Lemma 5.3.12. For each root a # 0, the quadratic operator
3 el

acts via a Steinberg correspondence on each F,(v).

Proof. Since |e,,e_,| acts via a scalar, it suffices to prove this for a > 0.
Choose wy such that h,(wp) # 0. Up to a nonzero scalar, the claim then
follows from considering the action of the composition of Steinberg operators

I g,0CTa—a

on F,,(0) ® Fi(v). O

5.3.11

We note that the projector P, has a direct geometric meaning for Nakajima
variety. It is given by a Steinberg correspondence

Py < M(w,n) x M(w,n)
supported on
Stab <M(W,n) x M(w, O)) N M(w,0) x M(w,n)

viewed as A-fixed loci in M (2w, n).

5.4 Operators of classical multiplication

5.4.1

In the Yangian Y, we have the operators
E(jwxw|u*), weZ', k=1,23..., (5.24)

where
w){w| € End Hg(M(w))
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is the orthogonal projector onto the vacuum. Recall from Figure [I.1] that for
any ¢ such that

[9®g, R(u)] =0

the operators
07 (9 ® 1) Ry () € End(W) ® Q(u)

commute for all W and all values of u as a consequence of the Yang-Baxter
equation. In particular, for g = |w)(w/| this shows the operators (5.24) com-
mute.

5.4.2

If § > 0, the vector |w) is the true vacuum in the sense of Section [1.7.3} This
implies that the operators ([5.24]) are operators of cup product by certain
characteristic classes of the virtual bundle

(1-h)®N_=(1—-h) ®2Wivi
where N_ is the negative part of the normal bundle to the embedding
M(W") > M(w +w").

In particular, this gives another reason why these operators commute.
It is also clear that the operators ([5.24]) generate all characteristic classes
of V; in the case 6 > 0.

5.4.3

For general 6, the relation between the operators and the operators
of classical multiplication may determined along the lines of Theorem [4.9.1]
Since the general expression in Theorem is rather complicated and
requires working in a certain completion of the Yangian, we will not do it
here.

For the operators of classical multiplication by divisors, which is what we
need for the proof of the main result of the paper, the case of general 6 will
be considered in Section I0.1l
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121 5.5  Operators of classical multiplication

5.4.4

In Proposition below we will see the Yangian also contains the operators
of multiplication by characteristic classes of the bundles W;.
These bundles are trivial but carry nontrivial group action, so this gives

lim Hg, (pt) < center(Y).

w

5.4.5

We call the subalgebra

Classical c Y < 1_[ End Hg (Mg (v, w)) . (5.25)

V,W

generated by the characteristic classes of {V;, W} the algebra of classical
multiplication. Recall we assume that # > 0, otherwise a certain completion
of the Yangian is required.

As already discussed, the algebra of classical multiplication is expectedﬂ
to surject onto all operators of cup product in each factor of . The
following weaker statement will be sufficient for our purposes. Recall that t
denotes the Lie algebra of a maximal torus in G.

Proposition 5.4.1. After tensoring with Q(t), the algebra of classical multi-
plication surjects onto all operators of cup products in each factor of (5.25)).

Proof. There is a C* action on My (v, w) that scales all quiver data by the
same scalar. After tensoring with Q(t), we may replace the cohomology of
M ¢(v,w) by the cohomology of Mg (v,w)C". The structure sheaf of the

Diagonal € Mg (v, w) x Mg (v, w)
may be resolved by tautotological bundles V;, see [87]. Since My (v, w)C" is

compact, it shows that its cohomology is spanned by characteristic classes of
tautological bundles. ]

!This has now been established in [77].
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5.5 The structure of the Yangian
5.5.1
In this section we assume 6 > 0 for simplicity. Our goal here is the following

Theorem 5.5.1. The Yangian is generated by the Lie algebra gg and the
operators of classical multiplication. We have

grY =U(gglu])
with respect to the filtration by degree in .
In the course of the proof, it will be convenient to choose a splitting of
E:@Fi@)Fiv —gg—0

which exists because gg is a projective k-module. We will write £ = E(¢)
using such splitting. A concrete splitting may be constructed using the pro-
jectors Py, from Section [5.3.8]

5.5.2
Proposition 5.5.2. If E(m) = 0 then

E(mu®) e Yy
with where Yo, < Y is the corresponding filtration subspace.

Proof. Since k = 0 this is a tautology, we take £ > 0.
_The map E is h-equivariant and we can assume that m is an eigenvector
of b of weight p. If u # 0 then

pi(h) E(mu”) = [E(R), E(mu”)] = [E(hu"),E(m)] + - = ... (5.26)

where the step in the middle is based on ([5.12]).

If ;1 = 0 then E(mu”) is a linear combination of diagonal matrix elements
of the R-matrix. Theorem [4.9.1] expresses diagonal matrix elements of the
R-matrix in terms of the off-diagonal ones and characteristic classes of N_.
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123 5.5 The structure of the Yangian

All terms involving off-diagonal matrix elements in Theorem have
degree < k. This is because they are at least quadratic the entries of the
R-matrix and there is a degree shift from the expansion

_1+Z n+1

n>0

to the filtration in the Yangian: matrix coefficients of R,, belong to Y,.
Now consider the characteristic classes of N_. We have

e(N_) n!ch, N_ +
(N_ ® h +h Z untl

n=0

where dots stand for characteristic classes of degree < n. In particular,

applying this to (2.15)), we get

1
EE(mu’“) Z(m,wi) chy, V; + Z(m,vi) chiy W,

— 2 C,-J(m,vi) Chk Vj + ...

i’j

where the pairing with v;,w; € § is the trace pairing and dots stand for
elements in Y_;. Note that by induction all characteristic classes of V; and
W; of degree < k are in Y_y.

If E(m) = 0 then (m,w;) = (m,v;) = 0 and this concludes the proof. O

The following is a corollary of the proof.

Proposition 5.5.3. If 0 > 0, all characteristic classes of V; and W; lie in
Y and this inclusion preserves degree.

The case of general § may be treated using Theorem [£.9.1 In this case,
a certain completion of the Yangian is required.

5.5.3 Proof of Theorem [5.5.1]

By Proposition and (5.12), the operators E(¢u’) for € € go generate the
Yangian and satisfy the relations in go[u] modulo lower degree terms. This

gives a surjective map

U(gelu]) — grY —0.
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Its injectivity may be seen as follows. For any faithful representation of a
Lie algebra
0 — g — End(F)

the corresponding representation of the universal enveloping algebra in tensor
powers of F'
0 — Ug — P End (F®")

is injective. Since the Yangian is defined as a subalgebra of endomorphisms
of tensor products, it remains to check that the map

golu] — grY
is injective, which is elementary. In fact,

E(€u)|py = V' (€]) + 00T, v— o (5.27)

where v is the evaluation parameter for the representation F'(v) and we iden-
tify all F'(v) with F' = F(0) as linear spaces. Equation (5.27) means that the
Yangian degenerates into the loop algebra when all evaluation parameters
are very large.

The last claim of the Theorem, the fact the operators of classical multi-
plication and g¢ generate the Yangian follows from (5.26]).

5.5.4

As a consequence of the above result, we see that grY and thus Y are flat as
k-modules. It follows that the map is injective. Indeed, using flatness,
it suffices to prove injectivity after tensoring with the fraction field K of k
(which we denote by subscript for brevity). We then have inclusions

Ye®Yk — [ [EndWi @[ [EndWj — [ [ End(Wx) ® End(Wy).
w w? w,w!

Injectivity after completion then follows from this case by decomposing the
kernel into bi-graded pieces.
As a corollary, the coproduct

A:Y >YRY

is well-defined.
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Chapter 6

Further properties of the
Yangian

6.1 The core Yangian

6.1.1

In this section we assume 6 > 0. By Proposition [5.5.3, the Yangian Y
contains all characteristic classes chy(W;) of the bundles W;. Since W; are
trivial, chy(W;) add little geometric value and it may be desirable to have a
smaller algebra Y that does not contain them. The goal of this section is to
define such core Yangian

YcocY®k[6],

where & < k is a certain equivariant constant that depends on the equivariant
Cartan matrix C of the quiver. In particular, if the nonequivariant Cartan
matrix is invertible then 6 ' ek and Y c Y.

6.1.2

Recall from Theorem and from the proof of Proposition and that
the characteristic classes of V; and W, come from the operator of cup product
by

e(N_)

(N ®h e Hg, (M(w) x M(w'))

125



6 Further properties of the Yangian 126

that appears in the diagonal matrix elements of the R-matrices. Here

N_ = Hom(W,,V}) + > Hom(V;, W) @ h™"
— > Ci;Hom(V;, V) (6.1)

in the negative part of the normal bundle to M (w) x M(w’) inside M (w+w’)
and C is the equivariant Cartan matrix.

6.1.3

The basic idea for defining Y is the following. Complete the square in (6.1))
as follows

N ==Y CyHom (V, D)) + 3 (C7Y), Hom (W, W) @ 57" (6.2)

where
C' e Mat(|1], Kg, (Pt)1ocatized)

is the inverse of the equivariant Cartan matrix and
V=Vv-n'lec'w (6.3)

as vectors in K¢, (M(w) x M(W))!® Kg, (pt)1ocalizea- In particular, the Chern
character

chV =chV —e"(chC)™" - ch W

is defined if C is invertibleE]. However, it may contain terms of negative
cohomological degree if the nonequivariant Cartan matrix is not invertible,
see below.

The main feature of is that its second term is a purely equivariant
object and so its Euler class may be taken out as an overall factor from the
R-matrix. The diagonal matrix elements of the new R-matrix generate only
chy V. This smaller algebra will be the desired core Yangian Y.

We now proceed with the realization of the this plan.

'Recall from section that we embed group weights into Lie algebra weights. While
convenient, this could be confusing, especially in the context of Chern character. For
example, by this rule, ch i = e”.
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127 6.1 The core Yangian

6.1.4

Let G be a complex reductive group and f € C(G) a rational function on G.
We define
chy, f € C(Lie G)

by the series expansion

Zxkchkf(g)zf(exp(:cﬁ)), ¢elieG, zeC.
k

This has negative terms if f is not regular at 1 € G.

Functoriality of chy f with respect to homomorphisms ¢ : G — G may
fail if ¢(Lie G’) lands in the pole divisor of the Chern character. Because
of this, we work in G-equivariant K-theory and cohomology for some fixed
group G if the nonequivariant Cartan matrix is not invertible.

For the rest of this section, we fix a group G such that

GaD>GOC,

where C; is the group that scales all quiver data by the same number ¢t € C*.

6.1.5

Lemma 6.1.1. The matriz C is invertible in localized G-equivariant K -theory

and
chkCA:O, k< —2.

Proof. For the first claim, it suffices to consider the case G = C;°. Then
C=1+t2—-t(Q+Q")

where () is the nonequivariant adjacency matrix of the quiver ). Clearly,
this is invertible. As a real symmetric matrix, Q + Q7 is semisimple. This
implies C~! has poles of order < 2 for G = C/*.

For general G, the matrix €//?ch C is Hermitian when the equivariant
parameters lie in the Lie algebra

gc = Lie Gcompact = {576* = _5}

of the compact real form of G. Therefore, its eigenvectors and eigenvalues are
analytic along any real-analytic arc through the origin in g.. In particular,
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6 Further properties of the Yangian 128

the orders of the poles of (ch C)_1 along any arc are the orders of vanishing of
the eigenvalues of ch C along the same arc. The latter are determined by the
coefficients of the characteristic polynomial, and, therefore, semicontinuous
as a function of the arc. Since they are < 2 for G = C;, the Lemma follows.

[
6.1.6
We define § as the lowest degree term in the expansion
detchC=40+....
By construction
chy, C™' e Mat(|I], H:(pt)[67']).

for all k.
6.1.7
Let Qg be the quiver with the adjacency matrix Q + Q7, in other words,

Q4 = Q\{framing vertices} . (6.4)

Let Path(Q4) denote the path algebra of @, and let

M(Qq) = Path(Qa) / (3, _, [n.0])

denote the preprojective algebra of (). Here a* is the arrow in (4 opposite
to an arrow a € Q).

The group Geqge acts naturally on Path(()4) and II(Qg4), this action is
dual to the defining action of Gegee On representations of these algebras. In
other words, the action of Geqge On the generators of Path(Q),) is recorded in
the matrix C. In particular, the natural grading on Path(Q,), in which every
arrow has degree 1 is given by minus the weight of the C;-action. All these
weight spaces are finite-dimensional.

By construction, Path(Q,) has orthogonal idempotents e;, ¢ € I, namely
paths of zero length that start and end at a vertex ¢. We set

aEQd

Path(Qg)i; = e; Path(Qq) e,

128



129 6.1 The core Yangian

and similarly for I1(Qy). It is known, see for example [72], 30], that

character I1(Qq)i; = (Efl )ji =nte((Ch).., (6.5)

]
provided @) is not a quiver of ADE type. We recall that by our convention
Cj; records edges going from j to i.

Formula (6.5 provides the following geometric interpretation of the K-

theory classes (6.3)).

6.1.8

Recall that we assume 6 > 0. This means that the natural map of bundles
over Mg (v, w)

C—B Path(Qd)ij (9] Wj - Vz

jel
is surjective for all ¢ € I. Choose a G-invariant linear map (not algebra
homomorphism)

s - 1[(Qa) — Path(Qq)

splitting the canonical surjection in the other direction. The moment map
equations for My (v, w) equal the relations in II(Q4) modulo terms in the
image of W;. Therefore

C—B S (H<Qd))i]‘ ® Wj —V; — 0, (6.6)

jel

is still surjective.
The grading by C;* makes the class of I1(Qg);; well-defined in completed
G-equivariant K-theory. From (6.5)), we have the following

Proposition 6.1.2. If Q is not of ADE type, 0 > 0, and G contains C;,
then the G-equivariant K-class of V is minus the kernel in .

There should be a more general statement valid for all quivers and all
stability conditions.

6.1.9 Example

Let @ be the quiver with one vertex and one loop, that is the quiver with
the adjacency matrix @ = (1). Then

[(Qa) = Clz,y)/(vy — yx) = Clz,y].
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6 Further properties of the Yangian 130

The variety
M, 4(n,1) = Hilb,,(C?)

is the Hilbert scheme of point of C?, that is, the moduli space of ideals
I < C[z,y] of codimension n. The tautological sequence

0— I — Clz,y] — Clz,y]/I - 0
is precisely the sequence

0— Ker - II(Qq) =V —0.

6.1.10
We defined the K-classes that appear in (6.2) and their Chern characters.

We now consider the operator
e(N_)  c(NY,u)
e(N-®h) ¢(NY®h1 u)

(6.7)

where
o(Lyu) = u™" + ey (L) w™ 1+ ... (6.8)

is the Chern polynomial and the bundle arguments of the Chern polynomials
in (6.7) are taken with the trivial action of u.
By definition, we set

loge(L,u) = Zchk Ln®y, In®Wey= (%)klnu (6.9)
k

for any K-theory class L whose Chern character is defined. Here In‘™Y v =
u(lnu — 1) etc. This generalizes and is the usual (-regularization of
infinite products given by I'-functions, see for example [106), 116].

In particular, this defines e(ﬁ,)/e(ﬁ, ® h) for

In fact, we will only need it for
No|_yo=-T"®> (C ,; Hom (Wi, W) . (6.10)
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131 6.1 The core Yangian

We set

L(w,w') = ‘QA(LAJ
7 e(N_® h)

v=v'=0

and define the new matrix R as a scalar multiple of the old R-matrix
R=T(w,wW)R. (6.11)

Tautologically, it also satisfies the Yang-Baxter equation.

The old R-matrix was normalized to act by 1 on the vacuum vector, while
the new matrix R acts by a certain multivariate I'-function. An example of
['(w,w’) is given in Section below. The appearance of I'-functions in
normalization of R-matrices is a well-known phenomenon in the theory of
quantum groups, see for example [62]. Here we have yet another angle from
which it can be seen.

6.1.11

We modify the definitions of Section as follows. For W as in ([5.5)),
define

RFO(U)J/V = RFO,Fn (U - un) T RF07F1 (U - Ul) .
We can write

R .
Rpywyw = €75 RE, (u) Wireg

where EFO(ULWJ(Eg has a 1/u-expansion and hygye is the singular part of the

u — o0 expansion of log }AQFO(U)W. In particular, 7sing is a scalar operator.
In fact, Lemma implies

hy NQ(1—h)=0, k<-1.

Therefore
Vsing = C—2 ln(il) u+c_1lnu (612)

for certain scalar operators
-1
C_2,C1 Ek[(s ][Ul,...,un]

of equivariant degree —2 and —1, respectively. The dependence on u; comes
from
Y (u—w;) = In“V(w) —uilnu+ ...

and is at most linear.
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6 Further properties of the Yangian 132

Definition 6.1.3. The core Yangian
Y <YKk

is the algebra generated by the matrix coefficients of c_s, ¢, and all coeffi-
cients of the 1/u expansion of Rp ), wireg- Inside Y we have a Lie algebra

goc Y
generated by c_s, c_;, and the u™! coefficient of ﬁiFg(u),W,reg'

Arguing as in Section [5.5 we obtain the following

Theorem 6.1.4. The core Yangian Y is generated by g and the operators
of cup product by chy, 171 fork>=1andieI.

6.2 Slices and intertwiners

6.2.1

Consider the following setup. It will not be the most general, but will suffice
for our purposes and will illustrate the general ideas. Consider Ht(M(w)),
where T < G\, X Gegge is a torus and

w:a¢5i+aj5j.

Here 9; and ¢; are delta functions at some vertices ¢,j € I and a;,a; are
weights of T.

As explained in Section [2.6] the first fundamental theorem of invariant
theory gives an embedding of My(w) into a particular vector representation
V of T. The weights of this representation correspond to closed paths in
(6.4) as well as paths that start and end at vertices in {i, j}.

6.2.2
Let P be a path of the form

. Py Py .
J— e > e— ... > e ]
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133 6.2 Slices and intertwiners

where dots represent vertices of Q and P, are arrows from Q. The weight
of the corresponding G,-invariant function fp € C[Mjy(w)] is computed as
follows

wp = —Weight fp = a; — aj + Ztk

where t;, is the weight of the arrow P,. We assume that T is such that
wp # —weight fpr (6.13)

for any other generator fp of C[Mgy(w)]. This assumption is satisfied in
examples from Sections [2.5.8] and [2.5.9]

Denote T' = Kerwp and let zp € Mg(w)" be the unique, up to multiple,
nonzero fixed representation. By construction, T scales xp with weight wp.
By our assumption

Mo(w)" = Czp, (6.14)

where Czp is the line through xp.

6.2.3
Let X p denote the slice at xp
Yp: MWV, W) x U --» M(v,w), (6.15)
where
V=v—dimzp, W =w—-h®Cdimzp (6.16)

by Proposition and

U~ Cdim M (v,w)—dim M (v ,w’)

is a vector space factor with the T’-character given by (2.18)). In particular,
restricting to the origin in U we obtain a map

Ypo: MWV, W) -->» M(v,w)

which is regular in the neighborhood of the central fiber of M(v/,w’) and
hence defines a map

Yo Hy(M(v,w)) = Hp (M, w)).

Proposition 6.2.1. The map X5, is a Y-intertwiner.
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6 Further properties of the Yangian 134

Proof. Since slice is a Steinberg correspondence, the bottom arrow in the
diagram ([2.20]) intertwines the R-matrices on both sides. The vector space
U contributes a scalar factor to the R-matrix, therefore 3%, intertwines R-

matrices, up to a multiple. To see that it intertwines }A%—matrices, it suffices
to note that

V=V '@ CIW=V-rleC!w=Y
from (6.16) . O]

6.2.4

Let T be a torus in G X Gedge that contains T” and a maximal torus A’ < G,y
For any chamber € c Lie A’, we have a map

Stabe : ) Hy (M(5;))®" — Hi(M(W))

which becomes an isomorphism after tensoring with Q(Lie T) and intertwines
the action of both full and core Yangians. The order of tensor factors here
is determined by the chamber €, see Section :

We denote K = Q(Lie T’) and denote by aj, the T'-weights in w' =

2 Wy O
Proposition 6.2.2. For any &€, the map Stabg restricts to isomorphism

® Filay) @K = Hi(M(W) @K

k,l
of Yangian modules, where F, are as in ((5.14]).
Here the evaluation parameters aj, are as in Section [5.2.14] and the order
of tensor factors as before. Note, in particular, the Proposition implies the
tensor product on the left gives isomorphic Yangian modules for any ordering

of tensor factors.
We begin with the following

Lemma 6.2.3. The torus T' has a zero weight in U and, therefore, a unique
fized point in Mo(w').

The second claim here follows from the first because of (6.14)).

Proof of Proposition[6.2.3 By Theorem [£.4.1] the inverse map is given by
Stab” . The lemma shows M (w')™" is proper, therefore Stab” , is well-defined

in localized T’-equivariant cohomology. O]
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135 6.2 Slices and intertwiners

6.2.5

Now for M(w) we want to do the same: first enlarge T to include a maximal
torus A =~ (C*)? < G,, and then restrict to T’-equivariant cohomology. For
A, there are only two chambers €. and €, corresponding to a; 2 a;. Let

Stab~ . Stab<
Fi(a;) ® Fy(a;) =5 Hp (M(w)) <= Fj(a;) ® Fi(a)
be the corresponding maps.

Proposition 6.2.4. The map Stab~. becomes an isomorphism after tensoring
with K.

Proof. The inverse map is given by Stab’. By construction the line has
weight wp which is negative on €_ and therefore transverse to the images of
attracting manifolds. Thus Stab’ is well-defined in localized T’-equivariant
cohomology. ]

Note that the analogous statement for Stab_ fails since the push-forward
along C xp is not defined in T’-equivariant cohomology. We have, however,
the following

Proposition 6.2.5. The operator
(XpooStab.)” : Hn(MW)) @K — Fj(a;) ® Fi(a;) ® K
1s a well-defined Y -intertwiner.

Proof. The map is well-defined by Lemma since the image of Xp is
transverse to Cxp. It is an intertwiner because its transpose is. O

6.2.6

We summarize the preceding discussion as follows. Suppose
Mo(a;d; + ajéj)T/ = Cuxp,
where P is a path that starts at j and ends at . Define a}; by the formula
> djy 6 = aid; + a;6; — h® C dimap,
where dim zp is a vector with values in Kt (pt).
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Theorem 6.2.6. The slice at xp gives rise to two Y-intertwiners:
Fi(a;) ® Fj(a;) ® K — (X) Fi(aly) ® K (6.17)

and

® Filaly) ® K — Fy(a,) ® Fi(a;) O K, (6.18)

where the equivariant parameters are specialized to T', K = Q(LieT’), the

order of the Fy(ag)-factors is arbitrary in (6.17)) and reverse in (6.18)).

Proof. The first map is given by
Stab” ¢ 0¥ o Stab.. |

for € matching the order of factors. The second map is its transpose. O

6.3 The dual Yangian

6.3.1

We define the dual Yangian Y* as the algebra generated by the operators
E*(m*(v)) = Resy—g trm, m*(v) Rwrw) € Y™, (6.19)

for all W of the form
W= Fkw)s, (6.20)

i=1
and
m*(v) e Fo ® Fy @ v 'k[v™'].

Here k(u)y denotes rational functions of u regular at u = co.

In English, Y* is generated by matrix elements of the same matrices
R(u—wv) but expanded in ascending powers of v. In particular, the operators
E* depend rationally, not polynomially, on the evaluation parameters u;.

Note that the operators E* (m_,v™!) already give all matrix elements of
R(u) and their orbits under shift automorphism span Y*.
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137 6.3 The dual Yangian

6.3.2

There is a natural pairing between Y and Y* defined as follows. Let
M(u) =my(u1) ® - - Q@ my(ug)

be an element in the domain of the map E and, similarly, let
M*(v) = my(v1) ® - -- @mj (v)

lie in the domain of E*. Let

HR u; — v;)

1<i<k
1<j<l

be the corresponding R-matrix where (7, j)th term acts in the spaces with
evaluation parameters u; and v; and the ordering of the R-matrices is as in

(5.6). We define

(B (). B (a7 (0 | s ) © 31°(0) RG00)

Uup .

)=l
o=
L

] tr, M*(0) E(M ()

]tru M) E*(M*(w)  (6.21)

where coefficients are taken in the w; — o0, v; — 0 expansion and the
subscripts of traces indicate tensor factors in which they are taken.

6.3.3

As defined, (6.21) is a pairing between the domains of E and E*. Tt is clear,
however, that the kernels on both sides are exactly the kernels of E and E*.
In other words, we have the following

Proposition 6.3.1.
KerE = (Y, KerE* = (Y)' .
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6.3.4

By construction, (6.21]) is a Hopf pairing, that is
(ab,c) = (a® b, Ac)
and vice versa, where (-, -) is extended to
Y (V)P >k

multiplicatively. Tautologically, this pairing stores the same information as
the R-matrices.

6.4 Intertwiners and relations

6.4.1
Let W as in (6.20) be a Y*-module and let

cC:WwW->w

be a k(u,u')-linear map, where

/

W' = &) Fr @k(uj)w ,

=1

be another Y*-module of the same form. Suppose that for certain values of
u and u/ the map C' becomes a Y*-intertwiner, that is,

[y,C] € Hom(W, W) ®1
for all y € Y* and a nontrivial ideal
Ick(u,u)yg
in the local ring of the point (u,u’) = (90, 0,...,0).
Note that Y*-intertwiners are operators that commutes with all R-matrices

and, therefore, the same as Y-intertwiners, up to extension of scalars. Inter-
twiners produce elements in (Y*)* and hence relations in Y as follows.
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139 6.5 Intertwiners and relations

6.4.2

Let I* < k[u,u'] denote the perpendicular of I with respect the the residue
pairing.

Proposition 6.4.1. For any f € I and any
me Q) Fy @K F;.
we have a relation
Res, E(fmC) = Res, E(fCm) (6.22)
in the Yangian Y.

Here Res, means taking the coefficient of (uj - - - u,)™" in the u; — o0 expan-
sion. Also note that m : W/ — W is an operator of finite rank, therefore
both mC" and C'm are in the domain of E.

Note that in the product fC' under the E-sign in the left-hand side of
(6.22)) we should keep only the singular (that is, polynomial) terms in the
u; — o0 expansion because the residue in ([5.7)) vanishes for regular terms.
Similarly for u}; — o in the right-hand side of (6.22).

Proof. For any y € Y* we have
try mCy —tryy Cmyel
and therefore
Res, Resy (tryy fmCy—try fCmy)=0.

This is equivalent to (6.22)). O

6.4.3

The whole discussion can be repeated for the core Yangian Y in place of Y.
Since slices produce Y-intertwiners, the following question seems natural.

Question 2. Do all relations in Yangians come from slices ¢
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6.5 Baxter subalgebras and Casimir connec-
tion

6.5.1

Recall that h < gg acts by linear functions of v and let $ =~ (C*)! be the
torus with Lie algebra h. Since gg commutes with R-matrices, we have

[9®g, R(u)] =0

for any g € . Recall from Section this implies the operators

1] 1
Er,(gu®) = 5 lW] 17, (9 ® 1) Riyu)w (6.23)
commute for all £ = 0,1,... and all auxiliary spaces Fj for which the trace

trg, is well defined. This

In general, Fj is not finite-dimensional and the trace in is an infinite
sum. However, it is well defined as a formal series in the variable g € $) if Fj
satisfies the grading assumption from Section [5.2.5] We denote by

qv c kj;jA

elements of the group k-algebra of the character group $H”. These functions
of g will be terms in our formal series. Introduce an algebra Y[[$"]] of formal
series in ¢¥ with coefficients in Y by

Y[[9"]] = {Z yqu} :

VZ=Vvq

Herey, € Y and v > vy means v — vy € ZL,. We have
0 0 =0

1 1
Er1) = 3 | st | 20" o 0O 1 R < VIIST (620

as a consequence of our grading assumption.

By definition, the subalgebra of Y[[$)"]] generated over k[[$"]] by the
commuting operators is called the Bazter subalgebra. It is a formal
family of commuting subalgebras of Y.
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141 6.5 Baxter subalgebras and Casimir connection

6.5.2

Baxter subalgebras are graded with respect to the cohomological grading on
the Yangian and
deg con Ery (9 u*) = 2k .

In particular,
(Baxter subalgebra) coh degree 0 — UQ(E)[[S’JA]] )

where b go acts by linear functions of v and w. Because k has nontrivial
cohomological grading, the universal enveloping algebra here is over

Q - (k) coh degree 0 °

Our goal now is to describe the degree 2 part of Baxter subalgebra. It is
spanned, over degree 0 part, by equivariant constants and u =2 coefficients in

(6.23).

6.5.3

Evidently, only diagonal matrix coefficients contribute to the trace in (6.23]).
The u~2-term of the diagonal matrix coefficients of R-matrices was computed

in Proposition The result can be stated as follows. Let
Moc(v,w) x My (VW) < Mpe(v+v,w+w)

be a fixed component and let R, . w be the corresponding diagonal block
of the R-matrix. It follows from Proposition that

111
7 [ﬁ] Rywvw =W—Cv)®ch; V' +h Z €alo®e_neq+ ..., (6.25)
0-a>0

/

where chy; V' is a vector of ch; V), i € I, C is the nonequivariant Cartan

matrix, and dots act by a scalar operator in Hg(M(V/,w')).

6.5.4

For Fj, as above define

X (Fo) € H[[H"]]
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6 Further properties of the Yangian 142

by requiring

tre, g hn = U(X(Fo))
for all n € b*. Here h, = Cn € b, see Section Since trg, g hy, depends
linearly on 7, this is well defined. Clearly, x(Fp) is linear in the K-theory
class of Fj.

Lemma 6.5.1.

(e}

q
1—qo’

tre, geae_a = —a(x(Fp)) (6.26)

The rational function in (6.26]) is to be expanded in one direction or another,
depending on « 2 0, to represent an element of k[[$"]].

Proof. Using
[eas€—a] = ha (6.27)

we compute

trp, geq_q =trp, e_qgeq
(0%
=(q" trp, geé_qe€q

=q* trp, geae_o —q" try, gha,

whence the conclusion. O

6.5.5
From Lemma we deduce the following

Proposition 6.5.2. We have

(e}

Er(gu®) = x(Fo) - ey V' = > a(x(Fo))

~c atat..., (6.28)
0-a>0 1- q

where dots stand for an element of U(H)[[$H7]]

By Theorem [10.2.1]| below this means that the degree 2 part of Baxter al-
gebra is spanned by operators of quantum multiplication by g¢-dependent
tautological divisors

A= x(Fo) € b[[H7]]

and equivariant constants.
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143 6.5 Baxter subalgebras and Casimir connection

Using formula ((10.3)), we can rearrange the terms in (6.28]) as follows

(67

w-chy V' —h 2 (a,w) ——

€ Co =
1—g®
6-a>0

laf
q
E (‘W><W| u2) — hezo(’@’, W) ]_——qlo“ €_aqbat ..., (629)

where dots stand terms from U(h) and

|a|:{a, a>0,

—a, a<0.

The second line in (6.29)) is manifestly an element of Y[[$"]] while the sum
over « in the first line converges in a different formal series completion —
the one corresponding to the effective cone of My.
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Chapter 7

Quantum multiplication

7.1 Preliminaries

We first set some notation regarding equivariant Gromov-Witten invariants.
Suppose we are given a smooth quasi-projective variety X equipped with the
action of a reductive group G. For each effective curve class § € Eff(X) <
Hy(X,7Z), its associated k-point genus 0 Gromov-Witten invariants are given
by integrals

<71,---77k>5fk,@: o ev' (XX k)
[Mo,,(X,8)]¥r

for v; € H;(X, Q). Here, the integral is defined over the virtual fundamental
class on the moduli space of k-pointed stable maps to X. As always, if X is
noncompact (as in our case), the above expression can be defined via equiv-
ariant residue. However, since the evaluation maps are proper, operators of
quantum multiplication are defined without localization.

7.2 Modified reduced operators

7.2.1

We recall some general results from [12] for the quantum product for any
equivariant symplectic resolution

X — Xy = Spec H*(Ox).
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7 Quantum multiplication 146

Due to the presence of the symplectic form w, the moduli space of maps
carries a reduced virtual class in degree one larger than the usual virtual
dimension. This reduced class determines the purely quantum contributions
to all divisor operators via the relation

(7 *71,72) =(vuvl,72)+h2(7-ﬁ)qﬁf ev' (v X 72) .
>0 [Mo.2(x.5)]

vir,red

Moreover, the pushforward of the reduced virtual fundamental class under
the evaluation map
ev ! MQQ(X, ﬁ) — X2 s

is a Q-linear combination of Steinberg correspondences of X xx, X. In
particular, it does not depend on equivariant parameters. We denote by

Q2.rea € End Hg(X) @ Q[[EAf(X)]]

the purely quantum operator defined by the reduced class
(Qarea - 71,72) = D, 4 f ev' (11 & 2) -
B>O [M0’2(X76):|vir,red

This is a correspondence-valued element in the completion of the semigroup
algebra of the effective cone of X, each coefficient of which is a Steinberg
correspondence for X.

7.2.2

Note that by (1.2])
Q2,red -1=0.

This uniquely determines the coefficient of the diagonal in Qgeq from the
other terms. It will be convenient to work modulo scalar operator contribu-
tions to Qg req in this chapter; this relation allows us to fix this indeterminacy.

7.2.3

Given
kx € HY(X,Z/2),
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147 7.3 Modified reduced operators

we define the modified quantum operator Qg eq . for X by the substitution
¢’ = (=)D Be Hy(X,Z).

This is equivalent to changing the origin in the Kihler moduli space H?(X, C)/2miH?*(X, Z)
to miKkx.

Let a torus A act on X preserving the symplectic form and let Y < XA
be a connected component. Assume we have chosen

Ky € HZ(Y, 7)2),
such that
c1(Ny) = ”X|Y + Ky mod 2

where N, is the positive part of the normal bundle to Y for some (equiva-
lently, any) choice of the chamber € c a = Lie A.
For Nakajima varieties, the canonical theta characteristics k were defined

in (2.8]) and connected to the parity of ¢;(Ny) in (2.12)).

7.2.4
Our next goal is the following

Theorem 7.2.1. For X andY as in Section[7.2.5, the diagram

Stabg

Hi(Y) Hi(X) (7.1)
Q27red’ny l lQZred,nX
. Stab” .
Hy(Y) Hy(X)

is commutative for any € and any polarization, after applying the map

Q[IEF(Y)]] — Q[Ef (X)]]

t0 Qaredny and working modulo scalar operators on H+(Y).

Note that the bottom arrow in is a priori defined only in localized equiv-
ariant cohomology. As a part of the proof, we will see that the composition
of the top, right, and the bottom arrows in (7.1 is well-defined without
localization.

The proof of this theorem will require the discussion of broken and un-
broken curves in equivariant localization. We recall the relevant definitions
and results from [103].
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7 Quantum multiplication 148

7.3 Broken curves

7.3.1

Let f: C'— X be an A-fixed point of M,(X, 3) such that the domain C is
a chain of rational curves

C=CiuvCyu---uC,

with the two marked points p1, ps lying on C; and CY}, respectively.

If at every node of C' the A-weights of the two branches are opposite and
nonzero then we say that f is an unbroken chain. We say that f connects
the points

zo = f(p1), zr = f(p2)
of X through the sequence of nodes

ZEZ‘Zf(CZ'f\CH_l), Z=17,k’—1
Note that all of these points are fixed by A.
More generally, if (C, f) is an A-fixed point of My o(X, 3), we say that f
is an unbroken map if it satisfies one of three conditions:
1. f arises from a map f: C — XA,
2. f is an unbroken chain, or
3. the domain C'is a chain of rational curves

C=ChuCiu---uC

such that Cj is contracted by f, the marked points lie on Cj, and the
remaining components form an unbroken chain.

Broken maps are A-fixed maps that do not satisfy one of these conditions.

In this last possibility, the contribution of these curves is block-diagonal
with respect to A-fixed locus of X, i.e. scalar on each connected component
Y, hence we will focus on the unbroken chains in what follows.
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149 7.4 Broken curves

7.3.2
We refer the reader to Section 3.8.3 of [103] for the proof of the following.

Theorem 7.3.1 ([103]). Every map in a given connected component of
Moo(X, B)” is either broken or unbroken. Only unbroken components con-
tribute to Qarea in A-equivariant localization.

7.3.3

Let f be an unbroken chain as before and let let O(1) be a A-linearized ample
line bundle on X. We may restrict it to fixed point z; to get elements of a*.
We have the following

Lemma 7.3.2. For an unbroken chain, the points

form a monotone sequence of distinct points of a real line.

Proof. We denote this sequence by ¢;. Let w denote the (nonzero) A-weight
of T,,,C. By the unbroken condition, the same weight occurs at all nodes and
the weight of 7},,C' is —w. By localization, the terms of the sequence

Co — C1 Ck—1 — Ck
e RERE
are the degrees of f*(O(1) restricted to C;, hence positive integers. O]

7.3.4

Lemma is effective in ruling out unbroken loops. More generally, we
have the following

Lemma 7.3.3. There are no A-fixed unbroken chains connecting two points
in the same component Y of XA.

Proof. The A-weight of O(1), is constant for y € Y, which contradicts the
fact that points in Lemma are distinct. ]
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7.4 Proof of Theorem [7.2.1]

7.4.1
Given f € Ho(X,Z) and 1,72 € Hr(Y), the statement to prove is

K L1 dim Y
Z (—1)Bmv)+zd Y<71,’Yz>ﬂ/,red -
B'—p

. X
(~1)F=0 58X Gtabe(), Stab-e(12) )+ s, (7.2)

)

where cs is a constant independent of the insertions 71, 2.

The sign (—1)z ©dimxY comes from the sign in the definition of the adjoint
Stab” .

7.4.2

Recall that every coefficient of Qg ed .y 1S given by a Steinberg correspon-
dence. As in the proof of Theorem [£.6.1] this implies the convolution

Stab”; 0 Qo red ny © Stabe .

is obtained by a proper push-forward. In particular, its coefficients can be
determined by any specialization of equivariant parameters.

This means we can compute the RHS of by A-equivariant localiza-
tion, and study its limit after taking the equivariant parameters associated
to a to infinity, while setting A = 0 at the same time.

7.4.3

We only need to consider unbroken components of M (X, ) in equivariant
localization.

Since stable envelopes are proportional to fixed points modulo A, setting
h = 0 implies that only components where both marked points map to Y
will give nonzero contribution.

If we fix a component of Mo(X,3)" whose elements consist of curves
for which both marked points lie on a contracted component attached to
an unbroken chain. Since the evaluation map to Y x Y for this component
factors through the diagonal, the contribution of this component will give
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151 7.4 Proof of Theorem [7.2.1

a scalar operator, so we can ignore it. By Lemma [7.3.3, unbroken chains
do not contribute either, so the only contributions come from stable maps
which factor through Y. Furthermore, since the localization contribution
only depend on the equivariant normal bundle to Y in X, we may replace X
by the total space N of the normal bundle.

7.4.4

For a vector bundle
p:N—->Y

we have the following general result. Suppose A acts on N fiberwise and
NA =Y. We decompose
N =N,
A

according to the characters A € AY < a*.
Given cohomology classes 71, ...,y € H (Y) we want to understand the
asymptotic behavior of the Gromov-Witten invariant

@), - P (), € Qa¥)

defined via equivariant residue, as the variables in a approach infinity. Here,
g = 0 is the domain genus and 8 € Hy(Y,Z) = Hy(N, Z) is the degree of the
map.

The residue invariant can be expressed in terms of the Gromov-Witten
invariants of Y by adding an Euler class insertion determined by N. The
following computation is then a standard application of Riemann-Roch:

Lemma 7.4.1. We have the asymptotic behavior given by

N —(c —r — Y
P ), ... 7p*(’7k>>ﬁ,g,k -~ H )\~ (e1(NV2),8)—rk Nx(1—g) 1, 7/7k>ﬁ,g,k )
A

7.4.5
We only need the g = 0 case of the above lemma. Also
Ny = N7,

because of the symplectic form. Therefore, the prefactor in Lemma [7.4.1

becomes
(—1)(01(N+)’5)/det]\7.
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7 Quantum multiplication 152

Since 1 1
(det N+)2/detN — (_1)§TkN _ (_1)§codimXY

the equality (7.2]) follows.

7.5 Additivity

7.5.1
Suppose Y as above factors
Y=Y xYs,

as it is the case in our main example (1.9). Then dim H°(Y,Q?) > 2, leading
to further constraints on quantum cohomology of Y.

Proposition 7.5.1.
Q%/,red = Q;/,lred ®1+1® Q;/,Qred :
Proof. Let 8 = (01, f2) according to
Hy(Y,Z) = Hy(Y1,Z) ® Hy(Y>, Z).

If 84 # 0 and By # 0 then the virtual fundamental class may be doubly
reduced, meaning that the reduced obstruction theory admits a further sur-
jection to a trivial rank 1 bundle. See Section 3.5 in [I03]. As a result, the
corresponding reduced class vanishes. If §; = 0 or 8, = 0, then the curve
maps to a point in one of the factors, and the above additivity is obvious. [

7.5.2

Notice that additivity is not the same as primitivity.
In Proposition [7.5.1}, we are restricting to diagonal contributions; the off-
diagonal terms will still be non-zero.
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Chapter 8

Shift operators

8.1 Definition

8.1.1

For any X and any cocharacter
0:C* - Gc Aut(X)
we can associate an X-bundle over P! as follows
X~ = (C*0) x X/C; (8.1)

where CJ acts on the first factor by scaling and on the second via the homo-
morphism ¢. This is just the classical operation of passing from a principal
C*-bundle over P! to the associated X-bundle.

8.1.2
Since ¢1(X) = 0, we have
a1 (X™) = (2+ 92X (0, h)) - [Fiber] € H*(X~,Z) (8.2)
where fiber refers to the natural projection
p: X" — (CQ\O)/(CX =P,

the inner product is the standard pairing of characters with 1-parameter
subgroups.

In the present discussion, one does not need to assume X symplectic. It suffices to
assume that the canonical bundle of X is a pure character, which we denote by p2 dim X
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8 Shift operators 154

8.1.3
Let G? be the centralizer of the image of ¢ in G. We define
G~ =G x C < Aut(X™) (8.3)

where the second factor scales the second (by convention) coordinate of C2.
This group preserves the fibers Xy, X, of p over 0,00 € P'. More precisely,
it fixes X point-wise, but acts nontrivially on X.

We denote by € an element of Lie CX. This is a new equivariant parameter
which we have for X~.

8.1.4

Any point of X7 gives a section of p
(P >P xorc X, zeX. (8.4)
The homology class of this section gives an element
(e H (X, Z) @ Hy(X~,7Z).
More formally, for any D € H*(X~,Z) we define
(D, ¢) = proj, incl*(D) e H*(X?) (8.5)

where . .
X proj X7 % Pl incl X~

are the natural maps.

8.1.5

We have
0 — Hy(X,Z) — Hy(X~,Z) — Hy(P') =Z — 0. (8.6)

Any section (, gives a noncanonical splitting of the above exact sequence.
In particular, the degrees 3 € Hy(X™~,Z) such that p(8) = [P!] form a
single Hy (X, Z)-coset of sections. For f in this coset, we consider

M~(B) =ev (X x Xop) © Moo(X™, 1),

where Xy, X, © X are the fibers of p over 0,00 € P!
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155 8.2 Definition

8.1.6 Example
Take
X =T*P' = My 4(1,2)
for the quiver ) with one vertex and no arrows. This is the quotient of pairs
A= (a1 a) € Hom(C*C"), B= (Zl) € Hom(C!, C?)
2
such that AB = 0 and A # 0 by the action of G, = GL(1). Take

o(z) = <Z 1) € Gy

Then X7 = {zg, s}, where
ro={ays=0,B=0}, x4 ={a1=0,B=0}.

The variety X~ is the relative cotangent bundle to the P!-bundle over P!
given by
Blpoins P? — PL.
We have
[Cso] = line in P? | [(,, ] = exceptional divisor,

and 50 [Cy] — [Co,. ] is the generator [P'] of Ho(X,Z).

8.1.7
We use the spaces X~ to define shift operators
S(0) : He~ (Xop) — He~ (Xo) ® Q[[EM(X)]]

as follows.
Given v; € He(Xp) and v2 € He- (X)), we define the matrix element

(71, S( Z J Yy x 7). (8.7)

'Uz’r

By definition, the matrix coefﬁments ) take values in formal power series
in ¢® with coefficients in the localized GN—equivariant cohomology of a point,
although the operator S(o) itself is integral. In particular, (8.7) depends on

e € Lie(CY) < Lie(G™).

)

Our eventual goal will be to find o,7,72 such that the integral in (8.7) is
proper of correct dimension, thus independent of all equivariant parameters.
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8 Shift operators 156

8.2 Intertwining property

Given D € HE. (X™), we set

0
=51 ¢ = (LD) ", BeHyX™).

Note that this is nonequivariant, that is, depends only on the class of D in
nonequivariant cohomology.

If we consider the restriction Dy =

o€ HZ.(Xy), let Mp,(q) denote

0
the operator of quantum multiplication by Dy, and similarly for X.
Proposition 8.2.1. For any D as above, the operator satisfies

= 2 5(0) = M, (a) o S(0) — S(0) oMo, (4). (85)

Proof. For brevity, set Y = X°.
We compute S(o) by localization with respect to the CX-factor in (8.7)).
The domain of an CX-fixed map in (C, f) € M~(/3) is a union

C:COU01UCOO

where f : Cy — Xy is a o-fixed map, f(Cy) € X, and Cf is of the form

B9
CY1 = Cy

for some point y € Y.
Standard localization arguments (see e.g. Chapter 27 in [54]) give a fac-
torization

S(o) = Vo Uy Voo, (8.9)
with the following factors. We define

(o m) = ), J M. (8.10)

BeHa (Xo,Z) M02 Xoﬁ “’” € — 1y

Here )5 is the cotangent line at the second marked point and the integral is
computed in equivariant cohomology. The unstable 8 = 0 contributions to

(8.10) are defined to give
Uy =1+0(¢"), B>0. (8.11)
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157 8.2 Intertwining property

If we evaluate W via virtual localization, we obtain precisely the localization
contribution of the Cj.
In the definition of ¥, one replaces € — 15 by —e — 1y and Xy by X.
Note the virtual class in is the ordinary, nonreduced virtual fun-
damental class. The reduced virtual class gives

Uy =1+ O(h), (8.12)

if X is holomorphic symplectic.
The middle factor ¥, is of the form

Uy = 104 qcrbzo

where 1, L, denote the inclusion of Y into Xy and X, respectively, I' is mul-
tiplication by a class in H'(Y") that absorbs the deformation and obstruction
contributions of C';. The class ( was defined in ; ¢¢ is a monomial which
varies depending on the connected component of Y. Note that by localization

£(C.D) = (D)~ 15(D). (5.13)
It is standard [20, [54] to abbreviate

Te(12) = U5 ev¥ (7).

The convention (8.11)) means that

i m(12)Yo = O J U
X

where angle brackets denote equivariant genus 0 GW-invariants of X and
subscript refers to invariants of degree § = 0. With this convention, the
string and divisor equations yield

M 7e(12), D) = (L D> () + s i1 v D)), (8.14)

for all £ > 0 and all degrees /5. Similarly, the topological recursion relations
(see e.g. Section 26.4 in [54]) read

e me(12), DYs = Do Doy (0" Tie1 (12)) 5 (8.15)
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8 Shift operators 158

for all £ = 0 and all degree splittings, where >.n ® n" is the Poincaré dual
of the diagonal in X?2.

Combining (8.14)) with (8.15)) gives

0
9 6_D \I/() MDO (q) o \I/() - \IJO o MDO(O) (816)
where Mp, (0) denotes the operator of classical multiplication by Dy. By the
same reasoning

0
e==Vy =Mp, (0)oVy — ¥y, 0Mp,_(q). (8.17)
oD
Finally, (8.13) gives
0
8@\1/1 MDO(O)ollfl—\Ill OMDoc(O)' (818)
C

The combination of (8.16)), (8.17)), and (8.18]) completes the proof. O

8.3 Shift operators are quantum operators

In this section, we extend Proposition [8.2.1} as a consequence, we will see

that shift operators are quantum operators after passing to the ¢ = 0 limit.
Let

MN(B) = evi%(Xo X Xoo) (e M(),g(XN,ﬁ)

denote the moduli space of twisted maps from last section, equipped with an
extra marked point e.
Given v € H¢-(Xy), we define the operator Sy(o;v) by

(1, S0(057) - 2 f evhm % 72) U evi(ionr)  (8.19)

M (ﬁ vir

Lemma 8.3.1. We have the factorization

So(7;7) = M, (q) ©S(0)

where M., (q) denotes quantum multiplication operator for .
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Proof. We follow the approach of Proposition If we compute Sq(o7;7)
by localization with respect to the CX-factor. As before, this gives a factor-
ization

So(o;7) = Vg ¥y Ve (8.20)

where the second and third factor are as before and the first factor is defined
by

ev¥ (v X vg X
(71,9 - ) = Z f X x) g g

ﬂeHQ M() 3 vl,r 8 - w2

When we expand this expression, the leading term with no 5 is simply
quantum multiplication by +. The terms with positive powers of 15 can be
expanded using the topological recursion relation of to give quantum
multiplication by v composed with the 5 > 0 contribution to ¥y

The result is the factorization

W = M, (g) o 0.
Combining with gives the statement of the lemma. ]

Given v € Hg~ (X ), we can define the operator S, (0;y) in the analogous
manner, and we can derive the formula

Sw(0;7) =S(o) o Mw(‘])

in the same way.

If we restrict to G?-equivariant cohomology by setting ¢ = 0, then for
v € Heo(X), we have g4y = too47y after this specialization. In particular,
we have

So(;7) = Seo(037)

after setting ¢ = 0.

As a corollary, we see that the shift operator S(o)|.—o commutes with all
quantum multiplication operators. If we fix a splitting of , it can thus
be identified with quantum multiplication by

S(o)| (1) € He- (X) ® Q[[E(X)]].

e=0
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Chapter 9

Minuscule shifts and R-matrices

9.1 Setup

9.1.1

In this chapter, we consider shift operators S(¢) satisfying the following ad-
ditional assumptions:

1. X is a symplectic resolution,
2. o preserves the symplectic form w,
3. o is minuscule,

see Section for a discussion of the last condition.

9.1.2

We define
Staby : H*(X?) - H*(X). (9.1)

to be the stable envelope maps corresponding to the two chambers = 0 of
Lie C} and an arbitrary choice of polarization. We will see a close relation
between S(o) and

R, = Stab~' Stab, . (9.2)
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9 Minuscule shifts and R-matrices 162

9.1.3
It follows from our assumptions and (8.2)) that

¢1(X™) = 2[Fiber]

and hence that
vir dim M~ (f) = dim X . (9.3)

for all 5 in (8.7)). This means S(o) has cohomological degree 0.

9.1.4

Lemma 9.1.1. With the assumptions of Section|9.1.1), all o-weights in the
normal bundle to X7 are +1.

Proof. Choose a proper map X — V, where V is a linear representation of
o with weights in {0, £1}. For any x, the o-orbit of x is either contracted by
the map to V' or is mapped isomorphically to a line of weight +1.

If there is a weight k£ # £1 in the normal bundle to some component Y
of X7 then the corresponding normal directions are mapped to a point in V.
Hence, their closure meets another component Y’ of X7, where same weight
k has to occur again. Using induction on < and finiteness of the number of
component of X7, we see that this is impossible. O

9.1.5

Recall from that every component of X7 defines a curve class Hy(X ™, Z).
If we fix a splitting of , we can project to obtain curve classes in
Hy(X,7Z).

A more convenient way of making this choice is as follows. Choose a
o-linearization for a basis Ly, Lo, ... of Pic(X). Given x € X7, we define
(» € Hy(X,7Z) so that

J c1(L;) = deg Ez
where (, is the section (8.4) and ZZ is the lift of £; to X~ that uses the fixed
linearization. A change of linearization adds a overall constant to C.

For Nakajima varieties, the entire group of automorphisms G acts natu-

rally on all tautological bundles and their associated determinant bundles.
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In this case, we can arrange for the linearization of Pic(X) to be compatible
with this natural linearization. If we know that these tautological divisor
classes span Pic(X), this completely determines the linearization and thus
gives a preferred normalization of the map (.

9.1.6

In particular, take o to be the action corresponding to a tensor product of
Nakajima varieties, that is to
w=z2w+w, v=2z2VvV+V,
as in Section 2.4l Then
(¢, a(W)) = V; :
In other words, connected components of X are distinguished by the value

of v/ and B
C’_>H2<M9,C(V7W>7Z) (94)

| |

v/ h*
under the natural map on the right.
For example, for T*P! as in Section [8.1.6 we get

()

in the basis {xg, o }.

9.1.7
Recall that  is defined as ¢;(T%?) modulo 2, where T%? is a half of tangent

bundle as in (2.7)).

Lemma 9.1.2. For minuscule o

(¢,k) = Lcodim X mod 2.

— 2
Proof. Since ¢ is minuscule, the o-weights of T%? when restricted to fixed
loci lie in the set {0, +1}. Moreover, the number of nonzero weights equals

5 codim X7. Therefore, the bundle T/2 restricted to ¢, is a sum of O(k), k €
{0, +1}, and the number of nontrivial terms in this sum equals %codim X,
O
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9.2 Properness
Proposition 9.2.1. For X and o be as above, the convolution
Stab” o S(o) o Stab_ (9.5)
is proper and defines a Steinberg correspondence in X7 x x, X°.
Proof. Since o is minuscule, we have proper C)-equivariant maps

X—>XocV=@V,

li]<1
where CJ acts on V; with weight i. Applying (8.1)), we get a proper map

X~ =V=QVieoi),

li|<1

to a vector bundle V over PL. Moreover, the fiberwise image of Stab_ is
contained in the subbundle

Vo= @0V.,00(-1)c V.

Now let
(4, 23,22,21) € X7 x X x X x X° (9.6)

be a quadruple of points in the definition of the convolution (9.5). Since
m(x9), m(x3) € V<o and O(—1) has no sections, we must have

m(xe), m(x3) € V.
Moreover, by Proposition [3.5.2] we have
m(xy) = w(xg), w(xe) =m(z).
Since a section of O(i) is fixed by evaluation at ¢ + 1 points, we conclude
m(xg) = w(x3) = w(x2) = 7w(x1)

and any section of X~ connecting r3 and z maps to the corresponding
constant section of V. Since the fibers of this projection are proper, the
proposition follows. O
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165 9.3 Computation of S(o)

9.3 Computation of S(o)

9.3.1

Let
R,y € End He- (X3) ® Q(Lie G™)

be the G™-equivariant R-matrix for the fiber X,,. Since C acts on X, via
the cocharacter 071, R, 4 is obtained from the G7-equivariant R-matrix by
the substitution

E—&—ceo(l), &eLieG”.

Theorem 9.3.1. For X and o as in Section|9.1.1, and ¢ as in Section|9.1.
Stab.!' S(0) Stab, = (=1)¢*x) ¢ R, . (9.7)

Proof. Using (9.2) and Lemma we may restate this as commutativity
of the following diagram

(_l)codim /2 q(:

H (X3) He (XF)

Stabl Stab”
. S(o .

He (Xo0) D HE (X))

where codim /2 denotes the locally constant function on X7 given by tak-
ing half the codimension in X. By Proposition [9.2.1] we may compute the
composition

Stab” 0S(0) o Stab_

with any choice of equivariant parameters.

We choose h = 0 and € — o0, where ¢ is the equivariant parameter for the
CX-action in . In particular, since h = 0, stable envelopes are diagonal
and we must have

Ty = T3, T2=1T1,

in (9.6) above. Also h = 0 implies
by (8.12]) above.
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9 Minuscule shifts and R-matrices 166

Next consider the operator W;. It counts constant sections C; of X~
corresponding to
[L’4=[L’3=[L’2=ZL‘1GXU.

By Lemma [9.1.1] the normal bundle to C is
N=N1dN,(-1)DT, X’

where Ny are o-eigenspaces in the normal bundle N to X7 in X and twists
are by O(1), i = +1.
It follows that Cy € M™~(() is unobstructed with tangent space

Te, M™(C) = (N1)g @ (N1),, @ T2 X7

where the subscripts 0,0 € P! denote the fibers of N, (1) over the respective
points. We observe that these correspond precisely to the normal directions
to Stab_ (z;).

In the end, all contributions to the integral cancel except for the sign in
the definition of adjoint Stab” . This sign gives (—1)cdim/2, O

9.3.2
In particular, for o as in Section [9.1.6, we have
X — UM(V,,W/) % M(V”,W”)

and B

¢ —q =q¢'®1,
after restricting to functions on b as in (9.4). Our computation of S(o)
together with the results of Section |8.3|imply the following

Corollary 9.3.2. For tensor products of Nakajima varieties, the operator
(¢"®1) R(u)

belongs to the algebra of modified operators of quantum multiplication.
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Chapter 10

Quantum multiplication by
divisors

10.1 Classical multiplication by divisors

10.1.1

A vector A € h = C! corresponds to a divisor

a(A) =D NMaW) (10.1)
which we identify with the corresponding cup product operator. Using
[€as€_a] = ha (10.2)
we obtain from (4.35))
cr(w) = E (jwyw|u®) + R Z a(w)eqe_q + ... (10.3)
60

where the sum over roots is with multiplicity,
a(w) =w(h,) =a-w,

and dots stand for a quadratic polynomial in v, that is, an element of U(h)
of degree at most two.
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10.1.2

Since E (|w){w|u?) comes from the 1/u® coefficient of the R-matrix, its co-
product will involve itself and the 1/u coefficient, that is, the classical r-
matrix. From Theorem [5.3.11] we compute

AE (wy(w|u?) = E (wxw|u®) ® 1 + 1® E (jw){w|u®) +

+ hZ(w] e_pgeq W) e_o ®ez, (10.4)
a,p

where dots stand for terms in U()®?. Using (10.2)), we compute

—a-w, B=a>0,
0, otherwise.

(wle_geq |w) = {
We deduce the following

Theorem 10.1.1. We have
Aci(A) =N @1+ 1®ci(A hz A)e_a®eq +

0-a>0

where the sum is over roots a of gg with multiplicities and dots stand for
terms in U(h)®?

10.1.3

In particular, we have
R(u) Aci(\) R(u) ™t = A%ci(\)
= A\ +h ) a(d) (eca®ea —ea®ey) . (10.5)

0-a>0
10.2 Quantum operators

10.2.1

We denote by Q(A) the operator of modified quantum multiplication by the
divisor ([10.1]). By construction

Q(A) = ex(A +h2 1) % X(B) Qarea(B) ,
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169 10.2  Quantum operators

where § € Hy(M,Z) is an effective curve class and Qg eq(5) is the image
of the corresponding reduced virtual class under the evaluation map. The
quantum part of Q(A) is a linear combination of Steinberg correspondences.

10.2.2
Theorem 10.2.1. We have

Q) =a(N) —h Y] a())

— ¢ €ala+ ...

where the sum is over roots of gg with multiplicity and dots denote a scalar

operator.

The scalar operator is fixed by the requirement that the purely quantum
part of Q(A) annihilates the identity.

Proof. For brevity, we write Q = Q(\).
Let AQ be the pullback of the operator Q under the stable envelope map

Hg(M(W)) @ Heg(M(W")) — Hg(M(w' +w")).

We can decompose it

AQ=>'A.Q
according to the weights of h ® 1. Here

[h®1,A.Q] = a(h) ALQ.

In other words, A,Q increases v/ by a. By Proposition and Theorem
10.1.1}, we have
AQR=Q®1+1®Q.

By Corollary [0.3.2]
[(¢"®1) R(u), AQ] = 0,
which means
R(u) AQR(u)™" = > g AuQ.
The purely quantum part in Q is a Steinberg correspondence, hence com-

mutes with R-matrices. Taking into account the classical part, we get from
(110.5))

2(1 —¢AQ=nh Z aN) (ea®e_q—€e_qa®ey) ,

a 6-a>0
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10 Quantum multiplication by divisors 170

which uniquely determines all A,Q with a # 0.
Now consider

Qremainder = Z(_l)(ﬁﬁ) qﬂ A(ﬁ) Q2,red(6> + Z Oé()\)

B 6-a>0

€l -

1—q~

By Lemma |5.3.12] this is a Steinberg correspondence. Moreover, it com-
mutes with h and is primitive in the sense that

AQremainder = Qremainder ® 1+1 ® Qremainder .

The following Proposition finishes the proof. n

10.2.3
Proposition 10.2.2. Let © be a family of Steinberg correspondences

Ovw = My
defined for all v,w. If it is primitive
AOD=0®1+1RQ06
and commutes with b then © € EQ.

Recall that EQ acts by multiplication by linear function of v and w. Again,
by A in the above proposition, we mean the pullback of © under the stable
envelope map.

Proof. By hypothesis, © preserves the decomposition

He(M(w)) = @D He(M(w,v))

into EQ-weight subspaces. In particular,
[©, [w){w[] =0 (10.6)

where |w){w| is the projector onto the v = 0 part.
Since © is a Steinberg correspondence on each component,

[R(u), AB] =0
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171 10.2  Quantum operators

This and implies
[tr1 ((Jw)w| ®1) 0 R(u)),0] =0

where the trace is over the first tensor factor and © acts in the second tensor
factor. By the results of Section @, this means that ©,,, commutes with
operators of classical multiplication by all characteristic classes of the tau-
tological bundles. Proposition implies that ©,,, is itself an operator of
classical multiplication. Since it has cohomological degree 0, it can only be
a multiple of the identity. The primitivity condition forces this multiple to
be a linear function of v and w. O
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Chapter 11

Cotangent bundles of
Grassmannians

In this chapter, we illustrate the general theory for the simplest possible
quiver () — that with one vertex and no arrows. The corresponding Nakajima
varieties are cotangent bundles of Grassmann varieties.

Grassmann varieties are among the oldest objects of study in algebraic
geometry; in particular, their quantum cohomology has been described by
many authors from many different angles, see e.g. [7, [15] 16} [49] 63|, [78], [105]
110]. The modest goal of this chapter is to help the reader align his favorite
point of view on Grassmannians with the direction of this paper.

11.1 Quantum cohomology

11.1.1 Setup

For the quiver () with one vertex and no arrows, the Nakajima quiver data
is a pair of matrices

Cn:(ck
B

where C" = C"! is the framing space and £ = v;. Let X be the corresponding
quiver variety

X = M@,()(kvn) = {(A’ B)7AB = 0}//9 GL(k)7
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11 Cotangent bundles of Grassmannians 174

where

tkA =k, 6 >0,
tk B =k, 0<0.
In either case, X = @ if k > n. The map

stable points = {

Ker A, 0>0,

(A,B)— L =
ImB, 6 <0,

makes X a vector bundle over the Grassmannian

Gr — Gr(n—k,n), >0,
| Gr(k,n), <0

of possible L © C". The fiber of this vector bundle is Hom(C"/L, L), whence
X =T*Gr.

Of course, Grassmann varieties of complementary dimension are isomorphic,
but this isomorphism is not canonical, in particular not G'L(n)-equivariant.
Here we are interested in G-equivariant quantum cohomology of X, where

G=GL(n) xCy.

The second factor in G scales the cotangent directions with weight —h.

11.1.2 Divisors
The tautological bundle V = V) is identified as follows
C*/L 0>0
V — / Y > )
L, 0 <0,

that is, V is the universal quotient bundle for § > 0 and the universal sub-
bundle for # < 0. The line bundle

O(1) = (Atry)*’

is the very ample generator of Pic X. The corresponding projective embed-
ding of the Grassmannian is classically known as the Pliicker embedding.

It is elementary to see that ¢;(O(1)) generates H(X). Therefore quan-
tum multiplication by this class uniquely determines the algebra of quantum
multiplication.
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175 11.1  Quantum cohomology

11.1.3 The affine quotient

Let
7TZX—>XO

be the affinization of X. Its target X, may be described in terms of square-
zero matrices D, or differentials. Let

D ={D|D* =0} c EndC".

denote the set of square-zero matrices. It is stratified by G L(n)-orbits

D, = {tkD =1}, r:@lg,uigj. (11.1)

The map
(A,B) — D = BA

gives

Xo=D®g, r=min(k,n—k).

The fibers of m are Grassmann varieties, namely
7' (D)= {L|ImD < L c Ker D} .

In particular, 771(0) = Gr.

11.1.4 The Steinberg variety
By definition, the Steinberg variety is

6:XXXOX.

The stratification ((11.1)) gives a decomposition into irreducible components
S =|]Jeu,
d

where &, is the closure of X x5 __, X. In particular,

Sy = diagonal ,
S, = Gr x Gr.

For us, the most important stratum is G;.
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11 Cotangent bundles of Grassmannians 176

11.1.5 Lines on X

Let ¢ € Hy(Gr,Z) be the effective generator. Curves of class ¢ are lines in the
Pliicker embedding. Two points L, # Ly € Gr lie on a line ¢y, 1, if

dlle f\LQ = dlle — 1,

in which case
Uiy ={L|LinLyc Lc L+ Ly} .

Lines on X are the lines in the fibers of 7. Therefore &, is formed by pairs
of points that lie on a line.

11.1.6 Torus-fixed curves

Let A = GL(n) be the diagonal torus. Since X§' = {0}, we have
XA = G,
This is a finite set formed by coordinate subspaces

LS = @Ces

seS

where {ey,...,e,} € C" is the coordinate basis and S < {1,...,n} ranges
over subsets of cardinality dim L.

The set of reduced irreducible A-invariant curves in X is also finite, formed
by lines (g ¢ joining fixed points Lg and Lg with |[SAS’| = 2. Their tangent
A-weights have the form

i(ai_aj)a {Z7J}ZSAS/7
from which one concludes the following

Lemma 11.1.1. The only unbroken A-fixed chains in X are covers of lines
branched over fixed points.

11.1.7 Quantum product by divisor

Ford=1,2,... let
Q4 © Hriqaie(X x X)
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177 11.1  Quantum cohomology

be the following Steinberg correspondence

Qi =d(—1)""ev, [Mo2(X,dl)] (11.2)

virtual,reduced *

The sign (—1)"? is taken from the definition of modified Gromov-Witten
invariants, that is, it comes from pairing d¢ with

kx = c1(Gr) =nO(1).
The factor of d is introduced in ((11.2)) so that

Qquantum =h Z qdz Qd (113)

d>0
is the modified purely quantum multiplication by O(1).

Proposition 11.1.2. For all d > 0 we have
Qi=Q ==£6;. (11.4)

Proof. As a first step, we compute the push-forward modulo terms
supported on the diagonal. We do this by A-equivariant localization.

Recall that only unbroken maps contribute to localization of reduced
virtual classes. Suppose the marked points of an unbroken map f evaluate

to distinct points of XA. Then by Lemma [11.1.1| f has the form

fiP g Gr,
ramified over Lg, Ly € Gr*. In particular
Aut f =7Z/d,
and hence f contributes
—(=1)™ Buler’ H (f*TX)™" € Q(a),

to localization of Qq. Here Euler’ is the product of nonzero A-weights in the
virtual A-module H (f*TX).

To be precise, there are two zero weights in this module. One occurs in
HY(f*Tlss) and is taken out by the automorphism of a 2-pointed P!. The
other occurs in H'(f*T*(gs) and is taken out by passing to the reduced
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11 Cotangent bundles of Grassmannians 178

invariants. The minus sign appears because 7%/g ¢ has weight —h under the
C;-action while in ((11.3)) we take out a factor of h.
Since

FTX =T®T*, T=f*TGr,
Lemma [I1.1.3] below shows

Qd}p (_1)dimGr

- 11.5
Euler7, X x X Euler T}, Gr x Gr ( )

for any off-diagonal p € &%, that is, for any
p=(Ls,Ls), [SAS|=2.

This proves modulo a class supported on the diagonal.

To show the contribution of the diagonal vanishes, it suffices to note that
Q: annihilates the identity in cohomology and so does &;. Indeed, the fibers
of 7 are positive-dimensional over 2,._. O

Lemma 11.1.3. Let A be a torus and let T be an A-equivariant bundle on
P! without zero weights in the fibers Ty, To, over fized points. Then

Euler’ H'(T@ T°) = (~1)*7 77 +# Euler (T, ©T5)
where #z = dim H(T @ T*)*.
The sign in ([11.4) is easily determined from ({11.5)), but we will not need it

in what follows.

11.2 The stable basis

11.2.1 Tensor product structure

As usual, we define

M(n) = |_|M0,0(k7 n).
k
The A-action makes M(n) a tensor product
M(n) = M(1)®",  M(1) = 2 points.

178



179 11.2 The stable basis

We write
H (M(1),Q) =Ql0)® Q1) = Q*,
where
vik)y=Fkl|k) .
Similarly,

H (M@ = (@)= @& Qs
where we identify
subsets of {1,...,n} < {0,1}"

using indicator functions. In G-equivariant cohomology, we replace Q above
with the equivariant cohomology ring of a point.

11.2.2 Polarization

Recall from Example that we have a canonical choice for polarization
of any Nakajima variety. In the case at hand, this gives

Stabg |S) }Ls = Euler Hom(V,C"© V)
= (£1)%™ ¢ Buler 77, Gr, (11.6)

depending on the sign of . Here the Euler class is the product of A-weights.
Note the two possibilities in (11.6]) differ by an overall scalar, which means
that all geometric operators act canonically in the stable basis.

11.2.3 Classical r-matrix

We claim
8¢ = 0l(2)

with its natural action on Q? and, by tensor product, on H (./\/l(n)A) In-
deed, the classical r-matrix is computed as follows in terms of the matrix
units e;; € gl(2).

Proposition 11.2.1.
r =egp®e + e ®egp — o @eg — e10X epr -
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11 Cotangent bundles of Grassmannians 180

Proof. For M(1) ® M(1) this was computed in Section 4.1.2] In general, it
follows by additivity of the classical r-matrix. O

Other ways to write the r-matrix include
r = W®W—Z€ij®6]~i
ij
=—eQf-f®e+...,
where
e=ew, [f=-¢eun, wW=eypten,

and dots stand for a diagonal operator.

11.2.4 Quantum multiplication in stable basis

Recall the operators Qg are Steinberg correspondences. Therefore, by Theo-
rem their action in the stable basis does not depend on the choice of a
chamber € for A.

The following Proposition gives a direct verification of Theorem [10.2.1
for cotangent bundles of Grassmannians.

Proposition 11.2.2. We have

¢
Qquantum = hl——qg ef +...
where dots stand for a diagonal operator.

Proof. By Proposition [11.1.2] the statement to prove is
Ql = €f + ...

Since dim M*” = 0, theorem m gives
QalS) = Z(—l)dimG'(Stab_¢ |S") ® Stabe |S), Ql) |S") (11.7)
S/

The coefficient in ((11.7)) may be computed using ((11.6) and ((11.5) and recall
that we can set A = 0 in this computation, which makes stable envelopes
diagonal. For either sign of 6, this gives

0, |ISAS'| > 2,

S| QualS) =
F1Qals) {1, ISAS| =2,

proving the proposition. O

180



181 11.3 Yangian action

11.2.5

It is an interesting combinatorial and geometric question to compute the
transition matrix between the stable basis and the fixed-point basis in Hg(X).

In the quantum integrable system language, the fixed-point basis corre-
sponds to the eigenbasis at ¢ = 0, while the stable basis is the coordinate
basis, that is, the spin basis of the spin chain for X = T*Gr. Thus, the ques-
tion is equivalent to explicit diagonalization of the Hamiltonian at ¢ = 0.

For the inhomogeneous XXX spin chain, the answer was known to Nekrasov
and Shatashvili. The corresponding symmetric functions are rational analogs
of the interpolation Schur functions. Just like Schur functions may be de-
formed to Macdonald polynomials associated to root systems of type A and,
more generally, to nonreduced BC root systems, these rational interpolation
Schur functions naturally lie in the family of special functions studied by
E. Rains in [104].

In [107], D. Shenfeld shows how this identification is a example of the
general abelianization procedure for stable bases.

11.3 Yangian action

11.3.1 The Yangian of gl(2)

Yangians of finite-dimensional Lie algebras have been studied in great detail,
see for example the exposition in [I7, B3], 82, 83]. We recall Y(gl(2)) is gen-

erated by countably many generators, the coefficients ng) in the generating

series
g
Eij(u) = 65 + i hie{l2),

k>0

subject to the RI'T=TTR relations. These relations are written in terms of
the matrix

o - (1) B2l ) < End @ @Y (ot ')

and have the form
R(u —v)E(u) E(v) = E(v) E(u) R(u — v). (11.8)
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11 Cotangent bundles of Grassmannians 182

The equality in ([11.8)) is an equality in
(I1.§) € End(Q*® Q*) ® Y(gl(2))[[u~",v7']].

The R-matrix in is
Rw) = (1-2)/(1- 1) e Bnd@* @ @[],

u

where s is the permutation of tensor factors. The scalar factor, which plays
no role in ([11.8)), is chosen here so that R(u) equals the R-matrix for M(1)®
M(1) computed in (4.1)) for A= 1.

11.3.2 Evaluation representation

Consider the map Y(gl(2)) — End Q?* given by

Ei;(u) (5, . %)/(1 . %) . (11.9)

This takes E(u) to R(u) and is indeed a representation of Y(gl(2)) by the
Yang-Baxter equation. We denote by Q?(a) this representation precomposed
with the translation automorphism of the Yangian. It is well-known, and can
be seen as in Section [5.5.3] that

(] KerQ*(a1) ®- - ® Q*(a,) = 0. (11.10)

n=1

Traditionally, a different representation of the Yangian, namely
€ij
EU(U) — 5ij + 7 .

is called the evaluation representation. The two are related by a composition
of automorphisms

E(u) = E(—u)",  E(u) — f(u)E(u)

of Y(gl(2)), where the superscript 7" denotes transposition and f(u) = 1 +
O(u™') € Q[[u!]] is an arbitrary scalar factor.
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11.3.3 Comparison of Yangians

Let Yq denote the Yangian constructed in Chapter 5 This is an algebra
over k = Q[A]. The Yangian Y is graded by cohomological degree and &
has cohomological degree 2. Therefore, Y is uniquely reconstructed, via the
Rees algebra construction, from its specialization at A = 1, with the induced
filtration. We set A = 1 in what follows.

Proposition 11.3.1.
Y(gl(2)) = Yq

Proof. Since the generators of Y satisfy the RTT=TTR relation (5.10)), we
have a surjective homomorphism Y(gl(2)) — Y. Its injectivity follows from

([T10). 0

11.3.4 The center of Y(gl(2))

For any Lie algebra g, we have
Center U (g|u]) = U(Center(g)[u]),

see e.g. Section 2.12 in [83]. The center of U(gl(2)[u]) deforms to the center
Z of Y(gl(2)), which is freely generated by the coefficients in the expansion

qdet E(u) =1+ Z qdet, u™"
k>0

of the quantum determinant
qdet E(u) = Ej1(u) Egg(u — 1) — Egy(u) Ejo(u —1).
The quantum determinant is group-like
A qdet E(u) = qdet E(u) ® qdet E(u)

and
u—a

det E .
ae (U)Q2(a) u—a—1

Whence the equality of ideals

(qdetk>k>0 = (chk W>k>0 cZ. (11.11)
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11.3.5 The core Yangian

The nonequivariant Cartan matrix for @ is C = (2), which is invertible.

Therefore
YQ (= YQ .

The classical r matrix for the core Yangian Y equals
r—-Clwew= —%h@h—e@f—f@e,
where
h = €11 — €go € 5[(2) .

This is the classical r-matrix for s[(2). This means the core Yangian Y, is a
filtered deformation of U(sl(2)[u]).

Proposition 11.3.2.
Yo = Y(sl(2)).

Proof. Let 3 = gl(1) denote the center of gl(2). By deformation from
U(gl(2)[u]) = U(sl(2)[u]) @ U(3[u])

we get
Yo®Z =Yy =Y(gl(2) =~ Y(sl(2)QZ.

Taking the quotient by the ideal ((11.11]) gives the desired isomorphisms. [J

11.3.6

Baxter subalgebras in Y(gl(2)) appeared in mathematical physics as quantum
integrals of motion of the XXX spin chain with quasi-periodic boundary
conditions.

Proposition [11.2.2] and Section [6.5 shows the operator
Q = 01(0(1)) U+ Qquantum

of modified quantum multiplication by ¢;(O(1)) lies in the Baxter subalgebra
corresponding to

g=¢q"€GL(2).
Since the operator ¢;(O(1))u in H¢(X) has distinct eigenvalues, the algebra
of quantum multiplication equals the Baxter subalgebra in Y(gl(2)). This is
one of the most basic examples in Nekrasov-Shatashvili theory.
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Instanton moduli
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Chapter 12

———

Classical r-matrix and gl(1).

12.1 Setup

12.1.1 Moduli of framed sheaves

We now specialize our general discussion to the quiver () with one vertex and
one loop. We take ( = 0, 8§ > 0 and denote

(r,m) = (wy,vq).

The corresponding Nakajima variety M (r,n) is the moduli space of framed
torsion-free sheaves F with

tkF=r, c(F)=n,

on P2 see [88]. Framing means a choice of trivialization of F along P*\C2.
It implies ¢;(F) = 0. As usual, we set

M(r) =| [M(r.n).

In particular,

M(1) = Hilb = | |Hilb,
is the Hilbert scheme of points of C2.
Our goal in the rest of the paper is to make the general theory explicit in

this very important special case.
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12.1.2 Uhlenbeck space

The affine variety
U(r,n) = Moo(r,n)

is the Uhlenbeck compactification of the moduli of framed instantons. The
canonical map

M(r,n) — U(r,n)

takes a torsion free sheaf F to the vector bundle FvV together with the
support of F¥V/F, counting multiplicity.

12.1.3 Group actions
Concretely, M(r,n) is the GL(C™)-quotient of the spaces of quadruples
X, Xp:C">C", A:C"->C", B:C"—>C"
satisfying the equation
[X1, X5]+ AB =0 (12.1)

and stability condition: the image of A must generate C" under the action
of X, and Xs.

The framing group G,, = GL(r) acts by the automorphisms of C" or by
changing the framing in the sheaf description. The group Gegee = GL(2)
acts by

Xy g11 X1 + g12 X
. = , A=A, - B =det(g) B.
g <X2) <921 X1+ g2 X2> g g et(9)

in the quiver description. In the sheaf description, it acts by automorphisms
of P? preserving C2.
We fix a maximal torus A < GL(r) with
a = LieA = diag(ay,...,a,)
and take G = A x GL(2). Note that A is central in G.
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12.1.4 Fixed loci
By Example [3.2.2] we have

M(r)A = M(1)*", M(1) =|_|Hilb, .

In the sheaf description, M(r)? is the locus of direct sums

i=1
of ideals I; = C[xy, z5] = Oca.

12.1.5 Polarization

Our general prescription for polarizations of Nakajima varieties gives the
following for instanton moduli.

Following Example [3.3.2] consider the C*-action on C? that scales one
coordinate axis, say the xy-axis. This scales w with weight —1. One of the
components X©” is the following Quot-scheme

Qn = {F| 2209 <« F < 0¥} <« M(r,n).

It is middle-dimensional. Since w pairs C*-weight spaces of total weight 1,
it is Lagrangian. In the quiver description, it is given by

X,=0, B=0,

that is, by representations of one half of the quiver Q).
As out polarization, we take weights that are normal to @),. Those are

easily identified, giving
e=[1]](as —ai)™ (12.2)

for the component
Hilb,, x --- x Hilb,, = M(r)*.
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12.1.6 R-matrices
Our general theory produces an R-matrix
R(u) € End (Hg, (Hilb)®*) ® Q(ga)
which solves the Yang-Baxter equation with spectral parameter
u=a;—as.

Our goal now is to identify R(u) and the corresponding Yangian. We use the
boldface letter to denote this particular R-matrix. It will be characterized in
terms of the Virasoro algebra in Chapter [14]

12.1.7

As a first step, in Section we show the corresponding classical r-matrix

is the r-matrix for gl(1), modulo zero modes. The action of gl(1) on the coho-
mology of Hilbert schemes was constructed by Nakajima [86] and Grojnowski
[51]. Its extension to higher rank is due to Baranovsky [6].

12.1.8

In principle, R(u) may be computed from the R-matrix of Y(gl(c0)) using the
factorization in Theorem [£.3.1] see [I14]. In particular, the classical r-matrix
is very easy to determine in this approach. Here we take a different route to
the same result.

12.2 Baranovsky operators

12.2.1

We recall from [6] the definition of Baranovsky operators (. For k > 0,
consider the locus

B M(r,n+k) x C* x M(r,n) (12.3)

of triples (F', z, F) such that 7 < F and F/F’ is a length k sheaf supported
at x. We have [6]
dim*B =2rm+rk+1,

which is the middle dimension of the product. Note that B is G-invariant.
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191 12.2 Baranovsky operators

12.2.2

Next, B is a Lagrangian Steinberg correspondence between the first factor
and the other two, which can be seen as follows. We embed

(C2 = (Cl,Cg) — ((ZEl — Cl)k,l’g — CQ) € Hllbk .

Note this pulls back the translation-invariant symplectic form. Consider the
maps

Hilby x M(r,n) —— M(r + 1,n + k) <— Hilby x M(r,n + k)

|

U(r+1,n+k).

Here the horizontal arrows are formed by taking direct sums and the vertical
is the canonical projection to the Uhlenbeck space. It is clear that points on
the correspondence B map to the same points of U(r + 1,n + k).

12.2.3
The correspondence 28 defines a map
O : He(C?) @ Hg(M(r,n)) — He(M(r,n + k).

We define the operators S_j, k > 0, as the matrix elements of Oy with
respect to the C2-factor, that is

Bi(v) m=0Oxs(y®n), ~veHC?.

12.2.4
For k > 0, we define [;(7) as the matrix elements of the adjoint operator
0% : Hg(C?*) ® Hg(M(r,n + k) — Hg(M(r,n)) @K,

see Section A larger base ring K is required because the adjoint cor-
respondence is not proper and equivariant localization is needed to define it
as an operator. We will see that

K = o) | 1 |
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where
t
det62 ( ! t2> =11y € Q[g[(Q)]

is the determinant of the defining representation.
Also note that since we permute the source and target of Og, the operator
OF gets a sign, namely

(_1>Tk _ (_1>% dim M(r,ntk)+§ dim M(rn)

12.2.5

For r = 1, Baranovsky operators specialize to the original Nakajima oper-
ators, up to normalization. We denote them by ay(7v). It is a theorem of
Nakajima that these satisfy

[ (1), ()] = K Okqa T(71 U 72) (12.4)

see [86]. Recall from Section that 7 involves a sign. Since +; are coho-
mology classes on a surface,

T(V)Z—LQ%

where the integral is defined as an equivariant residue. In particular

(1) = _deiw . (12.5)

12.2.6

Since [k(7) is a Steinberg correspondence, there exist a Steinberg correspon-
dence fi(7)a that makes the following diagram commute

Stab¢

HE(M(1))® He(M(r))
,Bk('Y)AL lﬁk(’}’)
HE(M(1)® —22 o e (M(r))

for every chamber € and every k < 0. Here we use that A does not act on
the C? factor in (12.3]). By taking adjoints, the same holds for k& > 0 after
tensoring with K.
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193 12.3 Proof of Theorem [12.2.1

Theorem 12.2.1. We have
BrMa=Y 10 @a(y)® - ®1,
i=1
where o () acts in the ith tensor factor.

12.2.7
In particular, Theorem [12.2.1 and commutation relations (12.4]) imply

[ﬁn(/yl)? Bm('h)] =T 5n+m7_(’71 Y ’72) ) (12'6)

which is a theorem of Baranovsky, see [6].

12.3 Proof of Theorem [12.2.1]

12.3.1

By Theorem the operator in question is given by a correspondence
supported on BA. From definitions

BA — {(@Ix@J)} (12.7)
where I;, J; € M(1), I; < J;, and

supp J;/I; < {x}

for all 7. The connected components of B are classified by the second Chern
classes of [;, J;, and their dimensions are computed as follows

dim = 2 + Zmax (ca(L;) — co(J;) — 1,0) .

In particular,

BA = U %ﬁ“ U lower dimension,
i=1

where %5") denotes the corresponding correspondence for r = 1 acting in the
1th factor.
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12.3.2

The top dimensional components ’By) are irreducible. Therefore, to compute
the Lagrangian residue of 98, it suffices to find a smooth point b of 28 on each
of them.
By symmetry, we may assume i = 1. In (12.7), we take a point b € B*
such that
r=0eC?, I,=(zV2), J =0,

while 0 ¢ supp I;, supp J; for i > 1. Lemma [12.3.2] below gives a rational map
fiM(r k) x M(r,n) --» M(r,n + k)

which is an isomorphism in a neighborhood of b. Denoting the correspon-

dence (12.3) by B,.,, x, we have
f*(%r,n,k) = %T,O,k X diag/\/t(r,n)

in a neighborhood of b.

Note that polarizations in Theorem enter in the combination ey &y
Therefore, the residue of the diagonal is always the diagonal and the compu-
tation is reduced to the case n = 0.

12.3.3

The correspondence
Bor < M(r, k) x C?

has the following quiver description:
Brox = {B = 0,(X; —21)" = 0,(Xy — 25)" = 0},

where x = (1, z2) € C%. Our reference point b on it is given by

0 10 0
10 000
Xi=101 o , Xp=0, A=1¢g g o

Lemma 12.3.1. The variety ‘B, is smooth at b and its nonzero tangent

A-weights are

(a1 —a)®", i=2,...,r.

194



195 12.3 Proof of Theorem [12.2.1

Proof. In aneighborhood, the operator X;—x; will remain a regular nilpotent
and the (1,1)-entry of A will remain nonzero, hence the triple (X7, X5, A)
may be brought to the normal form

T 1 % =
1 0 = =

by a unique element of GL(n). Here P is a polynomial of degree < n and stars
stand for arbitrary numbers. Thus a neighborhood of F in B is isomorphic
to C™*1. The computation of the tangent weights is straightforward. ]

12.3.4

In particular, we see that
TvB/T,B" = TyQi/Tu Q%

as A-modules.
Since 9B is smooth at b, its Lagrangian residue is +8B”. Further, the

normal weights to B agree with the polarization ((12.2)). This finishes the
proof modulo the following lemma used above.

12.3.5
Lemma 12.3.2. Suppose the eigenvalues of X1 may be partitioned

Eigenvalues(X;) = |_| E;

into a nontrivial disjoint union. Then a neighborhood of (X1, Xa, A,0) in
M(r,n) is GL(r)-equivariantly isomorphic to an open set in [ [ M(r, |E;|).

We are grateful to the referee for pointing out that this statment, with a
different proof, is the factorization property of [11].

Proof. For nearby X; we can still group the eigenvalues according to the
same partition. We denote

P:C"—>C", i=1,...0Q
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the corresponding spectral projectors.

The projectors P; are canonically defined and, in particular, commute
with the centralizer of X; in GL(n). We thus may assume they project onto
coordinate subspaces and replace the GL(n)-quotient by [ [ GL(|E;|). For
each i, the quadruple

(Z1,7 WMA’L?B]) = (P’L X17 P7,X2 Pla PZAa BPZ)

solves . Because the starting point (X, Xs, A,0) is stable, each of
these blocks remains stable in a certain neighborhood. Thus we get a map
to [ [M(r, |E;]). Clearly, it is GL(r)-equivariant.

The original data (X, X3, A, B) may be reconstructed as follows. Since
> P, =1, all we need is to recover

Wij = B Xy P,
for © # j. It is a solution of

which exists and is unique because the spectra of Z; and Z; are disjoint.
m

12.4 Classical r-matrix

12.4.1
Denote k = H¢(pt) and let
)€ Hg(M(1,0)) =k
be the identity element. We abbreviate
a, = ap(l)
in this section. It is a theorem of Nakajima [86] that the map
k[a_1, 9, a3,... ] = Hg(M(1))

given by
[ f‘> )

is an isomorphism. We will use it to identify its source and target.
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197 12.4 Classical r-matrix

12.4.2

We define
F= K[Oé_l, a_9,0_3... ]

The operators a,,, n > 0, act on F satisfying (12.4)) and annihilating the
vector
vac=1=|).

Following the tradition in quantum field theory, F is called a Fock space. The
operators «,, generate a Heisenberg algebra in End(F).

12.4.3

Consider
R(u) e End (F®F) ®x Q(ga)-

By Theorem [12.2.1} it commutes with the operators
ﬁn(l)A = Clln@l + 1®Qn

We define
ar=0,®1+1®aq,.

These satisfy
[Oéi, OJ?] = 2/{77'(1) 5k+l 55777 s (128)

where €,1 € {+} as a consequence of ((12.4)).
We see the operators a;” generate two new commuting Heisenberg subal-

gebras of F® F and R commutes with one of them.

12.4.4

Using the operators a;-, we can write

FRF=F"®F . (12.9)
We denote by End~ the image of End(F~) in End(F®?),
Lemma 12.4.1. The operator R belongs to End™.

Proof. The operators o act irreducibly on F* and commute with R. ]
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12.4.5

Lemma 12.4.2. An operator in End™ is uniquely determined by its matrix
elements in the subspace
vac® F c F®?,

Proof. Let A € End™ and suppose that
(A-vac®uy,vac®uvs) =0 (12.10)

for all vy, vy € F, while
<A Ha:m vac®vac,Ha:w vac®vac> #0 (12.11)

for some partitions u, v. We may further assume, the partitions y, v in (12.11])
are chosen minimal with respect to |u|, |v|. Then taking

vy = Hoz,m vac, vy = Ha,w vac,
in ((12.10) and expanding

we get a contradiction. O]

12.4.6

The subspace
vac®F c H.(M(2)") ® K

is a vacuum subspace in the sense of Section [4.7, By Theorem [4.7.1] the cor-
responding matrix element of R(u) is the operator of classical multiplication
by

e(N-) 14 hrk N_ N
e(N_.®h) a; — as

(12.12)

where
—UuU = a9 — ay

is the A-weight of N_. By formula (2.15)),

rkN_‘M( n.

LO)xM(1n)
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199 12.4 Classical r-matrix

In the sheaf interpretation, the unstable normal bundle N_ to
MA)s3I—O0@IeM(2)
is the tautological bundle of the Hilbert scheme
N_ =~ Taut = H°(O/I) .

Hence rk N_ is indeed the number of points.

12.4.7

Consider the operator

Lo = — Y, a_x(1) ax(pt)

k>0

where
pt = [0] = detc2 € HZ(C?)

is the class of the origin. Note that since pt and 1 are proportional, they may
be distributed arbitrarily between the two factors. From

[ (pt), cu(1)] = —k Ok,
one has the following

Lemma 12.4.3. Ly acts by multiplication by n in H (M(1,n)).

12.4.8

Theorem 12.4.4. The classical r-matriz for M(1) x M(1) equals

r=—> a (1), (pt). (12.13)

n>0

Proof. This commutes with a;" and has correct vacuum matrix elements by

Lemma [12.4.3] We conclude by Lemma [12.4.2] ]
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12.4.9
Expanding out ((12.13)), we get the following formula for the action of r on
cohomology of M(ry) x M(rs)

r=veW+wv+ > Bi(1)® Bilpt) (12.14)

k#0

where
W=7, V=20

act by multiplication by the rank and instanton charge, respectively, compare
with (5.23)).
12.4.10

We conclude -
g = ol(l)® K/zero modes,

where zero modes (or constant loops) refer to central elements Gy(). The
brackets in this Lie algebra

v, Bn(M)] = —nBa(7)
[ﬁn(’y)v ﬂm(Vl)] = 7(7 Y 7/) N Opim W, (12‘15)

are a special case of the relation (5.11)).
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Chapter 13

Free bosons

13.1 Fock spaces

13.1.1

Anticipating application to algebraic surfaces other than C2?, we will put the
commutation relations in a more abstract framework, in which the
insertions ~ take values in a general commutative Frobenius algebra H over
a ring K.

To go back to framed sheaves on C?, one takes

H - H(C) [ ] K= Helpt) | 5] (13.1)

with the trace map
7:H—-K

given by 7(v) = — {., 7. We denote this Frobenius algebra H(C?).
Most of the material in this section is completely standard and is recalled
mainly for setting up the notation.

13.1.2 Heisenberg algebras

Let H be a free K-module with a nondegenerate symmetric bilinear form
(-, ). Consider the space

H[z™] = HRQ K[z]
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13 Free bosons 202

of polynomial loops, that is, Laurent polynomials f(z) with values in H. This
has a natural skew-symmetric form

{f.q} = J(df,g% f:fﬁ e (13.2)

omiz

For example
{ve",mz""p =n(y,m), ~,neH.

The form makes H[2*!] @ K a Heisenberg Lie algebra. We denote by
$Heis = Heis(H) its universal enveloping algebra and denote by ay, () € $Heis
the image of v2z".

Note that $eis has a center, generated by the identity and the zero modes
Qg (7)7 v E H.

13.1.3 Translation automorphisms

The additive group of H acts on $eis(H) by automorphisms

Sy (an(n)) = an(n) = 0o (v,m), v,meH.

We denote
Heis™ = K[H,qq] x Heis,

where K|[H,qq] denotes the group algebra of the additive group of H. By
definition, it is spanned by linear combinations of ¢, v € H.
Introduce the corresponding Lie algebra elements

g (7) = log s,

which satisfy the relations

[an (7)), Qtog(m)] = dno (75 7) -

13.1.4 Fields

The commutation relations in $eis™ are best summarized using fields, or
generating functions. Consider

an () -
n

D(7; %) = cog(7) + ao(y) logz — (13.3)

n#0
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203 13.1 Fock spaces

where z € C* is a variable. Then

[(7: 2), p(m;w)] = (7,1) (log(z — w)}aj=pu — log(w — 2)juf>2) -

Here
w/z)"
10g(2 — w)‘z|>‘w‘ = IOgZ — Z ( / ) s

n>0 n

is the series expansion in the region |z| > |w|. We will also consider
a(v;2) = 0(v;2) = D an(y) 27", (13.4)

where

0
(3—2&.

The coefficients of the fields (13.4) generate $Heis(H).

13.1.5 Fock spaces

The Fock representation of $eis™ is generated by the vacuum vector |0) such
that

an(7)[0) =0, n=0.

We denote
m) =640 .

These satisfy
ao(7) ) = =(v.n) [m)

and generate an irreducible $eis-module that we denote F(n). We have
F(n) = F(0) = S (2 'H[2""]) as vector spaces,

the first isomorphism being the action of ¢,. The module structure of F(n)
varies with 7, but only in how the center of $jeis acts.
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13.1.6 Adjoints

There is an anti-involution on $eis. defined by

(V) =a-n(7), < =6,

that is,
d(7,2)" = —¢(y,27").

The Fock representation has a unique inner product for which |n) are or-
thonormal and the anti-involution * coincides with taking the adjoint oper-
ator. We will use this inner product to define matrix elements of operators.

13.1.7 Normally ordered products

Consider a product a(7,z) a(n,w) of two fields. Its matrix elements are
given by convergent series in the region |z| > |w|. At z = w they have a
singularity. This is regularized by commuting all annihilation operators to
the right. In other words, one defines the normally ordered product by

a3, 2) el w) = (1.0) -~ pHialnat s, (135)

Z—w
where the first, singular, term is to be expanded in the region |z| > |w|. The
normally ordered term in (13.5)) is regular at z = w, in fact

(ra(y,2)an,w): fi, fo) € K[z*' wt!] (13.6)

for all fi, fo in the Fock space.

By linearity, we can say that the normally ordered product : (7, 2) a(n, 2):
takes an element v ® n € H®? as an argument.

A generalization of (13.5)), known as Wick’s theorem, explains how to
normally order any product of normally ordered monomials in a(7;, ;). See
for example [45], 25, [58].

13.1.8 Grading

Recall we assume ( -, - ) to be nondegenerate and let g=! € H®? be the inverse
quadratic form. Then:a?:(g7!, 2) is a well-defined operator-valued Laurent
series, from which we can extract the constant term {:a?: (¢!, 2). The
following computation is standard
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205 13.2 Insertions and coproducts

Lemma 13.1.1. Let the Fock space be graded by
deg|n) = (n,n)/2, dega_n, =n.
Then %J:aQ (971, 2) is the the grading operator.

This is a generalization of Lemma [12.4.3]

13.2 Insertions and coproducts

13.2.1

Note that in we evaluate both operators at the same point z = w € C*,
but they still take two distinct cohomology insertions v and 7, or, equiva-
lently, a element of v ® n € H®? as an argument.

To write an operator with a single cohomology insertion, we need a coas-

sociative coproduct
A:H— H®?,

and its iterates
Hs~y— 2" e HO .

We can then construct an operator

def n

" (,2) =t Aan

F (7" 2)

which depends on a single point z € C* and also depends linearly on a single
cohomology insertion ~.

13.2.2
For example, for H = H¢(C?) [ L ] we have

detCQ

1= -1Qpt=—pt®1.

This is because the comultiplication, as adjoint to multiplication, gets the
1 9.
sign —1 = (—1)5d1m‘c2. Therefore, the formula (12.13]) can be recast in the

following form
r= —J:(a_)Q: (1), (13.7)

modulo zero modes (7).
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13.2.3

Because of the Frobenius algebra structure on H, Wick’s formula for the
operators:a™: () takes the following particularly nice form.

For any symmetric Frobenius algebra, there is a canonical central element
e € H such that
m(y?) = ey
for all v € H. Here m : H®? — H is the multiplication map. This is
associated with gluing a handle in the context of 2-dimensional topological
quantum field theories, see for example [65]. One has

T(e) = rkx H.

In particular, if H = H*(S) then this is the Euler characteristic of S (recall
we assume H is commutative for simplicity).

Lemma 13.2.1.

o (1) (21) ™ (1) (22) =

min(n,m
2

k=0

)
cr(z1, 20) 1" F(2) ™ F (2y) (fyl”ygek’l) , (13.8)

where

Ck(zl 22) _ (_n)k(_m)k ( 2122 )k ' (139)
’ k! (21 - 22)2

Here (n)y = n(n+1)--- (n+k—1) and the combinatorial factor in is the
number of ways to form & pairs of elements from {1,...,n} and {1,...,m},
respectively.

Two terms in (|13.8) require a special discussion. For k = 0, the insertion
is defined to be

7 @ e B,

For n = m = k, the whole term is defined to be

cr(21,22) (11725 71).
Proof. This is an exercise in matching the Wick’s formula with the graphical
calculus for Frobenius algebras, as explained, for example, in [65]. The tensor

operations
H®2 N H@(n—i—m—Qk)
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207 13.3 Virasoro algebra

that arise from Wick’s formula, are interpreted graphically as surface of genus
k — 1 with two incoming and n + m — 2k outgoing holes, hence equal to

_1\A(n+m—2k
Y @72 — (et )2

Note for k£ = 0, the surface is disconnected, whence the need to consider
this case separately. The other special case n = m = k is the case of no
outgoing holes. In this case, there is only the scalar operator left in Wick’s
formula. 0]

It is straightforward to generalize this Lemma to more than two normally
ordered monomials.

13.3 Virasoro algebra

13.3.1

For an arbitrary x € Hl, define

T(v,k) =10’ (7) + da(vk) — 27(v k). (13.10)

This field generates a Virasoro-like subalgebra of the Heisenberg algebra,
known as the Feigin-Fuchs or background charge Virasoro algebra. The state-
ment for an arbitrary H should also be considered known, see for example
the discussion in Section 5 of [67].

13.3.2

We denote by L, (7, k) the coefficients of T'(, ), that is,
T(y,k) = > La(y,5) 27"
nez

Theorem 13.3.1. The operators L, (v, k) satisfy
[Ln(71), Lin(12)] =
n®—n

(n—m) Lygm(m 72) + 7(1172(e — 1252)) 5n+mT

These are the familiar Virasoro relations adorned with cohomology labels.
The element

(13.11)

c=e—12xeH (13.12)
plays the role of the central charge.

207



13 Free bosons 208

13.3.3 OPEs

The most efficient way to encode the commutation relations for the operators
T is via the operator product expansion. This goes as follows. Let the fields

Az) = Zan z ", B(z)= Z bn 27",
neL neEL

satisfy a commutation relation of the form

46) B = X o) (w2 ) oGe,

k=0

where §(z,w) = >, - (z/w)" and Ci(w) are some fields like A and B. Then
A(2)B(w) = [A_(2), B(w)] +: A(2) B(w):

N Zk: Cr(w) <wa%)k - i”w (13.13)

where A_(2) = >, _,a, 2™ and ~ means equality modulo terms that remain
regular as z — w. In particular, in (13.13)) we dropped the normally ordered
term.

13.3.4 Proof of Theorem [13.3.1]
Let

W ERwo 1 B
G_Z_w_ea:/Q_e—:c/Q’ x_ln(’z/w)v

denote one of the Green’s functions of the ¢ operator on the cylinder. Since
we will only deal with expansions as z — w, we may ignore the monodromy

of G.
Proposition 13.3.2. The field T satisfies the following OPE
T(71)(2) T(72)(w) ~
LG 7(v1 (e — 126%)) + 2G* T(172) (w) + G 0T (17y2) (w) ,  (13.14)
where e € H is the handle-gluing element.
Proof. Direct computation using Lemma [13.2.1] O
This proposition finishes the proof of Theorem [13.3.1}
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209 13.4 Reflection operator

13.3.5 Lowest weight
From definitions, we compute
L.(v,&)|n) =0, n>0,

while

Lo(v, &) [n) = 3 7(v(n* — K%)) In) .

For v = 1 and x = 0 this specializes to Lemma [13.1.1l The element
d=1i(’-r’)eH (13.15)

should thus be viewed as the conformal dimension of |n), that is, the lowest
weight of the Virasoro module F(n).

13.3.6 Irreducibility
We have the following standard

Lemma 13.3.3. The Virasoro module F(n) is irreducible for generic n.

Proof. For n — oo, Virasoro algebra degenerates to Heisenberg algebra which
acts irreducibly. ]

13.4 Reflection operator

13.4.1

Lemma implies for generic , F(n) is a Verma module for Virasoro
algebra with central charge (13.12]) and lowest weight . Note, however,
that the map

(n, k) = (d,c)
is many-to-one, in particular, the 4 points (7, ) give isomorphic Virasoro
modules for generic parameters. This implies the following

Proposition 13.4.1. For generic n and any choice of signs, there ezists a
unique, up to multiple, operator Ry y that makes the following diagram

F<[7> o F(ln)
F(in)&F(in)
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commute. It depends rationally on n, k € H.

The first + in R4 1 is for 7, the second — for k. The intertwiner Ry 4 is
a rational function of 1, kK € H because it solves linear equations in which 7
and x enter polynomially. We normalize it so that

RELEQ |77> = ‘5177> .

13.4.2
In down-to-earth terms,
Res | [l (i k) In) = [ Lo (i, £5) [£m)

for all partitions p. For generic 7, these vectors form a basis of F(£n).
In particular, R4+4 preserves the grading by |u|, hence is a direct sum of
finite-dimensional operators.

13.4.3

It is easy to see that
R__a,(v)RZL = —an (7). (13.16)
Thus of the four operators R4 only one is really nontrivial. Also, we note

n=0=R, =R__. (13.17)

13.4.4

The operator R_, is known as the reflection operator in Liouville CFT, see
[118], while we will identify R(u) with the operator R, _ for

H = Ho(C?) |25 |
in Chapter [14 Thus, the Liouville reflection operator will be identified with
RY = (12)R.

The Yang-Baxter equation satisfied by R(u) is a new and unexpected aspect
of the theory.
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211 13.4 Reflection operator

13.4.5

In addition to the inner product discussed in Section [13.1.6] the action of the
Virasoro algebra equips the Fock space with the Shapovalov inner product,
such that

L;fl = L—n7
where dagger denotes the adjoint operator with respect to the Shapovalov
product.
We have

R, LL =L, R,

therefore R_, is precisely the operator that relates the two inner products.
In particular, the determinant of the graded pieces of R is very closely related
to Kac determinant for Virasoro algebra, see [56, [40]. We will see the classical
results of Feigin and Fuchs on it from a new perspective in Chapter
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Chapter 14

The full R-matrix

14.1 Zero modes

In Section we identified the Lie algebra gq for instanton moduli
M(r) with the algebra g/I(T) modulo the zero modes. On the other hand,
we saw in Chapter [L3| the convenience and importance of including the zero
modes in the considerations.

Later, a different normalization of R(u) will be introduced which will
reconcile these two points of view. For now, until the Section [14.3.1] we set

zero modes to zero.

14.2 Cup product by divisor

14.2.1

Generalizing the formula for r, we define

1 n

These are examples of Fourier coefficients of vertex operators, see e.g. [45], [58].
The following operator €2, while not a Fourier coefficient of a vertex operator,

plays an important role in the theory.
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14 The full R-matrix 214

14.2.2
Define the operator || by

0] - 2" = |n|2".

This is a composition of ¢ = zdilz and the Hilbert transform. We define

Q- lf;aw\a:u) = Y na_san(1?).

2 n>0

14.2.3

The operator Q appears in the following formula due to M. Lehn [66]. Recall
that
O(1) = A™ Taut, Taut =V, = Hg,(F(—1))

is the ample generator of the Picard group of M(r).

Theorem 14.2.1 ([66]). The operator of cup product by c;(O(1)) in H+(Hilb)
15 given by

01(0(1)) U ---=—<I>3+(a—%h)<I>2+%hQ. (141)

Here a is the weight of the framing torus A =~ C* that acts trivially
on M(1) itself, but nontrivially, namely with weight a, on the tautological
bundle. Such an insignificant additional parameter is usually suppressed and,
in particular, it is not present in Lehn’s formulation.

Lehn’s theorem may be also deduced from the factorization of R(u) into
R-matrices for Y(gl(o0)) given in Theorem [4.3.1] see [114].

14.2.4

Lehn’s theorem identifies the operator of cup product by ¢;(O(1)) with the
second quantized trigonometric Calegero-Sutherland Hamiltonian, see for ex-
ample [19] for a comprehensive discussion.

The explicit form of the Calogero-Sutherland operator in the basis of
power-sum symmetric functions (that is, in the natural basis of the bosonic
Fock space) was computed by Richard Stanley [117] and rediscovered many
times since. The equivalence between Lehn’s and Stanley’s formulas was

214



215 14.2  Cup product by divisor

noticed, apparently, by many people, [76] being one of the early references,
see the discussion in [19].

Note that classes of torus-fixed points in Hy(Hilb) are trivially eigenfunc-
tions of cup product operators and their identification with Jack polynomi-
als, that is, CS eigenfunctions, was noted earlier, see in particular [85]. At
about the same time, it was recognized by Mark Haiman that the more gen-
eral Macdonald polynomials correspond to the classes of fixed points in the
equivariant K-theory of Hilbert schemes, see for example [52].

14.2.5

We will see the analogous integrable system for M(r,n) is a coupled r-tuple
of Calogero-Sutherland systems. The coupling is triangular, so the spectrum
is additive, which is obvious from the geometric description of torus-fixed
points. Independently of our work, the same quantum integrable system
appeared in [28].

The algebra of operators of quantum multiplication gives a one-parameter
deformation of cup product operators and thus a deformation of the Calogero-
Sutherland quantum integrable system. It has been identified with the quan-
tum Intermediate Long Wave equation [94]. In particular, this allows to de-
termine the spectrum of the latter as well as to give an explicit construction
of integrals of motion.

14.2.6
Taking the expansion ((12.12]) one step further, we get
e(N_) - h 1tk N he(O(1)) + 5 A2 rk(rtk +1) .

e(N_®h) u u?

where u = a; — ag and ¢1(O(1)) is the operator from Theorem [14.2.1| with
a = 0. This is because we already accounted for the fact that N_ has weight
—u with respect to the rank 2 framing torus.

(14.2)

14.2.7
Proposition 14.2.2. We have
h _ h _ h2 ~\2 -3
R(U)=1+E‘I)2 +E@3 +ﬁ(¢2> —i—O(u ) (143)
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14 The full R-matrix 216

Here and in what follows, ®. = denotes the result of substituting = for ¢ in
the definition of ®,,.

Proof. Denote by P the orthogonal projection onto vac € F. We compute

PO s PO = oY
P (@;)*P0 = (8)" + Q@ (14.4)

where upper indices like the one in P denote an operator acting in the
corresponding tensor factor of F®QF. It is very instructive to see how Fourier
coefficients of vertex operator produce something which isn’t one upon taking
vacuum matrix elements.

Now the result follows from comparing (14.1]) with (14.2). O

Note, for example, that

K K B2
R(—u)pp =1 — —®; — — &5 (®;)° +O(u™®),

+ R
U w2 3 2

because the permutation of tensor factors flips the sign of a~. This illustrates
general results on unitarity of R-matrices, see Section [4.5]

14.2.8

We now consider an (r + 1)-fold tensor power of F and denote by

the Heisenberg operators in the corresponding tensor factors. We denote

P —

n

1 % I\
] H(a® — o) (1)

and
Q) — Z na@zagj)(lA) )

n>0

In particular, @;12) =&  and Q) is the operator acting in the ith tensor
factor. Generalizing (14.4), we compute

PO el PO — P + QUI. (14.5)
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217 14.3 Cup product by divisor

14.2.9

We consider X = M(r) and the action of the maximal torus A of GL(r)
on it. Fix a chamber € c a and denote by Q. the operator that makes the
following diagram commute

For — 2 HU(M(r) @K
Qe Lu 1(0(1))
®r Stabg .

Consider the following modified step function

1, x>0,
Q(:C): 1/27 r=0,
0, x <0,

and define
oe(i, j) = o ((a; — aj)le) -
Theorem 14.2.3. The operator Q. is given by

i=1 Q=1

This is a special case of Theorem [10.1.1] We recall the proof.

Proof. Using Theorem and equation ((14.2)), in particular, the operator
Q. may be computed from the 1/u? coefficient of the R-matrix from Example

4.2.4. We substitute the formula from Proposition [14.2.2| and expand using
(14.5)). This gives the result. [

14.2.10

Note for the standard chamber €, we have

r

> oelif) @0 = 4 [B1e18: (1) + 5 Y [ 2al? (14.7)

ij=1 i<j
where
B=aV+. ... +al.

For general €, the final sum in ([14.7)) is over all 4, j such that a; —a; is positive
on €.
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14 The full R-matrix 218

14.3 [R-matrix as a Virasoro intertwiner

14.3.1

Theorem 14.3.1. The operator R(u) is obtained by substitution

1 U 1
a=—ao , =—, KkK=——7=h. 14.8
=7 7 (14.8)
into the Virasoro intertwiner R, _ for H = H(C?).
Here u = a; — ay and H(C?) is the Frobenius algebra (13.1). The square
roots in ([14.8]) are needed because of the factor 2 in ((12.8). In other words,
they are there because the vector (1, —1) has length /2.

14.3.2 Proof of Theorem [14.3.1]
From Lemma [12.4.1] we know that R(u) acts only in the F~ factor in (12.9)).

To find out how it acts in F~, we will use the intertwining relation with the
operators Q. for the two chambers

alzag.

We express Qg in terms of a® and note that a™ commutes with R. In
particular, the first term in the right-hand side of ((14.7) commutes with R.
Therefore we have, for €, = {a; 2 as}

~2Qu =t g [at a0+
Joz+ <a2 ; Do igaa) (1), (14.9)

where dots stand for terms that commute with R.
Since R commutes with a™, it has to intertwine the coefficients of its
modes in (14.9)), therefore it has to intertwine the operators

Ti(y)=-:(a)*:(y) + (a2 N+ h &a‘) (7) + ... (14.10)

for all v € H;(C?). Here dots stand for a scalar operator that will be fixed
In a minute.

218



219 14.4 R-matrix as a Virasoro intertwiner

Strictly speaking, since at does not include zero modes, the above ar-
gument shows R intertwines all coefficients of T except the constant term
§T.(v). However, this constant term can be obtained as commutator of
other coefficients of T';, by Virasoro commutation relations.

We now compare (14.10) with (13.10). The two operators become iden-

tical if we substitute

and make the zero mode present in (13.10)) act via the identification
Hg (M(2)%) ®K = F(a)) ® F(as) . (14.11)

This identification fixes the constant term left as dots in (14.10]). Thus R(u)
is identified with R, _ by the uniqueness of the latter.

14.3.3 The determinant of R(u)

By construction, R(u) is a product of two triangular operators, namely of
the composition

. Stabe . Restriction .
He(X") =25 Hg(X) =252 He(X%),

and the inverse of the analogous composition for the other chamber. Each
of these operators has simple diagonal parts, yielding a factorization for the
determinant of the graded pieces of R. This gives an alternative derivation
of the product formula for the determinant of the Shapovalov form [56], 40].

14.3.4
From ({13.16)) and (13.17]), we conclude

R(0) = (12)
where (12) is the permutation of the two factors. This is because
(12)a(12) = —a~
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14.4 The 1/u expansion of R

14.4.1

In this section we derive an expansion of log R(u) in inverse powers of the
spectral parameter u. We write

uo _ _
T(y):=—50 (N+T M, Ti=g:(@):(y) 500 () +...,
where dots stand for a constant term that cancels out of the equation

RT,. (VR '=T_(v). (14.12)

We look for solutions in the form

R = exp (Z %)

n>0

where, in particular,

is, up to normalization, the familiar classical R-matrix. We denote by R(™ =
(n) : o .
exP ( Xo<n<m ru—n) the successive approximations. The recurrence relations

for n > 1 take the form
[r("), a’(v)] = 2[u""""] exp(ad(log R(”’l))) T (7). (14.13)

where [u~"*!] denotes the coefficient of u~"*'. These fix r™ uniquely up to
an additive constant. The constant is determined by the requirement that
r(™ annihilates the vacuum vector.

14.4.2
Solving equations , we obtain
1 ¢ [ (@)
I T P f; (0™)?2: (he) (14.14)
12 12
1 2
kD) (0a™)":(2h% + he)
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where
e = —detcz € Hg(pt)

is the handle-gluing element. Of course, since our Frobenius algebra is 1-
dimensional, all cohomology insertions may be converted to coefficients in
the formula.

14.4.3

Further structures in this expansion will be discussed elsewhere. Here we
only note the following. The normally ordered polynomials in the field o™
and its derivatives are, from definitions, verter operators in the Heisenberg
vertex algebra. Integrals of such operators are known as residues of vertex
operators. They act as infinitesimal automorphisms of the Heisenberg vertex
algebra.

Theorem 14.4.1. The logarithm of R is a residue of a vertex operator, that
18

r(™ = f :Py(a”, 0, *a,...;hye): (1),
for some polynomaials P,.

Proof. The commutator of a vertex operator with a residue of a vertex op-
erator is again a vertex operator. Therefore, by induction, the equation for
r™ has the form

[r(”), o ()] = vertex operator-.

One can see explicitly that this equation is solved by a residue of a vertex
operator. O

14.4.4
Also note that in the grading such that

degax =degh =1, dege=2
the polynomial P, is homogeneous of degree

deg P, =n+2.
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Chapter 15

Quantum multiplication for

M(r,n)

We can now return to the formulas for quantum multiplication for M (r,n)
using the computations of the last chapters.

15.1 Explicit formulas

Let us first state explicitly the operator for modified quantum multiplication
by ¢1(O(1)). We will express them in terms of the Heisenberg operators

oz,(f)(pt) and oz(_zzg(l) for £ > 0 and 1 < ¢ < r. These satisfy the commutation
relations

[ (pt), a4 (1)] = ik = 6 k- 7(pt).
Up to a scalar operator, we have

Q = Cubic + Quadratic + Purely Quantum

where we have decompose the contribution of classical multiplication into
cubic and quadratic expressions in the Heisenberg generators. The formula
for the cubic term is

: o1 i i i i i i
Cubic = Z ~5 2 (tltgoz(_)n(l)a(_ll(1)a£lm(pt) + oz(_zl_m(l)ag)(pt)a&)(pt» :
i=1

n,m>0
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15  Quantum multiplication for M(r,n) 224

The classical quadratic term is

Quadratic = — ZT: Z(tl + 1) - (a; + L= n) : agzl(l)a,(f)(pt)

1=1n>0 2
+ Z Z ti+t2) - aY) (1)0‘7@([3’5)
1<jn>0

The purely quantum term is

Purely quantum = (¢ + o) 2 1n_qqn - Bn(1)Ba(pt),
n>0

where

Bon(1) = 35 al5(1) and fu(pt) = 3 a)(pt)

are the Baranovsky operators.
We can determine the scalar discrepancy as follows. For r > 1, there is
no correction required. For » = 1, we need to add the scalar term

Z oz_n an pt

—(t; + tQ
—q n>0

This follows from the evaluation of Q - 1 which comes via the following
lemma.

Lemma 15.1.1. We have the following vanishing statement:
Br(pt) -1 =0, ifk>2 ork=1,r>2. (15.1)

Proof. The dimension of the fiber of the punctual Baranovsky correspondence
in ((12.3) over a generic point of M(r,n) is

r-k—1

which is positive under the hypotheses of the Lemma. Therefore, the push-
forward of the fundamental class under this projection vanishes. O]
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225 15.2 Generation statement

15.2 Generation statement

As a corollary, we can deduce the following:

Theorem 15.2.1. The divisor ¢;(O(1)) generates the quantum cohomology
ring of M(r,n).

Proof. 1t suffices to show that Q(q, 1,2, a1,...,a,) has distinct eigenvalues
for generic values of the parameters.
First, notice that by taking the substitution

th=tto =t a =ta

and studying the limit
1
= 1' —
Qo tgg) tQ
as t — oo, we can ignore the cubic term, and show the remaining operator

has distinct eigenvalues.
Forn > 1, let

V, = P Qe
i=1
We have an identification

F& = Sym*(P Vi)

@l(l) to act by multiplica-
tion by el on the right-hand side. In other words, if we think of the left-hand
side as r-tuples of partitions, then the right-hand side is the decomposition
into parts of size k.

We can decompose Qg in terms of V,, as follows. Let

r 1—
An(q,al,. . ,CLT) = —nZ (ai + Tn) Em + n2ZEJZ
i=1

1<J

characterized by sending vac®” to 1 and requiring o

n2qn
1—¢q 7

+ i

be a matrix valued function acting on V,,, where Ej; is the matrix with 1
in position (j,7) and 0 elsewhere. We extend A,, by zero to an operator on
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15  Quantum multiplication for M(r,n) 226

@ V,, and, by the Leibniz rule, to a derivation D(A,,) on Sym*(@ V},). Then

it follows from our formulas that
Qo = ). D(A,).

In particular, the eigenvalues of Qq are non-negative linear combinations
of the eigenvalues of A,. The nondegeneracy of the spectrum of Q is a

consequence of the following lemma. O
Lemma 15.2.2. For very general values of ay,...,a, and q, there is no
nontrivial finite linear relation

Dl =0 (15.2)

between the eigenvalues {fy,(f)} of An(q,aq,...,a,), with ¢, ; € Q.

Proof. Suppose otherwise. Then there exists such a relation that is valid for
all values of parameters for which the operators A, are well-defined. Let n
be the largest index appearing in the relation with some nonzero coefficient
Cn,i-

Fix a base point p = [¢ = 0,a1,...,a,] € C x C*" so that the a; are
distinct. The eigenvalues of A, (p) are

. 1—
'y,(f)(p)z—n(aﬂr 2n) , =1,

Let U < C x C*" be the complement of the discriminant loci for A;(q, a;)
with j < n; each A; has nondegenerate spectrum over U. Since p € U, we
know that U is nonempty.

Let ¢ = €™/ be a primitive n-th root of unity. Choose an analytic path
[':[0,1) — U such that I'(0) = p,

lin%F(s) = (¢,ay,...,a.),
and that I" meets the hypersurface ¢ = ( transversely at this limit point.
As q¢ — (, the last term in the formula for A, dominates the others. Since
the matrix »3; ; Eij has eigenvalues {1,0,...,0}, it follows from perturbation
theory of linear operators that one of the eigenvalues of A, goes to infinity
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227 15.2 Generation statement

on the order of qu as s — 1, while the others grow at a slower rate (or
1)

remain bounded). Without loss of generality, we can assume that it is v, .
Furthermore, for j < k, the operator A; has a well-defined limit as ¢ — ¢, so
its eigenvalues remain bounded.

Therefore, if we take the relation along the path I, 77(11) dominates
the other terms, so this forces its coefficient to vanish:

Cp1 = 0.

For 1 < i < r, if we choose a permutation ¢ of 1,...,r that sends 1 to
i, then we can choose a path from p to o(p), contained in the hyperplane

g = 0, and concatenate with the path o(I") starting from o(p). Under this

concatenation, the eigenvalue %(f) is now the dominant term, so this forces

Cni = 0

for all 7. This is a contradiction, so no nontrivial relation exists. O
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Chapter 16

Gamma functions

16.1 The bundle f/

16.1.1

Recall that the main ingredient in the construction of the core Yangian Y is
the Chern character of
V=V-r'eC'w.

We begin by identifying this K-theory class for the moduli spaces of framed

sheaves.
Let ¢, > denote the weights of the Geqge = GL(2) action on C2. Then h =
715!, written multiplicatively, and the equivariant Cartan matrix equals

C=(1—-1t)(1—tg),
as already discussed in Section [2.5.9] If

=Y

is the character of the framing space then

Alecw = 2,0 — character H°(C?%, O®" 16.1

RN D) DR

where GL(2) acts on C? and G,, = GL(r) acts by automorphisms of the

trivial bundle O®". In gauge theory, G, is known as the group of constant
gauge transformations. R
This gives us the following interpretation of V.
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16 Gamma functions 230

16.1.2

In the sheaf language, the tautological bundle V is interpreted as the bundle
with fiber H*(P?, F(—1)) over F € M(r), where (—1) denotes twisting down
by the line at infinity. We claim

V= —H(C*F)
in K-theory of M(r). Indeed, consider the following exact sequence of
sheaves on P?
0 — F(-1) > F(+0) = P Op: (d)® — 0,
d=0
where P! = P2\C? is the line at infinity. From the corresponding long exact
sequence and its special case F = O, we obtain

0— H°(C* F) - H°(C*,0%) -V -0,

as desired.

16.2 Barnes’ ['-function

16.2.1

Moduli spaces of framed sheaves provide a nice example of the I'-function

regularization from Section In particular, the bundle for w =
w' = 1 specializes to the negative of with r = 1 and a; = 1.
We have
character H(C? 0)¥ = Z a 'tit)
070
thus, symbolically,

4 77
c(H(C?0)" u) = [[(w—a+ti+ty)

i,j=0
This is regularized using Barnes’ multiple I'-function (specifically, double
I-function), see [106] for a modern reference, with the result that

c(H°(C? 0)Y,u) = T(u—alty,t)7". (16.2)

Note that the same regularization (and, essentially, for the same reason)
appears as the perturbative part of Nekrasov partition functions, see [93].
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231 16.3 The matrix R

16.2.2
By definition,
0
logT'(u| t1,t2) = %C(s,UItth) so’

where

1 (“dz e
t1,12) = —— —2z° Rs > 2.
Coultnt) =55 |, S T
An asymptotic expansion of ((s,u|t1,12) as u — +o0 may be obtained by

expanding
1

(1—e2)(1 — e t22) -

Z 2* chy HY(C?, 0)
k>—2
and integrating term-wise to get

I'(s+ k) 0/
C(s,ulty, ta) = o i H'(C0). (16.3)
15t k;2f(s)u . chy

Since o T B
s+ k17 (k)
e G0 B
ds T(s)ustk|__, (=1) e

this verifies the agreement between and (16.2)).

16.3 The matrix f{

16.3.1

For w = a; and w = ay the I'-factor from (6.11] specializes to

~ c(HY(C? 0)Y,u—h)
Plulww) = =m0y )~

F(U|t1,t2)
= =ul'(ult))(u|t 16.4
F(u+t1+t2|t1,t2) u (u| 1) (u| 2)7 ( 6 )

where u = a; — ay and I'(u|t;) is the single Barnes’s I'-function, defined
similarl. We define R = I'(u | w, w') R.

I Tt is related to Euler’s I'-function by

exp((u/t; — 1/2) Inty)
V2r

231

D(ulty) = I'(u/ty) .
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16.3.2 Zero modes and the singular part of R
From ((16.3), or the Stirling formula, we compute

1
—Inl(u—a|w,w)=7(1) In"Yu—7(a) Inu

' + (%T(cﬂ) - 1—12> % L0 (%) (16.5)

as u — 00. This gives the following identification of the central operators c_o
and c_; from Section [6.1.11} Write My 4 for the (w| - |w) vacuum matrix
element of an operator M corresponding to w = 1. Then

(C—2)@,® =7(L)r, (C—l)g,g = Bo(1),
where r = v is the rank and
Bi=>180 ®un® Rl
i=1
is the Oth Baranovsky operator. Here and in what follows we identify
Hg (M(r)*) @K = F(a1) ® - ® F(a,) (16.6)

generalizing (|14.11)) to arbitrary rank. Thus the zero modes appear in the
Yangian.
Note by construction the operators (c_;), , have the same span as the

operators ch; V for i € {—2,—1}.

16.3.3

We stress that in what follows we adopt the identification (|16.6) and that,
for now on, all formulas involving a include the zero modes.

16.3.4

Similarly, consider the vacuum-vacuum matrix element of the regular part

Rreg of R as in Section . The new terms coming from give

%l%] <ﬁreg>®’®:;1®"‘®f/0®"'®1
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233 16.3 The matrix R

where

Lo = %J:aQ:(l)—%,
where we keep the zero modes, compare with (13.7). Note the familiar
((—1) = —3 term.

16.3.5
Recall the classical r-matrix ((12.14]) and note its matrix elements gave

—

On(1), B-n(pt) € Y(gl(1)), n>0.
Since the core Yangian is an algebra over k[§ '] where
0= L1ty )

we have

—

Bn(1) = 67" B_n(pt) € Y(gl(1)).
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Chapter 17

Core Yangian modulo A

17.1 Semiclassical R-matrix

17.1.1

Since h = —t1 —ty does not divide § = t1t5 we may study Y modulo A, which
leads to great simplifications.
Define the semiclassical R-matrix Ry, by

R(u) = 1+ A% (u) + O(h?).

Modulo A, the generators of Y are primitive and act by matrix coefficients
of Re..

The Yang-Baxter equation becomes the classical Yang-Baxter equation
for M. It implies the generators of Y/AY form a Lie algebra g.. and

Y/RY = U(qg,.) .

17.1.2

The Lie algebra g.. may be described explicitly by its action in the basis of
stable envelopes of M(r)*, where

Ac SL(2) x GL(r)

is a maximal torus. Since M (r)* is finite, the classes of A-fixed points form
an eigenbasis for operators of classical multiplication.
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17 Core Yangian modulo A 236

In A-equivariant cohomology, stable envelopes are proportional to fixed
points, and thus diagonalize operators of classical multiplication. Steinberg
correspondences act nicely in this basis by the general principles explained

in Section [4.6

17.1.3

The fixed points of the maximal torus of SL(2) on the Hilbert schemes are
Nakajima varieties of type Ay, see in particular Section [4.3.6] We will see a
close connection between g . and the corresponding Lie algebra gl(c0).

17.2 Stable basis for Hilb,

17.2.1
The stable basis for M(1) = Hilb is identified as follows. Let

() =sso

be the standard maximal torus. To match standard symmetric functions
conventions, we choose the z — o chamber, that is,

¢ = {u<0},

where u = logz. The other choice may be obtained by a permutation of
coordinates.
A subscheme of C? has a z — oo limit if and only if it is set-theoretically
supported on the x,-axis
62 = {1'1 = 0} .

In particular, the stable basis must be a Q-linear combination of the Naka-
jima descendents of the zo-axis

pu = Toamu(t) )

The notation is chosen to agree with the traditional map of the equivariant
cohomology of the Hilbert scheme to symmetric function that takes

a_(ly) — multiplication by py . (17.1)
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237 17.2 Stable basis for Hilb,,

17.2.2

Recall the sign-twisted inner product on cohomology from Section and
transport it to symmetric functions using ((17.1)). This gives the Jack inner
product on symmetric functions

[p£7pl] = O k (_tl/tg)

with parameter —t;/to. In [70], this parameter is denoted a.

Gram-Schmidt orthogonalization of monomial symmetric function m,)
with respect to this inner product gives, by definition, the basis of Jack
symmetric functions. We define

= t|2’\‘ - integral Jack polynomial as in [70] .
This is normalized so that

Io= [ [(t(=) +1) = tra(=)) ma + ... (17.2)

DEA

and is a polynomial in 1, %, of degree |\|. Here
a(@)=XNi—j, l(o)=X,—1i

denote the arm- and leg-length of a square o = (i, 7) in the diagram A. Note
that the product in ((17.2) is the Euler class of N, at the monomial ideal

Iy = (#y°ay"),_,, €Hib. (17.3)

17.2.3

The following is well-known and is a a consequence of the orthogonality of
classes of fixed points [I,] in cohomology

Proposition 17.2.1 ([85, 124, [69]). The map (17.1) sends [1,] to Jy.

17.2.4
Let us polarize Hilb” by the Euler class of N_. We then have the following

Proposition 17.2.2. The map (17.1) sends the stable envelope of 1, to the
Schur function s).
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17 Core Yangian modulo A 238

Proof. Schur functions are triangular with respect to J, and proportional
to them modulo A. This shows stable envelopes are proportional to Schur

functions. By (17.2]) we have
J>\=€(N+)S)\+... ,

which fixes the normalization. O]

17.3 Differential operators on C* and gl(w0)

17.3.1
Let e, denote the function
eq(z) = e . (17.4)
Let € € C* be a parameter and consider
D C{D >, D d
assoc — y€+e) = 5 -
+ dx

It may be identified with differential operators on C* via the map z = e..
The parameter € may be scaled away but it will be convenient to keep it. We
denote by

D= (DaSSOC>Lie

the same algebra viewed as a Lie algebra.
The center of D is spanned by 1 € D,soc Which we denote by D to avoid
confusion.

17.3.2

The natural action of D on e; Cle4.], s € C, gives a family of embeddings
ps : D — gl(0)

into the Lie algebra gl(c0) of all infinite matrices with finitely many nonzero
diagonals. Its image is the unipotent Jordan block of the automorphism of
gl(0) that corresponds to the shift of the Dynkin diagram.

The diagram shift automorphism is the deck transformation of the uni-
versal cover of the quiver with one vertex and one loop. From this point of
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239 17.3 Differential operators on C* and gl(c0)

view, the description of D as automorphism-finite vectors in gl(c0) is intrinsic,
while its identification with differential operators is less so.

L —

The Lie algebra gl(c0) has a central extension gl(c0) which may be pulled
back to a central extension

0>Cc—>D—>D—0. (17.5)

This extension does not depend on s.

Representation theory of D was studied by Kac and Radul [59] and many
others. Here we will see the simplest representations: those obtained from
the half-infinite wedge representations of gl(o0).

17.3.3

By construction, the representation 7y = /\oo/ 2 ps is the D module with basis

o0
[Ass) = /\e(Ai—i)e—i-s 5 (17.6)
=1

where
A=XAM=N>=--2=20

is a partition. Usual rules of linear algebra give a well-defined answer for
the action of the off-diagonal elements of D in this basis. For the diagonal
elements, it is convenient to use the (-regularization

g k” L
Z(O‘Z —i)e+s)" =kl[z"]es ) en—ie,

i=1 i=1

where e, = e,(x) as in ((17.4). Note
0 1 0
—i)e = + —i)e — €—;
;Q&k p— ;k@>sea]

where the second term is a Laurent polynomial in e.. In particular,

s 1
WS(DO):E—E.

The central extension (17.5)) is normalized so that

ms(c) =1.
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17.3.4
For I, as in (17.3]) we have

0 ¢]
ea

- Z e—Aitl—(i—l) to
|)\ 1 - €_t1 .

=1

ch)A/

where a is the framing weight and ¢, ¢, are the tangent weights of the two
coordinate axes. We see that if

tl = —tz = —&
then the map
F(a) > Stab[ly] — |X;a +¢/2) (17.7)
identifies .
ch = c + exp D. (17.8)

6(65/2 _ e—e/2) es/2 — g—¢/2

Here exp(D) is a generating function for the operators D* e D, in other
words

s (exp D) = Z %7?8 (D*) # exp(my(D)).

k=0

17.3.5
Generalizing ((17.8]), we have

Proposition 17.3.1. The identification (17.7)) gives

D.

e

gSC
Proof. It remains to check that it takes
Oé,k(gg) — €k € 'ZS,

which is easy. For example, mapping both sides of (17.7]) to the Schur func-
tion sy, this becomes the classical rule for multiplication of Schur functions
by power-sum functions. O]
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241 17.4 Plicker relations

17.4 Plucker relations

17.4.1

Let 1, be the operator of wedge product by e,
YU = €4 AV

and let 1¥ be the adjoint operator with respect to inner product in which
the vectors (17.6)) are orthonormal. More canonically, the operators ¢* are
associated to bases of representations dual to p,.

17.4.2

Consider the operator

Q= > Y@}

aes+Ze

which depends only on the Ze-coset of s. It defines a map
Q0 Ts QMg Tste Q Tgr—e

provided
s’ =5 mod Ze.

This map commutes with gl(co0) and, hence, with D.

17.4.3

Classically, €2 is used to describe the image of the natural embedding
GL(V)— GL(A'V),

where V' a vector space, which for simplicity can be assumed to be finite-
dimensional, see [57, BI]. Matrix elements of g € GL(V) acting on A"V are
the minors of g.

Commutation with €2 gives quadratic relations for minors of g, analogous
to the better known Pliicker relations among maximal minors of a rectangular
matrix (that is, among the Pliicker coordinates on the Grassmann variety).
Here we use the term Plucker relations in the broader sense.
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17 Core Yangian modulo A 242

17.4.4
We denote by
E(, 1 8,u) = (us 8| Rso(w) [As )
= > E\ s s) P ().

k=>-1

matrix elements of % in the first (by convention) tensor factor. Here
E(X, i; s)x € g, and the singular central terms

~ ~ DO
ch,QVZ%, ch {V=—
€ €

are only present if A = u. By construction, E(\, y; s, u) only depend on u + s
in the sense that

Vi E(\p;s+tu—t) =E\ us,u). (17.9)

17.4.5

By construction, E(A, u; ), generate Y/AY and all relations between these
generators are linear. Among them are the Pliicker relations, which become
linear

[(@1+1®¢,0]=0, (eg,, (17.10)
at the Lie algebra level.

Proposition 17.4.1. Plicker relations and (17.9) span all linear relations
among matrix elements of Rec.

This statement is a variation on the classical theme. For convenience, we
give a proof.

17.4.6
We divide the proof of Proposition [17.4.1]into a sequence of lemmas.
Lemma 17.4.2. Suppose ¥ [Ny # 0 and |u) # 0k |\) for all b. Then

Wl €1A) = (ulva E 05 1N
forall § € g..
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243 17.4 Plicker relations

Note the hypothesis of the Lemma implies p # A.

Proof. Expand
0= uA1@, [¢@1+106 0] vie1 AN (17.11)

where |p, A = [1) ® [N). O
Corollary 17.4.3. Plicker relations imply

E(A\ i s,u) # 0 = |1y = by 05 [A)
for some a,be s+ Ze.

In the language of Chapter [I1] this means the corresponding points of the
half-infinite Grassmannian must lie on a line.

Proof. Otherwise, we can find a in Lemma [17.4.2 such that {u| ¢, =0. O

17.4.7
Let A # p lie on a line, which means that there exists k,[ € Z such that
{k} = 6(A\S(1), (I} =S(u\S(\),

where &(\) = {\; —i} < Z. Using Lemma |[17.4.2] we can add or remove
elements in &(\) N &(u), which means there exists Eg (s, u) such that

E(/\aluv Sa“) = iEkl(Sau)

with the sign determined from the action of the operators v} in the basis

|A). Lemma |17.4.2] further implies

Ers1041(s,u) = Eg(s + €, u)
= En(s,u+¢), (17.12)

where the second step is based on (17.9)).
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17.4.8

Now consider diagonal matrix elements of R,.. Here we have the following
Lemma 17.4.4. Suppose % |\) # 0 and ¢} |u) # 0. Then

QLAY — QI E0E 1N = il € 11y — (il a € 0% 1) (17.13)
forall{ € g..
Proof. Expand O\, i 1® Y [€@1+106,9| i @1\ s . O

We denote the difference of the matrix elements in (17.13)) by Exx(s, ),
where a = ke + s. For example,

Eoo(s,u) = E(@,@;s +e,u) — E(8,;5,u).

One can choose a different parameter s’ € s+ Ze for p in (17.13]) which shows
the relation ((17.12)) is valid for k = L.

17.4.9
Symbolically, Lemma [17.4.4] and ((17.12)) shows
44 7
E(\ s, u) = > Eqols,u+ ke)
keS(\)

A better way to write this relation is the following.
For each partition A, define

cornersy, : Z — {+1,0}

as the difference of the following indicator functions

cornersy = Z (o) — Z de(o) -

inner corners o outer corners o

Here ¢(o) = j — i is the content of the square o = (4,7). This may also be
defined using the identity

Z cornersy (k) t* = (t — 1) Z it
k

Lemma 17.4.5.

E(\ A\ s,u) = Zcorners,\(k:) E(o,d;s,u + ke).
k

Proof. Follows from Lemma (17.4.4]and ((17.12]). [
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245 17.4 Plicker relations

17.4.10

Proof of Proposition|17.4.1. Previous lemmas reduce the matrix elements of
R to shifts in u of the operators E(@, @; s, u) and Exo(s,u), k # 0.

The algebra g is graded by eigenvalues of the adjoint action of D, this
is the grading by the difference k — [ of Ey;. Each graded piece is further
filtered by the degree in u, with 1-dimensional factors. This shows there
are no further linear relations among the coefficients of E(&, @;s,u) and
Ero(s,u), k # 0. O

17.4.11

The factorization of Section gives the following formula for the semi-
classical R-matrix

Ei; @ Ej gtk
Ree = — = TETe 17.14
z‘jzk:ez u— ke ( )

in terms of the classical R-matrix
To) = ), By ® By
i, J€Z

for gl(o0). The operator acts in half-infinite wedge representations of
gl(o0) via the (-regularization discussed in Section [16.2.2]

It is instructive to retrace the steps of the above proof with this explicit
formula.
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Chapter 18

e

The Yangian of gl(1)

18.1 (Generators of the core Yangian

18.1.1

By Theorem m, Y is generated by the Baranovsky operators (3, and chy %
for k = —2,—1,.... Here, for brevity, we write 3, = £,(1).

The following theorem shows it suffices to add a single operator ch; VY to
the Baranovsky operators to generate the Yangian.

Theorem 18.1.1. The core Yangian Y is generated by the Baranovsky op-
erators B+1, and the operator of cup product by

ch = Chl i}
of cup product by chy of the bundle Y= —H°(C?*, F).

Proof. Follows from the corresponding statement modulo . O

18.1.2

The generation statement can be made more effective using the the following
geometric fact. Parallel results were proven by M. Lehn for the cohomology
of Hilbert schemes and by O. Schiffmann and E. Vasserot for the K-theory
of M(r).
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18 The Yangian of J(T) 248

Proposition 18.1.2. For any k and [,

[ad(Qu)“81,2d(Qu)'61 (18.1)

is an operator of classical multiplication.

Proof. Recall that the Baranovsky operators f4; are defined using the cor-
respondence

B, ={(G,z,F)} = M(r,n+1) x C* x M(n)
formed by exact sequences
0=>G—>F—>0,-0. (18.2)

On this correspondence, we have a tautological line bundle F/G and the
action of ad(Q) introduces a factor of

c1(F/G) = —chi(H(C?,G)) + chi (H°(C?, F)) € HE(B1).
Therefore
(ad@u)*61(7)) o (ad(@u)'81(7)) =
(=) (m13)x ((—e1(F1/G)" 1 (F2/G) i (v x )
where m;; are the projections to respective factors in the correspondence
{(F1,G, Fa, 1, x9)} € M(r,n) x M(r,n + 1) x M(r,n) x C? x C?

in which F;/G =~ O,,. The (—1)" factors comes from our sign conventions,

see Section [12.2.4]
The product ad(Q d) B_ 1ad( «)¥B1 in the opposite order is, similarly,
computed by pushing forward

(1) (G ) F) (—ea (G ) F2))"
along the G’-factor in the correspondence defined by
G)Fi=04,, i=12.
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249 18.1 Generators of the core Yangian

We now note that outside of the diagonal F; = F; the two correspondences
are canonically isomorphic, because necessarily

glzfl-i-fg, g:flﬁ]:g,
as subsheaves of the common double dual 7'V = FyV. Clearly,
FilG =G| Fs

which identifies the integrands and shows the commutator ((18.1]) is supported
on the diagonal F; = F,. This means it is an operator of classical multipli-
cation. [

From the proof above we have the following

Corollary 18.1.3.

|2d(Qu)*B1,ad(@Qu)' 8.1 | = (~1)* | 51, 2d(Qa) "84 |

18.1.3

The commutator in Proposition can be explicitly identified. We do it
using equivariant localization following [T08].

To set up equivariant localization, we need to identify the the normal
bundle to B;. We have the following

Proposition 18.1.4. The tangent bundle to B, fits into an exact sequence
of the form

0->TB, > TM(r,n+1)@TM(r,n) —
— Ext'(G, F(~1)) —» C(~h) - 0, (18.3)

where C(—h) is the trivial bundle with equivariant weight —h.
In particular, ®B; is smooth, which is a special case of Theorem 5.7 in [87].

The sequence ([18.3)) may also be found there for more general Hecke corre-
spondences among Nakajima varieties.
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Proof. Let
€ = (&, &) € Ext!(F, F(~1)) @ Ext' (G, G(-1))

be a tangent vector to M(r,n + 1) x M(r,n). A sheaf homomorphism (in
our case, inclusion)

¢:G—F
deforms with & to first order when the commutator
€, ¢] = &7 ¢ — 9 &g € Ext' (G, F(-1)) (18.4)

vanishes. Here
Ext'(A, B) ® Ext/(B,C) — Ext'"7(A,C)
is the usual composition of Ext groups. Note that
rk Ext' (G, F(—1)) = 2rn + 7,
while
dimM(r,n+1) x M(r,n) —dim*B; =2rn +r —1.

In fact, the obstruction [£, ¢] to deforming ¢ lies in the following corank 1
subbundle of Ext'(G, F(—1)).

For every deformation of F there is some deformation of G < F. This
means the image of £ — £ ¢ lies in the image of {g — ¢ &g and hence the
obstruction [, ¢] lies in the image of the first arrow in the following piece of
the long exact sequence

Ext!(G,G(-1)) — Ext'(G, F(-1)) — Ext'(G,0,) —
— Ext?(G,G(—1)).

By Serre duality,
Ext*(G,G(-1)) = 0,

while
Ext'(G,0,)" ® O(-h) = Ext'(0,,G) .
We have
Extl(C’)x,(])|%1 ~ C,
canonically trivialized by the class of the extension (18.2). This gives the
exact sequence stated. O
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251 18.1 Generators of the core Yangian

18.1.4

Suppose we are at a fixed point (G, 0, F) € By of the torus action. Consider
a free resolution of F and its restriction to C?

0— P Ocz(w;) = P Ocz(v;) > F|  —0 (18.5)

(CZ

where v;, w; € (Lie G)* are the equivariant weight of the generators and rela-
tions. (Note that these include the framing weights.) We have

Chsze”" —26“”',

chG =chF —e"(1—e")(1—e")

if the generator with weight vy surjects onto F/G. The characters of the
Ext-groups in ((18.3)) are computed as follows

(1 —chG chF)
(1—et)(1—et2)’

and

ch Ext'(G, F(-1)) =

where bar denotes the dual representation, that is, eV = ™.

Let N(g .7 B1 denote the normal bundle to the Baranovsky correspon-
dence at the at the point (G, x, F)

Lemma 18.1.5. We have
ch N ;)B1 —ch Tg, 7y B1=¢"""% chG—e*chG —e " +1
—e " chF—e*ch F—e " +1,
where vy, is the weight of G/F.

Note that the trivial weight 1 here cancels with the trivial weight that comes

from the expansion of e’ ch G, and similarly for the weights —e~".

Proof. Direct computation from (|18.3)) . [
Proposition 18.1.6. We have

Bi(m). 6_1(72)] -3 1. (1 - M) 7, (186)

u — ad<©01> C(‘Fv ) u)

where F is the universal sheaf on M(r) x C?, the right-hand side is viewed
as operator of cup-product by this cohomology class in Hg(M(r)).
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Note, for example, that the 1/u term here gives the familiar result

[B1(7), B-1(72)] = — f , Y172 Tk F = 77(172) -
C

It is clear from Grothedieck-Riemann-Roch that the right-hand side of ((18.6)

generates the same algebra as chy V.

Proof. We use equivariant localization. Let F be a torus-fixed sheaf as in

(18.5) and let .
[F] e HE™™ (M(r,n)),

denote the class of this fixed point. The computation of

(ml) : Ba(w) - 7] m) /(717D

u— ad(@cl)

is given by summing 1/(u — v;) over all generators of F with a certain equiv-
ariant weight that accounts for the normal bundle to B; and for the tangent
bundle to M(r,n+1) x M(r) x (C?)2. This equivariant weight is determined
from Lemma I8 1.5

The product in the opposite order involves summation over all relations
w; in the resolution , because they correspond to torus-fixed sheaves
that contain F. The new generator has weight w; — h, therefore we sum
1/(u — w; + k) with a weight which is again computed from Lemma [18.1.5]

The resulting sum simplifies using the elementary identity

Z h Hvk—vl—khl—[ Vr — W;
U= Vg Uk U ; v —w; +h

—Z h Hwk—’wi—hn Wy — Uy _
ku—wk+h#k Wy, — W wy —v; — h

%

u—uv; + h U — W;
-1 18.7
H u—v; Hu—wiJrh . (187)

% %

which is proven by observing that it is a partial fraction expansion in the
variable w. (This identity also appears in [108].) Since

o(FY u) = H(u — vl)/l_[(u — w;)

i

the result follows. O
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253 18.2 Slices and screening operators

Another proof of Theorem [18.1.1. Follows from the above proposition and
Theorem [6.1.4 O

18.2 Slices and screening operators

18.2.1

In Section we constructed geometrically core Yangian intertwiners from
slices. In this section, we identify algebraically the intertwiner corresponding
to the slices from Section[2.5.9] They turn out to be the well-known screening
operators for Virasoro modules.

By the boson-fermion correspondence, screening operators specialize to
Pliicker relations modulo A. Thus, by Proposition , they generate the
relations in the core Yangian of gl(1). Hence, for Y(gl(1)), the answer to the
question from Section is affirmative.

18.2.2

We recall some basic notion, in the generality of Chapter

A field Y(n,z) = >, Ya(n) 27" is called primary of dimension A € H if it
satisfies the OPE
0

ZW
Y (A = vy .
(Ayn, w) + —— =¥ (yn,w)

2w

T(v,2)Y(n,w) ~ w2

Equivalently,
[Ln(’)/)v Yo (77)] = Ym-i-n((n)‘ -—n- m)) ’777) .

In particular, if A = 1 then the operator

Yo(n) = JY(% z)

commutes with all operators L, (7).

18.2.3
Define normally ordered exponential of a field Y (v, z) by

Y (2):(2) = 7)Y (2): () + 3 V() +
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where terms of the form: Y (2)": () are defined using the n-fold coproduct
H — H®" as in Section [13.2
These satisfy the usual rules like

< rexp Y (2):(y) =: (?Y(z)) expY (z):(7).

0z

18.2.4
Let n be an eigenvector of multiplication operators in H. We define ¥ by

yn = (v.n")n, (18.8)

for all v € H. Define
Vu(z) =texp g™ (2):(n)

where
O = ¢,(1) _ ¢(2)
is the antiderivative of the field a™, see Section|13.1.4, In particular, we have
_ _ 2z
a (v,2) ¢~ (n,w) ~ (vm+ .. (18.9)
Z—w
18.2.5

Since the operator V,, involves ajg, it has nontrivial commutation relations
with g, namely

[045(7% VM(Z>] = 2:“('7: 77v> Vu(z) .

This means

Vi, Fla1) ® F(ag) — Flay — pn”) @ Flag + pun") .

18.2.6

Proposition 18.2.1. If n is an eigenvector of multiplication as in ((18.8)
then the operator
ZM2(67UV)VM(Z)

is primary for T'(z, K) of dimension

A\ = ple — uk .
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255 18.2 Slices and screening operators

Here e € H is the handle-gluing element.

Proof. This is a standard computation that uses ((18.9) and Lemma [13.2.1
O

18.2.7

In particular, primary of dimension 1 can give rise to Virasoro intertwiners.
In the case

. 1
H = HG(C2) 3 s K=h= —tl — tQ, 77\/ =€ = —tltg, (1810)
det
we have
9 11
pe—puK=1= p=——.
i1 12

For the integral { 2#°(#7)V,(2) to be well-defined, the integrand has to have
integral powers of z. The nonintegral powers of z come from the log z term
in ¢, namely

ot 10gza5( = y—war—aznY) 7-(77) )

F(a1)®F(a2)
For the case (|18.10]), this integrality constrain becomes

o ap—ap

1
(n’e — plar —az),n") = —= — = -—neZ, p=—,
t i t

and similarly for g = 1/ts.

18.2.8

Theorem 18.2.2. For every n € Z the screening operator
Jztl Vi () : Flag + nty — 1) ® Flaz) — F(as + nt1) ® Flag — 1)

is @ map of Y-modules.

Proof. The operator clearly commutes with the Baranovsky operators and
intertwines the Virasoro operators T, (z) by Proposition Formula
expresses the operator of classical multiplication by divisor in terms
of the Baranovsky operators and T, (z), therefore the screening operator
intertwines it as well. Now Theorem finishes the proof. O
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18.2.9

Note, in particular, the screening operators annihilates the vacuum vector
for n < 0. This is reflected in the poles of the R(u) at

w=hh—t,h—2t,....
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Chapter 19

Yangian and vertex algebras

19.1 The operator C)Cl

19.1.1

Since the operator Qd plays an important role in Theorem , we give a
formula for it that modifies the formula in Theorem [14.2.3

More compact formulas are obtained for Chern character of lA) ® hY 2
where ch Y2 = ¢"2. This is the familiar twist by the square root of the
canonical bundle (of C?, in this case). However, only the overall shape of the
formula will be used below, not the details.

We define

Q-1 [plelp:0),
as in Section [14.2.2| and denote by
. ={a > >a}
the standard chamber for A. The analog of Theorem is the following

Proposition 19.1.1. Under the identification

Stab¢>

Fla1) ® - ®F(a,) ——=> He(M(r)) ® K,
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19 Yangian and vertex algebras 258

as in (|16.6]), we have

chy (9@7’11/2) = —Z%J:(a(i))gz(l) +Zif:a(i):(h2 + 2e)

+ %hZJa(i)aa(j)(l) +1rQ. (19.1)

1<j
For other chambers, one rearranges the |, _ ; term accordingly.

Proof. The inclusion of zero modes and the ®A'/? twist removes the ®o-term
from formula (14.6). Therefore, the two sides of differ by a scalar
operator that we can determine by evaluating on the vacuum vector. This is
straightforward, using

ea—ﬁ/Q
—chy A= ecm)i—c) ir(a®) — L7((h* + 2e)a),
where h = —tl — t2, € = —tltg. ]
19.1.2
Let

Y, < EndF(a;) ®---®F(a,)

denote the algebra generated by all Fourier coefficients of vertex operators,
that is,

Jz” P(a?, 0a® ?aV . ) €D,
for any n € Z and any normally ordered polynomial P in the fields a(®,
t=1,...,r, and their derivatives.

Proposition 19.1.2. The action of Y on F(a1)®---®F(a,) factors through
a map R
Y — 9,[Q]. (19.2)

The map (19.2)) is equivariant with respect to the translation automorphism.

Note the translation automorphism
e (@) =a —1(c)

of the Heisenberg vertex algebra has a natural extension to ‘U, [ﬁ] This

extension leaves €2 invariant.
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259 19.2  Yangian and W-algebras

Proof. This follows at once from formula ([19.1)) and Theorem [18.1.1} O

19.1.3

It may be curious to notice that the Q term disappears from the correspond-
ing quantum operator Q upon averaging over all |g| = 1 in the principal value
sense.

19.2 Yangian and )V-algebras

19.2.1

Our goal in this section is to describe the image of the map in terms
of the so-called W vertex operator algebras. This provides a link to the ideas
of Alday, Gaiotto, and Tachikawa [2], the existence of which was suggested
to us by Nakajima and Tachikawa.

The W-algebras first appeared in mathematical physics as extended sym-
metry algebras of conformal field theories, see for example [10] for a survey.
Following Feigin and Frenkel [38 39], they may be described as explicit sub-
algebras of the Heisenberg vertex algebra. This is the description that we
use here.

19.2.2

Let K be a commutative ring and let

H~K"
be a free K-module of rank r with a nondegenerate quadratic form. The setup
is like in Chapter [13], except neither product nor coproduct on H is required.

One should view H as a Cartan subalgebra of a reductive Lie algebra, with
the restriction of a an invariant bilinear form. Here we need the form

(z,2) = sz : (19.3)

that corresponds to the Lie algebra gl(r).
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19 Yangian and vertex algebras 260

One defines the Heisenberg algebra $eis(H) as in Chapter [13| and the

algebra of Fourier coefficients of vertex operators
U(H) > $Heis(H)
as in Section [19.1.2] For any orthogonal decomposition H = H; @ H,, we
have
Y(H) = V(H,;) ® V(H,),
where the completion is the usual completion required to collect terms in a
product of two series.

19.2.3

Let
n=(0,...,1,—-1,...,0),
range over the simple positive roots of gl(r). For each 7, consider the corre-
sponding Heisenberg field
ay(z) = Z (al? — oty g7t
Here we denote the argument by x to emphasize a small discrepancy between
the conventions of Chapter|l3|and standard CFT conventions. In Chapter|13]
the arguments of the fields were coordinates on C*. Here z is a coordinate
on C and the exponents of x are shifted by 1, that is, by the conformal
dimension of the field.
Since (n,n) = 2, we have

2
O‘n(x) an(y) ~ m;

and the field

I 5 KOy,

o+ = —

4 " 2 Ox

generates a Virasoro vertex algebra which we denote by
Vi, < V(Kn).

Here k is a parameter that enters the definition of the W-algebra. To match
it to conventions in the literature, we note that

B N2

K=—=——

T, =

in the book [45] and that the central charge of Uir, equals 1 — 6x2.
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19.2.4

By definition, see for example [45], a vertex operator algebra is a collection
of operator-valued distributions, called wvertex operators, satisfying certain
axioms. In CF'T, these correspond to local chiral operators and, as in any
mathematical formulation of QFT, the locality of these operators is really
the key axiom. A specific feature of 2-dimensional conformal field theories is
the presence of the Virasoro algebra among its chiral operators.

While the language of vertex operators is very rich and concise, for our
current purposes it will be sufficient to work with the following classical
algebraic structures associated to a vertex algebra:

— the associative algebra generated by the Fourier coefficients of vertex
operators, such as U(H), W(gl(r)), or Vir,),

— the Lie algebra generated by the Fourier coefficients of vertex operators
with respect to the commutator, which will be indicated by a subscript

see Chapter 4 in [45]. Clearly, the latter generates the former.

To describe the W(gl(r)) as a subalgebra of U(H), we will use the fol-
lowing characterization due to Feigin and Frenkel. Recall that for each n we
have

V(H) = B(Kn) ®V(1+) -

Theorem 19.2.1 ([38, B9]). The algebra Whe(gl(r)) is the intersection

Whie(gl(r)) = ﬂ mitn,Lie&BmLie(nL), (19.4)
n

where 1 ranges over the simple positive roots of gl(r).
The following outline of the argument was kindly provided by E. Frenkel.

Proof. The proof proceeds in 4 steps.

First, for generic values of the parameter, the vertex W-algebra is equal
to the intersection of the kernels of the screening operators. This is the most
non-trivial step, proved in two ways: first, in Proposition 3 of [38] (this proof
is reproduced in Theorem 15.4.12 of [45]) and second, in Theorem 4.6.9 of
[39]).
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Second, in the case of s[(2), the kernel of the screening operator is the
Virasoro vertex algebra for generic values of the parameter. This is proved
in Proposition 4 of [3§] (this proof is reproduced in 15.4.14 of [45]) and in
Proposition 4.4.4 of [39).

Next, the kernel of the i-th screening operator is equal to the the tensor
product of the Virasoro vertex algebra along the i-th simple root and the
Heisenberg vertex algebra orthogonal to the i-th root. The proof is given in
the proof of Proposition 5 in [38] and in 15.4.15 of [45].

Finally, the same results hold for the algebras of Fourier coefficients of

vertex operators. This is proved in Proposition 2 of [38] and Theorem 4.6.11
of [39]. O

We define
W(sl(r)) = W(gl(r)) n B(3")

where 8 ¢ H < gl(r) is the center. This implies

W(gl(r)) = BR)®W(sl(r)).

19.2.5

To compare this with our formulas, we take

v=1€ Hg(C?)
in the formula ((14.10]). Since (1, UHé((C?) = 7(1), we have
our a, (1) = 4/7(1) standard a,

where Heisenberg operators associated to the quadratic form ((19.3)) are con-
sidered standard. Further, since

1®1
Al = )
we have in
[z T (1) = [«7"7%] T, (19.5)

a0|—>a0—|—%m7
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where 1 = (1, —1) is the root of gl(2) and

Kk =nhy\7(l) = —f/l%. (19.6)

The shift of zero modes
<Oéél), ()[(()2)> —

compensates for the difference between ¢ = 2

(oz(()l) + 3 A, 0482) — %h) (19.7)

0

. a .
5T, and £ in T,

19.2.6

Generalizing ((19.7)), we incorporate the shift of the zero modes by kp, where
p is the half-sum of positive roots, in the definition of W(gl(r)). This is an
automorphism of the ambient Heisenberg vertex algebra.

19.2.7

Nakajima varieties produce lowest weight Yangian modules. Any action of a
graded algebra A = @ A,, on a lowest weight module canonically extends to
a certain completion A > A. Neighborhoods of zero in this completions are
left ideals generated by @, __ An.

Proposition 19.2.2. The action of Y on F(a1)®---®F(a,) factors through
a map

Y - T(R)®W(sl(r)), (19.8)

where B(3) 2 V() is a completion as above.

Proof. Extract the n-component from the operator ([19.1]) as in Section|14.3.2
Using ((19.1) and ((19.5)), we conclude

ch € WLie(g[(T)) + Kﬁ ®1,

where the second term is written with respect to the decomposition H =
3@ 3%, Therefore

Qai, 1 € B(R) @W(sl(r))
and Theorem [18.1.1| completes the proof. O

263



19 Yangian and vertex algebras 264

19.2.8

The proof of (19.4) by Feigin and Frenkel uses a screening operators char-
acterization of Pir,. Those can be matched to the screening operators of

Section [18.2

19.2.9
Proposition 19.2.3. The map

Y — W(gl(r)) (19.9)

induced by (19.8)) is surjective.

Proof. Follows from the corresponding statement for A = k = 0 proven by
Frenkel, Kac, Radul, and Wang in [46]. When % = 0, the nonlocal term €2
drops out and the surjectivity

Y/RY = U(D) — W(gl(r))| _, —0

k=0

is true without completion, see [46]. Clearly, it implies the surjectivity after
completion. O

19.2.10

One of the goals of [2] is a characterization of interesting cohomology classes
in terms of the W-action. For example, one can consider the vector of iden-
tities

1€ Hg(M(r))
in the cohomology of each M(r,n). In this direction, there is the following
simple result. Define

~ \FK
ﬁq[mk] = (ad ch> : ﬁn .
Proposition 19.2.4. The vector of identities 1 satisfies

0, k<rn—1
-1, n=1L,k=r—1.

B (pt) -1 = {
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Proof. The operator (3, (pt) is defined by a proper push-forward with fibers
of generic dimension rn — 1, therefore it annihilates any cohomology class of
degree less than rn — 1. This proves the first claim.

If n = 1 then generic fibers are projective spaces P! on which the
generator ch; V restricts to the hyperplane class ¢;(O(1)), up-to equivariant
corrections. Therefore

B = (1) s Q1=
- (Ll 01(0(1))7“—1) 1=-1, (19.10)

where an extra (—1)" comes from the definition of 8, = 7, see Section

1224
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