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The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz
frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the
only sources that combine the challenges of strong-field complexity with that of long-lived signals. Such
signals are found and characterized by comparing them against a large number of accurate waveform
templates during data analysis, but the rapid generation of templates is hindered by computing the
∼103–105 harmonic modes in a fully relativistic waveform. We use order-reduction and deep-learning
techniques to derive a global fit for the ≈4000 modes in the special case of an eccentric Schwarzschild
orbit, and implement the fit in a complete waveform framework with hardware acceleration. Our high-
fidelity waveforms can be generated in under 1 s, and achieve a mismatch of ≲5 × 10−4 against reference
waveforms that take ≳104 times longer. This marks the first time that analysis-length waveforms with full
harmonic content can be produced on timescales useful for direct implementation in LISA analysis
algorithms.
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Introduction.—As gravitational-wave (GW) astronomy
continues to bear fruit [1], preparatory work is underway
for a future generation of ground- and space-based observa-
tories that span the astrophysical GW spectrum [2–4], and
whose success will depend on further advancements in the
technology and methods of GW detection. The theorist’s
contribution to this endeavor lies primarily in the con-
struction of waveform models to describe GW signals from
astrophysical phenomena, as well as the application of
statistical analysis to infer their presence in noisy data and
their source properties. For highly relativistic sources, the
computational burden of solving Einstein’s equations in
numerical modeling is fundamentally at odds with the
Monte Carlo nature of modern signal processing and
Bayesian-inference techniques.
Extreme-mass-ratio inspirals (EMRIs) are the most

conspicuous example of such dissonance. These are the
late capture orbits of stellar-mass (μ ∼ 1–100 M⊙) compact
objects into the massive (M ∼ 105–107 M⊙) black holes in
galactic nuclei. They radiate millihertz GWs, and will be a
key source class for the space mission LISA [4] upon its
launch in the next decade. An EMRI signal typically has
∼105 observable cycles carrying the imprint of the compact
object’s complex dynamical motion deep in the central
black hole’s gravitational field. This wealth of information
is double edged: it will allow probes of galactic-nuclei

astrophysics and strong-field gravity to unprecedented
precision [5,6], but it places exacting constraints on the
accuracy and efficiency of both modeling and data analysis
for EMRIs—to a combined extent far surpassing that for
other important LISA sources.
Calculations from black-hole perturbation theory, and in

particular from the ongoing gravitational self-force pro-
gram [7], are on target to produce EMRI waveforms that
meet the accuracy requirements of LISA science [8,9].
Such models are computationally intensive, and hence ill
suited for direct use in analysis algorithms that are tailored
to the EMRI problem [10–14]. As in the case of numerical-
relativity waveforms for comparable-mass binaries, self-
force waveforms must be supplemented and approximated
by template models that are (i) efficiency oriented,
(ii) extensive in their description of both intrinsic and
extrinsic effects, and (iii) end to end from source param-
eters to detector response. The challenge is to achieve this
with a controlled and tolerable loss of accuracy. Strategies
developed for the comparable-mass case, such as the
standard construction of reduced-order-modeling (ROM)
surrogates (e.g., Ref. [15]), are less likely to scale feasibly
to the signal duration, harmonic complexity, and informa-
tion volume of the full EMRI problem.
The semirelativistic “kludges” [16–20] are the only

existing examples of EMRI template models. Kludges
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trade accuracy for efficiency by means of a modular build
and various computational approximations. Their common
distinguishing feature is a reliance on some weak-field
assumption at one or more stages of their construction. The
speed and generality of kludge models has greatly facili-
tated numerous LISA studies on mission performance, data
analysis approaches, and potential scientific applications.
However, kludges incur significant error with respect to
fully relativistic models for many sources in the observable
space of EMRIs [17], and have little room for improvement
due to the limitations of the weak-field assumption. This
inherent cap on accuracy may count against the continued
development and adoption of kludge models, at least in the
long term.
In this Letter, we report promising headway against the

main obstacle to the rapid generation of fully relativistic
EMRI waveforms: efficiently computing the slowly evolv-
ing amplitudes of the ∼103–105 harmonic modes that
comprise a single waveform in the canonical angular and
frequency-based decomposition [21,22]. Through the inte-
gration of ROM and deep-learning techniques [23], an
analytic model for these amplitudes is fitted to numerical
data from a frequency-domain Teukolsky solver [24]. The
key to our approach is the use of regression rather than
interpolation, resulting in a less precise but global fit that
returns the full set of amplitudes simultaneously. This
allows the inclusion of relativistic amplitudes in template
models, where they are combined with existing fast
methods for generating the phasing trajectories to varying
levels of accuracy.
As the mode-amplitude model is a neural network, it is

composed of simple linear-algebra operations and hence
amenable to acceleration through a highly parallelized
implementation for graphics processing units (GPUs).
We exploit this to construct the first EMRI waveform
model with subsecond run-times in a realistic setting, i.e.,
analysis-length signals [∼107 M at sampling rate 1=ð2MÞ],
and full harmonic content (retaining up to 1–10−9 of total
power at initial orbital eccentricities of up to 0.7 [25]). The
present model describes the source-frame GW field for
eccentric orbits in Schwarzschild, with inspiral trajectories
that are accurate at adiabatic order. Our code infrastructure
is designed with the end goal of providing analysis-ready
template models; specifically, it will readily accommodate
postadiabatic trajectories informed by future self-force
calculations, as well as the eventual extension to generic
Kerr orbits and the integration of a compatible LISA
response model.
Adiabatic waveforms.—An EMRI’s disparate masses

ðM; μ ≪ MÞ create a wide separation between its orbital
and radiation-reaction timescales. This allows EMRIs
to be modeled through a two-timescale expansion [26].
In the leading adiabatic part of this expansion, the
equations of motion follow from flux balance laws.
Though a purely adiabatic treatment of waveform phasing

will be insufficiently accurate to describe a typical EMRI
signal over its full duration [27], adiabatic trajectories
can still be used for data analysis within a hierarchical
semicoherent search scheme [10,19], or for more slowly
evolving binaries with μ=M < 10−6 [28,29]. Postadiabatic
corrections (once known) can be easily added by including
additional phase corrections [9,30,31]. The computation of
mode amplitudes is also only required at adiabatic order
[9], even for the most stringent analysis task of inference.
This is due to the disproportionate dependence of GW
matched filtering on waveform phasing, rather than its
amplitude.
For an EMRI with a nonrotating central black hole, the

adiabatic evolution of the orbital energy E and angular
momentum L is given by ð _E; _LÞ ¼ −ð _E; _LÞ, where an
overdot denotes differentiation with respect to coordinate
time t, and ð _E; _LÞ is the total flux of energy and angular
momentum radiated through null infinity and the event
horizon. It is useful to parametrize the system by an
equivalent set of quasi-Keplerian orbital elements: the
semilatus rectum (henceforth “separation”) p and eccen-
tricity e, with E2¼p−1ðp−2−2eÞðp−2þ2eÞ=ðp−3−e2Þ
and L2 ¼ p2M2=ðp − 3 − e2Þ [32]. In this parametrization,
stable bound orbits exist for p>ps¼6þ2e and 0 ≤ e < 1,
where ps denotes the separatrix [33]. Each instantaneous
orbit ðp; eÞ is associated with a radial and azimuthal
frequency, denoted by Ωr and Ωφ, respectively.
In the Newman-Penrose formalism [34], the GW field h

at null infinity is related to the Weyl curvature scalar ψ4 via
ḧ ¼ 2ψ4, where h ¼ hþ − ih× with the usual transverse
traceless polarizations hþ;×. For each orbit ðp; eÞ, ψ4 may
be obtained by solving the Teukolsky equation [35] in the
frequency domain; this requires a decomposition of the
form ψ4 ¼

P
lmn RlmnðrÞYlmðθ;φÞe−iωmnt, where Ylm are

spherical harmonics with spin weight −2, and ωmn ¼
mΩφ þ nΩr are the mode frequencies. It is convenient
to define and solve for the complex Teukolsky amplitudes
Z∞;H
lmn , which describe the limiting behavior of Rlmn as

r → ∞ and r → 2M, respectively [21].
The GW strain for a detector at some suitably distant

coordinates ðt; r; θ;φÞ is then given by [22]

h ¼ 1

r

X

lmn

Almnðt − rÞYlmðθ;φÞe−iϕmnðt−rÞ; ð1Þ

where Almn ¼ −2Z∞
lmn=ω

2
mn, and ϕmn ¼ mΦφ þ nΦr with

Φr;φðtÞ ¼
R
t
0 dτΩr;φðpðτÞ; eðτÞÞ. In the results we show, we

put t ¼ ϕ ¼ 0 at periastron; other initial conditions are
easily accommodated by adjusting the phase of Almn
[27,30]. The sum over modes spans the indices
2 ≤ l ≤ lmax, jmj ≤ l and jnj ≤ nmax, with lmax and nmax
determined by some convergence criterion (e.g., Ref. [36]).
For the present work, we set ðlmax; nmaxÞ ¼ ð10; 30Þ,
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resulting in the sum of 7137 modes (but the explicit
evaluation of only 3843, by exploiting mode sym-
metry [21]).
Fast trajectories.—To generate fast inspiral trajectories

ðpðtÞ; eðtÞ;Φr;φðtÞÞ for use in template models, we need to
rapidly evaluate ð _p; _eÞ across the domain of ðp; eÞ. In a
flux-driven trajectory for adiabatic waveforms, ð _p; _eÞ is
given in terms of the flux ð _E; _LÞ through null infinity and
the horizon, which can be calculated directly from the
Teukolsky amplitudes [21]. However, numerical solutions
for the amplitudes are computationally costly and can only
be precomputed at a limited number of points in ðp; eÞ
space. Fast flux-driven trajectories must thus rely on an
accurate and efficient interpolation scheme for the fluxes
derived from this numerical data.
In this work, we first introduce a new parameter

u ¼ ln ðp − ps þ 3.9Þ, then calculate Teukolsky ampli-
tudes and fluxes on a uniform grid in ðu; eÞ, where 1.37 ≤
u ≤ 3.82 with spacing 0.05 and 0 ≤ e ≤ 0.8 with spacing
0.025. The grid in u gives p ∈ ½ps þ 0.03; ps þ 41.6� and
places more points near the separatrix, where the data vary
more rapidly. Before interpolating the flux data, we factor
out the leading post-Newtonian (PN) behavior ð _EPN; _LPNÞ
[37] to reduce the impact of interpolation error. We then
create bicubic splines for ð _E= _EPN; _L= _LPNÞ over ðu; eÞ,
with PN factors restored after evaluating the splines. The
inspiral trajectory is computed at run-time for initial values
ðp0; e0Þ, by numerically integrating (for p > ps þ 0.1) the
coupled ordinary differential equations f _p; _e; _Φr;φg with an
adaptive eighth-order Runge-Kutta method. As the flux
varies on the radiation-reaction timescale M2=μ, the sol-
ution is very smooth. This permits large integration steps,
so generating each trajectory typically takes only a few
milliseconds.
Going beyond flux-driven trajectories to make postadia-

batic waveforms requires the inclusion of gravitational self-
force corrections [7]. This introduces orbital-timescale
variations into the equations of motion, which slows the
calculation of a self-forced trajectory to minutes or even
hours [38]. Recently, this barrier was overcome using near-
identity transformations [31], allowing the transformed
equations of motion to be evaluated in milliseconds. Key
postadiabatic corrections at second order in the mass ratio
[8] are being calculated in the two-timescale framework [9],
which will incorporate a similar averaging procedure. Thus,
the generation of the inspiral trajectory is unlikely to
constitute a computational bottleneck for postadiabatic
models either.
Neural-network amplitudes.—With the inspiral trajec-

tory on hand, the remaining computationally nontrivial
operation in Eq. (1) (besides the sum over modes at high
resolution in time) is the evaluation of the mode amplitudes
AlmnðtÞ. (We fit Almn directly rather than Z∞

lmn, to avoid
numerical divergences due to fitting error whenever ωmn

approaches zero.) Although these are very slowly evolving
and can be down sampled significantly in time, a conven-
tional spline-interpolation approach requires the creation
and evaluation of ≈4000 splines over the ðp; eÞ space.
Furthermore, future waveforms for generic Kerr orbits
would involve ∼105 splines over the four-dimensional
space of separation, eccentricity, orbital inclination, and
primary spin. This is problematic, as the ability of most
interpolation schemes to simultaneously maintain accuracy
and efficiency rapidly degrades for ≳3 variables.
To address the issue of high dimensionality (in both

the space of modes and the space of orbits), we propose the
approach of precomputing an analytic global fit for the
mode amplitudes. The particular method we use is Roman
[23], which combines the compressive power of ROM with
the high-dimensional regression capabilities of deep neural
networks. Roman was developed within the paradigm of
ROM in GW modeling and analysis [39], and provides an
alternative to the combination of surrogate waveforms [40]
with the inference technique of reduced-order quadrature
[41] (albeit at the expense of a more difficult initial fit).
However, one open problem with the direct usage of ROM
to fit full waveforms is accuracy. While the errors incurred
by leading models (e.g., Ref. [42]) are sufficiently small
for present ground-based applications, waveform templates
for LISA data analysis will require far more stringent
modeling [43].
In this work, we apply Roman to the fitting of mode

amplitudes instead. A greedy algorithm [44] is first used to
construct a reduced basis B for (the span of) the Teukolsky
amplitude data on the uniform grid in ðu; eÞ. This allows
the vectorized amplitudes Ai ¼ vecðAlmnÞ ∈ C3843 ≅ R7686

to be represented in the reduced form

Aiðu; eÞ ¼
X

j

αjðu; eÞBji ≡ αjðu; eÞ; ð2Þ

where αj ∈ C99 ≅ R198 for an effective compression factor
of around 40. A deep neural network is then trained on the
reduced dataset fu; e; αnumg as a regression model for
αðu; eÞ. The architecture and training of the network is
identical to the main example in Ref. [23], with the
following exceptions: (i) Our network contains 20 hidden
layers al, where the first six comprise 2lþ1 nodes and the
remaining layers have 256 nodes each. (ii) As the training-
set size of 1640 is small, Monte Carlo validation [45] is
used to prevent overfitting, with 20 random examples held
out at each epoch. (iii) The minibatch size is 810. (iv) The
loss function is the standard L2 loss jα − αnumj2 averaged
over each minibatch, where j · j is Hermitian. Our network
is trained over 3 × 104 epochs (4 h on one CPU core), after
which it is evaluated at run-time for a set of input points
fðp; eÞg to simultaneously output the corresponding set of
mode amplitudes fα · Bg. Finally, we renormalize each
amplitude vector by a more accurate estimate for the vector
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norm, which is obtained through bicubic interpolation of
the numerical norms.
Parallelized implementation.—The long-lived nature of

EMRI signals will necessitate parallel implementations of
template models and analysis algorithms, which can then
be fully capitalized on through hardware acceleration. To
date, accelerator hardware such as GPUs are very under-
utilized in GW astronomy. However, there are a few
examples of GPU usage for both modeling and analysis:
the generation of EMRI waveforms with time-domain
Teukolsky solvers [46,47]; binary-black-hole waveform
modeling and population inference for ground-based
observing [48]; as well as massive-black-hole-binary wave-
form creation and parameter estimation for LISA [49].
In this work, our flux-driven trajectory and Roman

amplitudes are combined in Eq. (1) to form an
efficient adiabatic waveform model hþ;×ðtÞ for eccentric
Schwarzchild orbits, parametrized by the set fM; μ; p0;
e0; r; θ;φg. This model is implemented natively for GPUs,
with an otherwise-equivalent counterpart implementation
for CPUs. The source code is written in PYTHON (interface),
C++, and CUDA, and is publicly available online [50].
GPU acceleration is crucial for relieving the main

computational bottleneck in the construction of a time-
domain EMRI waveform: the combination and summation
of amplitude and phase information at a sufficiently high
sampling rate for fully coherent analysis [defined here as
1=ð2MÞ for concreteness]. In our model, this bottleneck is
dealt with through a large-scale cubic-spline interpolation
of AlmnðtÞ and Φr;φðtÞ at a sparse (∼102) set of points in
time. The number of considered modes is first reduced
significantly (to ∼102–103) by a run-time selection routine,
where all modes at each point in time are sorted by power
and removed if they do not contribute cumulatively up to
some specified fraction of their total power (typically
≳1–10−5 for satisfactory waveform accuracy). Specific
sets of modes can also be chosen for particular analysis
purposes, e.g., lmax ¼ 2 to search for EMRIs at large
separation. The selected amplitude (and phase) splines
are then fed into a summation kernel, where they are
evaluated and summed at full resolution.
Results.—The domain of validity for our waveform

model is defined as pmin≤p≤psþ10 and 0 ≤ e ≤ 0.7,
where pmin ¼ max fps þ 0.1; 7ps − 41.9g. Orbits at small
p and large e are excluded as they lack astrophysical
relevance, and are also difficult to fit due to their high
degree of variability. The large-p boundary is justified by
the reduced sensitivity of LISA at frequencies correspond-
ing to p≳ 20. We assess the individual accuracies of the
trajectory and amplitude modules against numerical
Teukolsky flux and amplitude calculations, using a test
dataset of 232 orbits that spans the domain of validity
(but has no orbit in common with the training set).
For the relative flux error ðΔ _E= _Enum;Δ _L= _LnumÞ, both
components have a median value of 3 × 10−7. As the

vectorized Roman amplitudes are renormalized to similar
accuracy, we consider their “mode-distribution” error
1 −ℜðA†AnumÞ=ðjAjjAnumjÞ, which reduces to (half of)
the relative L2 error when jAj ¼ jAnumj. The mode-distri-
bution error has a median value of 3 × 10−5.
Our fast model is then benchmarked against a slower

fiducial model that uses standard bicubic-spline interpola-
tion for the amplitude of each mode (without mode
selection), as well as integration steps at full time resolution
for the inspiral trajectory. The bicubic amplitudes in
the slow model are significantly more faithful to the
numerical test data than the Roman amplitudes, with a
median mode-distribution error of 3 × 10−11. To quantify
the overall error in the fast waveform with respect to the
slow fiducial waveform, we examine their mismatch:
1 −ℜðh†hfidÞ=ðjhjjhfidjÞ, defined here without noise
weighting for simplicity. The mismatch is dominated by
amplitude error, as the phase difference Δϕ between the
fast and slow trajectories typically has a maximal value of
∼10−3 over the full duration of a waveform.
Figure 1 shows how the mismatch from ðp0; e0Þ up to

ðp; eÞ changes for a representative set of EMRIs in the
domain of validity, as they evolve towards the separatrix
over a duration of ∼107 M. The EMRI with the largest e0
and the smallest p0 plunges at high eccentricity e ≈ 0.5, and
has the “worst-case” full mismatch of 5 × 10−4; snapshots
of this waveform at initial and plunge time are shown in
Fig. 2. In general, the signal-to-noise ratio ρ of a GW
source determines the required level of mismatch ∼1=ρ2 for
inference purposes [43], and so the accuracies achieved by
a waveform with Roman amplitudes should be adequate for
LISA EMRIs (where ρ≲ 102). In terms of efficiency, wall
times for the slow model (∼1h for the worst-case waveform

FIG. 1. Evolution of mismatch between fast and fiducial
waveforms from ðp0; e0Þ to ðp; eÞ, for 12 EMRIs with
M ¼ 106 M⊙, μ ∈ ½15; 304�M⊙, and ðp0; e0Þ along the model
domain boundary. Each small mass is chosen such that the EMRI
plunges after a year. These results are for ðθ;φÞ ¼ ðπ=2; 0Þ, but
do not depend strongly on the viewing angle. In the worst case
(top-left curve), the final 0.01% of the waveform causes the
mismatch to increase from under 4 × 10−4 to 5 × 10−4.
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with ∼103 modes) are dominated not just by mode
summation, but also the evaluation of mode amplitudes
(see Fig. 3). This is not the case for our fast model, where
the bottleneck is reduced solely to summation, and wall
times are reduced to ∼1 min on a CPU and further to
∼102 ms on a GPU.
Conclusion.—The efficient computation of fully relativ-

istic EMRI waveform templates has yet to be achieved
under the constraints of LISA data analysis, as a significant
bottleneck is posed by the interpolation and evaluation of
the ∼103–105 mode amplitudes. In this Letter, we propose
that the bottleneck can first be relieved by combining order-
reduction and deep-learning techniques in the amplitude
fit [23], and then virtually removed through the use of
GPU acceleration. We demonstrate this by introducing the
first EMRI waveform model with subsecond run-times for
analysis-length signals with full harmonic content. Access

to higher modes during analysis is important not just for
precise inference, but also for finding signals in the first
place: using our model, we find that a quadrupolar wave-
form with lmax ¼ 2 typically has a mismatch of ≈0.1
against a fiducial waveform, which may be suboptimal
even for search [19].
Our present waveform model is accurate at adiabatic

order for eccentric Schwarzschild orbits, and thus can
already be used to construct search templates for EMRIs
with a nonrotating large mass. However, LISA data
analysis needs template models that describe generic
Kerr EMRIs at sufficient accuracy for inference. The
framework presented in this Letter is designed to accom-
modate the increased accuracy and extensiveness of such
models while retaining efficiency. Postadiabatic waveforms
require the replacement of flux-driven trajectories with self-
forced trajectories, which will be equally efficient [9,31].
Practical schemes for dealing with transient resonances
[51–53] can be included as well. Although the mode
amplitudes are required only at leading order [9], they
must be extended to cover the space of Kerr orbits; our
fitting technique is promising for dealing with the increased
dimensionality. The source-end waveform also has to be
integrated with a realistic LISA response, which could be
done through a frequency-domain approximation for both
waveform [30] and response [11,14], or by developing
accelerated versions of more accurate time-domain simu-
lators [54,55]. Finally, the modular nature of the framework
allows the incorporation of additional physics as well. This
could include environmental effects, e.g., accretion disks
[56] and massive perturbers [57,58], or new physics, e.g.,
beyond-general-relativity corrections [59] and beyond-
standard-model physics [60,61].
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FIG. 2. Six hour snapshots of fast (orange) and fiducial (blue)
waveforms, 1 yr before plunge (top) and just before plunge
(bottom). Waveforms are for the worst-case EMRI
ðM; μ; p0; e0Þ ¼ ð106 M⊙; 15 M⊙; 10; 0.7Þ, with a 1 yr mismatch
of 5 × 10−4. Small amplitude deviations are visible just before
plunge at ðp; eÞ ≈ ð7; 0.5Þ, where the mode-distribution error
approaches its maximum across the domain of validity.

FIG. 3. Computational wall time for fast and fiducial wave-
forms, broken down into individual modules. All times are
averaged over ≥ 5 evaluations of the worst-case waveform on
a single CPU core (and GPU), where the CPU is an Intel Xeon
Gold 6132 and the GPU is an NVIDIA Tesla V100.
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