
MIT Open Access Articles

Generalized stochastic Frank–Wolfe algorithm with stochastic
“substitute” gradient for structured convex optimization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s10107-020-01480-7

Publisher: Springer Berlin Heidelberg

Persistent URL: https://hdl.handle.net/1721.1/136776

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136776
http://creativecommons.org/licenses/by-nc-sa/4.0/

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Generalized stochastic Frank–Wolfe algorithm with stochastic
“substitute” gradient for structured convex optimization

Cite this article as: Haihao Lu and Robert M. Freund, Generalized stochastic Frank–Wolfe
algorithm with stochastic “substitute” gradient for structured convex optimization, Mathe-
matical Programming https://doi.org/10.1007/s10107-020-01480-7

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s10107-020-01480-7
https://www.springer.com/aam-terms-v1

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Generalized Stochastic Frank-Wolfe Algorithm with Stochastic
“Substitute” Gradient for Structured Convex Optimization

Haihao Lu∗ Robert M. Freund†

February 14, 2020

Abstract

The stochastic Frank-Wolfe method has recently attracted much general interest in the
context of optimization for statistical and machine learning due to its ability to work with a
more general feasible region. However, there has been a complexity gap in the dependence on the
optimality tolerance ε in the guaranteed convergence rate for stochastic Frank-Wolfe compared
to its deterministic counterpart. In this work, we present a new generalized stochastic Frank-
Wolfe method which closes this gap for the class of structured optimization problems encountered
in statistical and machine learning characterized by empirical loss minimization with a certain
type of “linear prediction” property (formally defined in the paper), which is typically present in
loss minimization problems in practice. Our method also introduces the notion of a “substitute
gradient” that is a not-necessarily-unbiased sample of the gradient. We show that our new
method is equivalent to a particular randomized coordinate mirror descent algorithm applied to
the dual problem, which in turn provides a new interpretation of randomized dual coordinate
descent in the primal space. Also, in the special case of a strongly convex regularizer our
generalized stochastic Frank-Wolfe method (as well as the randomized dual coordinate descent
method) exhibits linear convergence. Furthermore, we present computational experiments that
indicate that our method outperforms other stochastic Frank-Wolfe methods for a sufficiently
small optimality tolerance, consistent with the theory developed herein.

1 Introduction

Our problem of interest is the following optimization problem:

(P) : min
β
P (β) := 1

n

n∑

j=1

lj(xTj β) +R(β) , (1)

where β ∈ Rp, lj(·) : R→ R, j = 1, . . . , n, is a univariate function (the jth loss function), sj = xTj β
is the “predicted value” of the model β for the data sample xj , and R(·) is some other function
that can be used to model a variety of properties such as a regularizer, an indicator function of
a feasible region Q, a penalty term, coupling constraints, etc. Notice that the predicted value
∗MIT Department of Mathematics, 77 Massachusetts Avenue, Cambridge, MA 02139 (mailto: haihao@mit.edu).
†MIT Sloan School of Management, 77 Massachusetts Avenue, Cambridge, MA 02139 (mailto: rfreund@mit.edu).

This author’s research is supported by AFOSR Grant No. FA9550-15-1-0276.

1

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

sj = xTj β is a linear function of β. Hence in the intentional context of empirical loss minimization
we refer to (1) as (empirical) loss minimization with “linear prediction.” This structure arises quite
generally throughout statistical and machine learning, which we illustrate below via several salient
examples. Throughout this paper we assume the following regarding the functions in our problem
setup (1):

Assumption 1.1. The following hold:

1. for j = 1, . . . , n, the univariate function lj(·) is γ-smooth, namely |l̇j(a)− l̇j(b)| ≤ γ|a− b| for
all a, b, and is strictly convex,

2. domR(·) is bounded, and the subproblem

min
β
cTβ +R(β) (2)

attains its optimum and can be easily solved for any c, and

3. 0 ∈ domR(·).
We note regarding (1.) above that strict convexity (instead of simple convexity) is only needed to
guarantee that the conjugate function l∗j (·) is differentiable. Regarding (2.), this is a generalization
of a linear optimization oracle as follows: in the case when R(·) is the indicator function IQ(·) of
a set Q ⊂ Rp (namely, IQ(β) := 0 if β ∈ Q, and IQ(β) := +∞ otherwise), then Q is the feasible
region of (P), and (2.) states that the feasible region Q is bounded and that it is easy to solve
linear optimization problems on Q. Also, (3.) above is for notational convenience, as we can always
translate a given feasible point so that 0 ∈ domR(·).

1.1 Examples in Statistical and Machine Learning

Here we present several applications of our problem setup (1) in statistical and machine learning.
(For other applications particularly amenable to solution by the Frank-Wolfe method, we refer the
reader to [19].)

Example 1.1. LASSO[41], ridge regression[18], sparse logisitic regression[34]. Consider
the least-squares regression problem where a set of training samples {(xj , yj)}nj=1 is given. The
LASSO optimization problem (in constraint format) is:

minβ 1
2n
∑n

j=1(yj − xTj β)2

s.t. ‖β‖1 ≤ δ ,

which is an instance of (P) by using the least squares loss function lj(·) = 1
2(yj − ·)2 and using the

indicator function of an `1 ball as the “regularizer” function R(·), namely R(β) := I{‖β‖1≤δ}(β).

The ridge regression optimization problem adds the regularizer λ
2‖β‖22 to the least squares objective

function for the parameter λ > 0, and omits the `1 ball constraint. Notice that because β = 0 is
a feasible solution it follows that the optimal objective value is bounded above by ‖y‖22/(2n), and
therefore we can model R(β) = λ

2‖β‖22+I{‖β‖22≤‖y‖22/(nλ)}(β), which ensures that domR(·) is bounded.

2

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

The `1-regularized logistic regression optimization problem seeks a solution of:

min
β
P (β) = 1

n

n∑

j=1

ln(1 + exp(−yjxTj β)) + λ‖β‖1 ,

for a given set of training samples {(xj , yj)}nj=1 where yj ∈ {−1, 1}, and is an instance of (P) using
the logistic loss functions lj(·) = ln(1+exp(−yj ·)) with R(β) = λ‖β‖1 +I{‖β‖1≤ln(2)/λ}(β) where the
indicator function term is structurally redundant but is added as in the previous example to ensure
that domR(·) is bounded.

Example 1.2. Matrix completion[10][7]. In the matrix completion problem, we seek to compute
a low-rank matrix that well-approximates a given matrix M ∈ Rn×p on the set Ω of observed entries
(i, j). The convex relaxation of this problem is the following nuclear-norm optimization problem:

minβ∈Rn×p
1

2|Ω|
∑

(i,j)∈Ω(Mi,j − βi,j)2

s.t. ‖β‖∗ ≤ δ ,

where ‖ · ‖∗ is the nuclear norm. In order to translate the matrix completion problem to the setting
of (P), we consider any index pair (i, j) ∈ Ω as a sample, and we have l(i,j)(·) = 1

2(· −Mi,j)2, and
R(β) = I{‖β‖∗≤δ}(β).

Example 1.3. Structured sparse matrix estimation with CUR factorization[27][29]. We
seek to compute an approximate factorization M ≈ CUR of a given data matrix M ∈ Rn×d such
that C contains a subset of c columns from M and R contains a subset of r rows from M . Mairal
et al. [29] proposed the following convex relaxation of this problem:

minβ 1
2nd‖M −MβM‖2F

s.t.
∑

i ‖βi,·‖∞ ≤ δ
∑

j ‖β·,j‖∞ ≤ δ ,

which is an instance of (P) by modeling the (i, j)th loss term in (P) as 1
2(Mi,j −MT

i βMj)2 (which
is a least squares loss of a particular linear function of the matrix variable β), and R(β) =
I{∑i ‖βi,·‖∞≤δ,

∑
j ‖β·,j‖∞≤δ}(β).

1.2 Stochastic Generalized Frank-Wolfe with Stochastic Substitute Gradient

Let X ∈ Rn×p denote the data matrix whose rows are comprised of the vectors x1, . . . , xn, i.e., the
jth row of X is the vector xj , j = 1, . . . , n. Let us define L(s) : Rn → R by L(s) :=

∑n
j=1 lj(sj)

which is the total losses associated with s ∈ Rn. We refer to s = Xβ as the “predicted values” in
the context of empirical loss minimization.

Algorithm 1 presents the main algorithmic contribution of this paper, which is a first-order method
for tackling the problem (P). We call the method “Stochastic Generalized Frank-Wolfe method with
Stochastic Substitute Gradient” for reasons which we will discuss as we walk through the structure
of the method below.

3

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Algorithm 1 Stochastic Generalized Frank-Wolfe with Stochastic Substitute Gradient

Initialize. Initialize with β̄−1 = 0, s0 = 0, and substitute gradient d0 = 1
nX

T∇L(s0), with
step-size sequences {αi} ∈ (0, 1] and {ηi} ∈ (0, 1].

For iterations i = 0, 1, . . .
Solve l.o.o. subproblem: Compute β̃i ∈ arg minβ

{(
di
)T
β +R(β)

}

Choose random index: Choose ji ∈ U [1, . . . , n]
Update s value: si+1

ji
← (1− ηi)siji + ηi(xTji β̃

i), and si+1
j ← sij for j 6= ji

Update substitute gradient: di+1 = 1
nX

T∇L(si+1) = di + 1
n

(
l̇ji(s

i+1
ji

)− l̇ji(siji)
)
xji

Update primal variable: β̄i ← (1− αi)β̄i−1 + αiβ̃
i.

(Optional Accounting:) wi+1 ← ∇L(si+1)

We can write the first part of the objective function of (P) as f(β) := 1
nL(Xβ) = 1

nL(s) with
s = Xβ. We have ∇L(s) = (l̇1(s1), . . . , l̇n(sn)) and the gradient of f(·) can be written as

∇f(β) = 1
nX

T∇L(Xβ) = 1
n

n∑

j=1

l̇j(xTj β)xj , (3)

which we can re-write as ∇f(β) = 1
nX

Tw where w = ∇L(s) and s = Xβ, and which can be
alternatively stated as:

∇f(β) = 1
n

n∑

j=1

wjxj where wj = l̇j(sj) and sj = xTj β , j = 1, . . . , n . (4)

Here we emphasize that w is the vector of weights on the data values X in the composition of the
gradient, and s is the vector of predicted values Xβ.

Especially in the context of “big data” applications of statistical and machine learning where n
is huge, it can be extremely expensive to compute ∇f(·). We therefore maintain a “substitute
gradient” in Algorithm 1 that is constructed stochastically. This is accomplished as follows: let
β̄i−1 be the value of β at the start of iteration i of the method, and we have a substitute gradient di

that is the current proxy/substitute for the true gradient ∇f(β̄i−1), where di is computed by:

di = 1
n

n∑

j=1

wijxj where wij = l̇j(sij) , j = 1, . . . , n , (5)

for a given si that is the value of s at iteration i. But in contrast to (4) it will not necessarily
hold that sij = xTj β̄

i for j = 1, . . . , n (equivalently si = Xβ̄i). (In fact, di will not necessarily be
an unbiased estimate of ∇f(β̄i) as this will not be needed.) In the identical spirit as randomized
coordinate descent, si+1 will be determined by choosing a random index ji ∈ U [1, . . . , n] and
updating only the coordinate ji of si, so that si+1 = si+∆ieji for some specific iteration-dependent
scalar ∆i (where e` denotes the `th unit coordinate vector in Rn). This is accomplished in the
“choose random index” step and the “update s value” step in Algorithm 1.

4

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

We now walk through the structure of Algorithm 1 in complete detail. The method is initialized
with the initial decision variable β set to β̄−1 = 0 and the vector of predicted values s0 = Xβ̄−1 = 0
and initial substitute gradient d0 = 1

nX
T∇L(s0), which corresponds to the true predicted value

and true gradient at β̄−1 = 0. In iteration i, we use the substitute gradient di to compute β̃i,
which is a solution to the (generalized) linear optimization oracle (“l.o.o.”), where recall that this
step specifies to solving a linear optimization problem over a set Q in the specific case when the
R(·) is the indicator function of Q, namely R(·) = IQ(·). Regarding updating the current predicted
values si, we randomly choose a sample (a coordinate) ji and only update sji as a certain convex
combination of the current predicted value siji and the predicted value for the jth

i sample at β̃i,
namely xTji β̃

i, so that si+1
ji
← (1−ηi)siji+ηi(xTji β̃i). Then we update the substitute gradient to make

sure that di+1 = 1
nX

T∇L(si+1). The last step at iteration i is to take a Frank-Wolfe step to update
β̄i ← (1−αi)β̄i−1 +αiβ̃

i by taking a convex combination of the previous primal variable value β̄i−1

and the solution β̃i of the just-solved linear optimization oracle. Finally – and “optionally” since
it does not affect future computations – we can perform an optional accounting step to update the
dual variable wi+1 ← ∇L(si+1) in order to compute a duality gap certificate if desired. (The nature
of this duality will be understood once we look at the dual problem of (P) in Section 2.)

Note that the computations in Algorithm 1 are minimally affected by the dimension n. Except for
the initial computation of the gradient d0 which is O(np) operations, si and wi are only updated
by one coefficient at each iteration, and di+1 is updated by adding a scalar multiple of xji to di,
which is O(p) operations. The updates of β̄i are O(p) operations after solving for the optimal value
β̃i in the linear optimization oracle, which is assumed to be easy to compute.

It is useful to place Algorithm 1 in the context of the (deterministic) Frank-Wolfe method. The
Frank-Wolfe method is designed primarily to tackle the constrained convex optimization problem:
minβ∈Q f(β) where f(·) is a smooth convex function and Q is a convex body, and it is assumed
that linear optimization over Q is easy to compute. The optimization problem can of course be
re-written as minβ f(β) +R(β) with R(·) = IQ(·). The Frank-Wolfe update is:

β̃i ∈ arg minβ∈Q
{
∇f(βi)Tβ

}
and βi+1 = (1− αi)βi + αiβ̃

i . (6)

It can be shown that with an appropriate choice of step-size sequence {αi} that the Frank-Wolfe
method computes an ε-optimal solution in O

(
LD2

ε

)
iterations, where L is the Lipschitz constant

of f(·) on Q and D is the diameter of Q, see [11], [19], and [12]. Since our focus (for stochastic
versions of Frank-Wolfe) will be on the dependence on ε, we will typically ignore these other
instance-dependent constants and write the above as O(1

ε) iterations.

Due to its low iteration cost and convenient structural properties, the Frank-Wolfe method is
especially applicable in several areas of statistical and machine learning and has thus received
much renewed interest in recent years, see [19], [15], [13], [12], and the references therein. The
Frank-Wolfe method can be generalized to deal with the more general problem minβ f(β) + R(β)
where R(·) is any convex function with bounded domain and for which the “linear optimization
problem” minβ cTβ+R(β) is easy to compute. The generalized Frank-Wolfe update then is:

β̃i ∈ arg minβ
{
∇f(βi)Tβ +R(β)

}
and βi+1 = (1− αi)βi + αiβ̃

i , (7)

and notice that we recover the regular Frank-Wolfe update in the special case when R(·) is the

5

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

indicator function IQ(·) of a feasible region Q, see [4] and [45] for a more detailed discussion on
generalized Frank-Wolfe methods.

1.3 Related literature

Stochastic Frank-Wolfe methods. There have been several lines of research that develop and
investigate stochastic Frank-Wolfe methods, almost all of which are motivated by expected loss
minimization in statistical and machine learning. These methods by and large focus on the opti-
mization problem:

min
β∈Q

f(β) = 1
n

n∑

i=1

fj(β) , (8)

where Q is a closed and bounded convex set. Here f(·) is the empirical risk, though some of the
results we discuss below pertain to the more general “infinite” setting of expected loss minimization
where

f(β) =
∫

ξ
f(β; ξ)dµ(ξ) (9)

for some appropriate probability measure µ(·).
Hazan and Luo [17] discuss several different stochastic Frank-Wolfe algorithms with increasing
batch sizes over the course of iterations, including a straightforward stochastic Frank-Wolfe method
(SFW), a stochastic variance reduced Frank-Wolfe method (SVRFW), and a stochastic variance-
reduced conditional gradient sliding method (STORC). In order to compute an ε-optimal solution,
SFW requires O(1

ε3
) stochastic gradient calls (i.e., one computation of the gradient of one of the

fj(·) above) and O(1
ε) linear optimization oracle calls. (Recall that we ignore other instance-specific

constants such as sample size n and/or variance measures of stochastic gradients, Lipschitz con-
stants, curvature, and diameters constants, as our focus here is on the dependence on ε.) SVRFW
needs O(1

ε2
) stochastic gradient calls and O(1

ε) linear optimization oracle calls, as well as O(ln(1
ε))

full gradient calls. STORC (for STOchastic variance-Reduced Conditional gradient sliding) is a
variance-reduced version of the conditional gradient sliding method of Lan and Zhou [22]. The
number of stochastic gradient calls that STORC needs is a function of some instance-specific prop-
erties: it is O(1

ε) if there is an optimal solution in the interior of Q, it is O(1
ε1.5

) more broadly, and
is O(ln(1

ε)) under strong convexity of f(·). STORC also needs O(1
ε) linear optimization oracle calls

as well as O(ln(1
ε)) full gradient calls.

Lan and Zhou [22] present the stochastic conditional gradient sliding (SCGS) algorithm, which
combines Nesterov’s acceleration techniques and the Frank-Wolfe method. In the absence of strong
convexity, their stochastic Frank-Wolfe methodology requires O(1

ε2
) stochastic gradient calls and

O(1
ε) linear optimization oracle calls. And in the presence of strong convexity, their method requires

O(1
ε) stochastic gradient calls and O(1

ε) linear optimization oracle calls.

Mokhtari, Hassani and Karbasi [30] propose a stochastic Frank-Wolfe method called SCG (for
stochastic conditional gradient) by introducing a momentum gradient estimator which does not
require to increase the batch size. SCG requires O(1

ε3
) stochastic gradient calls and O(1

ε3
) linear

optimization oracle calls.

6

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

In the online setting, Hazan and Kale [16] proposed an online Frank-Wolfe method which requires
O(1

ε4
) stochastic gradient calls and O(1

ε4
) linear optimization oracle calls.

Of the above mentioned methods, we point out as well that the algorithms SFW [17] as well as
SCGS [22] and SCG [30] can also be implemented in the “infinite” setting of (9).

Unlike the deterministic Frank-Wolfe method, the above stochastic Frank-Wolfe methods do not
achieve O(1

ε) gradient calls and O(1
ε) linear optimization oracle calls to achieve an ε-optimal solu-

tion, without some additional restrictive assumptions. (This is the “complexity gap” mentioned in
the abstract.) From the above discussion, we see that such complexity is achieved only for STORC
[17] (when either (i) an optimal solution lies in the interior of Q, or (ii) when f(·) is strongly convex)
and for SCGS [22] when f(·) is strongly convex.

The primary motivation (and contribution) of this paper is to show that the typical setting of
empirical loss minimization – in which linear prediction is present – is sufficient to guarantee
that a suitable stochastic Frank-Wolfe method achieves both O(1

ε) gradient calls and O(1
ε) linear

optimization oracle calls to achieve an ε-optimal solution. Stated in the context of the literature
on this topic, one does not need strong convexity nor interior optimal solutions to achieve the
same complexity as deterministic Frank-Wolfe, so long as the setting is empirical loss minimization
with linear prediction – which is quite prevalent in such models. At the same time, our proposed
stochastic generalized Frank-Wolfe algorithm (Algorithm 1), which we call “GSFW” for short, has
an additional factor of n (the sample size) in the required number of stochastic gradient oracle
calls and linear optimization oracle calls, namely O(nε), to compute an absolute ε-optimal solution
of the empirical risk minimization problem with linear prediction. This contrasts somewhat with
the other algorithms in this suite (SCGM, SCGS, SFW) which do not have this extra factor of
n. In fact, GSFW does not necessarily dominate (nor is it dominated by) these other methods
in computational complexity due to the differential appearance among this suite of methods of a
variety of other constants (Lipschitz constants, curvature, diameter, stochastic gradient variance)
in addition to n. This is discussed further in Remark 3.2.

Randomized Dual Coordinate Descent Methods. One of the interpretations of our stochastic
Frank-Wolfe method is that it is a dual coordinate descent method in the dual space. It thus is
relevant to review the appropriate literature on dual coordinate descent in this context. Dual
coordinate descent methods have been widely used in statistical and machine learning applications.
Stochastic dual coordinate ascent (SDCA) for solving (1) was first proposed in [39]. There are
many follow-up works on SDCA, for example, accelerated proximal randomized dual coordinate,
see [40], [23], using a non-uniform distribution to choose the coordinate [33], and a primal-dual
coordinate method [47], among others. All of these dual methods (or primal-dual methods) require
the regularizer R(·) to be a strongly convex function (or require adding a dummy strongly convex
regularizer to the objective function). This contrasts with the standard Frank-Wolfe set-up where
R(·) is an indicator function and so is not strongly convex. Furthermore, in the Frank-Wolfe setup,
the objective function in the dual problem (10) is not necessarily differentiable, which falls outside
of the standard set-up for randomized coordinate descent [35], [32]. (However, it turns out that as
a byproduct of our analysis we obtain convergence guarantees for randomized coordinate descent
applied to the (non-differentiable) dual problem (10).) We further discuss the connections and
differences between the above methods and our method in Appendix A.4.

Variance Reduction Techniques for Stochastic Optimization. There have been many recent

7

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

developments of stochastic methods designed to directly tackle the optimization problem (1). In
order to obtain improved convergence guarantees over the standard Stochastic Gradient Descent
(SGD) method, variance reduction techniques have been proposed and extensively studied in recent
years. SAG [36] is the first variance reduction method in the literature that we are aware of. In
contrast to the sublinear convergence rate of SGD, SAG and several concurrent and/or subsequent
works – such as SVRG [20], MISO [28], and SAGA [9] – obtain linear convergence when the objective
function is both smooth and strongly convex. Variance reduction techniques can also be applied to
non-strongly convex optimization [36], [28], [9], [2], which leads to improved convergence guarantees
as well. More recently, Allen-Zhu [1] has proposed an accelerated stochastic method for directly
solving (1). We mention as well that the stochastic dual coordinate method [39] also corresponds
to a variant of a variance reduction technique in the primal space [37]. We refer the reader to [1]
for a more detailed discussion on variance reduction techniques overall.

1.4 Contributions

The overall contribution of this paper is Algorithm 1, which is a generalized stochastic Frank-Wolfe
method (hence the moniker GSFW) designed to solve the empirical risk minimization problem with
linear prediction (1). The specific contributions of Algorithm 1 and its analysis are as follows:

1. GSFW requires O(1
ε) stochastic gradient oracle calls and O(1

ε) linear optimization oracle
calls to compute an absolute ε-optimal solution of the empirical risk minimization problem
with linear prediction (1), see Theorem 3.1. This in particular demonstrates that the typical
setting of empirical loss minimization – in which linear prediction is present – is sufficient
to guarantee that a suitable stochastic Frank-Wolfe method achieves the same complexity as
its deterministic counterpart. Stated in the context of the prevalent literature on stochastic
Frank-Wolfe, one does not need strong convexity nor interior optimal solutions to achieve
the same complexity as deterministic Frank-Wolfe, so long as the setting is empirical loss
minimization with linear prediction – which is quite prevalent in such models. At the same
time, GSFW has an additional factor of n in the required number of stochastic gradient oracle
calls and linear optimization oracle calls, namely O(nε), which contrasts (at least somewhat)
with other comparable algorithms, see Remark 3.2.

2. In the special case when R(·) is strongly convex, GSFW requires O(ln(1
ε)) stochastic gradient

oracle calls and O(ln(1
ε)) linear optimization oracle calls to compute an absolute ε-optimal

solution of (1), see Theorem 3.2.

3. We show that GSFW is equivalent to a randomized coordinate mirror descent algorithm
applied to the dual problem (Algorithm 2), see Lemma 2.1. Algorithm 2 can be viewed as a
variant of the SDCA algorithm, and in this lens our method can handle a non-strongly convex
function R(·), in contrast to the current SDCA literature.

4. Our work also implies a convergence bound for randomized coordinate mirror descent in the
case when the objective function is the sum of a non-smooth function and a strongly convex
separable function. This is discussed in Section A.5.

5. The recognition of the empirical risk minimization problem with linear prediction (1) as a
problem of special interest due to the linear prediction structure.

8

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

1.5 Notation

We use ej to denote the jth unit coordinate vector in Rp. The `p norm is denoted ‖ · ‖p. We
use l̇j(·) to denote the first derivative of lj(·). The Bregman distance function associated with
a convex function h(·) is defined as Dh(y, x) := h(y) − h(x) − ∇h(x)T (y − x). We use E to
denote expectation and Eji to denote expectation conditional on the randomly chosen index ji. For
indicator functions, we use IQ(·) to denote the indicator function for the set Q, namely IQ(β) :=
0 if β ∈ Q, and IQ(β) := +∞ otherwise; and we use I{constraint}(β) to denote the indicator
function of a particular constraint (or condition), namely I{constraint}(β) := 0 if the constraint
is true at β, and I{constraint}(β) := +∞ otherwise. In a slight abuse of terminology we refer
to the “subgradient” of a concave function when it is perhaps more technically accurate to refer
to this as a sup-gradient. A differentiable function f(·) is µ-strongly convex with respect to a
norm ‖ · ‖ if it holds that f(y) ≥ f(x) + ∇f(x)T (y − x) + µ

2‖y − x‖2 for all x, y ∈ domf(·). A
differentiable function f(·) is µ-strongly convex with respect to a reference function h(·) if it holds
that f(y) ≥ f(x) +∇f(x)T (y − x) + µDh(y, x) for all x, y ∈ domf(·).

2 Dual problem, and equivalence of Algorithm 1 in the dual with
Randomized Coordinate Mirror Descent

f∗(y) := sup
x∈domf(·)

{yTx− f(x)} .

We will also be interested in the following dual problem of (1) that is constructed using the conjugate
functions of the component functions of (1):

(D) : max
w

D(w) := −R∗
(
− 1
nX

Tw
)
− 1

n

n∑

j=1

l∗j (wj) . (10)

Notice that we can write:

R∗
(
− 1
nX

Tw
)

= −min
β

{ 1
nw

TXβ +R(β)
}
. (11)

Also, defining the convex/concave saddle-function φ(·, ·):

φ(β,w) := 1
nw

TXβ − 1
n

n∑

i=1

l∗i (wi) +R(β) , (12)

we can write (P) and (D) in saddlepoint minimax format as:

(P) : min
β

max
w

φ(β,w) and (D) : max
w

min
β
φ(β,w) . (13)

Another standard first-order method for convex optimization is the mirror descent algorithm (also
called primal gradient method with Bregman distance) [42], [25], [24], [6], which we now briefly

9

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

review in the context of solving the dual problem (D) in (10), which is a concave maximization
problem. The Bregman distance of a differentiable “prox” function h(·) is defined to be:

Dh(w1, w2) := h(w1)− h(w2)− 〈∇h(w2), w1 − w2〉 .

The (deterministic) mirror descent algorithm for solving (D) has the following update:

wi+1 ← arg min
w
{−ηig(wi)T (w − wi) +Dh(w,wi)} ,

where g(·) is a subgradient of the objective function D(·) at w (which we call a subgradient even
though D(·) is concave), and {ηi} is the step-size sequence. It is shown in Bach [4] that the
generalized Frank-Wolfe method for the primal (1) is equivalent to mirror descent algorithm for
the dual (10).

Algorithm 2 presents a Randomized Coordinate Mirror Descent method applied to solve the dual
problem D. The algorithm uses the average of the conjugate functions l∗i (·) as the prox function,
namely h(·) = 1

n

∑n
i=1 l

∗
i (wi), and it initializes the dual variable w0 to be the prox-center (which is

the point that minimizes the prox function). At the start of the ith iteration, the algorithm randomly
chooses a coordinate ji and computes the jth

i coordinate of a subgradient of the dual objective
function D(w) at w = wi, since indeed it is straightforward to verify that 1

n(Xβ̃i −∇L∗(wi)) is a
subgradient of D(w) at w = wi. The algorithm then performs a coordinate mirror descent step to
update the dual variable wi. Last of all – and optionally since it does not affect future computations
– the algorithm updates the primal variable β̄i in order to compute a primal-dual optimality gap
certificate.

Algorithm 2 Randomized Coordinate Mirror Descent applied to the dual problem (10)

Initialize. Define the prox function h(w) := 1
n

∑n
i=1 l

∗
i (wi). Initialize with w0 =

arg minw 1
n

∑n
i=1 l

∗
i (wi) and step-size sequences {αi} ∈ (0, 1] and {ηi} ∈ (0, 1]. (Optional: set

β̄−1 = 0.)

For iterations i = 0, 1, . . .
Compute Randomized Coordinate of Subgradient of D(·) at wi

Compute β̃i ∈ arg minβ
{(1

n(wi)TXβ +R(β)
)}

Choose random index. Choose ji ∈ U [1, . . . , n]
Compute subgradient coordinate vector: g̃i ← 1

n

(
xTji β̃

i − l̇∗ji(wiji)
)
eji

Update dual variable: Compute wi+1 = arg minw
{〈
−ηig̃i, w − wi

〉
+Dh(w,wi)

}

(Optional Accounting:) β̄i ← (1− αi)β̄i−1 + αiβ̃
i.

The main result of this section is the following lemma concerning the equivalence of Algorithm 1
and Algorithm 2.

Lemma 2.1. (Equivalence Lemma) Algorithm 1 and Algorithm 2 are equivalent as follows: the
iterate sequence of either algorithm exactly corresponds to an iterate sequences of the other.

10

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

As a means to proving the lemma, we first reinterpret the update of wji at iteration i of Algorithm
2 in the following proposition:

Proposition 2.1. At iteration i of Algorithm 2 it holds that:

(1.) l̇∗ji(w
i+1
ji

) = (1− ηi)l̇∗ji(wiji) + ηix
T
ji
β̃i, and

(2.) wi+1
ji

= l̇ji

(
(1− ηi)l̇∗ji(wiji) + ηix

T
ji
β̃i
)

.

Proof: Because h(w) is a coordinate-wise separable function, we can rewrite the update for wi+1
ji

as
wi+1
ji

= arg minwji

〈
−ηi
n

(
xTji β̃

i − l̇∗ji(wiji)
)
, wji

〉
+D 1

n
l∗ji

(wji , w
i
ji

)

= arg minwji

〈
−ηi

(
xTji β̃

i − l̇∗ji(wiji)
)
, wji

〉
+Dl∗ji

(wji , w
i
ji

)

= arg minwji

〈
−ηixTji β̃i − (1− ηi)l̇∗ji(wiji), wji

〉
+ l∗ji(wji) .

From the first-order optimality condition of the above 1-dimensional problem we have l̇∗ji(w
i+1
ji

) =
ηix

T
ji
β̃i + (1− ηi)l̇∗ji(wiji), which shows (1.); and (2.) follows directly from (1.) by the properties of

the conjugate function in Proposition A.1.

Proof of Lemma 2.1 We show that the iterate sequence of Algorithm 2 corresponds exactly to
an iterate sequence of Algorithm 1. The {si} sequence is not formally defined in Algorithm 2, so
let us define si := ∇L∗(wi) for all i = 0, 1, . . ., which is consistent through conjugacy with the
relationship wi = ∇L(si) in the Optional Accounting step of Algorithm 1 (see Proposition A.1).
In order to show the correspondence we proceed by induction on the iteration counter i. For i = 0
we have from conjugacy that s0 := ∇L∗(w0) = 0 from the definition w0 in the initialization of
Algorithm 2. We also need to show that β̃0 is a solution to the linear optimization oracle problem
in Algorithm 1. We have for all i = 0, . . ., that:

β̃i ∈ arg minβ
{

1
n

(
wi
)T
Xβ +R(β)

}
= arg minβ

{
1
n

(
∇L(si)

)T
Xβ +R(β)

}

= arg minβ
{(
di
)T
β +R(β)

}
,

thus showing that βi corresponds to a linear optimization oracle solution at iteration i in Algorithm
1 for all i = 0, Now suppose that the correspondence holds for some iteration counter i, and
let us examine si+1 := ∇L∗(wi+1). We have from Proposition 2.1 that:

wi+1
ji

= l̇ji

(
(1− ηi)l̇∗ji(wiji) + ηix

T
ji β̃

i
)

= l̇ji

(
(1− ηi)siji + ηix

T
ji β̃

i
)
, (14)

where the first equality is from Proposition 2.1 and the second equality uses induction. This then
implies that

(1− ηi)siji + ηix
T
ji β̃

i = l̇(wi+1
ji

) = si+1 .

And for all coefficient indices j 6= i we have

si+1
j = l̇∗(wi+1

j) = l̇(wij) = si ,

11

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

where the second equality follows from conjugacy, whereby si+1 satisfies the update rule as stated
in Algorithm 1, thus demonstrating that the iterate sequence of Algorithm 2 corresponds exactly
to an iterate sequence of Algorithm 1. The same type of analysis as above can be used to prove
that the iterate sequence of Algorithm 1 corresponds exactly to an iterate sequence of Algorithm
2.

3 Convergence Guarantees

In this section we develop computational guarantees for Algorithm 2, which automatically provide
computational guarantees for Algorithm 1 due to the equivalence shown in Theorem 2.1. Our first
– and main – result is Theorem 3.1, which is an expected O(1/k) guaranteed decrease in the duality
gap between (P) and (D). Secondly, in the case when R(·) is a strongly convex function, we present
a linear convergence result on the duality gap in Theorem 3.2. We start by defining two measures
– M and Dmax – associated with (P) and whose values will enter our computational bounds.

Let M := maxβ∈domR(·) maxj=1,...,n{|xTj β|}, and note that M < +∞ since domR(·) is bounded by
Assumption 1.1.

Let W ⊂ Rn be the set of “optimal w responses” to values β ∈ domR(·) in the saddle-function
φ(β,w), namely:

W := {ŵ ∈ Rn : ŵ ∈ arg max
w

φ(β̂, w) for some β̂ ∈ domR(·)} ,

and let Dmax be any upper bound on Dh(ŵ, w0) as ŵ ranges over all values in W, so that

Dh(ŵ, w0) ≤ Dmax for all ŵ ∈ W .

Note at the moment that there is no guarantee that Dmax < +∞, but this will be remedied below
in Proposition 3.1.

Proposition 3.1. Under Assumption 1.1 it holds that Dmax ≤ γM2.

Before proving this proposition, we first show that there is a natural boundedness constraint for
the dual problem:

Proposition 3.2. Let T :=
{
w ∈ Rn : |‖w − w0‖∞ ≤ γM

}
. Then:

1. for any β̂ ∈ domR(·) it holds that arg maxw φ(β̂, w) ∈ T , and

2. for all wi generated in Algorithm 2, it holds that wi ∈ T .

Proof. We first prove (1.). Notice that w0 = ∇L(0) and arg maxw φ(β̂, w) = ∇L(Xβ̂) (from
conjugacy via Proposition A.1) , whereby the γ-smoothness of lj(·) implies that
∥∥∥arg max

w
φ(β̂, w)− w0

∥∥∥
∞

=
∥∥∥∇L(Xβ̂)−∇L(0)

∥∥∥
∞

= max
j

∣∣∣l̇j(xTj β̂)− l̇j(0)
∣∣∣ ≤ γmax

j
|xTj β̂| ≤ γM ,

which proves (1.). It follows from Proposition 3.1 that for any coordinate j and iterate i it holds
that

∣∣∣l̇∗j (wij)
∣∣∣ ≤M . Together with l̇∗j (w

0
j) = 0, we have

12

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

1
γ

∣∣wij − w0
j

∣∣ ≤
∣∣∣l̇∗j (wij)− l̇∗j (w0

j)
∣∣∣ ≤M ,

(where the first inequality is from the 1
γ -strong convexity of l∗j (wj)), from which it follows that

‖wi − w0‖∞ ≤ γM , which proves (2.).

Proof of Proposition 3.1: Let L(s) :=
∑n

j=1 lj(sj) and L∗(w) :=
∑n

j=1 l
∗
j (wj), and note that

L(·) and L∗(·) are a conjugate pair. Let ŵ ∈ W and let β̂ be such that ŵ ∈ arg maxw φ(β̂, w).
Then

Dh(ŵ, w0) = 1
n

(
L∗(ŵ)− L∗(w0)

)

= 1
n

(
(ŵ)T Xβ̂ − L(Xβ̂)− L∗(w0)

)

≤ 1
n

(
maxw∈T,β∈domR(·)

{
wTXβ − L(Xβ)

}
− L∗(w0)

)

= 1
n

(
maxw∈T,β∈domR(·)

{
(w − w0)TXβ +

(
w0
)T
Xβ − L(Xβ)

}
− L∗(w0)

)

≤ 1
n

(
maxw∈T,β∈domR(·)

{
(w − w0)TXβ

}
+ maxβ∈domR(·)

{(
w0
)T
Xβ − L(Xβ)

}
− L∗(w0)

)

≤ 1
n

(
nmaxw∈T,β∈domR(·) ‖w − w0‖∞‖Xβ‖∞ + L∗(w0)− L∗(w0)

)

≤ γM2 ,

where the second equality follows from Proposition A.1, the first inequality uses β̂ ∈ domR(·) and
ŵ ∈ T (from Proposition 3.2), and the last inequality uses maxβ∈domR(·) ‖Xβ‖∞ ≤M .

Remark 3.1. A suitable value of Dmax can often be easily derived based on the structure of lj(·).
For example, in logistic regression where the loss function is lj(sj) := log(1 + exp(−yjsj)) for
the given label yj ∈ {−1, 1}, we have l∗j (wj) = −yjwj ln(−yjwj) + (1 + yjwj) ln(1 + yjwj) with
doml∗j (·) = {wj : 0 ≤ −yjwj ≤ 1} (where a ln(a) := 0 for a = 0). Therefore for all ŵ ∈ W it holds
that

Dh(ŵ, w0) ≤ max
0≤−Y w≤e

Dh(w,w0) = 1
n

(
max

0≤−Y w≤e
L∗(w)− L∗(w0)

)
= ln(2) ,

where Y is the diagonal matrix whose diagonal coefficients correspond to y and e = [1, . . . , 1]T , so
we may set Dmax = ln(2).

Notice in Algorithm 1 and Algorithm 2 that ji is a random variable; and that si, di, wi, etc., are
random variables that depend on all previous random variable values j0, j1, . . . , ji−1, and we denote
this string of random variables by

ξi = {j0, j1, . . . , ji−1} . (15)

We now state our main computational guarantee for Algorithm 2 (and hence for Algorithm 1 as
well).

13

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Theorem 3.1. Consider the Stochastic Generalized Frank-Wolfe method (Algorithm 1) or the
Randomized Dual Coordinate Mirror Descent method (Algorithm 2), with step-size sequences αi =

2(2n+i)
(i+1)(4n+i) and ηi = 2n

2n+i+1 for i = 0, 1, Denote

w̄k =
2

(4n+ k)(k + 1)

k∑

i=0

(2n+ i)wi .

Under Assumption 1.1, it holds for all k ≥ 0 that

Eξk
[
P (β̄k)−D(w̄k)

]
≤ 8nγM2

(4n+ k)
+

2n(2n− 1)Dmax

(4n+ k)(k + 1)
≤ 8nγM2

(4n+ k)
+

2n(2n− 1)γM2

(4n+ k)(k + 1)
.

Remark 3.2. If we include the dependence on the sample size n in the big-O notation, then
Theorem 3.1 shows that GSFW requires O(nε) iterations to compute an absolute ε-optimal solution
of the empirical risk minimization problem with linear prediction (1), and indeed that is the same
order of gradient computations (over individual samples) as the deterministic Frank-Wolfe method
[19]. Remark 3.4 discusses how this dependency changes in the presence of mini-batches, and shows
how the convergence rate changes as the algorithm morphs from stochastic to deterministic as the
mini-batch size is increased. Actually the results herein have a similar structure as randomized
coordinate descent (RCD) complexity bounds for solving smooth optimization (see, e.g, Theorem 5
in [32]), wherein RCD requires O(nε) to obtain an ε-optimal solution and n therein refers to the
number of coordinates. As we can see in Theorem 3.1, GSFW has a superior convergence rate in ε
compared to the existing stochastic Frank-Wolfe methods (such as SFW, SCGM, SCGS and SVRF),
but has the additional factor of n in contrast with these other methods. In fact, GSFW does not
necessarily dominate (nor is it dominated by) these other methods in computational complexity due
to the differential appearance among this suite of methods of a variety of other constants (Lipschitz
constants, curvature, diameter, stochastic gradient variance) in addition to n.

The following string of propositions will be needed for the proof of Theorem 3.1.

Proposition 3.3. For all iterates i and any j ∈ {1, . . . , n} it holds that
∣∣∣l̇∗j (wij)

∣∣∣ ≤M .

Proof. We prove this by induction on i. The proposition is true for i = 0 because l̇∗j (w
0
j) = 0 for all j

by the definition of w0. Next suppose that
∣∣∣l̇∗j (wij)

∣∣∣ ≤M for a given iterate i and for all j = 1, . . . , n.

Then at iteration i + 1 and any j 6= ji we have wi+1
j = wij , whereby

∣∣∣l̇∗j (wi+1
j)

∣∣∣ =
∣∣∣l̇∗j (wij)

∣∣∣ ≤ M .
And it follows from Proposition 2.1 that

∣∣∣l̇∗ji(w
i+1
ji

)
∣∣∣ =

∣∣∣(1− ηi) l̇∗ji(wiji) + ηix
T
ji β̃

i
∣∣∣ ≤ (1− ηi)M + ηiM = M ,

and therefore for any j = 1, . . . , n, we have
∣∣∣l̇∗j (wi+1

j)
∣∣∣ ≤M , which completes the proof by induction.

As a simple corollary we obtain an upper bound on ‖g̃i‖2 as follows:

Corollary 3.1. ‖g̃i‖2 = 1
n

∣∣∣xTji β̃i − l̇∗ji(wiji)
∣∣∣ ≤ 2M

n .

14

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Proposition 3.4. h(·) is 1
nγ -strongly convex with respect to the norm ‖ · ‖2.

Proof. Recall that h(w) = 1
n

∑n
j=1 l

∗
j (wj). It follows from Assumption 1.1 and Proposition A.1

that l̇∗j (·) is 1
γ -strongly convex. Therefore for any w1, w2 ∈ domh(·) it holds that:

h(w1) = 1
n

∑n
j=1 l

∗
j (w

1
j)

≥ 1
n

∑n
j=1

(
l∗j (w

2
j) + l̇∗j (w

2
j)(w

1
j − w2

j) + 1
2γ |w2

j − w1
j |2
)

= h(w2) + 〈∇h(w2), w1 − w2〉+ 1
2nγ ‖w2 − w1‖22 .

Proposition 3.5. φ(β̃i, w) = D(wi) +
〈
∇wφ(β̃i, wi), w − wi

〉
−Dh(w,wi).

Proof. The proof follows from straightforward substitution using φ(β̃i, w) = 1
n

(
wTXβ̃i −∑n

j=1 l
∗
j (wj)

)
+

R(β̃i) and noticing from the construction of β̃i that D(wi) = φ(β̃i, wi).

Proposition 3.6. Consider the series {αi} defined by αi = 2(2n+i)
(4n+i)(i+1) for i ≥ 0 and define the

series {β̄i} by β̄−1 = 0 and β̄i = (1 − αi)β̄i−1 + αiβ̃
i for i ≥ 0. Also define γi = 2n + i for i ≥ 0.

Then

β̄k =
∑k

i=0 γiβ̃
i

∑k
i=0 γi

for all k ≥ 0 .

Proof: The proof follows easily by induction and using
∑k

i=0 γi = (4n+k)(k+1)
2 .

Proof of Theorem 3.1. Denote gi := 1
n

(
Xβ̃i −∇L∗(wi)

)
, whereby gi is a subgradient of D(w)

at wi, and g̃i is an unbiased estimator of gi up to the scalar n, namely Eji [g̃i] = 1
ng

i. Therefore we
have for any i and any w ∈ W that:
〈
−gi, w − wi

〉
= nEji

[〈
−g̃i, w − wi

〉]

≥ nEji
[〈
−g̃i, wi+1 − wi

〉
+ 1

ηi
Dh(wi+1, wi) + 1

ηi
Dh(w,wi+1)− 1

ηi
Dh(w,wi)

]

≥ nEji
[〈
−g̃i, wi+1 − wi

〉
+ 1

2nγηi
‖wi+1 − wi‖22 + 1

ηi
Dh(w,wi+1)− 1

ηi
Dh(w,wi)

]

≥ nEji
[
−1

2nγηi‖g̃i‖22 + 1
ηi
Dh(w,wi+1)− 1

ηi
Dh(w,wi)

]

≥ −2γM2ηi + n
ηi

Eji [Dh(w,wi+1)]− n
ηi
Dh(w,wi) ,

(16)
where the first inequality is from the “three point property” of Tseng (Lemma A.1 in the Appendix),
the second inequality is due to the fact that h(w) is 1

nγ -strongly convex with respect to the norm
‖ · ‖2 (Proposition 3.4), and the third inequality is an application of the basic inequality 〈x, y〉 ≤
1
2‖x‖22 + 1

2‖y‖22, and the last inequality uses Corollary 3.1.

15

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

On the other hand, we have from Proposition 3.5 that
〈
−gi, w − wi

〉
=
〈
−∇wφ(β̃i, wi), w − wi

〉
= D(wi)− φ(β̃i, w)−Dh(w,wi) . (17)

Combining (16) and (17) and rearranging yields

−(φ(β̃i, w)−D(wi)) ≥ −2γM2ηi + n
ηi

Eji [Dh(w,wi+1)]−
(
n
ηi
− 1
)
Dh(w,wi).

Substituting ηi = 2n
2n+i+1 and multiplying by 2n + i results, we arrive at the following inequality

after rearranging terms:

(2n+ i)(φ(β̃i, w)−D(wi))
≤ 4nγM2

(
2n+i

2n+i+1

)
+ 1

2

(
(2n+ i)(2n+ i− 1)Dh(w,wi)− (2n+ i)(2n+ i+ 1)Eji [Dh(w,wi+1)]

)
.

Summing the above inequality for i = 0, . . . , k and recalling from Proposition 3.6 that β̄k :=
2

(4n+k)(k+1)
∑k

i=0(2n+ i)β̃i, and taking the unconditional expectation over ξk (recall the definition
of ξk in (15)), we arrive at:

(4n+k)(k+1)
2 Eξk [φ(β̄k, w)−D(w̄k)] =

(∑k
i=0 2n+ i

)
Eξk [φ(β̄k, w)−D(w̄k)]

≤ Eξk
[∑k

i=0(2n+ i)(φ(β̃i, w)−D(wi))
]

≤ 4(k + 1)nγM2 + 1
2(2n)(2n− 1)Dh(w,w0)

≤ 4(k + 1)nγM2 + n(2n− 1)Dmax ,

where the first inequality uses the convexity of φ(β,w) over β and the concavity of D(w), the
second inequality follows from the summation and canceling terms in the telescoping series, and
the third inequality uses w ∈ W. Choosing ŵ = arg maxw φ(β̄k, w), we have P (β̄k) = φ(β̄k, ŵ),
which yields:

Eξk [P (β̄k)−D(w̄k)] ≤ 8nγM2

(4n+ k)
+

2n(2n− 1)Dmax

(4n+ k)(k + 1)
,

thus showing the first inequality in the statement of the theorem. The second inequality in the
statement of the theorem then follows as a simple application of Proposition 3.1.

3.1 Linear Convergence when R(·) is Strongly Convex

In this section, we further assume R(·) is a µ-strongly convex function, and we develop a linear
convergence guarantee for Algorithms 1 and 2 . We first formally define a separable function.

Definition 3.1. The function h : Rn → R is separable if

h (x) =
n∑

i=1

hi (xi) ,

where xi is the ith coordinate of x and hi is a univariate function.

16

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Next we introduce the notation of relative smoothness and relative strong convexity developed re-
cently in [25][24][5][14][44]. We adapt a simplified version of the coordinate-wise relative smoothness
condition as in [14].

Definition 3.2. f(·) is coordinate-wise σ-smooth relative to a separable reference function h(·) if
for any x, scalar t and coordinate j it holds that:

f(x+ tej) ≤ f(x) + 〈∇f(x), tej〉+ σDh(x+ tej , x) . (18)

We also adapt the notion of relative strong convexity developed in [25].

Definition 3.3. f(·) is µ-strongly convex relative to h(·) if for any x, y, it holds that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µDh(y, x) . (19)

The next proposition states that the dual function D(w) is both coordinate-wise smooth and
strongly concave relative to the reference function h(w) := 1

n

∑n
j=1 l

∗
j (wj). In the proposition,

recall that xj is the jth row of the matrix X.

Proposition 3.7.

(1.) Suppose R(·) is a µ-strongly convex function with respect to ‖ · ‖2, then −D(·) is coordinate−
wise

(
γmaxj ‖xj‖22

nµ + 1
)

-smooth relative to h(·), and

(2.) −D(·) is 1−strongly convex relative to h(·).
Proof. (1.) Consider w1 and w2 such that w2 = w1 + tej for some coordinate j, namely w1 and w2
only differ in one coordinate. It follows from Proposition A.1 that R∗(·) is 1

µ -smooth with respect
to ‖ · ‖2, thus we have

R∗
(
− 1
nX

Tw2
)
≤ R∗

(
− 1
nX

Tw1
)

+
〈
∇R∗

(
− 1
nX

Tw1
)
,− 1

nX
T (w2 − w1)

〉
+ 1

2µ

∥∥ 1
nX

T (w2 − w1)
∥∥2

2

= R∗
(
− 1
nX

Tw1
)

+
〈
− 1
nX∇R∗

(
− 1
nX

Tw1
)
, w2 − w1

〉
+ t2

2n2µ
‖xj‖22

≤ R∗
(
− 1
nX

Tw1
)

+
〈
− 1
nX∇R∗

(
− 1
nX

Tw1
)
, w2 − w1

〉
+ γ‖xj‖22

nµ Dh(w2, w1) ,

where the first inequality follows from smoothness, the equality is from w2 = w1 + tej , and the
last inequality utilizes the fact that h(·) is (1

nγ)-strongly convexity with respect to ‖ · ‖2. Therefore

it holds that f̂(w) := R∗
(
− 1
nX

Tw
)

is coordinate-wise (γmaxj ‖xj‖22
nµ)-smooth relative to h(·). The

proof is completed by noticing that −D(w) = R∗
(
− 1
nX

Tw
)

+ h(w).

(2.) This follows from the additivity property of relative strong convexity (Proposition 1.2 in [25]),
whereby D(·) is 1-strongly concave relative to h(w).

The following theorem states a linear convergence guarantee in the case when R(·) is strongly
convex.

17

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Theorem 3.2. Suppose D(·) is coordinate-wise σ-smooth relative to h(·). Consider the Stochastic
Generalized Frank-Wolfe method (Algorithm 1) or the Randomized Dual Coordinate Mirror Descent
method (Algorithm 2), with step-size sequences ηi = 1

σ and αi = n−1σi

σi+1−(σ−1/n)i+1 . Under Assumption
1.1 it holds for all k ≥ 1 that

Eξk
[
P (β̄k−1)−D(wk)

]
≤ Dmax(

1 + 1
nσ−1

)k
− 1
≤ γM2

(
1 + 1

nσ−1

)k
− 1

. (20)

Notice that the first inequality in (20) shows linear convergence; indeed, in this case it holds
that

1
(

1 + 1
nσ−1

)k
− 1
≤ nσ

(
1− 1

nσ

)k
. (21)

(This inequality holds trivially for k = 1, and induction on k establishes the result for k ≥ 2.)
Furthermore, when k is large the −1 term in the denominator of the left-hand side can be ignored
which yields the asymptotic bound

(
1− 1

nσ

)k
Dmax. The next corollary states the implication of

this linear convergence bound in terms of the values γ and µ of the γ-smoothness of l1(·), . . . , ln(·)
and the µ-strong convexity of R(·).
Corollary 3.2. Choose σ = γmaxj ‖xj‖22

nµ + 1 as per Proposition 3.7. Then Theorem 3.2 and (21)
imply

Eξk
[
P (β̄k−1)−D(wk)

]
≤ Dmax(

1 + 1
γmaxj ‖xj‖22

µ
+n−1

)k
− 1

≤ Dmax

(
γmaxj ‖xj‖22

µ
+ n

)
1− 1

n+ γmaxj ‖xj‖22
µ



k

.

Remark 3.3. Corollary 3.2 shows that GSFW requires O
(

(n+ γ
µ) log(1

ε)
)

iterations to compute
an absolute ε-optimal solution of the empirical risk minimization problem with linear prediction
(1). This is the same order of convergence rate as SDCA [39].

Before proving Theorem 3.2, we first present an elementary proposition for a separable reference
function h(·), whose proof is given in Appendix A.3.

Proposition 3.8. Suppose h(·) : Rn → R is a separable function. Let j ∼ U [1, . . . , n]. For given
x, a, y ∈ Rn, define the random variable b ∈ Rn such that bj = aj, and bi = xi for all i 6= j. Then:

Dh (y, a)−Dh (y, x) = nEj (Dh (y, b)−Dh (y, x)) .

We also will use the following proposition whose proof follows easily by induction on k.

Proposition 3.9. Consider the series {αi} defined by αi = n−1σi

σi+1−(σ−1/n)i+1 for i ≥ 0, and define

the series {β̄i} by β̄−1 = 0 and β̄i = (1 − αi)β̄i−1 + αiβ̃
i for i ≥ 0. Also define γi =

(
nσ
nσ−1

)i
for

i ≥ 0. Then

β̄k =
∑k

i=0 γiβ̃
i

∑k
i=0 γi

for all k ≥ 0 .

18

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Proof of Theorem 3.2.

Notice that g̃i = ∇jiD(wi)eji , and wi+1 is a coordinate update from wi, whereby we have

−D(wi+1) ≤ −D(wi)−
〈
g̃i, wi+1 − wi

〉
+ σDh(wi+1, wi) ≤ −D(wi) ,

and hence the dual function value sequence
{
D(wi)

}
is non-decreasing.

Define ri+1 := arg minw
{〈
−∇D(wi), w − wi

〉
+ σDh(w,wi)

}
, then we have

Eji [−D(wi+1)] ≤ Eji [−D(wi)−
〈
∇D(wi), wi+1 − wi

〉
+ σDh(wi+1, wi)]

= Eji [−D(wi)− 1
n

(〈
∇D(wi), ri+1 − wi

〉
+ σDh(ri+1, wi)

)
]

≤ Eji [−D(wi)− 1
n

(〈
∇D(wi), w − wi

〉
+ σDh(w,wi)− σDh(w, ri+1)

)
]

= Eji [−D(wi)− 1
n

〈
∇D(wi), w − wi

〉
+ σDh(w,wi)− σDh(w,wi+1)]

= Eji [−n−1
n D(wi)− 1

n

(
D(wi) +

〈
∇D(wi), w − wi

〉)
+ σDh(w,wi)− σDh(w,wi+1)] ,

(22)
where the first inequality is from the coordinate-wise σ-smoothness of D(w) relative to h(w) and
the fact that wi+1 is a coordinate update from wi, the first equality is due to expectation and the
separability of h(·), the second inequality uses the three-point property (Lemma A.1), the second
equality uses Proposition 3.8, and the third equality is just arithmetic rearrangement.

Notice that

−D(wi)−
〈
∇D(wi), w − wi

〉
+ nσDh(w,wi)− nσDh(w,wi+1)

= −D(wi)−
〈
∇wφ(β̃i, wi), w − wi

〉
+ nσDh(w,wi)− nσDh(w,wi+1)

= −φ(β̃i, w) + (nσ − 1)Dh(w,wi)− nσDh(w,wi+1) ,

where the last equality utilizes Proposition 3.5. We can then rewrite (22) (after multiplying by n
on both sides) as

Eji [−nD(wi+1)] ≤ Eji
[
−(n− 1)D(wi)− φ(β̃i, w) + (nσ − 1)Dh(w,wi)− nσDh(w,wi+1)

]
. (23)

19

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Multiplying (23) by
(

nσ
nσ−1

)i+1
and summing over i = 0, . . . , k − 1, we obtain:

Eξk

[
−∑k

i=1 n
(

nσ
nσ−1

)i
D(wi)

]

≤ Eξk

[
−∑k

i=1(n− 1)
(

nσ
nσ−1

)i
D(wi−1)−∑k

i=1

(
nσ
nσ−1

)i
φ(β̃i−1, w) + nσDh(w,w0)

]

≤ Eξk

[
−∑k

i=1(n− 1)
(

nσ
nσ−1

)i
D(wi−1)−

(∑k
i=1

(
nσ
nσ−1

)i)
φ(β̄k−1, w) + nσDh(w,w0)

]
,

where the last inequality is from Proposition 3.9 and the convexity of φ(β,w) in β. Since the
sequence

{
D(wi)

}
is non-decreasing in i it follows that:

Eξk

[
−
(

k∑

i=1

(
nσ

nσ − 1

)i)
D(wk)

]
≤ Eξk

[
−
(

k∑

i=1

(
nσ

nσ − 1

)i)
φ(β̄k−1, w)

]
+nσDh(w,w0) . (24)

Let us substitute the following value of w in (24): w ← ŵk−1 := arg maxw{φ(β̄k−1, w)}, which
yields:

(
k∑

i=1

(
nσ

nσ − 1

)i)
Eξk

[
φ(β̄k−1, ŵk−1)−D(wk)

]
≤ nσDh(ŵk−1, w0) ≤ nσDmax ,

where the last inequality above comes from the definition of Dmax. Therefore we have

Eξk
[
P (β̄k−1)−D(wk)

]
≤ nσ(∑k

i=1

(
nσ
nσ−1

)i)Dmax =
Dmax(

1 + 1
nσ−1

)k
− 1

,

which furnishes the proof by utilizing Proposition 3.9.

Remark 3.4. Algorithm 1 as well as the convergence analysis in Theorem 3.1 and Theorem 3.2 can
be directly extended to the mini-batch setting. The algorithm extension is accomplished by replacing
the single randomly chosen index ji in the statement of Algorithm 1 by a random subset of the
indices; and the analysis of the algorithm needs to then use the mini-batch of samples instead of
a single sample. More specifically, in the mini-batch version of Algorithm 1, we pre-set the batch
size b, and at iteration i we choose a random subset Bi ⊆ {1, 2, . . . , n} of the indices uniformly
without replacement such that |Bi| = b at the i-th iteration. We then update the predicted values
s using only the indices in the subset Bi, namely si+1

j = (1 − ηi)sij + ηi(xTj β̃
i) for j ∈ Bi, and

si+1
j = sij for j 6∈ Bi. The update of the substitute gradient becomes di+1 = 1

nX
T∇L(si+1) = di +

1
n

∑
j∈Bi

(
l̇j(si+1

j)− l̇j(sij)
)
xj. The rest of the algorithm remains the same as stated in Algorithm

1.

By a similar analysis to that of Theorem 3.1 and Theorem 3.2, we can obtain similar convergence
guarantees for the above mini-batch version of GSFW. Essentially we just need to replace n by n/b in
the statement of Theorem 3.1 and Theorem 3.2 as well as most of the places in the analysis (except

20

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

the third and fourth inequalities in (16)), after noticing that Corollary 3.1 becomes ‖g̃i‖2 ≤ 2M
√
b

n .
In particular, for the non-strongly convex case, the convergence guarantee becomes

Eξk
[
P (β̄k)−D(w̄k)

]
≤ 8(nb)γM2
(
4(nb) + k

) +
2(nb)(2(nb)− 1)γM2

(4(nb) + k)(k + 1)
,

and for the strongly-convex case, the convergence guarantee becomes

Eξk
[
P (β̄k−1)−D(wk)

]
≤ Dmax(

1 + 1
σ(nb)−1

)k
− 1

≤ γM2

(
1 + 1

σ(nb)−1

)k
− 1

.

Moreover, the updates of Algorithm 1 in the mini-batch setting can be implemented in parallel as a
result of the separability of samples in Algorithm 1.

Remark 3.5. A natural question to ask next is whether one can achieve an accelerated convergence
rate when R(·) is strongly convex, similar to that in [40], [23]. The answer actually is yes, as one
can utilize similar proof techniques as those developed in [23]. However, the accelerated version
may not have a natural interpretation in the primal variables.

4 Computational Experiments and Comparisons

In this section we present the results of some basic numerical experiments where we compare
Algorithm 1 (GSFW) with the following four other stochastic Frank-Wolfe methods in the recent
literature:

• SCGS – stochastic gradient sliding algorithm proposed in [22];

• SFW – stochastic Frank-Wolfe algorithm proposed in [17];

• SVRF – stochastic variance reduction Frank-Wolfe algorithm proposed in [17]; and

• SCGM – stochastic conditional gradient method proposed in [30].

We analyzed the performance of these five algorithms on instances of the following `1 norm con-
strained sparse logistic regression problem:

minβ∈Rp P (β) = 1
n

∑n
j=1 ln(1 + exp(−yjxTj β))

s.t. ‖β‖1 ≤ δ .
(25)

We ran the five stochastic Frank-Wolfe algorithms on ten dataset instances of the constrained
logistic regression problem (25) in LIBSVM [8]. Here we report on four of these dataset instances,
namely a9a, w8a, mushrooms, and gisette, as the results on these four datasets are typical of the
results of the other datasets. Table 1 describes the dimensions for these four data instances. We
set δ = 5 for our experiments with these four datasets, which resulted in solutions on the boundary
of the feasible region in all instances.

21

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

dataset sample size (n) feature size (p)
a9a 32561 123
w8a 49749 300

mushrooms 8124 112
gisette 6000 5000

Table 1: Dimensions and value of δ for four LIBSVM data instances.

Batch Size GSFW SFW SCGM SCGS SVRF
Size consistent with theory 0.01n O(k2) 0.01n O(k3) O(k)
Size used in practice 0.01n min{k2, n/2} 0.01n min{k3, n/2} min{k, n/2}

Table 2: Batch sizes used in the five stochastic Frank-Wolfe methods implemented in our computational
experiments.

Instead of using one single sample (batch-size equal to 1) per iteration, we found it far more
efficient to run GSFW and SCGM using a mini-batch. So as not to over-engineer our analysis
or unduly bias our results, we used a mini-batch size of 1% of the training data size (.01n) and
chose all batches randomly without replacement at all iterations (see Remark 3.4 for a discussion
of how to modify GSFW (Algorithm 1) using mini-batches, with associated modifications of the
computational guarantees). Note that in theory, algorithms SCGS, SFW, and SVRF all require
increasing the batch size to O(k3), O(k2), and O(k) at iteration k, respectively. In order to retain
actual stochasticity of these three methods, we set the maximum batch-size to be 50% of all samples
for these three methods; thus when the batch size specified in each of these algorithms is larger
than n/2, we randomly select n/2 samples without replacement in constructing the stochastic
gradient estimator. Table 2 summarizes the above discussion of batch-size modifications for our
computational experiments.

Figure 1 shows the optimality gap versus the number of stochastic gradient computations (counting
one for each sample in each batch) for the five different stochastic Frank-Wolfe methods. In each
sub-figure, the vertical axis is the objective value optimality gap P (βk)−P (β∗) in log scale, where
P (β∗) is estimated after-the-fact using the best solution obtained over the iterations; the horizontal
axis in each sub-figure is the number of stochastic gradient computations computed so far, also in
log scale. Here we see that although the optimality gap of SFW and SCGM may have faster
decay initially (perhaps due to better problem-specific constants including their lack of explicit
dependence on n), nevertheless GSFW decays much faster than the other stochastic Frank-Wolfe
variants after a while. This is consistent with the complexity bound in Theorem 3.1 that GSFW
has a superior order of convergence rate dependence on ε, namely O(1/ε).

Figure 2 shows the optimality gap versus the number of linear optimization oracle calls (solving
the linear optimization subproblem) for the five different stochastic Frank-Wolfe methods. In each
sub-figure, the vertical axis is the objective value optimality gap in log scale, and the horizontal axis
is the number of linear optimization oracle calls, also in log scale. Similar to Figure 1, here we see
again that the optimality gap of GSFW decays much faster than the other stochastic Frank-Wolfe
methods after a while, which is again consistent with the superior order of convergence rate of
GSFW dependence on ε, namely O(1/ε).

22

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

(a) a9a dataset (b) w8a dataset

(c) mushrooms dataset (d) gisette dataset

Figure 1: Figure showing the optimality gap versus the number of stochastic gradient computations (count-
ing one for each sample in each batch) for each of the five different stochastic Frank-Wolfe methods, for the
a9a, w8a, mushrooms, and gisette dataset instances.

Table 3 shows the number of stochastic gradient computations and the number of linear optimiza-
tion oracle calls to achieve an accuracy of 10−5 for the four LIBSVM datasets evaluated in detail
herein, for the (deterministic) Frank-Wolfe method, GSFW, and SCGM. (SCGS, SFW, and SVRF
do not achieve an accuracy of 10−5 in a reasonable number of iterations, so we do not present
results for these three methods in Table 3.) Table 3 shows that GSFW usually requires fewer gra-
dient computations, while the deterministic Frank-Wolfe method clearly dominates the stochastic
Frank-Wolfe methods in term of the number of linear optimization oracle calls. Of course, the
Frank-Wolfe method utilizes the exact gradient at each linear optimization oracle call, while the
stochastic Frank-Wolfe methods utilize an inexact gradient at each such linear optimization oracle
call, and this is likely the reason why the deterministic Frank-Wolfe method requires dramatically
fewer linear optimization oracle calls to achieve the given desired optimality gap accuracy.

23

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

(a) a9a dataset (b) w8a dataset

(c) mushrooms dataset (d) gisette dataset

Figure 2: Figure showing the optimality gap versus the number of linear optimization oracle calls for
each of the five different stochastic Frank-Wolfe methods, for the a9a, w8a, mushrooms, and gisette dataset
instances.

Frank-Wolfe GSFW SCGM
total sample linear Stochastic linear Stochastic linear

gradient optimization gradient optimization Gradient optimization
Dataset calls (×106) oracle calls calls (×106) oracle calls calls (×106) oracle calls

a9a 14.5 448 10.3 31,900 65.3 201,000
w8a 9.65 194 4.21 8,470 6.92 13,900

mushroom 6.44 793 1.27 15,700 7.4 91,400
gisette 6.27 1045 6.56 109,000 – –

Table 3: Comparison of the number of stochastic gradient computations and the number of linear optimiza-
tion oracle calls, to achieve an accuracy of 10−5 for solving (25) for the (deterministic) Frank-Wolfe method,
GSFW, and SCGM, for the four LIBSVM datasets a9a, w8a, mushrooms, and gisette.

24

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Appendix

A.1 Properties of Conjugate Functions

Recall the definition of the conjugate of a function f(·):
f∗(y) := sup

x∈dom f
{yTx− f(x)} .

The following properties of conjugate functions are used in this paper:

Proposition A.1. (see [3], [46], [21]) If f(·) is a closed convex function, then f∗∗(·) = f(·).
Furthermore:

1. f(·) is γ-smooth with domain Rp with respect to the norm ‖ · ‖ if and only if f∗(·) is 1/γ-
strongly convex with respect to the (dual) norm ‖ · ‖∗ .

2. If f(·) is differentiable and strictly convex, then the following three conditions are equivalent:

(a) y = ∇f(x)

(b) x = ∇f∗(y), and

(c) xT y = f(x) + f∗(y) .

A.2 Three-Point Property

We state here the “three-point property” as memorialized by Tseng [43]:

Lemma A.1. (Three-Point Property [43]) Let φ(x) be a convex function, and let Dh(·, ·) be
the Bregman distance for h(·). For a given vector z, let

z+ := arg min
x∈Q
{φ(x) +Dh(x, z)} .

Then
φ(x) +Dh(x, z) ≥ φ(z+) +Dh(z+, z) +Dh(x, z+) for all x ∈ Q .

A.3 Proof of Proposition 3.8

Note that

〈∇h (a)−∇h (x) , y〉 =
n∑

i=1

〈∇hi (ai)−∇hi (xi) , yi〉

= nEj 〈∇hj (aj)−∇hj (xj) , yj〉
= nEj 〈∇hj (bj)−∇hj (xj) , yj〉

= nEj
n∑

i=1

〈∇hi (bi)−∇hi (xi) , yi〉

= nEj 〈∇h (b)−∇h (x) , y〉 ,

25

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

where the second equation is from expectation, and the third and fourth equation follow because
bj = aj and bi = xi for all i 6= j. Using similar logic it also holds that

〈∇h (a) , a〉 − 〈∇h (x) , x〉 = nEj (〈∇h (b) , b〉 − 〈∇h (x) , x〉) ,

and

h (a)− h (x) = nEj (h (b)− h (x)) .

Therefore,

Dh (y, a)−Dh (y, x) = 〈∇h (a) , y − a〉 − 〈∇h (x) , y − x〉 − (h (a)− h (x))
= 〈∇h (a)−∇h (x) , y〉 − (〈∇h (a) , a〉 − 〈∇h (x) , x〉)− (h (a)− h (x))
= nEj [〈∇h (b)−∇h (x) , y〉 − (〈∇h (b) , b〉 − 〈∇h (x) , x〉)− (h (b)− h (x))]
= nEj [〈∇h (b) , y − b〉 − 〈∇h (x) , y − x〉 − (h (b)− h (x))]
= nEj [Dh (y, b)−Dh (y, x)] .

A.4 Connections and Comparisons between GSFW and Stochastic Dual Coor-
dinate Ascent Methods

In this subsection we discuss connections and comparisons between GSFW (Algorithm 1, and
equivalently Algorithm 2) and SDCA. The traditional analysis in SDCA [39][23][40][38] is premised
on the assumption that R(·) is a strongly convex function, whereby the first term in the dual
objective (10) is a smooth function. In contrast, for our GSFW method R(·) need not have any
such structure; indeed in the Frank-Wolfe setting R(·) can be an indicator function of the (primal)
feasible region whereby the first term in the dual problem (10) is then non-differentiable. Viewing
GSFW through the dual (Algorithm 2), we compute a subgradient of the first part of the dual
objective by calling a linear optimization oracle in the primal space, and this subgradient is used
in the dual mirror descent algorithm for solving (10). From the SDCA perspective, this is the first
such version of SDCA that does not require a strongly convex regularizer R(·).
(As a thought exercise, it is surely possible to start with a non-strongly convex R(·) and then add
a tiny strongly convex regularizer term based on a target optimality tolerance and other continuity
parameters [though such tuning can be tricky to do in practice], and then use SDCA rather than
GSFW. However, in this approach the subproblem that needs to be solved at each iteration requires
a projection step onto the feasible region as opposed to solving a linear optimization subproblem,
which goes beyond and can be much more computationally demanding than Frank-Wolfe in certain
settings. For example, in matrix completion (Example 1.2), solving the linear optimization oracle
with the nuclear norm ball requires the computation of the largest eigenvector/eigenvalue pair,
while doing the projection requires a full eigendecomposition, and therefore can be significantly
more computationally burdensome. Of course, this is one of the key reasons why Frank-Wolfe
methods have been so extensively studied in the past decade.)

GSFW has closer connections to SDCA in the case when R(·) is strongly convex – whereby the
first term in the dual objective is smooth. In this case Randomized Coordinate Mirror Descent

26

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

(Algorithm 2) can be viewed as a variant of SDCA with a specific updating rule based on the mirror
descent methodology. This perspective provides a new interpretation for SDCA in the primal space
as a variant of a Frank-Wolfe based method. In the previous literature involving SDCA, even though
one can rewrite SDCA entirely in the primal space [37], there are still explicit dual variables which
lack intuition or interpretation in the primal space, in contrast to our Algorithm 1 and Algorithm
2 equivalency.

In Algorithm 2 the coordinate update at each iteration requires the solution of a univariate problem
of the following form for a suitably given scalar cji :

min
wji

cjiwji + l∗ji(wji) , (26)

in comparison with the basic version SDCA algorithms in [39] or [23] for which the coordinate
update at each iteration requires the solution of the following slightly different univariate problem
for suitably given scalars cji and bji :

min
wji

cjiwji + l∗ji(wji) + bjiw
2
ji . (27)

On the other hand, we point out that there are variants of SDCA that do not require solving
(27), see the update rules [III], [IV] and [V] in [38], but these rules are still different from (26).
Indeed, the unaccelerated version of [23] can be viewed as a randomized coordinate method with a
composite function, and has the following update:

wi+1
ji

= arg min
wji

{
cjiwji + 1

2η (wji − wiji)2 + 1
n l
∗
ji(wji)

}
,

where cji is one coordinate of the gradient. The above update can be viewed as a coordinate mirror
descent method update with reference function h(w) := 1

2η‖w‖2 + 1
nL
∗(w). This is similar to the

equivalence of composite optimization and mirror descent in the deterministic case discussed in
Section 3.3 of [25].

A.5 Regarding Randomized Coordinate Mirror Descent with Non-smooth Func-
tions

Since the seminal work of Nesterov [32], there have been many research results on randomized
coordinate descent for convex minimization of a general smooth objective function; however, there
has not been much research on randomized coordinate descent in the general non-smooth setting.
[31] develops a randomized block-coordinate method for some specially structured problems. Also,
many papers consider a composite objective function f(·) := f̂(·) + τ(·) where f̂(·) is smooth
and τ(·) is non-smooth, separable, and computationally friendly, see in particular [32], [35], [26]
among many others. These methods cannot be applied to the general non-smooth case so far as
we can tell. We can consider the case where f(·) is the sum of a non-smooth Lipschitz continuous
function f̄(·) and a separable strongly convex function, namely f(w) := f̄(w) +

∑n
j=1 τj(wj) where

τj(·) : R → R is strongly convex on its domain. Then f(·) is in the format of the dual problem
(10), whereby Theorem 3.1 can be applied to show that the randomized coordinate mirror descent
method (Algorithm 2) yields the indicated computational guarantees in this case. This shows that
non-smooth convex optimization can be tackled by randomized coordinate descent if the objective
function is the sum of a non-smooth function and a strongly convex separable function.

27

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

References

[1] Zeyuan Allen-Zhu, Katyusha: The first direct acceleration of stochastic gradient methods, Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, 2017,
pp. 1200–1205.

[2] Zeyuan Allen-Zhu and Yang Yuan, Improved SVRG for non-strongly-convex or sum-of-non-
convex objectives, International conference on machine learning, 2016, pp. 1080–1089.

[3] Mordecai Avriel, Nonlinear optimization: Analysis and methods, Prentice-Hall, 1976.

[4] Francis Bach, Duality between subgradient and conditional gradient methods, SIAM Journal on
Optimization 25 (2015), no. 1, 115–129.

[5] Heinz Bauschke, Jérôme Bolte, and Marc Teboulle, A descent lemma beyond Lipschitz gradient
continuity: first-order methods revisited and applications, Mathematics of Operations Research
42 (2016), no. 2, 330–348.

[6] A. Beck and M. Teboulle, Mirror descent and nonlinear projected subgradient methods for
convex optimization, Operations Research Letters 31 (2003), no. 3, 167–175.

[7] Emmanuel J Candès and Benjamin Recht, Exact matrix completion via convex optimization,
Foundations of Computational mathematics 9 (2009), no. 6, 717.

[8] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, ACM
transactions on intelligent systems and technology (TIST) 2 (2011), no. 3, 27.

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien, SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives, Advances in neural infor-
mation processing systems, 2014, pp. 1646–1654.

[10] Maryam Fazel, Matrix rank minimization with applications, Ph.D. thesis, PhD thesis, Stanford
University, 2002.

[11] Marguerite Frank and Philip Wolfe, An algorithm for quadratic programming, Naval Research
Logistics Quarterly 3 (1956), 95–110.

[12] Robert Freund and Paul Grigas, New analysis and results for the Frank–Wolfe method, Math-
ematical Programming 155 (2016), no. 1-2, 199–230.

[13] Robert Freund, Paul Grigas, and Rahul Mazumder, An extended Frank–Wolfe method with
“in-face” directions, and its application to low-rank matrix completion, SIAM Journal on Op-
timization 27 (2017), no. 1, 319–346.

[14] Filip Hanzely and Peter Richtárik, Fastest rates for stochastic mirror descent methods, arXiv
preprint arXiv:1803.07374 (2018).

[15] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski, Conditional gradient algorithms for
norm-regularized smooth convex optimization, Mathematical Programming 152 (2015), no. 1-2,
75–112.

[16] Elad Hazan and Satyen Kale, Projection-free online learning, arXiv preprint arXiv:1206.4657
(2012).

28

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

[17] Elad Hazan and Haipeng Luo, Variance-reduced and projection-free stochastic optimization,
International Conference on Machine Learning, 2016, pp. 1263–1271.

[18] Arthur E Hoerl and Robert W Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970), no. 1, 55–67.

[19] Martin Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization, Proceedings
of the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 427–435.

[20] Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, Advances in neural information processing systems, 2013, pp. 315–323.

[21] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari, Regularization techniques for
learning with matrices, The Journal of Machine Learning Research 13 (2012), no. 1, 1865–
1890.

[22] Guanghui Lan and Yi Zhou, Conditional gradient sliding for convex optimization, SIAM Jour-
nal on Optimization 26 (2016), no. 2, 1379–1409.

[23] Qihang Lin, Zhaosong Lu, and Lin Xiao, An accelerated randomized proximal coordinate gra-
dient method and its application to regularized empirical risk minimization, SIAM Journal on
Optimization 25 (2015), no. 4, 2244–2273.

[24] Haihao Lu, “Relative-continuity” for non-lipschitz non-smooth convex optimization using
stochastic (or deterministic) mirror descent, arXiv preprint arXiv:1710.04718 (2017).

[25] Haihao Lu, Robert Freund, and Yurii Nesterov, Relatively smooth convex optimization by first-
order methods, and applications, SIAM Journal on Optimization 28 (2018), no. 1, 333–354.

[26] Zhaosong Lu and Lin Xiao, On the complexity analysis of randomized block-coordinate descent
methods, Mathematical Programming 152 (2015), no. 1-2, 615–642.

[27] Michael Mahoney and Petros Drineas, CUR matrix decompositions for improved data analysis,
Proceedings of the National Academy of Sciences 106 (2009), no. 3, 697–702.

[28] Julien Mairal, Incremental majorization-minimization optimization with application to large-
scale machine learning, SIAM Journal on Optimization 25 (2015), no. 2, 829–855.

[29] Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach, Convex and net-
work flow optimization for structured sparsity, Journal of Machine Learning Research 12
(2011), no. Sep, 2681–2720.

[30] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi, Stochastic conditional gradient meth-
ods: From convex minimization to submodular maximization, arXiv preprint arXiv:1804.09554
(2018).

[31] Yu Nesterov, Subgradient methods for huge-scale optimization problems, Mathematical Pro-
gramming 146 (2014), no. 1-2, 275–297.

[32] Yurii Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems,
SIAM Journal on Optimization 22 (2012), no. 2, 341–362.

29

Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

[33] Zheng Qu, Peter Richtárik, and Tong Zhang, Quartz: Randomized dual coordinate ascent with
arbitrary sampling, Advances in neural information processing systems, 2015, pp. 865–873.

[34] Pradeep Ravikumar, Martin Wainwright, and John Lafferty, High-dimensional ising model
selection using `-1-regularized logistic regression, The Annals of Statistics 38 (2010), no. 3,
1287–1319.

[35] Peter Richtarik and Martin Takac, Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, Mathematical Programming 144 (2014), no. 1-2,
1–38.

[36] Mark Schmidt, Nicolas Le Roux, and Francis Bach, Minimizing finite sums with the stochastic
average gradient, Mathematical Programming 162 (2017), no. 1-2, 83–112.

[37] Shai Shalev-Shwartz, Sdca without duality, regularization, and individual convexity, Interna-
tional Conference on Machine Learning, 2016, pp. 747–754.

[38] Shai Shalev-Shwartz and Tong Zhang, Proximal stochastic dual coordinate ascent, arXiv
preprint arXiv:1211.2717 (2012).

[39] , Stochastic dual coordinate ascent methods for regularized loss minimization, Journal
of Machine Learning Research 14 (2013), no. Feb, 567–599.

[40] , Accelerated proximal stochastic dual coordinate ascent for regularized loss minimiza-
tion, International Conference on Machine Learning, 2014, pp. 64–72.

[41] Robert Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society. Series B (Methodological) (1996), 267–288.

[42] Paul Tseng, On accelerated proximal gradient methods for convex-concave optimization, Tech.
report, May 21, 2008.

[43] , On accelerated proximal gradient methods for convex-concave optimization, Tech. re-
port, May 21, 2008.

[44] Quang Van Nguyen, Forward-backward splitting with Bregman distances, Vietnam Journal of
Mathematics 45 (2017), no. 3, 519–539.

[45] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans, Generalized conditional gradient for sparse
estimation, The Journal of Machine Learning Research 18 (2017), no. 1, 5279–5324.

[46] Constantin Zalinescu, Convex analysis in general vector spaces, World Scientific, 2002.

[47] Yuchen Zhang and Lin Xiao, Stochastic primal-dual coordinate method for regularized empirical
risk minimization, The Journal of Machine Learning Research 18 (2017), no. 1, 2939–2980.

30

