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Abstract—This paper establishes the optimality of the plug-
in estimator for the problem of differential entropy estima-
tion under Gaussian convolutions. Specifically, we consider the
estimation of the differential entropy h(X + Z), where X
and Z are independent d-dimensional random variables with
Z ∼ N (0, σ2Id). The distribution of X is unknown and belongs
to some nonparametric class, but n independently and identically
distributed samples from it are available. We first show that
despite the regularizing effect of noise, any good estimator (within
an additive gap) for this problem must have an exponential in
d sample complexity. We then analyze the absolute-error risk
of the plug-in estimator and show that it converges as cd√

n
,

thus attaining the parametric estimation rate. This implies the
optimality of the plug-in estimator for the considered problem.
We provide numerical results comparing the performance of the
plug-in estimator to general-purpose (unstructured) differential
entropy estimators (based on kernel density estimation (KDE)
or k nearest neighbors (kNN) techniques) applied to samples of
X+Z. These results reveal a significant empirical superiority of
the plug-in to state-of-the-art KDE- and kNN-based methods.

I. INTRODUCTION

Consider the problem of estimating differential entropy
under Gaussian convolutions that was recently introduced in
[1]. Namely, let X ∼ P be an arbitrary random variable with
values in Rd and Z ∼ N (0, σ2Id) be an independent isotropic
Gaussian. Upon observing n independently and identically
distributed (i.i.d.) samples Xn , (X1, . . . , Xn) from P and
assuming σ is known1, we aim to estimate h(X+Z) = h(P ∗
Nσ), where Nσ is a centered isotropic Gaussian measure with
parameter σ. To investigate the decision-theoretic fundamental
limit, we consider the minimax absolute-error estimation risk

R?(n, σ,Fd) , inf
ĥ

sup
P∈Fd

E
∣∣∣h(P ∗ Nσ)− ĥ(Xn, σ)

∣∣∣ ,
where Fd is a nonparametric class of distributions and ĥ
is the estimator. The sample complexity n?(η, σ,Fd) is the
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1The extension to unknown σ is omitted for space reasons. Note that
samples from P contain no information about σ. Hence for unknown σ,
samples of both X ∼ P and Z would presumably be required. Under this
alternative model, σ2 can be estimated as the empirical variance of Z and then
plugged into our estimator. It can be shown that this σ2 estimate converges
as O

(
(nd)−

1
2

)
, which does not affect our estimator’s overall convergence

rate.

smallest number of samples for which estimation within an
additive gap η is possible. This estimation setup was originally
motivated by measuring the information flow in deep neural
networks [2] for testing the Information Bottleneck compres-
sion conjecture of [3].

A. Contributions

The results herein establish the optimality of the plug-
in estimator for the considered problem. Defining Tσ(P ) ,
h(P ∗ Nσ) as the functional (of P ) that we aim to estimate,
the plug-in estimator is Tσ

(
P̂Xn

)
= h

(
P̂Xn ∗ Nσ

)
, where

P̂Xn = 1
n

∑n
i=1 δXi is the empirical measure associated with

the samples Xn and δXi is the Dirac measure at Xi. Despite
the suboptimality of plug-in techniques for vanilla discrete
(Shannon) and differential entropy estimation (see [4] and
[5], respectively), we show that h

(
P̂Xn ∗ Nσ

)
attains the

parametric estimation rate of Oσ,d
(

1√
n

)
for the considered

setup when P is a subgaussian measure. This establishes
the plug-in estimator as minimax rate-optimal for differential
entropy estimation under Gaussian convolutions.

The derivation of this optimal convergence rate first bounds
the risk by a weighted total variation (TV) distance between
the original measure P ∗Nσ and the empirical one P̂Xn ∗Nσ .
This bound is derived by linking the two measures via the
maximal TV coupling, and reduces the analysis to controlling
certain d-dimensional integrals. The subgaussianity of P is
used to bound the integrals by a cd√

n
term, with all constants

explicitly characterized. It is then shown that the exponential
dependence d is unavoidable. Specifically, we prove that any
good estimator of h(P ∗Nσ), within an additive gap η, has a
sample complexity n?(η, σ,Fd) = Ω

(
2γ(σ)d

ηd

)
, where γ(σ) is

positive and monotonically decreasing in σ. The proof relates
the estimation of h(P ∗Nσ) to estimating the discrete entropy
of a distribution supported on a capacity-achieving codebook
for an additive white Gaussian noise (AWGN) channel.

B. Related Past Works and Comparison

General-purpose differential entropy estimators are applica-
ble in the considered setup by accessing the noisy samples of
X + Z. There are two prevailing approaches for estimating
the nonsmooth differential entropy functional: the first relies
on kernel density estimators (KDEs) [6], and the other uses k
nearest neighbor (kNN) techniques (see [7] for a comprehen-
sive survey). Many performance analyses of such estimators



restrict attention to smooth nonparametric density classes and
assume these densities are bounded away from zero. Since the
density associated with P ∗Nσ violates the boundedness from
below assumption, any such result does not apply in our setup.

Two recent works weakened/dropped the boundedness
from below assumption, providing general-purpose estimators
whose risk bounds are valid in our setup. The first is [5], which
proposed a KDE-based differential entropy estimator that also
combines best polynomial approximation techniques. Assum-
ing subgaussian densities with unbounded support, Theorem
2 of [5] bounded the estimation risk by2 O

(
n−

s
s+d
)
, where

s is a Lipschitz smoothness parameter assumed to satisfy
0 < s ≤ 2. While the result is applicable for our setup when
P is compactly supported or subgaussian, its convergence rate
quickly deteriorates with dimension d and is unable to exploit
the smoothness of P ∗ Nσ due to the s ≤ 2 restriction.3

A second relevant work is [8], which studied a weighted-KL
estimator (in the spirit of [9], [10]) for very smooth densities.
Under certain assumptions on the densities’ speed of decay
to zero (which captures P ∗ Nσ when, e.g., P is compactly
supported) the proposed estimator was shown to attain O

(
1√
n

)
risk. Despite the estimator’s efficiency, empirically it is signif-
icantly outperformed by the plug-in estimator studied herein
even in rather simple scenarios (see Section V). In fact, our
simulations show that the vanilla (unweighted) kNN estimator
of [11], which is also inferior to the plug-in, typically performs
better than the weighted version from [8]. The poor empirical
performance of the latter may originate from the dependence
of the associated risk on d, which was overlooked in [8].

II. PRELIMINARIES AND DEFINITIONS

Logarithms are with respect to (w.r.t.) base e, ‖x‖ is the
Euclidean norm in Rd, and Id is the d×d identity matrix.
We use EP for an expectation w.r.t. a distribution P , omitting
the subscript when P is clear. For a continuous X ∼ P with
probability density function (PDF) p, we interchangeably use
h(X), h(P ) and h(p) for its differential entropy. The n-fold
product extension of P is denoted by P⊗n. The convolution of
two distributions P and Q on Rd is (P ∗Q)(A) =

∫ ∫
1A(x+

y) dP (x) dQ(y), where 1A is the indicator of the Borel set A.
Let Fd be the set of distributions P with supp(P ) ⊆

[−1, 1]d.4 We also consider the class of K-subgaussian dis-
tributions F (SG)

d,K [12]. Namely, P ∈ F (SG)
d,K , for K > 0, if

X ∼ P satisfies

EP
[

exp
(
αT (X−EX)

)]
≤ exp

(
0.5K2‖α‖2

)
, ∀α ∈ Rd.

(1)
In other words, every one-dimensional projection of X is sub-
gaussian. Clearly, there exists a K ′ > 0 such that Fd ⊆ F (SG)

d,K′ .
We therefore state our lower bound result (Theorem 1) for Fd,
while the upper bound (Theorem 2) is given for F (SG)

d,K .

2Multiplicative polylogarithmic factors are overlooked in this restatement
3Such convergence rates are typical in estimating h(p) under boundedness

or smoothness conditions on p. Indeed, the results cited above (applicable in
our framework or otherwise) as well as many others bound the estimation risk
decays as O

(
n
− α
β+d

)
, where α, β are constants that may depend on s and d.

4One may consider any other class of compactly supported distributions.

III. EXPONENTIAL SAMPLE COMPLEXITY

As claimed next, the sample complexity of any good esti-
mator of h(P ∗ Nσ) is exponential in d.

Theorem 1 (Exp. Sample Complexity): The following holds:

1) Fix σ > 0. There exist d0(σ) ∈ N, η0(σ) > 0 and γ(σ) >
0 (monotonically decreasing in σ), such that for all d ≥
d0(σ) and η < η0(σ), we have n?(η, σ,Fd) ≥ Ω

(
2γ(σ)d

dη

)
.

2) Fix d ∈ N. There exist σ0(d), η0(d) > 0, such that for all
σ < σ0(d) and η < η0(d), we have n?(η, σ,Fd)≥Ω

(
2d

ηd

)
.

Part 1 of Theorem 1 is proven in Section VI-A. It relates
the estimation of h(P ∗ Nσ) to discrete entropy estimation
of a distribution supported on a capacity-achieving codebook
for a peak-constrained AWGN channel. Since the codebook
size is exponential in d, discrete entropy estimation over the
codebook within a small gap η > 0 is impossible with less
than order of 2γ(σ)d

ηd samples [13]. The exponent γ(σ) is
monotonically decreasing in σ, implying that larger σ values
are favorable for estimation. Part 2 of the theorem follows
by similar arguments but for a d-dimensional AWGN channel
with an input distributed on the vertices of the [−1, 1]d

hypercube; the proof is omitted (see [1, Section V-B2]).
Remark 1 (Exponential Sample Complexity for Restricted

Classes of Distributions): Restricting Fd by imposing smooth-
ness or lower-boundedness assumptions on the distributions
in the class would not alleviate the exponential dependence
on d from Theorem 1. For instance, consider convolving any
P ∈ Fd with Nσ

2
, i.e., replacing each P with Q = P ∗ Nσ

2
.

These Q distributions are smooth, but if one could accurately
estimate h

(
Q∗Nσ

2

)
over the convolved class, then h(P ∗Nσ)

over Fd could have been estimated as well. Therefore, Theo-
rem 1 applies also for the class of such smooth Q distributions.

IV. OPTIMALITY OF PLUG-IN ESTIMATOR

We next establish the minimax-rate optimality of the plug-
in estimator. Given a collection of samples Xn ∼ P⊗n, the
estimator is h(P̂Xn ∗ Nσ), where P̂Xn = 1

n

∑n
i=1 δXi .

Theorem 2 (Plug-in Risk Bound): Fix σ > 0, d ≥ 1. Then

sup
P∈F(SG)

d,µ,K

EP⊗n
∣∣∣h(P ∗Nσ)−h(P̂Xn∗Nσ)

∣∣∣ ≤ Cσ,d,µ,Kn−1
2.

(2)
where Cσ,d,µ,K = Oσ,µ,K(cd) for a numerical constant c.

The proof of Theorem 2 is given in Section VI-B, where
an explicit expression for Cσ,d,µ,K is stated in (12). The
derivation exploits the maximal TV coupling to bound the
right-hand side (RHS) of (2) by a weighted TV between P ∗Nσ
and P̂Xn ∗Nσ . Exploiting the Gaussian smoothing, we control
this TV distance by a cd/

√
n term as desired.

Remark 2 (Minimax Rate-Optimality): A convergence rate
faster than 1√

n
cannot be attained for parameter estimation un-

der the absolute-error loss. This follows from, e.g., Proposition
1 of [14], which establishes this rate as a lower bound for the
parametric estimation problem. Combined with Theorem 2,
this establishes the plug-in estimator as minimax rate-optimal.



Fig. 1: Estimation results comparing the plug-in estimator to:
(i) a KDE-based method [6]; (ii) the KL estimator [15]; and
(iii) a weighted-KL estimator [8]. Here P is a truncated d-
dimensional mixture of 2d Gaussians and Z ∼ N (0, σ2Id).
Error bars are one standard deviation over 20 random trials.

V. EXPERIMENTS

We present empirical results illustrating the convergence
of the plug-in estimator5 compared to several competing
methods: (i) the KDE-based estimator of [6]; (ii) and kNN
Kozachenko-Leonenko (KL) estimator [15]; and (iii) the re-
cently developed weighted-KL (wKL) estimator from [8].

P with Bounded Support: Convergence rates in the
bounded support regime are illustrated first. We set P as a
mixture of Gaussians truncated to have support in [−1, 1]d.
Before truncation, the mixture consists of 2d Gaussian com-
ponents with means at the 2d corners of [−1, 1]d. Fig. 1
shows estimation results as a function of n, for d = 5, 10
and σ = 0.1, 0.2. The kernel width for the KDE estimate was
chosen via cross-validation, varying with both d and n; the
KL, wKL and plug-in estimators require no tuning parameters.
We stress that the KDE estimate is highly unstable and, while
not shown here, the estimated value is very sensitive to the
chosen kernel width. The KDE, KL and wKL estimators
converge slowly, at a rate that degrades with increased d,
underperforming the plug-in estimator. Finally, we note that in
accordance to the explicit risk bound from (12), the absolute
error increases with larger d and smaller σ.
P with Unbounded Support: In Fig. 2, we show the con-

vergence rates in the unbounded support regime by considering
the same setting with d = 15 but without truncating the 2d-
mode Gaussian mixture. The fast convergence of the plug-in
estimator is preserved, outperforming the competing methods.

Reed-Muller Codes for AWGN Channels: We next con-
sider data transmission over an AWGN channel using a binary

5Evaluating the plug-in estimator requires computing a d-dimensional
integral, which has no closed form solution. Nonetheless, in [1] we propose
an efficient Monte Carlo integration method to perform this computation. The
method’s accuracy is ensured via mean-squared error bounds [1, Theorem 5],
and the computational complexity is shown to be on average O(n logn).

Fig. 2: Estimation results in the unbounded support regime,
where P is a d-dimensional mixture of 2d Gaussians. Error
bars are one standard deviation over 20 random trials.

phase-shift keying (BPSK) modulation of a Reed-Muller code.
A Reed-Muller code RM(r,m) of parameters r,m ∈ N, where
0 ≤ r ≤ m, encodes messages of length k =

∑r
i=0

(
m
i

)
into 2m-lengthed binary codewords. Let CRM(r,m) be set of
BPSK modulated sequences corresponding to RM(r,m) (with
0 and 1 mapped to −1 and 1, respectively). The number of
bits reliably transmittable over the 2m-dimensional AWGN
channel with noise variance σ2 is I(X;X+Z) = h(X+Z)−
d
2 log(2πeσ2), where X ∼ Unif(CRM(r,m)) and Z are indepen-
dent. Despite I(X;X + Z) being a well-behaved function of
σ, an exact computation of this quantity is infeasible.

Our estimator readily estimates I(X;X + Z) from sam-
ples of X . Results for the Reed-Muller codes RM(4, 4) and
RM(5, 5) (containing 216 and 232 codewords, respectively)
are shown in Fig. 3 for various values of σ and n. Fig. 3(a)
shows our estimate of I(X;X+Z) for an RM(4, 4) code as a
function of σ, for different values of n. As expected, the plug-
in estimator converges faster when σ is larger. Fig. 3(b) shows
the estimated I(X;X+Z) for X ∼ Unif(CRM(5,5)) and σ = 2,
with the KDE and KL estimates based on samples of (X+Z)
shown for comparison. Our method significantly outperforms
the general-purpose estimators. The wKL estimator is omitted
due to its instability in this high dimensional (d = 32) setting.

Remark 3: When supp(P ) lies inside a ball of radius
√
d,

the subgaussian constant K is proportional to d, and the
bound from (2) scales as dd√

n
. This scenario corresponds to the

popular setup of an AWGN channel with an input constraint.

(a) (b)

Fig. 3: Estimating I(X;X+Z), where X comes from a BPSK
modulated Reed-Muller and Z ∼ N (0, σ2Id): (a) Estimated
I(X;X + Z) as a function of σ, for different n values, for
the RM(4, 4) code. (b) Plug-in, KDE and KL I(X;X + Z)
estimates for the RM(5, 5) code and σ = 2 as a function of n.



VI. PROOFS

A. Proof of Theorem 1

Let Y = A + N be an AWGN channel with input peak
constraint A∈ [−1,1] almost surely, and noise N ∼N (0,σ2).
The capacity CAWGN(σ) = maxA∼P : supp(P )⊆[−1,1] I(A;Y )
is positive for any σ < ∞. This positivity implies [16] that
for any ε ∈

(
0,CAWGN(σ)

)
and large enough d, there exists a

codebook Cd ⊂ [−1, 1]d of size |Cd|
.
= ed(CAWGN(σ)−ε) and a

decoder ψd : Rd → [−1, 1]d, such that

P
(
ψd(Y

d) = c
∣∣∣Ad = c

)
≥ 1− e−ε

2d, ∀c ∈ Cd, (3)

where Ad , (A1, A2, . . . , Ad) and Y d , (Y1, Y2, . . . , Yd) are
the channel input and output sequences, respectively.6

From (3) it follows that if Ad ∼ P , for any P with
supp(P ) = Cd, and set Âd , ψd(Y d), then

P
(
Ad 6=Âd

)
=
∑
c∈Cd

P (c)P
(
ψd(c+N

d) 6= c
∣∣∣Ad=c

)
≤ e−ε

2d.

Invoking Fano’s inequality, we further obtain

H
(
Ad
∣∣∣Âd) ≤ Hb

(
e−ε

2d
)

+ e−ε
2d log |Cd| , δ(1)σ,d, (4)

where Hb(α) = −α logα− (1−α) log(1−α), for α ∈ [0, 1],
is the binary entropy function. Although not explicit in our
notation, the dependence of δ(1)σ,d on σ is through ε. Note that
limd→∞ δ

(1)
σ,d = 0, for all σ > 0, because log |Cd| grows only

linearly with d and limq→0Hb(q) = 0. This further gives

I
(
Ad;Y d

) (a)
≥ H

(
Ad
)
−H

(
Ad
∣∣∣Âd) (b)

≥H
(
Ad
)
−δ(1)σ,d,

where (a) is since H(A|B)≤H
(
A
∣∣f(B)

)
for any random vari-

ables (A,B) and deterministic function f , while (b) uses (4).
Since we also have I(Ad;Y d) ≤ H(Ad), it follows that∣∣∣H(Ad)− I(Ad;Y d)

∣∣∣ ≤ δ(1)σ,d, (5)

which means that any good estimator of H(Ad) over the class{
P
∣∣ supp(P ) = Cd

}
⊆ Fd) is also a good estimator of

the mutual information. Using the well-known lower bound
on discrete entropy estimation sample complexity (see, e.g.,
[17, Corollary 10]), we have that estimating H(Ad) within
a sufficiently small additive gap η > 0 requires at least
Ω
(
|Cd|

η log |Cd|

)
= Ω

(
2γ(σ)d

ηd

)
, where γ(σ) , CAWGN(σ)−ε > 0.

We relate the above back to the estimation of h(X+Z) by
noting that I(Ad;Y d) = h(Ad+Nd)− d

2 log2(2πeσ2). Letting
X ∼ P and noting that Z D

= Nd, where D= denotes equality
in distribution, we have h(Ad +Nd) = h(X +Z). Assuming
in contradiction that there exists an estimator of h(X + Z)
that uses o

(
2γ(σ)d/(ηd)

)
samples and achieves an additive gap

η > 0 over
{
P
∣∣ supp(P ) = Cd

}
, implies that H(Ad) can be

estimated from these samples within gap η+δ
(1)
σ,d. This follows

from (5) by taking the estimator of h(X +Z) and subtracting
the constant d

2 log2(2πeσ2). We arrive at a contradiction.

6ak
.
= bk denotes equality in the exponential scale: lim

k→∞
1
k
log ak

bk
= 0.

B. Proof of Theorem 2

We start with two technical lemmata used for the proof.
Lemma 1: Let U ∼ PU and V ∼ PV be continuous

random variables with densities pU and pV , respectively. If∣∣h(U)
∣∣, ∣∣h(V )

∣∣ <∞, then∣∣h(U)− h(V )
∣∣ ≤ max

{∣∣∣∣E log
pV (V )

pV (U)

∣∣∣∣ , ∣∣∣∣E log
pU (U)

pU (V )

∣∣∣∣} .
Proof: Recall the identity

h(U)−h(V )+D(PU ||PV ) = E log
pV (V )

pV (U)
≤
∣∣∣∣E log

pV (V )

pV (U)

∣∣∣∣ .
Reversing the roles of U and V completes the proof.

Lemma 2: Let U ∼ PU and V ∼ PV be continuous
random variables with PDFs pU and pV , respectively. For any
measurable function g : Rd → R∣∣Eg(U)− Eg(V )

∣∣ ≤ ∫ ∣∣g(z)
∣∣ · ∣∣pU (z)− pV (z)

∣∣dz .
Proof: We couple PU and PV via the TV maximal coupling7

π , (Id, Id)](PU ∧PV )+
1

α
(PU −PV )+⊗(PU −PV )−, (6)

where (PU − PV )+ and (PU − PV )− are the positive and
negative parts of the signed measure (PU−PV ); (PU ∧PV ) ,
PU − (PU − PV )+; (Id, Id)](PU ∧ PV ) is the push-forward
measure of PU ∧PV by the map (Id, Id); ⊗ denotes a product
measure; and α , 1

2

∫
|pU (x)− pV (x)|dx satisfies

∫
d(PU −

PV )+ =
∫

d(PU − PV )− = α. Jensen’s inequality implies∣∣Eg(U)− Eg(V )
∣∣ ≤ Eπ

∣∣g(U)− g(V )
∣∣ and hence

Eπ
∣∣g(U)− g(V )

∣∣
≤ 1

α

∫ (∣∣g(u)
∣∣+∣∣g(v)

∣∣)(pU(u)−pV(u)
)
+

(
pU(v)−pV(v)

)
−dudv

=

∫ ∣∣g(u)
∣∣(pU(u)−pV (u)

)
+

du+

∫ ∣∣g(v)
∣∣(pU(v)−pV (v)

)
−dv

=

∫ ∣∣g(z)
∣∣((pU (z)− pV (z)

)
+

+ (pU (z)− pV (z)
)
−

)
dz

=

∫ ∣∣g(z)
∣∣ · ∣∣pU (z)− pV (z)

∣∣dz. �

Fix any P ∈ F (SG)
d,K and assume that EPS = 0. This

assumption comes with no loss of generality since both the
target functional h(P ∗Nσ) and the plug-in estimator are trans-
lation invariant. Note that

∣∣h(P ∗ Nσ)
∣∣, ∣∣h(P̂Sn ∗ Nσ)

∣∣ < ∞.
Combining Lemmas 1 and 2, we a.s. have∣∣h(P ∗ Nσ)− h(P̂Xn ∗ Nσ)

∣∣
≤ max

{∫ ∣∣ log r̃Xn(z)
∣∣ · |q(z)− rXn(z)|dz,∫ ∣∣ log q̃(z)
∣∣ · ∣∣q(z)− rXn(z)

∣∣dz} , (7)

where q and rXn , respectively, denote the PDFs of P ∗ Nσ
and P̂Xn ∗ Nσ , and we set q̃ , q

c1
and r̃Xn ,

rXn
c1

, for
c1 = (2πσ2)−d/2.

7The maximal coupling attains maximal probability for the event {U = V }.



To control the above integrals we require one last lemma.
Lemma 3: Let X ∼ P . For all z ∈ Rd it holds that

EP⊗n
(

log r̃Xn(z)
)2 ≤ 1

4σ4
EP ‖z −X‖4 (8a)(

log q̃(z)
)2 ≤ 1

4σ4
EP ‖z −X‖4 . (8b)

Proof: We prove (8a); the proof of (8b) is similar. The
map x 7→ (log x)2 is convex on [0, 1]. For any fixed xn, let
X̂ ∼ P̂xn . Jensen’s inequality gives

(
log r̃xn(z)

)2
=

(
logEP̂xnexp

(
−‖z−X̂‖

2

2σ2

))2

≤ EP̂xn
‖z−X̂‖4

4σ4
.

Taking an outer expectation w.r.t. Xn ∼ P⊗n yields

EP⊗n
(
log r̃Xn(z)

)2≤EP⊗nEP̂Xn
‖z − X̂‖4

4σ4
=

EP ‖z −X‖4

4σ4
.

Following (7), we bound E
∫ ∣∣log r̃Xn(z)

∣∣∣∣pU (z)−pV (z)
∣∣dz.

The bound for the other integral is identical and thus omitted.
Let fa : Rd → R be the PDF of N

(
0, 1

2a Id
)
, for a > 0

specified later. The Cauchy-Schwarz inequality implies(
EP⊗n

∫ ∣∣ log r̃Xn(z)
∣∣∣∣q(z)− rXn(z)

∣∣dz)2

(9)

≤
∫
EP⊗n

(
log r̃Xn(z)

)2
fa(z)dz ·

∫
EP⊗n

(
q(z)−rXn(z)

)2
fa(z)

dz.

By virtue of Lemma 3, we bound the first integral as∫
EP⊗n

(
log r̃Xn(z)

)2
fa(z) dz

≤
∫

E‖z −X‖4

4σ4

exp
(
− a‖z‖2

)
√
πda−d

dz

(a)

≤ 2

σ4
E‖X‖4 +

2

σ4

∫
‖z‖4

exp
(
− a‖z‖2

)
√
πda−d

dz

(b)

≤ 32K4d2

σ4
+

1

2σ4a2
d(d+ 2)

where (a) follows from the triangle inequality, and (b) uses
the K-subgaussianity of S [18, Lemma 5.5].

For the second integral, note that rXn(z) is a sum of
i.i.d. terms with expectation q(z). This implies EP⊗n

(
q(z)−

rXn(z)
)2≤ c21

n Ee
− 1
σ2
‖z−X‖2 and further gives

∫
EP⊗n

(
q(z)−rXn(z)

)2
fa(z)

dz≤ c1
n2d/2

E
1

fa(X + Z/
√

2)
,

(10)
where Z ∼ N (0, σ2Id) and X ∼ P are independent.

Setting c2 ,
(
π
a

) d
2 , we have

(
fa(z)

)−1
= c2 exp

(
a‖z‖2

)
.

Since X is K-subgaussian and Z is σ-subgaussian, X +
Z/
√

2 is (K + σ/
√

2)-subgaussian. Following (10), for any
0 < a < 1

2(K+σ/
√
2)2

, we have

c1
n2d/2

E
1

fa(X + Z/
√

2)
=

c1c2
n2d/2

E exp
(
a
∥∥X + Z/

√
2
∥∥2)

(a)

≤ c1c2
n2d/2

exp

((
K + σ/

√
2
)2
ad+

(K + σ/
√

2)4a2d

1− 2(K + σ/
√

2)2a

)
,

(11)

where (a) is by [12, Remark 2.3].
Setting a = 1

4(K+σ/
√
2)2

, we combine (7) and (9)-(11) to
obtain the result (recalling that the second integral from (7)
is bounded exactly as the first and using E[max{|X|, |Y |}] ≤
E|X|+ E|Y |). For any P ∈ F (SG)

d,K we have(
EP⊗n

∣∣h(P ∗ Nσ)− h(P̂Xn ∗ Nσ)
∣∣)2

≤
64
(
2d2K4 + d(d+ 2)(K + σ/

√
2)4
)

σ4

×
((

1√
2

+
K

σ

)
e

3
8

)d
1

n
. (12)
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