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ABSTRACT
Knowing where people look and click on visual designs can
provide clues about how the designs are perceived, and where
the most important or relevant content lies. The most im-
portant content of a visual design can be used for effective
summarization or to facilitate retrieval from a database. We
present automated models that predict the relative importance
of different elements in data visualizations and graphic designs.
Our models are neural networks trained on human clicks and
importance annotations on hundreds of designs. We collected
a new dataset of crowdsourced importance, and analyzed the
predictions of our models with respect to ground truth impor-
tance and human eye movements. We demonstrate how such
predictions of importance can be used for automatic design
retargeting and thumbnailing. User studies with hundreds of
MTurk participants validate that, with limited post-processing,
our importance-driven applications are on par with, or out-
perform, current state-of-the-art methods, including natural
image saliency. We also provide a demonstration of how our
importance predictions can be built into interactive design
tools to offer immediate feedback during the design process.

ACM Classification Keywords
H.5.1 Information Interfaces and Presentation: Multimedia
Information Systems

Author Keywords
Saliency; Computer Vision; Machine Learning; Eye Tracking;
Visualization; Graphic Design; Deep Learning; Retargeting.

INTRODUCTION
A crucial goal of any graphic design or data visualization is
to communicate the relative importance of different design
elements, so that the viewer knows where to focus attention
and how to interpret the design. In other words, the design
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Figure 1. We present two neural network models trained on crowd-
sourced importance. We trained the graphic design model using a
dataset of 1K graphic designs with GDI annotations [33]. For training
the data visualization model, we collected mouse clicks using the Bubble-
View methodology [22] on 1.4K MASSVIS data visualizations [3]. Both
networks successfully predict ground truth importance and can be used
for applications such as retargeting, thumbnailing, and interactive de-
sign tools. Warmer colors in our heatmaps indicate higher importance.

should provide an effective management of attention [39]. Un-
derstanding how viewers perceive a design could be useful
for many stages of the design process; for instance, to pro-
vide feedback [40]. Automatic understanding can help build
tools to search, retarget, and summarize information in de-
signs and visualizations. Though saliency prediction in natural
images has recently become quite effective, there is little work
in importance prediction for either graphic designs or data
visualizations.

Our online demo, video, code, data, trained models, and supplemen-
tal material are available at visimportance.csail.mit.edu.
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Figure 2. We show an interactive graphic design application using our model that lets users change and visualize the importance values of elements.
Users can move and resize elements, as well as change color, font, and opacity, and see the updated realtime importance predictions. For instance, a user
changes the color of the text to the left of the runner to increase its importance (middle panel). The rightmost panel includes a few additional changes
to the size, font, and placement of the text elements to modify their relative importance scores. A demo is available at visimportance.csail.mit.edu.

We use “importance” as a generic term to describe the per-
ceived relative weighting of design elements. Image saliency,
which has been studied extensively, is a form of importance.
However, whereas traditional notions of saliency refer to
bottom-up, pop-out effects, our notion of importance can also
depend on higher-level factors such as the semantic categories
of design elements (e.g., title text, axis text, data points).

This paper presents a new importance prediction method for
graphic designs and data visualizations. We use a state-of-
the-art deep learning architecture, and train models on two
types of crowdsourced importance data: graphic design im-
portance (GDI) annotations [33] and a dataset of BubbleView
clicks [22] we collected on data visualizations.

Our importance models take input designs in bitmap form. The
original vector data is not required. As a result, the models
are agnostic to the encoding format of the image and can be
applied to existing libraries of bitmap designs. Our models
pick up on some of the higher-level trends in ground truth
human annotations. For instance, across a diverse collection
of visualizations and designs, our models learn to localize the
titles and correctly weight the relative importance of different
design elements (Fig. 1).

We show how the predicted importance maps can be used as
a common building block for a number of different applica-
tions, including retargeting and thumbnailing. Our predictions
become inputs to cropping and seam carving with almost no
additional post-processing. Despite the simplicity of the ap-
proach, our retargeting and thumbnailing results are on par
with, or outperform, related methods, as validated by a set of
user studies launched on Amazon’s Mechanical Turk (MTurk).
Moreover, an advantage of the fast test-time performance of
neural networks makes it feasible for our predictions to be
integrated into interactive design tools (Fig. 2). With another
set of user studies, we validate that our model generalizes
to fine-grained design variations and correctly predicts how
importance is affected by changes in element size and location
on a design.

Contributions: We present two neural network models for
predicting importance: in graphic designs and data visualiza-
tions. This is the first time importance prediction is introduced
for data visualizations. For this purpose, we collected a dataset
of BubbleView clicks on 1,411 data visualizations. We also
show that BubbleView clicks are related to explicit importance
annotations [33] on graphic designs. We collected importance
annotations for 264 graphic designs with fine-grained varia-
tions in the spatial arrangement and sizes of design elements.
We demonstrate how our importance predictions can be used
for retargeting and thumbnailing, and include user studies to
validate result quality. Finally, we provide a working interac-
tive demo.

RELATED WORK
Designers and researchers have long studied eye movements
as a clue to understanding the perception of interfaces [9, 16].
There have also been several recent studies of eye movements
and the perception of designs [2, 12]. However, measuring
eye movements is an expensive and time-consuming process,
and is rarely feasible for practical applications.

Few researchers have attempted to automatically predict im-
portance in graphic designs. The DesignEye system [40] uses
hand-crafted saliency methods, demonstrating that saliency
methods can provide valuable feedback in the context of a de-
sign application. O’Donovan et al. [33] gather crowdsourced
importance annotations, where participants are asked to mask
out the most important design regions. They train a predic-
tor from these annotations. However, their method requires
knowledge of the location of design elements to run on a new
design. Haass et al. [11] test three natural image saliency
models on the MASSVIS data visualizations [3], conclud-
ing that, across most saliency metrics, these models perform
significantly worse on visualizations than on natural images.
Several models also exist for web page saliency. However,
most methods use programmatic elements (e.g., the DOM)
as input to saliency estimation rather than allowing bitmap
images as input [4, 47]. Pang et al. predict the order in which
people will look at components on a webpage [36] by making
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Figure 3. Left: Comparison of eye movements collected in a controlled lab setting [2], and clicks that we crowdsourced using the BubbleView interface
[22, 23]. Right: Comparison of importance annotations from the GDI dataset, and clicks that we crowdsourced using the BubbleView interface. These
examples were chosen to demonstrate some of the similarities and differences between the modalities. For instance, compared to eye fixations, clicks
are sometimes more concentrated around text. Compared to the GDI annotations, clicks do not assign uniform importance to whole design elements.
Despite these differences, BubbleView data leads to similar importance rankings of visual elements (Evaluation).

use of the DOM and manual segmentations. Other works use
the web page image itself as input to predict saliency [43, 45].
Most of these methods use older saliency architectures based
on hand-crafted features that are inferior to the state-of-the-art
neural networks we use in our approach. Our work also re-
lates to the general program of applying computer vision and
machine learning in the service of graphic design tools [27,
28, 42].

Predicting eye movements for natural images is a classic topic
in human and computer vision. The earliest natural image
saliency methods relied on hand-coded features (e.g., [15]).
Recently, deep learning methods, trained on large datasets,
have produced a substantial jump in performance on standard
saliency benchmarks [7, 8, 14, 29, 35, 49]. However, these
methods have been developed exclusively for analyzing natural
images, and are not trained or tested on graphic designs. Our
work is the first to apply neural network importance predictors
to both graphic designs and data visualizations.

DATA COLLECTION
To train our models we collected BubbleView data [22, 23] for
data visualizations, and used the Graphic Design Importance
(GDI) dataset by O’Donovan et al. [33] for graphic designs.
We compared different measurements of importance: Bub-
bleView clicks to eye movements on data visualizations, and
BubbleView clicks to GDI annotations on graphic designs.

Ground truth importance for data visualizations
Large datasets are one of the prerequisites to train neural net-
work models. Unfortunately, collecting human eye movements
for even hundreds of images is extremely expensive and time-
consuming. Instead, we use the BubbleView interface by Kim
et al. [22, 23] to record human “attention” that is correlated
with eye fixations. Unlike eye tracking, which requires expen-
sive equipment and a controlled lab study, BubbleView can be
used to to collect large datasets with online crowdsourcing.

In BubbleView, a participant is shown a blurry image and can
click on different parts of the image to reveal small regions,
or bubbles, of the image at full resolution. Initial experiments
by Kim et al. [23] showed a high correlation between eye
fixations collected in the lab and crowdsourced BubbleView
click data. In this paper, we confirm this relationship.

Concurrent work in the computer vision community has ap-
plied a similar methodology to natural images. SALICON [18]
is a crowdsourced dataset of mouse movements on natural im-
ages that has been shown to approximate free-viewing eye
fixations. Current state-of-the-art models on saliency bench-
marks have all been trained on the SALICON data [8, 14,
29, 35, 49]. BubbleView was concurrently developed [23] to
approximate eye fixations on data visualizations with a descrip-
tion task. Some advantages of BubbleView over SALICON
are discussed in [22].

Using Amazon’s Mechanical Turk (MTurk), we collected Bub-
bleView data on a set of 1,411 data visualizations from the
MASSVIS dataset [3], spanning a diverse collection of sources
(news media, government publications, etc.) and encoding
types (bar graphs, treemaps, node-link diagrams, etc.). We
manually filtered out visualizations containing illegible and
non-English text, as well as scientific and technical visualiza-
tions containing too little context. Images were scaled to have
a maximum dimension of 600 pixels to a side while maintain-
ing their aspect-ratios to fit inside the MTurk task window. We
blurred the visualizations using a Gaussian filter with a radius
of 40 pixels and used a bubble size with a radius of 32 pixels
as in [22]. MTurk participants were additionally required to
provide descriptions for the visualizations to ensure that they
meaningfully explored each image. Each visualization was
shown to an average of 15 participants. We aggregated the
clicks of all participants on each visualization and blurred the
click locations with a Gaussian filter with a radius of 32 pixels,
to match the format of the eye movement data.



We used the MASSVIS eye movement data for testing our
importance predictions. Fixation maps were created by aggre-
gating eye fixation locations of an average of 16 participants
viewing each visualization for 10 seconds. Fixation locations
were Gaussian filtered with a blur radius of 32 pixels. Fig. 3a
includes a comparison of the BubbleView click maps to eye
fixation maps from the MASSVIS dataset.

Ground truth importance for graphic designs
We used the Graphic Design Importance (GDI) dataset [33]
which comes with importance annotations for 1,078 graphic
designs from Flickr. Thirty-five MTurk participants were
asked to label important regions in a design using binary
masks, and their annotations were averaged. Participants were
not given any instruction as to the meaning of “importance.”
To determine how BubbleView clicks relate to explicit im-
portance annotations, we ran the BubbleView study on these
graphic designs and collected data from an average of 15 par-
ticipants per design. Fig. 3b shows comparisons between the
GDI annotations and BubbleView click maps. In both data
similar elements and regions of designs emerge as important.

Each representation has potential advantages. The GDI an-
notations assign a more uniform importance score to whole
elements. This can serve as a soft segmentation to facilitate
design applications like retargeting. BubbleView maps may
be more appropriate for directly modeling human attention.

MODELS FOR PREDICTING IMPORTANCE
Given a graphic design or data visualization, our task is to
predict the importance of the content at each pixel location.
We assume the input design/visualization is a bitmap image.
The output importance prediction at each pixel i is Pi ∈ [0,1],
where larger values indicate higher importance. We approach
this problem using deep learning, which has lead to many
recent breakthroughs on a variety of image processing tasks in
the computer vision community [25, 38], including the closely
related task of saliency modeling.

Similar to some top-performing saliency models for natural
images [14, 26], our architecture is based on fully convolu-
tional networks (FCNs) [32]. FCNs are specified by a directed
acyclic graph of linear (e.g., convolution) and nonlinear (e.g.,
max pool, ReLU) operations over the pixel grid, and a set of
parameters for the operations. The network parameters are
optimized over a loss function given a labeled training dataset.
We refer the reader to Long et al. [32] for more details.

We predict real-valued importance using a different training
loss function from the original FCN work, which predicted
discrete object classes. Given ground truth importances at
each pixel i, Qi ∈ [0,1], we optimize the sigmoid cross entropy
loss for FCN model parameters Θ over all pixels i = 1, . . . ,N:

L(Θ) =− 1
N

N

∑
i=1

(Qi logPi +(1−Qi) log(1−Pi)) (1)

where Pi = σ ( fi(Θ)) is the output prediction of the FCN fi(Θ)

composed with the sigmoid function σ(x) = (1+ exp(−x))−1.
Note that the same loss is used for binary classification, where
Qi ∈ {0,1}. Here, we extend it to real-valued Qi ∈ [0,1].

Figure 4. We increase the precision of our FCN-32s predictions by com-
bining output from the final layer of the network with outputs from
lower levels. The resulting predictions, FCN-16s and FCN-8s, capture
finer details. We found FCN-16s sufficient for our model for graphic de-
signs, as FCN-8s did not add a performance boost. For our model for
data visualizations, we found no performance gains beyond FCN-32s.

We use a different loss than other saliency models based on
neural networks that optimize Euclidean [26, 34], weighted
Euclidean [8], or binary classification losses [29, 49]. Our loss
is better suited to [0,1] values, and is equivalent to optimizing
the KL loss commonly used for saliency evaluation.

We trained separate networks for data visualizations and for
graphic designs. For the data visualizations, we split the 1.4K
MASSVIS images for which we collected BubbleView click
data into 1,209 training images and 202 test images. For the
test set we chose MASSVIS images for which eye movements
are available [2]. For the graphic designs, we split the 1,078
GDI images into 862 training images and 216 test images
(80-20% split). We used the GDI annotations [33] for training.
We found that training on the GDI annotations rather than the
BubbleView clicks on graphic designs facilitated the design
applications better, since the GDI annotations were better
aligned to element boundaries.

Model details: We converted an Oxford VGG-16 convolu-
tional neural network [44] to an FCN-32s model via network
surgery using the implementation in Caffe [17]. The model’s
predictions are 1/32 of the input image resolution, due to
successive pooling layers. To increase the resolution of the
predictions and capture fine details, we followed the procedure
in Long et al. [32] to add skip connections from earlier layers
to form FCN-16s and FCN-8s models, that are respectively,
1/16 and 1/8 of the input image resolution. We found that the
FCN-16s (with a single skip connection from pool4) improved
the graphic design importance maps relative to the FCN-32s
model (Fig. 4), but that adding an additional skip connection
from pool3 (FCN-8s) performed similarly. We found that skip



connections lead to no gains for the data visualization impor-
tance. For our experiments we used the trained FCN-16s for
graphic designs and the FCN-32s for data visualizations.

Since we have limited training data we initialized the network
parameters with the pre-trained FCN32s model for semantic
segmentation in natural images [32], and fine-tuned it for our
task. The convolutional layers at the end of the network and the
skip connections were randomly initialized. Training details
are provided in the Supplemental Material.

We opted for a smaller architecture with fewer parameters than
some other neural network saliency models for natural images.
This makes our model more effective for our datasets, which
are currently an order-of-magnitude smaller than the natural
image saliency datasets.

EVALUATION OF MODEL PREDICTIONS
We compare the performance of our two importance models
to ground truth importance on each dataset. For data visual-
izations, we compare predicted importance maps to bubble
clicks gathered using BubbleView, and to eye fixations from
the MASSVIS dataset. For graphic designs, we compare pre-
dicted importance maps to GDI annotations.

Evaluation criteria
We evaluate the similarity of our predicted and ground truth im-
portance maps using two metrics commonly used for saliency
evaluation [6]: Kullback-Leibler divergence (KL) and cross
correlation (CC). CC measures how correlated the pixel-wise
values are in the two maps, and treats both false positives and
false negatives equally. KL, however, measures how well one
distribution predicts another. Our importance maps can be
interpreted as providing, for each pixel, the probability that
the pixel would be considered important by ground truth ob-
servers. KL highly penalizes missed predictions, so a sparse
map that fails to predict a ground truth important location will
receive a large KL value (poor score). Given the ground truth
importance map Q and the predicted importance map P, KL is
computed as:

KL(P,Q) =
N

∑
i=1

(Qi logQi−Qi logPi) = L(P,Q)−H(Q), (2)

where H(Q) =−∑
N
i=1 (Qi logQi) is the entropy of the ground

truth importance map and L(P,Q) is the cross entropy of the
prediction and ground truth. Note the similarity to the loss
in Equation (1), which is over a Bernoulli random variable;
here the random variable is instantiated. A large KL diver-
gence indicates a high dissimilarity between maps, whereas
KL(P,Q) = 0 indicates two maps are identical. KL is in prin-
ciple unbounded, so to provide a feasible range, we include
chance baselines in our experiments. CC is computed as:

CC(P,Q) =
1
N ∑

N
i=1 (Pi− P̄)

(
Qi− Q̄

)√
1
N ∑

N
i=1 (Pi− P̄)2

√
1
N ∑

N
i=1
(
Qi− Q̄

)2
, (3)

where P̄ = 1
N ∑

N
i=1 Pi, and respectively for Q. CC ranges from

-1 to 1, where 1 indicates maximal correlation between two
maps P and Q. For further intuition about how KL and CC

Model CC score ↑ KL score ↓
Chance 0.00 0.75

Judd [21] 0.11 0.49
DeepGaze [29] 0.57 3.48

Our model 0.69 0.33
Table 1. How well can our importance model predict the BubbleView
click maps? We add comparisons to two other top-performing saliency
models and a chance baseline. Scores are averaged over 202 test data
visualizations. A higher CC score and lower KL score are better.

Model CC score ↑ KL score ↓
Chance 0.00 1.08

Judd [21] 0.19 0.74
DeepGaze [29] 0.53 3.10

Our model 0.54 0.63
Bubble clicks 0.79 0.28

Table 2. How well can human eye fixations be predicted? We mea-
sured the similarity between human fixation maps and various predic-
tors. Scores are averaged over 202 test data visualizations. A good
model achieves a high CC score and low KL score. Our neural network
model was trained on BubbleView click data, so that is the modality it
can predict best. Nevertheless, its predictions are also representative of
eye fixation data. As an upper bound on this prediction performance, we
consider how well the BubbleView click data predicts eye fixations, and
as a lower bound, how well chance predicts eye fixations.

metrics score similarity, we provide scores above each im-
age in Fig. 5, and additional examples in the Supplemental
Material, showing high- and low-scoring predictions.

Prediction performance on data visualizations
We include predictions from our importance model in Fig. 5.
Notice how we correctly predict important regions in the
ground truth corresponding to titles, captions, and legends. We
quantitatively evaluate our approach on our collected dataset
of BubbleView clicks. We report CC and KL scores averaged
over our dataset of 202 test images in Table 1.

We compare against the following baselines: chance, Judd
saliency [21], and DeepGaze [29], a top neural network
saliency model trained on the SALICON dataset [18] of mouse
movements on natural images. The chance baseline, used in
saliency benchmarks [6, 20], is computed by uniformly sam-
pling a real value between 0 and 1 at each image pixel. Our
approach out-performs all baselines. KL is highly sensitive to
false negatives and drastically penalizes sparser models [6]1,
explaining the high KL values for DeepGaze in Table 1. Post-
processing or directly optimizing models for specific metrics
can yield more favorable performances [30].

How well does our neural network model, trained on clicks,
predict eye fixations? We find that the predicted importance
is representative of eye fixation patterns as well (Table 2),
although the difference in scores indicates that our model
might be learning from patterns in the click data that are
different from fixations.

1Because of the sensitivity of KL to output regularization, we advise
against using it (solely) to compare models [6].



Figure 5. Importance predictions for data visualizations, compared to
ground truth BubbleView clicks and sorted by performance. Our model
is good at localizing visualization titles (the element clicked on, and
gazed at, most by human participants) as well as picking up the extreme
points on graphs (e.g., top and bottom entries). We include a failure case
where our model overestimates the importance of the visual map regions.
More examples in the Supplemental Material.

Which elements are most important? For our analysis, we
used the element segmentations available for the visualizations
in the MASSVIS dataset [2]. We overlapped these segmen-
tations with normalized maps of eye fixations, clicks, and
predicted importance. We computed the max score of the
map within each element to get an importance ranking across
elements2. Text elements, such as titles and captions, were
the most looked at3, and clicked on, elements, and were also
predicted most important by our model (Fig. 6). Even though
our model was trained on BubbleView clicks, the predicted im-
portance remains representative of eye fixation patterns. With
regards to differences, our model overpredicts the importance
of titles. Our model learns to localize visualization titles very
well (Fig. 5).

Prediction performance on graphic designs
The closest approach to ours is the work of O’Donovan et
al. [33] who computed an importance model for the GDI
dataset. We re-ran their baseline models on the train-test split
used for our model (Table 3). To replicate their evaluation, we
2A similar analysis was used to rank the relative importance of objects
in natural images [7, 18].
3Among the text and other content in a visualization, titles tend to be
best remembered by human observers [2].

Figure 6. Relative importance scores of different elements in a data vi-
sualization assigned by eye fixation maps, BubbleView click maps, and
model predictions. Scores were computed by overlapping element seg-
mentations with normalized importance maps, and taking the max of
the map within each element as its score. The elements that received the
most clicks also tended to be highly fixated during viewing (Spearman’s
rs = .96, p < .001). Text (titles, labels, paragraphs) received a lot of at-
tention. Our neural network model correctly predicted the relative im-
portance of these regions relative to eye movements (rs = .96, p < .001).

report root-mean-square error (RMSE) and the R2 coefficient,
where R2 = 1 indicates a perfect predictor, and R2 = 0 is the
baseline of predicting the mean importance value (details in
Supplemental Material). The full O’Donovan model (OD-
Full) requires manual annotations of text, face, and person
regions, and would not be practical in an automatic setting.
For a fair comparison, we evaluate our automatic predicted
importance model (Ours) against the automatic portion of the
O’Donovan model, which does not rely on human annotations
(OD-Automatic). We find that our model outperforms OD-
Automatic. Our model is also 100X faster, since it requires a
single feed-forward pass through the network (∼0.1 s/image
on a GPU). O’Donovan’s method requires separate compu-
tations of multiple CPU-based saliency models and image
features (∼10 s/image at the most efficient setting).

In Table 3, we include the performance of Ours+OD, where
we added our importance predictions as an additional feature
during training of the O’Donovan model, and re-estimated
the optimal weights for combining all the features. Ours+OD
improves upon OD-Full indicating that our importance pre-
dictions are not fully explainable by the existing features
(e.g., text or natural image saliency). This full model is in-
cluded for demonstration purposes only, and is not practical
for interactive applications.

We also annotated elements in each of the test graphic de-
signs using bounding boxes, and computed the maximum
importance value in each bounding box as the element’s score
(Fig. 7). We obtain an average Spearman rank correlation of
0.56 between the predicted and ground truth scores assigned
to the graphic design elements.

Some examples of predictions are included in Fig. 8. Our
predictions capture important general trends, such as larger



Model RMSE ↓ R2 ↑
Saliency .229 .462

OD-Automatic .212 .539
Ours .203 .576

OD-Full .155 .754
Ours+OD .150 .769

Table 3. A comparison of our predicted importance model (Ours)
with the model of O’Donovan et al. [33]. Lower RMSE and higher
R2 are better. Our model outperforms the fully automatic O’Donovan
variant (OD-Automatic). Another fully automatic model from [33] is
Saliency, a learned combination of 4 saliency models: Itti&Koch [15],
Hou&Zhang [13], Judd et al. [21], and Goferman et al. [10]. We also
report the results of the semi-automatic OD-Full model, which includes
manual annotations of text, face, and person regions. When we combine
our approach with OD-Full (Ours+OD), we can approve upon the OD
model. More comparisons are included in the Supplemental Material.

Figure 7. An example comparison between the predicted importance of
design elements and the ground truth GDI annotations. The heatmaps
are overlapped with element bounding boxes and the maximum score
per box is used as the element’s importance score (between 0 and 1).

and more central text and visual elements being more impor-
tant. However, text regions are not always well segmented
(predicted importance is not uniform over a text element), and
text written in unusual fonts is not always detected. Such prob-
lems could be ameliorated through training on larger datasets.
Harder cases are directly comparing the importance of a vi-
sual and text, which can depend on the semantics of the text
itself (how informative it is) and the quality of the visual (how
unexpected, aesthetic, etc.).

Prediction performance on fine-grained design variations
To check for feasibility of an interactive application we per-
form a more fine-grained test. We want the importance rank-
ings of elements to be adjusted accurately when the user makes
changes to their current design. For example, if the user makes
a text box larger, then its importance should not go down in
the ranking. Our predicted importance model has not been
explicitly trained on systematic design variations, so we test if
it can generalize to such a setting.

We used the Design Improvement Results dataset [33] contain-
ing 11 designs with an average of 35 variants. Across variants,
the elements are preserved but the location and scale of the
elements varies. We repeated the MTurk importance label-
ing task of O’Donovan et al. [33] on a subset of 264 design
variants, recruiting an average of 19 participants to annotate
the most important regions on each design. We averaged all
participant annotations per design to obtain ground truth im-
portance heatmaps. We segmented each design into elements

Figure 8. Importance predictions for graphic designs, sorted by perfor-
mance. Performance is measured as the Spearman rank correlation (R)
between the importance scores assigned to design elements by ground
truth (GDI annotations) and predicted importance maps. A score of 1
indicates a perfect rank correlation; a negative score indicates the ele-
ment rankings are reversed. The predicted importance maps distribute
importance between text and visual features. We include a failure case
where the importance of the man in the design is underestimated. More
examples in the Supplemental Material.

and used the ground truth and predicted importance heatmaps
to assign importance scores to all the elements, calculating the
maximum heatmap value falling within each segment. The
predicted and ground truth importance scores assigned to these
elements achieved an average Spearman’s correlation rs = .53.
As Fig. 9 shows, even though we make some absolute errors,
we successfully account for the impact of design changes such
as the location and size of various elements.

APPLICATIONS
We now demonstrate how automatic importance prediction
can enable diverse applications. An importance map can pro-
vide a common building block for different summarization
and retrieval tasks, including retargeting, thumbnailing, and
interactive design tools. These prototypes are meant as proofs-
of-concept, showing that our importance prediction alone can
give good results with almost no additional post-processing.

Retargeting
The retargeting task is to take a graphic design as input, and to
produce a new version of that design with specific dimensions.



Figure 9. Sample input designs, and how the relative importance of the different design elements changes as they are moved, resized, and otherwise
modified. For instance, compared to in (a), the event date stands out more and gains importance when it occurs at the bottom of the poster, in large
font, on a contrasting background (b). Similarly, when the most important text of the design in (c) is moved to the upper righthand corner where it is
not surrounded by other text, it gains prominence (d). Our automatic model makes similar predictions of the relative importance of design elements as
ground truth human annotations.

Retargeting is a common task for modern designers, who
must work with many different output dimensions. There
is a substantial amount of work on automatic retargeting for
natural images, e.g., [1, 41]. Several of these methods have
shown that saliency or gaze provide good cues for retargeting,
to avoid cropping out image content that people are likely to
pay most attention to, such as faces in photographs.

The only previous work on retargeting graphic designs is by
O’Donovan et al. [33]. They assumed knowledge of the under-
lying vector representation of the design and used an expensive
optimization with many different energy terms. The method
we propose uses bitmap data as input, and is much simpler,
without requiring any manual annotations of the input image.

Importance-based retargeting for graphic designs should pre-
serve the most important regions of a design, such as the title
and key visual elements. Given a graphic design bitmap as in-
put and specific dimensions, we use the predicted importance
map to automatically select a crop of the image with highest
importance (Fig. 10). Alternative variants of retargeting (e.g.,
seam carving) are discussed in the Supplemental Material.

Evaluation: We ran MTurk experiments where 96 partici-
pants were presented with a design and 6 retargeted variants,
and were asked to score each variant using a 5-point Likert
scale with 1 = very poor and 5 = very good (Fig. 11). Each
participant completed this task for 12 designs: 10 randomly se-
lected from a collection of 216 designs, and another 2 designs
used for quality control. We used this task to compare crops re-
targeted using predicted importance to crops retargeted using
ground truth GDI annotations, Judd saliency [21], DeepGaze
saliency [29], and an edge energy map. We extracted a crop
with an aspect ratio of 1:4 from a design using the highest-

valued region, as assigned by each of the saliency/importance
maps. As a baseline, we selected a random crop location.

After an analysis of variance showed a significant effect of
retargeting method on score, we performed Bonferonni paired
t-tests on the scores of different methods. Across all 216 de-
signs, crops obtained using ground truth GDI annotations had
the highest score (Mean: 3.19), followed by DeepGaze (Mean:
2.95) and predicted importance (Mean: 2.92). However, the
difference between the latter pair of models was not statisti-
cally significant. Edge energy maps (Mean: 2.66) were worse,
but not significantly; while Judd saliency (Mean: 2.47) and the
random crop baseline (Mean: 2.23) were significantly worse
in pairwise comparisons with all the other methods (p < .01
for all pairs). Results of additional experimental variants are
reported in the Supplemental Material.

Our predicted importance outperforms Judd saliency, a natural
saliency model commonly used for comparison [31, 33]. Judd
saliency has no notion of text. Predicted importance, trained
on less than 1K graphic design images, performs on par with
DeepGaze, the currently top-performing neural network-based
saliency model [5] which has been trained on 10K natural
images, including images with text. Both significantly out-
perform the edge energy map, which is a common baseline
for retargeting. These results show the potential use case of
predicted importance for a retargeting task, even without any
post-processing steps.

Thumbnailing
Thumbnailing is similar to retargeting, but with a different
goal. It aims to provide a visual summary for an image to
make it easier to find relevant images in a large collection
[19, 46]. Unlike previous methods, our approach operates



directly on a bitmap input, rather than requiring a specialized
representation as input. For this example our domain is data
visualizations rather than graphic designs.

Given a data visualization and an automatically-computed im-
portance map as input, we generate a thumbnail by carving out
the less important regions of the image. The importance map
is used as an energy function, whereby we iteratively remove
image regions with least energy first. Rows and columns of
pixels are removed until the desired proportions are achieved,
in this case a square thumbnail. This is similar to seam carv-
ing [1, 41], but using straight seams, found to work better in
our setting. The boundaries of the remaining elements are
blurred using the importance map as an alpha-mask with a
fade to white. Qualitatively, the resulting thumbnails consist of
titles and other main supporting text, as well as data extremes
(from the top and bottom of a table, for instance, or from the
left and right sides of a plot).

Evaluation: We designed a task intended to imitate a search
through a database of visualizations. MTurk participants were
given a description and a grid of 60 thumbnails, and were
instructed to find the visualization that best matches the de-
scription. We ran two versions of the study: with the original
visualizations resized to thumbnails (Fig. 12a), and another
with our automatically-computed importance-based thumb-
nails (Fig. 12b). We measured how many clicks it took for
participants to find the visualization corresponding to the de-
scription in each version.

A total of 400 participants were recruited for our study. After
filtering, we compared the performance of 200 participants
who performed the study with resized visualizations and 169
participants who saw the importance-based thumbnails.

Each MTurk assignment, containing a single search task as-
signed to a single participant, was treated as a repeated ob-
servation. We ran an unpaired two-sample t-test to compare
the task performance of both groups. On average, partici-
pants found the visualization corresponding to the description
in fewer clicks using the importance-based thumbnails (1.96
clicks) versus using the resized visualizations (3.25 clicks,
t(367) = 5.10, p < .001). Our importance-based thumbnails
facilitated speedier retrieval, indicating that the thumbnails
captured visualization content relevant for retrieval.

Interactive applications
An attractive aspect of neural network models is their fast run-
time performance (Table 4). As a prototype, we integrated our
importance prediction with a simple design layout tool that
allows users to move and resize elements, as well as change
color, text font, and opacity (Fig. 2). With each change in the
design, an importance map is recomputed automatically to
provide immediate feedback to the user. The accompanying
video and demo (visimportance.csail.mit.edu) demonstrate
the interactive capabilities of our predictions. Our experi-
ments in the Evaluation section provide initial evidence that
our model can generalize to the kind of fine-grained design ma-
nipulations, like the resizing and relocation of design elements,
that would be common in an interactive setting. Determining
how best to use importance prediction to provide feedback to

users is an interesting problem for future work. For example,
importance prediction could help in formulating automatic
suggestions for novice users to improve their designs.

Timing: On a Titan-X GPU, our model computes the impor-
tance map for a design in the GDI dataset (600×450 pixels)
in 100 ms. Table 4 provides some timing information for our
model on differently-sized images.

Image size (pixels/side) 300 600 900 1200 1500

Avg. compute time (ms) 46 118 219 367 562
Table 4. Time (in milliseconds) taken by our model to compute an im-
portance map for differently-sized images, averaged over 100 trials.

LIMITATIONS
Our neural network model is only as good as the training data
we provide it. In the case of data visualizations, there is a
strong bias, both by the model and the ground truth human
data, to focus on the text regions. This behavior might not gen-
eralize to other types of visualizations and tasks. Click data,
gathered via the BubbleView interface, is not uniform over
elements, unlike explicit bounding box annotations (i.e., as in
the GDI dataset [33]). While this might be a better approxima-
tion to natural viewing, non-uniform importance across design
elements might cause side-effects for downstream applications
like thumbnailing, by cutting off parts of elements or text.

CONCLUSIONS
We curated hundreds of examples of graphic designs and data
visualizations, annotated with importance, to train fully convo-
lutional neural network models to predict importance maps for
novel designs. We showed that our computational predictions
approximate ground truth human data enough to be used for
a number of automatic applications. Our importance maps
act as a common underlying representation for retargeting of
graphic designs, thumbnailing of data visualizations, and in a
prototype interactive design application.

This paper presents the first neural network model for pre-
dicting saliency or importance in graphic designs and data
visualizations, capable of generalizing to a wide range of de-
sign formats. Moreover, the fast test-time performance of
our model makes it feasible for the predictions to be used
in interactive design tools. Our approach is not limited to
graphic designs and data visualizations. The methodology and
models can easily be adapted to other visual domains, such as
websites [22]. As better webcam-based eyetracking methods
become available (e.g., [24, 37, 48]) possibilities also open
up for directly training our model from eye movement data.
Future work can also explore the use of importance predic-
tions to offer more targeted design feedback and to provide
automated suggestions to a user.
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Figure 10. (a) Input designs, (b) our predicted importance maps, and (c) automatic retargeting results using the predicted importance maps to crop
out design regions with highest overall importance. This is compared to: (d) edge-based retargeting, where gradient magnitudes are used as the energy
map, and (e) Judd saliency, a commonly-used natural image saliency model. Additional comparisons are provided in the Supplemental Material.

Figure 11. MTurk interface for evaluating retargeting results of predicted importance compared to other baselines. More experimental details are
provided in the Supplemental Material.

(a) (b)
Figure 12. Given a set of data visualizations (a), we use our importance maps to automatically generate thumbnails (b). The thumbnails facilitate visual
search through a database of visualizations by summarizing the most important content. More examples can be found in the Supplemental Material.
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