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Abstract

In this paper, we study the classical and quantum equivariant
cohomology of Nakajima quiver varieties for a general quiver Q.
Using a geometric R-matrix formalism, we construct a Hopf al-
gebra YQ, the Yangian of Q, acting on the cohomology of these
varieties, and show several results about their basic structure the-
ory. We prove a formula for quantum multiplication by divisors
in terms of this Yangian action. The quantum connection can
be identified with the trigonometric Casimir connection for YQ;
equivalently, the divisor operators correspond to certain elements
of Baxter subalgebras of YQ. A key role is played by geomet-
ric shift operators which can be identified with the quantum KZ
difference connection.

In the second part, we give an extended example of the gen-
eral theory for moduli spaces of sheaves on C2, framed at infinity.
Here, the Yangian action is analyzed explicitly in terms of a free
field realization; the corresponding R-matrix is closely related to
the reflection operator in Liouville field theory. We show that
divisor operators generate the quantum ring, which is identified
with the full Baxter subalgebras. As a corollary of our construc-
tion, we obtain an action of the W-algebraW

`

glprq
˘

on the equiv-
ariant cohomology of rank r moduli spaces, which implies certain
conjectures of Alday, Gaiotto, and Tachikawa.
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Chapter 1

Introduction

1.1 Fundamental structures and conjectures

1.1.1

This paper is about the equivariant quantum cohomology of Nakajima quiver
varieties [84, 87]. We see it as part of a larger project [8] which connects
equivariant quantum cohomology of symplectic resolutions with their quan-
tizations and derived autoequivalences. These connections, however, will not
be discussed here.

Here we develop a general structural theory for quantum cohomology of
Nakajima quiver varieties associated to an arbitrary quiver Q. We formulate
our answer in terms of a certain Hopf algebra YQ, called the Yangian of Q,
which acts on the cohomology of Nakajima quiver varieties.

The construction of YQ and an analysis of its basic structure theory is
another objective of this paper and occupies the bulk of its first half. In the
case when Q has no loops, this construction is related to work of Varagnolo
[121] and Nakajima [89], who construct a certain subalgebra of YQ via gen-
erators and relations. In this paper, we give an alternative approach which
we will describe shortly.

In the second half of the paper, we work out explicitly what our theory
means for the quiver with one vertex and one loop. In other words, we
work out explicitly the quantum cohomology of the moduli spaces Mpr, nq
of framed rank r torsion free sheaves on C2, generalizing the previous work
[103, 73] on the Hilbert schemes of points.

9



1 Introduction 10

1.1.2

Let X be a smooth quasi-projective variety with an action of a reductive
group G. Quantum cohomology is a commutative associative deformation of
ordinary multiplication in equivariant cohomology H¨GpXq defined by

pγ1 ˚ γ2, γ3q “
ÿ

βą0

qβ xγ1, γ2, γ3yβ (1.1)

where pγ1, γ2q “
ş

X
γ1Y γ2 is the standard bilinear form on H¨GpXq, β ranges

over the cone of effective classes in H2pX,Zq, qβ denotes the corresponding
element of the semigroup algebra of the effective cone, and

xγ1, γ2, γ3yβ P H
¨
Gppt,Qq

is the virtual count of rational curves of degree β meeting cycles Poincaré
dual to γ1, γ2, γ3. See e.g. [20, 54] for an introduction.

As defined by (1.1), the structure constants of quantum multiplication
are formal power series in qβ. However, one conjectures that for all equivari-
ant symplectic resolutions, and Nakajima quiver varieties in particular, the
series in (1.1) represents a rational function of qβ. We will prove a slightly
weaker statement below. Thus we get a family of commutative associative
multiplications on H¨GpXq.

Note that working in equivariant cohomology is crucial as all nonequiv-
ariant counts xγ1, γ2, γ3yβ vanish for trivial reasons for β ‰ 0.

1.1.3

A basic property of quantum multiplication is that

1 ˚ γ “ γ , @γ P H¨GpXq . (1.2)

For any structure of a commutative associative algebra with unit on a vec-
tor space H, the operators of multiplication form a maximal commutative
subalgebra of EndpHq.

In particular, the operators of quantum multiplication, for different values
of the quantum parameters q, form a b2pXq-dimensional family of maximal
commutative subalgebras in the algebra that they all generate. For brevity,
we call these subalgebras the algebras of quantum multiplication. For q “ 0,
they specialize to the algebra of classical multiplication in H¨GpXq.

10



11 1.1 Fundamental structures and conjectures

Not much is known or conjectured about this algebraic structure for gen-
eral X. For Nakajima quiver varieties, by contrast, one expects the following
very strong link with much-studied structures in representation theory and
mathematical physics.

1.1.4

The Nakajima quiver varieties Mθ,ζpv,wq with parameters

v,w P NI , θ P RI , ζ P CI

are associated to a quiver Q with the vertex set I. The quiver Q may have
loops and multiple edges. Nakajima varieties have large groups G of auto-
morphism that preserve (or scale, for ζ “ 0) their natural symplectic form1.
By construction, the space

Hpwq “
à

v

H¨G pMθ,ζpv,wqq

will be a module over the Yangian YQ. By construction, operators of cup
product by characteristic classes of universal bundles form a commutative
subalgebra in YQ.

1.1.5

The algebras YQ generalize Yangians of simple finite-dimensional Lie alge-
bras, as defined by Drinfeld [27]. Their origins lie in the theory of quantum
integrable systems, see e.g. [34, 55, 64, 112] for an introduction.

A powerful correspondence between quantum integrable systems and mod-
uli of vacua in supersymmetric gauge theories (of which Nakajima vari-
eties are examples) was proposed in the work of Nekrasov and Shatashvili
[96, 97, 98]. In particular, quantum group actions on their cohomology or
K-theory constructed by Varagnolo and Nakajima fit into this framework.

For us, the main prediction of Nekrasov and Shatashvili is a conjectural
identification of algebras of quantum multiplication with Baxter subalgebras2

in the Yangian YQ.

1Note the quantum product is trivial unless ζ “ 0 because all curve contributions are
proportional to the weight ~ of the symplectic form.

2Also known as Bethe subalgebras.

11



1 Introduction 12

1.1.6

Independently, Bezrukavnikov conjectured a relation between the monodromy
of the quantum differential equation, see (1.15) below, and autoequivalences
of Db CohGX for symplectic resolutions X, see Section 1.6.2. This was in-
spired, in part, by the work of T. Bridgeland [13, 14], see also [4].

Towards the end of the special 2007/08 year at IAS, it was realized this
conjecture is naturally a composition of two more basic ones. The first,
which is proven in this paper for Nakajima varieties, identifies the quantum
differential equation with the trigonometric Casimir connection for a certain
Lie algebra gQ. A related conjecture about quantum cohomology of Laumon
spaces was made in [37].

For finite-dimensional Lie algebras, trigonometric Casimir connections
were defined and studied by Toledano Laredo in [120]. As explained there,
they are very closely related to the Yangians of the same Lie algebras. This
links the conjectural frameworks of Nekrasov-Shatashvili and Bezrukavnikov.
The trigonometric Casimir connection generalizes the rational Casimir con-
nection studied in [44, 80, 119] and also by C. De Concini (unpublished).

After this, the second step of Bezrukavnikov’s conjecture becomes a geo-
metric description of the monodromy of trigonometric Casimir connections.
This could be viewed as a natural extension of the monodromy conjecture
made in [120].

1.1.7

It appears the ideas of both Nekrasov-Shatashvili and Bezrukavnikov may
apply more generally than just for symplectic resolutions. For example, Lau-
mon spaces discussed in [37] have a natural Poisson structure which is not
symplectic.

Similarly, the most general moduli of vacua considered by Nekrasov and
Shatashvili fail all key property of Nakajima varieties: they may not be
smooth, not symplectic, and not resolutions of singularities.

In this paper, we use the existence of a symplectic form and of a proper
map to an affine variety in an essential way. It is would be very interesting
to make our constructions work in greater generality.

12



13 1.2 Baxter subalgebras and quantum multiplication

1.2 Baxter subalgebras and quantum multi-

plication

1.2.1

The construction of YQ and the notion of a Baxter subalgebra are best ex-
plained in the original language of quantum inverse scattering method. The
main ingredient there is an R-matrix, that is, a collection of vector spaces Fi
and operator-valued functions

RFi,Fjpuq P EndpFi b Fjq (1.3)

which satisfy the Yang-Baxter equation

R12puqR13pu` vqR23pvq “ R23pvqR13pu` vqR12puq , (1.4)

as operators in Fi b Fj b Fk. Here

R12 “ RFi,Fj b 1Fk P EndpFi b Fj b Fkq ,

et cetera. In principle, the argument u could be taken from an arbitrary
abelian group; the case u P C corresponds to Yangians.

For m P EndpF q and all W P tFiu, consider the operators

TF pm,uq “ trF pmb 1qRF,W puq P EndpW q ,

where the trace is taken over the first tensor factor. In the formalism of Fad-
deev, Reshetikhin, and Takhtajan [35], these operators generate the Yangian
Y associated to R.

1.2.2

Let G Ă
ś

GLpFiq be the centralizer of all R-matrices and take g P G. It
follows at once from the Yang-Baxter equation and invertibility of R that

rTF1pg, u1q, TF2pg, u2qs “ 0 . (1.5)

A pictorial proof of this is given in Figure 1.1. This means the operators
TF pg, uq, for fixed g P G and all F P tFiu, u P C generate a commuta-
tive subalgebra of the Yangian. This is what is called a Baxter (or Bethe)
subalgebra.

13



1 Introduction 14

Figure 1.1: From the YB equation and rg b g,Rs “ 0 we deduce that
RF2,F1 conjugates gF2RF2,W gF1RF1,W to the product in the opposite or-
der. Taking the trace over F2 b F1 gives (1.5).

1.2.3

Assuming for simplicity that G is connected, a natural parameter set for
Baxter subalgebras is a maximal torus

H Ă G
L

CentralizerpYq .

It may be compactified to H Ą H by considering limits of Baxter subalgebras
as g degenerates. To connect with quantum cohomology, we need a map

HÑ H2
pX,Cq

L

2πiH2
pX,Zq , (1.6)

that extends to

HÑ Kähler moduli space of X .

1.2.4

There is a small, but essential detail in this identification, namely a shift of
origin,

H Q 1 ÞÑ πiκX P H
2
pX,Cq

L

2πiH2
pX,Zq

for a certain class

κX P H
2
pX,Z{2q

that we call the canonical theta characteristic.

When X “ T ˚Y then κX is the pull-back of the canonical class KY to
X. Nakajima varieties are cotangent bundles only in sense of stacks, but still
κX is well-defined, see Section 2.2.8.

14



15 1.2 Baxter subalgebras and quantum multiplication

1.2.5

It is very convenient to incorporate the shift

qβ ÞÑ p´1qpβ,κqqβ (1.7)

into the definition of the quantum product. We call it the modified quantum
product.

With this modification, we can use the map

H2pX,Zq Q qβ ÞÑ epβ, ¨ q P H^ , (1.8)

dual to (1.6), to identify operators TF pg, uq with operators of quantum multi-
plication. Note that a trace over an auxiliary space is an element in the group
algebra CrH^s, or its completion if the auxiliary space is infinite-dimensional.

1.2.6

To turn this into a practical description of the quantum product, one needs
an R-matrix construction of the Yangian YQ.

The main geometric idea is simple and uses the embedding
ğ

v1`v2“w

Mθ,ζpv1,w1q ˆMθ,ζpv2,w2q ãÑMθ,ζpv1 ` v2,wq (1.9)

as a fixed point set of a Cˆ-action. This embedding is, of course, well-known
and played a central role in the work of M. Varagnolo and E. Vasserot [122,
123], H. Nakajima [90], and A. Malkin [71]. See in particular the paper [91]
for further developments in this direction, closely related to our construction.

1.2.7

Suppose a torus A acts on a holomorphic symplectic variety X preserving
the symplectic form. Then under fairly general hypotheses listed in Chapter
3, one can define a collection of maps, called stable envelopes,

StabC : H¨GA
pXA

q Ñ H¨GA
pXq

parameterized by certain chambers C in LiepAq. Here GA denotes the cen-
tralizer of A in G. Stable envelopes enjoy a number of remarkable geometric
properties, see Chapters 3 and 4.

15



1 Introduction 16

For A “ Cˆ with fixed points (1.9), there are just two chambers ˘C and
one defines

Rpuq “ Stab´1
´C ˝ StabC

where u P C “ LieA is the equivariant parameter for A. The Yang-Baxter
equation and other expected properties of R-matrices follow easily from gen-
eral properties of stable envelopes. Thus, we have R-matrices (1.3) for

tFiu “ tHpwquwPNI .

See Chapter 5 for a precise definition of the corresponding Yangian YQ and
Chapter 6 for further discussion of its properties.

1.2.8

Our R-matrices have the form

Rpuq “ 1`
~
u

r`Opu´2
q ,

where ~ P H2
Gpptq is the weight of the symplectic form and

r P S2gQ ,

is an invariant tensor for a certain Lie algebra gQ which contains the Kac-
Moody Lie algebra associated to the quiver Q. In particular, the action of
gQ on Hpwq generalizes the construction of Nakajima [84, 87]. The action of
gQ commutes with R-matrices.

If Q is a quiver of finite type then, modulo center, gQ is the corresponding
Kac-Moody Lie algebra, but in general it is larger. For example, it may not

be finitely generated like gQ – zglp1q for the quiver with one vertex and one
loop. We expect the assignment

Q ÞÑ gQ

to behave well with respect to the natural operations on quivers. In partic-
ular, the results of Section 4.3 relate gQ{Γ and gΓ

Q, where

QÑ Q1 “ Q{Γ

is a covering of quivers corresponding to Γ Ă π1pQ
1q. An example of this is

the well-known relation between zglp1q and infinite Toeplitz matrices.

16



17 1.2 Baxter subalgebras and quantum multiplication

1.2.9

A maximal torus hQ Ă gQ is identified with

hQ “ h‘ z , h, z – CI , (1.10)

where h and z act on H¨GpMθ,ζpv,wqq by multiplication by linear functions of
v and w, respectively. Note that z is central in gQ and YQ.

1.2.10

The Lie algebra gQ acts on Hpwq by correspondences of the following shape.
Let 0 ‰ α P NI be a dimension vector and choose w0 P NI so that w0 ¨α ‰ 0.
For example, one can take w0 “ δi for i P suppα.

For all v,w, there is a canonical Lagrangian cycle

rv,w,α,w0 ĂMpv ` α,wq ˆMpv,wq ˆMpα,w0q .

One can view this cycle as a correspondence between the second and the first
factor in which the third factor is a parameter. This gives a map

H¨GpMpα,w0qq Ñ pgQqα , (1.11)

which is surjective unless α ă 0, see Proposition 5.3.4. Here

gQ “ hQ ‘
à

α

pgQqα (1.12)

is the root decomposition of gQ, that is, the decomposition into the eigenspaces
of the adjoint action of h. Reading the same correspondence rv,w,α,w0 in the
opposite direction produces operators in pgQq´α.

1.2.11

From the construction of X “ Mθ,ζpv,wq as a quotient by the action of
GLpvq “

ś

iPI GLpviq, one has tautological bundles Vi on X of ranks vi for
i P I. The corresponding map

ZI Ñ PicpXq – H2
pX,Zq

17



1 Introduction 18

given by detpViq, i P I, is expected to be surjective for all v and an isomor-
phism for v sufficiently large (see Section 1.7 below). Dually, we have

H2pX,Zq ãÑ H^

where H – pCˆqI is the torus with the Lie algebra h. Since this matches
(1.8), we can state the following precise version of the Nekrasov-Shatashvili
principle:

Conjecture 1. The Baxter subalgebras of YQ corresponding to g P H are the
algebras of modified equivariant quantum multiplication for Nakajima vari-
eties.

1.3 Quantum multiplication by divisors

1.3.1

Conjecture 1 may be approached in two steps, the first one being the identi-
fication of operators of quantum multiplication by divisors, that is, elements
of H2pMq.

The Yangian YQ has a grading which after doubling corresponds to co-
homological degree. In this paper, we prove the following

Theorem 1.3.1. The operators of cohomological degree 2 in the Baxter sub-
algebra are the operators of modified quantum multiplication by elements of
H2

GpMqtaut

Here

H¨GpMqtaut Ă H¨GpMq (1.13)

is the subalgebra spanned by the characteristic classes of the tautological
bundles. An equality in (1.13) is expected.

1.3.2

Theorem 1.3.1 means the following concrete formula for quantum multipli-
cation by

c1pλq “
ÿ

λi c1pViq .

18



19 1.3 Quantum multiplication by divisors

The Lie algebra gQ has an invariant bilinear form such that

pgQqα K pgQqβ , α ` β ‰ 0 ,

see Theorem 5.3.11. Abusing notation, we denote by

teαu Ă pgQqα, te´αu Ă pgQq´α,

dual bases of root subspaces. Note the dimensions of the root spaces, known
as root multiplicities, are finite by surjectivity in (1.11).

Theorem 1.3.1 is equivalent to the following

Theorem 1.3.2. We have

c1pλq ˚modif ¨ “ c1pλq Y ¨ ´ ~
ÿ

θ¨αą0

pλ, αq
qα

1´ qα
eαe´α ` . . . , (1.14)

where modified quantum product means the substitution (1.7), the sum is over
roots of gQ with multiplicity, and dots stand for a multiple of the identity.

The multiple of the identity left as dots in (1.14) is uniquely fixed from
equation (1.2).

The operator c1pλqY lies in the Yangian Y if θ ą 0 or in a certain com-
pletion of the Yangian for general θ, see Section 10.1.1. Changing θ corre-
sponds to flops of Nakajima varieties and formula (1.14) has the expected
flop-covariance.

One can compare (1.14) to the more abstract structural statement for
quantum multiplication by divisors derived in [12].

1.3.3

For λ P H2
GpXq consider the operators

∇λ “
d

dλ
´ λ ˚ (1.15)

acting in H¨GpXq bQpqβq by

d

dλ
qβ “ pλ, βq qβ .

19
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Note that d
dλ
“ 0 if λ is purely equivariant, that is, λ comes from H2

Gpptq. It
is known very generally that

r∇λ,∇µs “ 0

for all λ, µ P H2
GpXq. Hence any section of the projection H2

GpXq Ñ H2pXq
defines a flat connection on a trivial H2

GpXq-bundle over H2pXq. This connec-
tion is known as the quantum differential equation or Dubrovin connection.

Formula (1.14) precisely means that the quantum differential equation
for Nakajima varieties is a trigonometric Casimir connection in the sense of
[120]. To be precise, we prove this for H2pXqtaut, which is expected to be the
whole H2pXq.

1.3.4

Conjecture 1 would be implied by the affirmative answer to the following

Question 1. Do the operators (1.14) have a simple joint spectrum ? Equiva-
lently, is quantum cohomology of Nakajima varieties generated by tautological
divisors ?

In this paper we treat the following special case.

Theorem 1.3.3. The quantum cohomology of the moduli space of framed
torsion-free sheaves on P2 is generated by the divisor.

These moduli spaces are Nakajima varieties associated the quiver of with
one vertex and one loop. Our proof of Theorem 1.3.3 is based on an explicit
representation of quantum multiplication by divisor in terms of Heisenberg
operators.

1.4 Shift operators and qKZ

1.4.1

For simplicity, let us replace the group G by its maximal torus T. By con-
struction, the elements of H¨TpXq bQpqβq are functions on

tˆH2
pXq ,

20



21 1.4 Shift operators and qKZ

where t “ LieT. The operators (1.15) define a flat connection along the
H2pXq-directions. In fact, this is a part of a flat difference-differential con-
nection, in which the difference part corresponds to the lattice

CocharpTq Ă t .

The corresponding operators

Spσq P EndH¨TpXq bQrrqβss

are known as shift operators because they shift the values of the equivariant
parameters in ∇λ. They are constructed geometrically as follows.

1.4.2

Let

σ : Cˆ Ñ T

be a cocharacter of T. To it, one associates a nontrivial X-bundle p

X �
� // X„

p
��

P1

over P1, see Chapter 8. By definition, rational curves in X„ that map to
the base P1 with degree 1 are the σ-twisted rational curves in X. Their
enumerative geometry is closely related to the Gromov-Witten theory of X.
In particular, the shift operator Spσq is constructed from the virtual count of
twisted 2-pointed rational curves with marked points in p´1p0q, p´1p8q – X,
see Section 8.1.7.

The flatness condition

”

∇λ, e
´ d
dσ Spσq

ı

“ 0

is the ε “ 1 specialization of Proposition 8.2.1. Here e
d
dσ is the translation

by σ P t.
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1.4.3

The key step in our proof of Theorem 1.3.2 is an explicit computation of the
shift operators Spσq for certain special cocharacters σ.

An action of Cˆ on a symplectic resolution X is called minuscule if
H0pOXq is generated by functions of weight 0,˘1. One easily shows, see
Section 2.6, that the Cˆ-action from (1.9) is minuscule. For minuscule σ, the
operators Spσq may be computed in term of R-matrices as follows.

1.4.4

A σ-fixed point x P Xσ defines a section ζx of p. The classes of these sections

rζxs P H2pX
„,Zq

lie in a single H2pX,Zq-coset. Thus, up-to an overall multiple, qζ is a well-
defined function from the set of components of Xσ to the group algebra of
H2pX,Zq. In fact, for Nakajima varieties, there is a preferred way to fix the
ambiguity, see Section 9.1.5.

Recall the stable envelope maps

Stab˘ : H¨TpX
σ
q Ñ H¨TpXq

and their ratio Rσ “ Stab´1
´ ˝ Stab`. Define

∇σ
λ “ Stab´1

` ˝∇λ ˝ Stab` .

Theorem 9.3.1 in Section 9.3 is equivalent to the following

Theorem 1.4.1. For minuscule σ, ∇σ
λ commutes with the difference connec-

tion
Ψpt` σq “ p´1qpζ,κXq qζ Rσ Ψptq (1.16)

where we consider Ψ P H¨TpX
σq bQpqβq as a function of t P t.

Here κX is the canonical theta characteristic discussed in Section 1.2.4 .

1.4.5

In the case of (1.9), we have

qζ “ qv1 “ qv b 1

where qv lies in the torus H with Lie algebra h. We thus recognize in (1.16)
the quantum Knizhnik-Zamolodchikov equation of Frenkel and Reshetikhin,
see [47].
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23 1.5 Yangian of zglp1q and instanton moduli

1.4.6

It follows from Theorem 1.4.1 that the operator p´1qpζ,κXq qζ Rσ commutes
with operators of quantum multiplication for minuscule σ. This plays a key
role in the proof of Theorem 1.3.2. In other words, we determine the quantum
connection ∇λ through the commuting difference connection.

For this to work, it is important to relate Nakajima varieties with different
framing vectors w as in (1.9). For instance, quantum cohomology of the
moduli spaces of framed torsion free sheaves on C2 is a object of significant
geometric interest, see below. From our perspective, it is easier to determine
it for general rank then just in the special case of Hilbert schemes.

1.5 Yangian of zglp1q and instanton moduli

1.5.1

In the second half of the paper, we make the general theory explicit in the
case of the quiver Q with one vertex and one loop. Denote

r “ w1 , n “ v1 .

The corresponding Nakajima variety

Mpr, nq “M1,0pv,wq

is the moduli space of framed rank r torsion-free sheaves F on P2 with
c2pFq “ n. A framing of a sheaf F , by definition, is a choice of an isomor-
phism

φ : F
ˇ

ˇ

L8
Ñ O‘rL8

where L8 Ă P2 is a fixed line. Usually, the line L8 is viewed as the line at
infinity of C2 Ă P2. The group

G “ GLp2q ˆGLprq

acts naturally onMpr, nq, the first factor acting on C2 while the second acts
by changing the framing.

See, for example, [88] for an introduction to the geometry of Mpr, nq.
It plays an important role in Donaldson theory [26] and in mathematical
approaches to supersymmetric quantum gauge theories, particularly in the
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work of Nekrasov [93]. By a theorem of Donaldson, a dense open subset of
Mpr, nq, r ą 1, that parameterizes locally free sheaves is the moduli space
of framed Uprq-instantons of charge n.

1.5.2

For r “ 1, Mpr, nq becomes the Hilbert scheme of points, the quantum
cohomology of which was determined in [103], a result that found applications
to the enumerative theories of curves in threefolds [74].

Theorem 1.3.2 gives a new proof of this result and extends it to higher
rank. We expect it to play a role in the higher rank Donaldson-Thomas
theory of threefolds. In fact, higher rank DT theory of threefolds was one of
the main motivations for the present work.

1.5.3

In Chapter 12 we relate the Lie algebra gQ to the Heisenberg algebra zglp1q
that acts on the cohomology of Mpr, nq by the work of Nakajima [86], Gro-
jnowski [51], and Baranovsky [6].

To be precise, for an arbitrary quiver we discuss two versions of the Yan-
gian: the Yangian Y mentioned above and another, more economical, algebra
Y which we call the core Yangian. They correspond to different normaliza-
tion of R-matrices: those for Y fix vacuum vectors while those for Y scale
them by certain Γ-factors, see Section 6.1.10.

For Mpr, nq, zglp1q Ă Y, while gQ Ă Y is the quotient of zglp1q by the

constant loops glp1q Ă zglp1q.

1.5.4

Recall that Nakajima’s Heisenberg algebra acts irreducibly on the cohomol-
ogy Hp1q of

Mp1q “
ğ

n

Mp1, nq ,

and this identifies Hp1q with the standard Fock space of one free boson.
Stable envelopes give a map

Hp1qbr Ñ Hprq ,
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25 1.5 Yangian of zglp1q and instanton moduli

which makes it possible to describe Hprq, and the Yangian action on it, in
terms of r free bosons.

In this way, one recovers and generalizes many familiar objects of con-

formal field theory. For example, the Yangian of zglp1q contains the Virasoro
algebra in the Feigin-Fuchs representation.

The quantum integrable system given by the classical, that is q “ 0,
product in cohomology, is a certain generalization of the second-quantized
trigonometric quantum Calogero-Sutherland system to r interacting bosonic
fields, see Section 14.2. More generally, a connection between the quantum,
that is q ‰ 0, product in cohomology and a quantum intermediate long-wave
equation is explored in [94].

1.5.5

In the literature, one can find many different ways to construct and study

algebras that may be called a Yangian of zglp1q, see for example [29, 31, 41,
36, 68, 79, 108, 109]. Perhaps one of the advantages of our approach is that

our Ypzglp1qq is obtained by a general procedure, applicable to an arbitrary
quiver.

1.5.6

For us, R-matrices are the main objects of study and those forMpr, nq turn
out to be related to very interesting operators in CFT. Namely, in Section

14.3 we relate the R-matrix for Ypzglp1qq to the reflection operator in Liouville
theory. As far as we know, the Yang-Baxter equation satisfied by R has not
been previously explored in the conformal field theory context.

Recall that Theorems 1.3.1 and 1.3.3 identify the algebra of quantum mul-

tiplication forMpr, nq as a Baxter subalgebra in Ypzglp1qq. The identification
of R gives a mechanical procedure to write the corresponding commuting
operators in terms of free bosons.

1.5.7

During the workshop at the Simons Center in January 2010, we were asked
by Nakajima and Tachikawa whether our theory can help with some of the
questions raised in the work of Alday, Gaiotto, and Tachikawa [2].
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The connection is, indeed, very strong and some simple applications are

immediate. For example, it is easy to describe the image of Ypzglp1qq in its
representation on Hp1qbr in terms of the vertex algebra W

`

glprq
˘

. This is
discussed in Section 19.2. We anticipate many further applications in this
direction. Similar results have recently been obtained by Schiffman-Vasserot
[109].

Although applications to the conjectures of [2] appear at the end of the
paper, they require very little of the preceding machinery. In particular, this
is about purely classical cohomology of Mpr, nq, quantum products play no
role.

Classical limits of the formula from which this discussion with Nakajima
and Tachikawa started were later independently found in [28] and also [113].

1.6 Further directions

We conclude this Introduction with a brief discussion of some natural direc-
tions in which one can pursue the results of this paper.

1.6.1 K-theory

In [89], Nakajima constructs an action of UqpygKMq on the equivariant K-
theory of quiver varieties. Here gKM is a Kac-Moody Lie algebra and UqpygKMq

is the quantized universal enveloping of the loop Lie algebra of gKM. These
algebras are defined by explicit generators and relations, see [89].

A natural extension of the present work to K-theory would produce a
larger Hopf algebra UqpxgQq, defined in the style of [35] and acting naturally
on KGpMQq. At least for quiver varieties, one can construct a K-theoretic
analog of stable envelopes, which we expect to be the key ingredient for such
project.

For the Jordan quiver, the K-theoretic R-matrix was computed in [101].
As expected, it is closely related to the results of [42, 108].

1.6.2 Monodromy of QDE and categorification

The quantum differential equation 1.15 defines a connection ∇ with regular
singularities on the Kähler moduli space H of MQ, which is a compactifica-
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27 1.6 Further directions

tion of the torus H – pCˆqI . Consider the regular points

Hreg “
 

q P H
ˇ

ˇ @α qα ‰ 1
(

of this connection. The monodromy of ∇ defines a homomorphism

B “ π1pHregq Ñ YpgQq ,

where bar denotes a certain completion.

A generalization of the Toledano Laredo’s monodromy conjecture for
trigonometric Casimir connections [120, 48] identifies B with what should
be called the quantum Weyl group of UqpxgQq. It was further conjectured by
Bezrukavnikov that this action of B lifts to

B Ñ AutDb CohGMQ .

This is known in a handful of cases, in particular for Hilbert schemes of points
of C2, see [9]. Perhaps a categorical version of stable envelopes, obtained from
the parabolic induction functors for quantizations of Nakajima varieties, is
the proper technical tool to attack these problems.

1.6.3 Higher rank Donaldson-Thomas theory

The quantum cohomology of Hilbert scheme of points of a symplectic surface
S is closely related to the Donaldson-Thomas theory of threefolds fibered in
S over a curve. In particular, in the case of An surfaces, this point of view
lead to an explicit description of DT invariants of toric threefolds [74].

For higher rank sheaves on ADE surfaces, there is again a close connec-
tion with DT theory, via Diaconescu’s work on ADHM-sheaves [24], see also
[18]. Arguments parallel to those in this paper should give an effective de-
termination of the virtual invariants of the moduli of ADHM sheaves on a
smooth projective curve in terms of our operators of quantum multiplication.

Using a Beilinson-type construction, as in section 7 of [24], the ADHM
moduli spaces can be identified with a certain moduli space of higher-rank
framed complexes on ADE-fibrations over curves.

For general quivers, Theorem 1.3.2 implies an identification (up to a scalar
function) between the small J-function and I-function in these geometries
(as defined in [18]),without any change of variables required.
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1.6.4 Hilbert Schemes of points of general surfaces

For a general surface S, quantum cohomology of the Hilbert schemes of points
and DT theory of S-fibrations will diverge and we expect the latter to have a
better structure. However, we expect the classical cohomology HilbpSq to be
described as a q “ 0 Baxter subalgebra for a certain R-matrix. In fact, this
R-matrix should be the reflection operator R associated in Section 13.4 to the
Frobenius algebra H “ H¨GpSq. This is a joint project with Vivek Shende and
one of its potential goals could be a better structural understanding of some
of the many mysterious universal generating series in the theory through
representation theory of Yangians.

1.6.5 K-theoretic DT theory

Perhaps one of the most challenging projects for the future would be to
upgrade the connection with DT theory of 3-folds to the level of K-theory.
K-theoretic DT invariants are a subject of interest in both mathematics and
theoretical physics, due to their M-theoretic interpretation [95] and their
connection to the motivic DT invariants [75].

1.7 Update

This work reflects what we knew in 2010, with some improvements to ex-
position made during 2010–12. As we revise it in the early 2017, it seems
necessary to add a certain bare minimum of references to subsequent devel-
opments, in particular, in connection with directions for further researched
outlined above. We decided to limit all such updates to this section.

A survey of the progress since 2012 may be found in [99, 100]. In par-
ticular, lectures [99] explain the extension of the present work to equivariant
K-theory, including application to K-theoretic Donaldson-Thomas theory. In
K-theory, the quantum differential equations studied here become quantum
difference equation. Those were determined in [102] for all Nakajima vari-
eties.

The monodromy problem for the quantum difference equations was ana-
lyzed in [1]. This analysis may be directly linked to Bezrukavnikov’s quanti-
zation in characteristic p " 0, to the monodromy conjectures above [9], and
to the categorical stable envelopes [53].
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Chapter 2

Nakajima varieties

In this chapter, we recall definitions and basic facts on the geometry of Naka-
jima quiver varieties. There is a large literature on the subject, although most
of what we need can be found in the original references [84, 87] and papers
of Crawley-Boevey [21, 22]. We also explain some results on natural group
actions on Nakajima quiver varieties.

2.1 Definition

2.1.1

Let Q be a quiver, i.e. an oriented multigraph, with finite vertex set I. We
allow loops and multiple edges in Q. The quiver data is simply the adjacency
matrix

Q “ pqijqi,jPI

where

qij “
ˇ

ˇtedges from i to ju
ˇ

ˇ .

For what follows, we can assume that multiple edges have the same orienta-
tion in Q. We also consider quivers Q and ~Q with vertex set given by the
union I \ I of two copies of the set I and with adjacency matrices

Q “

ˆ

Q`QT id
id 0

˙

, ~Q “

ˆ

Q 0
id 0

˙

.
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2.1.2

A representation of a quiver is an assignment of a coordinate vector space to
each vertex and of a linear map to each arrow. The dimension of a represen-
tation is an element of NI , where N “ Zě0.

For v,w P NI , denote by RepQpv,wq the space of representations of the

quiver Q of dimensions vi for i P I and wi for i P I. Using the trace pairing,
we can write

RepQ “ Rep ~Q‘

´

Rep ~Q

¯˚

, (2.1)

which gives this linear space a symplectic form ω. This symplectic form is
preserved by the action of

Gv “
ź

GLpviq , Gw “
ź

GLpwiq .

We can also define an action of the group
ź

i

Spp2qiiq
ź

i‰j

GLpqijq .

as follows. Given a vertex i, loops at this vertex contribute a factor

EndpCviq
‘qii ‘ its dual – EndpCviq b C2qii ,

to RepQ where the symplectic form is induced by the symmetric trace pairing
on the first factor and the standard symplectic form on the second. The factor
Sp2p2qiiq acts naturally on the second factor. Similarly, given distinct vertices
i, j, the contribution of edges between these vertices is naturally identified
with

pHompCvi ,Cvjq b Cqijq ‘ its dual

and the factor GLpqijq acts in the natural way. By construction, these groups
also preserves the symplectic form ω.

2.1.3

The symplectic form ω is scaled by the action of Cˆ scaling the second
summand in (2.1). We denote by ~ its Cˆ-weight. When there are other
Cˆ’s around, we denote this one by Cˆ~ .

We set
Gedge “

ź

i

Spp2qiiq
ź

i‰j

GLpqijq ˆ Cˆ~ .
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35 2.1 Definition

As we shall see, this group will act uniformly on all families of quiver varieties
associated to Q.

2.1.4 Weight convention

In this paper, we embed group weights into Lie algebra weights. For example,
we will also use ~ to denote the generator of the equivariant cohomology of
Cˆ~ .

2.1.5

Sometimes it is convenient to consider, following Crawley-Boevey, represen-
tations of the quiver Q8 with vertex set I \ t8u and adjacency matrix

Q8 “

ˆ

Q`QT w
wT 0

˙

. (2.2)

Note that we have a natural identification

RepQpv,wq – RepQ8ppv, 1qq.

Furthermore, this isomorphism is equivariant with the natural action of the
groups above. For the action of Gw on the right-hand side, we define an edge
group G8edge analogously to the last section, and it contains a copy of both
Gw and Gedge.

2.1.6

Consider the moment map

µ : RepQpv,wq Ñ g˚v ,

for the action of Gv, where gv “ LieGv. Denote by

zv “ rgv, gvs
K
Ă g˚v ,

the fixed points of coadjoint action. If we identify g˚v with gv via the trace
pairing, zv corresponds to scalar matrices, i.e. a copy of C for every i P I
such that vi ‰ 0. We consider the preimage

Z “ µ´1
pzvq.

In general, this may be reducible and nonreduced.
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2.1.7

Note for any x P RepQ8 , its stabilizers in Gv is the quotient of units by
scalars for some associative algebra over C. Hence the Gv-stabilizer of x is
finite if and only if it is trivial.

2.1.8

Given θ P ZI , it defines a character of Gv by the convention

pgiq ÞÑ
ź

pdetgiq
θi P Cˆ.

We define

ĂMθ “ Z{{θGv ,

“ Proj
à

ně0

C rZsnθ ,

where the subscript nθ denotes the corresponding Gv-isotypic component.
The map µ descends to a map

rµ : ĂMθ Ñ zv .

Definition 2.1.1. A Nakajima quiver variety is a fiber of this map:

Mθ,ζpv,wq “ rµ´1
pζq , ζ P zv .

2.2 Basic properties

2.2.1

The following result is proven in [84]

Proposition 2.2.1. For any Q, v, and w there exits a finite set tαiu Ă NI

such that Mθ,ζpv,wq contains a strictly semistable point only if

αi ¨ θ “ αi ¨ ζ “ 0

for some i.
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37 2.2 Basic properties

These hyperplanes are closely related to the roots of the Lie algebra gQ
that will be associated to the quiver Q in Section 5.3. One corollary of this
proposition is that, for θ in the complement of these hyperplanes, the natural
map

rµ : ĂMθ Ñ zv

is smooth, although it is possible that the domain is empty.

We also state the following result, which is well-known. Since we do not
use it in the paper, it can be safely skipped. However, we sketch its proof
briefly.

Proposition 2.2.2. If there exists a free Gv-orbit contained in Z, then rµ is
surjective for all values of θ. The generic fiber is smooth and affine.

Proof. If there exists a free orbit, then the moment map µ is smooth at any
point of this orbit and, in particular, the image of Z contains a dense, Zariski-
open set U of zv. By Theorem 1.2 of [21], after further shrinking, the entire
fiber of any point of U consists of simple representations of Q8. These are
θ-stable for all stability conditions θ; consequently, the GIT quotient for any
choice of θ equals the categorical quotient of the fiber, which is affine. This
proves the second statement.

For the first statement, we use the definition of quiver varieties via hyper-
kahler reduction, as in [84]. Let Uv denote the maximal compact subgroup
of Gv. If we take the hyperkahler moment map, then the image of the locus
of free Uv-orbits contains RI ˆ U Ă RI ˆ zv. Since it is stable with respect
to multiplication by unit quaternions, it contains tθu ˆ zv for any suitably
generic θ. Consequently, rµ is surjective for general θ. Finally, if θ lies on a
wall on the space of stability conditions,there is a factorization

ĂMθ1 Ñ ĂMθ Ñ zv

where θ1 is a nearby stability condition. We can assume rµ is surjective for θ1

which implies rµ is surjective for all θ.

In this paper, we are mainly interested in the case where θ is generic in
the sense of Proposition 2.2.1 and when ζ “ 0. We say θ ą 0 if θi ą 0 for all
i. This condition implies that θ is generic in the above sense, for arbitrary
quiver Q and dimension vectors v,w.
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2 Nakajima varieties 38

2.2.2 Group actions

By construction, the group

G “

#

Gw ˆGedge , ζ “ 0 ,

Gw ˆ
ś

i Spp2qiiq
ś

i‰j GLpqijq , ζ ‰ 0
(2.3)

acts on Mθ,ζpv,wq. The larger group also acts on ĂMθ and the map

rµ : ĂMθ Ñ zv b ~´1

is G-equivariant.
The action of G is not faithful onMθ,ζpv,wq. The center ZpGvq of Gv has

a natural map
ρQ : ZpGvq Ñ Gedge .

There is also a map
τQ : KerpρQq Ñ Gw

given by constants acting by multiplication on Cwi .
The images of these maps act trivially onMθ,ζpv,wq, and we could work

with the corresponding quotient groups

G1edge “ Gedge{ImpρQq , G1w “ Gw{ImpτQq

and their product G1.
However, it is sometimes convenient to work with the larger group G since

the tautological bundles considered shortly admit a natural G-equivariant
structure. In practice, most of the geometric calculations and constructions
considered later (e.g. R-matrices, quantum operators) will naturally take
values in G1-equivariant cohomology.

2.2.3 Symplectic resolutions

By construction, Nakajima varieties have an algebraic Poisson structure
which is symplectic on their smooth locus. The group G preserves this sym-
plectic form when ζ ‰ 0 and scales it by the character ~ when ζ “ 0.

Furthermore, they come with a projective map

π :Mθ,ζpv,wq ÑM0,ζpv,wq “ SpecCrµ´1
pζqsGv
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to an affine algebraic variety.
Although π is not always birational, it follows from section 10.3 of [84]

that it is birational onto its image. In particular, for θ generic in the sense of
Proposition 2.2.1, Mθ,ζpv,wq is an equivariant symplectic resolution. When
ζ “ 0 it carries a natural torus action that scales ω and is an example of the
general theory considered, for example, in [60].

2.2.4 Tautological bundles

As Gv-quotients, Nakajima varieties have tautological bundles Vi of ranks vi,
i P I, associated to representations

Gv Ñ GLpCviq .

For uniformity, we consider the (topologically trivial) bundles Wi, i P I, of
ranks wi on a similar footing. Since these bundles carry a representation of
Gw, their equivariant Chern classes capture the framing weights.

2.2.5 Equivariant lifts

The matrix elements of the matrices

Q`QT , Q

are dimensions of vector spaces which naturally carry representations of G,
essentially by the definition of the group G. As a result, we have a natural
lift of Q ` QT and Q to matrices with values in the representation ring
KGpptq. Recall from Section 2.1.4 that we embed group weights into Lie
algebra weights. Here we treat ~ etc. as elements of KGpptq.

If we endow KGpptq with the involution given by taking duals, the Her-
mitian transpose of Q satisfies the relation

`

Q
˘˚
“ ~bQ . (2.4)

where ~ denotes the character of G associated to Cˆ~ .
The Cartan matrix of Q admits an equivariant lift

C “ 1` ~´1
´ pQ`QT

q.
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2 Nakajima varieties 40

We also set

C “

ˆ

´C ~´1

1 0

˙

,

and define the Hermitian forms

pv, v1qQ “ v˚ C v1 (2.5)

ppv,wq, pv1,w1qqQ “ pv,wq
˚ C pv1,w1q .

for v,w, ¨ ¨ ¨ P KGpptq
I .

Given an arbitrary G-variety X and

v,w, v1,w1 P KGpXq
I ,

the forms (2.5) still make sense and takes values in KGpXq. Of course, very
often, one takes just the nonequivariant specialization of (2.5).

2.2.6 Tangent bundle

Given θ generic, if Mθ,ζpv,wq is nonempty, its dimension is given by

dimMθ,ζpv,wq “ }pv,wq}
2
Q
,

with respect to the nonequivariant version of (2.5). Using the equivariant lifts
described above, we can identify the K-theory class of the tangent bundle as
follows.

Lemma 2.2.3. For θ generic, we have the identification

TMθ,ζpv,wq “ }pV ,Wq}2Q , (2.6)

in KGpMθ,ζpv,wqq, where

V ,W P KGpMθ,ζpv,wqq
I

are vectors of tautological bundles.

Proof. On the affine space of representations of Q, the tangent bundle is
given by

TRepQpv,wq
“ pV ,Wq˚Q pV ,Wq.

Since the moment map is submersive, the tangent bundle on Mθ,ζpv,wq is
obtained by subtracting off

g˚v b ~´1
´ gv

which gives the result.
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2.2.7 Splitting of tangent bundle

Using the orientation of Q, we can define a virtual bundle

T 1{2
“
ÿ

i,j

pQi,j ´ δi,jqHompVi,Vjq `
ÿ

i

HompWi,Viq P KpMθ,ζpv,wqq.

If H Ă G denotes the subgroup preserving the decomposition (2.1), then the
expression lifts to KHpMθ,ζpv,wqq where it satisfies the identity

TMθ,ζpv,wq “ T 1{2
` ~´1

b
`

T 1{2
˘_

(2.7)

Nakajima varieties may be viewed as open substacks of the cotangent stacks
stacks

Mθ,ζpv,wq « T ˚
´

Rep ~Q

L

Gv

¯

and the virtual bundle T 1{2 is the pullback of the tangent bundle from the
base in this sense.

2.2.8 Theta characteristic

One notes that

κM “ c1

`

T 1{2
˘

mod 2 P H2
pM,Z{2q (2.8)

is independent of the orientation of Q. We call it the canonical theta char-
acteristic of Mθ,ζpv,wq. It will be responsible for signs in the formulas for
quantum multiplication.

2.2.9

Alternatively, Nakajima varieties may be defined using representation of the
quiver Q8 and parameters

pζ8 “ ´
ÿ

iPI

vi pζi .

This is because diagonal scalars in
ś

iPI\t8uGLpviq act trivially on represen-
tations of Q8.
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2 Nakajima varieties 42

2.2.10

Note that for θ generic,

Mθ,ζpv, 0q “ H (2.9)

because when w “ 0 the action of Gv cannot be free.

2.3 Torus-fixed points

In this section, unless stated explicitly, we assume throughout that θ is
generic in the sense of Proposition 2.2.1, so Mθ,ζpv,wq is in particular a
smooth holomorphic symplectic variety.

2.3.1

Let

A Ă Ker~ Ă Gedge ˆGw (2.10)

be a torus. Since A preserves ω, its fixed locus Mθ,ζpv,wq
A is a smooth

holomorphic symplectic variety. In fact, it is a union of product of smaller
Nakajima varieties, which can be seen as follows.

2.3.2

Take x P Mθ,ζpv,wq
A and let X P RepQpv,wq be a point above it. The

subgroup

Gx
Ă Gv ˆGedge ˆGw

such that

1 Ñ Gv Ñ Gx
Ñ AÑ 1

acts on the orbit of X. Since the Gv action is free, we get a map Gx Ñ Gv

that splits the above sequence. This gives homomorphisms

A
φ
ÝÑ Gv ˆGedge ˆGw Ñ A (2.11)

with identity composition and such that X is fixed by φpAq.
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43 2.3 Torus-fixed points

2.3.3

A homomorphism φ is equivalent to a lift of v, w, and Q to vectors and
matrices with values in KApptq, consistent with the embedding (2.10). To
this, one associates a new quiver Qφ as follows. We set

Iφ “ I ˆ A^

where A^ is the character group of A, and

pQφqpi,λq,pj,νq “ coefficient of ν{λ in Qij ,

where λ, ν P A^. This is an infinite quiver with a free action of the group A^

by automorphisms. We take dimension vectors

pvφqpi,λq “ coefficient of λ in vi

and similarly for wφ. These have finite support, which may be disconnected.
Clearly, representations of quivers factor over connected components of sup-
ports. Finally,

Gvφ “ pGvq
φpAq

Ă Gv

and this defines the pull-back pθφ, ζφq of pθ, ζq.

2.3.4

We consider two lifts φ1 and φ2 in (2.11) equivalent if they define the same
action of A on RepQ.

Proposition 2.3.1. We have

Mθ,ζpv,wq
A
“

ğ

φ{„

Mφ ,

where Mφ is the Nakajima variety associated to the quiver Qφ and the data
vφ,wφ, θφ, ζφ above.

Proof. It is clear that

RepQpv,wq
φpAq

“ RepQφpvφ,wφq .

The moment map µ takes this fixed locus to

pg˚v q
φpAq

“ g˚vφ
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2 Nakajima varieties 44

and coincides with µφ. It remains to check that

θ-stability ô θφ-stability .

The ñ implication is trivial. The set of all θ-destabilizing subrepresentations
is a projective variety with an action of A. If nonempty, it has an A-fixed
point which is a θφ-destabilizing subrepresentation.

2.3.5

As a first example, take A to be the maximal torus of G1edge. Recall that
G1edge is largest quotient of Gedge that acts nontrivially. We have

A^ “ H1pQ,Zq

and

Qφ Ñ Qφ

L

A^ – Q

is the universal abelian cover of Q. In particular, for any Q, Qφ is a quiver
without loops at vertices.

2.3.6

The restriction of the tangent bundle of Mθ,ζpv,wq to the A-fixed locus is
given by the same formula (2.6), but interpreted in the A-equivariant K-
theory via the map φ.

Expanding (2.6) in characters of A, one expresses the A-eigensubundles
in the normal bundle to Mθ,ζpv,wq

A in terms of the tautological bundles of
Mφ.

2.3.7

Because the splitting (2.7) is equivariant with respect to all group actions,
we have

c1pN˘qmod 2 “ κM ` κMA (2.12)

in H2pMA,Z{2q for any torus A that preserves the symplectic form.
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45 2.4 Tensor product of Nakajima varieties

2.4 Tensor product of Nakajima varieties

2.4.1

For this paper, the main example of the above fixed-point construction arises
as follows.

Take a decomposition

w “ w1 ` w2

and define

A – Cˆ Ă Gw

as the subgroup that scales the first term in

Cwi “ Cw1i ‘ Cw2i , i P I , (2.13)

with weight 1. In other words, we take

w “ z w1 ` w2 P KCˆpptq
I

where z is the defining representation. Then the fixed points are precisely

ğ

v1`v2“v

Mθ,ζpv
1,w1q ˆMθ,ζpv

2,w2q ãÑMθ,ζpv,wq (2.14)

as in (1.9). Indeed, the fixed points in (2.14) correspond to

v “ z v1 ` v2

and all other ones are empty because of (2.9).

The embedding (2.14) will play a key role in this paper and we call it
tensor product of Nakajima varieties. See Section 5.1 for a discussion of this
term.

2.4.2

For a tensor product of Nakajima varieties, the normal bundle to the fixed
locus is

N “ zN` ‘ z
´1N´
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2 Nakajima varieties 46

where z˘1 is the torus weight,

N´ “
ÿ

HompW 1
i,V2i q `

ÿ

HompV 1i,W2
i q b ~´1

´
ÿ

Cij HompV 1i,V2j q (2.15)

in the K-theory of the fixed locus, where Cij denotes the equivariant Cartan
matrix and

N` “ ~´1
bN_

´ .

2.5 Slices

2.5.1

Recall the affine quotient

M0,ζ “ µ´1
pζq{Gv .

Its closed points are the closed Gv-orbits in µ´1pζq Ă RepQ, and those cor-

respond to isomorphism classes of semisimple representations of Q or Q8.
The natural map

π :Mθ,ζ ÑM0,ζ . (2.16)

takes a θ-semistable representation to its semisimplification, see Proposition
3.20 in [87].

2.5.2

Given X PM0,ζ , it natural to study π´1pXq, bearing in mind that it may be
empty. Following Nakajima, see Section 6 in [84], π´1pXq may be described
as pπ1q´1p0q for a different quiver Q1. Here 0 PM1

0,0 is the zero representation.
See Proposition 3.2.2 in [89] and Section 4 in [22] for the proof of the

following

Theorem 2.5.1 ([84, 89, 22]). For any X PM0,ζpv,wq there exist a quiver
Q1 and dimension vectors pv1,w1q such that:

• an analytic neighborhood U of X in M0,ζpv,wq is isomorphic to an
analytic neighborhood U 1 of 0 in M1

0,0pv
1,w1q ˆ Ck and
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47 2.5 Slices

• this isomorphism may be lifted to an isomorphism ΣX between pπ1q´1pU 1q
and π´1pUq that preserves the fibers of π.

These isomorphism are equivariant with respect to the stabilizer G1 Ă G of
the representation X.

We call the maps ΣX slices and for brevity write them as rational maps

ΣX :M1
pv1,w1q ˆ Ck 99KMpv,wq

even though this is not what is claimed in Theorem 2.5.1. The integer k that
appears here is the difference in dimensions, see also (2.18) below.

2.5.3

The data Q1, v1,w1 are constructed as follows. As a representation of Q8, X
has a unique decomposition

X “ X8 ‘
à

iPI 1

X
‘v1i
i

into nonisomorphic simples Xi with multiplicities v1i. We denote by

dpXqij “ pdimXjqi , i P I \ t8u , j P I 1 \ t8u ,

the matrix of their dimension vectors. The subgroup

GLp1q ˆGv1 Ă GLp1q ˆGv

is the stabilizer of X P RepQ8 and the matrix dpXq describes its subgroup
conjugacy class.

The representation X8 is distinguished from the rest by

dpXq8,8 “ 1

and then

dpXq8,j “ 0 , j P I 1 ,

because pdimXq8 “ 1.
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2.5.4

By definition, I 1 \ t8u is the vertex set for the new quiver Q18 and v1 is the
new dimension vector. We use the matrix

d : ZI 1\t8u Ñ ZI\t8u

to transfer the other quiver data to I 1 \ t8u. For example, we set

pζ 1 “ dT pζ .

It follows that

ζ 1 “ 0 , v1 ¨ θ1 “ 0 ,

because v “ dpXq ¨ v1 and

ÿ

iPI\t8u

ζi dpXqi,j “ 0 , @j ,

by the moment map equation.

2.5.5

The adjacency matrix of Q18, and in particular, the new framing vector w1 is
found from the formula

pa, bqQ18 “ pdpXq a, dpXq bqQ8 , (2.17)

see (2.2) for the the matrix of this quadratic form.
In the course of the proof, one uses reductivity to write

g˚v “ g˚v1 ‘ gKv1

and identifies dµ´1pg˚v1q “ pgv ¨Xq
= and

RepQ18 – pgv ¨Xq
=
M

gv ¨X

as Gv1 ˆ G1-modules, where = denotes the symplectic perpendicular. This
leads to (2.17).
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49 2.5 Slices

2.5.6

Note that Q18 may have loops at the distinguished vertex 8, in fact

#tloops at 8u “ k “ }pdimX8,wq}
2
Q (2.18)

where k is the number from Theorem 2.5.1. These loops contribute a vector
space factor to RepQ18 because v18 “ 1. Note that (2.18) also describes this
vector space as a G1-module.

2.5.7

The following is immediate:

Proposition 2.5.2. If X8 is the only nonzero representation in X then Q1

is isomorphic to the subquiver of Q formed by the support of v1 “ v´dimX8
and

w1 “ w ´ ~C dimX8 . (2.19)

This also covers the trivial case when X “ 0 and dpXqij “ δij.

2.5.8 Example

Consider the An-quiver, that is, that is the quiver with

C “

¨

˚

˚

˚

˝

1` ~´1 ´~´1

´1 1` ~´1 ´~´1

. . . . . . . . .

´1 1` ~´1

˛

‹

‹

‹

‚

.

We fix 1 ď i ă j ď n and take

w “ ~ a δi ` aδj ,

where a is a weight of Gw. For

dimX8 “ a
j
ÿ

k“i

δk

there is a torus fixed representation X8 with such dimension. It takes the
framing vector at the jth vertex, applies the arrow in Q to it pj´iq times, and

49



2 Nakajima varieties 50

sends it to the framing vector at the ith vertex. Note that the final map in
HompVi,Wiq has torus weight ~b´1 and the framing weight ~a compensates
for this.

If the other Xi’s are zero, we get

w1 “ a δi´1 ` ~ a δj`1

from formula (2.19).

2.5.9 Example

Take the quiver with one vertex and one loop, for which C is a 1ˆ 1 matrix

C “ p1´ t1qp1´ t2q , t1 b t2 “ ~ ,

where t1 and t2 are the weights of Gedge. For

w “ a` a t´n1 t´1
2 ,

there is a torus-fixed representation X8 with

dimX8 “ ap1` t´1
1 ` ¨ ¨ ¨ ` t1´n1 q .

Just like in the previous example, it takes a framing vector of weight a and
applies the t1-arrow to it pn ´ 1q-times (the weights have go change by t´1

1

every time to compensate for the t1 weight of the arrow). We find

w1 “ at´n1 ` at´1
2 .

This and the previous example are special cases of slices considered in Section
6.2.

2.5.10

Equivariance in Theorem 2.5.1 means that slices commute with taking fixed
points. That is, if A1 Ă G1 is a torus preserving the symplectic form then

pΣXq
A1 :

`

M1
pv1,w1q ˆ Ck

˘A1

99KMpv,wqA1

is an isomorphism of open subsets of quiver varieties (the fixed points are
quiver varieties by Proposition 2.3.1).
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In particular, slices are compatible with tensor products, in the sense that
the following diagram commutes

Mpw0 ` w1q ˆ C... ΣX //Mpw0 ` wq

Mpw0q ˆMpw1q ˆ C...
?�

OO

1ˆΣX //Mpw0q ˆMpwq
?�

OO
(2.20)

where the vertical arrows are inclusions of fixed points and the representation
X is padded by zeros as necessary.

2.6 Minuscule coweights

2.6.1

Let X be an algebraic variety. We call an action

σ : Cˆ Ñ AutpXq

minuscule, if the algebra H0pX,OXq is generated by functions of σ-weight
t´1, 0, 1u. Equivalently, there is an equivariant embedding

X0 “ SpecH0
pX,OXq ãÑ V

where V is a linear representation of σ with weights in t´1, 0, 1u. This notion
will play a crucial role below.

2.6.2

Proposition 2.6.1. The Cˆ-action corresponding to the tensor product of
Nakajima varieties is minuscule.

Proof. It is enough to prove that

C rZsGv

is generated by the functions of σ-weight in t0,˘1u. Since Gv is reductive,
the natural map

CrRepQs
Gv Ñ C rZsGv
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is surjective.
By the first fundamental theorem of invariant theory, see for example Sec-

tion 9.5 in [125], the Gv-invariants are generated by all possible contraction
of tensorial indices. Concretely this means either functions of the form

trP1P2 ¨ ¨ ¨Pk

where P1, P2, . . . , Pk is a closed chain of edges of Q starting and ending at a
v-vertex, or any matrix coefficient of

P1P2 ¨ ¨ ¨Pk

where P1, P2, . . . , Pk is a chain of edges going from one w-vertex to another.
Clearly, the σ-weights of all these functions are in t0,˘1u .
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Chapter 3

Stable envelopes

Let a torus A act on a nonsingular quasiprojective algebraic variety X and
let ι : XA Ñ X denote the inclusion of the fixed locus. We have a natural
map

ι˚ : H¨ApXq Ñ H¨ApX
A
q

of degree 0. Our goal in this section is to construct a reasonably canonical
map in the other direction

StabC : H¨ApX
A
q Ñ H¨ApXq

that takes middle degree to middle degree. We will call StabCpγq the stable
envelope of γ. The main ingredients in its construction will be:

• an A-invariant holomorphic symplectic form ω on X,

• a choice of a certain chamber C Ă a “ LiepAq .

Stable envelopes appear to be useful in a broader context than strictly re-
quired for the purposes of the present paper. We therefore discuss them in
that greater generality. For symplectic resolutions, a much simpler approach
may be used, as we explain in Section 3.7. In many examples, we expect the
stable envelopes to specialize to well-known constructions.

We begin by explaining various conventions we use and recalling several
basic constructions.
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3 Stable envelopes 54

3.1 Assumptions and conventions

3.1.1 Assumptions on X

We assume that X is a nonsingular algebraic variety and ω P H0pΩ2Xq is a
holomorphic symplectic form on X. In addition, we require a proper map

π : X Ñ X0 (3.1)

to an affine variety X0.

3.1.2 Group actions

We denote by

A Ă T Ă GÑ AutpXq

a pair of tori A Ă T in some reductive group G acting on X. We denote by
a Ă t Ă g the corresponding Lie algebras. We assume:

• ω Ă H0pΩ2
Xq is an eigenvector of G, fixed by A;

• the proper map π is G-equivariant;

• X is a formal T-variety.

See [50] for a discussion of formality. In particular, it implies H¨TpXq is
free as a module over H¨Tpptq. While this condition is convenient, we expect
it can be removed with a little care.

We denote by

~ P g˚ ,

the G-weight of ω. By our assumption, A is in the kernel of ~.

Example 3.1.1. For X “Mpr, nq, we take

G “ GLp2q ˆGLprq

where the first factor acts on P2 keeping the line at infinity, while the second
factor acts by changing the framing. We take T to be the maximal torus of G
and A “ TXGLprq . The proper map π is the map to the Uhlenbeck moduli
space.
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55 3.1 Assumptions and conventions

Example 3.1.2. More generally, for X “Mθ,0pv,wq with θ generic, we take
G as defined in section 2.2.2 and T its maximal torus. The proper map π is
the map

π :Mθ,0pv,wq ÑM0,0pv,wq.

Given a decomposition

w “
r
ÿ

i“1

wpiq ,

we obtain a homomorphism

A “ tpz1, . . . , zrqu Ñ Gw

given by w “
řr
i“1 w

piq zi as in Section 2.3.

3.1.3 Signs and adjoints

The varieties X we will encounter in the paper have no odd cohomology,
although the following discussion may be easily modified to include odd co-
homology.

When XT is proper, integration over X

γ ÞÑ

ż

X

γ P Qptq

may be defined as an equivariant residue, making H “ H¨TpXq a commuta-
tive Frobenius algebra over Qptq. In fact, it will prove very convenient to
introduce the following sign twist in the Frobenius trace τ

τpγq “ p´1q
1
2

dimX

ż

X

γ .

Recall that X is holomorphic symplectic, so dimX is even. For example, if
X “ T ˚Y and rY s is the class of the zero section, then

τ
`

rY s2
˘

“ χpY q .

In this paper, we define adjoints using τ . Concretely, this means the
following. Consider a T-equivariant cycle, i.e. a Q-linear formal combination
of invariant subvarieties

Z “
ÿ

akZk Ă
n
ź

i“1

Xi .
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Notice that we have abused notation to write a cycle as a subset of the
ambient variety.

Fix a subset S Ă t1, . . . , nu. Then Z, viewed as a correspondence, defines
a operator

ΘZ : H¨T

˜

ź

iPS

Xi

¸

Ñ H¨T

˜

ź

iRS

Xi

¸

bQptq ,

see Section 3.2.5 for further discussion. For example, Z could be the diagonal
∆ Ă X ˆX and then, for S “ t1u, Θ∆ is the identity map.

Using τ , we may move factors Xi from the source of the map ΘZ to the
target, and back. We call these new operators adjoint to ΘZ and denote
them by pΘZq

τ , to distinguish it from the ordinary permutations of factors.
They acquire a sign p´1qp, where

p “
1

2

ÿ

iPS1

dimXi ´
1

2

ÿ

iPS

dimXi ,

and S 1 is the source index set for the map pΘZq
τ .

For example, if S 1 “ t1, 2u then

pΘ∆q
τ
pγ1 b γ2q “ p´1q

1
2

dimX

ż

X

γ1 Y γ2 “ τpγ1 Y γ2q P Qptq .

3.2 Basic constructions

3.2.1 Chamber decomposition

The cocharacters
σ : Cˆ Ñ A

form a lattice of rank equal to the rank of A. We denote

aR “ CocharpAq bZ R Ă a .

Each weight χ of A defines a rational hyperplane in this vector space.

Definition 3.2.1. The torus roots are the A-weights tαiu occurring in the
normal bundle to XA.

The root hyperplanes partition aR into finitely many (open) chambers

aRz
ď

αKi “
ğ

Ci .
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Example 3.2.2. In Example 3.1.1, we have

XA
“

ğ

n1`¨¨¨`nr“n

ź

HilbpC2, niq,

the normal weights α are the roots of GLprq

a Q diagpa1, . . . , arq ÞÑ ai ´ aj ,

and the chambers C are the usual Weyl chambers.

Example 3.2.3. Similarly, in Example 3.1.2, we have

Mθ,0pv,wq
A
“

ğ

vp1q`¨¨¨`vprq“v

M
`

vp1q,wp1q
˘

ˆ ¨ ¨ ¨ ˆM
`

vprq,wprq
˘

by Proposition 2.3.1 and the normal weights are again the roots of GLprq.

The stratification of aR by root hyperplanes coincides with the stratifica-
tion by the dimensions of the fixed-point locus. In particular, if σ does not
lie on any hyperplane αKi then Xσ “ XA.

3.2.2 Attracting, or stable, manifolds

Let C be a chamber as above. One says that a point x P X is C-stable if the
limit

lim
zÑ0

σpzq ¨ x P XA

exists for one (equivalently, all) cocharacter σ P C. The value of this limit is
independent of the choice of σ P C. We will denote it by limC x.

Given a subvariety Y Ă XA, we denote by

AttrCpY q “ tx | limCpxq P Y u

the set of points attracted to Y by the cocharacters in C. We have the
following:

Lemma 3.2.4. Let Z be a connected component of XA. Then

limC : AttrCpZq Ñ Z

is an affine bundle.
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Remark 3.2.5. Note this affine bundle is T-equivariant.

Proof. We apply the classical Bialynicki-Birula theorem to a smooth σ-
equivariant projective compactification X Ă X. We get a diagram

AttrCpZq
� � //

lim
��

AttrCpZ̄q

lim
��

Z �
� // Z̄

of σ-equivariant maps in which the horizontal arrows are open dense embed-
dings and lim is an affine bundle. Since σ acts with positive weights on the
fibers of lim, any nonempty closed subset of the fiber contains the origin.
Therefore, lim is also an affine bundle.

Example 3.2.6. In Example 3.2.2, take X “Mp2, nq, C “ ta1 ą a2u, and

Z “
 

F1 ‘ F2

ˇ

ˇFi P HilbpC2, niq
(

.

Then AttrCpZq is a vector bundle with fiber Ext1
pF2,F1p´1qq, where F1p´1q

means the twist by minus the line at infinity of P2.

3.2.3 Partial order by attraction

The choice of a chamber C determines a partial ordering on the set

Fix “ π0pX
A
q

of connected components Z of the fixed locus. This is a transitive closure of
the relation

AttrCpZq X Z
1
‰ H ñ Z ľ Z 1 .

Using a projective compactification as in proof of Lemma 3.2.4, one sees that
this is indeed a partial order, that is

Z ĺ Z 1 andZ 1 ĺ Z ñ Z “ Z 1 .

Lemma 3.2.7. For any component Z of XA the set

AttrfCpZq “
ğ

Z1ĺZ

AttrCpZ
1
q

is closed in X.

58



59 3.2 Basic constructions

We call AttrfCpZq the full attracting set of Z.

Proof. Consider the map (3.1) and choose an A-equivariant embedding

X0 ãÑ V

into a linear representation V of A. Let Vě0 Ă V denote the span of those
weight subspaces that are non-negative on C. We have

π
´

AttrCpZq
¯

Ă X0 X Vě0

for any component Z Ă XA.
Let x lie in the closure of AttrCpZq. Then πpxq P Vě0 and the limit

z1 “ limCx P AttrCpZq XX
A

exists by the properness of π. Denoting by Z 1 P Fix the component that
contains z1 we see that Z 1 ĺ Z and so we are done.

3.2.4 The ample partial order

It will be more convenient to work with a different partial order on Fix which
is a priori finer, that is

Z ă Z 1 ñ Z ă Z 1 ,

but is much easier to describe.
Let σ P C be a cocharacter and let C – P1 be the closure of a σ-orbit.

The degree
pλ, rCsq P Z , λ P PicpXq ,

may be computed by equivariant localization in terms of weights of λ at the
fixed points of C. This number must be positive if λ is ample.

We therefore choose any A-linearization of an ample line bundle λ and
define

Z ą Z 1 ô
´

weightλ
ˇ

ˇ

ˇ

Z
´ weightλ

ˇ

ˇ

ˇ

Z1

¯ ˇ

ˇ

ˇ

C
ą 0 , (3.2)

where weightλ
ˇ

ˇ

ˇ

Z
P a˚ is the weight of the A-action on the fiber of λ re-

stricted to fixed point component Z. Note that the ambiguity in the choice
of linearization cancels out of (3.2)

See also Section 4.8.5 below for a related discussion.
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Example 3.2.8. Recall that, by construction, Nakajima varieties come with
a distinguished ample class, namely

θ “
ÿ

θi c1pViq .

Consider the fixed points of the tensor product action

Zη “Mθ,ζpη,wq ˆMθ,ζpv ´ η,w
1
q ĂMθ,ζpv,w ` w1q (3.3)

as in (2.14). By construction,

weight c1pViq
ˇ

ˇ

ˇ

Zη
“ ηi .

Therefore
Zη ą Zη1 ô θ ¨ η ą θ ¨ η1 . (3.4)

In particular, if θi ą 0 for all i then ZH “ Z0 is minimal with respect to the
ample order.

3.2.5 Lagrangian correspondences

Given a holomorphic symplectic variety M with symplectic form ω, recall
that a subvariety Z Ă M is isotropic if the restriction of ω to the smooth
locus of L vanishes. It is Lagrangian if it is also middle-dimensional. We say
that a cycle is Lagrangian if each component is Lagrangian.

Let Y be another holomorphic symplectic variety on which group G acts
with the same weight ~ of the symplectic form ωY . Let

L Ă X ˆ Y

be a T-invariant Lagrangian cycle with respect to the form ωX ´ ωY . Recall
that we use Ă to denote cycles as well as subvarieties.

If L is proper over X, it defines a map

ΘL : H¨TpY q
p˚2
ÝÝÑ H¨TpLq

pp1q˚
ÝÝÝÝÑ H¨TpXq

As an equivariant residue, ΘL may be defined with a weaker properness
assumption: T has to have proper fixed points in the fibers of the push-
forward.
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61 3.2 Basic constructions

See, for example, [23] for a general discussion of operators defined by
correspondences. In particular, ΘL depends only on the class rLs of L in the
T-equivariant Borel-Moore homology of X ˆ Y . Also

ΘL1 ˝ΘL2 “ ΘrL1s˝rL2s .

Here the convolution L1 ˝ L2 of two cycles is defined by

rL1s ˝ rL2s “ pp13q˚ ∆˚
prL1s ˆ rL2sq

where the maps

X ˆ Y ˆ Y ˆ Z
∆
ÐÝÝ X ˆ Y ˆ Z

p13
ÝÝÑ X ˆ Z

are the inclusion of the diagonal and the projection, respectively. Here ∆˚

denotes Gysin pullback with respect to a regular embedding. When the
map p13 is proper on the support of L1 ˆY L2, its image is isotropic. As a
consequence, the convolution rL1s ˝ rL2s is the cycle class of a T-invariant
Lagrangian cycle in X ˆ Z.

3.2.6 Steinberg correspondences

Let L Ă X ˆ Y be a Lagrangian correspondence as above.

Definition 3.2.9. A Steinberg correspondence is a Lagrangian correspon-
dence

L Ă X ˆ Y

as above such that there exist proper equivariant maps

X
πX
ÝÝÑ V

πY
ÐÝÝ Y

to an affine G-variety V such that

L Ă X ˆV Y .

The following easy lemma gives a sufficient condition for Steinberg cor-
respondences to be closed under convolution.
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3 Stable envelopes 62

Lemma 3.2.10. Given Steinberg correspondences

L1 Ă X ˆV1 Y , L2 Ă Y ˆV2 Z ,

the convolution L1 ˝ L2 is a Steinberg correspondence if there exists a com-
mutative diagram of equivariant proper maps

Y

πY,2
��

πY,1 // V1

��
V2

// V

(3.5)

with V affine.

Proof. Both X and Z map admit proper, equivariant maps to V . It is clear
that the assumptions imply

L1 ˝ L2 Ă X ˆV Z.

We say that two Steinberg correspondences are composable if they satisfy
the sufficient condition described above when they share a common factor.

Example 3.2.11. Fix a quiver Q and dimension vectors v, vpiq for i “
1, . . . , n, such that v ě

ř

vpiq, and similarly for w,wpiq. We have a proper
map

n
ź

i“1

Mθ,ζ

`

vpiq,wpiq
˘

ÑM0,ζ

´

ÿ

vpiq,
ÿ

wpiq
¯

ÑM0,ζpv,wq

where the first map is given by affinization and direct sum, while the second
map is given by taking the direct sum with the zero representation. We
will only consider proper maps to affine varieties of this form or products of
such maps. As a result, if we have two such maps with the same domain, a
commutative diagram of the form (3.5) always exists since the two targets
can both be included into a still-largerM0,ζpv,wq. Therefore, the associated
Steinberg correspondences will always be composable.

Given a possibly disconnected varietyX, if we have a collection of compos-
able Steinberg correspondences between components of X, we can consider
the subalgebra of EndH¨TpXq that they span. When the context is clear, It
will be called the Steinberg algebra of X.
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63 3.3 Characterization of stable envelopes

3.3 Characterization of stable envelopes

3.3.1 Supports

For the ease of reading formulas, we use restriction signs for the natural re-
striction maps in equivariant cohomology. Given a closed T-invariant subset
Y Ă X and a class γ P H¨TpXq we say that γ is supported on Y if

γ
ˇ

ˇ

ˇ

H¨TpXzY q
“ 0 .

Equivalently, supp γ Ă Y means that the Borel-Moore class γXrXs is pushed
forward under Y ãÑ X.

3.3.2 Polarization

Let Z P Fix be a component of XA and let NZ be the normal bundle to Z in
X. Any chamber C gives a T-invariant decomposition

NZ “ N` ‘N´

into A-weights that are positive and negative on C, respectively. The sym-
plectic form ω gives

pN`q
_
“ N´ b ~ P KTpZq , (3.6)

where ~ denotes a trivial line bundle with the corresponding action of T.
Because ~ is trivial on A, the class

ε2
“ p´1qpcodimZq{2epNZq

ˇ

ˇ

ˇ

H¨Apptq
“
ź

α2
i , (3.7)

is a perfect square. Here ˘αi P a
˚ are the roots that occur in NZ .

Definition 3.3.1. A choice of a square root ε in (3.7) will be called a polar-
ization of Z in X. The sign in ˘epN´q agrees with polarization if ˘epN´q
restricts to ε in H¨Apptq.

Example 3.3.2. While polarization is a purely formal choice, geometrically
natural choices save on signs.

For example, if X “ T ˚Y with A-action induced from Y , we can take ε
to be the product of nonzero A-weights in the fibers of TX Ñ TY .
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3 Stable envelopes 64

More generally, let a cocharacter

σ : Cˆ Ñ T

be such that p~, σq “ ´1. This generalizes the scaling action of Cˆ in the
fibers of T ˚Y . Then we can choose the weights in ε as the σ-negative weights
in the fiber of NZ over some chosen x P Zσ.

Example 3.3.3. We have a canonical polarization associated to Nakajima
varieties as follows. Recall from Section 2.2.7 that we have a virtual splitting
of the tangent bundle

TMθ,ζpv,wq “ T 1{2
` ~´1

b
`

T 1{2
˘_
.

Let ε denote the product, weighted by multiplicity, of the nonzero A-weights
in the restriction of pT 1{2q_ to some x P Z.

3.3.3 Degree in A

Since A acts trivially on XA, we have

H¨TpX
A
q “ H¨T{ApX

A
q bCrt{as Crts .

While there is no canonical splitting

Crts – Crt{as b Cras (3.8)

any such splitting leads to the same increasing filtration of H¨TpX
Aq by the

degree degA in Cras. Clearly,

grH¨TpX
A
q “ H¨T{ApX

A
q b Cras . (3.9)

3.3.4 Characterization

Choose a chamber C Ă a and an polarization ε of XA. The following theorem
is the main result of this section.

Theorem 3.3.4. There exists a unique map of H¨Tpptq-modules

StabC,ε : H¨TpX
A
q Ñ H¨TpXq

such that for any Z P Fix and any γ P H¨T{ApZq, the stable envelope Γ “

StabC,σpγq satisfies:
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65 3.4 Characterization of stable envelopes

(i) supp Γ Ă AttrfCpZq ,

(ii) Γ
ˇ

ˇ

Z
“ ˘epN´q Y γ , according to polarization,

(iii) degA Γ
ˇ

ˇ

Z1
ă 1

2
codimZ 1 , for any Z 1 ă Z .

Remark 3.3.5. The chamber and the polarization are independent param-
eters in the construction of StabC,ε. The former being much more important
than the latter, we abbreviate

StabC “ StabC,ε ,

once some polarization ε has been specified.

Remark 3.3.6. We will see StabC is given by a Lagrangian correspondence
on X ˆXA, and, in particular, it maps middle degree to middle degree.

The existence of StabC will be proven later. We now prove the uniqueness
a map satisfying the conditions of the theorem.

Proof. Let γ P H¨TpXq be supported on a union of attracting sets and satisfy

degA ι
˚ γ ă 1

2
codimZ ,

for any embedding ι : Z ãÑ X of a fixed component. We claim this forces
γ “ 0.

Pick a total ordering on Fix refining ă and choose Z P Fix so that γ is
supported on AttrfCpZq. We can factor ι “ f3f2f1, where

Z
f1
ãÑ AttrCpZq

f2
ãÑ AttrfCpZq

f3
ãÑ X .

Here f1 is regular and f2 is open. The support condition on γ means that

γ X rXs “ pf3q˚ α

for a certain Borel-Moore homology class α. Standard excess intersection
arguments then show

ι˚pγq X rZs “ epN´q X f
˚
1 f

˚
2 α .

The multiplication by epN´q is injective on (3.9) and

degA epN´q “
1
2

codimZ .

Because this exceeds the degree of the right-hand side, f˚1 f
˚
2 α “ 0. Since f˚1

is an isomorphism, this forces f˚2 α to vanish, meaning that γ is supported on
a smaller union of strata. Arguing inductively, we see γ “ 0.

Now if Γ1,Γ2 P H
¨
TpXq are two classes satisfying (i)–(iii) then their differ-

ence satisfies the hypothesis above, hence vanishes.
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3.4 Lagrangian residues

Let L be an A-invariant Lagrangian and let

ι : Z ãÑ X

be an embedding of a component of XA. The form ι˚ω is symplectic and so
we can talk about isotropic and Lagrangian subvarieties of Z.

Lemma 3.4.1. LX Z is an isotropic subvariety of Z.

Proof. Let W be an irreducible component of W of L X Z. For a general
point w P W , there exists a sequence of points x1, x2, . . . in the smooth
locus of L approaching w such that limit of TxkL exists as k Ñ 8 and
contains the tangent space TwW . This can be seen, for instance, by choosing
a Whitney stratification of L for which L X Z is a union of strata. Since
the symplectic form on Z is the restriction of the symplectic form on X, the
lemma follows.

Now suppose an polarization ε of Z has been chosen.

Lemma 3.4.2. There is a unique Lagrangian cycle ResZ L supported on
LX Z such that

ι˚rLs “ ε rResZ Ls ` . . .

where dots stand for terms of smaller A-degree.

Proof. The class ι˚rLs is supported on a subvariety L X Z of dimension at
most 1

2
dimZ. Therefore, its A-degree can be at most

codimX L´ codimZpLX Zq ď
1
2

codimX Z .

Assuming LX Z is middle-dimensional, denote by L1, L2, . . . its Lagrangian
irreducible components. We have

ι˚rLs “
ÿ

rLis ¨ fi ` . . .

where fi P H
¨
Apptq is a homogeneous polynomial of degree 1

2
codimX Z and

dots stand for terms of smaller degree.
In order to calculate fi, we shrink X to a neighborhood of a smooth

generic point of Li. Furthermore, we can degenerate to the normal cone of
Z inside X and restrict to a transverse slice through a generic point of Li.
After these simplifications, the following lemma finishes the proof.
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67 3.5 Proof of existence

Lemma 3.4.3. Let V “ Cn be a vector space equipped with the diagonal
action of A by characters χ1, . . . , χn. Let X “ V ‘ V _ be the symplectic
vector space equipped with the induced action of A and suppose we have a
Lagrangian A-invariant conical subvariety L Ă X. Then the residue of rLs
at the origin 0 “ Z Ă X is an integer multiple of ε “

śn
j“1 χj.

Proof. We embed A in T “ pCˆqn`1, the maximal torus of Spp2nq ˆ Cˆ,
the stabilizer of the line Cω P Ω2pXq. We can use T to degenerate L via a
family of A-invariant conical subvarieties to a T -invariant conical subvariety
and calculate the residue for this limit. Since T scales ω, this limit is still
Lagrangian. On the other hand, the only such T -invariant subvarieties are
unions of Lagrangian coordinate planes. For a Lagrangian coordinate plane,
it is clear that the residue is a product of the characters χj up to a sign.

Lemma 3.4.4. For any A-invariant Lagrangian L and any chamber C, there
exists a Lagrangian cycle L1 supported on AttrfCpZq such that

degA ι
˚
prLs ´ rL1sq ă 1

2
codimZ .

Proof. We can take L1 to be the closure of lim´1
C p˘ResZ Lq, counting multi-

plicity.

Lemma 3.4.5. Let L Ă X be an A-invariant Lagrangian subvariety sup-
ported on AttrfCpZq. Then there exists a unique Lagrangian cycle L1 such

that L1 ´ L is supported on
Ť

Z1ăZ AttrfCpZ
1q and

degA ι
˚
Z1rL

1
s ă 1

2
codimZ 1

for any Z 1 ă Z.

Proof. The existence follows by induction from Lemma 3.4.4. The uniqueness
is shown as in Section 3.3.

In conclusion, we note that if L is T-invariant, then so are all other
Lagrangians occurring in the above Lemmas.

3.5 Proof of existence

Consider the (possibly disconnected) T-variety X ˆ XA equipped with the
antidiagonal symplectic form pω,´ω|XAq. We construct StabC by exhibiting
a correspondence between XA and X.
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3 Stable envelopes 68

Proposition 3.5.1. There exists a T-invariant Lagrangian cycle Stab LC on
X ˆXA, proper over X, with the following properties:

(i) For any Z P Fix, the restriction of LC to X ˆ Z is supported on
AttrfCpZq ˆ Z ;

(ii) the restriction of rLCs to Z ˆ Z equals ˘epN´q X r∆s, according to
polarization, where ∆ is the diagonal ;

(iii) for Z 1 ă Z, the restriction of rLCs to Z 1 ˆ Z has A-degree less than
1
2

codimZ 1 .

This shows the existence of StabC by taking the map

H¨TpX
A
q Ñ H¨TpXq

induced by the correspondence LC. Properness over X insures this map is
well-defined.

Proof. Fix some Z and let ˘L be the closure of the preimage of ∆ under the
map

AttrC Z ˆ Z Ñ Z ˆ Z ,

with sign as above. Then L is a A-invariant Lagrangian supported on Z ˆ
AttrfCpZq which satisfies (i) and (ii). Using Lemma 3.4.5, we can modify it on
lower strata so that to achieve (iii). Repeating this for all Z P Fix, we obtain
a Lagrangian cycle LC and it remains to check that its support is proper over
X.

As in the proof of Lemma 3.2.7, choose a A-equivariant embedding

π : X0 ãÑ V

into a linear representation of A and let V0 Ă Vě0 be the subspaces formed
by A-invariant and weights positive on C, respectively. Let

ρ : Vě0 Ñ V0

be the natural projection. Consider the closed set π´1pVě0q Ă X (this is just
the union of all attracting manifolds), along with the morphism

ρ ˝ π : π´1
pVě0q Ñ V0 .
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69 3.6 Torus restriction

By construction, the Lagrangian cycle LC lies in the fiber product

π´1
pVě0q ˆV0 X

A
Ă X ˆXA .

Indeed, we construct LC by starting with the diagonal ∆ Ă XA ˆ XA and
taking attracting manifolds and closures. The fiber product is closed with
respect to both these operations.

On the other hand, the projection onto the first factor

π´1
pVě0q ˆV0 X

A
Ñ X

is proper: since the map π : X Ñ V is proper, we can reduce the statement
to the claim that

Vě0 ˆV0 V0 Ñ V

is proper, which is obvious.

We note the following corollary of the proof. It will play an essential role
in proving various properness statements later.

Proposition 3.5.2. Let X` denote the union of all attracting manifolds.
Then

LC Ă X` ˆX0 X
A .

Remark 3.5.3. Suppose X “ T ˚Y where Y is a smooth projective variety
and assume the action of A is induced from an action on Y with isolated fixed
points tpku. Then a choice of chamber C defines an A-invariant Bialynicki-
Birula stratification of Y by locally closed varieties Vpk . In this case, the
stable envelope map StabC defines a collection of Lagrangian cycles on X.
These can be identified (up to a sign depending on the polarization) with the
characteristic cycles of the constructible sheaves pjkq!QVpk

where jk denotes
the inclusion into Y . See, in particular, [3] for recent developments in this
direction.

3.6 Torus restriction

Let C be a chamber and let C1 Ă C be a face of some dimension. Consider

a1 “ SpanC1 Ă a
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3 Stable envelopes 70

with associated subtorus A1. The cone C projects to a cone in a{a1 that we
denote by C{C1.

Let ε be an polarization of XA Ă X. We can factor

ε “ ε1 ε2

into weights that are zero and nonzero on a1, respectively. The factors induce
an polarization of XA Ă XA1 and XA1 Ă X, respectively. In the following
lemma, we take these induced polarizations.

Lemma 3.6.1. The diagram

H¨
`

XA
˘ StabC //

StabC{C1 &&

H¨pXq

H¨
`

XA1
˘

StabC1

99
(3.10)

is commutative.

Proof. This follows from the uniqueness of the stable envelopes. Let LC1 ,LC{C1

be the Lagrangian correspondences constructed in Proposition 3.5.1, and
consider their convolution

rLC,C1s “ rLC{C1s ˝ rLC1s

which defines a Lagrangian cycle class in XA ˆX.
If we can show it satisfies the properties in Proposition 3.5.1, then unique-

ness of StabC gives the result. In fact, using the definition of the chamber
C{C1, most of the properties are immediate. For example, (iii) follows from
the degree constraints of either LC1 or LC{C1 .

3.7 Symplectic resolutions

3.7.1

In this paper, we are mainly interested in equivariant symplectic resolutions,

X Ñ X0 “ SpecH0
pOXq ,
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71 3.7 Symplectic resolutions

see [60] for a comprehensive discussion. For symplectic resolutions, stable
envelopes are easier to construct and enjoy stronger properties.

In addition to Nakajima quiver varieties Mθ,0 for θ generic, examples
of symplectic resolutions include T ˚pG{P q, where P Ă G is a parabolic
subgroup.

3.7.2

We begin with the universal deformation of the pair pX,ωq

X �
� ι0 //

��

rX

φ
��

r0s �
� // B – H2pX,Cq ,

(3.11)

in which the period map φ associates to a deformation pX 1, ω1q the class of
ω1 in H2pX 1q “ H2pXq. This universal deformation may be written down
explicitly for Nakajima varieties and in all other examples, see [60] for further
discussion.

The deformation (3.11) is G-equivariant, where G acts on the vector space
B by the character ~. Therefore, the group

Gω “ Ker ~ Ą A

acts on each fiber of φ.

3.7.3

Suppose we are given a class

α_ P H2pX,Zq

that is an effective curve class in some fiber pX 1, ω1q ‰ pX,ωq. Then

ż

α1
ω1 “ 0

and hence deformations with nonzero holomorphic curve classes belong to a
union of hyperplanes in the base B.
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Definition 3.7.1. A coroot hyperplane of X is a hyperplane of B along
which the deformation of X has nonzero holomorphic curve classes.

Over their complement

B˝ “ Bz
ď

coroots

pα_qK

the fiber of φ is affine. It is an interesting question to find a geometric defini-
tion of coroots of X themselves rather than just their associated hyperplanes.

3.7.4

Consider the diagonal

∆˝
Ă rX˝

ˆB˝
`

rX˝
˘A
,

where rX˝ “ φ´1pB˝q. Since the fibers over B˝ contain no holomorphic cycles,
the inclusion

AttrC ∆˝ ãÑ rX˝
ˆB˝

`

rX˝
˘A

(3.12)

is a closed embedding and defines a family of cycles over B˝. We denote by

rLC “ AttrC ∆˝

it closure in rX ˆB rXA. In particular, we can take the A-fixed points

´

rLC

¯A
� � // rXA ˆB rXA

φ

��
B

Proposition 3.7.2. For any b P B, the top-dimensional components of
´

rLC

¯A

X φ´1
pbq

are Steinberg correspondences.

Proof. All fibers of φ are symplectic resolutions and we can find a universal
proper G-equivariant map rπ

rX
rπ //

φ
��

rV

��
B id // B
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into a vector bundle rV over B. The torus A acts trivially on B and we denote
by rVě0 the subbundle formed by A-weights that are nonnegative on C. As in
the proof of Proposition 3.5.1, one shows

rLC Ă rπ´1
´

rVě0

¯

ˆ
rV0

rXA .

Therefore
´

rLC

¯A

Ă rXA
ˆ

rπ
rXA .

On the other hand, it is known that the φ-fibers of

rX ˆ
rπ
rX Ă rX ˆB rX

are isotropic.1 Therefore, their intersections with a symplectic subvariety
rXAˆ rXA are at most Lagrangian. Their Steinberg property is clear from the
above.

Remark 3.7.3. This Proposition gives an abundant source of Steinberg
correspondences, as we will see below.

Theorem 3.7.4. The correspondence LC is the specialization of rLC to the
central fiber, that is

rLCs “ ι˚0
“

rLC

‰

P HBM
T pX ˆXA

q .

Proof. It suffices to check the right-hand side satisfies the conditions of
Proposition 3.5.1. Properness is shown exactly as in the proof of Propo-
sition 3.5.1. Similarly, conditions (i) and (ii) follow from construction.

To show (iii) we the consider inclusion

ι : Z 1 ˆ Z ãÑ rX ˆ rXA , Z ‰ Z 1 ,

of an off-diagonal component of XA ˆXA. By Proposition 3.7.2

ι˚
“

rLC

‰

“
ÿ

fi rLis ` . . . , fi P H
codimZ1

T pptq ,

1 This widely known and used statement may be deduced from the results of Kaledin
[61] and Namikawa [92]. Further details may be found in the forthcoming lecture notes of
V. Ginzburg on the subject.
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3 Stable envelopes 74

where Li are the Lagrangian components of the intersection and dots stand
for terms of smaller A-degree. The required degree bound

degA fi ă
1

2
codimZ 1

follows from a much stronger claim: all fi are divisible by ~. We state this
as a separate result.

For any X, not necessarily a symplectic resolutions, we can write

rLCs

ˇ

ˇ

ˇ

XAˆXA
“ ˘epN´q Y∆` off-diagonal (3.13)

where the second term is a class supported on
ğ

Z1ăZ2

Z1 ˆ Z2 , Zi P Fix .

Theorem 3.7.5. For symplectic resolutions,

rLCs

ˇ

ˇ

ˇ

XAˆXA
“ ˘epN´q Y∆ mod ~H¨TpXA

ˆXA
q .

Proof. Let Z,Z 1 be two different components of XA. We will show the pull-
back of rL by

ι : Z 1 ˆ Z ãÑ rX ˆB rXA

is divisible by ~, which also completes the proof of the last theorem. We
choose a general line ` Ă B through the origin in the base of the deformation
and denote by rX` the restriction of rX to `. We may factor ι “ ι2 ˝ ι1 where

Z 1 ˆ Z
ι1
ÝÝÑ p rX`q

A
ˆ` p rX`q

A ι2
ÝÝÑ rX ˆB rXA .

Only the central fiber of rX` contains holomorphic curves. Therefore, if we
consider the connected component W of p rX`q

A ˆ` p rX`q
A containing Z ˆ Z 1,

the contribution of W to ι˚2
“

rL
‰

is supported over the origin, i.e.

suppW ι˚2
“

rL
‰

Ă Z 1 ˆ Z.

Therefore ι˚
“

rL
‰

factors through

ι˚1 ˝ pι1q˚ “ multiplication by ~ .
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Chapter 4

Properties of R-matrices

4.1 Definition and braid relations

4.1.1

We fix some polarization ε and consider the maps

StabC : H¨GA
pXA

q Ñ H¨GA
pXq

parameterized by the chambers C. Here GA is a reductive group which com-
mutes with A and we denote gA “ LieGA.

The maps StabC become isomorphisms after inverting epN´q. Therefore
we can make the following

Definition 4.1.1.

RC1,C “ Stab´1
C1 ˝ StabC P End

`

H¨GA
pXA

q
˘

bQ pgAq .

4.1.2 Example

Take X “ T ˚P1 with the action of A “ Cˆ induced from P1. We have

XA
“ t0,8u

Let u be the A-weight in T0P1 and let Cˆ~ Ă GA scale the cotangent fibers
with weight ´~. Let the polarization ε be given by the fibers. Then

StabCp0q “ rP1
s ` rF8s, StabCp8q “ ´rF8s
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4 Properties of R-matrices 76

for C “ tu ą 0u where

rP1
s “ zero section ,

rF8s “ fiber over 8 P P1 .

Similarly
Stab´Cp0q “ ´rF0s, Stab´Cp8q “ rP1

s ` rF0s .

For tz1, z2u “ t0,8u, we have

Stab˘Cpzjq
ˇ

ˇ

ˇ

zi
“

ˆ

´u´ ~ 0
´~ u

˙

,

ˆ

´u ´~
0 u´ ~

˙

.

Therefore,

Rpuq “
1´ ~

u
s

1´ ~
u

(4.1)

where s is the permutation of 0 and 8. Up to proportionality, this is Yang’s
original R-matrix. It is normalized so that Rpuq “ 1 on the invariants of s.

4.1.3

It will be convenient to represent rational functions appearing in RC1,C as
formal power series in inverse roots using some splitting (3.8) and

1

α ` x
“

1

α
´

x

α2
`
x2

α3
` . . . .

Here α P a˚ is a root, i.e. a weight appearing in the normal bundle to XA, and
x is the pGA{Aq-equivariant Chern root of the corresponding weight subspace
of N´. Since we only inverting epN´q, all denominators occurring in the
R-matrices are of this form.

One should keep in mind that this expansion depends on a splitting (3.8)
and reexpand accordingly if the splitting is changed.

For a different polarization, the R-matrices differ by conjugation by a
diagonal ˘1 matrix.

4.1.4 Root R-matrices

Evidently, it is enough to consider R-matrices corresponding to a pair of
chambers C,C1 separated by a wall α “ 0. Here α is a root and we may
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77 4.1 Definition and braid relations

assume that αpCq ą 0. Consider the subtorus Aα Ă A with Lie algebra
aα “ Kerα. We denote

Xα
“ XAα .

For the A{Aα-action on Xα, there are two chambers, namely α ż 0. We take
the induced polarization of XA Ă Xα and denote by

Rα “ Ră0,ą0 P EndpH¨GA
pXA

qq bQpgA{aαq

the corresponding R-matrix.

From Lemma 3.6.1 we have the following

Corollary 4.1.2. If C and C1 are separated by a wall α “ 0 then

RC1,C “ Rα .

We call operators Rα the root R-matrices.

4.1.5 R-matrices for Nakajima varieties

Given a quiver Q, vector w, and a generic choice of θ, we define

Mpwq “
ğ

v

Mζ,0pv,wq , (4.2)

where we dropped the moment map parameters on the left-hand side for
brevity, and define

Hpwq “ H¨GpMpwqq .

Consider a tensor product of Nakajima varieties as in Section 2.4. There
are two chambers

C “ tu ą 0u , C1 “ tu ă 0u ,

where u is the weight of the defining representation of A “ tzu “ Cˆ. We
denote

Rw1,w2puq “ RC1,C P EndpHpw1q bHpw2qq bQpuq

the corresponding R-matrix.
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4 Properties of R-matrices 78

4.1.6

More generally, a decomposition

w “
n
ÿ

i“1

wpiq

gives a homomorphism

A “ tpz1, . . . , znqu Ñ Gw

given by w “
řn
i“1 w

piq zi as in Section 2.3. By Proposition 2.3.1

MpwqA “M
`

wp1q
˘

ˆ ¨ ¨ ¨ ˆM
`

wpnq
˘

and hence
H¨GA

`

MpwqA
˘

“ H
`

wp1q
˘

b ¨ ¨ ¨ bH
`

wpnq
˘

.

The walls are the roots of GLpnq

α “ ai ´ aj , 1 ď i ă j ď n ,

and the corresponding fixed loci are of the form

Mpwqα “M
`

wpiq ` wpjq
˘

ˆ
ź

k‰i,j

M
`

wpkq
˘

,

where A{Aα acts only on the first factor. We conclude

Rα “ Rwpiq,wpjqpai ´ ajqij

where the subscript means that it operates in the ith and jth tensor factors.

4.1.7 Normalization

From definitions, we have the following

Proposition 4.1.3.

Rα “ 1`O
`

α´1
˘

, αÑ 8 .

In other words, Rα, as a formal power series in α´1 starts with the identity
operator.

For symplectic resolution, we deduce from Theorem 3.7.5

Proposition 4.1.4.
Rα “ 1`Op~q , ~Ñ 0 .

In other words, Rα acts as identity on H¨GA
pXAq{~H¨GA

pXAq.
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79 4.2 Changing the torus

4.1.8 Braid relations

Let F Ă C be a codimension 2 facet and let

C “ C0,C1, . . . ,C2n “ C

be the chambers containing F as a facet, in cyclic order around F.

Proposition 4.1.5.

RC0,C1RC1,C2 . . . RC2n´1,C2n “ 1 (4.3)

This relation, too obvious to be called a theorem, is of fundamental im-
portance for much of what follows.

4.1.9 Example

In the setup of Section 4.1.6, take

F “ ta1 “ a2 “ a3u .

Then (4.3) gives

R12pa1 ´ a2qR13pa1 ´ a3qR23pa2 ´ a3q “

R23pa2 ´ a3qR13pa1 ´ a3qR12pa1 ´ a2q , (4.4)

which is the Yang-Baxter equations with a spectral parameter.

4.2 Changing the torus

4.2.1

Suppose we have and inclusion of tori

A1 Ă A2

where A2 preserves the symplectic form. Clearly,

roots pA1q “ roots pA2q

ˇ

ˇ

ˇ

a1

zt0u ,

and so every chamber C1 Ă a1 is contained in at least one closed chamber
C2 Ă a2. From Lemma 3.6.1, we deduce the following
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4 Properties of R-matrices 80

Proposition 4.2.1. Let chambers C1,C
1
1 Ă a1 be faces of C2,C

1
2 Ă a2, re-

spectively. Then the diagram

H¨GA2

`

XA2
˘ StabC2{C1 //

RC12,C2

��

H¨GA2

`

XA1
˘

RC11,C1

��
H¨GA2

`

XA2
˘

StabC12{C
1
1 // H¨GA2

`

XA1
˘

is commutative.

Here StabC2{C1 really means StabC2{C2,1 , where C2,1 Ă C2 is the minimal face
that contains C1.

4.2.2

Note that there could be many walls between C2 and C12 even when C1 and
C11 are adjacent. Thus enlarging the torus leads to factorization of root R-
matrices.

4.2.3

In practice, it convenient to reduce to the situation when

dim a1 “ 1 , dim a2 “ 2 ,

by restricting to root R-matrices for A1 and replacing a2 by a generic line in
a2{a1, if necessary. Denoting by pu1, u2q the corresponding coordinates in a2,
we can go between

C2 “ tu1 " u2 ą 0u , C12 “ tu2 ą 0 " u1u

by crossing the walls in the decreasing order of u1{u2.

4.2.4 Example

We continue with Example 4.1.6 and take

a1 “ tpa1, 0, . . . , 0qu ,

a2 “ a1 ‘ Cp0, a2, . . . , anq .
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81 4.3 Covers and factorization of R-matrices

To ensure that a2{a1 is generic in a{a1, it is enough to take

a2 ą a3 ą ¨ ¨ ¨ ą an . (4.5)

Then Xa2 “ Xa, while

Xa1 “M
`

wp1q
˘

ˆM
`

w ´ wp1q
˘

.

In a1, we have two chambers

C1 “ ta1 ą 0u , C11 “ t0 ą a1u ,

corresponding to

C2 “ ta1 ą a2 ą ¨ ¨ ¨ ą anu , C12 “ ta2 ą ¨ ¨ ¨ ą an ą a1u .

in a2. Crossing from C2 to C12, we get

RC11,C1
“ R1,npa1 ´ anq ¨ ¨ ¨R1,3pa1 ´ a3qR1,2pa1 ´ a2q (4.6)

in the stable basis of H¨GA
pXa1q corresponding to the chamber (4.5) in a{a1.

For a different choice of chamber, one reorders the factors accordingly.

4.3 Covers and factorization of R-matrices

4.3.1

It is interesting to elaborate on the factorization considered in Section 4.2 in
the following special case. Let Q be a quiver. We take two vertices i, j P I
and

w “ aδi ` δj

where a is a weight of A1 – Cˆ. We have

MpwqA1 “Mpδiq ˆMpδjq .

The corresponding R matrix

RHi,Hjpaq P EndpHi bHjq bQpaq , Hi “ Hpδiq ,

is one of the main building blocks of the theory.
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4 Properties of R-matrices 82

4.3.2

We take A2{A1 to be the maximal torus of G1edge and denote by

Γ “ pA2{A1q
^
– H1pQ,Zq

its character group. As explained in Section 2.3.5

MpwqA2 “ ĂMpδiq ˆ ĂMpδjq ,

where ĂM are the quiver varieties associated to the universal abelian cover rQ
of the quiver Q.

Here we lift vertices of Q to vertices of rQ that correspond to the trivial
character of A2{A1. They form a fundamental domain for the action of Γ.

4.3.3

The walls in A2 that we need to cross are of the form

a “ γ , γ P Γ , (4.7)

and the corresponding fixed loci are ĂMpwγq where

wγ “ aδγi ` δj .

Recall that Γ acts freely on the vertices of rQ and the aδγi term in w means
that the corresponding framing arrow goes from a space of weight a to a
space of weight γ. On the wall (4.7) these weights match and we get fixed
points.

4.3.4

To order the walls (4.7), we pick a generic vector t P a2{a1 and order them
in the decreasing order of γptq. Then

RHi,Hjpaq “
ÐÝź

γ

rRHγi,Hjpa´ γq (4.8)

in the stable basis corresponding to C2 Q t and the ordering of the product
is such that we cross the wall with the larger value of γptq first.

Here rR is the R-matrix for the quiver rQ and we use the embedding
A^2 ãÑ a˚2 to write arguments of the R-matrices.

The infinite product (4.8) is locally finite, that is, all but finitely many
factors act trivially on any given cohomology group.
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83 4.4 Covers and factorization of R-matrices

4.3.5

The action of Γ on rQ extends to its action on the corresponding Yangian rY,
which will be defined and discussed in Chapter 5. It satisfies

γpxq
ˇ

ˇ

Hpwq
“ x

ˇ

ˇ

Hpγ´1wq
, x P rY ,

where the action on framing vectors is by

γδi “ δγi .

Note that varieties ĂMpwq and ĂMpγ´1wq are naturally isomorphic and the

matrix rR is invariant under γ b γ.
Rewriting (4.8) in terms of this action, we obtain the following

Theorem 4.3.1. We have

RHi,Hjpaq “
ÐÝź

γPΓ

pγ´1
b 1q ¨ rRHi,Hjpa´ γq (4.9)

in the stable basis for the maximal symplectic torus in Gedge, where the or-
dering of the factors corresponds to choice of a chamber as in Section 4.3.4.

Factorization of this kind play an important role in the theory of quantum
groups, see [32].

4.3.6 Example

Let Q be the quiver with one vertex and one loop. Then

rQ “ A8 ,

on which the group Γ – Z acts by shifts. This action naturally extends to
an action on

rY “ Ypgl8q .

The R-matrix in basic representation of Ypgl8q may be found, for example,
by fusion of R-matrices for fundamental representations. This gives a cer-
tain infinite product formula for the R matrix for Q, which is an object of
significant interest.
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4.4 Adjoint operators

In this section, we assume Xg is proper for some g P GA. As in Section 3.1.3,
this defines the Poincaré pairing

pγ1, γ2qX “

ż

X

γ1 Y γ2 P QpgAq

on both X and XA, the sign-twisted trace map τ , and the corresponding
adjoints.

In particular, the adjoint StabτC of the map StabC is given by the corre-
spondence

LτC “ p´1q
1
2

codimXA

pLCq21 Ă XA
ˆX .

Here codim : Fix Ñ Z denotes the codimension of a component of XA and
the subscript 21 refers to a permutation of factors.

Note that since LC is not proper over XA, equivariant localization is
required to define the adjoint as an operator.

Theorem 4.4.1. For any polarization ε and any chamber C, we have

Stabτ´C ˝ StabC “ 1 .

Proof. Let ∆ : X Ñ XˆX be the diagonal map and consider the cycle class

C “ ∆˚
pLτ´C ˆ LCq

on XAˆXˆXA, where we have pulled back along the internal XˆX factor.
By construction,

Stabτ´C ˝ Stab´C “ pp13q˚pCq (4.10)

where p13 is the projection along the middle factor.
We claim C is proper over XAˆXA. Indeed, as in the proof of Proposition

3.5.1, we have
LC Ă XA

ˆV0 π
´1
pVě0q .

Since Vě0 X Vď0 “ V0, we conclude

C Ă XA
ˆV0 π

´1
pV0q ˆV0 X

A ,

whence the claim. Therefore, the composition (4.10) is defined in nonlo-
calized equivariant cohomology and, in particular, has no terms of negative
degree in equivariant parameters.
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85 4.5 Unitarity

On the other hand, we may compute (4.10) by localization, that is, as a
sum of equivariant residues for all triples pZ1, Z2, Z3q P Fix

ˆ3. When

Z1 “ Z2 “ Z3 ,

the stable and unstable Euler classes precisely compensate the denominator
in the localization formula, giving the diagonal as a result. All other residues
have negative A-degree and hence cancel out.

Corollary 4.4.2. We have
Rτ
α “ Rα

for any root R-matrix Rα.

Note Rα is an operator from H¨GA
pXAq to itself, so Rτ

α coincides with the
adjoint with respect to the Poincaré pairing.

4.5 Unitarity

4.5.1

In the theory of quantum groups, an R-matrix

Rpuq P EndpV b V q bQpuq

is called unitary if it satisfies

R21puq “ Rp´uq´1 , (4.11)

where the subscript in R21puq means that we permute the tensor factors. We
will show that R-matrices for Nakajima varieties are unitary.

4.5.2

Consider the following general setup. Let a group of the form

GA “ Aˆ G1

act on X, where A is a torus preserving the symplectic form ω. Define
φ P AutGA by

φ ¨ pa, g1q “ pa´1, g1q .
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4 Properties of R-matrices 86

It gives a pull-back map φ˚ P EndH¨GA
pXq which is a homomorphism of

algebras. In particular, φ˚ is anti-linear over the base ring

φ˚paγq “ ´a φ˚pγq , a P a .

In the cohomology of the fixed locus

H¨GA
pXA

q “ H¨G1pX
A
q bQras

the action of φ˚ amounts to a ÞÑ ´a, a P a.

4.5.3

Since weights positive on C are precisely the weights negative on ´C, the
following diagram commutes

H¨GA
pXAq

StabC //

aÞÑ´a

��

H¨GA
pXq

φ˚

��
H¨GA

pXAq
Stab´C // H¨GA

pXq .

(4.12)

Note that StabC is literally the same correspondence as Stab´C for the oppo-
site action.

In particular, for A “ Cˆ we conclude

Rp´aq “ Rpaq´1 . (4.13)

4.5.4

For tensor products of Nakajima varieties, we have

Mpw ` w1qA “Mpwq ˆMpw1q , A “ Cˆ ,

Note, however, from Section 2.4 that the ordering of factors in the product
above depends on a lift

AÑ Gw

and not just on the image of A in Gw modulo the kernel of the action. The
two lifts

zw ` w1 vs. w ` z´1w1
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87 4.6 Action of Steinberg correspondences

where z P Cˆ give the same action, but different identification of the fixed
locus with the product. From (4.13), the corresponding R-matrices are

Rpuq “ Rp´uq´1
21 ,

where u P LieCˆ. We thus obtain the following

Proposition 4.5.1. The R-matrices for Nakajima varieties are unitary.

4.6 Action of Steinberg correspondences

We consider the setup of Section 3.2.6. The union of walls for X and Y
defines a partition of a into chambers and we let C be one of those. Let

L Ă X ˆV Y

be a GA-invariant Steinberg correspondence.
For any polarization of A-fixed loci, we denote by

ε̄ “ p´1qcodim {2 ε

the opposite polarization. Assuming polarizations εX , εY of XA, Y A have
been fixed, we take

ε “ εX ε̄Y

as a polarization of XA ˆ Y A Ă X ˆ Y . Using it, we define the residue

LA “ ResXAˆY A L Ă XA
ˆ Y A

as a Lagrangian cycle class supported on LA, see Section 3.4. As a fixed-point
set of a Steinberg correspondence, LA is Steinberg and hence so is LA.

Theorem 4.6.1. The diagram

H¨GA
pY Aq

StabC //

ΘLA

��

H¨GA
pY q

ΘL
��

H¨GA
pXAq

StabC // H¨GA
pXq

(4.14)

is commutative for every C. In particular, the Steinberg correspondence ΘLA

intertwines the R-matrices of X and Y .
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For solutions of the Yang-Baxter equation, an important invariant is their
algebra of symmetries, that is, the commutant of Rpuq for all u. Theorem
shows it contains the Steinberg algebra ofX for our geometrically constructed
R-matrices.

Proof. We fix one chamber C and define

L1 “ Stabτ´C,εX ˝ΘL ˝ StabC,εY Ă XA
ˆ Y A . (4.15)

By Theorem 4.4.1, this makes the diagram (4.14) commute for one particular
chamber C, after tensoring with QpgAq.

We claim the pushforward along X ˆ Y used in the definition of L1 is
proper. This is shown as in the proof of Theorem 4.4.1. Namely, we may
assume V is a linear representation of A. Let

px0, x, y, y0q P X
A
ˆX ˆ Y ˆ Y A

be such that

px, x0q P LX´C, px, yq P L , py, y0q P LYC .

It then follows that x0, x, y, y0 map to the same point of V0 “ V A, implying
the properness.

Hence L1 is well-defined as a nonlocalized cycle class. It is GA-invariant
and Lagrangian, being a composition of such classes. It may be computed by
equivariant localization with an arbitrary choice of equivariant parameters.

In particular, we may chose the equivariant parameters to be at infinity
of a. Taking into account the signs in adjoints, we have

rLY s “ εY r∆Y As ` . . . , rLXs “ ε̄X r∆XAs ` . . . ,

where dots stand for terms of smaller A-degree. Therefore, at infinity of a,
only these diagonal terms contribute and thus L1 is supported on LA. By our
construction,

rLs
ˇ

ˇ

rLAs
“ εX ε̄Y ResLA L` . . . .

We see that polarizations exactly cancel the denominators in localization
formula, thus

L1 “ LA .

Since the original choice of C was arbitrary, the theorem follows.

88



89 4.7 Vacuum matrix elements

4.7 Vacuum matrix elements

4.7.1

Let Z P Fix be minimal with respect to the partial order defined by a chamber
C.

Theorem 4.7.1. If Z P Fix is minimal as above then

pR´C,C ¨ γ1, γ2q “

ż

Z

γ1 Y γ2 Y
epN` b ~q
epN`q

,

where N˘ are the stable/unstable subbundles of the normal bundle to Z and
γi P H

¨
GA
pZq.

In other words, the corresponding matrix elements of R´C,C equal the oper-
ator of classical multiplication by the class

epN` b ~q
epN`q

“
epN´q

epN´ b ~q
P H¨GA

pZqlocalized

Proof. We use Theorem 4.4.1 and equivariant localization. By minimality of
Z, the attracting set

AttrC p∆Zq Ă X ˆ Z

is closed and hence is the relevant component of LC. Further, Z ˆ Z is the
only component of XAˆZ that this attracting set intersects. The localization
contributions give

p´1qcodimpZq{2 epN´q
2

epNZq
“
epN` b ~q
epN`q

.

4.7.2

Here epN˘q are equivariant Euler classes, in the sense that they account for
the nontrivial action of A on epN˘q. Since A acts trivially on the base Z,
we may expand epN˘q in the characteristic classes of the same bundles with
trivial A-linearization.
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For example, if A “ Cˆ and it acts on N` by its defining representation
then

epN´q

epN´ b ~q
“ 1`

~
u

rkN´`

`
~
u2

ˆ

c1pN´q `
~
2

rkN´prkN´ ` 1q

˙

`O

ˆ

1

u3

˙

, (4.16)

where u P a˚ is the weight of the defining representation.

4.7.3

For example, consider the tensor product of Nakajima varieties as in Example
3.2.8 in Section 3.2.4. If θ ą 0 then the minimal component in (3.3) is

ZH “Mθ,ζpv,wq ãÑMθ,ζpv,w ` w1q , (4.17)

which corresponds to
η “ 0

in (3.3). By formula (2.15), we have

N´

ˇ

ˇ

ˇ

ZH
“
à

V‘wii . (4.18)

Recall that Mθ,ζp0,wq is a point.

4.7.4

In particular, for moduli spaces of framed sheaves, this embedding takes the
form

Mpr2q Q F ÞÑ Or ‘ F PMpr ` r2q .
Its normal bundle is

N´ “ Ext1
P2pOr,Fp´1qq “ H1

P2pFp´1qq‘r .

The bundle
Taut “ V1 “ H1

P2pFp´1qq

is the tautological bundle on the moduli spaces of framed sheaves.
Theorem 4.7.1, combined with (4.6), gives an R-matrix formula for the

operators of classical multiplication by characteristic classes of N´. We will
revisit this point below.
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4.7.5

For general θ, the component (4.17) is not minimal. We therefore adopt the
following terminology.

For all θ, we will call ZH the vacuum or the lowest weight component. We
will call the minimal component the true vacuum component. For Nakajima
varieties it coincides with ZH if θ ą 0.

When the vacuum ZH is not the true vacuum, the relation between the
vacuum matrix elements of the R-matrix and the operators of classical mul-
tiplication becomes more complicated. It will be explored in Section 4.9.

4.8 Classical R-matrices

4.8.1

In this section, we assume that X is a symplectic resolution. Recall the root
R-matrices and the subtori Aα introduced in Section 4.1.4. From Propositions
4.1.3 and 4.1.4, it follows that

Rα “ 1`
~
α
rα `Opα

´2
q , (4.19)

for a certain operator
rα P EndpH¨GA

pXA
qq .

Definition 4.8.1. The operator rα is called the classical R-matrix.

Note that rα does not depend on a choice of a splitting (3.8).

Proposition 4.8.2. There is a Steinberg correspondence rα Ă XAˆXA that
defines the operator rα.

Proof. Let
Stabą0 : H¨GA

pXA
q Ñ H¨GA

pXα
q,

the map corresponding to the chamber α ą 0. By Theorem 4.4.1,

Rα “ Stabτą0 ˝ Stabą0 .

We compute this push-forward by pA{Aαq-equivariant localization. From
Theorem 3.7.5, we can write

rStabą0s |XAˆXA “ γdiag ` ~ γoff-diag .
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Further, by Proposition 3.7.2,

γoff-diag

ˇ

ˇ

ˇ

ZˆZ1
“ α

1
2

codimZ´1
rCZ,Z1s ` . . .

for a certain Steinberg cycle CZ,Z1 Ă Z ˆ Z 1. Here codimension is computed
in Xα and dots stand for terms of smaller degree in α.

It follows that the quadratic in γoff-diag term doesn’t contribute to rα,
while terms linear in γoff-diag contribute a Steinberg correspondence. Same is
obviously true for the diagonal term.

4.8.2

Note from the proof of Proposition 4.8.2

rα “
´

ÿ

kPQą0

rkN rkαs

k

¯

∆` off-diagonal , (4.20)

where N rkαs is the A-weight space of the normal bundle to XA with weight
kα. This is because the diagonal terms only occurs from the diagonal terms
in the localization formula, that is, from the expansion of

p´1q
1
2

codim epNα
´q

2

epNα
´q epN

α
`q
“
epNα

` b ~q
epNα

`q
,

as in the proof of Theorem 4.7.1. Here the codimension and the normal
bundles are taken in Xα.

4.8.3

In particular, for tensor product of Nakajima varieties the normal bundle to
the fixed locus is identified in (2.15). From (4.20), we can then identify the
diagonal part of the classical R-matrix

rdiag “
ÿ

wi b vi `
ÿ

vi b wi ´
ÿ

Cij vi b vj . (4.21)

Here vi denotes the operator of multiplication by vi P N and so on.
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93 4.8 Classical R-matrices

4.8.4

The classical R-matrices satisfy a classical version of the braid relation. Con-
cretely, the terms of degree ´2 in a1, a2, a3 in the expansion of (4.4) as
ai ´ aj Ñ 8 give

rr12, r13 ` r23s “ 0

rr23, r12 ` r13s “ 0 , (4.22)

which is equivalent to the equation

rr12, r13s ` rr12, r23s ` rr13, r23s “ 0 , rij “
rij

ai ´ aj
. (4.23)

This is know as the classical Yang-Baxter equation with spectral parameter,
see e.g. Section 6.3 in [33].

For brevity, we call r and not r, which contains the exact same informa-
tion, the classical R-matrix. In the conventional terminology [33], r is known
as the classical R-matrix for the Yangian.

4.8.5

Our next goal is to show that the off-diagonal terms in (4.20) are additive
over the coroot hyperplanes of the symplectic resolution X. This additivity
is best stated in the following language.

Define a map
µ : FixÑ PicpXq˚ b a˚

as follows. Fix an A-linearization for a basis D1, D2, . . . of PicpXq modulo
torsion and let

µpZqpDq P a˚

be the character of A-action in D
ˇ

ˇ

Z
. If D is ample, this is the moment map

for the corresponding Fubini-Study symplectic p1, 1q-form.
A different choice of the linearization changes µ by a translation. In

particular the difference

µpZq ´ µpZ 1q P PicpXq˚ b a˚

is defined uniquely. If C is an irreducible A-invariant curve joining Z and Z 1

then by localization

µpZq ´ µpZ 1q “ rCs b weightpTpCq , p “ C X Z . (4.24)
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Here rCs P H2pX,Zq defines an element of PicpXq˚ via the natural pairing

pC,Dq “ degD|C .

4.8.6

Let β P H2pX,Zq be an effective class such that βK is a coroot hyperplane of
X and let Xβ be the general fiber over the coroot hyperplane βK in (3.11).

For any root α, Xβ has its own classical R-matrix rαpXβq. The closure
of rαpXβq defines a Steinberg correspondence rα,β in the fibers of

XA ˆXA � � //

��

p rXβq
A ˆ p rXβq

A

��
0 �
� // βK .

(4.25)

Here rXβ is the restriction of the universal deformation rX to the hyperplane
βK. We have the following

Theorem 4.8.3. Let Z,Z 1 be two different components of XA. If

µpZq ´ µpZ 1q P Q β b α

for some β such that βK is a coroot hyperplane then

rα
ˇ

ˇ

Z1ˆZ
“ rα,β

ˇ

ˇ

Z1ˆZ
.

Otherwise, rα
ˇ

ˇ

Z1ˆZ
is empty.

Proof. We first note that for rα to be nonempty, Z and Z 1 must lie in the
same component of Xα. Therefore, there must exist a chain of A-invariant
rational curves with tangent weights proportional to α that joins Z and Z 1.
From (4.24), we conclude

µpZq ´ µpZ 1q “ γ b α

for some γ P H2pX,Qq.
To simplify the notation, we will assume that

dimB “ 2 .
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95 4.9 Classical R-matrices

If dimB ą 2, we can pick a general 2-plane in the base B of the universal
deformation and restrict rX to it.

We denote by

rX ˆ p rXqA
ι3
ÐÝ rZ 1 ˆ rZ

ι2
ÐÝ Z 1 ˆ Z

the inclusion of an A-fixed component and the fiber over the origin 0 P B,
respectively. Recall that φ denotes the projection to B. We claim

supp ι˚3
rL Ă

#

φ´1
`

γK
˘

, γK is a coroot hyperplane ,

φ´1p0q , otherwise ,
(4.26)

where rL is an in Section 3.7.
Indeed over a general point of a divisor βK Ă B, β is the only effective

cycle in H2pXq. For the support to be nonempty, there must be a chain of
curves of class β joining Z and Z 1, whence

µpZq ´ µpZ 1q “ β b δ

for some δ P a˚. This implies γ P Qβ and and δ P Qα.
We can factor the inclusion ι2 as follows

rZ 1 ˆ rZ
ι1
ÐÝ rZ 1β ˆ

rZβ
ι0
ÐÝ Z 1 ˆ Z ,

where rZβ denotes the restriction of rZ to the divisor βK Ă B. From (4.26),
we conclude

ι˚3
rL “

ÿ

fipaq ι1˚rLis ` . . . , degA fipaq “
1
2

codimZ 1 ´ 1 , (4.27)

where
Li Ă rZ 1β ˆ

rZβ

are certain Steinberg correspondences and dots stand for classes that are
either of smaller A-degree or in the image of ι2˚. Note that

ι˚2 ˝ ι2˚ “ multiplication by ~2,

and therefore the dots in (4.27) do not contribute to classical R-matrices.
By contrast, the leading term in (4.27) is what goes into the correspondence
rα,β. This concludes the proof.
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4.9 Diagonal matrix elements of R-matrices

4.9.1

To simplify notation, we assume that A – Cˆ and that the cocharacter
σ P C gives this isomorphism. Let λ P PicpXq be ample and we linearize it so
that its weight is trivial on the vacuum components ZH. We label all other
components Zk of XA by a nonnegative integer k — the weight of λ.

By construction, our R-matrix comes with a a block Gauss decomposition
of the form

R “

¨

˚

˚

˚

˝

U00

U10 U11

U20 U21 U22

. . . . . . . . .

˛

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˝

S00 S01 S02

S11 S12

S22

. . .

˛

‹

‹

‹

‚

, (4.28)

where the blocks are indexed as above and

S, U : H¨GA
pXA

q Ñ H¨GA
pXA

q

is given by
S, U “ ˘u´ codim {2 Res ˝ Stab˘C ,

according to polarization, where

Res : H¨GA
pXq Ñ H¨GA

pXA
q

is the restriction map. With this normalization

Sij “ δij `Opu
´1
q , uÑ 8 , (4.29)

and similarly for Uij.

4.9.2

Note that (4.28) implies
R00 “ U´1

00 S00 (4.30)

which is the content of Theorem 4.7.1. The proof of Theorem 4.7.1 shows
¨

˚

˚

˚

˝

U´1
00 S00

U´1
11 S11

U´1
22 S22

. . .

˛

‹

‹

‹

‚

“
epN´q

epN´ b ~q
Y (4.31)
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97 4.9 Diagonal matrix elements of R-matrices

as operator on H¨GA
pXAq, where N´ is the unstable part of the normal bundle.

4.9.3

Similarly to (4.30), one computes, for example

R11 “ U´1
11 S11 `R10 S

´1
00 U00R01 .

In general, the diagonal matrix elements Rkk may be computed as follows.
Define

rUij “ U´1
ii Uij

and equate the pk, iq matrix elements in

U R “ S .

For i “ 0, . . . , k ´ 1, we get the following system of block matrix equations

´

rUk0 . . . rUk,k´1

¯

ü

“ ´
`

Rk,0 . . . Rk,k´1

˘

, (4.32)

where

ü

“

¨

˚

˝

R00 . . . R0,k´1
...

...
Rk´1,0 . . . Rk´1,k´1

˛

‹

‚

, (4.33)

while for i “ k, we obtain

Rkk “ U´1
kk Skk ´

´

rUk0 . . . rUk,k´1

¯

¨

˚

˝

R0,k
...

Rk´1,k

˛

‹

‚

.

Since
ü

“ 1`Opu´1
q ,

the square matrix (4.33) is invertible as a series in u´1. This proves the
following

Theorem 4.9.1. We have

Rkk “
epN´q

epN´ b ~q

ˇ

ˇ

ˇ

ˇ

Zk

` . . .
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4 Properties of R-matrices 98

where dots stand for a universal noncommutative expression in the coeffi-
cients of the 1{u-expansion of Rij, Rji, i ă j ď k, and of the operators

ˆ

epN´q

epN´ b ~q

˙˘1
ˇ

ˇ

ˇ

ˇ

ˇ

Zi

, i ă k .

These corrections are found from

Rkk “ U´1
kk Skk `

`

Rk,0 . . . Rk,k´1

˘
ü´1

¨

˚

˝

R0,k
...

Rk´1,k

˛

‹

‚

. (4.34)

4.9.4

In particular, Theorem 4.9.1 gives a way to relate operators of classical mul-
tiplication to vacuum matrix elements of R-matrices in the case then the
vacuum is not the true vacuum in the sense of Section 4.7.5.

4.9.5

The relationship in Theorem 4.9.1 simplifies for operators of small cohomo-
logical degree because they appear in small coefficients of the 1{u-expansion.
For example, from

Rij “ Opu´1
q , i ‰ j ,

we conclude the following

Proposition 4.9.2.

U´1
kk Skk “ Rkk ´

ÿ

iăk

RkiRik `Opu
´3
q .

4.9.6

For Nakajima varieties Proposition 4.9.2 means the following. Recall the
Example 3.2.8 in Section 3.2.4 and suppose θ ­ą 0. Then

Zη ă ZH , θ ¨ η ă 0 .

Denote
Hpwqη “ H¨GA

pMθ,ζpη,wqq .

98



99 4.10 Flops and stable envelopes

Consider the matrix element Rη,0 of the R-matrix

Rη,0 : Hpwq0 bHpw
1
qv ÝÑ Hpwqη bHpw

1
qv´η

and the operator R0,η going in the opposite direction. Then Proposition 4.9.2
implies

e
´

NH
´

¯

e
´

NH
´ b ~

¯ “ R00 ´
ÿ

θ¨ηă0

R0,ηRη,0 `Opu
´3
q (4.35)

where

NH
´ “

à

V‘wii .

is the unstable normal bundle to ZH, as in (4.18).

Observe that in (4.35) the sum is effectively over η ď v simply because
Hpw1qv´η “ 0 if η ­ď v. It is convenient that we don’t have to restrict the
range of summation explicitly.

4.10 Flops and stable envelopes

4.10.1

Let X be a symplectic resolution and let

X �
� //

��

rX

��
0 �
� // B ,

(4.36)

be its deformation. For our present goals, it suffices to take B a generic line
in the base of (3.11) in Section 3.7. By definition, a flop of X is another
family over the same base B

Xflop
� � //

��

rXflop

��
0 �
� // B ,
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4 Properties of R-matrices 100

together with an isomorphism

rXzX
rF //

��

rXflopzXflop

��
Bzt0u id // Bzt0u

of families over the punctured base. We require rF to:

1) be equivariant with respect to all group actions,

2) preserve the symplectic form,

3) induce identity on the affine quotients.

For symplectic resolutions, 3) implies 2) because it implies the graph of rF is
Lagrangian in the product of fibers.

An example is provided by the natural isomorphism

Mθ,tζpv,wq –Mθ1,tζpv,wq

where θ, θ1 are arbitrary, t P Bzt0u “ Cˆ, and ζ is generic.

4.10.2

The closure of the graph of rF defines a cycle in rX ˆB rXflop, the restriction
of which to the origin defines a G-invariant Steinberg correspondence

F Ă Xflop ˆX .

For brevity, we denote the induced map

F : H¨GpXq
„
Ñ H¨GpXflopq

by the same letter. This is an isomorphism because both families are topo-
logically trivial.
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101 4.10 Flops and stable envelopes

4.10.3

For example, if Q is the quiver with one vertex and no edges, pv,wq “ p1, nq
then this is the classical Mukai flop of

Mθ,0pv,wq “

#

T ˚PpW_q , θ ą 0 ,

T ˚PpW q , θ ă 0 ,

where W – Cn is the framing space and PpW q is the projective space of lines
through the origin in W . In this case

F “ PpW_
q ˆ PpW q ` TKUniversal hyperplane , (4.37)

where TK denotes the conormal bundle and PpW q Ă T ˚PpW q is the zero
section. Note this cycle is GLpW q ˆ Cˆ-invariant.

4.10.4

Let A Ă G be a torus preserving the symplectic form. Any such torus acts
trivially on the base B. Since a flop is an A-equivariant isomorphism over
Bzt0u, we have a natural bijection

f : FixpXq
„
Ñ FixpXflopq

of components of A-fixed loci. By taking fixed points, F induces a certain
flop (potentially trivial)

Fi Ă Zflop,fpiq ˆ Zi

of each component of Zi Ă XA.

4.10.5

Since flop is a Steinberg correspondence, Theorem 4.6.1 implies the following
square commutes for any chamber C

H¨GA
pXAq

StabC //

FA

��

H¨GA
pXq

F
��

H¨GA
pXA

flopq
StabC,flop // H¨GA

pXflopq .

(4.38)

Here the cycle FA is residue of F , it is a Steinberg cycle supported on FA

with signs determined by the polarizations of the fixed loci.
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4 Properties of R-matrices 102

Lemma 4.10.1. The correspondence FA is the flop of XA, up to signs de-
termined by polarization.

Proof. By construction

F
ˇ

ˇ

ˇ

Zflop,jˆZi
“ 0 , j ‰ fpiq ,

in A-equivariant cohomology. Therefore FA vanishes outside the graph of f .
On the graph of f , the statement holds by definition.

4.10.6

In the example of the Mukai flop, consider the Lagrangian subvarieties

σU “ TKPpUq Ă T ˚PpW q

corresponding to linear subspaces U Ă W . In particular, σW is the zero
section while σ0 “ H. From (4.37), one computes

F pσUq “ σUK ´ p´1qdimUσW_ . (4.39)

The coefficient of σW_ is the sum of

σW ¨ σU “ p´1qdimPpUqχpPpUqq “ p´1qdimU´1 dimU

and the analogous number for a hyperplane section of U .
Let A Ă GLpW q be a maximal torus with eigenbasis e1, . . . , en P W and

the corresponding fixed points xi “ PpCeiq P PpW q. We have

Stabpxiq “ σUi ` σUi`1
, Ui “ Spanpei, . . . , enq

for some choice of chamber and polarization. We see that

F pStabpxiqq “ σUKi ` σUKi`1
,

where UKn`1 “ W_. This is the stable basis for A action on T ˚PpW_q for the
same chamber and suitable polarization.

The induced bijection of fixed loci is

fpxiq “ PpCξn´i`1q

where tξ1, . . . , xnu is the dual basis of W_.
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103 4.10 Flops and stable envelopes

4.10.7

Different cones in the space of the stability condition θ give different flops of
a given Nakajima variety. Among them is the maximal flop

Fmax ĂM´θ,ζpv,wq ˆMθ,ζpv,wq

that corresponds to the opposite cone of stability conditions. For an arbitrary
symplectic resolution X, one similarly expects to have a flop Fmax that takes
the ample cone of X to its opposite.

We next observe that for any chamber C, the map

StabC : H¨GA
pXA

q Ñ H¨GA
pXq

is characterized by its behavior near the diagonal and the opposite triangu-
larity of the supports of StabC and Fmax StabC.

Theorem 4.10.2. The map StabC is uniquely determined by the the condi-
tions (i), (ii) in Theorem 3.3.4 together with a symmetric condition for its
maximal flop

suppFmax ˝ StabCpZiq Ă AttrfCpZflop,fpiqq

Proof. The above support condition is satisfied by (4.38) and Lemma 4.10.1.
Since a maximal flop takes an ample class to minus an ample class while
preserving A-weights, we have

i ą j ô fpiq ă fpjq

in the ample partial ordering, for any C. Thus the supports of StabC and
Fmax StabC are triangular the opposite way. Hence

Fmax

ˇ

ˇ

ˇ

XA
flopˆX

A
“ StabC,flop

ˇ

ˇ

ˇ

XA
flopˆX

A
flop

˝ Fmax,A ˝

ˆ

StabC

ˇ

ˇ

ˇ

XAˆXA

˙´1

(4.40)

is a Gauss factorization, and therefore unique.

4.10.8

We see from (4.40) that flops give a way to package the information about
stable envelopes that is somewhat different from R-matrices. This packaging
has several convenient features, among them:
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4 Properties of R-matrices 104

• flops are given by Steinberg correspondences, a very economical and
geometric data,

• the maximal flop Fmax can be factored into a product of flops that cross
a single wall in the space of θ’s,

• additional constraints on Fmax may be deduced from a noncanonical
isomorphism

Mθ,ζpv,wq ÑM´θ,ζpv,wq

that replaces all quiver data by transposed with respect to some chosen
bilinear form.
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Chapter 5

Yangians

5.1 Tensor products

5.1.1

Let X satisfy the hypotheses of Section 3.1. By definition, we say that X is
a tensor product and write

X “ X1 b ¨ ¨ ¨ bXn

if the maximal torus A Ă PGLpnq acts on X preserving the symplectic form
so that

(1) XA “ X1 ˆ ¨ ¨ ¨ ˆXn,

(2) the roots of X are the roots αij of PGLpnq,

(3) the corresponding fixed loci are of the form

Xαij “ Xij ˆ
ź

k‰i,j

Xk

We view this definition as provisional; perhaps a better set of axioms will
emerge later. Note that neither existence or uniqueness of tensor products is
claimed.

If one requiresX to have a unique, up to multiple, holomorphic symplectic
form, then this rules out trivial nonuniqueness of the form

X ÞÑ X ˆ vector representation of A .
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5.1.2

In the case of quiver varieties, recall Mpwq from Section 4.1.5. For any
decomposition

w “
n
ÿ

i“1

wi

into nonzero terms, we have

Mpwq “
â

Mpwiq ,

corresponding to the decomposition

w “
ÿ

zi wi

as in Section 2.4. Here

pz1, . . . , znq P pCˆqn “ A .

5.1.3

For X “ X1 b ¨ ¨ ¨ bXn, the construction of Chapters 3 and 4 gives a set of
R-matrices

Rijpai ´ ajq P EndpF1 b ¨ ¨ ¨ b Fnq bQptq , Fi “ H¨GA
pXiq

satisfying the Yang-Baxter equation (4.4), a familiar setup in quantum inte-
grable systems.

5.1.4

Given an operator

R12pa1 ´ a2q P EndpF1 b F2q ,

its matrix elements in F1 are operators on F2. Our main interest is the
algebra of operators thus obtained for Nakajima varieties. This algebra is an
example of a Yangian.
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5.2 Construction of Yangians

5.2.1

Yangians are Hopf algebras associated to rational solutions of the Yang-
Baxter equation. There are several ways to describe a Yangian. For us, it is
the so-called RTT=TTR formalism of [35] that arises naturally. We briefly
recall the basics.

For simplicity, we limit the use of the categorical language, even though
many construction and properties are best stated in the language of tensor
categories, see for example [115].

5.2.2

Let k Ą Q be a commutative ring without zerodivisors. We write

b “ bk , End “ Endk

for brevity. Let tFiu be a collection of free k-modules and let

RFi,Fjpuq P EndpFi b Fjqpuq

be collection of operator-valued rational functions of u satisfying the Yang-
Baxter equations (1.4). We assume the normalization

Rp8q “ 1 .

We also fix ~ P k that divides Rpuq ´ 1. In geometric applications, this will
be the weight of the symplectic form.

5.2.3

To this data, one associates a Hopf algebra Y over k that acts on

Fipuq
def
“ Fi b krus . (5.1)

and more generally on

Fi1pu1q b ¨ ¨ ¨ b Finpunq “ Fi1 b ¨ ¨ ¨ b Fin b kru1, . . . , uns (5.2)

This action commutes with multiplication by the ui’s, so may be viewed as
a family of Y-modules indexed by An

k .
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5.2.4

While Firus is a more logical notation for (5.1), the use of parentheses is
traditional. The variable u in (5.1) is called the evaluation parameter, in
reference to the following.

By one of their many definitions, Yangians are Hopf algebra deformations
of Upgrusq, where g is a Lie algebra over k and grus is the Lie algebra of g-
valued polynomials in u. The identity map

grus Ñ gb krus

may be viewed as family of evaluation homomorphisms grus Ñ g and any
g-module F can be made a grus-module F puq by pull-back.

5.2.5

A certain care is required if rkFi “ 8 for some Fi. We will always assume a
grading

Fi “
à

αPZn

`

Fi
˘

α

such that all graded pieces are k-modules of finite rank. We further require
that

`

Fi
˘

α
‰ 0 only for α in a translate of a certain nontrivial cone, which

we will assume to be pZě0q
n for simplicity.

The R-matrices will always have grading 0. This makes Y a graded al-
gebra and Fipuq, with the grading induced from Fi, a graded module. The
coproduct

∆ : Y Ñ Y pbY (5.3)

to be defined below, takes values in the following completed tensor product.
By definition,

Y pbY “
à

α

`

Y pbY
˘

α

while
ÿ

β

yα´β b yβ P
`

Y pbY
˘

α

if β ranges in a translate of pZě0q
n. Such infinite sums act naturally on any

Fipu1q b Fjpu2q. The iterates of ∆ make (5.2) tensor products of (5.1) as
Y-modules.
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5.2.6 Definition

We define Y as the subalgebra

Y Ă
ź

i1,...,in

Endkru1,...,uns pFi1pu1q b ¨ ¨ ¨ b Finpunqq (5.4)

generated by the following operators. Let

W “ F1pu1q b ¨ ¨ ¨ b Fnpunq (5.5)

be one of the spaces in (5.4) where, for brevity, we write Fk in place of Fik to
denote some element of the set tFiu. Choose an additional F0 P tFiu called
an auxiliary space and define

RF0puq,W “ RF0,Fnpu´ unq ¨ ¨ ¨ RF0,F1pu´ u1q . (5.6)

Let
mpuq P F0 b F

_
0 b krus

be a polynomial in u with values in operators in F0 of finite rank. Here

F_0 “ HomkpF0,kq

is the graded dual module.
Because mpuq has finite rank and ~ divides R´ 1, the following operator

Epmpuqq “ ´
1

~
Resu“8 trF0 mpuqRF0puq,W P EndpW q (5.7)

is well-defined for all W in (5.5). Since it comes from an expansion of rational
functions of u ´ ui as u Ñ 8, it depends polynomially on u1, . . . , un. Thus,
it defines an element of the right-hand side in (5.4).

By definition, Y is the k-subalgebra in (5.4) generated by 1 and (5.7) for
all F0 and all mpuq. In English, the Yangian Y is the algebra generated by

all coefficients of the uÑ 8 expansion of

all matrix coefficients of the operators (5.6) for

all auxilliary spaces F0.

Additionally, since all nontrivial matrix elements are divisible by ~, we divide
by ~ in (5.7).
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5.2.7

The product in (5.4) includes the the factor W “ k corresponding to

ti1, i2, . . . , inu “ H .

This 1-dimensional Y-module is the counit of the Yangian.

5.2.8

After inverting ~, (5.7) makes sense for any rational function mpuq of u, in
particular,

E
`

mu´k
˘

“

#

~´1 trm, k “ 1 ,

0 , k ą 1 .
(5.8)

While such operators are not in Y, they will play a role in computation of
commutation relations (5.12) below.

5.2.9 RTT=TTR equation

By construction, (5.7) extends to a surjection

E : Tensor algebra
`
à

Fi b F
_
i b krus

˘

� Y (5.9)

The Yang-Baxter equation shows it factors through the quotient by

pm1pu1q bm2pu2qq ¨RF1F2pu1 ´ u2q´

RF1F2pu1 ´ u2q ¨ pm2pu2q bm1pu1qq , mipuq P Fi b F
_
i b krus . (5.10)

This is known as the RTT=TTR relation. The letter T being overused in
this paper, we substitute it in this context by E.

The quotient of the tensor algebra by (5.10) is of the same size as the
symmetric algebra. This is still very big and below we will discuss how to
write further relations in Yangians.

5.2.10 Filtration in the Yangian

The Yangian Y is filtered by degree in u, that is, by defining

deg Epmpuqq “ degumpuq
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111 5.2 Construction of Yangians

on the generators of the Yangian. We set degu 1 “ 0.
Equation (5.8) shows this filtration does not extend to the algebra gen-

erated by these more general operators. Therefore, one has to be careful in
situations where they appear.

Since scalars cancel out of the RTT=TTR equation, it takes the form

rEpmpuqq,Epm1
pvqqs “ ~E

ˆ„

rV V
u´ v

,mpuq bm1
pvq

˙

` . . . (5.11)

where r is the classical R-matrix

Rpuq “ 1`
~
u

r`Opu´2
q

and dots in (5.11) come from the Opu´2q term above.
Note that in the right-hand side of (5.11) there are terms of the same

degree as in the left-hand side. They come from the expansion

1

u´ v
“

1

u
`

v

u2
`
v2

u3
` . . .

and (5.8), giving the right-hand side of the following formula (5.12).

Proposition 5.2.1. We have

“

Epmuiq,Epm1 ujq
‰

“ E
`

ptrb1q rrV V ,mbm
1
sui`j

˘

` . . . (5.12)

where dots stand for terms of smaller degree in u.

Proof. Were it not for (5.8), the right-hand side of (5.11) would have smaller
total degree in u and v than degumpuq ` degvm

1pvq.
Each application of (5.8) brings the total degree up by 1. Note, however,

that it can be applied only once and with respect to the variable u, because
all terms in (5.11) have nonnegative degree in v. Therefore, the dots in (5.11)
have total degree at most degumpuq`degvm

1pvq´1 and can be neglected.

5.2.11

Note the commutation relation (5.12) has the form

“

a ui, b uj
‰

“ ra, bsui`j , a, b P g ,
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of the commutation relations in the Lie algebra of polynomials grus with
values in a Lie algebra g.

In fact, one of our goals is to show that for the Yangian associated to a
quiver Q

grY – UpgQrusq
for a certain Lie algebra gQ. Here grY denotes the associated graded of Y
for the filtration by degree in u.

5.2.12 Coproduct

The set of W of the form (5.5) is closed with respect to tensor product. There
is a corresponding projection

ź

W

EndW Ñ
ź

W,W 1

End pW bW 1
q .

By applying this projection to Epmpuqq, it is easy to see that it sends Y to
the image of the map

Y pbY Ñ
ź

W,W 1

End pW bW 1
q . (5.13)

The completion is needed because matrix elements of RF0,F1bF2 are infinite
sums of products of matrix elements of RF0,Fi when dimF0 “ 8.

This defines a natural coproduct (5.3) on Y up to an ambiguity arising
from the kernel of (5.13). We will prove at the end of this chapter that Y
is flat over k and that, as a corollary, the map (5.13) is injective so this
ambiguity does not arise. In the meantime, we only discuss the coproduct as
evaluated on pairs of representations.

The coproduct is not commutative and in general

F1pu1q b F2pu2q fl F2pu2q b F1pu1q

as Y-modules. However,

F1pu1q b F2pu2q bkru1,u2s kpu1, u2q – F2pu2q b F1pu1q bkru1,u2s kpu1, u2q

with the explicit intertwiner

R_ “ p12qRF1,F2pu1 ´ u2q .

This follows at once from the Yang-Baxter equation.
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113 5.3 Construction of Yangians

5.2.13 Translation automorphism

All spaces W in (5.5) have an automorphism ςc that acts by

ςcpuiq “ ui ` c , i “ 1, 2, . . . ,

on the variables ui and as identity on Fi’s. It preserves Y because it amounts
to a reexpansion of Rpu ´ cq in inverse powers of u. We denote the corre-
sponding automorphism of the Yangian also by ςc.

5.2.14

In the rest of this chapter, we specialize to the case of Nakajima varieties,
see Section 5.1.2. We fix a quiver Q and set

k “ H¨Gedge
ppt,Qq ,

Fi “ H¨Gedge
pMpδiq,Qq . (5.14)

Here w “ δi is the delta-function at some i P I. Note that in this case
G1w “ 1. The tensor product construction will identify

H¨GA
pMpwqAq “

â

iPI

Fipui1q b ¨ ¨ ¨ b Fipuiwiq

where A Ă Gw is a maximal torus and

¨

˚

˚

˚

˝

ui1
ui2

. . .

uiwi

˛

‹

‹

‹

‚

P glpWiq , i P I ,

are the equivariant parameters for the group Gw.

The collection (5.14) can be enlarged by allowing arbitrary dimension
vectors w in place of δi. This does not change the Yangian Y because, as
we will see, Y already injects into the endomorphisms of tensor products of
Fipuikq.
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5.3 The Lie algebra gQ

5.3.1

Let gQ Ă Y be the span of operator Epm0q, where m0 is constant polynomial
in u. In other words, gQ is spanned by the matrix elements of the classical
R-matrix r. Formula (5.12) shows gQ is a Lie algebra. The following is clear

Proposition 5.3.1. All elements of ξ P gQ are primitive, that is,

∆ξ “ ξ b 1` 1b ξ ,

when evaluated on pairs of representations. In particular,

“

∆ξ,R
‰

“ 0 ,
“

∆ξ, r
‰

“ 0 , (5.15)

that is, gQ commutes with R-matrices.

We expect that gQ is the Lie algebra of primitive elements of Y.

5.3.2

As defined, gQ is a Lie algebra over k. We expect a natural isomorphism

gQ “ pgQqQ bQ k

for a certain Lie algebra over Q. We think the required Q-structure may be
constructed using the Decomposition Theorem.

5.3.3

The identity

Rpuq´1
“ Rp´uq12

from Section 4.5 implies the symmetry of r, that is,

rW,W 1 “ rW 1,W .

after identifying W bW 1 and W 1 bW .
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115 5.3 The Lie algebra gQ

5.3.4

It follows from formula (4.21) that

hQ Ă gQ

where hQ acts by linear functions of v and w. Linear functions can be taken

with k-coefficients or Q-coefficients, and this defines hQ as k-submodule with

a canonical Q-submodule. All structures in hQ are defined over Q.
Recall the quadratic forms (2.5) with values in KGpptq. Here we evaluate

them at 1 P G, in other words, we use the nonequivariant Cartan matrix.
The inverse of the nondegenerate form p ¨ , ¨ qQ from (2.5) defines a bilinear

form p ¨ , ¨ qh on hQ. From (4.21) we conclude

r “
ÿ

iPI\I

hi b h
i
` . . .

where
phi, h

j
qh “ δij

and dots stand for off-diagonal elements. Note that, with our conventions,

dim hQ “ 2|I| .

While this looks unusual from the perpective of finite-dimensional Lie theory
(in which Cartan matrices are nondegenerate), this is very convenient and
has been used before e.g. in [43].

By construction, off-diagonal elements have a nonzero commutator with
hQ acting in one of the tensor factors. We deduce the following

Proposition 5.3.2. hQ is a maximal commutative subalgebra of gQ.

5.3.5

For brevity, we write h “ hQ, g “ gQ. By Proposition 5.3.2, we can write

g “ h‘
à

η‰0

gη (5.16)

where η P ZI and gη is spanned by ξ such that

ξ : H¨GpMpw, vqq Ñ H¨GpMpw, v ` ηqq .
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The vectors η such that gη ‰ 0 are called the roots of g. Clearly

rgα, gβs Ă gα`β . (5.17)

We call a root η positive if η P NI .

5.3.6

The decomposition (5.16) parallels the root decomposition for Kac-Moody
Lie algebras. As for a Kac-Moody Lie algebra, we define the coroot

hη “ C η P h

for every root η. These satisfy

pα, βqQ “ αphβq “ phα, hβqh . (5.18)

Proposition 5.3.3. Let η be a root and consider the commutator map

gη b g´η Ñ h .

Its image is khη and this gives an embedding

gη ãÑ g_´η “ Hompg´η,kq .

Later we will see that, in fact, this gives an isomorphism gη – g_´η.

Proof. Take ξ P gη and consider the pη, 0q-weight space in (5.15). One of the
terms is

”

ξ b 1,
ÿ

hi b h
i
ı

“ ´ξ b
ÿ

i

hipηqh
i
“ ´ξ b hη .

We conclude
“

1b ξ, rη,´η
‰

“ ξ b hη , (5.19)

where rη,´η denotes the corresponding weight component. Both claims fol-
lows from this.
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117 5.3 The Lie algebra gQ

5.3.7

By construction, g comes with modules Fw containing vectors |wy of lowest
weight, that is,

gη |wy “ 0 , η ­ą 0 . (5.20)

Recall that η ą 0 means η P NI . Also

h |wy “ wphq |wy , h P h

and |wy is the unique, up to multiple, vector of weight w. We denote by
Fwpηq Ă Fw the subspace of weight w ` η. The g-action gives maps

gη Ñ Fwpηq , g´η Ñ Fwpηq
_ (5.21)

that take ξ P gη to ξ |wy and dually for g´η.

Proposition 5.3.4. If η ­ă 0 and wphηq ‰ 0 then the maps (5.21) are injec-
tive.

Proof. Take ξ P gη and ξ1 P g´η. Then

ξ1 ξ |wy “ rξ1, ξs |wy “ w prξ1, ξsq |wy

where the step in the middle follows from (5.20). Now the claim follows from
Proposition 5.3.3.

Corollary 5.3.5. All roots spaces are k-modules of finite rank.

Corollary 5.3.6. All roots are either positive or negative.

5.3.8

The pη,´ηq-weight component of r defines a map

Fwp0q b Fwpηq Ñ Fwpηq b Fwp0q .

Since Fwp0q – k, this gives an operator

Pη : Fwpηq Ñ Fwpηq .

Proposition 5.3.7.
P2
η “ ´wphηqPη . (5.22)
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Proof. Follows from considering the map

Fwp0q b Fwp0q b Fwpηq Ñ Fwpηq b Fwp0q b Fwp0q

given by (4.22).

Proposition 5.3.8. If η ą 0 and wphηq ‰ 0 then image of (5.21) is the
image of Pη and P_η , respectively.

Here P_η denotes the transpose map between the dual modules.

Proof. Apply both sides of (5.19) to |wy b |wy.

Corollary 5.3.9. The root subspaces g˘η are dual projective modules over
k. The classical r-matrix

rη,´η P gη b g´η

is the canonical element of this tensor product.

Corollary 5.3.10. The commutator pairing from Proposition 5.3.3 is per-
fect.

5.3.9

We summarize the preceding discussion in the following

Theorem 5.3.11. All roots of gQ are either positive or negative. All roots
spaces are projective k-modules of finite rank. The Lie algebra gQ has an
invariant bilinear form p ¨ , ¨ qg such that r is the corresponding invariant
tensor. With respect to this form, g´η “ g_η .

Since for Nakajima varieties k is a polynomial ring, the modules gη are free.

Consequently, we can choose bases te
piq
α u of the root spaces so that

pepiqα , e
pjq
β qg “ δα,´β ¨ δi,j .

Correspondingly, we write

r “
ÿ

hi b h
i
`

ÿ

α‰0

ÿ

i

epiqα b e
piq
´α . (5.23)

One should bear in mind, however, that it is the invariant tensor r that
is canonically defined, while choosing bases of root spaces is a matter of
convenience.
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119 5.4 Operators of classical multiplication

5.3.10

For future use, we record here the following easy lemma:

Lemma 5.3.12. For each root α ‰ 0, the quadratic operator
ÿ

i

epiqα e
piq
´α

acts via a Steinberg correspondence on each Fwpvq.

Proof. Since reα, e´αs acts via a scalar, it suffices to prove this for α ą 0.
Choose w0 such that hαpw0q ‰ 0. Up to a nonzero scalar, the claim then
follows from considering the action of the composition of Steinberg operators

r´α,α ˝ rα,´α

on Fw0p0q b Fwpvq.

5.3.11

We note that the projector Pη has a direct geometric meaning for Nakajima
variety. It is given by a Steinberg correspondence

Pη ĂMpw, ηq ˆMpw, ηq

supported on

Stab
´

Mpw, ηq ˆMpw, 0q
¯

XMpw, 0q ˆMpw, ηq

viewed as A-fixed loci in Mp2w, ηq.

5.4 Operators of classical multiplication

5.4.1

In the Yangian Y, we have the operators

E
`

|wyxw|uk
˘

, w P ZI , k “ 1, 2, 3, . . . , (5.24)

where
|wyxw| P EndH¨GpMpwqq
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is the orthogonal projector onto the vacuum. Recall from Figure 1.1 that for
any g such that

rg b g,Rpuqs “ 0

the operators

trF0pg b 1qRF0,W puq P EndpW q bQpuq

commute for all W and all values of u as a consequence of the Yang-Baxter
equation. In particular, for g “ |wyxw| this shows the operators (5.24) com-
mute.

5.4.2

If θ ą 0, the vector |wy is the true vacuum in the sense of Section 4.7.3. This
implies that the operators (5.24) are operators of cup product by certain
characteristic classes of the virtual bundle

p1´ ~q bN´ “ p1´ ~q b
ÿ

wi Vi

where N´ is the negative part of the normal bundle to the embedding

Mpw2q ãÑMpw ` w2q .

In particular, this gives another reason why these operators commute.

It is also clear that the operators (5.24) generate all characteristic classes
of Vi in the case θ ą 0.

5.4.3

For general θ, the relation between the operators (5.24) and the operators
of classical multiplication may determined along the lines of Theorem 4.9.1.
Since the general expression in Theorem 4.9.1 is rather complicated and
requires working in a certain completion of the Yangian, we will not do it
here.

For the operators of classical multiplication by divisors, which is what we
need for the proof of the main result of the paper, the case of general θ will
be considered in Section 10.1.
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121 5.5 Operators of classical multiplication

5.4.4

In Proposition 5.5.3 below we will see the Yangian also contains the operators
of multiplication by characteristic classes of the bundles Wi.

These bundles are trivial but carry nontrivial group action, so this gives

lim
ÐÝ
w

H¨Gw
pptq ãÑ centerpYq .

5.4.5

We call the subalgebra

Classical Ă Y Ă
ź

v,w

EndH¨GpMθ,ζpv,wqq . (5.25)

generated by the characteristic classes of tVi,Wiu the algebra of classical
multiplication. Recall we assume that θ ą 0, otherwise a certain completion
of the Yangian is required.

As already discussed, the algebra of classical multiplication is expected1

to surject onto all operators of cup product in each factor of (5.25). The
following weaker statement will be sufficient for our purposes. Recall that t
denotes the Lie algebra of a maximal torus in G.

Proposition 5.4.1. After tensoring with Qptq, the algebra of classical multi-
plication surjects onto all operators of cup products in each factor of (5.25).

Proof. There is a Cˆ action on Mθ,ζpv,wq that scales all quiver data by the
same scalar. After tensoring with Qptq, we may replace the cohomology of
Mθ,ζpv,wq by the cohomology of Mθ,ζpv,wq

Cˆ . The structure sheaf of the

Diagonal ĂMθ,ζpv,wq ˆMθ,ζpv,wq

may be resolved by tautotological bundles Vi, see [87]. SinceMθ,ζpv,wq
Cˆ is

compact, it shows that its cohomology is spanned by characteristic classes of
tautological bundles.

1This has now been established in [77].
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5.5 The structure of the Yangian

5.5.1

In this section we assume θ ą 0 for simplicity. Our goal here is the following

Theorem 5.5.1. The Yangian is generated by the Lie algebra gQ and the
operators of classical multiplication. We have

grY – UpgQrusq

with respect to the filtration by degree in u.

In the course of the proof, it will be convenient to choose a splitting of

E :
à

Fi b F
_
i Ñ gQ Ñ 0

which exists because gQ is a projective k-module. We will write ξ “ Epξq
using such splitting. A concrete splitting may be constructed using the pro-
jectors Pη from Section 5.3.8.

5.5.2

Proposition 5.5.2. If Epmq “ 0 then

Epmukq P Yăk

with where Yăk Ă Y is the corresponding filtration subspace.

Proof. Since k “ 0 this is a tautology, we take k ą 0.
The map E is h-equivariant and we can assume that m is an eigenvector

of h of weight µ. If µ ‰ 0 then

µphqEpmukq “
“

Ephq,Epmukq
‰

“
“

Ephukq,Epmq
‰

` ¨ ¨ ¨ “ . . . (5.26)

where the step in the middle is based on (5.12).
If µ “ 0 then Epmukq is a linear combination of diagonal matrix elements

of the R-matrix. Theorem 4.9.1 expresses diagonal matrix elements of the
R-matrix in terms of the off-diagonal ones and characteristic classes of N´.
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123 5.5 The structure of the Yangian

All terms involving off-diagonal matrix elements in Theorem 4.9.1 have
degree ă k. This is because they are at least quadratic the entries of the
R-matrix and there is a degree shift from the expansion

Rpuq “ 1`
ÿ

ně0

Rn

un`1

to the filtration in the Yangian: matrix coefficients of Rn belong to Yďn.
Now consider the characteristic classes of N´. We have

epN´q

epN´ b ~q
“ 1` ~

ÿ

ně0

n! chnN´ ` . . .

un`1
,

where dots stand for characteristic classes of degree ă n. In particular,
applying this to (2.15), we get

1

k!
Epmukq “

ÿ

i

pm,wiq chk Vi `
ÿ

i

pm, viq chkWi

´
ÿ

i,j

Ci,jpm, viq chk Vj ` . . .

where the pairing with vi,wi P h is the trace pairing and dots stand for
elements in Yăk. Note that by induction all characteristic classes of Vi and
Wi of degree ă k are in Yăk.

If Epmq “ 0 then pm,wiq “ pm, viq “ 0 and this concludes the proof.

The following is a corollary of the proof.

Proposition 5.5.3. If θ ą 0, all characteristic classes of Vi and Wi lie in
Y and this inclusion preserves degree.

The case of general θ may be treated using Theorem 4.9.1. In this case,
a certain completion of the Yangian is required.

5.5.3 Proof of Theorem 5.5.1

By Proposition 5.5.2 and (5.12), the operators Epξuiq for ξ P gQ generate the
Yangian and satisfy the relations in gQrus modulo lower degree terms. This
gives a surjective map

UpgQrusq Ñ grY Ñ 0 .
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Its injectivity may be seen as follows. For any faithful representation of a
Lie algebra

0 Ñ gÑ EndpF q

the corresponding representation of the universal enveloping algebra in tensor
powers of F

0 Ñ UgÑ
à

End
`

Fbn
˘

is injective. Since the Yangian is defined as a subalgebra of endomorphisms
of tensor products, it remains to check that the map

gQrus Ñ grY

is injective, which is elementary. In fact,

Epξuiq
ˇ

ˇ

F pvq
“ vi

`

ξ
ˇ

ˇ

F

˘

`Opvi´1
q , v Ñ 8 (5.27)

where v is the evaluation parameter for the representation F pvq and we iden-
tify all F pvq with F “ F p0q as linear spaces. Equation (5.27) means that the
Yangian degenerates into the loop algebra when all evaluation parameters
are very large.

The last claim of the Theorem, the fact the operators of classical multi-
plication and gQ generate the Yangian follows from (5.26).

5.5.4

As a consequence of the above result, we see that grY and thus Y are flat as
k-modules. It follows that the map (5.13) is injective. Indeed, using flatness,
it suffices to prove injectivity after tensoring with the fraction field K of k
(which we denote by subscript for brevity). We then have inclusions

YK b YK Ñ
ź

W

EndWK b
ź

W 1

EndW 1
K Ñ

ź

W,W 1

EndpWKq b EndpW 1
Kq.

Injectivity after completion then follows from this case by decomposing the
kernel into bi-graded pieces.

As a corollary, the coproduct

∆ : Y Ñ Y pbY

is well-defined.
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Chapter 6

Further properties of the
Yangian

6.1 The core Yangian

6.1.1

In this section we assume θ ą 0. By Proposition 5.5.3, the Yangian Y
contains all characteristic classes chkpWiq of the bundles Wi. Since Wi are
trivial, chkpWiq add little geometric value and it may be desirable to have a
smaller algebra Y that does not contain them. The goal of this section is to
define such core Yangian

Y Ă Y b k
“

δ´1
‰

,

where δ Ă k is a certain equivariant constant that depends on the equivariant
Cartan matrix C of the quiver. In particular, if the nonequivariant Cartan
matrix is invertible then δ´1

P k and Y Ă Y.

6.1.2

Recall from Theorem 4.9.1 and from the proof of Proposition 5.5.2 and that
the characteristic classes of Vi andWi come from the operator of cup product
by

epN´q

epN´ b ~q
P H¨GA

pMpwq ˆMpw1qq
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6 Further properties of the Yangian 126

that appears in the diagonal matrix elements of the R-matrices. Here

N´ “
ÿ

HompWi,V 1iq `
ÿ

HompVi,W 1
iq b ~´1

´
ÿ

Cij HompVi,V 1jq (6.1)

in the negative part of the normal bundle toMpwqˆMpw1q insideMpw`w1q
and C is the equivariant Cartan matrix.

6.1.3

The basic idea for defining Y is the following. Complete the square in (6.1)
as follows

N´ “ ´
ÿ

Cij Hom
´

pVi, pV 1j
¯

`
ÿ

`

C´1
˘

ij
Hom

`

Wi,W 1
j

˘

b ~´1 (6.2)

where

C´1
P Matp|I|, KGA

pptqlocalizedq

is the inverse of the equivariant Cartan matrix and

pV “ V ´ ~´1
b C´1W (6.3)

as vectors in KGA
pMpwqˆMpw1qqIbKGA

pptqlocalized. In particular, the Chern
character

ch pV “ chV ´ e´~ pchCq´1
¨ chW

is defined if C is invertible1. However, it may contain terms of negative
cohomological degree if the nonequivariant Cartan matrix is not invertible,
see below.

The main feature of (6.2) is that its second term is a purely equivariant
object and so its Euler class may be taken out as an overall factor from the
R-matrix. The diagonal matrix elements of the new R-matrix generate only
chk pV . This smaller algebra will be the desired core Yangian Y.

We now proceed with the realization of the this plan.

1Recall from section 2.1.4 that we embed group weights into Lie algebra weights. While
convenient, this could be confusing, especially in the context of Chern character. For
example, by this rule, ch ~ “ e~.
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127 6.1 The core Yangian

6.1.4

Let G be a complex reductive group and f P CpGq a rational function on G.
We define

chk f P CpLieGq

by the series expansion
ÿ

k

xk chk fpξq “ fpexppxξqq , ξ P LieG , x P C .

This has negative terms if f is not regular at 1 P G.
Functoriality of chk f with respect to homomorphisms φ : G1 Ñ G may

fail if φpLieG1q lands in the pole divisor of the Chern character. Because
of this, we work in G-equivariant K-theory and cohomology for some fixed
group G if the nonequivariant Cartan matrix is not invertible.

For the rest of this section, we fix a group G such that

GA Ą G Ą Cˆt ,

where Cˆt is the group that scales all quiver data by the same number t P Cˆ.

6.1.5

Lemma 6.1.1. The matrix C is invertible in localized G-equivariant K-theory
and

chk C
´1
“ 0 , k ă ´2 .

Proof. For the first claim, it suffices to consider the case G “ Cˆt . Then

C “ 1` t2 ´ t pQ`QT
q

where Q is the nonequivariant adjacency matrix of the quiver Q. Clearly,
this is invertible. As a real symmetric matrix, Q ` QT is semisimple. This
implies C´1 has poles of order ď 2 for G “ Cˆt .

For general G, the matrix e~{2 chC is Hermitian when the equivariant
parameters lie in the Lie algebra

gc “ LieGcompact “ tξ, ξ
˚
“ ´ξu

of the compact real form of G. Therefore, its eigenvectors and eigenvalues are
analytic along any real-analytic arc through the origin in gc. In particular,
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6 Further properties of the Yangian 128

the orders of the poles of pchCq´1 along any arc are the orders of vanishing of
the eigenvalues of chC along the same arc. The latter are determined by the
coefficients of the characteristic polynomial, and, therefore, semicontinuous
as a function of the arc. Since they are ď 2 for G “ Cˆt , the Lemma follows.

6.1.6

We define δ as the lowest degree term in the expansion

det chC “ δ ` . . . .

By construction
chk C

´1
P Matp|I|, H¨Gpptqrδ

´1
sq .

for all k.

6.1.7

Let Qd be the quiver with the adjacency matrix Q`QT , in other words,

Qd “ Qztframing verticesu . (6.4)

Let PathpQdq denote the path algebra of Qd and let

ΠpQdq “ PathpQdq

M´

ÿ

aPQd
ra, a˚s

¯

denote the preprojective algebra of Qd. Here a˚ is the arrow in Qd opposite
to an arrow a P Q.

The group Gedge acts naturally on PathpQdq and ΠpQdq, this action is
dual to the defining action of Gedge on representations of these algebras. In
other words, the action of Gedge on the generators of PathpQdq is recorded in
the matrix C. In particular, the natural grading on PathpQdq, in which every
arrow has degree 1 is given by minus the weight of the Cˆt -action. All these
weight spaces are finite-dimensional.

By construction, PathpQdq has orthogonal idempotents ei, i P I, namely
paths of zero length that start and end at a vertex i. We set

PathpQdqij “ ei PathpQdq ej ,
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129 6.1 The core Yangian

and similarly for ΠpQdq. It is known, see for example [72, 30], that

character ΠpQdqij “
`

C
´1 ˘

ji
“ ~´1

b
`

C´1
˘

ij
, (6.5)

provided Q is not a quiver of ADE type. We recall that by our convention
Cji records edges going from j to i.

Formula (6.5) provides the following geometric interpretation of the K-
theory classes (6.3).

6.1.8

Recall that we assume θ ą 0. This means that the natural map of bundles
over Mθ,0pv,wq

à

jPI

PathpQdqij bWj Ñ Vi

is surjective for all i P I. Choose a G-invariant linear map (not algebra
homomorphism)

s : ΠpQdq ãÑ PathpQdq

splitting the canonical surjection in the other direction. The moment map
equations for Mθ,0pv,wq equal the relations in ΠpQdq modulo terms in the
image of Wj. Therefore

à

jPI

s pΠpQdqqij bWj Ñ Vi Ñ 0 , (6.6)

is still surjective.
The grading by Cˆt makes the class of ΠpQdqij well-defined in completed

G-equivariant K-theory. From (6.5), we have the following

Proposition 6.1.2. If Q is not of ADE type, θ ą 0, and G contains Cˆt ,
then the G-equivariant K-class of pV is minus the kernel in (6.6).

There should be a more general statement valid for all quivers and all
stability conditions.

6.1.9 Example

Let Q be the quiver with one vertex and one loop, that is the quiver with
the adjacency matrix Q “ p1q. Then

ΠpQdq “ Cxx, yy{pxy ´ yxq “ Crx, ys .
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6 Further properties of the Yangian 130

The variety
M1,0pn, 1q “ HilbnpC2

q

is the Hilbert scheme of point of C2, that is, the moduli space of ideals
I Ă Crx, ys of codimension n. The tautological sequence

0 Ñ I Ñ Crx, ys Ñ Crx, ys{I Ñ 0

is precisely the sequence

0 Ñ Ker Ñ ΠpQdq Ñ V Ñ 0 .

6.1.10

We defined the K-classes that appear in (6.2) and their Chern characters.
We now consider the operator

epN´q

epN´ b ~q
“

cpN_
´ , uq

cpN_
´ b ~´1, uq

(6.7)

where
cpL, uq “ urkL

` c1pLqu
rkL´1

` . . . (6.8)

is the Chern polynomial and the bundle arguments of the Chern polynomials
in (6.7) are taken with the trivial action of u.

By definition, we set

log cpL, uq “
ÿ

k

chk L lnpkq u , lnpkq u “
`

d
du

˘k
lnu (6.9)

for any K-theory class L whose Chern character is defined. Here lnp´1q u “
uplnu ´ 1q etc. This generalizes (6.8) and is the usual ζ-regularization of
infinite products given by Γ-functions, see for example [106, 116].

In particular, this defines ep pN´q
L

ep pN´ b ~q for

pN´ “ ´
ÿ

Cij Hom
´

pVi, pV 1j
¯

.

In fact, we will only need it for

pN´
ˇ

ˇ

v“v1“0
“ ´~´1

b
ÿ

`

C´1
˘

ij
Hom

`

Wi,W 1
j

˘

. (6.10)
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131 6.1 The core Yangian

We set

Γpw,w1q “
ep pN´q

ep pN´ b ~q

ˇ

ˇ

ˇ

ˇ

ˇ

v“v1“0

and define the new matrix pR as a scalar multiple of the old R-matrix

pR “ Γpw,w1qR . (6.11)

Tautologically, it also satisfies the Yang-Baxter equation.
The old R-matrix was normalized to act by 1 on the vacuum vector, while

the new matrix pR acts by a certain multivariate Γ-function. An example of
Γpw,w1q is given in Section 16.2.1 below. The appearance of Γ-functions in
normalization of R-matrices is a well-known phenomenon in the theory of
quantum groups, see for example [62]. Here we have yet another angle from
which it can be seen.

6.1.11

We modify the definitions of Section 5.2.6 as follows. For W as in (5.5),
define

pRF0puq,W “ pRF0,Fnpu´ unq ¨ ¨ ¨ pRF0,F1pu´ u1q .

We can write
pRF0puq,W “ e~γsing

pRF0puq,W,reg

where pRF0puq,W,reg has a 1{u-expansion and ~γsing is the singular part of the

uÑ 8 expansion of log pRF0puq,W . In particular, γsing is a scalar operator.
In fact, Lemma 6.1.1 implies

chk pN b p1´ ~q “ 0 , k ă ´1 .

Therefore
γsing “ c´2 lnp´1q u` c´1 lnu (6.12)

for certain scalar operators

c´2, c´1 P krδ´1
sru1, . . . , uns

of equivariant degree ´2 and ´1, respectively. The dependence on ui comes
from

lnp´1q
pu´ uiq “ lnp´1q

puq ´ ui lnu` . . . ,

and is at most linear.
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6 Further properties of the Yangian 132

Definition 6.1.3. The core Yangian

Y Ă Y b krδ´1
s

is the algebra generated by the matrix coefficients of c´2, c´1, and all coeffi-
cients of the 1{u expansion of pRF0puq,W,reg. Inside Y we have a Lie algebra

g1Q Ă Y

generated by c´2, c´1, and the u´1 coefficient of pRF0puq,W,reg.

Arguing as in Section 5.5 we obtain the following

Theorem 6.1.4. The core Yangian Y is generated by g1Q and the operators

of cup product by chk pVi for k ě 1 and i P I.

6.2 Slices and intertwiners

6.2.1

Consider the following setup. It will not be the most general, but will suffice
for our purposes and will illustrate the general ideas. Consider H¨TpMpwqq,
where T Ă Gw ˆGedge is a torus and

w “ ai δi ` aj δj .

Here δi and δj are delta functions at some vertices i, j P I and ai, aj are
weights of T.

As explained in Section 2.6, the first fundamental theorem of invariant
theory gives an embedding of M0pwq into a particular vector representation
V of T. The weights of this representation correspond to closed paths in
(6.4) as well as paths that start and end at vertices in ti, ju.

6.2.2

Let P be a path of the form

j
P1
ÝÑ ‚

P2
ÝÑ ‚ ÝÑ ¨ ¨ ¨ ÝÑ ‚ ÝÑ i
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133 6.2 Slices and intertwiners

where dots represent vertices of Q and Pi are arrows from Q. The weight
of the corresponding Gv-invariant function fP P CrM0pwqs is computed as
follows

wP “ ´weight fP “ ai ´ aj `
ÿ

tk

where tk is the weight of the arrow Pk. We assume that T is such that

wP ‰ ´weight fP 1 (6.13)

for any other generator fP 1 of CrM0pwqs. This assumption is satisfied in
examples from Sections 2.5.8 and 2.5.9.

Denote T1 “ KerwP and let xP PM0pwq
T1 be the unique, up to multiple,

nonzero fixed representation. By construction, T scales xP with weight wP .
By our assumption

M0pwq
T1
“ CxP , (6.14)

where CxP is the line through xP .

6.2.3

Let ΣP denote the slice at xP

ΣP :Mpv1,w1q ˆ U 99KMpv,wq , (6.15)

where
v1 “ v ´ dimxP , w1 “ w ´ ~b C dimxP (6.16)

by Proposition 2.5.2 and

U – CdimMpv,wq´dimMpv1,w1q

is a vector space factor with the T1-character given by (2.18). In particular,
restricting to the origin in U we obtain a map

ΣP,0 :Mpv1,w1q 99KMpv,wq

which is regular in the neighborhood of the central fiber of Mpv1,w1q and
hence defines a map

Σ˚P,0 : H¨T1pMpv,wqq Ñ H¨T1pMpv1,w1qq .

Proposition 6.2.1. The map Σ˚P,0 is a Y-intertwiner.

133



6 Further properties of the Yangian 134

Proof. Since slice is a Steinberg correspondence, the bottom arrow in the
diagram (2.20) intertwines the R-matrices on both sides. The vector space
U contributes a scalar factor to the R-matrix, therefore Σ˚P,0 intertwines R-

matrices, up to a multiple. To see that it intertwines pR-matrices, it suffices
to note that

pV 1 “ V 1 ´ ~´1
b C´1W 1

“ V ´ ~´1
b C´1W “ pV

from (6.16) .

6.2.4

Let rT be a torus in Gw1ˆGedge that contains T1 and a maximal torus A1 Ă Gw1 .
For any chamber C Ă LieA1, we have a map

StabC :
â

H¨
rT
pMpδiqqbw

1
i Ñ H¨

rT
pMpw1qq

which becomes an isomorphism after tensoring with QpLie rTq and intertwines
the action of both full and core Yangians. The order of tensor factors here
is determined by the chamber C, see Section 4.1.6 .

We denote K “ QpLieT1q and denote by a1kl the T1-weights in w1 “
ř

a1kl δk.

Proposition 6.2.2. For any C, the map StabC restricts to isomorphism
â

k,l

Fkpa
1
klq bK „

ÝÑ H¨T1pMpw1qq bK

of Yangian modules, where Fk are as in (5.14).

Here the evaluation parameters a1kl are as in Section 5.2.14 and the order
of tensor factors as before. Note, in particular, the Proposition implies the
tensor product on the left gives isomorphic Yangian modules for any ordering
of tensor factors.

We begin with the following

Lemma 6.2.3. The torus T1 has a zero weight in U and, therefore, a unique
fixed point in M0pw

1q.

The second claim here follows from the first because of (6.14).

Proof of Proposition 6.2.2. By Theorem 4.4.1, the inverse map is given by
Stabτ´C. The lemma showsMpw1qT1 is proper, therefore Stabτ´C is well-defined
in localized T1-equivariant cohomology.
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135 6.2 Slices and intertwiners

6.2.5

Now forMpwq we want to do the same: first enlarge T to include a maximal
torus A – pCˆq2 Ă Gw and then restrict to T1-equivariant cohomology. For
A, there are only two chambers Cą and Că, corresponding to ai ż aj. Let

Fipaiq b Fjpajq
Stabą
ÝÝÝÑ H¨T1pMpwqq

Stabă
ÐÝÝÝ Fjpajq b Fipaiq

be the corresponding maps.

Proposition 6.2.4. The map Stabą becomes an isomorphism after tensoring
with K.

Proof. The inverse map is given by Stabτă. By construction the line (6.14) has
weight wP which is negative on Că and therefore transverse to the images of
attracting manifolds. Thus Stabτă is well-defined in localized T1-equivariant
cohomology.

Note that the analogous statement for Stabă fails since the push-forward
along CxP is not defined in T1-equivariant cohomology. We have, however,
the following

Proposition 6.2.5. The operator

pΣP,0 ˝ Stabąq
τ : H¨T1pMpw1qq bKÑ Fjpajq b Fipaiq bK

is a well-defined Y-intertwiner.

Proof. The map is well-defined by Lemma 6.2.3 since the image of ΣP,0 is
transverse to CxP . It is an intertwiner because its transpose is.

6.2.6

We summarize the preceding discussion as follows. Suppose

M0paiδi ` ajδjq
T1
“ CxP ,

where P is a path that starts at j and ends at i. Define a1kl by the formula

ÿ

a1kl δk “ aiδi ` ajδj ´ ~b C dimxP ,

where dimxP is a vector with values in KT1pptq.
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Theorem 6.2.6. The slice at xP gives rise to two Y-intertwiners:

Fipaiq b Fjpajq bKÑ
â

Fkpa
1
klq bK (6.17)

and
â

Fkpa
1
klq bKÑ Fjpajq b Fipaiq bK , (6.18)

where the equivariant parameters are specialized to T1, K “ QpLieT1q, the
order of the Fkpaklq-factors is arbitrary in (6.17) and reverse in (6.18).

Proof. The first map is given by

Stabτ´C ˝Σ
˚
P,0 ˝ Stabą ,

for C matching the order of factors. The second map is its transpose.

6.3 The dual Yangian

6.3.1

We define the dual Yangian Y˚ as the algebra generated by the operators

E˚pm˚
pvqq “ Resv“0 trF0 m

˚
pvqRW,F0pvq P Y

˚ , (6.19)

for all W of the form

W “

n
â

i“1

Fi b kpuiq8 , (6.20)

and

m˚
pvq P F0 b F

_
0 b v

´1krv´1
s .

Here kpuq8 denotes rational functions of u regular at u “ 8.

In English, Y˚ is generated by matrix elements of the same matrices
Rpu´vq but expanded in ascending powers of v. In particular, the operators
E˚ depend rationally, not polynomially, on the evaluation parameters ui.

Note that the operators E˚ pm´1v
´1q already give all matrix elements of

Rpuq and their orbits under shift automorphism span Y˚.
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137 6.3 The dual Yangian

6.3.2

There is a natural pairing between Y and Y˚ defined as follows. Let

Mpuq “ m1pu1q b ¨ ¨ ¨ bmkpukq

be an element in the domain (5.9) of the map E and, similarly, let

M˚
pvq “ m˚

1pv1q b ¨ ¨ ¨ bm
˚
l pvlq

lie in the domain of E˚. Let

Rpu, vq “
ÝÝÝÑź

1ďiďk
1ďjďl

Rpui ´ vjq

be the corresponding R-matrix where pi, jqth term acts in the spaces with
evaluation parameters ui and vj and the ordering of the R-matrices is as in
(5.6). We define

´

EpMpuqq,E˚pM˚
pvqq

¯

“

„

1

u1 . . . vl



tru,v pMpuq bM
˚
pvqq Rpu, vq

“ ~k
„

1

v1 . . . vl



trv M
˚
pvqEpMpuqq

“

„

1

u1 . . . uk



tru MpuqE
˚
pM˚

pvqq (6.21)

where coefficients are taken in the ui Ñ 8, vj Ñ 0 expansion and the
subscripts of traces indicate tensor factors in which they are taken.

6.3.3

As defined, (6.21) is a pairing between the domains of E and E˚. It is clear,
however, that the kernels on both sides are exactly the kernels of E and E˚.
In other words, we have the following

Proposition 6.3.1.

KerE “ pY˚qK , KerE˚ “ pYqK .
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6.3.4

By construction, (6.21) is a Hopf pairing, that is

pab, cq “ pab b,∆cq

and vice versa, where p ¨ , ¨ q is extended to

Yb2
b pY˚qb2

Ñ k

multiplicatively. Tautologically, this pairing stores the same information as
the R-matrices.

6.4 Intertwiners and relations

6.4.1

Let W as in (6.20) be a Y˚-module and let

C : W Ñ W 1

be a kpu, u1q-linear map, where

W 1
“

n1
â

i1“1

Fi1 b kpu1i1q8 ,

be another Y˚-module of the same form. Suppose that for certain values of
u and u1 the map C becomes a Y˚-intertwiner, that is,

ry, Cs P HompW,W 1
q b I

for all y P Y˚ and a nontrivial ideal

I Ă kpu, u1q8

in the local ring of the point pu, u1q “ p8,8, . . . ,8q.
Note that Y˚-intertwiners are operators that commutes with allR-matrices

and, therefore, the same as Y-intertwiners, up to extension of scalars. Inter-
twiners produce elements in pY˚qK and hence relations in Y as follows.
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139 6.5 Intertwiners and relations

6.4.2

Let IK Ă kru, u1s denote the perpendicular of I with respect the the residue
pairing.

Proposition 6.4.1. For any f P IK and any

m P
â

F_i1 b
â

Fi .

we have a relation

Resu1 EpfmCq “ Resu EpfCmq (6.22)

in the Yangian Y.

Here Resu means taking the coefficient of pu1 ¨ ¨ ¨unq
´1 in the ui Ñ 8 expan-

sion. Also note that m : W 1 Ñ W is an operator of finite rank, therefore
both mC and Cm are in the domain of E.

Note that in the product fC under the E-sign in the left-hand side of
(6.22) we should keep only the singular (that is, polynomial) terms in the
ui Ñ 8 expansion because the residue in (5.7) vanishes for regular terms.
Similarly for u1j Ñ 8 in the right-hand side of (6.22).

Proof. For any y P Y˚ we have

trW mC y ´ trW 1 C my P I

and therefore

Resu Resu1 ptrW f mC y ´ trW 1 f C myq “ 0 .

This is equivalent to (6.22).

6.4.3

The whole discussion can be repeated for the core Yangian Y in place of Y.
Since slices produce Y-intertwiners, the following question seems natural.

Question 2. Do all relations in Yangians come from slices ?
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6.5 Baxter subalgebras and Casimir connec-

tion

6.5.1

Recall that h Ă gQ acts by linear functions of v and let H – pCˆqI be the
torus with Lie algebra h. Since gQ commutes with R-matrices, we have

rg b g,Rpuqs “ 0

for any g P H. Recall from Section 1.2.2 this implies the operators

EF0pg u
k
q “

1

~

„

1

uk`1



trF0pg b 1qRF0puq,W (6.23)

commute for all k “ 0, 1, . . . and all auxiliary spaces F0 for which the trace
trF0 is well defined. This

In general, F0 is not finite-dimensional and the trace in (6.23) is an infinite
sum. However, it is well defined as a formal series in the variable g P H if F0

satisfies the grading assumption from Section 5.2.5. We denote by

qv P kH^

elements of the group k-algebra of the character group H^. These functions
of g will be terms in our formal series. Introduce an algebra YrrH^ss of formal
series in qv with coefficients in Y by

YrrH^ss “

#

ÿ

věv0

yv q
v

+

.

Here yv P Y and v ě v0 means v ´ v0 P ZIě0. We have

EF0pg u
k
q “

1

~

„

1

uk`1



ÿ

v

qv trpF0qvpg b 1qRF0puq,W P YrrH^ss (6.24)

as a consequence of our grading assumption.
By definition, the subalgebra of YrrH^ss generated over krrH^ss by the

commuting operators (6.24) is called the Baxter subalgebra. It is a formal
family of commuting subalgebras of Y.
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141 6.5 Baxter subalgebras and Casimir connection

6.5.2

Baxter subalgebras are graded with respect to the cohomological grading on
the Yangian and

deg coh EF0pg u
k
q “ 2k .

In particular,

`

Baxter subalgebra
˘

coh degree 0
“ UQphqrrH^ss ,

where h Ă gQ acts by linear functions of v and w. Because k has nontrivial
cohomological grading, the universal enveloping algebra here is over

Q “
`

k
˘

coh degree 0
.

Our goal now is to describe the degree 2 part of Baxter subalgebra. It is
spanned, over degree 0 part, by equivariant constants and u´2 coefficients in
(6.23).

6.5.3

Evidently, only diagonal matrix coefficients contribute to the trace in (6.23).
The u´2-term of the diagonal matrix coefficients of R-matrices was computed
in Proposition 4.9.2. The result can be stated as follows. Let

Mθ,ζpv,wq ˆMθ,ζpv
1,w1q ĂMθ,ζpv ` v1,w ` w1q

be a fixed component and let Rv,w,v1,w1 be the corresponding diagonal block
of the R-matrix. It follows from Proposition 4.9.2 that

1

~

„

1

u2



Rv,w,v1,w1 “ pw ´ C vq b ch1 V 1 ` ~
ÿ

θ¨αą0

eαe´α b e´αeα ` . . . , (6.25)

where ch1 V 1 is a vector of ch1 V 1i, i P I, C is the nonequivariant Cartan
matrix, and dots act by a scalar operator in H¨GpMpv1,w1qq.

6.5.4

For F0 as above define
χpF0q P hrrH

^
ss
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6 Further properties of the Yangian 142

by requiring
trF0 g hη “ ηpχpF0qq

for all η P h˚. Here hη “ Cη P h, see Section 5.3.6. Since trF0 g hη depends
linearly on η, this is well defined. Clearly, χpF0q is linear in the K-theory
class of F0.

Lemma 6.5.1.

trF0 g eα e´α “ ´αpχpF0qq
qα

1´ qα
. (6.26)

The rational function in (6.26) is to be expanded in one direction or another,
depending on α ż 0, to represent an element of krrH^ss.

Proof. Using
reα, e´αs “ hα (6.27)

we compute

trF0 g eα e´α “ trF0 e´α g eα

“ qα trF0 g e´α eα

“ qα trF0 g eα e´α ´ q
α trF0 g hα ,

whence the conclusion.

6.5.5

From Lemma 6.5.1 we deduce the following

Proposition 6.5.2. We have

EF0pgu
2
q “ χpF0q ¨ ch1 V 1 ´ ~

ÿ

θ¨αą0

αpχpF0qq
qα

1´ qα
e´α eα ` . . . , (6.28)

where dots stand for an element of UphqrrH^ss

By Theorem 10.2.1 below this means that the degree 2 part of Baxter al-
gebra is spanned by operators of quantum multiplication by q-dependent
tautological divisors

λ “ χpF0q P hrrH
^
ss

and equivariant constants.
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143 6.5 Baxter subalgebras and Casimir connection

Using formula (10.3), we can rearrange the terms in (6.28) as follows

w ¨ ch1 V 1 ´ ~
ÿ

θ¨αą0

pα,wq
qα

1´ qα
e´α eα “

E
`

|wyxw|u2
˘

´ ~
ÿ

θ¨αą0

p|α|,wq
q|α|

1´ q|α|
e´αeα ` . . . , (6.29)

where dots stand terms from Uphq and

|α| “

#

α , α ą 0 ,

´α , α ă 0 .

The second line in (6.29) is manifestly an element of YrrH^ss while the sum
over α in the first line converges in a different formal series completion —
the one corresponding to the effective cone of Mθ,0.
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Chapter 7

Quantum multiplication

7.1 Preliminaries

We first set some notation regarding equivariant Gromov-Witten invariants.
Suppose we are given a smooth quasi-projective variety X equipped with the
action of a reductive group G. For each effective curve class β P EffpXq Ă
H2pX,Zq, its associated k-point genus 0 Gromov-Witten invariants are given
by integrals

xγ1, . . . , γky
X
0,k,β “

ż

rM0,kpX,βqsvir

ev˚ pγ1 b ¨ ¨ ¨b γkq .

for γi P H
¨
GpX,Qq. Here, the integral is defined over the virtual fundamental

class on the moduli space of k-pointed stable maps to X. As always, if X is
noncompact (as in our case), the above expression can be defined via equiv-
ariant residue. However, since the evaluation maps are proper, operators of
quantum multiplication are defined without localization.

7.2 Modified reduced operators

7.2.1

We recall some general results from [12] for the quantum product for any
equivariant symplectic resolution

X Ñ X0 “ SpecH0
pOXq .
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7 Quantum multiplication 146

Due to the presence of the symplectic form ω, the moduli space of maps
carries a reduced virtual class in degree one larger than the usual virtual
dimension. This reduced class determines the purely quantum contributions
to all divisor operators via the relation

pγ ˚ γ1, γ2q “ pγ Y γ1, γ2q ` ~
ÿ

βą0

pγ ¨ βqqβ
ż

rM0,2pX,βqs
vir,red

ev˚pγ1 b γ2q .

Moreover, the pushforward of the reduced virtual fundamental class under
the evaluation map

ev : M0,2pX, βq Ñ X2 ,

is a Q-linear combination of Steinberg correspondences of X ˆX0 X. In
particular, it does not depend on equivariant parameters. We denote by

Q2,red P EndH¨GpXq bQrrEffpXqss

the purely quantum operator defined by the reduced class

pQ2,red ¨ γ1, γ2q “
ÿ

βą0

qβ
ż

rM0,2pX,βqs
vir,red

ev˚pγ1 b γ2q .

This is a correspondence-valued element in the completion of the semigroup
algebra of the effective cone of X, each coefficient of which is a Steinberg
correspondence for X.

7.2.2

Note that by (1.2)

Q2,red ¨ 1 “ 0 .

This uniquely determines the coefficient of the diagonal in Q2,red from the
other terms. It will be convenient to work modulo scalar operator contribu-
tions to Q2,red in this chapter; this relation allows us to fix this indeterminacy.

7.2.3

Given

κX P H
2
pX,Z{2q,

146



147 7.3 Modified reduced operators

we define the modified quantum operator Q2,red,κ for X by the substitution

qβ ÞÑ p´1qpκX ,βq qβ , β P H2pX,Zq .

This is equivalent to changing the origin in the Kähler moduli spaceH2pX,Cq{2πiH2pX,Zq
to πiκX .

Let a torus A act on X preserving the symplectic form and let Y Ă XA

be a connected component. Assume we have chosen

κY P H
2
pY,Z{2q ,

such that
c1pN`q ” κX

ˇ

ˇ

Y
` κY mod 2

where N` is the positive part of the normal bundle to Y for some (equiva-
lently, any) choice of the chamber C Ă a “ LieA.

For Nakajima varieties, the canonical theta characteristics κ were defined
in (2.8) and connected to the parity of c1pN`q in (2.12).

7.2.4

Our next goal is the following

Theorem 7.2.1. For X and Y as in Section 7.2.3, the diagram

H¨TpY q
StabC //

Q2,red,κY
��

H¨TpXq

Q2,red,κX
��

H¨TpY q
oo

Stabτ´C
H¨TpXq

(7.1)

is commutative for any C and any polarization, after applying the map

QrrEffpY qss Ñ QrrEffpXqss

to Q2,red,κY and working modulo scalar operators on H¨TpY q.

Note that the bottom arrow in (7.1) is a priori defined only in localized equiv-
ariant cohomology. As a part of the proof, we will see that the composition
of the top, right, and the bottom arrows in (7.1) is well-defined without
localization.

The proof of this theorem will require the discussion of broken and un-
broken curves in equivariant localization. We recall the relevant definitions
and results from [103].
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7 Quantum multiplication 148

7.3 Broken curves

7.3.1

Let f : C Ñ X be an A-fixed point of M0,2pX, βq such that the domain C is
a chain of rational curves

C “ C1 Y C2 Y ¨ ¨ ¨ Y Ck ,

with the two marked points p1, p2 lying on C1 and Ck, respectively.

If at every node of C the A-weights of the two branches are opposite and
nonzero then we say that f is an unbroken chain. We say that f connects
the points

x0 “ fpp1q, xk “ fpp2q

of X through the sequence of nodes

xi “ fpCi X Ci`1q , i “ 1, . . . , k ´ 1 .

Note that all of these points are fixed by A.

More generally, if pC, fq is an A-fixed point of M0,2pX, βq, we say that f
is an unbroken map if it satisfies one of three conditions:

1. f arises from a map f : C Ñ XA,

2. f is an unbroken chain, or

3. the domain C is a chain of rational curves

C “ C0 Y C1 Y ¨ ¨ ¨ Y Ck

such that C0 is contracted by f , the marked points lie on C0, and the
remaining components form an unbroken chain.

Broken maps are A-fixed maps that do not satisfy one of these conditions.

In this last possibility, the contribution of these curves is block-diagonal
with respect to A-fixed locus of X, i.e. scalar on each connected component
Y , hence we will focus on the unbroken chains in what follows.
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149 7.4 Broken curves

7.3.2

We refer the reader to Section 3.8.3 of [103] for the proof of the following.

Theorem 7.3.1 ([103]). Every map in a given connected component of
M0,2pX, βq

A is either broken or unbroken. Only unbroken components con-
tribute to Q2,red in A-equivariant localization.

7.3.3

Let f be an unbroken chain as before and let let Op1q be a A-linearized ample
line bundle on X. We may restrict it to fixed point xi to get elements of a˚.
We have the following

Lemma 7.3.2. For an unbroken chain, the points

Op1q
ˇ

ˇ

ˇ

xi
P a˚ , i “ 0, . . . , k ,

form a monotone sequence of distinct points of a real line.

Proof. We denote this sequence by ci. Let w denote the (nonzero) A-weight
of Tp1C. By the unbroken condition, the same weight occurs at all nodes and
the weight of Tp2C is ´w. By localization, the terms of the sequence

c0 ´ c1

w
, . . . ,

ck´1 ´ ck
w

are the degrees of f˚Op1q restricted to Ci, hence positive integers.

7.3.4

Lemma 7.3.2 is effective in ruling out unbroken loops. More generally, we
have the following

Lemma 7.3.3. There are no A-fixed unbroken chains connecting two points
in the same component Y of XA.

Proof. The A-weight of Op1qy is constant for y P Y , which contradicts the
fact that points in Lemma 7.3.2 are distinct.
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7 Quantum multiplication 150

7.4 Proof of Theorem 7.2.1

7.4.1

Given β P H2pX,Zq and γ1, γ2 P H
¨
TpY q, the statement to prove is

ÿ

β1 ÞÑβ

p´1qpβ,κY q`
1
2

dimY
xγ1, γ2y

Y
β1,red “

p´1qpβ,κXq`
1
2

dimX
A

StabCpγ1q, Stab´Cpγ2q

EX

β,red
` cβ , (7.2)

where cβ is a constant independent of the insertions γ1, γ2.

The sign p´1q
1
2

codimX Y comes from the sign in the definition of the adjoint
Stabτ´C.

7.4.2

Recall that every coefficient of Q2,red,κX is given by a Steinberg correspon-
dence. As in the proof of Theorem 4.6.1, this implies the convolution

Stabτ´C ˝Q2,red,κX ˝ StabC .

is obtained by a proper push-forward. In particular, its coefficients can be
determined by any specialization of equivariant parameters.

This means we can compute the RHS of (7.2) by A-equivariant localiza-
tion, and study its limit after taking the equivariant parameters associated
to a to infinity, while setting ~ “ 0 at the same time.

7.4.3

We only need to consider unbroken components of M0,2pX, βq
A in equivariant

localization.
Since stable envelopes are proportional to fixed points modulo ~, setting

~ “ 0 implies that only components where both marked points map to Y
will give nonzero contribution.

If we fix a component of M0,2pX, βq
A whose elements consist of curves

for which both marked points lie on a contracted component attached to
an unbroken chain. Since the evaluation map to Y ˆ Y for this component
factors through the diagonal, the contribution of this component will give
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151 7.4 Proof of Theorem 7.2.1

a scalar operator, so we can ignore it. By Lemma 7.3.3, unbroken chains
do not contribute either, so the only contributions come from stable maps
which factor through Y . Furthermore, since the localization contribution
only depend on the equivariant normal bundle to Y in X, we may replace X
by the total space N of the normal bundle.

7.4.4

For a vector bundle
p : N Ñ Y

we have the following general result. Suppose A acts on N fiberwise and
NA “ Y . We decompose

N “
à

λ

Nλ

according to the characters λ P A_ Ă a˚.
Given cohomology classes γ1, . . . , γk P H

¨pY q we want to understand the
asymptotic behavior of the Gromov-Witten invariant

xp˚pγ1q, . . . , p
˚
pγkqy

N
β,g P Qpa

˚
q

defined via equivariant residue, as the variables in a approach infinity. Here,
g ě 0 is the domain genus and β P H2pY,Zq “ H2pN,Zq is the degree of the
map.

The residue invariant can be expressed in terms of the Gromov-Witten
invariants of Y by adding an Euler class insertion determined by N . The
following computation is then a standard application of Riemann-Roch:

Lemma 7.4.1. We have the asymptotic behavior given by

xp˚pγ1q, . . . , p
˚
pγkqy

N
β,g,k „

ź

λ

λ´pc1pNλq,βq´rkNλp1´gq xγ1, . . . , γky
Y
β,g,k .

7.4.5

We only need the g “ 0 case of the above lemma. Also

Nλ “ N_
´λ

because of the symplectic form. Therefore, the prefactor in Lemma 7.4.1
becomes

p´1qpc1pN`q,βq
L

detN .
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7 Quantum multiplication 152

Since
pdetN`q

2
L

detN “ p´1q
1
2

rkN
“ p´1q

1
2

codimX Y

the equality (7.2) follows.

7.5 Additivity

7.5.1

Suppose Y as above factors

Y “ Y1 ˆ Y2 ,

as it is the case in our main example (1.9). Then dimH0pY,Ω2q ě 2, leading
to further constraints on quantum cohomology of Y .

Proposition 7.5.1.

QY
2,red “ QY1

2,red b 1` 1b QY2
2,red .

Proof. Let β “ pβ1, β2q according to

H2pY,Zq “ H2pY1,Zq ‘H2pY2,Zq .

If β1 ‰ 0 and β2 ‰ 0 then the virtual fundamental class may be doubly
reduced, meaning that the reduced obstruction theory admits a further sur-
jection to a trivial rank 1 bundle. See Section 3.5 in [103]. As a result, the
corresponding reduced class vanishes. If β1 “ 0 or β2 “ 0, then the curve
maps to a point in one of the factors, and the above additivity is obvious.

7.5.2

Notice that additivity is not the same as primitivity.
In Proposition 7.5.1, we are restricting to diagonal contributions; the off-

diagonal terms will still be non-zero.
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Chapter 8

Shift operators

8.1 Definition

8.1.1

For any X and any cocharacter

σ : Cˆ Ñ G Ă AutpXq

we can associate an X-bundle over P1 as follows

X„
“ pC2

z0q ˆX
L

Cˆσ (8.1)

where Cˆσ acts on the first factor by scaling and on the second via the homo-
morphism σ. This is just the classical operation of passing from a principal
Cˆ-bundle over P1 to the associated X-bundle.

8.1.2

Since c1pXq “ 0, we have1

c1

`

X„
˘

“ p2` dimX
2
pσ, ~qq ¨ rFibers P H2

pX„,Zq (8.2)

where fiber refers to the natural projection

p : X„
Ñ pC2

z0q
L

Cˆ “ P1 ,

the inner product is the standard pairing of characters with 1-parameter
subgroups.

1In the present discussion, one does not need to assume X symplectic. It suffices to
assume that the canonical bundle of X is a pure character, which we denote by ~ 1

2 dimX .
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8 Shift operators 154

8.1.3

Let Gσ be the centralizer of the image of σ in G. We define

G„ “ Gσ ˆ Cˆε Ă AutpX„
q (8.3)

where the second factor scales the second (by convention) coordinate of C2.
This group preserves the fibers X0, X8 of p over 0,8 P P1. More precisely,
it fixes X0 point-wise, but acts nontrivially on X8.

We denote by ε an element of LieCˆε . This is a new equivariant parameter
which we have for X„.

8.1.4

Any point of Xσ gives a section of p

ζx : P1
Ñ P1

ˆ x Ă X„ , x P Xσ . (8.4)

The homology class of this section gives an element

ζ P H0
pXσ,Zq bH2pX

„,Zq .

More formally, for any D P H2pX„,Zq we define

pD, ζq “ proj˚ incl˚pDq P H0
pXσ

q (8.5)

where
Xσ proj

ÐÝÝÝ Xσ
ˆ P1 incl

ÝÝÝÑ X„

are the natural maps.

8.1.5

We have
0 Ñ H2pX,Zq Ñ H2pX

„,Zq Ñ H2pP1
q – ZÑ 0 . (8.6)

Any section ζx gives a noncanonical splitting of the above exact sequence.
In particular, the degrees β P H2pX

„,Zq such that ppβq “ rP1s form a
single H2pX,Zq-coset of sections. For β in this coset, we consider

M„
pβq “ ev´1

pX0 ˆX8q ĂM0,2pX
„, βq ,

where X0, X8 Ă X are the fibers of p over 0,8 P P1.

154



155 8.2 Definition

8.1.6 Example

Take
X “ T ˚P1

“M1,0p1, 2q

for the quiver Q with one vertex and no arrows. This is the quotient of pairs

A “
`

a1 a2

˘

P HompC2,C1
q , B “

ˆ

b1

b2

˙

P HompC1,C2
q

such that AB “ 0 and A ‰ 0 by the action of Gv “ GLp1q. Take

σpzq “

ˆ

z
1

˙

P Gw .

Then Xσ “ tx0, x8u, where

x0 “ ta2 “ 0, B “ 0u , x8 “ ta1 “ 0, B “ 0u .

The variety X„ is the relative cotangent bundle to the P1-bundle over P1

given by
Blpoint P2

Ñ P1 .

We have
rζx0s “ line in P2 , rζx8s “ exceptional divisor ,

and so rζx0s ´ rζx8s is the generator rP1s of H2pX,Zq.

8.1.7

We use the spaces X„ to define shift operators

Spσq : H¨G„pX8q ÝÑ H¨G„pX0q bQrrEffpX„
qss

as follows.
Given γ1 P H

¨
G„pX0q and γ2 P H

¨
G„pX8q, we define the matrix element

pγ1, Spσq ¨ γ2q “
ÿ

ppβq“rP1s

qβ
ż

rM„pβqsvir
ev´1

pγ1 ˆ γ2q . (8.7)

By definition, the matrix coefficients (8.7) take values in formal power series
in qβ with coefficients in the localized G„-equivariant cohomology of a point,
although the operator Spσq itself is integral. In particular, (8.7) depends on

ε P LiepCˆε q Ă LiepG„q .

Our eventual goal will be to find σ, γ1, γ2 such that the integral in (8.7) is
proper of correct dimension, thus independent of all equivariant parameters.
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8 Shift operators 156

8.2 Intertwining property

Given D P H2
G„pX

„q, we set

B

BD
qβ “

ˆ
ż

β

D

˙

qβ , β P H2pX
„
q .

Note that this is nonequivariant, that is, depends only on the class of D in
nonequivariant cohomology.

If we consider the restriction D0 “ D
ˇ

ˇ

ˇ

X0

P H2
G„pX0q, let MD0pqq denote

the operator of quantum multiplication by D0, and similarly for X8.

Proposition 8.2.1. For any D as above, the operator (8.7) satisfies

ε
B

BD
Spσq “ MD0pqq ˝ Spσq ´ Spσq ˝MD8pqq . (8.8)

Proof. For brevity, set Y “ Xσ.
We compute Spσq by localization with respect to the Cˆε -factor in (8.7).

The domain of an Cˆε -fixed map in pC, fq PM„pβq is a union

C “ C0 Y C1 Y C8

where f : C0 Ñ X0 is a σ-fixed map, fpC8q Ă X8, and C1 is of the form
(8.4)

C1 “ ζy

for some point y P Y .
Standard localization arguments (see e.g. Chapter 27 in [54]) give a fac-

torization
Spσq “ Ψ0 Ψ1 Ψ8 , (8.9)

with the following factors. We define

pγ1,Ψ0 ¨ γ2q “
ÿ

βPH2pX0,Zq

qβ
ż

rM0,2pX0,βqs
vir

ev˚pγ1 ˆ γ2q

ε´ ψ2

. (8.10)

Here ψ2 is the cotangent line at the second marked point and the integral is
computed in equivariant cohomology. The unstable β “ 0 contributions to
(8.10) are defined to give

Ψ0 “ 1`Opqβq, β ą 0 . (8.11)
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157 8.2 Intertwining property

If we evaluate Ψ0 via virtual localization, we obtain precisely the localization
contribution of the C0.

In the definition of Ψ8, one replaces ε´ ψ2 by ´ε´ ψ1 and X0 by X8.
Note the virtual class in (8.10) is the ordinary, nonreduced virtual fun-

damental class. The reduced virtual class gives

Ψ0 “ 1`Op~q , (8.12)

if X is holomorphic symplectic.
The middle factor Ψ1 is of the form

Ψ1 “ ι0˚ q
ζ Γ ι˚8

where ι0, ι8 denote the inclusion of Y into X0 and X8 respectively, Γ is mul-
tiplication by a class in H¨pY q that absorbs the deformation and obstruction
contributions of C1. The class ζ was defined in (8.5); qζ is a monomial which
varies depending on the connected component of Y . Note that by localization

ε pζ,Dq “ ι˚0pDq ´ ι
˚
8pDq . (8.13)

It is standard [20, 54] to abbreviate

τkpγ2q “ ψk2 ev
˚
pγ2q .

The convention (8.11) means that

xγ1 τkpγ2qy0 “ δk`1

ż

X

γ1 Y γ2

where angle brackets denote equivariant genus 0 GW-invariants of X and
subscript refers to invariants of degree β “ 0. With this convention, the
string and divisor equations yield

xγ1, τkpγ2q, Dyβ “

ˆ
ż

β

D

˙

xγ1, τkpγ2qyβ ` xγ1, τk´1pγ2 YDqyβ , (8.14)

for all k ě 0 and all degrees β. Similarly, the topological recursion relations
(see e.g. Section 26.4 in [54]) read

xγ1, τkpγ2q, Dyβ “
ÿ

xγ1, D, ηyβ1 xη
_ τk´1pγ2qyβ´β1 (8.15)
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8 Shift operators 158

for all k ě 0 and all degree splittings, where
ř

η b η_ is the Poincaré dual
of the diagonal in X2.

Combining (8.14) with (8.15) gives

ε
B

BD
Ψ0 “ MD0pqq ˝Ψ0 ´Ψ0 ˝MD0p0q (8.16)

where MD0p0q denotes the operator of classical multiplication by D0. By the
same reasoning

ε
B

BD
Ψ8 “ MD8p0q ˝Ψ8 ´Ψ8 ˝MD8pqq . (8.17)

Finally, (8.13) gives

ε
B

BD
Ψ1 “ MD0p0q ˝Ψ1 ´Ψ1 ˝MD8p0q . (8.18)

The combination of (8.16), (8.17), and (8.18) completes the proof.

8.3 Shift operators are quantum operators

In this section, we extend Proposition 8.2.1; as a consequence, we will see
that shift operators are quantum operators after passing to the ε “ 0 limit.

Let

M„
‚ pβq “ ev´1

1,2pX0 ˆX8q ĂM0,3pX
„, βq

denote the moduli space of twisted maps from last section, equipped with an
extra marked point ‚.

Given γ P H¨G„pX0q, we define the operator S0pσ; γq by

pγ1, S0pσ; γq ¨ γ2q “
ÿ

ppβq“rP1s

qβ
ż

rM„
‚ pβqs

vir
ev´1

1,2pγ1 ˆ γ2q Y ev˚‚pι0,˚γq (8.19)

Lemma 8.3.1. We have the factorization

S0pσ; γq “ Mγpqq ˝ Spσq

where Mγpqq denotes quantum multiplication operator for γ.
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159 8.3 Shift operators are quantum operators

Proof. We follow the approach of Proposition 8.2.1. If we compute S0pσ; γq
by localization with respect to the Cˆε -factor. As before, this gives a factor-
ization

S0pσ; γq “ Ψγ
0 Ψ1 Ψ8 , (8.20)

where the second and third factor are as before and the first factor is defined
by

pγ1,Ψ
γ
0 ¨ γ2q “ ε ¨

ÿ

βPH2pXq

qβ
ż

rM0,3pX,βqs
vir

ev˚pγ1 ˆ γ2 ˆ γq

ε´ ψ2

. (8.21)

When we expand this expression, the leading term with no ψ2 is simply
quantum multiplication by γ. The terms with positive powers of ψ2 can be
expanded using the topological recursion relation of (8.15) to give quantum
multiplication by γ composed with the β ą 0 contribution to Ψ0.

The result is the factorization

Ψγ
0 “ Mγpqq ˝Ψ0.

Combining with (8.9) gives the statement of the lemma.

Given γ P H¨G„pX8q, we can define the operator S8pσ; γq in the analogous
manner, and we can derive the formula

S8pσ; γq “ Spσq ˝Mγpqq

in the same way.
If we restrict to Gσ-equivariant cohomology by setting ε “ 0, then for

γ P H¨G„pXq, we have ι0,˚γ “ ι8,˚γ after this specialization. In particular,
we have

S0pσ; γq “ S8pσ; γq

after setting ε “ 0.
As a corollary, we see that the shift operator Spσq|ε“0 commutes with all

quantum multiplication operators. If we fix a splitting of (8.6), it can thus
be identified with quantum multiplication by

Spσq
ˇ

ˇ

ˇ

ε“0
p1q P H¨GσpXq bQrrEffpXqss.
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Chapter 9

Minuscule shifts and R-matrices

9.1 Setup

9.1.1

In this chapter, we consider shift operators Spσq satisfying the following ad-
ditional assumptions:

1. X is a symplectic resolution,

2. σ preserves the symplectic form ω,

3. σ is minuscule,

see Section 2.6 for a discussion of the last condition.

9.1.2

We define

Stab˘ : H˚
pXσ

q Ñ H˚
pXq . (9.1)

to be the stable envelope maps corresponding to the two chambers ż 0 of
LieCˆσ and an arbitrary choice of polarization. We will see a close relation
between Spσq and

Rσ “ Stab´1
´ Stab` . (9.2)
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9 Minuscule shifts and R-matrices 162

9.1.3

It follows from our assumptions and (8.2) that

c1

`

X„
˘

“ 2 rFibers

and hence that
vir dimM„

pβq “ dimX . (9.3)

for all β in (8.7). This means Spσq has cohomological degree 0.

9.1.4

Lemma 9.1.1. With the assumptions of Section 9.1.1, all σ-weights in the
normal bundle to Xσ are ˘1.

Proof. Choose a proper map X Ñ V , where V is a linear representation of
σ with weights in t0,˘1u. For any x, the σ-orbit of x is either contracted by
the map to V or is mapped isomorphically to a line of weight ˘1.

If there is a weight k ‰ ˘1 in the normal bundle to some component Y
of Xσ then the corresponding normal directions are mapped to a point in V .
Hence, their closure meets another component Y 1 of Xσ, where same weight
k has to occur again. Using induction on ă and finiteness of the number of
component of Xσ, we see that this is impossible.

9.1.5

Recall from (8.5) that every component ofXσ defines a curve classH2pX
„,Zq.

If we fix a splitting of (8.6), we can project to obtain curve classes in
H2pX,Zq.

A more convenient way of making this choice is as follows. Choose a
σ-linearization for a basis L1,L2, . . . of PicpXq. Given x P Xσ, we define
ζx P H2pX,Zq so that

ż

ζx

c1pLiq “ deg rLi
ˇ

ˇ

ˇ

ζx

where ζx is the section (8.4) and rLi is the lift of Li to X„ that uses the fixed
linearization. A change of linearization adds a overall constant to ζ.

For Nakajima varieties, the entire group of automorphisms G acts natu-
rally on all tautological bundles and their associated determinant bundles.
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163 9.2 Setup

In this case, we can arrange for the linearization of PicpXq to be compatible
with this natural linearization. If we know that these tautological divisor
classes span PicpXq, this completely determines the linearization and thus
gives a preferred normalization of the map ζ.

9.1.6

In particular, take σ to be the action corresponding to a tensor product of
Nakajima varieties, that is to

w “ z w1 ` w2 , v “ z v1 ` v2 ,

as in Section 2.4. Then
pζ, c1pViqq “ v1i .

In other words, connected components of Xσ are distinguished by the value
of v1 and

ζ
_

��

� // H2pMθ,ζpv,wq,Zq

��
v1 � // h˚

(9.4)

under the natural map on the right.
For example, for T ˚P1 as in Section 8.1.6, we get

qζ “

ˆ

q
1

˙

in the basis tx0, x8u.

9.1.7

Recall that κ is defined as c1pT
1{2q modulo 2, where T 1{2 is a half of tangent

bundle as in (2.7).

Lemma 9.1.2. For minuscule σ

pζ,κq “ 1
2

codimXσ mod 2 .

Proof. Since σ is minuscule, the σ-weights of T 1{2 when restricted to fixed
loci lie in the set t0,˘1u. Moreover, the number of nonzero weights equals
1
2

codimXσ. Therefore, the bundle ĄT 1{2 restricted to ζx is a sum of Opkq, k P
t0,˘1u, and the number of nontrivial terms in this sum equals 1

2
codimXσ.
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9 Minuscule shifts and R-matrices 164

9.2 Properness

Proposition 9.2.1. For X and σ be as above, the convolution

Stabτ´ ˝ Spσq ˝ Stab´ (9.5)

is proper and defines a Steinberg correspondence in Xσ ˆX0 X
σ.

Proof. Since σ is minuscule, we have proper Cˆσ -equivariant maps

X Ñ X0 Ă V “
à

|i|ď1

Vi ,

where Cˆσ acts on Vi with weight i. Applying (8.1), we get a proper map

X„
Ñ rV “

à

|i|ď1

Vi bOpiq ,

to a vector bundle rV over P1. Moreover, the fiberwise image of Stab´ is
contained in the subbundle

rVď0 “ V0 bO ‘ V´1 bOp´1q Ă rV .

Now let
px4, x3, x2, x1q P X

σ
ˆX ˆX ˆXσ (9.6)

be a quadruple of points in the definition of the convolution (9.5). Since
πpx2q, πpx3q P Vď0 and Op´1q has no sections, we must have

πpx2q, πpx3q P V0 .

Moreover, by Proposition 3.5.2, we have

πpx4q “ πpx3q , πpx2q “ πpx1q .

Since a section of Opiq is fixed by evaluation at i` 1 points, we conclude

πpx4q “ πpx3q “ πpx2q “ πpx1q

and any section of X„ connecting x3 and x2 maps to the corresponding
constant section of rV . Since the fibers of this projection are proper, the
proposition follows.
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165 9.3 Computation of Spσq

9.3 Computation of Spσq

9.3.1

Let

Rσ,8 P EndH¨G„pX
σ
8q bQpLieG„q

be the G„-equivariant R-matrix for the fiber X8. Since Cˆε acts on X8 via
the cocharacter σ´1, Rσ,8 is obtained from the Gσ-equivariant R-matrix by
the substitution

ξ ÞÑ ξ ´ εσp1q , ξ P LieGσ .

Theorem 9.3.1. For X and σ as in Section 9.1.1, and ζ as in Section 9.1.5,

Stab´1
` Spσq Stab` “ p´1qpζ,κXq qζ Rσ,8 . (9.7)

Proof. Using (9.2) and Lemma 9.1.2 we may restate this as commutativity
of the following diagram

H¨G„pX
σ
8q

Stab´
��

p´1qcodim {2 qζ // H¨G„pX
σ
0 q

H¨G„pX8q
Spσq // H¨G„pX0q

Stabτ´

OO

where codim {2 denotes the locally constant function on Xσ given by tak-
ing half the codimension in X. By Proposition 9.2.1, we may compute the
composition

Stabτ´ ˝ Spσq ˝ Stab´

with any choice of equivariant parameters.
We choose ~ “ 0 and εÑ 8, where ε is the equivariant parameter for the

Cˆε -action in (8.3). In particular, since ~ “ 0, stable envelopes are diagonal
and we must have

x4 “ x3, x2 “ x1 ,

in (9.6) above. Also ~ “ 0 implies

Ψ0 “ Ψ8 “ 1

by (8.12) above.
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9 Minuscule shifts and R-matrices 166

Next consider the operator Ψ1. It counts constant sections C1 of X„

corresponding to
x4 “ x3 “ x2 “ x1 P X

σ .

By Lemma 9.1.1, the normal bundle to C1 is

N “ N1p1q ‘N´1p´1q ‘ Tx1X
σ

where N˘1 are σ-eigenspaces in the normal bundle N to Xσ in X and twists
are by Opiq, i “ ˘1.

It follows that C1 PM
„pζq is unobstructed with tangent space

TC1M
„
pζq “ pN1q0 ‘ pN1q8 ‘ Tx1X

σ

where the subscripts 0,8 P P1 denote the fibers of N`p1q over the respective
points. We observe that these correspond precisely to the normal directions
to Stab´pxiq.

In the end, all contributions to the integral cancel except for the sign in
the definition of adjoint Stabτ´. This sign gives p´1qcodim {2.

9.3.2

In particular, for σ as in Section 9.1.6, we have

Xσ
“
ž

Mpv1,w1q ˆMpv2,w2q

and
qζ ÞÑ qv

1

“ qv b 1 ,

after restricting to functions on h as in (9.4). Our computation of Spσq
together with the results of Section 8.3 imply the following

Corollary 9.3.2. For tensor products of Nakajima varieties, the operator

pqv b 1qRpuq

belongs to the algebra of modified operators of quantum multiplication.
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Chapter 10

Quantum multiplication by
divisors

10.1 Classical multiplication by divisors

10.1.1

A vector λ P h “ CI corresponds to a divisor

c1pλq “
ÿ

λi c1pViq (10.1)

which we identify with the corresponding cup product operator. Using

reα, e´αs “ hα (10.2)

we obtain from (4.35)

c1pwq “ E
`

|wyxw|u2
˘

` ~
ÿ

αą0
θ¨αă0

αpwq eαe´α ` . . . (10.3)

where the sum over roots is with multiplicity,

αpwq “ wphαq “ α ¨ w ,

and dots stand for a quadratic polynomial in v, that is, an element of Uphq
of degree at most two.
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10 Quantum multiplication by divisors 168

10.1.2

Since E p|wyxw|u2q comes from the 1{u2 coefficient of the R-matrix, its co-
product will involve itself and the 1{u coefficient, that is, the classical r-
matrix. From Theorem 5.3.11, we compute

∆E
`

|wyxw|u2
˘

“ E
`

|wyxw|u2
˘

b 1` 1b E
`

|wyxw|u2
˘

` . . .

` ~
ÿ

α,β

xw| e´βeα |wy e´α b eβ , (10.4)

where dots stand for terms in Uphqb2. Using (10.2), we compute

xw| e´βeα |wy “

#

´α ¨ w , β “ α ą 0 ,

0 , otherwise .

We deduce the following

Theorem 10.1.1. We have

∆c1pλq “ c1pλq b 1` 1b c1pλq ´ ~
ÿ

θ¨αą0

αpλq e´α b eα ` . . .

where the sum is over roots α of gQ with multiplicities and dots stand for
terms in Uphqb2.

10.1.3

In particular, we have

Rpuq∆c1pλqRpuq
´1
“ ∆opc1pλq

“ ∆ c1pλq ` ~
ÿ

θ¨αą0

αpλq pe´α b eα ´ eα b e´αq . (10.5)

10.2 Quantum operators

10.2.1

We denote by Qpλq the operator of modified quantum multiplication by the
divisor (10.1). By construction

Qpλq “ c1pλq ` ~
ÿ

β

p´1qpβ,κq qβ λpβqQ2,redpβq ,
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169 10.2 Quantum operators

where β P H2pM,Zq is an effective curve class and Q2,redpβq is the image
of the corresponding reduced virtual class under the evaluation map. The
quantum part of Qpλq is a linear combination of Steinberg correspondences.

10.2.2

Theorem 10.2.1. We have

Qpλq “ c1pλq ´ ~
ÿ

θ¨αą0

αpλq
qα

1´ qα
eαe´α ` . . .

where the sum is over roots of gQ with multiplicity and dots denote a scalar
operator.

The scalar operator is fixed by the requirement that the purely quantum
part of Qpλq annihilates the identity.

Proof. For brevity, we write Q “ Qpλq.
Let ∆Q be the pullback of the operator Q under the stable envelope map

H¨GpMpw1qq bH¨GpMpw2qq Ñ H¨GpMpw1 ` w2qq .

We can decompose it
∆Q “

ÿ

α

∆αQ

according to the weights of hb 1. Here

rhb 1,∆αQs “ αphq∆αQ .

In other words, ∆αQ increases v1 by α. By Proposition 7.5.1 and Theorem
10.1.1, we have

∆0Q “ Qb 1` 1b Q .

By Corollary 9.3.2,
rpqv b 1qRpuq,∆Qs “ 0 ,

which means
Rpuq∆QRpuq´1

“
ÿ

q´α ∆αQ .

The purely quantum part in Q is a Steinberg correspondence, hence com-
mutes with R-matrices. Taking into account the classical part, we get from
(10.5)

ÿ

α

p1´ q´αq∆αQ “ ~
ÿ

θ¨αą0

αpλq peα b e´α ´ e´α b eαq ,
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10 Quantum multiplication by divisors 170

which uniquely determines all ∆αQ with α ‰ 0.
Now consider

Qremainder “
ÿ

β

p´1qpβ,κq qβ λpβqQ2,redpβq `
ÿ

θ¨αą0

αpλq
qα

1´ qα
eαe´α .

By Lemma 5.3.12, this is a Steinberg correspondence. Moreover, it com-
mutes with h and is primitive in the sense that

∆Qremainder “ Qremainder b 1` 1b Qremainder .

The following Proposition finishes the proof.

10.2.3

Proposition 10.2.2. Let Θ be a family of Steinberg correspondences

Θv,w ĂMˆ2
θ,0

defined for all v,w. If it is primitive

∆Θ “ Θb 1` 1bΘ

and commutes with h then Θ P hQ.

Recall that hQ acts by multiplication by linear function of v and w. Again,
by ∆ in the above proposition, we mean the pullback of Θ under the stable
envelope map.

Proof. By hypothesis, Θ preserves the decomposition

H¨GpMpwqq “
à

v

H¨GpMpw, vqq

into hQ-weight subspaces. In particular,

rΘ, |wyxw|s “ 0 (10.6)

where |wyxw| is the projector onto the v “ 0 part.
Since Θ is a Steinberg correspondence on each component,

rRpuq,∆Θs “ 0
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171 10.2 Quantum operators

This and (10.6) implies

“

tr1

`

p|wyxw| b 1q ˝Rpuq
˘

,Θ
‰

“ 0

where the trace is over the first tensor factor and Θ acts in the second tensor
factor. By the results of Section 4.7, this means that Θv,w commutes with
operators of classical multiplication by all characteristic classes of the tau-
tological bundles. Proposition 5.4.1 implies that Θv,w is itself an operator of
classical multiplication. Since it has cohomological degree 0, it can only be
a multiple of the identity. The primitivity condition forces this multiple to
be a linear function of v and w.
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Chapter 11

Cotangent bundles of
Grassmannians

In this chapter, we illustrate the general theory for the simplest possible
quiverQ— that with one vertex and no arrows. The corresponding Nakajima
varieties are cotangent bundles of Grassmann varieties.

Grassmann varieties are among the oldest objects of study in algebraic
geometry; in particular, their quantum cohomology has been described by
many authors from many different angles, see e.g. [7, 15, 16, 49, 63, 78, 105,
110]. The modest goal of this chapter is to help the reader align his favorite
point of view on Grassmannians with the direction of this paper.

11.1 Quantum cohomology

11.1.1 Setup

For the quiver Q with one vertex and no arrows, the Nakajima quiver data
is a pair of matrices

Cn
A ** Ck

B

jj

where Cn “ Cw1 is the framing space and k “ v1. Let X be the corresponding
quiver variety

X “Mθ,0pk, nq “ tpA,Bq, AB “ 0u{{θGLpkq ,
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11 Cotangent bundles of Grassmannians 174

where

stable points “

#

rkA “ k , θ ą 0 ,

rkB “ k , θ ă 0 .

In either case, X “ ∅ if k ą n. The map

pA,Bq ÞÑ L “

#

KerA , θ ą 0 ,

ImB , θ ă 0 ,

makes X a vector bundle over the Grassmannian

Gr “

#

Grpn´ k, nq , θ ą 0 ,

Grpk, nq , θ ă 0

of possible L Ă Cn. The fiber of this vector bundle is HompCn{L,Lq, whence

X “ T ˚Gr .

Of course, Grassmann varieties of complementary dimension are isomorphic,
but this isomorphism is not canonical, in particular not GLpnq-equivariant.
Here we are interested in G-equivariant quantum cohomology of X, where

G “ GLpnq ˆ Cˆ~ .

The second factor in G scales the cotangent directions with weight ´~.

11.1.2 Divisors

The tautological bundle V “ V1 is identified as follows

V “

#

Cn{L , θ ą 0 ,

L , θ ă 0 ,

that is, V is the universal quotient bundle for θ ą 0 and the universal sub-
bundle for θ ă 0. The line bundle

Op1q “
`

ΛtopV
˘sgn θ

is the very ample generator of PicX. The corresponding projective embed-
ding of the Grassmannian is classically known as the Plücker embedding.

It is elementary to see that c1pOp1qq generates H¨GpXq. Therefore quan-
tum multiplication by this class uniquely determines the algebra of quantum
multiplication.
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175 11.1 Quantum cohomology

11.1.3 The affine quotient

Let
π : X Ñ X0

be the affinization of X. Its target X0 may be described in terms of square-
zero matrices D, or differentials. Let

D “
 

D
ˇ

ˇD2
“ 0

(

Ă EndCn .

denote the set of square-zero matrices. It is stratified by GLpnq-orbits

Dr “ trkD “ ru , r “ 0, 1, 2, . . . ,
Yn

2

]

. (11.1)

The map
pA,Bq ÞÑ D “ BA

gives
X0 – Dďr , r “ minpk, n´ kq .

The fibers of π are Grassmann varieties, namely

π´1
pDq –

 

L
ˇ

ˇ ImD Ă L Ă KerD
(

.

In particular, π´1p0q “ Gr.

11.1.4 The Steinberg variety

By definition, the Steinberg variety is

S “ X ˆX0 X .

The stratification (11.1) gives a decomposition into irreducible components

S “
ď

d

Sd ,

where Sd is the closure of X ˆDr´d X. In particular,

S0 “ diagonal ,

Sr “ Gr ˆ Gr .

For us, the most important stratum is S1.
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11 Cotangent bundles of Grassmannians 176

11.1.5 Lines on X

Let ` P H2pGr,Zq be the effective generator. Curves of class ` are lines in the
Plücker embedding. Two points L1 ‰ L2 P Gr lie on a line `L1,L2 if

dimL1 X L2 “ dimL1 ´ 1 ,

in which case
`L1,L2 “

 

L
ˇ

ˇL1 X L2 Ă L Ă L1 ` L2

(

.

Lines on X are the lines in the fibers of π. Therefore S1 is formed by pairs
of points that lie on a line.

11.1.6 Torus-fixed curves

Let A Ă GLpnq be the diagonal torus. Since XA
0 “ t0u, we have

XA
“ GrA .

This is a finite set formed by coordinate subspaces

LS “
à

sPS

Ces

where te1, . . . , enu P Cn is the coordinate basis and S Ă t1, . . . , nu ranges
over subsets of cardinality dimL.

The set of reduced irreducible A-invariant curves inX is also finite, formed
by lines `S,S1 joining fixed points LS and LS1 with |S4S 1| “ 2. Their tangent
A-weights have the form

˘pai ´ ajq , ti, ju “ S4S 1 ,

from which one concludes the following

Lemma 11.1.1. The only unbroken A-fixed chains in X are covers of lines
branched over fixed points.

11.1.7 Quantum product by divisor

For d “ 1, 2, . . . let
Qd Ă HmiddlepX ˆXq

176



177 11.1 Quantum cohomology

be the following Steinberg correspondence

Qd “ d p´1qnd ev˚
“

M0,2pX, d`q
‰

virtual,reduced
. (11.2)

The sign p´1qnd is taken from the definition of modified Gromov-Witten
invariants, that is, it comes from pairing d` with

κX “ c1pGrq “ nOp1q .

The factor of d is introduced in (11.2) so that

Qquantum “ ~
ÿ

dą0

qd`Qd (11.3)

is the modified purely quantum multiplication by Op1q.

Proposition 11.1.2. For all d ą 0 we have

Qd “ Q1 “ ˘S1 . (11.4)

Proof. As a first step, we compute the push-forward (11.2) modulo terms
supported on the diagonal. We do this by A-equivariant localization.

Recall that only unbroken maps contribute to localization of reduced
virtual classes. Suppose the marked points of an unbroken map f evaluate
to distinct points of XA. Then by Lemma 11.1.1 f has the form

f : P1 z ÞÑzd
ÝÝÝÝÝÝÝÑ `S,S1 Ă Gr ,

ramified over LS, LS1 P Gr
A. In particular

Aut f “ Z{d ,

and hence f contributes

´p´1qnd Euler1H¨pf˚TXq´1
P Qpaq ,

to localization of Qd. Here Euler1 is the product of nonzero A-weights in the
virtual A-module H¨pf˚TXq.

To be precise, there are two zero weights in this module. One occurs in
H0pf˚T`S,S1q and is taken out by the automorphism of a 2-pointed P1. The
other occurs in H1pf˚T ˚`S,S1q and is taken out by passing to the reduced
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11 Cotangent bundles of Grassmannians 178

invariants. The minus sign appears because T ˚`S,S1 has weight ´~ under the
Cˆ~ -action while in (11.3) we take out a factor of ~.

Since

f˚TX “ T ‘ T ˚ , T “ f˚TGr ,

Lemma 11.1.3 below shows

Qd

ˇ

ˇ

p

EulerTpX ˆX
“

p´1qdimGr

EulerTp Gr ˆ Gr
(11.5)

for any off-diagonal p P SA
1 , that is, for any

p “ pLS, LS1q , |S4S 1| “ 2 .

This proves (11.4) modulo a class supported on the diagonal.
To show the contribution of the diagonal vanishes, it suffices to note that

Q1 annihilates the identity in cohomology and so does S1. Indeed, the fibers
of π are positive-dimensional over Dr´1.

Lemma 11.1.3. Let A be a torus and let T be an A-equivariant bundle on
P1 without zero weights in the fibers T0, T8 over fixed points. Then

Euler1H¨pT ‘ T ˚q “ p´1qdeg T `rk T `#z Euler pT0 ‘ T1q ,

where #z “ dimH1pT ‘ T ˚qA.

The sign in (11.4) is easily determined from (11.5), but we will not need it
in what follows.

11.2 The stable basis

11.2.1 Tensor product structure

As usual, we define

Mpnq “
ğ

k

Mθ,0pk, nq .

The A-action makes Mpnq a tensor product

Mpnq “Mp1qbn , Mp1q “ 2 points .
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179 11.2 The stable basis

We write

H¨pMp1q,Qq “ Q |0y ‘Q |1y “ Q2 ,

where

v |ky “ k |ky .

Similarly,

H¨
`

MpnqA
˘

“
`

Q2
˘bn

“
à

SĂt1,...,nu

Q |Sy

where we identify

subsets of t1, . . . , nu Ø t0, 1un

using indicator functions. In G-equivariant cohomology, we replace Q above
with the equivariant cohomology ring of a point.

11.2.2 Polarization

Recall from Example 3.3.3 that we have a canonical choice for polarization
of any Nakajima variety. In the case at hand, this gives

StabC |Sy
ˇ

ˇ

LS
“ Euler HompV ,Cn

a Vq

“ p˘1qdimGr EulerTLSGr , (11.6)

depending on the sign of θ. Here the Euler class is the product of A-weights.
Note the two possibilities in (11.6) differ by an overall scalar, which means

that all geometric operators act canonically in the stable basis.

11.2.3 Classical r-matrix

We claim

gQ “ glp2q

with its natural action on Q2 and, by tensor product, on H¨
`

MpnqA
˘

. In-
deed, the classical r-matrix is computed as follows in terms of the matrix
units eij P glp2q.

Proposition 11.2.1.

r “ e00 b e11 ` e11 b e00 ´ e01 b e10 ´ e10 b e01 .
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11 Cotangent bundles of Grassmannians 180

Proof. For Mp1q bMp1q this was computed in Section 4.1.2. In general, it
follows by additivity of the classical r-matrix.

Other ways to write the r-matrix include

r “ w b w ´
ÿ

ij

eij b eji

“ ´eb f ´ f b e` . . . ,

where
e “ e10 , f “ e01 , w “ e00 ` e11 ,

and dots stand for a diagonal operator.

11.2.4 Quantum multiplication in stable basis

Recall the operators Qd are Steinberg correspondences. Therefore, by Theo-
rem 4.6.1, their action in the stable basis does not depend on the choice of a
chamber C for A.

The following Proposition gives a direct verification of Theorem 10.2.1
for cotangent bundles of Grassmannians.

Proposition 11.2.2. We have

Qquantum “ ~
q`

1´ q`
ef ` . . .

where dots stand for a diagonal operator.

Proof. By Proposition 11.1.2, the statement to prove is

Q1 “ ef ` . . . .

Since dimMA “ 0, theorem 4.4.1 gives

Q1,A |Sy “
ÿ

S1

p´1qdimGr
`

Stab´C |S
1
y b StabC |Sy ,Q1

˘

|S 1y (11.7)

The coefficient in (11.7) may be computed using (11.6) and (11.5) and recall
that we can set ~ “ 0 in this computation, which makes stable envelopes
diagonal. For either sign of θ, this gives

xS 1|Q1,A |Sy “

#

0 , |S4S 1| ą 2 ,

1 , |S4S 1| “ 2 ,

proving the proposition.
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181 11.3 Yangian action

11.2.5

It is an interesting combinatorial and geometric question to compute the
transition matrix between the stable basis and the fixed-point basis inH¨GpXq.

In the quantum integrable system language, the fixed-point basis corre-
sponds to the eigenbasis at q “ 0, while the stable basis is the coordinate
basis, that is, the spin basis of the spin chain for X “ T ˚Gr. Thus, the ques-
tion is equivalent to explicit diagonalization of the Hamiltonian at q “ 0.

For the inhomogeneous XXX spin chain, the answer was known to Nekrasov
and Shatashvili. The corresponding symmetric functions are rational analogs
of the interpolation Schur functions. Just like Schur functions may be de-
formed to Macdonald polynomials associated to root systems of type A and,
more generally, to nonreduced BC root systems, these rational interpolation
Schur functions naturally lie in the family of special functions studied by
E. Rains in [104].

In [107], D. Shenfeld shows how this identification is a example of the
general abelianization procedure for stable bases.

11.3 Yangian action

11.3.1 The Yangian of glp2q

Yangians of finite-dimensional Lie algebras have been studied in great detail,
see for example the exposition in [17, 33, 82, 83]. We recall Ypglp2qq is gen-

erated by countably many generators, the coefficients E
pkq
ij in the generating

series

Eijpuq “ δij `
ÿ

ką0

E
pkq
ij

uk
, i, j P t1, 2u ,

subject to the RTT=TTR relations. These relations are written in terms of
the matrix

Epuq “

ˆ

E11puq E12puq
E21puq E22puq

˙

P EndQ2
b Ypglp2qqrru´1

ss

and have the form

Rpu´ vqEpuqEpvq “ EpvqEpuqRpu´ vq . (11.8)
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The equality in (11.8) is an equality in

(11.8) P EndpQ2
bQ2

q b Ypglp2qqrru´1, v´1
ss .

The R-matrix in (11.8) is

Rpuq “
´

1´
s

u

¯M´

1´
1

u

¯

P EndpQ2
bQ2

qrru´1
ss ,

where s is the permutation of tensor factors. The scalar factor, which plays
no role in (11.8), is chosen here so that Rpuq equals the R-matrix forMp1qb
Mp1q computed in (4.1) for ~ “ 1 .

11.3.2 Evaluation representation

Consider the map Ypglp2qq Ñ EndQ2 given by

Eijpuq ÞÑ
´

δij ´
eji
u

¯M´

1´
1

u

¯

. (11.9)

This takes Epuq to Rpuq and is indeed a representation of Ypglp2qq by the
Yang-Baxter equation. We denote by Q2paq this representation precomposed
with the translation automorphism of the Yangian. It is well-known, and can
be seen as in Section 5.5.3, that

8
č

n“1

KerQ2
pa1q b ¨ ¨ ¨ bQ2

panq “ 0 . (11.10)

Traditionally, a different representation of the Yangian, namely

Eijpuq ÞÑ δij `
eij
u
.

is called the evaluation representation. The two are related by a composition
of automorphisms

Epuq ÞÑ Ep´uqT , Epuq ÞÑ fpuqEpuq

of Ypglp2qq, where the superscript T denotes transposition and fpuq “ 1 `
Opu´1q P Qrru´1ss is an arbitrary scalar factor.
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11.3.3 Comparison of Yangians

Let YQ denote the Yangian constructed in Chapter 5. This is an algebra
over k “ Qr~s . The Yangian YQ is graded by cohomological degree and ~
has cohomological degree 2. Therefore, YQ is uniquely reconstructed, via the
Rees algebra construction, from its specialization at ~ “ 1, with the induced
filtration. We set ~ “ 1 in what follows.

Proposition 11.3.1.
Ypglp2qq – YQ

Proof. Since the generators of YQ satisfy the RTT=TTR relation (5.10), we
have a surjective homomorphism Ypglp2qq Ñ YQ. Its injectivity follows from
(11.10).

11.3.4 The center of Ypglp2qq

For any Lie algebra g, we have

CenterUpgrusq “ UpCenterpgqrusq ,

see e.g. Section 2.12 in [83]. The center of Upglp2qrusq deforms to the center
Z of Ypglp2qq, which is freely generated by the coefficients in the expansion

qdetEpuq “ 1`
ÿ

ką0

qdetk u
´k

of the quantum determinant

qdetEpuq “ E11puqE22pu´ 1q ´ E21puqE12pu´ 1q .

The quantum determinant is group-like

∆ qdetEpuq “ qdetEpuq b qdetEpuq

and

qdetEpuq
ˇ

ˇ

ˇ

Q2paq
“

u´ a

u´ a´ 1
.

Whence the equality of ideals

´

qdetk

¯

ką0
“

´

chkW
¯

kě0
Ă Z . (11.11)
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11.3.5 The core Yangian

The nonequivariant Cartan matrix for Q is C “ p2q, which is invertible.
Therefore

YQ Ă YQ .

The classical r matrix for the core Yangian YQ equals

r´ C´1 w b w “ ´1
2
hb h´ eb f ´ f b e ,

where
h “ e11 ´ e00 P slp2q .

This is the classical r-matrix for slp2q. This means the core Yangian YQ is a
filtered deformation of Upslp2qrusq.

Proposition 11.3.2.
YQ – Ypslp2qq .

Proof. Let z – glp1q denote the center of glp2q. By deformation from

Upglp2qrusq – Upslp2qrusq b Upzrusq

we get
YQ b Z – YQ – Ypglp2qq – Ypslp2qq b Z .

Taking the quotient by the ideal (11.11) gives the desired isomorphisms.

11.3.6

Baxter subalgebras in Ypglp2qq appeared in mathematical physics as quantum
integrals of motion of the XXX spin chain with quasi-periodic boundary
conditions.

Proposition 11.2.2 and Section 6.5 shows the operator

Q “ c1pOp1qq Y `Qquantum

of modified quantum multiplication by c1pOp1qq lies in the Baxter subalgebra
corresponding to

g “ qv P GLp2q .

Since the operator c1pOp1qqY in H¨GpXq has distinct eigenvalues, the algebra
of quantum multiplication equals the Baxter subalgebra in Ypglp2qq. This is
one of the most basic examples in Nekrasov-Shatashvili theory.
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Instanton moduli
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Chapter 12

Classical r-matrix and zglp1q.

12.1 Setup

12.1.1 Moduli of framed sheaves

We now specialize our general discussion to the quiver Q with one vertex and
one loop. We take ζ “ 0, θ ą 0 and denote

pr, nq “ pw1, v1q .

The corresponding Nakajima variety Mpr, nq is the moduli space of framed
torsion-free sheaves F with

rkF “ r , c2pFq “ n ,

on P2, see [88]. Framing means a choice of trivialization of F along P2zC2.
It implies c1pFq “ 0. As usual, we set

Mprq “
ğ

n

Mpr, nq .

In particular,
Mp1q “ Hilb “

ğ

n

Hilbn

is the Hilbert scheme of points of C2.
Our goal in the rest of the paper is to make the general theory explicit in

this very important special case.
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12 Classical r-matrix and zglp1q. 188

12.1.2 Uhlenbeck space

The affine variety

Upr, nq “M0,0pr, nq

is the Uhlenbeck compactification of the moduli of framed instantons. The
canonical map

Mpr, nq Ñ Upr, nq

takes a torsion free sheaf F to the vector bundle F__ together with the
support of F__{F , counting multiplicity.

12.1.3 Group actions

Concretely, Mpr, nq is the GLpCnq-quotient of the spaces of quadruples

X1, X2 : Cn
Ñ Cn , A : Cr

Ñ Cn , B : Cn
Ñ Cr

satisfying the equation

rX1, X2s ` AB “ 0 (12.1)

and stability condition: the image of A must generate Cn under the action
of X1 and X2.

The framing group Gw “ GLprq acts by the automorphisms of Cr or by
changing the framing in the sheaf description. The group Gedge “ GLp2q
acts by

g ¨

ˆ

X1

X2

˙

“

ˆ

g11X1 ` g12X2

g21X1 ` g22X2

˙

, g ¨ A “ A , g ¨B “ detpgqB .

in the quiver description. In the sheaf description, it acts by automorphisms
of P2 preserving C2.

We fix a maximal torus A Ă GLprq with

a “ LieA “ diagpa1, . . . , arq

and take G “ AˆGLp2q. Note that A is central in G.
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189 12.1 Setup

12.1.4 Fixed loci

By Example 3.2.2, we have

MprqA “Mp1qˆr , Mp1q “
ğ

n

Hilbn .

In the sheaf description, MprqA is the locus of direct sums

MprqA “

#

r
à

i“1

Ii

+

of ideals Ii Ă Crx1, x2s “ OC2 .

12.1.5 Polarization

Our general prescription for polarizations of Nakajima varieties gives the
following for instanton moduli.

Following Example 3.3.2, consider the Cˆ-action on C2 that scales one
coordinate axis, say the x2-axis. This scales ω with weight ´1. One of the
components XCˆ is the following Quot-scheme

Qn “
 

F
ˇ

ˇx2O‘r Ă F Ă O‘r
(

ĂMpr, nq .

It is middle-dimensional. Since ω pairs Cˆ-weight spaces of total weight 1,
it is Lagrangian. In the quiver description, it is given by

X2 “ 0 , B “ 0 ,

that is, by representations of one half of the quiver Q.

As out polarization, we take weights that are normal to Qn. Those are
easily identified, giving

ε “
r
ź

i“1

ź

j‰i

paj ´ aiq
ni (12.2)

for the component

Hilbn1 ˆ ¨ ¨ ¨ ˆ Hilbnr ĂMprqA .
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12 Classical r-matrix and zglp1q. 190

12.1.6 R-matrices

Our general theory produces an R-matrix

Rpuq P End
`

H¨GA
pHilbqb2

˘

bQpgAq

which solves the Yang-Baxter equation with spectral parameter

u “ a1 ´ a2 .

Our goal now is to identify Rpuq and the corresponding Yangian. We use the
boldface letter to denote this particular R-matrix. It will be characterized in
terms of the Virasoro algebra in Chapter 14.

12.1.7

As a first step, in Section 12.4 we show the corresponding classical r-matrix

is the r-matrix for zglp1q, modulo zero modes. The action of zglp1q on the coho-
mology of Hilbert schemes was constructed by Nakajima [86] and Grojnowski
[51]. Its extension to higher rank is due to Baranovsky [6].

12.1.8

In principle, Rpuq may be computed from the R-matrix of Ypglp8qq using the
factorization in Theorem 4.3.1, see [114]. In particular, the classical r-matrix
is very easy to determine in this approach. Here we take a different route to
the same result.

12.2 Baranovsky operators

12.2.1

We recall from [6] the definition of Baranovsky operators βk. For k ą 0,
consider the locus

B ĂMpr, n` kq ˆ C2
ˆMpr, nq (12.3)

of triples pF 1, x,Fq such that F 1 Ă F and F{F 1 is a length k sheaf supported
at x. We have [6]

dimB “ 2rn` rk ` 1 ,

which is the middle dimension of the product. Note that B is G-invariant.
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191 12.2 Baranovsky operators

12.2.2

Next, B is a Lagrangian Steinberg correspondence between the first factor
and the other two, which can be seen as follows. We embed

C2
Q pc1, c2q ÞÑ ppx1 ´ c1q

k, x2 ´ c2q P Hilbk .

Note this pulls back the translation-invariant symplectic form. Consider the
maps

HilbkˆMpr, nq �
� //Mpr ` 1, n` kq

��

Hilb0ˆMpr, n` kq? _oo

Upr ` 1, n` kq .

Here the horizontal arrows are formed by taking direct sums and the vertical
is the canonical projection to the Uhlenbeck space. It is clear that points on
the correspondence B map to the same points of Upr ` 1, n` kq.

12.2.3

The correspondence B defines a map

ΘB : H¨GpC2
q bH¨GpMpr, nqq Ñ H¨GpMpr, n` kqq .

We define the operators β´k, k ą 0, as the matrix elements of ΘB with
respect to the C2-factor, that is

β´kpγq ¨ η “ ΘBpγ b ηq , γ P H¨GpC2
q .

12.2.4

For k ą 0, we define βkpγq as the matrix elements of the adjoint operator

Θτ
B : H¨GpC2

q bH¨GpMpr, n` kqq Ñ H¨GpMpr, nqq bK ,

see Section 3.1.3. A larger base ring K is required because the adjoint cor-
respondence is not proper and equivariant localization is needed to define it
as an operator. We will see that

K “ H¨Gpptq

„

1

detC2


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12 Classical r-matrix and zglp1q. 192

where

detC2

ˆ

t1
t2

˙

“ t1t2 P Qrglp2qs

is the determinant of the defining representation.
Also note that since we permute the source and target of ΘB, the operator

Θτ
B gets a sign, namely

p´1qrk “ p´1q
1
2

dimMpr,n`kq` 1
2

dimMpr,nq .

12.2.5

For r “ 1, Baranovsky operators specialize to the original Nakajima oper-
ators, up to normalization. We denote them by αkpγq. It is a theorem of
Nakajima that these satisfy

rαkpγ1q, αlpγ2qs “ k δk`l τpγ1 Y γ2q (12.4)

see [86]. Recall from Section 3.1.3 that τ involves a sign. Since γi are coho-
mology classes on a surface,

τpγq “ ´

ż

C2

γ ,

where the integral is defined as an equivariant residue. In particular

τp1q “ ´
1

detC2

. (12.5)

12.2.6

Since βkpγq is a Steinberg correspondence, there exist a Steinberg correspon-
dence βkpγqA that makes the following diagram commute

H¨GpMp1qqbr
StabC //

βkpγqA
��

H¨GpMprqq
βkpγq
��

H¨GpMp1qqbr
StabC // H¨GpMprqq

for every chamber C and every k ă 0. Here we use that A does not act on
the C2 factor in (12.3). By taking adjoints, the same holds for k ą 0 after
tensoring with K.
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Theorem 12.2.1. We have

βkpγqA “
r
ÿ

i“1

1b ¨ ¨ ¨ b αkpγq b ¨ ¨ ¨ b 1 ,

where αkpγq acts in the ith tensor factor.

12.2.7

In particular, Theorem 12.2.1 and commutation relations (12.4) imply

rβnpγ1q, βmpγ2qs “ rn δn`mτpγ1 Y γ2q , (12.6)

which is a theorem of Baranovsky, see [6].

12.3 Proof of Theorem 12.2.1

12.3.1

By Theorem 4.6.1, the operator in question is given by a correspondence
supported on BA. From definitions

BA
“

!´ r
à

i“1

Ii, x,
r
à

i“1

Ji

¯)

(12.7)

where Ii, Ji PMp1q, Ii Ă Ji, and

supp Ji{Ii Ă txu

for all i. The connected components of BA are classified by the second Chern
classes of Ii, Ji, and their dimensions are computed as follows

dim “ 2`
ÿ

i

max pc2pIiq ´ c2pJiq ´ 1, 0q .

In particular,

BA
“

r
ď

i“1

B
piq
1 Y lower dimension ,

where B
piq
1 denotes the corresponding correspondence for r “ 1 acting in the

ith factor.
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12.3.2

The top dimensional components B
piq
1 are irreducible. Therefore, to compute

the Lagrangian residue of B, it suffices to find a smooth point b of B on each
of them.

By symmetry, we may assume i “ 1. In (12.7), we take a point b P BA

such that
x “ 0 P C2 , I1 “ px

k
1, x2q , J1 “ O ,

while 0 R supp Ii, supp Ji for i ą 1. Lemma 12.3.2 below gives a rational map

f :Mpr, kq ˆMpr, nq 99KMpr, n` kq

which is an isomorphism in a neighborhood of b. Denoting the correspon-
dence (12.3) by Br,n,k, we have

f˚pBr,n,kq “ Br,0,k ˆ diagMpr,nq

in a neighborhood of b.
Note that polarizations in Theorem 4.6.1 enter in the combination εX ε̄Y .

Therefore, the residue of the diagonal is always the diagonal and the compu-
tation is reduced to the case n “ 0.

12.3.3

The correspondence
Br,0,k ĂMpr, kq ˆ C2

has the following quiver description:

Br,0,k “ tB “ 0, pX1 ´ x1q
k
“ 0, pX2 ´ x2q

k
“ 0u ,

where x “ px1, x2q P C2. Our reference point b on it is given by

X1 “

¨

˚

˚

˚

˝

0
1 0
0 1 0

. . . . . .

˛

‹

‹

‹

‚

, X2 “ 0 , A “

¨

˚

˚

˚

˝

1 0 0 . . .
0 0 0
0 0 0
...

. . .

˛

‹

‹

‹

‚

.

Lemma 12.3.1. The variety Br,0,k is smooth at b and its nonzero tangent
A-weights are

pa1 ´ aiq
‘n , i “ 2, . . . , r .
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Proof. In a neighborhood, the operatorX1´x1 will remain a regular nilpotent
and the p1, 1q-entry of A will remain nonzero, hence the triple pX1, X2, Aq
may be brought to the normal form

X1 “

¨

˚

˚

˚

˝

x1

1 x1

0 1 x1

. . . . . .

˛

‹

‹

‹

‚

, X2 “ P pX1q , A “

¨

˚

˚

˚

˝

1 ˚ ˚ . . .
0 ˚ ˚

0 ˚ ˚
...

. . .

˛

‹

‹

‹

‚

by a unique element of GLpnq. Here P is a polynomial of degree ă n and stars
stand for arbitrary numbers. Thus a neighborhood of F in B is isomorphic
to Crn`1. The computation of the tangent weights is straightforward.

12.3.4

In particular, we see that

TbB
L

TbB
A
– TbQk

L

TbQ
A
k

as A-modules.
Since B is smooth at b, its Lagrangian residue is ˘BA. Further, the

normal weights to B agree with the polarization (12.2). This finishes the
proof modulo the following lemma used above.

12.3.5

Lemma 12.3.2. Suppose the eigenvalues of X1 may be partitioned

EigenvaluespX1q “
ğ

Ei

into a nontrivial disjoint union. Then a neighborhood of pX1, X2, A, 0q in
Mpr, nq is GLprq-equivariantly isomorphic to an open set in

ś

Mpr, |Ei|q.

We are grateful to the referee for pointing out that this statment, with a
different proof, is the factorization property of [11].

Proof. For nearby X1 we can still group the eigenvalues according to the
same partition. We denote

Pi : Cn
Ñ Cn , i “ 1, . . . , `pµq
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the corresponding spectral projectors.
The projectors Pi are canonically defined and, in particular, commute

with the centralizer of X1 in GLpnq. We thus may assume they project onto
coordinate subspaces and replace the GLpnq-quotient by

ś

GLp|Ei|q. For
each i, the quadruple

pZi,Wi, Ai, Bjq “ pPiX1, PiX2 Pi, PiA,B Piq

solves (12.1). Because the starting point pX1, X2, A, 0q is stable, each of
these blocks remains stable in a certain neighborhood. Thus we get a map
to

ś

Mpr, |Ei|q. Clearly, it is GLprq-equivariant.
The original data pX1, X2, A,Bq may be reconstructed as follows. Since

ř

Pi “ 1, all we need is to recover

Wij “ PiX2Pj

for i ‰ j. It is a solution of

ZiWij ´WijZj “ ´AiBj ,

which exists and is unique because the spectra of Zi and Zj are disjoint.

12.4 Classical r-matrix

12.4.1

Denote k “ H¨Gpptq and let

|y P H¨GpMp1, 0qq – k

be the identity element. We abbreviate

αn “ αnp1q

in this section. It is a theorem of Nakajima [86] that the map

k
“

α´1, α´2, α´3, . . .
‰

Ñ H¨GpMp1qq

given by
f ÞÑ f |y ,

is an isomorphism. We will use it to identify its source and target.
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12.4.2

We define
F “ K

“

α´1, α´2, α´3 . . . .
‰

The operators αn, n ą 0, act on F satisfying (12.4) and annihilating the
vector

vac “ 1 “ |y .

Following the tradition in quantum field theory, F is called a Fock space. The
operators αn generate a Heisenberg algebra in EndpFq.

12.4.3

Consider
Rpuq P End pFb Fq bK QpgAq .

By Theorem 12.2.1, it commutes with the operators

βnp1qA “ αn b 1` 1b αn .

We define
α˘n “ αn b 1˘ 1b αn .

These satisfy
rαεk, α

η
l s “ 2kτp1q δk`l δε,η , (12.8)

where ε, η P t˘u as a consequence of (12.4).
We see the operators α˘n generate two new commuting Heisenberg subal-

gebras of Fb F and R commutes with one of them.

12.4.4

Using the operators α˘n , we can write

Fb F “ F` b F´ . (12.9)

We denote by End´ the image of EndpF´q in EndpFb2q,

Lemma 12.4.1. The operator R belongs to End´.

Proof. The operators α`n act irreducibly on F` and commute with R.
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12.4.5

Lemma 12.4.2. An operator in End´ is uniquely determined by its matrix
elements in the subspace

vacb F Ă Fb2 .

Proof. Let A P End´ and suppose that

`

A ¨ vacb v1, vacb v2

˘

“ 0 (12.10)

for all v1, v2 P F, while

´

A
ź

α´´µi vacb vac,
ź

α´´νi vacb vac
¯

‰ 0 (12.11)

for some partitions µ, ν. We may further assume, the partitions µ, ν in (12.11)
are chosen minimal with respect to |µ|, |ν|. Then taking

v1 “
ź

α´µi vac , v2 “
ź

α´νi vac ,

in (12.10) and expanding

1b αn “
1
2
pα`n ´ α

´
n q

we get a contradiction.

12.4.6

The subspace
vacb F Ă H¨GpMp2qAq bK

is a vacuum subspace in the sense of Section 4.7. By Theorem 4.7.1, the cor-
responding matrix element of Rpuq is the operator of classical multiplication
by

epN´q

epN´ b ~q
“ 1`

~ rkN´
a1 ´ a2

` . . . (12.12)

where
´u “ a2 ´ a1

is the A-weight of N´. By formula (2.15) ,

rkN´
ˇ

ˇ

Mp1,0qˆMp1,nq
“ n .
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In the sheaf interpretation, the unstable normal bundle N´ to

Mp1q Q I ÞÑ O ‘ I PMp2q

is the tautological bundle of the Hilbert scheme

N´ – Taut “ H0
pO{Iq .

Hence rkN´ is indeed the number of points.

12.4.7

Consider the operator

L0 “ ´
ÿ

ką0

α´kp1qαkpptq

where

pt “ r0s “ detC2 P H2
GpC2q

is the class of the origin. Note that since pt and 1 are proportional, they may
be distributed arbitrarily between the two factors. From

rαkpptq, αlp1qs “ ´k δk`l ,

one has the following

Lemma 12.4.3. L0 acts by multiplication by n in H¨GpMp1, nqq.

12.4.8

Theorem 12.4.4. The classical r-matrix for Mp1q ˆMp1q equals

r “ ´
ÿ

ną0

α´´np1qα
´
n pptq . (12.13)

Proof. This commutes with α`n and has correct vacuum matrix elements by
Lemma 12.4.3. We conclude by Lemma 12.4.2.
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12.4.9

Expanding out (12.13), we get the following formula for the action of r on
cohomology of Mpr1q ˆMpr2q

r “ v b w ` w b v `
ÿ

k‰0

β´kp1q b βkpptq (12.14)

where
w “ r, v “ c2

act by multiplication by the rank and instanton charge, respectively, compare
with (5.23).

12.4.10

We conclude
gQ – zglp1q bK

M

zero modes ,

where zero modes (or constant loops) refer to central elements β0pγq. The
brackets in this Lie algebra

rv, βnpγqs “ ´nβnpγq ,

rβnpγq, βmpγ
1
qs “ τpγ Y γ1qn δn`m w , (12.15)

are a special case of the relation (5.11).
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Chapter 13

Free bosons

13.1 Fock spaces

13.1.1

Anticipating application to algebraic surfaces other than C2, we will put the
commutation relations (12.15) in a more abstract framework, in which the
insertions γ take values in a general commutative Frobenius algebra H over
a ring K.

To go back to framed sheaves on C2, one takes

H “ H¨GpC2
q

”

1
detC2

ı

, K “ H¨Gpptq
”

1
detC2

ı

(13.1)

with the trace map

τ : HÑ K

given by τpγq “ ´
ş

C2 γ. We denote this Frobenius algebra HpC2q.
Most of the material in this section is completely standard and is recalled

mainly for setting up the notation.

13.1.2 Heisenberg algebras

Let H be a free K-module with a nondegenerate symmetric bilinear form
p ¨ , ¨ q. Consider the space

Hrz˘1
s “ HbKrz˘1

s
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of polynomial loops, that is, Laurent polynomials fpzq with values in H. This
has a natural skew-symmetric form

tf, gu “

ż

pdf, gq ,

ż

“

¿

dz

2πiz
. (13.2)

For example
tγzn, ηz´nu “ n pγ, ηq , γ, η P H .

The form (13.2) makes Hrz˘1s ‘K a Heisenberg Lie algebra. We denote by
Heis “ HeispHq its universal enveloping algebra and denote by αnpγq P Heis
the image of γzn.

Note that Heis has a center, generated by the identity and the zero modes
α0pγq, γ P H.

13.1.3 Translation automorphisms

The additive group of H acts on HeispHq by automorphisms

ςγ pαnpηqq “ αnpηq ´ δn,0 pγ, ηq , γ, η P H .

We denote
Heis„ “ KrHadds ˙ Heis ,

where KrHadds denotes the group algebra of the additive group of H. By
definition, it is spanned by linear combinations of ςγ, γ P H.

Introduce the corresponding Lie algebra elements

αlogpγq “ log ςγ

which satisfy the relations

rαnpγq, αlogpηqs “ δn,0 pγ, ηq .

13.1.4 Fields

The commutation relations in Heis„ are best summarized using fields, or
generating functions. Consider

φpγ; zq “ αlogpγq ` α0pγq log z ´
ÿ

n‰0

αnpγq

n
z´n (13.3)
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203 13.1 Fock spaces

where z P Cˆ is a variable. Then

rφpγ; zq,φpη;wqs “ pγ, ηq
`

logpz ´ wq|z|ą|w| ´ logpw ´ zq|w|ą|z|
˘

.

Here

logpz ´ wq|z|ą|w| “ log z ´
ÿ

ną0

pw{zqn

n
,

is the series expansion in the region |z| ą |w|. We will also consider

αpγ; zq “ Bφpγ; zq “
ÿ

n

αnpγq z
´n , (13.4)

where

B “ z
B

Bz
.

The coefficients of the fields (13.4) generate HeispHq.

13.1.5 Fock spaces

The Fock representation of Heis„ is generated by the vacuum vector |0y such
that

αnpγq |0y “ 0 , n ě 0 .

We denote

|ηy “ ς´η |0y .

These satisfy

α0pγq |ηy “ ´pγ, ηq |ηy

and generate an irreducible Heis-module that we denote Fpηq. We have

Fpηq – Fp0q – S¨
`

z´1Hrz´1
s
˘

as vector spaces ,

the first isomorphism being the action of ςη. The module structure of Fpηq
varies with η, but only in how the center of Heis acts.
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13.1.6 Adjoints

There is an anti-involution on Heisζ defined by

pαnpγqq
˚
“ α´npγq , ς˚η “ ς´η ,

that is,
φpγ, zq˚ “ ´φpγ, z´1

q .

The Fock representation has a unique inner product for which |ηy are or-
thonormal and the anti-involution ˚ coincides with taking the adjoint oper-
ator. We will use this inner product to define matrix elements of operators.

13.1.7 Normally ordered products

Consider a product αpγ, zqαpη, wq of two fields. Its matrix elements are
given by convergent series in the region |z| ą |w|. At z “ w they have a
singularity. This is regularized by commuting all annihilation operators to
the right. In other words, one defines the normally ordered product by

αpγ, zqαpη, wq “ pγ, ηq
zw

pz ´ wq2
` :αpγ, zqαpη, wq :, (13.5)

where the first, singular, term is to be expanded in the region |z| ą |w|. The
normally ordered term in (13.5) is regular at z “ w, in fact

`

:αpγ, zqαpη, wq : f1, f2

˘

P Krz˘1, w˘1
s (13.6)

for all f1, f2 in the Fock space.
By linearity, we can say that the normally ordered product :αpγ, zqαpη, zq :

takes an element γ b η P Hb2 as an argument.
A generalization of (13.5), known as Wick’s theorem, explains how to

normally order any product of normally ordered monomials in αpγi, ziq. See
for example [45, 25, 58].

13.1.8 Grading

Recall we assume p ¨ , ¨ q to be nondegenerate and let g´1 P Hb2 be the inverse
quadratic form. Then :α2 :pg´1, zq is a well-defined operator-valued Laurent
series, from which we can extract the constant term

ş

: α2 : pg´1, zq. The
following computation is standard
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205 13.2 Insertions and coproducts

Lemma 13.1.1. Let the Fock space be graded by

deg |ηy “ pη, ηq{2 , degα´n “ n .

Then 1
2

ż

:α2 :pg´1, zq is the the grading operator.

This is a generalization of Lemma 12.4.3.

13.2 Insertions and coproducts

13.2.1

Note that in (13.6) we evaluate both operators at the same point z “ w P Cˆ,
but they still take two distinct cohomology insertions γ and η, or, equiva-
lently, a element of γ b η P Hb2 as an argument.

To write an operator with a single cohomology insertion, we need a coas-
sociative coproduct

∆ : HÑ Hb2 ,

and its iterates
H Q γ ÞÑ γ∆n

P Hbn .
We can then construct an operator

:αn : pγ, zq
def
“ :αn : pγ∆n, zq

which depends on a single point z P Cˆ and also depends linearly on a single
cohomology insertion γ.

13.2.2

For example, for H “ H¨GpC2q

”

1
detC2

ı

we have

1∆
“ ´1b pt “ ´ptb 1 .

This is because the comultiplication, as adjoint to multiplication, gets the
sign ´1 “ p´1q

1
2

dimC2
. Therefore, the formula (12.13) can be recast in the

following form

r “
1

2

ż

:pα´q2 : p1q , (13.7)

modulo zero modes α0pγq.
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13.2.3

Because of the Frobenius algebra structure on H, Wick’s formula for the
operators :αn :pγq takes the following particularly nice form.

For any symmetric Frobenius algebra, there is a canonical central element
e P H such that

mpγ∆
q “ eγ

for all γ P H. Here m : Hb2 Ñ H is the multiplication map. This is
associated with gluing a handle in the context of 2-dimensional topological
quantum field theories, see for example [65]. One has

τpeq “ rkKH .

In particular, if H “ H˚pSq then this is the Euler characteristic of S (recall
we assume H is commutative for simplicity).

Lemma 13.2.1.

:αn :pγ1qpz1q :αm :pγ2qpz2q “

minpn,mq
ÿ

k“0

ckpz1, z2q :αn´kpz1qα
m´k

pz2q :
`

γ1γ2e
k´1

˘

, (13.8)

where

ckpz1, z2q “
p´nqkp´mqk

k!

ˆ

z1z2

pz1 ´ z2q
2

˙k

. (13.9)

Here pnqk “ npn`1q ¨ ¨ ¨ pn`k´1q and the combinatorial factor in (13.9) is the
number of ways to form k pairs of elements from t1, . . . , nu and t1, . . . ,mu,
respectively.

Two terms in (13.8) require a special discussion. For k “ 0, the insertion
is defined to be

γ∆n
1 b γ∆m

2 P Hbpn`mq .
For n “ m “ k, the whole term is defined to be

ckpz1, z2q τpγ1 γ2 e
k´1
q .

Proof. This is an exercise in matching the Wick’s formula with the graphical
calculus for Frobenius algebras, as explained, for example, in [65]. The tensor
operations

Hb2
Ñ Hbpn`m´2kq
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207 13.3 Virasoro algebra

that arise from Wick’s formula, are interpreted graphically as surface of genus
k ´ 1 with two incoming and n`m´ 2k outgoing holes, hence equal to

γ1 b γ2 Ñ
`

γ1γ2e
k´1

˘∆pn`m´2kq
.

Note for k “ 0, the surface is disconnected, whence the need to consider
this case separately. The other special case n “ m “ k is the case of no
outgoing holes. In this case, there is only the scalar operator left in Wick’s
formula.

It is straightforward to generalize this Lemma to more than two normally
ordered monomials.

13.3 Virasoro algebra

13.3.1

For an arbitrary κ P H, define

T pγ, κq “ 1
2

:α2 :pγq ` Bαpγκq ´ 1
2
τpγ κ2

q . (13.10)

This field generates a Virasoro-like subalgebra of the Heisenberg algebra,
known as the Feigin-Fuchs or background charge Virasoro algebra. The state-
ment for an arbitrary H should also be considered known, see for example
the discussion in Section 5 of [67].

13.3.2

We denote by Lnpγ, κq the coefficients of T pγ, κq, that is,

T pγ, κq “
ÿ

nPZ

Lnpγ, κq z
´n .

Theorem 13.3.1. The operators Lnpγ, κq satisfy

rLnpγ1q, Lmpγ2qs “

pn´mq Ln`mpγ1 γ2q ` τpγ1γ2pe´ 12κ2
qq δn`m

n3 ´ n

12
. (13.11)

These are the familiar Virasoro relations adorned with cohomology labels.
The element

c “ e´ 12κ2
P H (13.12)

plays the role of the central charge.
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13.3.3 OPEs

The most efficient way to encode the commutation relations for the operators
T is via the operator product expansion. This goes as follows. Let the fields

Apzq “
ÿ

nPZ

an z
´n , Bpzq “

ÿ

nPZ

bn z
´n ,

satisfy a commutation relation of the form

rApzq, Bpwqs “
ÿ

kě0

Ckpwq

ˆ

w
B

Bw

˙k

δpz, wq ,

where δpz, wq “
ř

nPZpz{wq
n and Ckpwq are some fields like A and B. Then

ApzqBpwq “ rA´pzq, Bpwqs` :ApzqBpwq :

„
ÿ

k

Ckpwq

ˆ

w
B

Bw

˙k
w

z ´ w
(13.13)

where A´pzq “
ř

ną0 an z
´n and „ means equality modulo terms that remain

regular as z Ñ w. In particular, in (13.13) we dropped the normally ordered
term.

13.3.4 Proof of Theorem 13.3.1

Let

G “

?
zw

z ´ w
“

1

ex{2 ´ e´x{2
, x “ lnpz{wq ,

denote one of the Green’s functions of the B̄ operator on the cylinder. Since
we will only deal with expansions as z Ñ w, we may ignore the monodromy
of G.

Proposition 13.3.2. The field T satisfies the following OPE

T pγ1qpzqT pγ2qpwq „
1
2
G4 τpγ1 γ2pe´ 12κ2

qq ` 2G2 T pγ1γ2qpwq `G BT pγ1γ2qpwq , (13.14)

where e P H is the handle-gluing element.

Proof. Direct computation using Lemma 13.2.1.

This proposition finishes the proof of Theorem 13.3.1.
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209 13.4 Reflection operator

13.3.5 Lowest weight

From definitions, we compute

Lnpγ, κq |ηy “ 0 , n ą 0 ,

while
L0pγ, κq |ηy “

1
2
τpγpη2

´ κ2
qq |ηy .

For γ “ 1 and κ “ 0 this specializes to Lemma 13.1.1. The element

d “ 1
2
pη2
´ κ2

q P H (13.15)

should thus be viewed as the conformal dimension of |ηy, that is, the lowest
weight of the Virasoro module Fpηq.

13.3.6 Irreducibility

We have the following standard

Lemma 13.3.3. The Virasoro module Fpηq is irreducible for generic η.

Proof. For η Ñ 8, Virasoro algebra degenerates to Heisenberg algebra which
acts irreducibly.

13.4 Reflection operator

13.4.1

Lemma 13.3.3 implies for generic η, Fpηq is a Verma module for Virasoro
algebra with central charge (13.12) and lowest weight (13.15). Note, however,
that the map

pη, κq ÞÑ pd, cq

is many-to-one, in particular, the 4 points p˘η,˘κq give isomorphic Virasoro
modules for generic parameters. This implies the following

Proposition 13.4.1. For generic η and any choice of signs, there exists a
unique, up to multiple, operator R˘,˘ that makes the following diagram

Fpηq
T pκq //

R˘,˘
��

Fpηq

R˘,˘
��

Fp˘ηq
T p˘κq // Fp˘ηq
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commute. It depends rationally on η, κ P H.

The first ˘ in R˘,˘ is for η, the second — for κ. The intertwiner R˘,˘ is
a rational function of η, κ P H because it solves linear equations in which η
and κ enter polynomially. We normalize it so that

Rε1,ε2 |ηy “ |ε1ηy .

13.4.2

In down-to-earth terms,

R˘˘
ź

L´µipγi, κq |ηy “
ź

L´µipγi,˘κq |˘ηy

for all partitions µ. For generic η, these vectors form a basis of Fp˘ηq.
In particular, R˘˘ preserves the grading by |µ|, hence is a direct sum of

finite-dimensional operators.

13.4.3

It is easy to see that

R´´ αnpγqR
´1
´´ “ ´αnpγq . (13.16)

Thus of the four operators R˘˘ only one is really nontrivial. Also, we note

η “ 0 ñ R`´ “ R´´ . (13.17)

13.4.4

The operator R´` is known as the reflection operator in Liouville CFT, see
[118], while we will identify Rpuq with the operator R`´ for

H “ H¨GpC2
q

”

1
detC2

ı

in Chapter 14. Thus, the Liouville reflection operator will be identified with

R_
“ p12qR .

The Yang-Baxter equation satisfied by Rpuq is a new and unexpected aspect
of the theory.
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211 13.4 Reflection operator

13.4.5

In addition to the inner product discussed in Section 13.1.6, the action of the
Virasoro algebra equips the Fock space with the Shapovalov inner product,
such that

L:n “ L´n ,

where dagger denotes the adjoint operator with respect to the Shapovalov
product.

We have
R´` L

:
n “ L˚nR´` ,

therefore R´` is precisely the operator that relates the two inner products.
In particular, the determinant of the graded pieces of R is very closely related
to Kac determinant for Virasoro algebra, see [56, 40]. We will see the classical
results of Feigin and Fuchs on it from a new perspective in Chapter 14.
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Chapter 14

The full R-matrix

14.1 Zero modes

In Section 12.4.10, we identified the Lie algebra gQ for instanton moduli

Mprq with the algebra zglp1q modulo the zero modes. On the other hand,
we saw in Chapter 13 the convenience and importance of including the zero
modes in the considerations.

Later, a different normalization of Rpuq will be introduced which will
reconcile these two points of view. For now, until the Section 14.3.1, we set
zero modes to zero.

14.2 Cup product by divisor

14.2.1

Generalizing the formula for r, we define

Φn “
1

n!

ż

:αn : p1q .

These are examples of Fourier coefficients of vertex operators, see e.g. [45, 58].
The following operator Ω, while not a Fourier coefficient of a vertex operator,
plays an important role in the theory.
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14 The full R-matrix 214

14.2.2

Define the operator |B| by

|B| ¨ zn “ |n| zn .

This is a composition of B “ z d
dz

and the Hilbert transform. We define

Ω “
1

2

ż

:α|B|α :p1q “
ÿ

ną0

nα´nαnp1
∆
q .

14.2.3

The operator Ω appears in the following formula due to M. Lehn [66]. Recall
that

Op1q “ Λtop Taut , Taut “ V1 “ H1
P2pFp´1qq

is the ample generator of the Picard group of Mprq.

Theorem 14.2.1 ([66]). The operator of cup product by c1pOp1qq in H¨TpHilbq
is given by

c1pOp1qq Y ¨ ¨ ¨ “ ´Φ3 ` pa´
1
2
~ qΦ2 `

1
2
~Ω . (14.1)

Here a is the weight of the framing torus A – Cˆ that acts trivially
on Mp1q itself, but nontrivially, namely with weight a, on the tautological
bundle. Such an insignificant additional parameter is usually suppressed and,
in particular, it is not present in Lehn’s formulation.

Lehn’s theorem may be also deduced from the factorization of Rpuq into
R-matrices for Ypglp8qq given in Theorem 4.3.1, see [114].

14.2.4

Lehn’s theorem identifies the operator of cup product by c1pOp1qq with the
second quantized trigonometric Calegero-Sutherland Hamiltonian, see for ex-
ample [19] for a comprehensive discussion.

The explicit form of the Calogero-Sutherland operator in the basis of
power-sum symmetric functions (that is, in the natural basis of the bosonic
Fock space) was computed by Richard Stanley [117] and rediscovered many
times since. The equivalence between Lehn’s and Stanley’s formulas was
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215 14.2 Cup product by divisor

noticed, apparently, by many people, [76] being one of the early references,
see the discussion in [19].

Note that classes of torus-fixed points in H¨TpHilbq are trivially eigenfunc-
tions of cup product operators and their identification with Jack polynomi-
als, that is, CS eigenfunctions, was noted earlier, see in particular [85]. At
about the same time, it was recognized by Mark Haiman that the more gen-
eral Macdonald polynomials correspond to the classes of fixed points in the
equivariant K-theory of Hilbert schemes, see for example [52].

14.2.5

We will see the analogous integrable system forMpr, nq is a coupled r-tuple
of Calogero-Sutherland systems. The coupling is triangular, so the spectrum
is additive, which is obvious from the geometric description of torus-fixed
points. Independently of our work, the same quantum integrable system
appeared in [28].

The algebra of operators of quantum multiplication gives a one-parameter
deformation of cup product operators and thus a deformation of the Calogero-
Sutherland quantum integrable system. It has been identified with the quan-
tum Intermediate Long Wave equation [94]. In particular, this allows to de-
termine the spectrum of the latter as well as to give an explicit construction
of integrals of motion.

14.2.6

Taking the expansion (12.12) one step further, we get

epN´q

epN´ b ~q
“ 1`

~ rk

u
`

~ c1pOp1qq ` 1
2
~2 rkprk`1q

u2
` . . . (14.2)

where u “ a1 ´ a2 and c1pOp1qq is the operator from Theorem 14.2.1 with
a “ 0. This is because we already accounted for the fact that N´ has weight
´u with respect to the rank 2 framing torus.

14.2.7

Proposition 14.2.2. We have

Rpuq “ 1`
~
u

Φ´
2 `

~
u2

Φ´
3 `

~2

2u2

`

Φ´
2

˘2
`Opu´3

q . (14.3)
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Here and in what follows, Φ´
n denotes the result of substituting α´ for α in

the definition of Φn.

Proof. Denote by P the orthogonal projection onto vac P F. We compute

Pp1qΦ´
3 Pp1q “ ´Φ

p2q
3 ,

Pp1q
`

Φ´
2

˘2
Pp1q “

`

Φ
p2q
2

˘2
`Ωp2q , (14.4)

where upper indices like the one in Pp1q denote an operator acting in the
corresponding tensor factor of FbF. It is very instructive to see how Fourier
coefficients of vertex operator produce something which isn’t one upon taking
vacuum matrix elements.

Now the result follows from comparing (14.1) with (14.2).

Note, for example, that

Rp´uq12 “ 1´
~
u

Φ´
2 ´

~
u2

Φ´
3 `

~2

2u2

`

Φ´
2

˘2
`Opu´3

q ,

because the permutation of tensor factors flips the sign of α´. This illustrates
general results on unitarity of R-matrices, see Section 4.5.

14.2.8

We now consider an pr ` 1q-fold tensor power of F and denote by

αpiq , i “ 0, . . . , r ,

the Heisenberg operators in the corresponding tensor factors. We denote

Φpijq
n “

1

n!

ż

:pαpiq ´αpjqqn : p1q

and
Ωpijq

“
ÿ

ną0

nα
piq
´nα

pjq
n p1

∆
q .

In particular, Φp12q
n “ Φ´

n and Ωpiiq is the operator Ω acting in the ith tensor
factor. Generalizing (14.4), we compute

Pp0qΦ
p0jq
2 Φ

p0iq
2 Pp0q “ Φ

pjq
2 Φ

piq
2 `Ωpjiq . (14.5)
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14.2.9

We consider X “ Mprq and the action of the maximal torus A of GLprq
on it. Fix a chamber C Ă a and denote by Qcl the operator that makes the
following diagram commute

Fbr
StabC //

Qcl
��

H¨GpMprqq bK

Y c1pOp1qq
��

Fbr
StabC // H¨GpMprqq bK .

Consider the following modified step function

%pxq “

$

’

&

’

%

1 , x ą 0 ,

1{2 , x “ 0 ,

0 , x ă 0 ,

and define
%Cpi, jq “ % ppai ´ ajq|Cq .

Theorem 14.2.3. The operator Qcl is given by

Qcl “

r
ÿ

i“1

´

´Φ
piq
3 ` pai ´

1
2
~qΦpiq

2

¯

` ~
r
ÿ

i,j“1

%Cpi, jqΩ
pj,iq . (14.6)

This is a special case of Theorem 10.1.1. We recall the proof.

Proof. Using Theorem 4.7.1 and equation (14.2), in particular, the operator
Qcl may be computed from the 1{u2 coefficient of the R-matrix from Example
4.2.4. We substitute the formula from Proposition 14.2.2 and expand using
(14.5). This gives the result.

14.2.10

Note for the standard chamber C, we have
r
ÿ

i,j“1

%Cpi, jqΩ
pj,iq

“
1

4

ż

:β |B|β :p1q `
1

2

ÿ

iăj

ż

αpiq Bαpjqp1q (14.7)

where
β “ αp1q ` ¨ ¨ ¨ `αprq .

For general C, the final sum in (14.7) is over all i, j such that ai´aj is positive
on C.
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14.3 R-matrix as a Virasoro intertwiner

14.3.1

Theorem 14.3.1. The operator Rpuq is obtained by substitution

α “
1
?

2
α´ , η “

u
?

2
, κ “

1
?

2
~ . (14.8)

into the Virasoro intertwiner R`´ for H “ HpC2q.

Here u “ a1 ´ a2 and HpC2q is the Frobenius algebra (13.1). The square
roots in (14.8) are needed because of the factor 2 in (12.8). In other words,
they are there because the vector p1,´1q has length

?
2.

14.3.2 Proof of Theorem 14.3.1

From Lemma 12.4.1, we know that Rpuq acts only in the F´ factor in (12.9).
To find out how it acts in F´, we will use the intertwining relation with the
operators Qcl for the two chambers

a1 ż a2 .

We express Qcl in terms of α˘ and note that α` commutes with R. In
particular, the first term in the right-hand side of (14.7) commutes with R.
Therefore we have, for C˘ “ ta1 ż a2u

´ 2Qcl “ ¨ ¨ ¨ `
1

4

ż

α` :pα´q2 :p1q`

ż

α`
ˆ

a2 ´ a1

2
α´ ˘

~
2
Bα´

˙

p1q , (14.9)

where dots stand for terms that commute with R.
Since R commutes with α`, it has to intertwine the coefficients of its

modes in (14.9), therefore it has to intertwine the operators

T˘pγq “
1

4
:pα´q2 :pγq `

ˆ

a2 ´ a1

2
α´ ˘

~
2
Bα´

˙

pγq ` . . . (14.10)

for all γ P H¨GpC2q. Here dots stand for a scalar operator that will be fixed
in a minute.
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Strictly speaking, since α` does not include zero modes, the above ar-
gument shows R intertwines all coefficients of T˘ except the constant term
ş

T˘pγq. However, this constant term can be obtained as commutator of
other coefficients of T˘, by Virasoro commutation relations.

We now compare (14.10) with (13.10). The two operators become iden-
tical if we substitute

α “
1
?

2
α´ , κ “

1
?

2
~ ,

and make the zero mode present in (13.10) act via the identification

H¨G
`

Mp2qA
˘

bK – Fpa1q b Fpa2q . (14.11)

This identification fixes the constant term left as dots in (14.10). Thus Rpuq
is identified with R`´ by the uniqueness of the latter.

14.3.3 The determinant of Rpuq

By construction, Rpuq is a product of two triangular operators, namely of
the composition

H¨GpX
A
q

StabC
ÝÝÝÝÑ H¨GpXq

Restriction
ÝÝÝÝÝÝÝÑ H¨GpX

A
q ,

and the inverse of the analogous composition for the other chamber. Each
of these operators has simple diagonal parts, yielding a factorization for the
determinant of the graded pieces of R. This gives an alternative derivation
of the product formula for the determinant of the Shapovalov form [56, 40].

14.3.4

From (13.16) and (13.17), we conclude

Rp0q “ p12q

where p12q is the permutation of the two factors. This is because

p12qα´p12q “ ´α´ .
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14.4 The 1{u expansion of R

14.4.1

In this section we derive an expansion of log Rpuq in inverse powers of the
spectral parameter u. We write

T pγq˘ “ ´
u

2
α´pγq ` T 1pγq˘ , T 1˘ “

1
4

:pα´q2 :pγq ˘ ~
2
Bα´pγq ` . . . ,

where dots stand for a constant term that cancels out of the equation

RT`pγqR
´1
“ T´pγq . (14.12)

We look for solutions in the form

R “ exp

˜

ÿ

ną0

rpnq

un

¸

where, in particular,

rp1q “
1

2

ż

:pα´q2 :p~q

is, up to normalization, the familiar classical R-matrix. We denote by Rpmq “

exp
´

ř

0ănďm
rpnq

un

¯

the successive approximations. The recurrence relations

for n ą 1 take the form
“

rpnq,α´pγq
‰

“ 2ru´n`1
s exppadplog Rpn´1q

qq ¨ T 1`pγq . (14.13)

where ru´n`1s denotes the coefficient of u´n`1. These fix rpnq uniquely up to
an additive constant. The constant is determined by the requirement that
rpnq annihilates the vacuum vector.

14.4.2

Solving equations (14.13), we obtain

rp2q “
1

6

ż

:pα´q3p~q :

rp3q “
1

12

ż

:pα´q4 :p~q ´
1

12

ż

:pα´q2 :p~eq (14.14)

´
1

12

ż

:
`

Bα´
˘2

:p2~3
` ~eq ,
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where
e “ ´detC2 P H¨Gpptq

is the handle-gluing element. Of course, since our Frobenius algebra is 1-
dimensional, all cohomology insertions may be converted to coefficients in
the formula.

14.4.3

Further structures in this expansion will be discussed elsewhere. Here we
only note the following. The normally ordered polynomials in the field α´

and its derivatives are, from definitions, vertex operators in the Heisenberg
vertex algebra. Integrals of such operators are known as residues of vertex
operators. They act as infinitesimal automorphisms of the Heisenberg vertex
algebra.

Theorem 14.4.1. The logarithm of R is a residue of a vertex operator, that
is

rpnq “

ż

: Pnpα
´, Bα´, B2α´, . . . ; ~, eq : p1q ,

for some polynomials Pn.

Proof. The commutator of a vertex operator with a residue of a vertex op-
erator is again a vertex operator. Therefore, by induction, the equation for
rpnq has the form

“

rpnq,α´pγq
‰

“ vertex operator .

One can see explicitly that this equation is solved by a residue of a vertex
operator.

14.4.4

Also note that in the grading such that

degα “ deg ~ “ 1 , deg e “ 2

the polynomial Pn is homogeneous of degree

degPn “ n` 2 .
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Chapter 15

Quantum multiplication for
Mpr, nq

We can now return to the formulas for quantum multiplication for Mpr, nq
using the computations of the last chapters.

15.1 Explicit formulas

Let us first state explicitly the operator for modified quantum multiplication
by c1pOp1qq. We will express them in terms of the Heisenberg operators

α
piq
k pptq and α

piq
´kp1q for k ą 0 and 1 ď i ď r. These satisfy the commutation

relations

rα
piq
k pptq, α

pjq
´kp1qs “ ´δi,jk “ δi,j ¨ k ¨ τpptq.

Up to a scalar operator, we have

Q “ Cubic`Quadratic` Purely Quantum

where we have decompose the contribution of classical multiplication into
cubic and quadratic expressions in the Heisenberg generators. The formula
for the cubic term is

Cubic “
r
ÿ

i“1

´
1

2

ÿ

n,mą0

´

t1t2α
piq
´np1qα

piq
´mp1qα

piq
n`mpptq ` α

piq
´n´mp1qα

piq
n pptqα

piq
m pptq

¯

.
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15 Quantum multiplication for Mpr, nq 224

The classical quadratic term is

Quadratic “ ´
r
ÿ

i“1

ÿ

ną0

pt1 ` t2q ¨ pai `
1´ n

2
q ¨ α

piq
´np1qα

piq
n pptq

`
ÿ

iăj

ÿ

ną0

pt1 ` t2q ¨ n ¨ α
pjq
´np1qα

piq
n pptq .

The purely quantum term is

Purely quantum “ pt1 ` t2q
ÿ

ną0

nqn

1´ qn
¨ β´np1qβnpptq ,

where

β´np1q “
r
ÿ

i“1

α
piq
´np1q and βnpptq “

r
ÿ

i“1

αpiqn pptq

are the Baranovsky operators.

We can determine the scalar discrepancy as follows. For r ą 1, there is
no correction required. For r “ 1, we need to add the scalar term

´pt1 ` t2q
q

1´ q

ÿ

ną0

α´np1qαnpptq.

This follows from the evaluation of Q ¨ 1 which comes via the following
lemma.

Lemma 15.1.1. We have the following vanishing statement:

βkpptq ¨ 1 “ 0 , if k ě 2, or k “ 1 , r ě 2. (15.1)

Proof. The dimension of the fiber of the punctual Baranovsky correspondence
in (12.3) over a generic point of Mpr, nq is

r ¨ k ´ 1

which is positive under the hypotheses of the Lemma. Therefore, the push-
forward of the fundamental class under this projection vanishes.
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225 15.2 Generation statement

15.2 Generation statement

As a corollary, we can deduce the following:

Theorem 15.2.1. The divisor c1pOp1qq generates the quantum cohomology
ring of Mpr, nq.

Proof. It suffices to show that Qpq, t1, t2, a1, . . . , arq has distinct eigenvalues
for generic values of the parameters.

First, notice that by taking the substitution

t1 “ t, t2 “ t´1, ai “ tai

and studying the limit

Q0 “ lim
tÑ8

1

t
Q

as t Ñ 8, we can ignore the cubic term, and show the remaining operator
has distinct eigenvalues.

For n ě 1, let

Vn “
r
à

i“1

Qepiqn .

We have an identification

Fbr “ Sym˚
p
à

n

Vnq

characterized by sending vacbr to 1 and requiring α
piq
´np1q to act by multiplica-

tion by e
piq
n on the right-hand side. In other words, if we think of the left-hand

side as r-tuples of partitions, then the right-hand side is the decomposition
into parts of size k.

We can decompose Q0 in terms of Vn as follows. Let

Anpq, a1, . . . , arq “ ´n
r
ÿ

i“1

ˆ

ai `
1´ n

2

˙

Eii ` n
2
ÿ

iăj

Eji

`
n2qn

1´ qn

ÿ

i,j

Eji

be a matrix valued function acting on Vn, where Eji is the matrix with 1
in position pj, iq and 0 elsewhere. We extend An by zero to an operator on
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15 Quantum multiplication for Mpr, nq 226

À

Vn and, by the Leibniz rule, to a derivation DpAnq on Sym˚
p
À

Vnq. Then
it follows from our formulas that

Q0 “
ÿ

n

DpAnq.

In particular, the eigenvalues of Q0 are non-negative linear combinations
of the eigenvalues of An. The nondegeneracy of the spectrum of Q is a
consequence of the following lemma.

Lemma 15.2.2. For very general values of a1, . . . , ar and q, there is no
nontrivial finite linear relation

ÿ

n,i

cn,iγ
piq
n “ 0 (15.2)

between the eigenvalues tγ
piq
n u of Anpq, a1, . . . , arq, with cn,i P Q.

Proof. Suppose otherwise. Then there exists such a relation that is valid for
all values of parameters for which the operators An are well-defined. Let n
be the largest index appearing in the relation with some nonzero coefficient
cn,i.

Fix a base point p “ rq “ 0, a1, . . . , ars P C ˆ Cˆr so that the ai are
distinct. The eigenvalues of Anppq are

γpiqn ppq “ ´n

ˆ

ai `
1´ n

2

˙

, i “ 1, . . . , r.

Let U Ă C ˆ Cˆr be the complement of the discriminant loci for Ajpq, aiq
with j ď n; each Aj has nondegenerate spectrum over U . Since p P U , we
know that U is nonempty.

Let ζ “ e2πi{n be a primitive n-th root of unity. Choose an analytic path
Γ : r0, 1q Ñ U such that Γp0q “ p,

lim
sÑ1

Γpsq “ pζ, a11, . . . , a
1
rq,

and that Γ meets the hypersurface q “ ζ transversely at this limit point.
As q Ñ ζ, the last term in the formula for An dominates the others. Since
the matrix

ř

i,j Eij has eigenvalues t1, 0, . . . , 0u, it follows from perturbation
theory of linear operators that one of the eigenvalues of An goes to infinity
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227 15.2 Generation statement

on the order of 1
|q´ζ|

as s Ñ 1, while the others grow at a slower rate (or

remain bounded). Without loss of generality, we can assume that it is γ
p1q
n .

Furthermore, for j ă k, the operator Aj has a well-defined limit as q Ñ ζ, so
its eigenvalues remain bounded.

Therefore, if we take the relation (15.2) along the path Γ, γ
p1q
n dominates

the other terms, so this forces its coefficient to vanish:

cn,1 “ 0.

For 1 ă i ď r, if we choose a permutation σ of 1, . . . , r that sends 1 to
i, then we can choose a path from p to σppq, contained in the hyperplane
q “ 0, and concatenate with the path σpΓq starting from σppq. Under this

concatenation, the eigenvalue γ
piq
n is now the dominant term, so this forces

cn,i “ 0

for all i. This is a contradiction, so no nontrivial relation exists.

227



15 Quantum multiplication for Mpr, nq 228

228



Chapter 16

Gamma functions

16.1 The bundle pV

16.1.1

Recall that the main ingredient in the construction of the core Yangian Y is
the Chern character of

pV “ V ´ ~´1
b C´1W .

We begin by identifying this K-theory class for the moduli spaces of framed
sheaves.

Let t1, t2 denote the weights of the Gedge “ GLp2q action on C2. Then ~ “
t´1
1 t´1

2 , written multiplicatively, and the equivariant Cartan matrix equals

C “ p1´ t1qp1´ t2q ,

as already discussed in Section 2.5.9. If

w “
ÿ

ai

is the character of the framing space then

~´1
b C´1W “

ř

ai

p1´ t´1
1 qp1´ t

´1
2 q

“ character H0
pC2,Obrq (16.1)

where GLp2q acts on C2 and Gw “ GLprq acts by automorphisms of the
trivial bundle Obr. In gauge theory, Gw is known as the group of constant
gauge transformations.

This gives us the following interpretation of pV .
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16 Gamma functions 230

16.1.2

In the sheaf language, the tautological bundle V is interpreted as the bundle
with fiber H1pP2,Fp´1qq over F PMprq, where p´1q denotes twisting down
by the line at infinity. We claim

pV “ ´H0
pC2,Fq

in K-theory of Mprq. Indeed, consider the following exact sequence of
sheaves on P2

0 Ñ Fp´1q Ñ Fp`8q Ñ
à

dě0

OP1pdq‘r Ñ 0 ,

where P1 “ P2zC2 is the line at infinity. From the corresponding long exact
sequence and its special case F “ O, we obtain

0 Ñ H0
pC2,Fq Ñ H0

pC2,O‘rq Ñ V Ñ 0 ,

as desired.

16.2 Barnes’ Γ-function

16.2.1

Moduli spaces of framed sheaves provide a nice example of the Γ-function
regularization from Section 6.1.10. In particular, the bundle (6.10) for w “
w1 “ 1 specializes to the negative of (16.1) with r “ 1 and a1 “ 1.

We have
character H0

pC2,Oq_ “
ÿ

i,jě0

a´1ti1t
j
2

thus, symbolically,

cpH0
pC2,Oq_, uq ““ ź

i,jě0

pu´ a` t1i` t2jq” .

This is regularized using Barnes’ multiple Γ-function (specifically, double
Γ-function), see [106] for a modern reference, with the result that

cpH0
pC2,Oq_, uq “ Γpu´ a| t1, t2q

´1 . (16.2)

Note that the same regularization (and, essentially, for the same reason)
appears as the perturbative part of Nekrasov partition functions, see [93].
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231 16.3 The matrix pR

16.2.2

By definition,

log Γpu| t1, t2q “
B

Bs
ζps, u| t1, t2q

ˇ

ˇ

ˇ

s“0
,

where

ζps, u | t1, t2q “
1

Γpsq

ż 8

0

dz

z
zs

e´uz

p1´ e´t1zqp1´ e´t2zq
, <s ą 2 .

An asymptotic expansion of ζps, u | t1, t2q as u Ñ `8 may be obtained by
expanding

1

p1´ e´t1zqp1´ e´t2zq
“

ÿ

kě´2

zk chkH
0
pC2,Oq

and integrating term-wise to get

ζps, u | t1, t2q “
ÿ

kě´2

Γps` kq

Γpsqus`k
chkH

0
pC2,Oq . (16.3)

Since
B

Bs

Γps` kq

Γpsqus`k

ˇ

ˇ

ˇ

ˇ

s“0

“ p´1qk`1 lnpkq u ,

this verifies the agreement between (6.9) and (16.2).

16.3 The matrix pR

16.3.1

For w “ a1 and w1 “ a2 the Γ-factor from (6.11) specializes to

Γpu |w,w1q “
cpH0pC2,Oq_, u´ ~q
cpH0pC2,Oq_, uq

“

“
Γpu| t1, t2q

Γpu` t1 ` t2 | t1, t2q
“ uΓpu| t1qΓpu| t2q , (16.4)

where u “ a1 ´ a2 and Γpu | t1q is the single Barnes’s Γ-function, defined

similarly1. We define pR “ Γpu |w,w1qR.

1 It is related to Euler’s Γ-function by

Γpu | t1q “
expppu{t1 ´ 1{2q ln t1q

?
2π

Γpu{t1q .
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16.3.2 Zero modes and the singular part of pR

From (16.3), or the Stirling formula, we compute

1

~
ln Γpu´ a |w,w1q “ τp1q lnp´1q u´ τpaq lnu

`

ˆ

1

2
τpa2

q ´
1

12

˙

1

u
`O

ˆ

1

u2

˙

(16.5)

as uÑ 8. This gives the following identification of the central operators c´2

and c´1 from Section 6.1.11. Write M∅,∅ for the xw| ¨ |wy vacuum matrix
element of an operator M corresponding to w “ 1. Then

pc´2q∅,∅ “ τp1q r , pc´1q∅,∅ “ β0p1q ,

where r “ v is the rank and

β0 “

r
ÿ

i“1

1b ¨ ¨ ¨ b α0 b ¨ ¨ ¨ b 1

is the 0th Baranovsky operator. Here and in what follows we identify

H¨G
`

MprqA
˘

bK – Fpa1q b ¨ ¨ ¨ b Fparq , (16.6)

generalizing (14.11) to arbitrary rank. Thus the zero modes appear in the
Yangian.

Note by construction the operators pc´iq∅,∅ have the same span as the

operators chi pV for i P t´2,´1u.

16.3.3

We stress that in what follows we adopt the identification (16.6) and that,
for now on, all formulas involving α include the zero modes.

16.3.4

Similarly, consider the vacuum-vacuum matrix element of the regular part
pRreg of pR, as in Section 6.1.11. The new terms coming from (16.5) give

1

~

„

1

u



´

pRreg

¯

∅,∅
“

r
ÿ

i“1

1b ¨ ¨ ¨ b pL0 b ¨ ¨ ¨ b 1
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233 16.3 The matrix pR

where
pL0 “

1
2

ż

:α2 :p1q ´ 1
12
,

where we keep the zero modes, compare with (13.7). Note the familiar
ζp´1q “ ´ 1

12
term.

16.3.5

Recall the classical r-matrix (12.14) and note its matrix elements gave

βnp1q, β´npptq P Ypzglp1qq , n ą 0 .

Since the core Yangian is an algebra over krδ´1
s where

δ “ t1t2 ,

we have
β´np1q “ δ

´1 β´npptq P Ypzglp1qq .
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Chapter 17

Core Yangian modulo ~

17.1 Semiclassical R-matrix

17.1.1

Since ~ “ ´t1´ t2 does not divide δ “ t1t2 we may study Y modulo ~, which
leads to great simplifications.

Define the semiclassical R-matrix Rsc by

pRpuq “ 1` ~Rscpuq `Op~2
q .

Modulo ~, the generators of Y are primitive and act by matrix coefficients
of Rsc.

The Yang-Baxter equation becomes the classical Yang-Baxter equation
for Rsc. It implies the generators of Y{~Y form a Lie algebra gsc and

Y{~Y – Upgscq .

17.1.2

The Lie algebra gsc may be described explicitly by its action in the basis of
stable envelopes of MprqA, where

A Ă SLp2q ˆGLprq

is a maximal torus. Since MprqA is finite, the classes of A-fixed points form
an eigenbasis for operators of classical multiplication.
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17 Core Yangian modulo ~ 236

In A-equivariant cohomology, stable envelopes are proportional to fixed
points, and thus diagonalize operators of classical multiplication. Steinberg
correspondences act nicely in this basis by the general principles explained
in Section 4.6.

17.1.3

The fixed points of the maximal torus of SLp2q on the Hilbert schemes are
Nakajima varieties of type A8, see in particular Section 4.3.6. We will see a
close connection between gsc and the corresponding Lie algebra glp8q.

17.2 Stable basis for Hilbn

17.2.1

The stable basis for Mp1q “ Hilb is identified as follows. Let

"ˆ

z
z´1

˙*

Ă SLp2q

be the standard maximal torus. To match standard symmetric functions
conventions, we choose the z Ñ 8 chamber, that is,

C “ tu ă 0u ,

where u “ log z. The other choice may be obtained by a permutation of
coordinates.

A subscheme of C2 has a z Ñ 8 limit if and only if it is set-theoretically
supported on the x2-axis

`2 “ tx1 “ 0u .

In particular, the stable basis must be a Q-linear combination of the Naka-
jima descendents of the x2-axis

pµ “
ź

α´µip`2q |y .

The notation is chosen to agree with the traditional map of the equivariant
cohomology of the Hilbert scheme to symmetric function that takes

α´kp`2q ÞÑ multiplication by pk . (17.1)
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237 17.2 Stable basis for Hilbn

17.2.2

Recall the sign-twisted inner product on cohomology from Section 3.1.3 and
transport it to symmetric functions using (17.1). This gives the Jack inner
product on symmetric functions

rpτk, pls “ δkl k p´t1{t2q

with parameter ´t1{t2. In [70], this parameter is denoted α.
Gram-Schmidt orthogonalization of monomial symmetric function mλ

with respect to this inner product gives, by definition, the basis of Jack
symmetric functions. We define

Jλ “ t
|λ|
2 ¨ integral Jack polynomial as in [70] .

This is normalized so that

Jλ “
ź

˝Pλ

pt2plp˝q ` 1q ´ t1 ap˝qqmλ ` . . . (17.2)

and is a polynomial in t1, t2 of degree |λ|. Here

ap˝q “ λi ´ j , lp˝q “ λ1j ´ i

denote the arm- and leg-length of a square ˝ “ pi, jq in the diagram λ. Note
that the product in (17.2) is the Euler class of N` at the monomial ideal

Iλ “
`

xλi1 x
i´1
2

˘

i“1,2,...
P Hilb . (17.3)

17.2.3

The following is well-known and is a a consequence of the orthogonality of
classes of fixed points r Iλs in cohomology

Proposition 17.2.1 ([85, 124, 69]). The map (17.1) sends r Iλs to Jλ.

17.2.4

Let us polarize HilbA by the Euler class of N´. We then have the following

Proposition 17.2.2. The map (17.1) sends the stable envelope of Iλ to the
Schur function sλ.
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17 Core Yangian modulo ~ 238

Proof. Schur functions are triangular with respect to Jλ and proportional
to them modulo ~. This shows stable envelopes are proportional to Schur
functions. By (17.2) we have

Jλ “ epN`q sλ ` . . . ,

which fixes the normalization.

17.3 Differential operators on Cˆ and glp8q

17.3.1

Let ea denote the function
eapxq “ eax . (17.4)

Let ε P Cˆ be a parameter and consider

Dassoc “ C xD, e˘εy , D “
d

dx
.

It may be identified with differential operators on Cˆ via the map z “ eε.
The parameter ε may be scaled away but it will be convenient to keep it. We
denote by

D “ pDassocqLie

the same algebra viewed as a Lie algebra.
The center of D is spanned by 1 P Dassoc which we denote by D0 to avoid

confusion.

17.3.2

The natural action of D on esCre˘εs, s P C, gives a family of embeddings

ρs : D ãÑ glp8q

into the Lie algebra glp8q of all infinite matrices with finitely many nonzero
diagonals. Its image is the unipotent Jordan block of the automorphism of
glp8q that corresponds to the shift of the Dynkin diagram.

The diagram shift automorphism is the deck transformation of the uni-
versal cover of the quiver with one vertex and one loop. From this point of
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239 17.3 Differential operators on Cˆ and glp8q

view, the description ofD as automorphism-finite vectors in glp8q is intrinsic,
while its identification with differential operators is less so.

The Lie algebra glp8q has a central extension {glp8q which may be pulled
back to a central extension

0 Ñ Cc Ñ pD Ñ D Ñ 0 . (17.5)

This extension does not depend on s.
Representation theory of pD was studied by Kac and Radul [59] and many

others. Here we will see the simplest representations: those obtained from
the half-infinite wedge representations of glp8q.

17.3.3

By construction, the representation πs “
Ź8{2 ρs is the pD module with basis

|λ; sy “
8
ľ

i“1

epλi´iq ε`s , (17.6)

where
λ “ λ1 ě λ2 ě ¨ ¨ ¨ ě 0

is a partition. Usual rules of linear algebra give a well-defined answer for
the action of the off-diagonal elements of D in this basis. For the diagonal
elements, it is convenient to use the ζ-regularization

“
8
ÿ

i“1

ppλi ´ iq ε` sq
k” “ k! rxks es

8
ÿ

i“1

epλi´iq ε ,

where ea “ eapxq as in (17.4). Note

8
ÿ

i“1

epλi´iqε “
1

eε ´ 1
`

8
ÿ

i“1

“

epλi´iq ε ´ e´iε
‰

where the second term is a Laurent polynomial in eε. In particular,

πspD
0
q “

s

ε
´

1

2
.

The central extension (17.5) is normalized so that

πspcq “ 1 .
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17 Core Yangian modulo ~ 240

17.3.4

For Iλ as in (17.3) we have

ch pV
ˇ

ˇ

ˇ

Iλ
“ ´

ea

1´ e´t1

8
ÿ

i“1

e´λit1´pi´1q t2

where a is the framing weight and t1, t2 are the tangent weights of the two
coordinate axes. We see that if

t1 “ ´t2 “ ´ε

then the map

F paq Q Stab rIλs ÞÑ |λ; a` ε{2y (17.7)

identifies

ch pV “ c

εpeε{2 ´ e´ε{2q
`

1

eε{2 ´ e´ε{2
expD . (17.8)

Here exppDq is a generating function for the operators Dk P pD, in other
words

πs pexpDq “
ÿ

kě0

1

k!
πs
`

Dk
˘

‰ exppπspDqq .

17.3.5

Generalizing (17.8), we have

Proposition 17.3.1. The identification (17.7) gives

gsc –
pD .

Proof. It remains to check that it takes

α´kp`2q ÞÑ eεk P pD ,

which is easy. For example, mapping both sides of (17.7) to the Schur func-
tion sλ, this becomes the classical rule for multiplication of Schur functions
by power-sum functions.
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17.4 Plücker relations

17.4.1

Let ψa be the operator of wedge product by ea

ψa v “ ea ^ v

and let ψ˚a be the adjoint operator with respect to inner product in which
the vectors (17.6) are orthonormal. More canonically, the operators ψ˚a are
associated to bases of representations dual to ρs.

17.4.2

Consider the operator

Ω “
ÿ

aPs`Zε

ψa b ψ
˚
a

which depends only on the Zε-coset of s. It defines a map

Ω : πs b πs1 ÞÑ πs`ε b πs1´ε

provided

s1 ” s mod Zε .

This map commutes with glp8q and, hence, with pD.

17.4.3

Classically, Ω is used to describe the image of the natural embedding

GLpV q ãÑ GLpΛ¨V q ,

where V a vector space, which for simplicity can be assumed to be finite-
dimensional, see [57, 81]. Matrix elements of g P GLpV q acting on Λ¨V are
the minors of g.

Commutation with Ω gives quadratic relations for minors of g, analogous
to the better known Plücker relations among maximal minors of a rectangular
matrix (that is, among the Plücker coordinates on the Grassmann variety).
Here we use the term Plücker relations in the broader sense.
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17 Core Yangian modulo ~ 242

17.4.4

We denote by

Epλ, µ; s, uq “ xµ; s| Rscpuq |λ; sy

“
ÿ

kě´1

Epλ, µ; sqk lnpkqpuq .

matrix elements of Rsc in the first (by convention) tensor factor. Here
Epλ, µ; sqk P gsc and the singular central terms

ch´2
pV “ c

ε2
, ch´1

pV “ D0

ε

are only present if λ “ µ. By construction, Epλ, µ; s, uq only depend on u` s
in the sense that

@t Epλ, µ; s` t, u´ tq “ Epλ, µ; s, uq . (17.9)

17.4.5

By construction, Epλ, µ; sqk generate Y{~Y and all relations between these
generators are linear. Among them are the Plücker relations, which become
linear

rξ b 1` 1b ξ,Ωs “ 0 , ξ P gsc , (17.10)

at the Lie algebra level.

Proposition 17.4.1. Plücker relations and (17.9) span all linear relations
among matrix elements of Rsc.

This statement is a variation on the classical theme. For convenience, we
give a proof.

17.4.6

We divide the proof of Proposition 17.4.1 into a sequence of lemmas.

Lemma 17.4.2. Suppose ψ˚a |λy ‰ 0 and |µy ‰ ψb ψ
˚
a |λy for all b. Then

xµ| ξ |λy “ xµ|ψa ξ ψ
˚
a |λy

for all ξ P gsc.
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Note the hypothesis of the Lemma implies µ ‰ λ.

Proof. Expand

0 “ xµ, λ| 1b ψa

”

ξ b 1` 1b ξ,Ω
ı

ψ˚a b 1 |λ, λy (17.11)

where |µ, λy “ |µy b |λy.

Corollary 17.4.3. Plücker relations imply

Epλ, µ; s, uq ‰ 0 ùñ |µy “ ψb ψ
˚
a |λy

for some a, b P s` Zε.

In the language of Chapter 11, this means the corresponding points of the
half-infinite Grassmannian must lie on a line.

Proof. Otherwise, we can find a in Lemma 17.4.2 such that xµ|ψa “ 0.

17.4.7

Let λ ‰ µ lie on a line, which means that there exists k, l P Z such that

tku “ SpλqzSpµq , tlu “ SpµqzSpλq ,

where Spλq “ tλi ´ iu Ă Z. Using Lemma 17.4.2, we can add or remove
elements in Spλq XSpµq, which means there exists Eklps, uq such that

Epλ, µ; s, uq “ ˘Eklps, uq

with the sign determined from the action of the operators ψ˚a in the basis
|λy. Lemma 17.4.2 further implies

Ek`1,l`1ps, uq “ Eklps` ε, uq

“ Eklps, u` εq , (17.12)

where the second step is based on (17.9).
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17 Core Yangian modulo ~ 244

17.4.8

Now consider diagonal matrix elements of Rsc. Here we have the following

Lemma 17.4.4. Suppose ψ˚a |λy ‰ 0 and ψ˚a |µy ‰ 0. Then

xλ| ξ |λy ´ xλ|ψa ξ ψ
˚
a |λy “ xµ| ξ |µy ´ xµ|ψa ξ ψ

˚
a |µy (17.13)

for all ξ P gsc.

Proof. Expand xλ, µ| 1b ψa

”

ξ b 1` 1b ξ,Ω
ı

ψ˚a b 1 |λ, µy .

We denote the difference of the matrix elements in (17.13) by Ekkps, uq,
where a “ kε` s. For example,

E0,0ps, uq “ Ep∅,∅; s` ε, uq ´ Ep∅,∅; s, uq .

One can choose a different parameter s1 P s`Zε for µ in (17.13) which shows
the relation (17.12) is valid for k “ l.

17.4.9

Symbolically, Lemma 17.4.4 and (17.12) shows

Epλ, λ; s, uq ““ ÿ

kPSpλq

E00ps, u` kεq” .

A better way to write this relation is the following.
For each partition λ, define

cornersλ : ZÑ t˘1, 0u

as the difference of the following indicator functions

cornersλ “
ÿ

inner corners ˝

δcp˝q ´
ÿ

outer corners ˝

δcp˝q .

Here cp˝q “ j ´ i is the content of the square ˝ “ pi, jq. This may also be
defined using the identity

ÿ

k

cornersλpkq t
k
“ pt´ 1q

ÿ

tλi´i .

Lemma 17.4.5.

Epλ, λ; s, uq “
ÿ

k

cornersλpkq Ep∅,∅; s, u` kεq .

Proof. Follows from Lemma 17.4.4 and (17.12).
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245 17.4 Plücker relations

17.4.10

Proof of Proposition 17.4.1. Previous lemmas reduce the matrix elements of
Rsc to shifts in u of the operators Ep∅,∅; s, uq and Ek0ps, uq, k ‰ 0.

The algebra gsc is graded by eigenvalues of the adjoint action of D, this
is the grading by the difference k ´ l of Ekl. Each graded piece is further
filtered by the degree in u, with 1-dimensional factors. This shows there
are no further linear relations among the coefficients of Ep∅,∅; s, uq and
Ek0ps, uq, k ‰ 0.

17.4.11

The factorization of Section 4.3.6 gives the following formula for the semi-
classical R-matrix

Rsc “
ÿ

i,j,kPZ

Eij b Ej`k,i`k
u´ kε

(17.14)

in terms of the classical R-matrix

rglp8q “
ÿ

i,jPZ

Eij b Eji

for glp8q. The operator (17.14) acts in half-infinite wedge representations of
glp8q via the ζ-regularization discussed in Section 16.2.2.

It is instructive to retrace the steps of the above proof with this explicit
formula.
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Chapter 18

The Yangian of zglp1q

18.1 Generators of the core Yangian

18.1.1

By Theorem 6.1.4, Y is generated by the Baranovsky operators βn and chk pV
for k “ ´2,´1, . . . . Here, for brevity, we write βn “ βnp1q.

The following theorem shows it suffices to add a single operator ch1
pV to

the Baranovsky operators to generate the Yangian.

Theorem 18.1.1. The core Yangian Y is generated by the Baranovsky op-
erators β˘1, and the operator of cup product by

pQcl “ ch1
pV

of cup product by ch1 of the bundle pV “ ´H0pC2,Fq .

Proof. Follows from the corresponding statement modulo ~.

18.1.2

The generation statement can be made more effective using the the following
geometric fact. Parallel results were proven by M. Lehn for the cohomology
of Hilbert schemes and by O. Schiffmann and E. Vasserot for the K-theory
of Mprq.
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18 The Yangian of zglp1q 248

Proposition 18.1.2. For any k and l,

”

adppQclq
kβ1, adppQclq

lβ´1

ı

(18.1)

is an operator of classical multiplication.

Proof. Recall that the Baranovsky operators β˘1 are defined using the cor-
respondence

B1 “ tpG, x,Fqu ĂMpr, n` 1q ˆ C2
ˆMpnq

formed by exact sequences

0 Ñ G Ñ F Ñ Ox Ñ 0 . (18.2)

On this correspondence, we have a tautological line bundle F{G and the

action of adppQclq introduces a factor of

c1pF{Gq “ ´ ch1pH
0
pC2,Gqq ` ch1pH

0
pC2,Fqq P H2

GpB1q .

Therefore

´

adppQclq
kβ1pγq

¯

˝

´

adppQclq
lβ´1pγ

1
q

¯

“

p´1qrpπ13q˚
`

p´c1pF1{Gqqk c1pF2{Gql π˚45pγ ˆ γ
1
q
˘

where πij are the projections to respective factors in the correspondence

tpF1,G,F2, x1, x2qu ĂMpr, nq ˆMpr, n` 1q ˆMpr, nq ˆ C2
ˆ C2

in which Fi{G – Oxi . The p´1qr factors comes from our sign conventions,
see Section 12.2.4.

The product adppQclq
lβ´1 adppQclq

kβ1 in the opposite order is, similarly,
computed by pushing forward

p´1qr c1pG 1{F1q
l
p´c1pG 1{F2qq

k

along the G 1-factor in the correspondence defined by

G 1{Fi “ Ox3´i
, i “ 1, 2 .
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249 18.1 Generators of the core Yangian

We now note that outside of the diagonal F1 – F2 the two correspondences
are canonically isomorphic, because necessarily

G 1 “ F1 ` F2 , G “ F1 X F2 ,

as subsheaves of the common double dual F__1 “ F__2 . Clearly,

Fi{G – G 1{F3´i

which identifies the integrands and shows the commutator (18.1) is supported
on the diagonal F1 – F2. This means it is an operator of classical multipli-
cation.

From the proof above we have the following

Corollary 18.1.3.

”

adppQclq
kβ1, adppQclq

lβ´1

ı

“ p´1qk
”

β1, adppQclq
k`lβ´1

ı

18.1.3

The commutator in Proposition 18.1.2 can be explicitly identified. We do it
using equivariant localization following [108].

To set up equivariant localization, we need to identify the the normal
bundle to B1. We have the following

Proposition 18.1.4. The tangent bundle to B1 fits into an exact sequence
of the form

0 Ñ TB1 Ñ TMpr, n` 1q ‘ TMpr, nq Ñ
Ñ Ext1

pG,Fp´1qq Ñ Cp´~q Ñ 0 , (18.3)

where Cp´~q is the trivial bundle with equivariant weight ´~.

In particular, B1 is smooth, which is a special case of Theorem 5.7 in [87].
The sequence (18.3) may also be found there for more general Hecke corre-
spondences among Nakajima varieties.
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18 The Yangian of zglp1q 250

Proof. Let

ξ “ pξG, ξFq P Ext1
pF ,Fp´1qq ‘ Ext1

pG,Gp´1qq

be a tangent vector to Mpr, n ` 1q ˆMpr, nq. A sheaf homomorphism (in
our case, inclusion)

φ : G Ñ F
deforms with ξ to first order when the commutator

rξ, φs “ ξF φ´ φ ξG P Ext1
pG,Fp´1qq (18.4)

vanishes. Here

ExtipA,Bq b ExtjpB, Cq Ñ Exti`jpA, Cq

is the usual composition of Ext groups. Note that

rk Ext1
pG,Fp´1qq “ 2rn` r ,

while
dimMpr, n` 1q ˆMpr, nq ´ dimB1 “ 2rn` r ´ 1 .

In fact, the obstruction rξ, φs to deforming φ lies in the following corank 1
subbundle of Ext1

pG,Fp´1qq.
For every deformation of F there is some deformation of G Ă F . This

means the image of ξF ÞÑ ξF φ lies in the image of ξG ÞÑ φ ξG and hence the
obstruction rξ, φs lies in the image of the first arrow in the following piece of
the long exact sequence

Ext1
pG,Gp´1qq Ñ Ext1

pG,Fp´1qq Ñ Ext1
pG,Oxq Ñ

ÑExt2
pG,Gp´1qq .

By Serre duality,
Ext2

pG,Gp´1qq “ 0,

while
Ext1

pG,Oxq_ bOp´~q “ Ext1
pOx,Gq .

We have
Ext1

pOx,Gq
ˇ

ˇ

B1
– C ,

canonically trivialized by the class of the extension (18.2). This gives the
exact sequence stated.
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251 18.1 Generators of the core Yangian

18.1.4

Suppose we are at a fixed point pG, 0,Fq P B1 of the torus action. Consider
a free resolution of F and its restriction to C2

0 Ñ
à

OC2pwiq Ñ
à

OC2pviq Ñ F
ˇ

ˇ

ˇ

C2
Ñ 0 (18.5)

where vi, wj P pLieGq˚ are the equivariant weight of the generators and rela-
tions. (Note that these include the framing weights.) We have

chF “
ÿ

evi ´
ÿ

ewi ,

and
chG “ chF ´ evkp1´ e´t1qp1´ e´t2q

if the generator with weight vk surjects onto F{G. The characters of the
Ext-groups in (18.3) are computed as follows

ch Ext1
pG,Fp´1qq “

p1´ chG chFq
p1´ e´t1qp1´ e´t2q

,

where bar denotes the dual representation, that is, ev “ e´v.
Let NpG,x,FqB1 denote the normal bundle to the Baranovsky correspon-

dence at the at the point pG, x,Fq

Lemma 18.1.5. We have

ch NpG,x,FqB1 ´ ch TpG,x,FqB1 “ e´~´vk chG ´ evk chG ´ e´~ ` 1

“ e´~´vk chF ´ evk chF ´ e´~ ` 1 ,

where vk is the weight of G{F .

Note that the trivial weight 1 here cancels with the trivial weight that comes
from the expansion of evk chG, and similarly for the weights ´e´~.

Proof. Direct computation from (18.3) .

Proposition 18.1.6. We have
«

β1pγ1q,
1

u´ adppQclq
β´1pγ2q

ff

“
1

~

ż

C2

ˆ

1´
cpF_ b ~, uq
cpF_, uq

˙

γ1γ2 , (18.6)

where F is the universal sheaf on Mprq ˆ C2, the right-hand side is viewed
as operator of cup-product by this cohomology class in H¨GpMprqq.
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18 The Yangian of zglp1q 252

Note, for example, that the 1{u term here gives the familiar result

rβ1pγ1q, β´1pγ2qs “ ´

ż

C2

γ1γ2 rkF “ r τpγ1γ2q .

It is clear from Grothedieck-Riemann-Roch that the right-hand side of (18.6)

generates the same algebra as chk pV .

Proof. We use equivariant localization. Let F be a torus-fixed sheaf as in
(18.5) and let

rFs P H2 dim
G pMpr, nqq ,

denote the class of this fixed point. The computation of
˜

β1pγ1q ˝
1

u´ adppQclq
β´1pγ2q ¨ rFs, rFs

¸

M

prFs, rFsq

is given by summing 1{pu´ viq over all generators of F with a certain equiv-
ariant weight that accounts for the normal bundle to B1 and for the tangent
bundle toMpr, n`1qˆMprqˆpC2q2. This equivariant weight is determined
from Lemma 18.1.5.

The product in the opposite order involves summation over all relations
wi in the resolution (18.5), because they correspond to torus-fixed sheaves
that contain F . The new generator has weight wi ´ ~, therefore we sum
1{pu´ wi ` ~q with a weight which is again computed from Lemma 18.1.5.

The resulting sum simplifies using the elementary identity

ÿ

k

~
u´ vk

ź

i‰k

vk ´ vi ` ~
vk ´ vi

ź

i

vk ´ wi
vk ´ wi ` ~

´
ÿ

k

~
u´ wk ` ~

ź

i‰k

wk ´ wi ´ ~
wk ´ wi

ź

i

wk ´ vi
wk ´ vi ´ ~

“

ź

i

u´ vi ` ~
u´ vi

ź

i

u´ wi
u´ wi ` ~

´ 1 , (18.7)

which is proven by observing that it is a partial fraction expansion in the
variable u. (This identity also appears in [108].) Since

cpF_, uq “
ź

i

pu´ viq
L

ź

i

pu´ wiq

the result follows.
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253 18.2 Slices and screening operators

Another proof of Theorem 18.1.1. Follows from the above proposition and
Theorem 6.1.4.

18.2 Slices and screening operators

18.2.1

In Section 6.2 we constructed geometrically core Yangian intertwiners from
slices. In this section, we identify algebraically the intertwiner corresponding
to the slices from Section 2.5.9. They turn out to be the well-known screening
operators for Virasoro modules.

By the boson-fermion correspondence, screening operators specialize to
Plücker relations modulo ~. Thus, by Proposition 17.4.1, they generate the

relations in the core Yangian of zglp1q. Hence, for Ypzglp1qq, the answer to the
question from Section 6.4.3 is affirmative.

18.2.2

We recall some basic notion, in the generality of Chapter 13.
A field Y pη, zq “

ř

n Ynpηq z
´n is called primary of dimension λ P H if it

satisfies the OPE

T pγ, zqY pη, wq „
zw

pz ´ wq2
Y pλγη, wq `

zw

z ´ w

B

Bw
Y pγη, wq .

Equivalently,

rLnpγq, Ympηqs “ Ym`n
`

pnλ´ n´mqq γη
˘

.

In particular, if λ “ 1 then the operator

Y0pηq “

ż

Y pη, zq

commutes with all operators Lnpγq.

18.2.3

Define normally ordered exponential of a field Y pγ, zq by

:expY pzq :pγq “ τpγq` :Y pzq :pγq `
1

2
:Y pzq2 :pγq ` . . . ,
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18 The Yangian of zglp1q 254

where terms of the form : Y pzqn : pγq are defined using the n-fold coproduct
HÑ Hbn as in Section 13.2.

These satisfy the usual rules like

B

Bz
: expY pzq :pγq “:

ˆ

B

Bz
Y pzq

˙

expY pzq :pγq .

18.2.4

Let η be an eigenvector of multiplication operators in H. We define η_ by

γη “ pγ, η_q η , (18.8)

for all γ P H. Define
Vµpzq “: expµφ´pzq :pηq

where
φ´ “ φp1q ´ φp2q

is the antiderivative of the field α´, see Section 13.1.4. In particular, we have

α´pγ, zqφ´pη, wq „
2z

z ´ w
pγ, ηq ` . . . (18.9)

18.2.5

Since the operator Vµ involves αlog, it has nontrivial commutation relations
with α´0 , namely

“

α´0 pγq,Vµpzq
‰

“ 2µpγ, η_qVµpzq .

This means

Vµ : Fpa1q b Fpa2q Ñ Fpa1 ´ µ η
_
q b Fpa2 ` µ η

_
q .

18.2.6

Proposition 18.2.1. If η is an eigenvector of multiplication as in (18.8)
then the operator

zµ
2pe,η_qVµpzq

is primary for T pz,Kq of dimension

λ “ µ2e´ µK .
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255 18.2 Slices and screening operators

Here e P H is the handle-gluing element.

Proof. This is a standard computation that uses (18.9) and Lemma 13.2.1.

18.2.7

In particular, primary of dimension 1 can give rise to Virasoro intertwiners.
In the case

H “ H¨GpC2
q

„

1

det2
C



, K “ ~ “ ´t1 ´ t2 , η_ “ e “ ´t1t2 , (18.10)

we have

µ2e´ µK “ 1 ñ µ “
1

t1
,

1

t2
.

For the integral
ş

zµ
2pe,η_qVµpzq to be well-defined, the integrand has to have

integral powers of z. The nonintegral powers of z come from the log z term
in φ´, namely

eµ log z α´0 pηq
ˇ

ˇ

ˇ

Fpa1qbFpa2q
“ z´µpa1´a2,η_q τpηq .

For the case (18.10), this integrality constrain becomes

pµ2e´ µpa1 ´ a2q, η
_
q “ ´

t2
t1
´
a1 ´ a2

t1
“ ´n P Z , µ “

1

t1
,

and similarly for µ “ 1{t2.

18.2.8

Theorem 18.2.2. For every n P Z the screening operator
ż

z
´
t2
t1 V 1

t1

pzq : Fpa2 ` nt1 ´ t2q b Fpa2q Ñ Fpa2 ` nt1q b Fpa2 ´ t2q

is a map of Y-modules.

Proof. The operator clearly commutes with the Baranovsky operators and
intertwines the Virasoro operators T`pzq by Proposition 18.2.1. Formula
(14.9) expresses the operator of classical multiplication by divisor in terms
of the Baranovsky operators and T`pzq, therefore the screening operator
intertwines it as well. Now Theorem 18.1.1 finishes the proof.
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18 The Yangian of zglp1q 256

18.2.9

Note, in particular, the screening operators annihilates the vacuum vector
for n ă 0. This is reflected in the poles of the Rpuq at

u “ ~, ~´ t1, ~´ 2t1 , . . . .
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Chapter 19

Yangian and vertex algebras

19.1 The operator pQcl

19.1.1

Since the operator pQcl plays an important role in Theorem 18.1.1, we give a
formula for it that modifies the formula in Theorem 14.2.3.

More compact formulas are obtained for Chern character of pV b ~1{2,
where ch ~1{2 “ e~{2. This is the familiar twist by the square root of the
canonical bundle (of C2, in this case). However, only the overall shape of the
formula will be used below, not the details.

We define

pΩ “ 1
2

ż

:β |B|β :p1q ,

as in Section 14.2.2 and denote by

Cą “ ta1 ą ¨ ¨ ¨ ą aru

the standard chamber for A. The analog of Theorem 14.2.3 is the following

Proposition 19.1.1. Under the identification

Fpa1q b ¨ ¨ ¨ b Fparq
StabCą
ÝÝÝÝÝÑ H¨GpMprqq bK ,
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19 Yangian and vertex algebras 258

as in (16.6), we have

ch1

´

pV b ~1{2
¯

“ ´
ÿ

i

1
6

ż

:
`

αpiq
˘3

:p1q `
ÿ

i

1
24

ż

:αpiq :p~2
` 2eq

` 1
2
~
ÿ

iăj

ż

αpiq Bαpjqp1q ` 1
2
~ pΩ . (19.1)

For other chambers, one rearranges the
ř

iăj term accordingly.

Proof. The inclusion of zero modes and the b~1{2 twist removes the Φ2-term
from formula (14.6). Therefore, the two sides of (19.1) differ by a scalar
operator that we can determine by evaluating on the vacuum vector. This is
straightforward, using

´ ch1
ea´~{2

p1´ e´t1qp1´ e´t2q
“ 1

6
τpa3

q ´ 1
24
τpp~2

` 2eqaq ,

where ~ “ ´t1 ´ t2, e “ ´t1t2.

19.1.2

Let
Vr Ă EndFpa1q b ¨ ¨ ¨ b Fparq

denote the algebra generated by all Fourier coefficients of vertex operators,
that is,

ż

zn :P pαpiq, Bαpiq, B2αpiq, . . . q : P Vr

for any n P Z and any normally ordered polynomial P in the fields αpiq,
i “ 1, . . . , r, and their derivatives.

Proposition 19.1.2. The action of Y on Fpa1qb ¨ ¨ ¨bFparq factors through
a map

YÑ Vr

“

pΩ
‰

. (19.2)

The map (19.2) is equivariant with respect to the translation automorphism.

Note the translation automorphism

ςc
`

αpiq
˘

“ αpiq ´ τpcq

of the Heisenberg vertex algebra has a natural extension to Vr

“

pΩ
‰

. This

extension leaves pΩ invariant.
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Proof. This follows at once from formula (19.1) and Theorem 18.1.1.

19.1.3

It may be curious to notice that the pΩ term disappears from the correspond-
ing quantum operator pQ upon averaging over all |q| “ 1 in the principal value
sense.

19.2 Yangian and W-algebras

19.2.1

Our goal in this section is to describe the image of the map (19.2) in terms
of the so-calledW vertex operator algebras. This provides a link to the ideas
of Alday, Gaiotto, and Tachikawa [2], the existence of which was suggested
to us by Nakajima and Tachikawa.

TheW-algebras first appeared in mathematical physics as extended sym-
metry algebras of conformal field theories, see for example [10] for a survey.
Following Feigin and Frenkel [38, 39], they may be described as explicit sub-
algebras of the Heisenberg vertex algebra. This is the description that we
use here.

19.2.2

Let K be a commutative ring and let

H – Kr

be a free K-module of rank r with a nondegenerate quadratic form. The setup
is like in Chapter 13, except neither product nor coproduct on H is required.
One should view H as a Cartan subalgebra of a reductive Lie algebra, with
the restriction of a an invariant bilinear form. Here we need the form

px, xq “
r
ÿ

1

x2
i , (19.3)

that corresponds to the Lie algebra glprq.
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19 Yangian and vertex algebras 260

One defines the Heisenberg algebra HeispHq as in Chapter 13 and the
algebra of Fourier coefficients of vertex operators

VpHq Ą HeispHq
as in Section 19.1.2. For any orthogonal decomposition H “ H1 ‘ H2, we
have

VpHq “ VpH1q pbVpH2q ,

where the completion is the usual completion required to collect terms in a
product of two series.

19.2.3

Let
η “ p0, . . . , 1,´1, . . . , 0q ,

range over the simple positive roots of glprq. For each η, consider the corre-
sponding Heisenberg field

αηpxq “
ÿ

n

`

αpiqn ´ α
pi`1q
n

˘

x´n´1 .

Here we denote the argument by x to emphasize a small discrepancy between
the conventions of Chapter 13 and standard CFT conventions. In Chapter 13,
the arguments of the fields were coordinates on Cˆ. Here x is a coordinate
on C and the exponents of x are shifted by 1, that is, by the conformal
dimension of the field.

Since pη, ηq “ 2, we have

αηpxqαηpyq „
2

px´ yq2
,

and the field

Tη “
1

4
:α2

η : `
κ

2

Bαη
Bx

generates a Virasoro vertex algebra which we denote by

Virη Ă VpKηq .
Here κ is a parameter that enters the definition of the W-algebra. To match
it to conventions in the literature, we note that

κ “
β
?

2
´

?
2

β

in the book [45] and that the central charge of Virη equals 1´ 6κ2.
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19.2.4

By definition, see for example [45], a vertex operator algebra is a collection
of operator-valued distributions, called vertex operators, satisfying certain
axioms. In CFT, these correspond to local chiral operators and, as in any
mathematical formulation of QFT, the locality of these operators is really
the key axiom. A specific feature of 2-dimensional conformal field theories is
the presence of the Virasoro algebra among its chiral operators.

While the language of vertex operators is very rich and concise, for our
current purposes it will be sufficient to work with the following classical
algebraic structures associated to a vertex algebra:

— the associative algebra generated by the Fourier coefficients of vertex
operators, such as VpHq, Wpglprqq, or Virη,

— the Lie algebra generated by the Fourier coefficients of vertex operators
with respect to the commutator, which will be indicated by a subscript
like VLiepHq, WLiepglprqq, or Virη,Lie

see Chapter 4 in [45]. Clearly, the latter generates the former.
To describe the Wpglprqq as a subalgebra of VpHq, we will use the fol-

lowing characterization due to Feigin and Frenkel. Recall that for each η we
have

VpHq “ VpKηq pbVpηKq .

Theorem 19.2.1 ([38, 39]). The algebra WLiepglprqq is the intersection

WLiepglprqq “
č

η

Virη,Lie pbVLiepη
K
q , (19.4)

where η ranges over the simple positive roots of glprq.

The following outline of the argument was kindly provided by E. Frenkel.

Proof. The proof proceeds in 4 steps.
First, for generic values of the parameter, the vertex W-algebra is equal

to the intersection of the kernels of the screening operators. This is the most
non-trivial step, proved in two ways: first, in Proposition 3 of [38] (this proof
is reproduced in Theorem 15.4.12 of [45]) and second, in Theorem 4.6.9 of
[39]).
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Second, in the case of slp2q, the kernel of the screening operator is the
Virasoro vertex algebra for generic values of the parameter. This is proved
in Proposition 4 of [38] (this proof is reproduced in 15.4.14 of [45]) and in
Proposition 4.4.4 of [39].

Next, the kernel of the i-th screening operator is equal to the the tensor
product of the Virasoro vertex algebra along the i-th simple root and the
Heisenberg vertex algebra orthogonal to the i-th root. The proof is given in
the proof of Proposition 5 in [38] and in 15.4.15 of [45].

Finally, the same results hold for the algebras of Fourier coefficients of
vertex operators. This is proved in Proposition 2 of [38] and Theorem 4.6.11
of [39].

We define
Wpslprqq “Wpglprqq X VpZKq

where Z Ă H Ă glprq is the center. This implies

Wpglprqq “ VpZq pbWpslprqq .

19.2.5

To compare this with our formulas, we take

γ “ 1 P H¨GpC2
q

in the formula (14.10). Since p1, 1qH¨GpC2q
“ τp1q, we have

our αnp1q “
a

τp1q standard αn

where Heisenberg operators associated to the quadratic form (19.3) are con-
sidered standard. Further, since

∆1 “
1b 1

τp1q

we have in (14.10)

“

z´n
‰

T`p1q “
“

x´n´2
‰

Tη

ˇ

ˇ

ˇ

ˇ

ˇ

α0 ÞÑ α0 `
1
2
κη

(19.5)
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where η “ p1,´1q is the root of glp2q and

κ “ ~
a

τp1q “ ´
t1 ` t2
?
´t1t2

. (19.6)

The shift of zero modes
´

α
p1q
0 , α

p2q
0

¯

ÞÑ

´

α
p1q
0 ` 1

2
~, αp2q0 ´ 1

2
~
¯

(19.7)

compensates for the difference between B “ z B
Bz

in T` and B

Bx
in Tη.

19.2.6

Generalizing (19.7), we incorporate the shift of the zero modes by κρ, where
ρ is the half-sum of positive roots, in the definition of Wpglprqq. This is an
automorphism of the ambient Heisenberg vertex algebra.

19.2.7

Nakajima varieties produce lowest weight Yangian modules. Any action of a
graded algebra A “

À

An on a lowest weight module canonically extends to
a certain completion A Ą A. Neighborhoods of zero in this completions are
left ideals generated by

À

nă´N An.

Proposition 19.2.2. The action of Y on Fpa1qb ¨ ¨ ¨bFparq factors through
a map

YÑ VpZq pbWpslprqq , (19.8)

where VpZq Ą VpZq is a completion as above.

Proof. Extract the η-component from the operator (19.1) as in Section 14.3.2.
Using (19.1) and (19.5), we conclude

pQcl PWLiepglprqq `K pΩb 1 ,

where the second term is written with respect to the decomposition H “

Z‘ Z
K. Therefore

pQcl, β˘1 P VpZq pbWpslprqq

and Theorem 18.1.1 completes the proof.
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19.2.8

The proof of (19.4) by Feigin and Frenkel uses a screening operators char-
acterization of Virη. Those can be matched to the screening operators of
Section 18.2.

19.2.9

Proposition 19.2.3. The map

YÑWpglprqq (19.9)

induced by (19.8) is surjective.

Proof. Follows from the corresponding statement for ~ “ κ “ 0 proven by
Frenkel, Kac, Radul, and Wang in [46]. When ~ “ 0, the nonlocal term Ω
drops out and the surjectivity

Y{~Y – Up pDq ÑWpglprqq
ˇ

ˇ

κ“0
Ñ 0

is true without completion, see [46]. Clearly, it implies the surjectivity after
completion.

19.2.10

One of the goals of [2] is a characterization of interesting cohomology classes
in terms of the W-action. For example, one can consider the vector of iden-
tities

1 P H¨GpMprqq

in the cohomology of each Mpr, nq. In this direction, there is the following
simple result. Define

βrksn “

´

ad pQcl

¯k

¨ βn .

Proposition 19.2.4. The vector of identities 1 satisfies

βrksn pptq ¨ 1 “

#

0 , k ă rn´ 1

´1 , n “ 1, k “ r ´ 1 .
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Proof. The operator βnpptq is defined by a proper push-forward with fibers
of generic dimension rn´ 1, therefore it annihilates any cohomology class of
degree less than rn´ 1. This proves the first claim.

If n “ 1 then generic fibers are projective spaces Pr´1 on which the
generator ch1

pV restricts to the hyperplane class c1pOp1qq, up-to equivariant
corrections. Therefore

β
rr´1s
1 pptq “ p´1qr´1β1

pQr´1
cl ¨ 1 “

´

ˆ
ż

Pr´1

c1pOp1qqr´1

˙

¨ 1 “ ´1 , (19.10)

where an extra p´1qr comes from the definition of β1 “ βτ´1, see Section
12.2.4.
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