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Planar topological superconductors with power-law-decaying pairing display different kinds of topological
phase transitions where quasiparticles dubbed nonlocal-massive Dirac fermions emerge. These exotic particles
form through long-range interactions between distant Majorana modes at the boundary of the system. We
show how these propagating-massive Dirac fermions neither mix with bulk states nor Anderson-localize up
to large amounts of static disorder despite having finite energy. Analyzing the density of states (DOS) and
the band spectrum of the long-range topological superconductor, we identify the formation of an edge gap
and a surprising double-peak structure in the DOS which can be linked to a twisting of energy bands with
nontrivial topology. Our findings are amenable to experimental verification in the near-future using atom arrays
on conventional superconductors, planar Josephson junctions on two-dimensional electron gases, and Floquet

driving of topological superconductors.
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I. INTRODUCTION

Symmetry-protected topological orders are quantum
phases of matter characterized by nonlocal order parame-
ters (topological invariants) and protected edge states at the
boundary [1,2]. Symmetry-protected topological phases with
particle-hole symmetry give rise to topological superconduc-
tors [3,4] with unconventional pairing and gapless edge states,
dubbed Majorana zero modes. Majorana zero modes are
nonabelian anions, which can be braided to perform topolog-
ical quantum computation and are protected against thermal
fluctuations by a superconducting gap [5-9]. These unpaired
Majorana particles were first shown to arise at the ends of a
chain of fermions with p-wave superconducting pairing [10].
However, the impracticality of p-wave pairing in nature was
initially believed to be a roadblock, until proximity-induced
superconductivity schemes proved to be a way to circumvent
this obstacle [11].

In recent years, different experiments have shown Ma-
jorana physics by means of a conventional superconductor
proximitized to the surface of a topological insulator [11-13],
semconductor nanowires with strong spin-orbit coupling and
subject to Zeeman fields [13-29], quantum anomalous Hall
insulator-superconductor structures [28], and atomic arrays
on superconducting substrates [30-46]. In particular, one-
dimensional (1D) arrays of magnetic impurities [41,47],
where the length of the chain is relatively small compared to
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the coherence length of the host superconductor [30], generate
an effective p-wave Hamiltonian with long-range pairing [30,
32-37]. Floquet driving of a p-wave superconductor [48] and
planar Josephson junctions proximitized to a 2D electron gas
with spin-orbit coupling and Zeeman field [49-51] also give
rise to effective models of topological superconductivity with
long-range couplings.

Inspired by these recent experimental developments, p-
wave Hamiltonians with long-range couplings have been
thoroughly studied [52-68]. A long-range extension of the
Kitaev chain with power-law-decaying hopping and pairing
amplitudes gives rise to a combined exponential and algebraic
decay of correlations, breakdown of conformal symmetry, and
violation of the area law of entropy [54,56]. The topolog-
ical nature of this new model has also been unveiled [57],
demonstrating the existence of fractional topological numbers
associated with nonlocal-massive Dirac fermions [57,61,62].
These particles are fermions with a highly nonlocal exten-
sion, as they are formed out of the long-range interaction of
distant Majorana particles at the edge, and their localization
properties are indeed robust to weak static disorder [57].
Interestingly, a staircase of higher-order topological phase
transitions can be induced by tuning the exponent of the
power-law-decaying pairing amplitude [65].

Generalizations of the long-range Kitaev chain to two
dimensions have been constructed [67,68], where the p-wave
character of the superconductor is preserved while including
power-law-decaying couplings that extend over the plane. In
these systems, topological phases holding propagating Ma-
jorana edge states with different chiralities are significantly
enhanced by long-range couplings. In one of the topological
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phases, propagating Majorana fermions at each edge pair
nonlocally and become gapped for sufficiently long-range
interactions, while remaining topological and localized at the
boundary [67]. However, the robustness of these new chiral
edge states with respect to general static disorder was unclear
and the effects of the long-range couplings in the band spec-
trum of the topological superconductor were not explored.

In this article, we study how propagating Majorana states,
which become gapped by the effect of long-range interactions,
are affected by the inclusion of static disorder. We show how
the localization at the edge is preserved even for very strong
disorder, demonstrating that the propagating massive Dirac
fermions at the edge are not pushed to the bulk or delocalized.
This is one of the characteristic features of all topologically
protected edge states. Moreover, we study how the band
spectrum of a planar p-wave topological superconductor is
modified by the effect of long-range couplings. We prove
how a characteristic (and previously unnoticed) double-peak
structure in the density of states (DOS) of the topological
superconductor is enhanced by the inclusion of power-law-
decaying amplitudes. Associated with this effect we find a
band twisting in the energy spectrum provided the phase is
topologically nontrivial.

The paper is structured as follows. In Sec. II, we introduce
the 2D p-wave Hamiltonian with long-range couplings and
perform a detailed study of the band structure and the density
of states as a function of the decay exponents. In Sec. III
we demonstrate the robustness of the nonlocal-massive Dirac
fermions due to disorder and compare it to the case with
unpaired Majoranas through the spatial distribution of these
nonlocal-massive Dirac fermions. Section IV is devoted to
conclusions. In Appendix A we perform a finite-size scaling
of in-gap states and their dependence on the decay exponent
o, and in Appendix B we analyze the robustness of the system
with respect to different types of static disorder.

II. BAND STRUCTURE AND DENSITY OF STATES

The model studied in this paper is that of a two-
dimensional spinless p-wave superconductor with long-range
hopping and long-range superconducting coupling. In real
space the Hamiltonian can be written as

N
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where both r and 7’ run over all sites of a square lattice labeled
from 1 to N, where N is the total number of sites. We have
defined R = (R, R)) =r — ' and |R| = VR? + R = R. The
band width is represented by ¢ and the coupling strength is
represented by A. The exponents « and 8 control the decay
of the superconducting coupling range and hopping range,
respectively. The chemical potential p eventually drives the
system to phase transitions; for example, in the regime of
fast decay (large values of the decaying exponents) we find
a transition from a trivial superconducting phase (SC) to a
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FIG. 1. (a) Phase diagram for a range of chemical potential,
1, and long-range superconducting coupling, «, parameters. Three
phases can be identified: (i) a trivial superconducting phase, SC; (ii)
a topological superconducting phase with Majorana fermions, M;
and (iii) a topological superconducting phase with massive Dirac
fermions, D. We note that the two different phases M have opposite
chiralities. (b), (c) Energy spectrum and DOS, respectively, for the
two topological phases (labeled in the phase diagram, using the same
color code) in a system of size N = 1681. (d), (e) Probability of
occupancy associated with the nth energy of the 2D finite-squared
system (top view) in the D phase, as described in the previous panels.
In particular, a representative probability of occupancy for a bulk
energy is plotted in (d), while the lowest finite energy inside the gap
is plotted in (e). Note that the probability of occupancy is plotted on
log scale, thus written in terms of ® as defined in the text.

topological superconducting phase characterized by Majorana
fermions (M). Interestingly, it is known that long-range su-
perconducting couplings give rise to new topological phases
characterized by massive Dirac fermions (D). This phase tran-
sition happens at the critical value @ = 2 and only exists for
one of the two topological phases [67]. This differs from the
semi-2D Hamiltonian [68], where the long-range terms appear
only in the x and y directions. The phase transition then occurs
at @ = 1 and is present in both topological phases. A phase
diagram illustrating the former case is depicted in Fig. 1(a).
Unless explicitly mentioned, we have used ¢ = 0.5 as refer-
ence parameter, A = (.5 following Ref. [67], and 8 = 10, i.e.,
fast-decay hopping. For instance, we have verified that what-
ever B, o > 20 gives the same energy spectrum of the pure
short-range hopping, with next-nearest-neighbor hopping.
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A. Massive Dirac fermions

The first step is to identify the differences and similarities
between the Majorana phase and the massive Dirac phase. For
this, the edge-state excitations are analyzed.

By exact diagonalization H |v,,) = E,|¥,) we obtained the
Bogoliubov energy spectrum, E, withn =1, ..., 2N, of a fi-
nite (squared) system with L? = N lattice sites. The results are
depicted in Fig. 1, in which we exemplify the two topological
phases M and D. The parameters are indicated in the phase
diagram [Fig. 1(a)] by the diamonds, namely, we set @ = 1.6
and o = 3, with u = 1. In both phases, the superconducting
gap (termed here the bulk gap) is easily noted from either the
energy spectrum in Fig. 1(b) or its respective DOS in Fig. 1(c).
The topological properties are manifested as in-gap states; in
particular, the inset in Fig. 1(c) details the difference between
the two topological phases [69]. While the Majorana states
manifest as a finite DOS over the entire gap, the massive Dirac
states let open a smaller gap (termed here the edge gap since
it is the energy difference between edge-state excitations).

One may also look at the localization of massive Dirac
states plotting the probability of occupancy related to the
nth wave vector (corresponding to energy E, inside the bulk
gap) at each site, i.e., P,(r) = a,(r)a(r), where the ampli-
tude a,(r) is obtained from [¢,) = Y, a,(r)|¥,(r)), and the
normalization implies ), P,(r) = 1. Figures 1(d) and 1(e)
exemplify this probability for an energy inside the bulk and
for the lowest finite energy inside the bulk gap, respectively.
The probability amplitude of occupancy is better analyzed if
log scaled, thus for convenience we have defined a normalized
logarithmic localization, ® = 1 — log P, (r)/ 1og Ppin, Where
®=1if P,(r) =1 and ® =0 if P,(r) = Puin. Phmin is the
global-minimum probability P,(r), i.e., among all energies E,
and all sites r.

Equivalent to the Majorana excitations in the planar topo-
logical superconductor, the massive Dirac states are confined
to the edges [see Fig. 1(e)], which form propagating modes
protected by particle-hole symmetry. Technically speaking,
the system still belongs to class D of topological supercon-
ductors [70] with a Z topological invariant [71]. In Fig. 1(d)
we see the bulk energy excitations remaining spread over the
sample. A thorough study of the robustness of the massive
Dirac states is one of the main goals of this work and is
discussed in Sec. III.

B. Twisted bands and double-peak structure

We discovered that the band spectrum and the DOS of
our long-range topological superconductor provide valuable
information regarding the energy distribution of the different
eigenstates [see Fig. 1(c)]. In addition, we may extract useful
quantities such as the magnitude of the superconducting gap,
the group velocity, and the band dispersion.

For convenience, we consider a semi-infinite system, finite
in the x direction and periodic in the y direction. As an
example, let us take two points in the phases M in the phase
diagram with different chiral edge states, namely, © = 1 and
u =3, with « = 3. Figure 2(a) shows the DOS of these two
points, while Figs. 2(b) and 2(c) show their respective band
spectra for a semi-infinite system. From these figures we
highlight the following: (i) associated with the peak structures

— =1

—p=3

0 0.5
DOS

FIG. 2. (a) DOS of a finite squared system for the two phases M
with different chiralities, namely, © = 1 and p = 3. Inset: Zoom-
in on the in-gap states. (b), (c) Corresponding band spectra for
a semi-infinite system, i.e., periodic in the y direction. The many
colors represent different energy levels. Arrows indicate the two-
peak structure on the DOS and the associated band twist in the band
spectrum. (d)—(f) Equivalent results for longer-range couplings; in
particular, note that for & = 1 the system is in phase D.

we note an unusual band twisting (highlighted by the arrows),
and (b) there is a significant band overlap as a consequence of
this band twisting.

The double-peak structure in the DOS is a measurable con-
sequence of band inversion in topological superconductors.
For instance, if the two particle-hole symmetric bands over-
lapfor small values of A, as we increase the superconducting
amplitude a gap is opened and a band inversion is formed.
Such a band inversion does not happen in the trivial phases.
Most notably, in the long-range system with a slow-decaying
coupling strength, the band twist (or band inversion) occurs
even when the particle-hole bands do not overlap in the limit
A — 0. This behavior leads to a higher concentration of
densities of states around two areas where the twisting of
bands occurs, which in turn generates a double-peak structure
in the DOS.

Next we observe that longer-range superconducting cou-
plings are responsible for the enhancement of the peak’s
structure, in particular, within the massive Dirac phase D.
Figures 2(d)-2(f) show the results for smaller values of the
superconducting coupling exponent already in phase D, i.e.,
a = 1.6. We clearly see a more pronounced structure of the
peaks; more precisely, they split into two peaks, which come
along with an enlargement of the band overlap. We further
note that the two-peak structure is present in both topological
phases and that it is enhanced upon decreasing o, however,
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FIG. 3. Here we present results analogous to those in Fig. 2.
(a)—(c) Different values of the superconducting coupling strength
A, in phase M with u = 1. (d)—(f) Different values of both the
superconducting coupling range («) and the hopping range (8), for
n=1and A =0.3. Note that the change in 8 is not represented
in the phase diagram in Fig. 1(a), but for all the parameter’s values
shown here the system remains in phase M.

they do not appear in the trivial superconducting phase (not
shown in Fig. 2).

The superconducting coupling strength is also responsible
for changing the peak structure. In particular, decreasing A
also makes the peak split into two, as shown in Fig. 3(a). As-
sociated with this, from the semi-infinite system band spectra
shown in Figs. 3(b) and 3(c), we again note an enlargement
of the band overlap. Indeed, we checked that by lowering A
(but keeping it finite) the two-peak structure can always be
retrieved in all topological phases.

The two-peak structure is not a unique long-range feature.
In Figs. 3(d)-3(f) we show the presence of the two peaks even
in the fast-decaying limit [(8, @) > 1]. And we have verified
that these results match those from a system with short-range
hopping. In short, both topological phases present in this
work (M and D) present a double-peak structure in their
DOS which is associated with a band twisting, which in turn
leads to a band overlap. This association is highlighted by the
colored arrows in Figs. 2 and 3. Surprisingly, the DOS double-
peak structure only appears within the topological phases. It is
always achieved for finite-small values of the superconducting
coupling strength and is enhanced by longer-range couplings.

Therefore, within the limitations of the present model
these double-peak structures show a nontrivial band topology,
due to the effect of band twisting. These results may help
us distinguish more easily different topologically trivial and
nontrivial phases in experiments.

C. Physical relevance of long-range couplings

As mentioned in Sec. I, p-wave superconductors with long-
range couplings naturally appear in different experimental
realizations of these materials. A 2D sublattice of magnetic
impurities, deposited on the surface of a conventional super-
conductor, leads to effective long-range pairing and hopping
terms with a 1/./r decay [43]. In particular, Mn adatoms
deposited on top of Pb (001) have been shown to present
long-range oscillations of up to 7-8 nm [44], which proves
the relevance of long-range interactions in these experiments.
We can also consider a different construction, where prox-
imitizing the planar Josephson junction to a 2D electron gas
with Rashba spin-orbit coupling and a Zeeman field produces
an effective 1D Kitaev chain with long-range pairing and
hopping terms [49-51]. The couplings of the effective 1D
system can be tuned by varying the superconducting phase
difference of the junction ¢, the in-plane magnetic field B, and
the chemical potential . The emerging long-range couplings
can be intuitively understood as arising from the integration
out of closely spaced modes residing along the transverse
direction of the 2D electron gas. A similar construction could
be used so that the integration of a 3D structure leads to
effective long-range couplings in two dimensions. Finally, pe-
riodically driving a short-range topological insulator produces
interesting effective models of 1D p-wave superconductors
where long-range superconductivity arises [48]. Analogously,
Floquet driving a planar p-wave superconductor would allow
the tuning of effective long-range couplings. In conclusion,
we have identified several experimentally relevant situations
where the inclusion of long-range coupling terms is needed
and where the physics of the topological superconductors
described in this paper can be potentially tested.

III. ROBUSTNESS OF THE MASSIVE EDGE STATES
AGAINST DISORDER

Here we discuss the effect of static disorder in the presence
of massive Dirac states. We first analyze the normalized
DOS computed for a finite 2D system with different disorder
strengths. The disorder is added to the Hamiltonian as

N
Hisorder = v ZD,(CIC, - Crc;r)’ 2)

r=1

where v is the disorder strength and |D,| < 1 is equally
distributed over the sites’ positions r. Other realistic disorder
distributions, such as a Gaussian peaked at u, would be less
detrimental to our system and would serve as a less effective
test of robustness of the edge states [72].

Figure 4 analyzes the results for a representative point
within phase D (namely, © = 1, @ = 1.6, and system size
N = 1681). Figure 4(a) shows the DOS for different disor-
der strengths. First, we clearly observe how the DOS peak
decreases with this disorder. Second, we show that the bulk
gap shrinks more rapidly than the edge gap. In addition, the
plateau formed by the massive Dirac edge states (i.e., the
finite energies between the bulk gap and the edge gap) remains
quantitatively the same even for large values of disorder, i.e.,
compared to the superconducting gap size, which provides an
indication of the robustness of the new massive edge states.
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FIG. 4. Behavior of a nonlocal-massive Dirac state (precisely for
uw=1and o = 1.6, for a system size N = 1681) in the presence
of disorder. (a) DOS. Inset: Zoom-in on the in-gap states. (b) The
legend, which holds true for all other panels. (c) The DOPR as a
function of the PR for different disorder strengths. Inset: Zoom-in
on the peak coming from the edge states. (d) MPR for a range of
disorder strengths.

One may also look at the Anderson localization effect
from the participation ratio (PR), which gives the degree
of localization of each state after one disorder realization,
such that

1 1

3

For instance, for a completely delocalized state where all sites
are equally likely to be occupied one finds PR = 1, while
for a completely localized state where only one site is likely
to be occupied one finds PR = 1/N, which goes to O at the
thermodynamic limit. Moreover, for an edge state perfectly
localized at the boundary, i.e., equally distributed along the
edge sites of the 2D system, one finds PR = 4/ J/N.

Figure 4(c) shows a histogram of the participation ratio
(which here we call the density of the participation ratio;
DOPR) with respect to the energy index (n) for different
strengths v. Note that our results consider 100 disorder re-
alizations, and the results are an average over it. Thus, in
this figure one easily notes that the DOPR is concentrated
near PR = 1, instead of PR ~ 1073, for this particular system
size, which signals that the bulk states are delocalized. In
addition, we note that they continue to be delocalized even for
large disorder strengths; i.e., we have considered a maximum
disorder of 0.5, while the bulk gap is nearly 1.0 (in units of
hopping ¢) and the edge gap is even smaller. From the edge
states we expect a peak near PR =~ 0.1 for this system size,
since they are not localized at one point but spread all over the
boundary. Thus the inset shows a zoom-in on the DOPR near
PR = 0.1. The existing peaks are clear and they shift towards
the left with increasing disorder strength, which reflects a
trend of the edge states to be more and more localized along
the edges.

Y=000 010 025 050 000 010 025 0.50
Eq =
a 2
S E, “ T | 2
= <
d ; 1
Q
= L H
z Ml 15
1 <
=
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FIG. 5. Spatial distribution of states within phases D and M.
We plotted the probability of occupancy, ®, associated with the nth
energy for a 2D finite-squared system (top view) as described in
Figs. 1(d) and 1(e). Each row corresponds to a different representa-
tive quantum state with energy E,, such that E; is the lowest finite
energy inside the gap; E, illustrates the finite energies inside the
gap, which goes to the bulk with strong enough disorder. E5 and E;
represent two bulk energies. For each of the phases we show what
happens to these states after including different values of the disorder
strength v.

The spatial localization over all the states is quantified by
the mean participation ratio (MPR), namely,

1 2N
MPR = <ﬁ ;PR>, 4)

where the average (...) is over disorder realizations. Thus,
Fig. 4(d) shows the decreasing of the MPR, roughly from
0.6 to 0.4 with v = 0 to v = 0.5, respectively. This shows a
trend of the whole system to become more localized, although
still orders of magnitude higher than the completely localized
value, typically PR & 6 x 10~ for this system size.

A. Spatial distribution of states

Here we analyze the spatial distribution of states subject to
static disorder for both the massive Dirac and the Majorana
phases. Each row in Fig. 5 depicts representative states
associated with different energy levels. We have considered
100 disorder realizations, and the average was made after
sorting the energy spectra and taking equivalent energy levels;
for instance, the minimum energy, labeled E;, was computed
as E, = (min(E,)), where (...) is the average over disorder
realizations and min(E,) takes the minimum energy value
among all the energy levels. The columns in the plot represent
different disorder strengths. We note that the energies E; to
E,4 are not the four lowest energies from the energy spectrum
but, rather, energies which correspond to the following
behaviors: E; is the lowest finite energy inside the gap; E,
is a finite energy inside the gap and will merge to the bulk
after including enough disorder. E5 and Ej4 are two different
energies inside the bulk.

Remarkably, the topological robustness of the massive
Dirac phase is indeed very similar to the Majorana phase.
The topological energy states inside the gap display clear
localization along the edges, with a short tail towards the bulk.
We have checked that the tail is shortened after including
disorder, adding some degree of additional stability to the
boundary of the system. The increase in edge localization
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through disorder was already noted in the inset in Fig. 4(c),
where the peak moves to the left (i.e., towards being more
localized). Moreover, Fig. 4(a) shows that the bulk gap is
shrinking more rapidly than the edge gap, which means that
edge states with higher energies are merging with the bulk.
This behavior is illustrated in Fig. 5 by the frames with
energy E,, in which more localized states (like clusters of
probability density) are formed inside the bulk. One may note
the formation of these clusters for v > 0.25. Finally, the bulk
states (E3 and Ey4) remain fairly delocalized after incorporating
disorder. However, for strong disorder we note the formation
of clusters of probability density inside the bulk.

B. Long-range disorder

Some experimental realizations of topological supercon-
ductors with long-range couplings may also introduce dis-
order in the hopping and pairing terms. Therefore, in order
to complete the stability analysis of the topological phase,
we also introduce disorder perturbations in the hopping and
superconducting coupling strengths and compare their relative
robustness.

The disorder is introduced by replacing ¢t — t + vD.(R)
and A — A 4 vD,(R) in Eq. (1), with v setting the disorder
strength and |D,(R)| < 1 being a random number equally dis-
tributed over the site positions r and long-range parameter R.

In Fig. 6 we depict three situations: (a) the disorder is
included only in the hopping strength; (b) the disorder is
considered only in the superconducting coupling strength; and
(c) the disorder is included in all couplings, the hopping, the
pairing, and the chemical potential. In Fig. 6(a) we note that
long-range disorder affects the edge states more than short-
range disorder, however, the massive Dirac edge modes are
clearly robust against weak and moderate disorder; i.e., the in-

SC coupling all

hopping

En ¢

e i

>0.5(.) 0.10 0.50 0.10 0.50

v=0.10

FIG. 6. (a)—(c) DOS in the D phase and the effect of different
types of long-range disorder, where we have used the same param-
eters as described in Fig. 4. (a) Disorder in the hopping strengths;
(b) disorder in the superconducting coupling strengths; (c) both
previous cases plus chemical potential disorder. In the second row
we plot the probability of occupancy, @, associated with the nth
energy for a 2D finite-squared system (top view) as described in
Figs. 1(d) and 1(e). In each case, we show the lowest finite energy
inside the gap, E;, for two values of disorder strength, namely,
v =0.10 and v = 0.50.

gap states are present even at v = (.25, which is already large
compared with the size of the bulk gap. On the other hand,
disorder in the superconducting coupling strength is even less
harmful. In Fig. 6(b) we see a lowering of the gap’s peak
with enhancing disorder strength, but the bulk gap is nearly
constant. Compared with Fig. 4(a) we see that long-range
disorder in the superconducting coupling strength affects the
system even less than chemical potential disorder. Finally, in
Fig. 6(c) we see that even after including all possible disorder
types the largest contribution comes from the hopping, since
Figs. 6(a) and 6(c) are very similar. In the second row in
Fig. 6 we depict the fate of the massive Dirac modes after
including long-range disorder in each case described above.
Remarkably, even after including a considerable amount of
disorder in all couplings, the edge states are still robust and
localized. This is explained by the topological nature of the
edge states even with long-range couplings.

IV. DISCUSSION

We have studied the robustness and localization properties
of nonlocal-massive Dirac fermions that appear as exotic
energy quasiparticles in 2D topological superconductors with
long-range interactions. Analyzing the density of states and
the energy spectrum, we identify how these topological sub-
gap states at finite energy remain bound to the edge and prop-
agating even for large static disorder. By means of the in-gap
states we compute the phase diagram for different chemical
potentials and long-range couplings. The propagating massive
Dirac fermion is identified from a subgap in the supercon-
ducting phase. Looking at the probability of occupancy of
the energy spectrum, we can clearly identify the localization
properties of massive Dirac fermions along the edges of a 2D
square lattice. The robustness of these quasiparticles is tested
including chemical potential disorder and long-range disorder.
The DOS analysis indicates a strong resistance from the in-
gap states to disorder, which is confirmed using a participation
ratio analysis of all quantum states in the system. The massive
Dirac modes are surprisingly resistant against weak and mod-
erate disorder in the hopping strength, while practically in-
sensitive to disorder in the superconducting coupling strength.
Remarkably, the stability of the probability of occupation for
the edge states shows that the robustness of the massive Dirac
fermions is analogous to that of the Majorana states.

Complementarily, for a semi-infinite-periodic system, we
note that a band twisting in the band structure is always
accompanied by a double peak in the DOS. We show that
this behavior also appears for purely short-range interactions,
however, we note that it is an exclusive feature of topolog-
ical phases and can possibly be used as a probe to identify
nontrivial topology. In addition, we show that long-range
couplings and low pairing strengths strongly enhance the
double-peak structure. This enhancement can be potentially
used to experimentally detect topological phases using STM
measurements [38].
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APPENDIX A: FINITE-SIZE SCALING OF IN-GAP STATES

In Fig. 1(c) in the text, we show the finite DOS inside
the superconducting gap. Since the bulk states and the in-gap
states are expected to have different finite-size scalings, here
we analyze them in detail. In Figs. 7(b)-7(d) we show the
DOS for different system sizes and superconducting couplings
(controlled by «). In particular, we have used three system
sizes, N =441, 961, and 1681, and show results for two
representative points in the phase diagram, namely, u = 1
and p = 3. The insets show zoom-ins on the in-gap states.
We must note that here, as well as in the text, the DOS is
normalized by the system size, i.e., DOS — DOS/N, which
explains why they lie on top of each other for different
system sizes. Thus now we choose to write this denominator
explicitly. On the other hand, the DOS values inside the gap
(due to the presence of edges states) are expected to scale with
the perimeter (4+/N = 4L) of the finite system; i.e., rewriting
DOS/N — DOS/4L one finds in-gap states independent of
system size, as shown in Fig. 7(a). Finally, we note that the
values of the in-gap states are dependent on «. The inset in
Fig. 7(a) shows how the exponent « influences the in-gap
states. Note that in the case of © = 1 we have a phase transi-
tion, which is accompanied by a change in DOS /4L behavior.

1 r_"
3= y,
I \\ S| S
>y [
ot N
g Qf------------ :
- -1 &
O S \>0 | 0.05
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equally
-3 g Gaussian

0 DOS O.I5

FIG. 8. DOS in the massive Dirac phase (same parameters as
in Fig. 4) for different types of static disorder, namely, equally
distributed versus Gaussian-distributed disorders in the chemical po-
tential, both computed for v = 0.50. We also plot the nondisordered
case for reference, v = 0. Inset: Zoom-in on the in-gap states.

APPENDIX B: GAUSSIAN DISORDER

Here we compare two types of static disorder. Beyond
the random-distributed disorder discussed in the text, we also
analyze Gaussian-distributed disorder, which is added to the
Hamiltonian in Eq. (1) as

N
G _ G .1 T
Hdisorder =V ZDr (Crcr - Crcr):

r=1

B

with v setting the disorder strength and D¢ [=x(£) in the
following] being a random number weighted by the Gaus-
sian distribution with mean value © = 0 and standard de-
viation o = 0.25, for each site’s position r. Namely, from
a random number & generated in the range £ € (0, 1) we
can generate a corresponding x(§) € (—oo, +00) weighted
by a Gaussian distribution through the equation x(§) = u +
oﬁerr’l(ZS — 1), where err—! is the inverse of the error
function. The latter expression is obtained from the inverse
of the cumulant of the Gaussian function. In principle, the
cumulant of any normalized distribution can be associated
with the random variable &; in particular, for the Gaussian
distribution we have § = [*_ e~ W=1/C) /(5 /27 )dx .

As shown in Fig. 8, Gaussian disorder is less harmful
to the system than equally spaced disorder, which is the
case considered throughout the paper as a benchmark for
robustness.
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