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Abstract 

Background Artificial intelligence (AI) and computer vision (CV) have revolutionized 

image analysis. In surgery, CV applications have focused on surgical phase 

identification in laparoscopic videos. We proposed to apply CV techniques to identify 

phases in an endoscopic procedure, peroral endoscopic myotomy (POEM). 

Methods POEM videos were collected from Massachusetts General and Showa 

University Koto Toyosu Hospitals. Videos were labeled by surgeons with the following 

ground truth phases: 1) Submucosal injection, 2) Mucosotomy, 3) Submucosal tunnel, 

4) Myotomy, and 5) Mucosotomy closure. The deep-learning CV model — 

Convolutional Neural Network (CNN) plus Long Short-Term Memory (LSTM) — was 

trained on 30 videos to create POEMNet. We then used POEMNet to identify operative 

phases in the remaining 20 videos. The model’s performance was compared to surgeon 

annotated ground truth. 

Results POEMNet’s overall phase identification accuracy was 87.6% (95% CI 87.4% to 

87.9%). When evaluated on a per-phase basis, the model performed well, with mean 

unweighted and prevalence-weighted F1 scores of 0.766 and 0.875, respectively. The 

model performed best with longer phases, with 70.6% accuracy for phases that had a 

duration under five minutes and 88.3% accuracy for longer phases. 

Discussion A deep-learning based approach to CV, previously successful in laparoscopic 

video phase identification, translates well to endoscopic procedures. With continued 

refinements, AI could contribute to intra-operative decision-support systems and post-

operative risk prediction. 

Keywords computer vision · deep learning · endoscopy · artificial intelligence · phase 

identification · phase segmentation 
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1 Introduction 

We are in the midst of an artificial intelligence (AI) and computer vision (CV) 

revolution. CV, a sub-field of AI, teaches computers to not only “see” images but 

understand their contents [1]. In 2012, Krizhevsky designed a novel neural network 

architecture that could attain human-like image comprehension with readily available 

computer hardware, thereby democratizing CV and sparking the CV revolution [2]. 

Since this discovery, the medical field has seen numerous CV applications, with 

algorithms published that perform at levels similar to pathologists [3], radiologists [4], 

and dermatologists [5]. 

CV in surgery, though, has seen relatively fewer advances, which stems from the 

magnitude of information in surgical video and difficulties in teaching AI algorithms 

surgical workflow. Current efforts in the surgical community focus on automated 

phase identification in surgical videos. Laparoscopic surgeries, due to their readily-

available video feed and stable field-of-view, lend themselves to CV analysis, with work 

done in cholecystectomy (86.7% accuracy [6]), sleeve gastrectomy (85.6% accuracy 

[7]), and sigmoid colectomy (91.9% accuracy [8]). 

We sought to apply CV techniques to identify surgical phases for the first time on 

an endoscopic procedure. As our target procedure, we selected peroral endoscopic 

myotomy (POEM), a minimally invasive endoscopic treatment for esophageal 

achalasia. 

2 Materials and methods 

2.1 Institutional approval 

This study’s protocol was reviewed and approved by the Partners Healthcare 

Institutional Review Board (Protocol No: 2015P001161). Written patient consent for 

use of the videos for research purposes was obtained prior to any procedures being 

performed. 

2.2 Dataset 

We collected 35 videos from Massachusetts General Hospital (Boston, USA) and 15 

videos from Showa University Koto Toyosu Hospital (Tokyo, Japan) for a total of 50 

POEM videos. Videos were processed and de-identified with the FFmpeg software [9]. 

Three surgeons annotated the videos with the operative phases (Table 1), outlined 

in Inoue et al. [10], to create the “ground truth” information from which our AI model 

would learn. To assess inter-annotator reliability and agreement, each surgeon 

annotated 14 identical videos. We set a Krippendorff’s alpha greater than 0.800 to 

indicate sufficient inter-annotator reliability to allow for pooling of multiple surgeons’ 

annotations into a single training set for the model [11]. We compared levels of inter-

annotator agreement, on a per-step and overall basis, with Fleiss’ kappa, using kappa 

ranges of 0-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00 to indicate poor, slight, 

fair, moderate, substantial, and almost perfect agreement, respectively [12]. All 

calculations were performed using R version 3.6.1 [13] with the irr package [14], 

treating the annotation for each video second as an independent observation. After 
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confirmation of annotation similarity, each surgeon annotated a subset of the 50 total 

videos.  

Table 1 

2.3 Model architecture 

Automated surgical phase identification AI models receive individual video frames and 

attempt to classify them as one of a pre-learned set of phases. Similar to our prior work 

on laparoscopic sleeve gastrectomy [7], we based the architecture of our AI model on 

a Convolutional Neural Network (CNN) visual model (ResNet [15]) combined with a 

Long Short-Term Memory (LSTM) temporal model (Figure 1). As their names imply, 

the visual model attempts to classify each frame of a video based on visual features 

alone, while the temporal model considers data about the temporal order in which 

frames have appeared. We implemented our model with the PyTorch library [16]. 

For the AI model to learn to identify POEM phases, we first trained it on 30 

randomly selected videos. We down-sampled the original videos to one image per 

second. These images, paired with their annotated surgical phase ground truths, were 

given to the model as the training set. The model self-adjusted the internal parameters 

in its neural network until it could generate a consistent and correct phase 

identification for each second, thereby creating the “trained” model: POEMNet. 

We tested POEMNet on the remaining 20 videos. As with our training set, we down-

sampled the original videos to one image per second. Each second’s image was given 

first to the visual model then to the model’s temporal “memory” component (LSTM) to 

generate a likeliest phase identified from the visual cues combined with its knowledge 

of prior seen images (Figure 1). As a proof-of-concept for offline applications, a 

forward-backward Hidden Markov Model (HMM) was applied in post-processing to 

improve performance on phases with a short duration. 

Figure 1 

2.4 Evaluation metrics 

We compared POEMNet’s phase identifications to the surgeon-labeled phases to 

evaluate performance on an overall, per-phase, and per-duration, basis. Calculations 

were performed with the caret package [17] and graphics generated with ggplot2 [18] 

in R 3.6.1. We computed the following metrics: 

Accuracy = 
Correctly identified frames

Total number of frames for a time duration
  

Precision = 
Correctly identified frames for a phase

Total number of frames identified for a phase
 

Recall = 
Correctly identified frames for a phase

Total number of frames for a phase
 

F-score = 2∙
Recall ∙ Precision

Recall + Precision
 

Accuracy demonstrates a model’s overall performance across the entire test set 

and allows for performance evaluation of phases with certain intervals (e.g. all phases 

that are under 30 seconds in length). Precision (positive predictive value), 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer Science+Business Media, LLC, part of Springer Nature.

4 Ward et al. 

demonstrates the model’s rate of mis-classifications of a phase, while recall 

(sensitivity), shows its ability to find all the frames of a phase [19]. 

3 Results 

3.1 Video information 

We collected 50 POEM videos with a mean length of 93.04 minutes (± 25.98 minutes 

standard deviation). The five phases of POEM vary widely in length, from the shortest, 

“Submucosal Injection,” to the longest, “Submucosal Tunnel” (Figure 2). 

Figure 2 

3.2 Inter-annotator reliability and agreement 

The three annotators had sufficient inter-annotator reliability to combine their 

annotations of different videos into a single dataset, with a Krippendorff’s alpha 

coefficient of 0.882. Overall, there was almost perfect agreement between the three 

surgeons, with a Fleiss’ kappa of 0.821. They almost perfectly agreed across all phases 

except for “Mucosotomy” (Table 2). 

Table 2 

3.3 Model results 

3.3.1 Overall 

POEMNet’s overall automated phase identification accuracy was 87.6% (95% CI 87.4% 

to 87.9%). Straightforward cases yielded nearly perfect phase identification, while 

more difficult cases that required repeated tunnel inspection, scope cleaning, and 

repair of mucosal perforations caused the machine to mis-classify phases (Figure 3). 

Figure 3 

3.3.2 Per-phase 

The model performed well when evaluated on a per-phase basis (Table 3). The longer 

phases — “Submucosal Tunnel,” “Myotomy,” and “Mucosotomy Closure” — had the 

best results, with few mis-classifications. Due to visual similarity, “Submucosal 

Tunnel” and “Myotomy” had a small amount of shared mis-classifications. The model 

struggled with the shorter phases — “Submucosal Injection” and “Mucosotomy” — 

with decreased phase identification performance and increased shared mis-

classifications (Figure 4). The model’s difficulty with these phases mirrors their lower 

inter-annotator agreements (Table 2). The shorter phases comprised a small 

percentage of total video duration and therefore minimally impacted overall 

performance. 

Table 3 

Figure 4 
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3.3.3 Per-duration 

The model performed best on longer duration phases as noted above. Some phases 

varied widely in duration (Figure 2), so model performance was additionally analyzed 

on a phase duration basis. Model performance increased proportional to phase 

duration, with the largest jumps when the phase duration increased to over 30 seconds 

(55.1% to 72.3% accuracy) and over 5 minutes (77.1% to 95.4%) in length. As a proof-

of-concept, we applied a forward-backward HMM, which took both past and future 

phase information, to improve phase identification. The HMM’s filtering boosted the 

model’s phase identification performance of phases with a duration under 60 seconds 

(Table 4). 

Table 4 

4 Discussion 

This study demonstrates that a deep-learning approach to automated operative phase 

identification, previously employed with laparoscopic video, translates well to 

endoscopic procedures with 87.6% accuracy. We obtained this accuracy with a video 

dataset from two institutions in different countries and a training set of only 30 videos, 

unlike prior studies that all used single-institution datasets and larger training sets 

[20,7,8]. 

Phase identification in POEM has immediate applications. It could offer real-time 

updates on the procedure’s progress for optimization of operating room and 

endoscopy suite workflow. In addition, it could automate indexing of cases for surgical 

libraries. Clinical-decision support systems could incorporate our “Surgical 

fingerprint” technology to elicit a “call a friend” prompt if portions of the case start to 

become complicated, as illustrated in Figure 3. These prompts could be configurable 

based on operator experience, with surgeons and residents learning new procedures 

having lower thresholds for an assistance prompt. 

Our current work is limited by the annotation granularity. Our annotation schema, 

with its five labels, only captures big-picture operative phases, which does not account 

for the smaller sub-components that, in total, comprise a phase. “Submucosal Tunnel,” 

for example, could be split into “Introduction of endoscope into submucosal space,” 

“Dissection of submucosal layer,” “Submucosal inspection of tunnel,” and “Intraluminal 

inspection of tunnel.” POEMNet’s lower accuracy in more complicated cases, like the 

Tortuous Esophagus in Figure 3, shows the limitations of a non-granular annotation 

schema: it attempted to classify the non-standard deviations from a typical 

“Submucosal Tunnel” (e.g. closure of inadvertent mucosotomy) as more visually 

similar (and “surgically” correct) phase labels (“Mucosotomy Closure”). Training a 

machine to identify these smaller subcomponents would greatly increase 

understanding of the operation and afford more opportunity to identify deviation 

phases and errors. The more granular annotation structure would create a foundation 

for advanced warning prior to adverse events (like mucosal perforation in POEM) and 

provide meaningful intra-operative findings to guide post-operative risk-prediction. 

Increased annotation granularity presents difficulties for current deep-learning 

technology because it leads to shorter temporal segments. POEMNet’s overall 

performance was excellent, but it struggled with phases less than one minute in length. 

To our knowledge, CV model performance, on a per-phase-duration basis, has not 

previously been reported; other studies have only analyzed overall and per-phase 
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performance. Some of the difficulty in the detection of short duration phases stems 

from inherent training issues. First, there is simply less training data available. Second, 

training optimizes for overall accuracy, which means the neural network self-tunes to 

perform best on longer duration phases to best optimize its score and complete 

training. To mitigate the training issues, we were able to boost the short phase 

identification performance with HMM post-processing (Table 4). This HMM approach 

refines phase identification for a certain second with information from past and future 

seconds of the video, so it is only useful for offline applications after a completed 

procedure. 

These struggles speak to the architecture of current models, which mainly rely on 

visual features with some incorporation of prior temporal events to help guide phase 

identification. Unfortunately, “temporal models,” like LSTM, are limited in their ability 

to handle temporal relations. Their limited memory (usually only under a minute of 

information), leads to identification errors through memory bias. If the past minute 

was all a single phase, they tend to over-smooth their identifications, predicting future 

seconds to be the same as prior ones. This bias will produce improved results, if the 

phases are long and continuous with few transitions, but will fail to predict short 

duration phases. Their limited memory also fails to capture long-term understanding 

of the procedure, which can lead to predictions of phases that happened well in the 

past due to “forgetting” that they already occurred. Complete understanding of a 

surgery at a certain time necessitates knowledge of all the procedure’s preceding 

events and the ability to look at different time scales. Neural network models need 

novel designs to afford this introspection of temporal surgical dependencies. There 

have been initial efforts in this area, though they do not generalize to all types of 

procedures and require hand-crafted knowledge of operative phase workflow to limit 

incorrect identification of already performed phases [21]. 

Annotation granularity will also present challenges for annotation consistency. The 

machine depends on its inputs to correctly learn. Building upon our previous work [7], 

we analyzed inter-annotator agreement and reliability for independently annotated 

data. We ensured that our three surgeons had sufficient inter-annotator reliability to 

train a CV model with pooled annotations, a pre-training validation step that, to our 

knowledge, has not previously been reported. Overall, our three annotators agreed 

nicely, with near perfect agreement across most phases. The shorter phases, 

“Submucosal Injection” and “Mucosotomy”, did experience lower agreement, which 

gave differing inputs from which the machine learned. These inconsistent inputs could 

account for the model’s difficulties with phase-identification in these shorter phases. 

Similarly, an annotator disagreement source centered around the transition from 

“Mucosotomy” to “Submucosal Tunnel,” which reflected in the model’s mis-

classification of some of the former phase as the latter (Figure 4). Improved annotation 

granularity requires reproducible annotation standards. The Society of American 

Gastrointestinal and Endoscopic Surgeons (SAGES) has recently spear-headed the 

effort to produce surgical video annotation standards, bringing together an 

international cross-disciplinary group for a Video Annotation Conference in February 

2020. 

With improved model design and these new annotation standards, we hope that 

short-phase identification will one day become a reality. AI that can perform granular 

phase identification promises a collective surgical consciousness, based on myriad 

videos and surgeons’ experiences, that can provide intra- and post-operative adverse 

event prevention and guide surgeons and endoscopists to performing better, and more 

importantly safer, procedures across the world. 
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5 Legends 

5.1 Figure legends 

Fig. 1 Simplified graphical representation of POEMNet’s architecture. The CNN (visual model) 

processes each image, generating intermediate outputs (green bars). The LSTM (temporal model) 
refines these outputs to generate likeliest phase labels. The LSTM carries forward memory of prior 
images and phase labels across time to better inform phase identification. 

Fig. 2 Distribution of phase duration. Phase duration (seconds) was calculated from the ground truth 
annotation of all 50 videos in the dataset. Duration was plotted on a logarithmic scale. “Submucosal 

Injection” and “Submucosal Tunnel” were the shortest and longest phases, with mean lengths of 25.1 
± 14.4 seconds and 31.8 ± 12.8 minutes, respectively. The 37 second “Mucosotomy Closure” outlier 
occurred in a video that ended early after a single clip application. 

Fig. 3 “Surgical fingerprints” for two representative cases. The “Straightforward” case proceeded with 
nearly complete alignment between identified phase (blue bar) and ground truth (red line), with an 
accuracy of 96.0%. The model’s certainty is proportional to the bar’s darkness (white for low 
probability of identified phase; dark blue for high probability of identified phase). The “Tortuous 
Esophagus” case had a difficult “Submucosal Tunnel” creation, leading to repeated inspections, scope 
cleanings, and a mucosal perforation. POEMNet tried to classify these deviations as other, more visually 
similar, phases, shown by areas along the ground truth with gaps, signifying no identification for the 
technically “correct” phase. Accuracy for this video was 84.8%. 

Fig. 4 Confusion matrix (recall) of the model’s identified phase for each ground truth phase. For each 
ground truth phase, the proportion of frames assigned to each identified phase is represented by the 
color in the heat map (white for low proportion of frames assigned to identified step; dark blue for high 
proportion of frames assigned to identified step). The short “Submucosal Injection” and “Mucosotomy” 
phases proved more difficult for accurate classification, while later phases, despite high visual 
similarity, demonstrated improved performance. 

5.2 Table legends 

Table 1 Five phases annotated in the POEM videos with representative images and descriptions of the 
start and stop points. We chose start and stop points based on tools touching their target tissue to 
improve agreement between annotators. 

Table 2 Inter-annotator agreement, per-phase and overall, across 14 videos assessed by Fleiss’ kappa. 
Kappa ranges of 0-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00 indicate poor, slight, fair, 
moderate, substantial, and almost perfect agreement, respectively [12]. 
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Table 3 POEMNet’s performance across phases. The model did well in phase identification across 
phases. It experienced some difficulties in recall for the shorter phases, “Submucosal Injection” and 

“Mucosotomy,” which together comprised under 5% of all video frames. The overall metrics were 
calculated from unweighted and prevalence-weighted averages of each phase. Overall accuracy 
(frames correctly identified/total frames) was 87.6% (95% CI 87.4% to 87.9%). 

Table 4 Per-duration model accuracy. Individual phases from each video were grouped based on 
length, then accuracy (total number of seconds correctly identified/total number of seconds) was 

calculated in aggregate. POEMNet’s accuracy increased proportionally to phase duration. We 
additionally assessed accuracy applying a forward-backward Hidden Markov Model (HMM) filter, 
which took into account past and future phase information. The HMM improved performance for 

phases with a duration under 60 seconds. 
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Phase Representative 

Image 
Description 

Submucosal 

Injection 
Image_01.png 

Start: Needle touches mucosa. 

End: Needle withdraws from mucosa. 

Mucosotomy Image_02.png 
Start: Energy device touches mucosa. 

End: Mucosal incision finished. 

Submucosal 

Tunnel 
Image_03.png 

Start: Energy device touches submucosa. 

End: No further energy application. 

Myotomy Image_04.png 
Start: Energy device first touches muscle. 

End: No further energy application. 

Mucosotomy 

Closure 
Image_05.png 

Start: First clip touches mucosotomy. 

End: Last clip fully applied. 
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Automated phase identification in POEM 11 

  

 
 
 

 

 
 
 
 
 
 
 
 

 
 

 

Phase κ 

Submucosal Injection 0.809 

Mucosotomy 0.775 
Submucosal Tunnel 0.839 
Myotomy 0.920 
Mucosotomy Closure 0.932 
Overall 0.821 
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 Precision Recall F1 score Prevalence 

Submucosal Injection 0.667 0.361 0.468 0.006 

Mucosotomy 0.837 0.602 0.700 0.044 
Submucosal Tunnel 0.955 0.840 0.894 0.513 
Myotomy 0.791 0.945 0.861 0.278 
Mucosotomy Closure 0.848 0.971 0.906 0.159 

Overall (Unweighted) 0.820 0.744 0.766   

Overall (Weighted) 0.885 0.876 0.875  

Duration (s) 
Accuracy 

(POEMNet) 
Accuracy 

(POEMNet + HMM) 

1-30 0.418 0.551 

31-60 0.643 0.723 
61-300 0.760 0.771 

301-600 0.936 0.954 
>600 0.878 0.900 


