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Abstract— The polytope containment problem is deciding
whether a polytope is a contained within another polytope.
The complexity heavily depends on how the polytopes are
represented. While there exists efficient necessary and sufficient
conditions for polytope containment when their hyperplanes
are available (H-polytopes), the case when polytopes are rep-
resented by affine transformations of H-polytopes, which we
refer to as AH-polytopes, is known to be co-NP-complete. In
this paper, we provide a sufficient condition for AH-polytope
in AH-polytope problem that can be cast as a linear set of
constraints with size that grows linearly with the number of
hyperplanes of each polytope. These efficient encodings enable
us to designate certain components of polytopes as decision
variables, and incorporate them into a convex optimization
problem. We present the usefulness of our results on ap-
plications to the zonotope containment problem, computing
polytopic Hausdorff distances, finding inner approximations to
orthogonal projections of polytopes, and verification and control
of hybrid systems. Illustrative examples are included.

I. INTRODUCTION

We are interested in establishing the conditions for the
following relation to hold:

X ⊆ Y, (1)

where X,Y ⊂ Rn are polytopes. We call (1) the poly-
tope containment problem, which is a subfamily of set
containment problems (SCPs) [1], [2]. We refer to X in
(1) as the inbody, and Y as the circumbody. The decision
problem (1) appears in applications such as computational
geometry [3], machine learning [4], and control theory [5].
For example, the inbody can represent the reachable states
of a dynamical system, while the circumbody is the target
set of states. In this context, the reachability verification
problem becomes a polytope containment problem. When
the inbody is characterized by the parameters of a controller,
synthesizing the controller requires finding the parameters
such that (1) holds. The focus of this paper is not only
providing a Boolean answer to (1), but finding an efficient
linear encoding, so (1) can be added to the constraints of a
(potentially mixed-integer) linear/quadratic program.

The complexity of writing (1) as linear constraints heav-
ily depends on how the inbody and the circumbody are
represented. In general, there are two fundamental ways
to represent a polytope: representation by hyperplanes (H-
polytope), or representation by vertices (V-polytope). H-
polytopes are almost always preferred in high dimensions as
the number of vertices is often very large. For example, a box
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in n dimensions has 2n hyperplanes, but 2n vertices. There
exist several algorithms for conversions between H-polytopes
and V-polytopes [6], [7], but their worst-case complexities
are exponential in the number of dimensions, making it
often impractical to navigate between H-polytopes and V-
polytopes beyond 2 or 3 dimensions. Therefore, we do not
focus on V-polytopes in this paper.

A. Problem Statement

We consider the following generic form of (1), where

X = x̄+XPx,Y = ȳ + Y Py, (2)

where x̄, ȳ ∈ Rn, X ∈ Rn×nx , Y ∈ Rn×ny , and Px ⊂
Rnx ,Py ⊂ Rny are given H-polytopes. In other words, X
and Y are affine transformations of H-polytopes, which we
refer to as AH-polytopes. AH-polytopes are very expressive.
For example, one can write Minkowski sums and convex
hulls of multiple H-polytopes as an AH-polytope. Zonotopes,
which are widely used in estimation and control theory [8],
[9], are affine transformations of boxes. While one can use a
quantifier elimination method, such as the Fourier-Motzkin
elimination method [10], to find the H-polytope form of
an AH-polytope, it may lead to an exponential number of
hyperplanes. We desire to cast (1) using (2) without explicitly
computing H-polytope forms of X or Y.

B. Organization and Main Contributions

In Section II, we provide the necessary notation and
formalize the terms used in this paper. The main contritions
of this paper are:
• we provide a set of linear constraints as sufficient con-

ditions such that (1) holds for (2) (Section III). We show
that necessity holds when Y in (2) has a left-inverse.
We present interpretations for the conservativeness.

• we show applications of our results on zonotope con-
tainment problems, computing Hausdorff distance be-
tween polytopes, inner approximation of orthogonal
projections, and computing polytopic trajectories for
piecewise affine systems. We empirically find that the
associated conservativeness is very small for zonotope
containment problems. (Section IV)

Software: The scripts of our results are available in a
python package called pypolycontain 1. It consists of
a library of practically useful versions of (1) encoded as
(mixed-integer) linear constraints so they can be added to an
optimization problem using Gurobi [11].

1Available in github.com/sadraddini/pypolycontain. The
extended version of this paper is available at https://arxiv.org/
abs/1903.05214.



C. Related Work

Containment problems for convex sets are closely related
to their dual characterization, support functions, and polar
sets [12], [13], and S-lemma (or S-procedure) [14], which
is often used for implications of quadratic inequalities.
Deciding if a H-polytope is contained within a V-polytope
is co-NP-complete [1], while H-polytope inside H-polytope,
V-polytope inside H-polytope, and V-polytope inside V-
polytope can be decided in polynomial time. The authors
in [15] extended the work in [1] for containment problems
of spectrahedra - the feasible set of semidefinite programs.
Tiwary [16] showed that the deciding whether an H-polytope
is equivalent to the convex hull or the Minkowski sum of
two H-polytopes is NP-complete. The proof relied on the
fact that such a decision problem must involve vertex/facet
enumeration. More recently, Kellner [17] proved that poly-
tope containment problem for projections of H-polytopes
is co-NP-complete, and cast (2) as a bilinear optimization
problem, which can be solved using sequential semidefinite
programs. This paper provides linear sufficient conditions
for this problem. Various version of (2) have been studied to
prove correctness of controllers in design of robust control
invariant sets and tube model predictive controllers [18],
[19]. The authors in [5] proposed a sufficient condition for
a special case of zonotope containment problems, which
were used to compute backward reachable sets of dynamical
systems. For this special case, we show that necessary and
sufficient conditions actually exist.

II. PRELIMINARIES

The set of real and non-negative real numbers are de-
noted by R and R+, respectively. Given matrices A1, A2

of appropriate dimensions, we use [A1, A2], (A1, A2), and
blk(A1, A2) to denote the matrices obtained by stacking
A1 and A2 vertically, horizontally, and block-diagonally,
respectively. Given S ⊂ Rn and A ∈ RnA×n, we interpret
AS as {As|s ∈ S}. Given two sets S1,S2 ⊂ Rn, their
Minkowski sum is denoted by S1 ⊕ S2 = {s1 + s2|s1 ∈
S1, s2 ∈ S2}. Given s ∈ Rn, s+ S is interpreted as {s}⊕ S.

Given matrix A, we use range(A) and ker(A) to denote
its column-space and null-space, and A′ and A† to denote
its transpose and Moore-Penrose inverse, respectively. The
matrix |A| is the matrix obtained by taking the absolute
values of A, element-wise. The infinity norm of matrix A
is denoted by ‖A‖∞, which is the maximum absolute row
sum. The identity matrix and the vector of all ones are
denoted by I and 1, where the dimension is unambiguously
interpretable from the context. All matrix inequality relations
are interpreted element-wise in this paper.

An H-polyhedron [20] P ⊂ Rn is the intersection of
a finite number of closed half-spaces in the form P =
{x ∈ Rn|Hx ≤ h}, where H ∈ RnH×n, h ∈ RnH define
the hyperplanes. A bounded H-polyhedron is called a H-
polytope. An AH-polytope X ⊂ Rn is a polytope that is
given as an affine transformation of an H-polytope P ⊂ Rm,
X = x̄+XP, where X ∈ Rn×m, x̄ ∈ Rn. The n-dimensional
unit box, or the unit ball corresponding to L∞ norm, denoted

by Bn, is defined as Bn := {x ∈ Rn| |x‖∞ ≤ 1}. Its
H-polytope form is Bn = {x ∈ Rn|[I,−I]x ≤ 1}. A H-
polytope P ⊂ Rn is full-dimensional if there exists x̄ ∈ P,
ε > 0, such that x̄ + εBn ⊂ P. A zonotope Z is a
polytope that can be written as an affine transformation of
the unit box Z := 〈x̄, X〉 = x̄ + XBm, where x̄ ∈ Rn
is the center and X ∈ Rn×m is the generator matrix. The
zonotope order is defined as m

n . Zonotopes are a special case
of AH-polytopes. An appealing feature of zonotopes is its
operational convenience with Minkowski sums: 〈x̄1, X1〉 ⊕
〈x̄2, X2〉 = 〈x̄1 + x̄2, (X1, X2)〉. In practice, most zonotopes
have order greater than one. Finding the H-polytope version
of a zonotope requires facet enumeration, which its worst-
case complexity is exponential in n and m [21], the number
of rows and columns of the generator, respectively.

As mentioned earlier, converting an AH-polytope to its
equivalent H-polytope may have an exponential complexity.
The special case in which conversion is simple is when X
has a left inverse, in which case we have:

{x̄+Xx|Hx ≤ h}
= {y ∈ Rn|HX†y ≤ h+HX†x̄}, X†X = I.

(3)

Given two H-polytopes Pi = {x ∈ Rn|Hix ≤ hi}, i =
1, 2, their intersection is the following H-polytope: P1∩P2 =
{x ∈ Rn|[H1, H2]x ≤ [h1, h2]}. However, the H-polytope
form of P1 ⊕ P2 is not easy to obtain. Unlike H-polytopes,
AH-polytopes are suitable to represent affine transformations
and Minkowski sums, while the case of intersections is less
trivial but still possible. Let Xi = x̄i + XiPi,Pi = {z ∈
Rni |Hiz ≤ hi}, i = 1, 2, Xi ∈ Rn×ni , x̄i ∈ Rn, be two
AH-polytopes. Note that, similar to H-polytopes, multiple
AH-polytopes can represent the same polytope.
• (Affine maps) Given g ∈ Rq, G ∈ Rq×n, we have:

G(x̄+XP) + g = (Gx̄+ g) +GXP. (4)

• (Minkowski Sum) We have the following relation:

(x̄1 +X1P1)⊕ (x̄2 +X2P2) = x̄1 + x̄2 + (X1, X2)P⊕,
(5a)

P⊕ = {z ∈ Rn1+n2 |blk(H1, H2)z ≤ [h1, h2]}. (5b)

• (Intersection) from x̄1 +X1p1 = x̄2 +X2p2 we obtain
p2 = X†2(X1p1 + x̄1 − x̄2) + (I −X†2X2)w,w ∈ Rn2 .
Therefore, we have the following relation:

(x̄1 +X1P1) ∩ (x̄2 +X2P2) = (X1, 0)P∩, (6a)

{z ∈ Rn1+n2 |[(H1, 0), (H2X
†
2X1, I −X†2X2)]z

≤ [h1, h2 +X†2(x̄2 − x̄1)]}.
(6b)

III. MAIN RESULT

In this section, we provide the main result of this paper
in Theorem 1. First, we revisit the well-known result on H-
polytope in H-polytope containment.

Lemma 1 (H-Polytope in H-Polytope): Let X = {x ∈
Rn|Hxx ≤ hx},Y = {y ∈ Rn|Hyy ≤ hy} ⊂ Rn,
Hx ∈ Rqx×n, Hy ∈ Rqy×n. Then X ⊆ Y if and only if

∃Λ ∈ Rqy×qx+ such that ΛHx = Hy,Λhx ≤ hy. (7)



Proof: The conditions in (7) is equivalent to X being
contained within each closed half-space of the hyperplanes
in Y. This condition is verified by checking qy inequalities:

max
x∈X

Hy,ix ≤ hy,i, i = 1, · · · , qy, (8)

where Hy,i is the i’th row of Hy (the same notation applies
to hy). By writing the dual of the left hand side in (8), we
arrive at

min
ui∈Rqx

+ ,u′iHx=Hyi

u′ihx ≤ hy,i, i = 1, · · · , qy, (9)

which is equivalent to ∃ui ∈ Rqx+ , u′iHx = Hyi, such that
u′ihx ≤ hy,i. Let Λ = [u′1, u

′
2, · · · , u′qy ], and (7) immediately

follows.
Instead of solving qy linear programs in (8), each with

n variables and O(qx) constraints, we can solve one linear
program in (7) with O(qxqy) variables and constraints. In
many cases, the former is more efficient. However, there is
merit in (7) as it can be added to a mathematical program
to encode X ⊆ Y. Note that (7) is lossless - it is necessary
and sufficient. Now we state the main result of this paper.

Theorem 1 (AH-polytope in AH-polytope): Let X = x̄ +
XPx,Y = ȳ + Y Py , where Px = {z ∈ Rnx |Hxz ≤ hx}
is a full-dimensional polytope, Py = {z ∈ Rny |Hyz ≤ hy},
where qx, qy are number of rows in Hx and Hy , respectively.
Then we have X ⊆ Y if:

∃Γ ∈ Rny×nx ,∃β ∈ Rny ,∃Λ ∈ Rqy×qx+ (10)

such that the following relations hold:

X = Y Γ, ȳ − x̄ = Y β, (11a)

ΛHx = HyΓ,Λhx ≤ hy +Hyβ. (11b)
Proof: Since the hyperplanes of the circumbody are not

available, we need to specify the argument similar to (8) for
all directions in Rn. Therefore, X ⊆ Y is equivalent to:

∀c ∈ Rn,max
x∈Px

c′(x̄+Xx) ≤ max
y∈Py

c′(ȳ + Y y). (12)

We write the dual of the right hand side to arrive at:

max
x∈Px

c′(x̄+Xx) ≤ min
u∈Rqy

+ ,u′Hy=c′Y
u′hy + c′ȳ. (13)

Since minimum of the right-hand side set is greater than
the maximum of the left-hand side set, it implies that
any element of the right-hand side set is greater than
any element of the left-hand side set. Therefore, ∀c ∈
Rn,∀u ∈ Rqy+ , u′Hy = c′Y,∀x ∈ Px, we must have the
following relation:

u′hy + c′ȳ ≥ c′Xx+ c′x̄. (14)

First, we show that the parametrization in (11a) is always
possible when X ⊆ Y and Px is full dimensional. There
exists p0x ∈ Px, ε > 0, p0y ∈ Py such that

x̄+Xp0x = ȳ + Y p0y, x̄+X(p0x + εBnx
) ⊂ Y,

which implies that x̄ + X(p0x + εei) = ȳ + Y (p0y + γi),
for some γi ∈ Rny , i = 1, · · · , nx, where ei is the unit

vector in the i’th Cartesian direction. Therefore, Xei =
Y γi, i = 1, · · · , nx. Thus, all columns of X lie in range(Y ).
Moreover, ȳ − x̄ = Xp0x − Y x̄, which also implies that
ȳ − x̄ ∈ range(Y ).

Now substitute ȳ− x̄ with Y β and X with Y Γ, and finally
c′Y with u′Hy in (14) to obtain:

∀u ∈ Rqy+ ,∀c ∈ Rn, u′Hy = c′Y,∀x ∈ Px,
u′(hy +Hyβ −HyΓx) ≥ 0.

(15)

Until this point, every relation is necessary and sufficient
for X ⊆ Y. The conditions in (15) is bilinear in u and x.
Furthermore, HyΓ is not necessarily positive definite, so we
can not efficiently find the minimum in (15) and check if it
is non-negative. Notice that c does not appear directly in the
bilinear expression, but we have u′H = c′Y . Even though
c is allowed to take all values in Rn, u is restricted - we
postpone its characterization to the next theorem.

By dropping u′H = c′Y , u becomes only constrained to
be non-negative, which means that Hy +Hyβ −HyΓx ≥ 0
for all x ∈ Px. Define H-polytope Q := {z ∈ Rny |HyΓz ≤
hy + Hyβ}. This means that any point in Px is also in Q,
or Px ⊆ Q. Therefore, from Lemma 1 we have ΛHx =
HyΓ,ΛHx ≤ Hy +Hyβ,Λ ≥ 0, and the proof is complete.

It is worth to note that Theorem 1 has the following
geometrical interpretation. It implies that

−β + ΓPx ⊆ Py. (16)

By left multiplying both sides in (16) by Y , X ⊆ Y is
established. Before moving to the necessary conditions, we
remark that (15) is a generalized form of the conditions
reported in [17], where the authors considered containment
problems for orthogonal projections of polytopes. Note that
u is restricted to a cone that is the intersection of positive
orthant and the linear subspace given by {u ∈ Rqy |H ′yu ∈
range(Y )}. Enumerating all the extreme rays of this cone is
not possible in polynomial time. The main idea in Theorem
1 is avoiding the bilinear terms using parameterization in
(11a) and then relaxing u to be in the positive orthant. The
conservativeness can also be interpreted as replacing a cone
in the positive orthant by the positive orthant itself (a larger
cone that does not depend on Hy and Y ). Now we state a
sufficient condition in which (11) becomes necessary.

Corollary 1: The conditions in (11) is necessary if

range(H ′†y Y
′)⊕ ker(H ′y) = Rqy . (17)

Proof: Since u′Hy = c′Y and c taking all possible
values in Rn, we have u ∈ range(H ′†y Y

′) ⊕ (H ′y) ∩ Rqy+ . If
the subspace range(H ′†y Y

′)⊕ ker(H ′y) is actually the whole
space, then u only becomes constrained by u ∈ Rqy+ . Thus,
u′Hy = c′Y can be safely dropped without any loss.

We now provide a sufficient condition for (17) to hold.
Corollary 2: The conditions in (11) are necessary and

sufficient if Y has a left-inverse.
Proof: If Y has linearly independent columns, then

ker(Y ) = {0}. Therefore, range(H ′†y Y
′) = range(H ′†y ).

Then by rank-nullity theorem of linear algebra, we have
range(H ′†y )⊕ ker(H ′y) = Rqy .



Fig. 1. Example 1: Zonotope Containment Problem: [left] Zx ⊆ Zy ,
[Right] Zx 6⊆ Z∗

y , where the last column of Y is dropped.

Corollary 3: The AH-polytope in H-polytope contain-
ment problem can be decided in polynomial time.
Corollary 2 is not surprising as it was already mentioned that
if Y has a left inverse, one can replace Y Py by H-polytope
Q = {z ∈ Rn|HyY

†z ≤ hy}. Corollary 3 is a known result
in the literature. A version was derived in [17]. It can also
be proved using other techniques in basic convex analysis
[13]. The authors in [18] also derived linear encodings for a
specific version of AH-polytope in H-polytope containment.

IV. APPLICATIONS

In this section, we demonstrate the usefulness of the
Theorem 1 on applications in computational convexity and
problems encountered in formal methods approach to control
theory. For the ease of readability, we adopt the notation con-
vention used throughout Section III, unless stated otherwise,
in the rest of the paper.

A. Zonotope Containment Problems

Zonotopes are popular in estimation and characterizing
reachable sets in control theory [8], [9], [22]. In this section,
we provide a version of Theorem 1 for zonotope containment
problem and empirically test its conservativeness.

Corollary 4 (Zonotope in Zonotope Containment): We
have〈x̄, X〉 ⊆ 〈ȳ, Y 〉, X ∈ Rn×nx , Y ∈ Rn×ny , if there
exists Γ ∈ Rny×nx , β ∈ Rny such that:

X = Y Γ, ȳ − x̄ = Y β, ‖(Γ, β)‖∞ ≤ 1. (18)
Example 1: Consider two zonotopes in R2:

x̄ =

(
0
1

)
, X =

(
1 0 0 1 1
0 −1 0 −1 −3

)
,

ȳ =

(
1
0

)
, Y =

(
1 0 1 1 1 2
0 1 1 −1 3 −2

)
.

The containment of Zx ⊆ Zy is verified by Theorem (4) and
is also illustrated in Fig. 1 [Left]. If we drop the last column
from Y , containment no longer holds, which follows from
the infeasibility of (18) and is also shown in Fig. 1 [Right].

On the Conservativeness of Corollary 4: Perhaps sur-
prisingly, we found that Corollary 4 is often lossless. We
found manually searching for a counterexample, where con-
tainment holds but Corollary 4 fails to verify it, to be
non-trivial. It remains an open problem whether a lossless
condition for zonotope containment without relying on ver-
tex/hyperplane enumeration exists.

In order to characterize conservativeness, given zonotopes
Zx and Zy , we enumerate the vertices of Zx - there are at

Fig. 2. Histograms of Loss values for Corollary 4

most 2nx of them, where nx is the number of columns in
X . Then we solve two linear programs: I) the maximum
λlossless such that all the vertices of λlosslessZx are inside Zy ,
and II) the maximum λTheorem 4 such that (18) holds for
λTheorem 4Zx ⊆ Zy . We introduce the loss function

loss = (λlossless − λCorollary 4)/λlossless. (19)

If loss = 0 for a certain zonotope containment problem, then
Corollary 4 does not introduce any conservativeness.

We randomly generated over 10000 zonotopes in Rn, n =
3, · · · , 10, with random number of generator columns (uni-
formly sampled between n and 12) for the inbody and the
circumbody, and random values of generator matrix entries
uniformly and independently chosen between −1 and 1, and
performed a statistical analysis. The loss was smaller than
0.01 for nearly 98% of the zonotopes. The histogram of
loss values for all zonotopes is shown in Fig. 2 [Left], and
for different dimensions in Fig. 2 [Right]. The histogram is
so skewed toward large numbers of zonotopes with small
loss values that we used logarithmic scale for meaningful
illustration. We observed a trend, albeit not very strong,
of loss values getting larger with zonotope dimension n.
We never observed a loss greater than 0.1. We intuitively
expect that at very high dimensions (n > 10), the loss
may be significant, but verifying this fact requires zonotope
vertex/hyperplane enumeration, which is not possible for
very large values of n.

With a randomized search over rational generators, we
found the following counterexample in n = 3. We never
found a counterexample with n = 2.

Example 2: Consider two zonotopes in R3 with centroids
at origin:

X =

 5 −1 2
−4 −2 2
4 −1 −4

 ,

Y =

 4 0 −4 1 0
−3 0 0 4 1
1 −4 −5 −1 −3

 .

One can verify Zx ⊆ Zy through checking all the vertices of
Zx. However, Corollary 4 fails to establish containment as
(18) is infeasible. However, feasibility is gained by scaling
Zx by 0.9915. The loss for this case is 0.0085.

Remark 1: The authors in [5] provided a sufficient con-
dition based on linear matrix inequalities (LMI) for the
zonotope containment problem in which the zonotopes were
represented as Z = {x ∈ Rn|‖H(x− x̄)‖∞ ≤ 1}. However,



in this case, the H-polytope form of zonotopes is already
available as Z = {x ∈ Rn|[I− I]H(x− x̄) ≤ 1}. Therefore,
Lemma 1 provides necessary and sufficient conditions for
this restricted classes of zonotopes and a sufficient condition
based on an LMI characterization is not required.

B. Polytopic Hausdorff Distance

Hausdorff distance is a popular metric to compute the
dissimilarity between two volumetric objects and has ap-
plications in has applications in computer vision [23] and
set-valued control [24]. In this section, based on Theorem
1, we provide an optimization-based method to compute an
upper-bound for Hausdorff distance between two polytopes.
To the best of our knowledge, all existing algorithms for the
exact computation of Hausdorff distances between polytopes
rely on vertex enumeration. While this is not a significant
problem in computer vision, where the dimensions are not
greater than 2 or 3, it introduces computational bottlenecks in
high dimensional control applications. Using Theorem 1, we
provide a linear programming approach to compute an upper-
bound for the Hausdorff distance between two polytopes.

Given a metric d : Rn ×Rn → R, the Hausdorff distance
provides a metric for subsets of Rn, which is defined as
follows:

dH(S1,S2) := max{D12, D21}, (20)

where D12, D21 are given as:

D12 := sups2∈S2 infs1∈S1 d(s1, s2),
D21 := sups1∈S1 infs2∈S2 d(s1, s2).

(21)

D12 and D21 are known as directed distances, which do not
satisfy metric properties as it is possible to have D21 6=
D12. Note that Dij = 0 if and only if Si ⊆ Sj , (i, j) ∈
{(1, 2), (2, 1)}. For compact sets, the sup and inf in (21) can
be replaced by max and min, respectively, and dH(S1,S2) =
0 if and only if S1 = S2.

It is straightforward to show that, if S1,S2 are compact
sets, (20) can be written as:

dH(S1,S2) = max{ min
P1⊆P2⊕d1PBall

d1, min
P2⊆P1⊕d2PBall

d2}, (22)

where PBall is the unit ball in Rn corresponding to the
underlying norm. For 1-norm and ∞-norm, this ball is a
polytope. For Euclidean norm and other norms, the ball
has to be approximated by polytopes. There are methods
to approximate Euclidean norm ball by zonotopes. The ap-
proximation can be made arbitrarily precise by increasing the
zonotope order [25]. We denote the polytope corresponding
to the unit ball in Rn by PBall = {x ∈ Rn|HBallx ≤ hBall}.
We use Theorem 1 to convert (22) into a linear program. The
norm used in the examples in this paper is ∞-norm.

Corollary 5: Given two AH-polytopes X1,X2 ⊂ Rn,
where Xi = x̄i + XiPi,Pi = {z ∈ Rni |Hiz ≤ hi}, i =
1, 2, Xi ∈ Rn×ni , x̄i ∈ Rn, the following linear program

Fig. 3. Example 3: Computing Hausdorff distance between zonotopes: [left]
minimal ball added to Zx to contain Zy∗ [Right] minimal ball added to Zy∗

to contain Zx. The Hausdorff distance is upper bounded by max(2, 3) = 3.

provides an upper-bound for their Hausdorff distance:

min D
subject to Λ1H1 = H2Γ1,Λ2H1 = [I,−I]Γ2,

Λ1h1 ≤ h2 +H2β1
Λ2h1 ≤ DhBall +HBallβ2
Λ3H2 = H1Γ3,Λ3H4 = HBallΓ4,
Λ3h2 ≤ h2 +H1β3
Λ4h2 ≤ DhBall +HBallβ4
Λi ≥ 0, i = 1, 2, 3, 4,
x̄2 −X2β1 − β2 = x̄1, X2Γ1 + Γ2 = X1,
x̄1 −X1β3 − β4 = x̄2, X1Γ3 + Γ4 = X2.

(23)
The tightness of the upper bound provided by Corollary

5 is as good as the necessity of Theorem 1. Trivial cases
are handled in a sensible way. For example, X1 = X2 if
and only if (23) returns 0. Note that if lines corresponding
to X2 ⊆ X1 ⊕DPBall in (23) are removed, we arrive in an
upper-bound for the directed distance D12, which becomes
zero if and only if X1 ⊆ X2.

Example 3: Consider the zonotopes in Example 1. If the
last column of Y is dropped (see Fig. 1 [Right]). Using
Corollary 5, we obtain the following upper bounds D12 ≤ 2
and D21 ≤ 3, so dH(Z∗y,Zx) ≤ 3. Augmented zonotopes
Zx ⊕D12B2 and Z∗y ⊕D21B2 are shown in Fig. 3.

C. Orthogonal Projections

Computing orthogonal projections of polytopes is a central
problem in many applications such as computing feasible
regions of model predictive controllers. The exact compu-
tation of projections requires variable elimination, which
is a costly procedure. Vertex-based projections are more
convenient to implement but do not scale well in high
dimensions. Moreover, it is often preferred to have the H-
polytope rather than a V-polytope of the projection. Not only
the projection procedure is computationally intense, but the
number of hyperplanes in the projected polytope itself may
be inevitably too large, in particular when a high dimensional
polytopes are projected into low dimensional spaces.

We use the results of this paper to introduce an output-
sensitive inner-approximation alternative to orthogonal pro-
jection that is based on a single optimization problem.
Consider the set F = {(x, u) ∈ Rn+m|Hx + Fu ≤ g}.
The projection into x-space is given by Fproj = {x|∃u ∈
Rm, (x, u) ∈ F}. We desire to find Hx and hx in X = {x ∈
Rn|Hxx ≤ hx} such that X ⊆ Fproj and dH(X,Fproj) is



minimized. The choice of the number of rows in Hx is made
by the user - we expect dH(X,Fproj) to decrease with the
number of rows. While there has been theoretical results on
the quality of approximating projections of high dimensional
polytopes by polytopes with controlled number of facets
[26], to the best of our knowledge, the following approach
is unique in the respect that it is optimization-based, and
provides a guaranteed upper bound on the Hausdorff distance
between the approximated projected polytope and the actual
one, which does not need to be computed.

We parameterize X by x̄+ {x ∈ Rn|Hxx ≤ 1}. Note that
by design, X contains x̄. The optimal values in Hx are given
by the following optimization problem:

Hx = arg min ε
subject to F = {(x, u) ∈ Rn+Nm|Hx+ Fu ≤ g}

X = {x ∈ Rn|Hxx ≤ 1},
x̄+ X ⊆ (I, 0)F
(I, 0)F ⊆ x̄+ X⊕ εB

(24)
Using the containment encoding framework provided in
this paper and some algebraic manipulation, we have the
following result.

Corollary 6: Given F = {(x, u) ∈ Rn+m|Hx+Fu ≤ g},
let Fproj = {x|∃u ∈ Rm, (x, u) ∈ F}. Consider the following
optimization problem:

Hx = arg min ε,
subject to Λ0Hx = H + FΓ

Λ01 ≤ g −Hx̄+ Fβu,
Λ1H = HxX1,Λ1F = HxX2,
Λ2H = HB −HBallX1,
Λ2F = −HBallX2,
Λ1g ≤ hBall −Hxβx,
Λ2g ≤ εhBall −HBallx̄+HBallβx,
Λ0,Λ1,Λ2 ≥ 0,

(25)

where {x ∈ Rn|HBallx ≤ hball} is the unit ball of the
underlying norm. Let Hx be a feasible solution with cost ε,
and X = x̄+ {x ∈ Rn|Hxx ≤ 1}. Then we have X ⊆ Fproj
and dH(X,Fproj) ≤ ε.

The optimization problem (25) has some bilinear terms,
therefore it is difficult to solve it to global optimality.
Nevertheless, we can use local optimization methods using
successive linear programming to find suboptimal solutions.

Example 4: In this example, we compute an inner-
approximation of the feasible set of a model predictive
controller. Consider the linear system xt+1 = Axt + But,
where

A =

(
1 0.1
−0.1 1

)
, B =

(
0

0.1

)
.

We impose hard constraints x ∈ [−1, 1]2 and u ∈ [−1, 1].
We wish to compute the set of states that can be steered
into the origin in N = 20 steps, while satisfying the box
constraints. We have:

F = {x0, u0, · · · , uN−1|xN = 0},
Fproj = {x0

∣∣∃u0, · · · , uN−1, such that xN = 0},

where

xn = Anx0 +

n∑
τ=0

An−τ−1Buτ .

We need to find Fproj , which is provided by projecting
N + 2 = 22 dimensional polytope of joint state and control
sequence space into 2-dimensional state-space. By writing
the constraints described above, the number of hyperplanes
in F is 128 (some may be redundant).

We may use two methods to compute this projection.
The first is the exact and is given by Fourier-Motzkin
elimination method. Its computation is costly as 20 variables
are eliminated, and at each iteration, many linear programs
are required to remove redundant hyperplanes. The method
returns the exact Fproj with 28 irreducible hyperplanes.

As an alternative, we use the method described in this
paper in Proposition 6. We consider two initializations: Hx

with 4 hyperplanes (a box), and Hx with 6 hyperplanes. We
consider maximum step size of 0.05 in each entry of matrix
variables. We let x̄ = 0. Snapshots of the gradient decent
iterations are shown in Fig. 4. It is observed that we are able
to closely inner-approximate the MPC feasible set using user-
defined number of hyperplanes, while not encountering any
potential exponential blow up due to vertex elimination or
the number of required hyperplanes. Note that the reported
Hausdorff distances are the values of ε in (25), which are
guaranteed to be upper-bounds and are computed without
explicitly knowing Fproj.

D. Verification and Control of Hybrid Systems

In this section, we study a particular application of our
results to formal synthesis of controllers for hybrid systems.
The method is based on our framework in [27], where
polytope-to-polytope control strategies were used to design
feedback strategies for piecewise affine systems. The task
is reaching a goal region, which itself is given as a union
of polytopes in the state-space, while respecting state and
control constraints. The polytopes form a tree that grows
backward from the goal using a sampling-based heuristic
similar to rapidly-exploring random trees (RRT) [28]. The
idea is also closely related to sampling-based feedback
motion planning using LQR-trees [29] - but tailored for
piecewise affine systems. The central technique is computing
polytopic trajectories that are characterized by polytopes
Pt, t = 0, 1, · · · , T , in the state-space, where Pt is mapped
to Pt+1 with an appropriate control law. The nodes of the
tree are polytopes, and edges represent available one-step
controlled transitions.

The polytopes are represented in AH-polytope form,
where

Pt = x̄t +GtPb, (26)

Pb ⊂ Rq is a user-defined base polytope, and x̄t ∈ Rn, Gt ∈
Rn×q define the affine transformation. Note that when Pb is
chosen as a box, all polytopes become zonotopes. Let the



Fig. 4. Example 4: Optimization-based iterative orthogonal projection from R22 to R2 to obtain the feasible set of a model predictive controller. The
state box constraint is shown in red, the actual Fproj is shown in green (obtained using Fourier-Motzkin elimination method), and the inner-approximation
X is shown in blue. [Top] 4 hyperplanes [Bottom] 6 hyperplanes.

affine dynamics be xt+1 = Atxt + Btut + ct. Consider the
parameterized control strategy

ut = ūt + θtζ, xt = x̄t +Gtζ, (27)

where ζ ∈ Rq is an implicit variable. Unless Gt is invertible,
the map from xt to ut is given by a linear/quadratic program,
with an ad-hoc cost function (for example, the norm of
ut). Note that multiple ut values for state xt may satisfy
(27). Using control law (27), the evolution of Pt satisfies the
following relation:

Pt+1 = Atx̄t +Btūt + ct + (AtGt +Btθt)Pb (28)

or, equivalently:

x̄t+1 = Atx̄t +Btūt + ct, Gt+1 = AtGt +Btθt. (29)

Therefore, we have linear encodings for the polytopic tra-
jectory. We can also consider mixed-integer formulations to
encode hybrid relations between (At, Bt, ct) and (xt, ut),
but the details are omitted here. The full algorithm and its
theoretical guarantees are reported in [27]. Here we only
provide the essential details related to the contributions of
this paper.

Using the results of this paper, we improve a crucial
computational part of the algorithm in [27]. When adding a
branch to the tree, we design a polytopic trajectory such that
the final polytope is contained within one of the polytopes
in the tree, i.e. an instance of polytope containment problem.
In [27], we explored efforts to compute the H-polytope
form of these AH-polytopes, either using Fourier-Motzkin
elimination which was very slow and numerically unstable
for our applications, or approximating the transformation
matrix by a left-invertible one which also caused numerical
issues as fine approximations led to ill-conditioned matrices.
Here we use our results on AH-polytope in AH-polytope
containment, in particular zonotope containment, to present
an alternative approach that does not require H-polytope
forms of the polytopes in the tree.

Example 5: We adopt example 1 from [30], which was
also studied in [27]. The scripts for this example are publicly
available 2. The model represents an inverted pendulum with

2https://bit.ly/2XZUNLN

θ
g

K

u

Fig. 5. Example 5: Inverted pendulum with a spring-loaded wall.

a spring-loaded wall on one side (see Fig. 5). The control
input is the external torque. The system is constrained to
|θ| ≤ 0.12, |θ̇| ≤ 1, |u| ≤ 4, and the wall is situated at θ =
0.1. The problem is to identify a set of states X ∈ R2 and the
associated control law µ : [−0.12, 0.12]× [−1, 1]→ [−4, 4]
such that all states in X are steered toward origin in finite
time, while respecting the constraints. It is desired that X is
as large as possible. The dynamical system is described as
a hybrid system with two modes associated with “contact-
free” and “contact”. The piecewise affine dynamics is given
as:

A1 =

(
1 0.01

0.1 1

)
, A2 =

(
1 0.01
−9.9 1

)
,

B1 = B2 =

(
0

0.01

)
, c2 =

(
0
0

)
, c2 =

(
0
1

)
,

where mode 1 and 2 correspond to contact-free θ ≤ 0.1 and
contact dynamics θ > 0.1, respectively.

The approach in [30] was based on finding the feasible
set of hybrid model predictive control, but the horizon was
limited to N = 10, hence the derived X was small. The
approach in [27], based on sampling-based polytopic trees
described in this section, found larger X. The base polytope
Pb is chosen to be a box, hence all polytopes are zonotopes.
The polytopic trajectory design is handled using a mixed-
integer convex program. Here we implement the same poly-
topic tree algorithm with the difference we use the zonotope
containment result in Corollary 4 for constraining the final
polytope constraint. Not only did this lead to slightly faster
computations, but we also observed that the optimization
solver no longer reported numerical tolerance issues.

The iterations are shown in Fig. 5. Out of 1000 points
uniformly sampled from [−0.12, 0.12] × [−1, 1], 810 are



Fig. 6. Example 5: Polytopic tree algorithm for control of a hybrid system: at each iteration, a point is sampled from the free space. Then a mixed-integer
convex program is used to find a polytopic trajectory into one of the zonotopes already existing in the tree, where the results in this paper are used to
encode the containment property. If such a trajectory exists, the branch is added to the tree and the iterations continue. The final result is a tree of zonotopes
from which a hybrid control law steering the states to the goal is obtained.

within the feasible set of hybrid MPC with horizon N = 80
- this set is never explicitly computed, but the membership
of (θ, θ̇) is checked by solving a MICP problem. After 27
branches, we observed that 796 of 810 points are inside the
tree, yielding an approximate coverage of 98%. It was shown
in [27] that full coverage is asymptotically achieved as the
number of samples in the tree goes to infinity. The full details
are omitted here and the interested reader is referred to [27].

V. CONCLUSION AND FUTURE WORK

We provided a sufficient conditions for containment of
a polytope inside another polytope, where both polytopes
are represented by affine transformations of hyperplane-
represented polytopes. The significance of the method relies
on the fact that the encodings do not require computing
the hyperplanes of the affine transformations of the poly-
topes, which can be computationally prohibitive. Instead,
the encoding provides a set of linear constraints with size
growing linearly in the problem size. We provided inter-
pretations for the sufficiency, the conditions for necessity,
and demonstrated the usefulness on problems encountered
in control applications. Future work will focus more deeply
on applications to verification and control of hybrid systems.
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