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ABSTRACT 

OBJECTIVES: Intra-tumor heterogeneity has been previously shown to be an independent 

predictor of patient survival. The goal of this study is to assess the role of quantitative MRI-

based measures of intra-tumor heterogeneity as predictors of survival in patients with metastatic 

colorectal cancer.   

METHODS: In this IRB-approved retrospective study, we identified 55 patients with stage 4 

colon cancer with known hepatic metastasis on MRI. 94 metastatic hepatic lesions were 

identified on post-contrast images and manually volumetrically segmented.  A heterogeneity 

phenotype vector was extracted from each lesion. Univariate regression analysis was used to 

assess the contribution of 110 extracted features to survival prediction. A random forest-based 

machine learning technique was applied to the feature vector and to the standard prognostic 

clinical and pathologic variables. The dataset was divided into a training and test set at a ratio of 

4:1. ROC analysis and confusion matrix analysis were used to assess classification performance.  

RESULTS: Mean survival time was 39±3.9 months for the study population. A total of 22 

textures features were associated with patient survival (p<0.05). The trained random forest 

machine learning model that included standard clinical and pathological prognostic variables 

resulted in an area under the ROC curve of 0.83. A model that adds imaging-based heterogeneity 

features to the clinical and pathological variables resulted in improved model performance for 

survival prediction with an AUC of 0.94.  

CONCLUSIONS: MRI-based texture features are associated with patient outcomes and improve 

the performance of standard clinical and pathological variables for predicting patient survival in 

metastatic colorectal cancer. 
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Key points: 

 MRI-based tumor heterogeneity texture features are associated with patient survival 

outcomes. 

 MRI-based tumor texture features complement standard clinical and pathological 

variables for prognosis prediction in metastatic colorectal cancer. 

 Agglomerative hierarchical clustering shows that patient survival outcomes are 

associated with different MRI tumor profiles. 

 

Abbreviations:  

CRLM: colorectal liver metastases;  

GLCM: gray level co-occurrence matrix;  

GLDM: gray level dependence matrix features. 

GLRLM: gray level run time length matrix;  

GLSZM: gray level size zone matrix;  

MRI: magnetic resonance imaging;  

MSI: microsatellite instability;  

NGTDM: neighboring gray tone difference matrix;  
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Introduction 

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the United 

States and one of the most common cancers in the Western world [1]. Approximately 140,000 

patients are diagnosed with CRC annually in the US [2]. 25% of patients have colorectal liver 

metastases (CRLM) at the time of diagnosis, with another 50-60% of patients later developing 

metachronous CRLM [3]. Surgical resection is most effective in achieving long-term survival in 

patient with CRLM. However, up to 30% of CRC patients who undergo surgical resection 

experience a subsequent relapse within three years, with a median survival of 12 months. A 

variety of potential treatment strategies are available in the setting of hepatic oligometastatic 

disease, including multiple liver directed options such as surgical resection, percutaneous image-

guided therapies, and stereotactic radiotherapy, with treatment options continuing to evolve and 

improve. To better tailor treatment decisions, better methods of tumor characterization and risk 

stratification are needed to personalize patient management as proposed by the important areas 

of research put forth by the American Society of Clinical Oncology [2].  

At present, the gold standard for clinical prognostication in patients with CRC is based on 

the American Joint Committee on Cancer (AJCC) staging system, which includes the invasion 

extent of the primary tumor (T stage), lymph node status (N stage), and distant spread (M stage). 

Currently, the role of imaging is restricted to assessment of presence and size of lesions for 

staging purposes. Intra-tumor heterogeneity is an emerging tumor characteristic assessing 

differences in voxel signal intensities with a lesion that has been correlated with poor patient 

prognosis [4, 5]. Tumor heterogeneity metrics reflect regional changes within tumors, and it 

likely that these features enable imaging to provide additional prognostic information beyond 

lesion size.  
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Recently, machine learning-based approaches through analyzing large numbers of sub-

visual image features (termed ‘radiomics’) have been identified as a new method for lesion 

characterization and for the quantitative assessment of intra-tumor heterogeneity. Radiomics 

analysis refers to the extraction of quantitative features that result in the conversion of images 

into mineable data and the subsequent analysis of these data for decision support. Many 

applications of machine learning have been reported in cancer diagnosis [6-10]. Advances in 

computing power have given radiomics, the potential for more accurate characterization of 

metastatic lesions that could positively help guide management strategies. Radiomic features of 

focal liver lesions may provide information about underlying tumor biology [6, 11] that 

potentially could provide additional prognostic information in patients with metastatic CRC. The 

objective of this study was to investigate the association between radiomic features of CRLMs 

and patient survival and to design a prognostic model integrating radiomics for the prediction of 

patient outcomes.  

 

Methods 

 

Study Design 

 

This retrospective study was approved by the Institutional Review Board (IRB), which waived 

the requirement for patient informed consent, and was conducted in accordance with the Health 

Insurance Portability and Accountability Act guidelines for research. 

This study retrospectively identified patients with biopsy-proven metastatic stage IV colorectal 

lesions to the liver treated with standard chemotherapy protocols (including FOLFOX and 
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FOLFIRI) as well as radiotherapy at a single institution during the years 2007 to 2013 based on a 

query of a database of colorectal cancer patients undergoing radiation therapy. Colorectal cancer 

cases were identified through review of pathology reports in the electronic health record. Date of 

diagnosis was taken as the date of colonoscopy biopsy or surgical pathology report of the 

resected tumor. TNM staging information was collected from the clinical or pathology report at 

the time of primary tumor diagnosis. Imaging follow-up was obtained through the picture 

archiving and communication system (PACS). All patients underwent contrast-enhanced MRI as 

part of their routine diagnostic workup. Inclusion criteria consisted of (a) histopathologically 

confirmed colorectal adenocarcinoma; (b) presence of biopsy-proven hepatic metastases on the 

portal venous phase post-contrast T1-weighted MRI subtraction sequence within 6 months prior 

to starting treatment (with at least one lesion measuring > 1 cm in longest diameter), (c) patients 

treated by an oncologist in the MGH Cancer Center to ensure availability of follow-up data. The 

portal venous phase was chosen as metastatic colorectal tumors are thought to be best visualized 

during that phase of imaging, in contrast to hepatomas which are typically better visualized on 

the arterial phase. 

 

MR protocol and acquisition parameters 

All the liver MRI examinations of the abdomen were performed on either a 3T magnet 

(n=8; Discovery 750MR GE Medical Systems and Magnetom Trio, Siemens Healthcare) or a 

1.5T MRI scanner (n=47; Signa HDx, GE Medical Systems and Magnetom Avanto, Siemens 

Healthcare) using a body coil positioned over the abdomen. Slice thickness was 4 mm and matrix 

size was 320x256. Contrast enhanced volumetric T1-weighted fat-suppressed sequences (LAVA 

or VIBE) were obtained at multiple timepoints post-contrast as per standard clinical protocol. For 

this study, the portal venous phase (60-70 seconds post-contrast) images were selected for 
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quantitative analysis. Intravenous gadolinium contrast (gadopentetate/Magnevist, Bayer; 

gadoterate/Dotarem, Guerbet; or gadoxetate/Eovist, Bayer) was administered at the standard 

approved clinical dose (0.1 mmol/kg for gadopentetate and gadoterate, 0.025 mmol/kg for 

gadoxetate) by power injector at a rate of 1 mL/second. Of note, these MRI examinations were 

all conducted prior to the restriction on the use of linear gadolinium agents.  

 

Data Collection  

Standard clinical and pathologic prognostic variables extracted from the medical record 

included: patient age, patient gender, tumor KRAS status, tumor microsatellite instability (MSI), 

primary tumor site, additional metastasis sites and chemotherapy regimen. The images were 

reviewed by a radiologist to identify the hepatic metastatic lesions that met the inclusion criteria 

for the study. All metastatic hepatic lesions greater than 1 cm in greatest diameter were 

identified. The assessed outcome for the study was all-cause mortality within the study period. 

Follow-up ended with the most recent clinic visit or most recent imaging study before the study 

end period or with the patient’s death. 

 

Image Segmentation and Texture Analysis 

Volume-based hepatic lesion segmentation was performed using an open source 

volumetric image analysis software platform (3D slicer; http://www.slicer.org) [12]. The 

brightness and contrast levels were user-selected to optimize visualization of the liver mass. All 

measurements were performed on the portal venous phase T1-weighted fat-suppressed post-

http://www.slicer.org/
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contrast axial images. MRI images were evaluated by a radiologist for the presence of metastatic 

hepatic lesions. All metastatic hepatic lesions greater than 1 cm in greatest diameter were 

included. Manual delineations and semi-automatic segmentations methods were applied to 

ensure the reproducibility of radiomic features resulting from the impact of segmentation 

methods. A multiparametric imaging phenotype vector was extracted from each lesion by using 

quantitative texture analysis. All images were normalized and an inhomogeneity correction 

algorithm was applied prior to extracting quantitative features, to address differences in data 

acquisition techniques. 

A total of 110 radiomic features were extracted from all 94 hepatic metastatic lesions 

from the patients that met the inclusion criteria for the study. Those consisted of first-order 

features, 2D and 3D shape features, gray level co-occurrence matrix (GLCM) features, gray level 

size zone matrix (GLSZM), gray level run time length matrix (GLRLM) features, neighboring 

gray tone difference matrix (NGTDM) features and gray level dependence matrix features 

(GLDM). These features have been previously described [13]. A summary of the image analysis 

algorithm is included in Figure 1. Intensity standardization was first applied to all images to 

address any inter-subject intensity variations prior to computing the radiomics features. The 

extracted radiomics vector defined the MR fingerprint of each tumor. Hierarchical clustering of 

the fingerprints was subsequently performed and a dendrogram was generated using Matlab 

R2019b (Mathworks Inc.) to assess for inherent MR fingerprint differences between patients 

who remained alive at the end of the study and those who were deceased.  

 

Statistical Analysis and Machine Learning  
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Kaplan-Meier survival analysis was performed to assess for patient survival estimates 

during the study period. Univariate logistic regression analysis was used to assess the 

contribution of each of the computed texture features to the prediction of patient mortality. A P-

value < 0.05 on the Wald test was considered statistically significant. All statistical analyses and 

machine learning models were performed using Stata (Stata Statistical Software: Release 14. 

StataCorp. 2015. StataCorp LP). 

A random forest-based machine learning model was used to predict patient survival 

outcome during the study period. The dataset was divided into a training and testing set at a ratio 

of 4:1. Recursive feature elimination was used for feature selection. A model that included all 

features exhibited the best performance. A total of 3 models were assessed: a model that includes 

all the radiomic features, a model that includes only the clinical and pathology features as the 

current clinical management, and a model that includes the combination of both the radiomic 

features and the clinical and pathology features.  If a patient had more than one tumor, all tumors 

were included in either in the training or testing set to avoid overfitting.  The same training and 

testing sets were used for all 3 models. The depth of the random forest algorithm was set to be 

the square root of the number of features used. ROC analysis and confusion matrix metrics were 

used to assess classification performance. The machine learning model was implemented using 

Python 3.8. 
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Results 

Patient population 

A total of 55 consecutive patients with 94 metastatic tumors who met the inclusion criteria were 

included in the study (45% female, Average age 55.1 ±10.6 years). 72% (40/55) of the patients 

had KRAS-positive disease. 40% (22/55) of patients had high microsatellite instability. 67% 

(37/55) of the primary colorectal cancer lesions were in the descending or sigmoid colon; 29% 

(16/55) were in the ascending colon and 4% (2/55) were in the transverse colon. 50.5 % (28/55) 

of the patients had extrahepatic metastases, while the remaining had metastatic disease limited to 

the liver only. 90% of the study population was treated with FOLFIRI or FOLFOX-based 

chemotherapy regimen and all received radiation treatment of their hepatic disease. A summary 

of the patient characteristics is included in Table 1.  

 

Survival analysis 

Patient survival data was available for up to 95 months. The mean follow-up duration was 34.5 ± 

19.6 months. 45% of patients were deceased at the end of the study. The median overall survival 

was 37 months (95% CI: 35-52) months. Survivor function at 12, 36 and 60 months were 97%, 

51% and 37% respectively. The Kaplan-Meier curve illustrating the survival estimates is 

included in Figure 2 with the number at-risk in the study population at each time point.  
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Radiomic Features 

A total of 110 radiomic features were extracted from each segmented tumor including first-order 

features, 2D and 3D shape features, gray level co-occurrence matrix (GLCM) features, gray level 

size zone matrix (GLSZM), gray level run time length matrix (GLRLM) features, neighboring 

gray tone difference matrix (NGTDM) features and gray level dependence matrix features 

(GLDM). Univariate logistic regression analysis was performed to assess the contribution of 

each feature to the prediction of the survival outcome variable in the patient population. 22 of the 

texture features were predictive of patient survival on univariate logistic regression analysis 

(P<0.05 on Wald test.). Eight first order features, six GLCM features, two GLDM features, one 

GLRM features, four GLZM features and one NGTM feature contributed significantly to 

survival prediction. A summary of the logistic regression results for the statistically significant 

features are included in table 2.  

 An agglomerative hierarchical cluster analysis was used to assess if the MRI tumor 

fingerprints result in patient clustering into two separate groups with different survival outcomes. 

Indeed, hierarchical clustering resulted into two distinct clusters of signatures where tumors were 

from predominantly deceased patients in the first cluster (~75%) while tumors in the second 

cluster were from predominantly living patients at the end of the study (~68%). All tumors from 

the same patient belonged to the same cluster. The resulting dendrogram of the hierarchical 

clustering analysis is included in Figure 3.  

 

Machine Learning for Survival Prediction 
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We included all radiomic features in a random forest-based machine learning model to predict 

survival outcome in the study population. The dataset was divided into a training (n=76 tumors) 

and testing (n=18 tumors) set at a ratio of 4:1. All radiomics features were included in the final 

models. A random forest-based machine learning algorithm that included all radiomic features 

resulted in an area under the curve (AUC) of 0.93 in the testing dataset (Figure 4A). Confusion 

matrix analysis on the testing dataset revealed a sensitivity of 50%, a specificity of 100%, a 

negative predictive value of 63% and a positive predictive value of 100%. 

Subsequently, we built 2 additional random forest-based machine learning models. The first 

included clinical and pathology variables currently used for clinical prognostication.  The 

variables consisted of the stage of the disease at time of primary tumor diagnosis, tumor KRAS 

mutation status, satellite instability, colon cancer primary site, chemotherapy regimen used in 

addition to patient age and gender. The second model included all the radiomics features in 

addition to the above clinical and pathology features. When applied to the testing dataset, the 

latter model that combines both radiomics and standard clinical and pathology variables 

exhibited improved performance for survival prediction (AUC = 0.94) when compared to the 

clinical and pathology variables that are the current gold standard for clinical prognostication 

(AUC =0.83) (Figure 4B). When assessing the model that includes both the radiomic and 

clinical/pathology variables, confusion matrix analysis on the testing dataset resulted in a 

sensitivity was 50%, a specificity of 100%, a negative predictive value of 59% and a positive 

predictive value of 100%.  

In Figure 5, we include two representative MRI images illustrating visually striking differences 

in tumor heterogeneity between a patient who survived 26 months and another who succumbed 
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at 8 months. Interestingly, both patients had a similarly sized metastatic tumors in the right 

hepatic lobe and the main difference on imaging was a difference in tumor heterogeneity.  

Discussion  

This work represents a preliminary study assessing the role of MRI-based radiomic 

features in predicting patient survival in metastatic colorectal cancer. The analysis of tumor 

heterogeneity parameters derived from T1-weighted contrast-enhanced liver MRI of CRC 

patients showed that several features of intratumoral heterogeneity are associated with patient 

survival. In addition, our results demonstrate that a radiomics-based multivariate classifier that 

includes the distinct MRI fingerprint of metastatic tumors can complement and improve patient 

prognosis prediction when compared to the current clinical gold standard that consists of clinical, 

pathology and genetic variables. Radiomics-based tumor profiling may be beneficial for 

informing treatment choices and tailoring personalized therapy decisions for patients with 

CRLM. 

Inter- and intra-tumor heterogeneity have been implicated in the development of therapy 

resistance after an initial response and in the development of metastatic disease [6, 14-18]. 

Clonal heterogeneity often occurs before tumor progression is apparent on clinical imaging and 

is the most substantial obstacle to patient treatment with targeted therapy [19, 20]. Radiomics-

based MRI profiling, as presented in this study, may capture intra-tumor heterogeneity. At 

present, current biopsy methods are unable to capture intra-tumor heterogeneity due to the small 

volume of tissue sampled, while standard cross-sectional imaging interpretation only documents 

presence and size of metastatic lesions [17]. Methods to identify biologically aggressive 

metastases could guide treatment selection and potentially improve patient prognosis [21]. This 
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is particularly relevant given the number of systemic molecule-targeted agents, as well as lesion-

directed therapies, that are in clinical practice for metastatic disease [17].  

The field of texture analysis provides quantitative measures of the spatial arrangement 

and distribution of gray-level intensities in a selected region of interest (ROI) [22, 23]. Tumor 

texture analysis on CT and MRI has been previously used to quantify tumor heterogeneity in 

breast cancer, lung cancer, glioblastoma multiforme, colon cancer and prostate cancer [4, 24-31], 

and has been shown to improve tumor staging and therapy response assessment [32-35]. A recent 

study showed that texture parameters derived from T2-weighted images of primary rectal cancer 

have added value as imaging biomarkers of tumor response to neoadjuvant chemotherapy [34].  

Our study adds to the existing evidence in the literature by showing that MRI-based 

quantitative heterogeneity measures within hepatic metastases are associated with patient 

survival in metastatic colorectal cancer and may add information beyond genetic mutation status 

to optimize prognosis prediction. This study demonstrates that imaging-based heterogeneity 

features improve survival prediction of the patients with stage IV colorectal cancer when added 

to clinical and pathology variables. In addition, our analysis is based on volumetric analysis of 

the entire tumor volume, rather than analysis of a single 2D image slice that has been used in 

prior studies. Volumetric analysis allows more complete lesion evaluation and is less prone to 

sampling errors associated with single slice analysis. 

This study has several limitations. This is a retrospective proof-of-concept study with a 

relatively small patient population consisting of patients that has undergone radiation as part of 

their treatment. A future prospective study in a larger and broader patient population will be 

needed to validate our findings. Although separate training and testing sets were used, the study 

was trained and tested in the same patient population. Validation of the results in an independent 
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external dataset will be needed to ensure the generalizability of our findings. Finally, tumor 

delineation is an important aspect of the radiomics workflow. Although volumetric whole lesion 

analysis was performed, the tumors were manually contoured and potential variation in tumor 

contouring could affect the extracted feature values. In this study, this issue was mitigated by 

having one radiologist assess tumor contouring on every slice to ensure accuracy. In the future, 

automatic segmentation software tools can help to minimize variations in tumor contouring by 

humans and also decrease overall time for lesion analysis. 

Our preliminary results showed that radiomic features reflecting tumor heterogeneity may 

play a role in predicting patient survival in patients with metastatic colorectal lesions. Defining 

and validating imaging-based heterogeneity features based on the appearance of metastatic 

lesions has the potential to improve treatment response prediction and assessment for individual 

lesions, allowing for an effective targeted therapy and moving towards a personalized treatment 

in patients with colorectal cancer. Further prospective multicenter trials are needed to achieve a 

large-scale validation of our results in clinical practice. 
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TABLE LEGENDS: 

Table 1: Patient characteristics (SD: standard deviation). 

Table 2: Logistic Regression analysis for survival prediction. Only radiomic features with 

statistically significant Wald test are shown. P-value of the Wald test in included in the last 

column. (C.I: confidence interval) 

 

FIGURE LEGENDS: 

Figure 1: Image Analysis pipeline used in this study. The pipeline consisted of tumor 

segmentation, feature extraction and random forest-based machine learning for survival 

prediction. T1-weighted contrast-enhanced MRI images in the portal venous phase used for 

analysis. All tumors were identified by a radiologist.  
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Figure 2: Kaplan-Meier survival estimate of the patients enrolled in the study. Follow-up 

data was available for 95 months. The mean survival time was 37 months.  

 

Figure 3: Hierarchical Clustering of radiomic features from all patients enrolled in the 

study. A dendrogram revealed two distinct radiomic fingerprints in the extracted data. 

Predominantly deceased patients had a different radiomic signature when compared to those who 

were predominantly alive by the end of the study.  

 

Figure 4: Receiver operator curve analysis of machine learning models. A) A random forest-

based model of the radiomic features applied to the testing set for patient survival prediction 

revealed an area under the curve (AUC) of 0.93. B) A model that combines both 

clinical/pathology features with radiomic features for survival prediction (AUC=0.94) has 

improved performance compared to a model that only include clinical/pathology features 

(AUC=0.83). 

 

Figure 5: Representative images illustrating differences in tumor heterogeneity between 2 

patients with different survival outcomes. A) 44 year old male with a 4.2 cm KRAS-negative 

contrast-enhancing hepatic metastasis in the right hepatic lobe. This patient survived 36 months 

following imaging. B) 68 year old female with a 4.4 cm KRAS-positive contrast-enhancing 

hepatic metastasis in the right hepatic lobe. This patient succumbed at 8 months following 

imaging. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 

 

Patient Demographics (n=55) 

Age (years) 55.1 ±10.6  

Gender                                                                                  

                                                           Male                                                                                                                                                                                                                                      

                                                       Female 

 

45% 

55% 

KRAS Status                                                                  

                                                      Positive 

                                                     Negative 

 

72% 

28% 

Microsatellite Instability (MSI)                                  

                                                         Stable 

                                                           High 

 

60% 

40% 

Colon Cancer site                                                    

                                                Right-sided 

                                                  Left-sided 

                                                 Transverse 

 

29% 

67% 

4% 

Extent of Metastatic Disease 

                           Hepatic Metastases Only 

                Extrahepatic Metastatic Disease 

 

49.5% 

50.5% 

Chemotherapy Regimen                                             

                                                   FOLFOX 

                                                   FOLFIRI 

                                                         Other 

 

61% 

29% 

10% 
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Table 2 
 

Feature 

Coefficient 

(B) 95% C.I. P-Value 

First Order – Minimum -5.5 (-8.8   ̶ -2.2) 0.001 

First Order - 10th Percentile -0.8 (-1.4 -  -0.1) 0.020 

First Order - 90th Percentile -1.3 (-2.3 -   -0.3) 0.009 

First Order – Maximum -1.7 (-2.9 -  -0.4) 0.009 

First Order – Mean -1.1 (-1.9 -           -0.3) 0.008 

First Order – Median -1.1 (-1.9 -  -0.3) 0.010 

First Order – RMS -1.5 (-2.5 -  -0.5) 0.003 

First Order – Uniformity -6.1 (-10.5 -   -1.6) 0.007 

GLCM- LD -39.1 (-67.6 -  -10.5) 0.007 

GLCM-LDM -39.1 (-67.6 -  -10.5) 0.007 

GLCM- LDMN -98.3 (-169.9 -   -26.8) 0.007 

GLCM- LDN -58.8 (-101.7 -  -16.0) 0.007 

GLCM- Joint Energy -5.0 (-8.7 -  -1.4) 0.007 

GLCM - Maximum Probability -7.8 (-13.7 -  -1.8) 0.011 

GLDM- Dependence Entropy 1.9 (0.3 -  3.5) 0.020 

GLDM - Dependence Variance 2.1 (0.2 -  4.1) 0.032 

GLRM - Normalized Non-Uniformity -5.2 (-8.6 -  -1.9) 0.002 

GLSZM - Normalized Non-Uniformity -2.4 (-4.6 -  -0.1) 0.042 

GLSZM - High Gray Level Zone Emphasis 1.3 (0.5 -  2.2) 0.003 

GLSZM - Low Gray Level Zone Emphasis -2.9 (-4.9 -  -1.0) 0.004 

GLSZM-Normalized Size Zone Non-

Uniformity -1.2 (-2.2 -  -0.2) 0.024 

NGTDM – Coarseness -0.9 (-1.7 -  -0.1) 0.028 

 

 

 


