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Complexity Analysis and Efficient Measurement Selection Primitives for
High-Rate Graph SLAM

Kristoffer M. Frey', Ted J. Steiner?, and Jonathan P. How!

Abstract— Sparsity has been widely recognized as crucial
for efficient optimization in graph-based SLAM. Because the
sparsity and structure of the SLAM graph reflect the set of
incorporated measurements, many methods for sparsification
have been proposed in hopes of reducing computation. These
methods often focus narrowly on reducing edge count without
regard for structure at a global level. Such structurally-naive
techniques can fail to produce significant computational savings,
even after aggressive pruning. In contrast, simple heuristics
such as measurement decimation and keyframing are known
empirically to produce significant computation reductions. To
demonstrate why, we propose a quantitative metric called
elimination complexity (EC) that bridges the existing analytic
gap between graph structure and computation. EC quantifies
the complexity of the primary computational bottleneck: the
factorization step of a Gauss-Newton iteration. Using this met-
ric, we show rigorously that decimation and keyframing impose
favorable global structures and therefore achieve computation
reductions on the order of r*/9 and 3, respectively, where r
is the pruning rate. We additionally present numerical results
showing EC provides a good approximation of computation
in both batch and incremental (iSAM2) optimization and
demonstrate that pruning methods promoting globally-efficient
structure outperform those that do not.

I. INTRODUCTION

Graph-based approaches to the Simultaneous Localization
and Mapping (SLAM) problem have gained popularity in re-
cent years [1]-[6]. These problems are generally formulated
as nonlinear least-squares (NLLS) optimizations over the set
of robot poses and landmark positions. Though in certain
cases non-iterative solutions exist [7], SLAM problems are
usually solved iteratively using a form of Gauss-Newton
(GN). As recognized in [1], SLAM problems demonstrate
a naturally sparsity that can be leveraged to significantly
reduce computation with each GN iteration. This sparsity
manifests itself as a large number of zero entries in the
graph adjacency matrix, or, equivalently, as a large number of
“missing” edges relative to a complete graph. Nevertheless,
this paper will emphasize that computation is a function of
the graph structure and not simply just edge count.

Because measurements correspond to edges in the SLAM
graph, the choice of measurements included in the optimiza-
tion thus directly influences sparsity and graph structure. This
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has recently motivated numerous sophisticated measurement-
selection and sparsification strategies for computation reduc-
tion [4], [6], [8], [9]. However, these methods narrowly focus
on reducing edge count (i.e., treat all edges as equivalent
from a computation perspective) [4], [6], [10] or enforcing
locally-sparse structure [8], [9]. Because they do not curate
global structure, these methods may only achieve limited
computational savings, even after aggressive pruning.

To better connect graph structure to computation, this
paper proposes elimination complexity (EC) as an approxi-
mation of the FLOP count associated with each GN iteration.
As a function purely of graph structure, EC is independent
of the particular numeric values of the optimization at any
time. Experimental evidence confirms that EC trends linearly
with computation time in both batch and incremental modes
of operation.

We apply EC-based analysis to keyframing and decima-
tion, two common measurement selection primitives in high-
rate vision-based SLAM [5], [11]-[14]. These two heuristics
are shown to produce globally efficient graph structures
that achieve significant computational savings. In particular,
it is demonstrated both analytically and numerically that
decimation reduces EC at a rate of ~ 72 /9, while keyframing
reduces EC at an increased rate of 2. Here, r refers to “rate”
of pruning in either case and is defined in more detail in
the body of this paper. These insights can guide application
of these techniques in systems with significant computation
constraints and high required optimization rates.

As an analytic tool, EC provides a key link between graph
structure and computation that has thus far been lacking
from the discussion of measurement selection in SLAM.
Furthermore, because it can be evaluated directly from the
iISAM2 Bayes Tree [2], EC can potentially be used in an
online sense to adapt computation management policies as
the SLAM graph evolves.

In practice, measurement selection ultimately aims to
tradeoff accuracy for computational savings. While quan-
titative connections between graph structure and various
accuracy metrics have been made for linear SLAM graphs
[15], [16], their extension to general SLAM measurement
models is unclear. Rather than attempting to address the
accuracy side of this tradeoff, this paper aims to establish
that achieving good computation reduction is not simply a
matter of maximizing the number of measurements removed,
but rather about imposing favorable global graph structure.
Thus, techniques which select measurements for removal
based on their estimation “value” but without respect for
global structure may fail to produce the desired level of
computational savings.



A. Related Work

The most relevant discussion of computation in graph
SLAM comes from the seminal paper by Dellaert et al. [1],
and the iISAM2 paper by Kaess et al. [2]. There, the au-
thors connect GN optimization to sparse factorization of the
corresponding system matrix. They also make the important
observation that the choice of elimination ordering is crucial
for efficient optimization. However, they do not explicitly
connect the underlying Bayes Tree structure [2] to a metric
of computational complexity. While the complexity of sparse
matrix factorization is well-understood in the linear algebra
literature [17]-[19], such results have not been tailored for
SLAM-specific solvers nor applied to measurement selection
in SLAM.

Computation is often managed in SLAM by bounding the
number of variables being estimated, usually via sliding-
window approaches [5], [20] or by merging nearby pose
variables [8], [11], [21]. Nonetheless, as measurements (and
corresponding edges) are added the graph grows denser, and
further steps must often be taken to promote sparsity.

Many methods of measurement selection exist in the
literature with the specific goal of promoting sparsity, though
none are guaranteed to produce computationally-efficient
global graph structures. The Sparse Extended Information
Filter [10] or the £; regularization of [4] directly sparsify
the information matrix, although without regard for resulting
structure. Alternatively, [8], [9] make use of pre-selected
sparse topologies to replace dense regions of the graph,
and structural considerations are limited to local regions
of the graph. Heuristics for applying these sparsification
optimizations in online pose-graph SLAM were suggested
in [8], but applying such techniques to the more general
graphs common in landmark-SLAM is less straightforward.
Following a general graph-theoretic approach, [6] provides
max-spanning-tree-algorithms which select a fixed number
of edges to retain or prune. Besides the fact that none of
these approaches explicitly consider global structure from a
computational standard, none achieve both practicality for
computationally-constrained systems and direct applicability
to general landmark-SLAM graphs. In contrast, keyframing
and decimation policies are generally inexpensive and have
been used extensively in real-time SLAM [11]-[13], [22].

II. ESTIMATING COMPUTATION
The graph SLAM optimization problem with Gaussian

factors can be expressed as a NLLS minimization [1]

1
argmin — Z(hl(Xz) —2z)TS  (h(X) —2z). (D)
x 23
Using iterative GN [23], optimization of (I requires multiple
solves of the (assumed positive-definite) linearized system

ATAx = ATb, 2)

m

The graph representations of the original (I)) and linearized
systems (2) are identical, meaning sparsity is preserved
through linearization.

The number of GN iterations required for convergence
depends fundamentally on the initial values, measurement

values (which are assumed random), and environmental
factors such as availability of opportunistic landmarks [23].
Thus it is difficult in general to predict how many iterations
will be needed, or even if convergence will occur.

In contrast, linear systems of the form @) are well-
characterized, and computation is a function of the corre-
sponding graph structure rather than numeric values. As the
total GN computation is essentially the sum of these linear
solves, computational savings at the linear level corresponds
to multi-fold savings in total. Thus, quantifying the compu-
tation involved in (2)) provides a link from structure to total
computation.

The two fundamental steps involved in solving the linear
system @) are elimination and back-substitution. Elimina-
tion is equivalent to factorization of the system ATA =
R”R into the upper-triangular square matrix R [1]. Back-
substitution refers to solving the remaining triangular system,
and has complexity linear in the number of non-zero ele-
ments in R. Because elimination of the n x n system AT A
carries a worst-case O(n?) complexity, it often represents
the majority of computation in practice, even for incremental
algorithms [2]. This motivates the use of elimination com-
plexity as a representative measure of the inherent complexity
represented by a graph.

A. Elimination Complexity

As noted by [1], [24], can be solved efficiently by
sparse factorization of AT A. Sparse factorization follows
the pattern of node elimination on the graph, illustrated in
Figure E} In node elimination, variable nodes are eliminated
one-by-one, corresponding to marginalization of the vari-
ables from the joint distribution over all remaining variables.
When the ¢-th node is eliminated, it is removed from
the elimination graph and edges are induced such that all
its remaining neighbors form a fully-connected clique in
elimination graph GU*1. These new edges did not exist
in the original graph and thus constitute fill, representing
intermediate dependencies between variables induced by a
particular elimination ordering. In the final upper-triangular
R factor, these fill edges correspond to nonzero “filled-in”
entries that were zero in the original system matrix AT A.

As is well-known from the sparse linear algebra literature
[1], [25], [26], fill depends on the chosen variable ordering P.
Though the solution itself is unaffected by ordering, different
orderings can result in widely differing fill at each step of
the optimization. However, determining the optimal (min-
fill or min-FLOP) ordering is NP-complete [19], [26]. In
practice, efficient heuristics such as Column-Approximate
Min-Degree (COLAMD) [25] are widely used [1], [2].

For certain graph structures, naive elimination ordering
can produce catastrophic fill-in, even if the original graph
was quite sparse. For example, Duff [27] showed that in
random matrices with initially very few non-zero entries, as
elimination proceeds the probability of the remaining ele-
ments becoming non-zero (due to fill-in) rapidly approaches
one.

Each step of node elimination corresponds to computing
one step of the corresponding sparse QR or Cholesky factor-



Fig. 1: The node elimination algorithm executed on a simple graph G, Nodes are eliminated in the order (0, 1, 2, 3, 4),
producing a series of elimination graphs G(*). Induced edges are shown with dotted lines.

ization [1], [17], [18], and involves computation scaling with
the dimension of the neighbors of the eliminated node. From
this perspective, solving the full system (2)) is decomposed
into solving a series of smaller, dense sub-problems. The
complexity of factorizing the full sparse system is then
simply the sum of the complexities of the individual dense
sub-problems.

Rose [17] showed that computing the R” R decomposition
of a sparse n X n matrix can be performed in

n—1 n—1

1 . . . 2
3 ; d(i, P)(d(i,P) +3) ~ ; d(i, P) (3)

multiplications, where d(i, P) refers to the degree of the i-
th eliminated node in the elimination graph G? produced
by ordering P. The asymptotic form of is equivalent
to the approximate Cholesky FLOP count [19]. Note that,
for a fully dense matrix (corresponding to a fully-connected
graph), d(i) ~ n (full system dimension) and sparse factor-
ization approaches the full n® complexity for dense matrices.

In a conventional linear algebra approach, factorization of
the system (@) occurs one row (or column) at a time. The
corresponding graph G(©) includes n nodes, matching the
scalar dimension of the system. However, (2) has additional
block structure for typical SLAM systems [1]. In SLAM, the
variables of interest are often multi-dimensional quantities
such as positions and rotations, and measurements generally
are defined on the level of these “macro-variables.” In this
case, it is the block sparsity pattern of (2)) that is represented
in the factor graph.

By applying ordering heuristics such as COLAMD [25]
on the block structure directly, [1] showed improved per-
formance and less fill. Following this observation, modern
SLAM solvers such iSAM2 [2] apply elimination directly
on the “macro-variables” of the factor graph. This motivates
the definition of a version of (3 that accounts for the block
structure of SLAM.

We define the elimination complexity (EC) C(G,P) of a
factor graph G with variables X and ordering P as

|X]

e(G,P) £ Y dy(i) (ds(6) + (3., 79))2 @

where d;(i,P) and ds (i, G, P) are the total scalar dimension
of the i-th frontal variable x; and its corresponding separator
set x, according to G and P, respectively. Note that due
to induced fill and the removal of previously-eliminated
nodes, the dimension d, of the i-th-eliminated variable will
generally not match the neighborhood of that variable in
the original graph G. Thus, computation of C in general
requires simulation of the elimination process using ordering

P. Under scalar elimination, which corresponds to frontal
variables of singular dimension d;(i) = 1, the EC
reduces to the asymptotic form of (3).

Lemma 1: For a fixed elimination ordering P and graph
G, let GT be constructed by adding an edge to G. Then,
C(G,P) <C(G*,P).

Proof: Let G refer to the graph constructed by adding
an edge to G. Following the elimination process described
in Section the elimination neighborhood at each step %
cannot be smaller for GT than for G

ds(i,G,P) < ds(i,G*,P) Vi (5)
Substituting this into the definitions of C(G,P) and
C(G™,P) yields C(G,P) <C(GT,P). [

Lemma E] confirms the intuition that, for a fixed ordering,
adding an edge to the graph cannot decrease elimination
complexity. Equivalently, removing an edge cannot increase
complexity, which confirms the conventional intuition ap-
plied by many existing measurement pruning techniques.
Importantly, however, it will be demonstrated experimentally
that arbitrary edge pruning (with no regard for global struc-
ture) can be surprisingly ineffective at reducing complexity,
and thus EC-naive pruning techniques may only achieve
limited computation reduction even after aggressive pruning.

B. Relationship to the iSAM2 Bayes Tree

Characterizing the update-time computation of incremen-
tal solvers such as iISAM2 [2] is generally difficult. An
iISAM?2 incremental update attempts to avoid re-elimination
of the entire graph by representing the current solution and
elimination process in a Bayes Tree structure. Because it
performs re-linearization and re-ordering only as needed, the
computation required for each update depends on the the full
update history and numerics of the problem. Nonetheless,
because the Bayes Tree fundamentally represents the elim-
ination process of the system, elimination complexity still
serves as a useful predictor of computation.

EC can be computed directly from the Bayes Tree,
although some subtleties must be acknowledged. Though
generally guided by a COLAMD ordering, the implicit variable
ordering represented in the Bayes Tree is semi-static and may
not necessarily match Peorawp (G) at any time. Furthermore,
cliques in the Bayes Tree represent a multifrontal factoriza-
tion [28], in which multiple variables may in certain cases be
eliminated together rather than sequentially, taking advantage
of optimized dense matrix operations.

For a given iISAM?2 instance represented by the Bayes Tree
Ter, elimination complexity can be computed

ColTor) 2 Y d(O) (450 4 d(0)) ®)
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Fig. 2: Elimination complexity (EC) grows over time during
a simulated SLAM experiment as more variables and mea-
surements are added. Ccoramp i computed from the graph
using a COLAMD variable ordering, and Cgr is computed
directly from the Bayes Tree. iISAM2 uses a constrained form
of COLAMD and only updates the ordering when nodes are re-
eliminated. For this reason Cy: is often greater than Coopamp-

where d¢(C) and ds(C) are the total scalar dimension of the
frontal and separator variables in clique C, respectively.

C. Numerical Results

As a measure of graph computational complexity, EC
C(G,P) should correlate linearly with the actual compu-
tation time. This was verified in an incremental SLAM
simulation using iISAM?2 and with the elimination complexity
evaluated using the COLAMD heuristic. Figure [2] shows that
both Ccoramp and Czr grow over time as more poses, land-
marks, and measurements are added to the SLAM system.
iISAM2 employs a lazy re-ordering scheme that attempts to
maintain a near-COLAMD ordering, which often makes Cgr
larger than Ccopamp-

Figure [3] shows that the batch elimination time of the
linearized system at each step is proportional to Ceoraup-
Furthermore, the incremental update time of iISAM2 dis-
plays an “in-practice” worst-case computation which also
follows Ccoramp linearly. Though iSAM2 often avoids re-
eliminating much of the graph in order to produce relatively
low-cost updates, in this experiment it still re-eliminated
much or all of the graph the majority of the time. These
results demonstrate that elimination complexity provides an
approximation of computation even for incremental solvers.
This motivates the use of EC as an analytic link between
graph structure and computation, allowing for quantitative
evaluation of measurement selection strategies.

III. MEASUREMENT SELECTION PRIMITIVES

Armed with a measure of complexity relating graph struc-
ture to computation, we can now assess measurement selec-
tion strategies analytically for their affects on computation.

Elimination complexity vs. compute time
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Fig. 3: Our elimination complexity (EC) metric, Ccoramp, 18
directly proportional to the batch elimination time of the lin-
earized system (blue). Here iSAM2 (red) often performed the
full nonlinear update without fully re-eliminating the graph,
resulting in a greatly reduced compute time. However, the in-
practice worst-case computation involves re-eliminating the
entire graph and tracks nearly linearly with EC.

We focus on the two most ubiquitous selection policies in use
in high-rate SLAM: decimation and keyframing. First, we
will define a general case of the landmark-SLAM graph and
approximate the worst-case elimination complexity. Then we
will examine both keyframing and decimation, providing
quantitative estimates of computation reduction.

A. The Landmark-SLAM Graph

A typical landmark-SLAM problem is shown in Figure
El Landmarks are represented as green nodes [;, and robot
poses (sampled along the trajectory) as blue nodes x;. As is
typical of mobile robots, odometry measurements relate se-
quential poses, and could arise from inertial sensors or wheel
encoders. Landmark observations connect the robot’s pose
at a particular moment in time to a particular landmark, and
could represent measurements taken from LIDAR, ranging
data, or a camera image.

Due to real-world sensor limitations, most landmarks will
only be observable from a small subset of poses. However,
the following analysis will assume the worst-case (from a
sparsity perspective) — that every landmark is observed from
every pose, as illustrated in Figure [ As is standard in
SLAM approaches [5], [29], [30], it is assumed that landmark
positions are uncorrelated a priori, and thus no landmark-
landmark edges exist in the graph. Furthermore, to simplify
the following discussion, direct pose-pose loop closures are
not explicitly taken into account here. Nonetheless, general-
izing these results to allow for this form of loop closure is
straightforward.

Let there be n; landmarks and n, poses in landmark-
SLAM graph G. The elimination complexity of this form of



Fig. 4: A small landmark-SLAM example, in which every
landmark [; is observed from every pose x;. Odometry
constraints (e.g., from inertial sensors or wheel encoders)
connect consecutive poses. Assuming no direct pose-pose
loop closures or direct landmark-landmark correlations are
allowed (as is typical of visual-inertial odometry systems),
this is the worst-case graph from a sparsity perspective.

landmark-SLAM can be estimated by simulating the elimi-
nation process using a heuristic landmark-then-pose ordering
P. In practice, the de facto COLAMD ordering is based on a
min-degree heuristic, and will depend on the realized graph
structure, which in turn depends on sensor limitations, the
distribution of landmarks in the environment, and the robot’s
trajectory. However, by analyzing the worst-case graph in
which all landmarks are observed by all poses, and assuming
that n; > n,, then P = P, degree = Pcoramp. Thus, it
follows that

C(G,P) ~ (dn; + dmngg)(dfmm)2 @)

where d, and d; are the scalar dimensions of the pose and
landmark variables, respectively.

To derive (7), note that eliminating each of the n; land-
marks incurs a complexity of dj(d; + n.d,)?, as each
landmark is adjacent to all n, poses. Because the landmark
nodes are non-adjacent in G, fill is only induced between
pose nodes, leaving a fully-connected clique of the n, pose
nodes. This fully-connected clique then can be eliminated in
O(d3n2) operations, producing the total asymptotic opera-
tion count shown in (7).

Also note that the inherent sparsity of SLAM has al-
ready produced a significant savings here compared to the
O((dynz + diny)?) bound which would be achieved for a
fully-dense system. Nonetheless, computation is still cubic
with the number of poses n,, and thus reducing the number
of pose nodes promises to reduce computation significantly.

B. Keyframing

Keyframing approaches aim to do exactly that. By select-
ing only a subset of measurement frames to incorporate in
the SLAM system, the number of included poses is reduced,
ultimately leading to a cubic reduction in EC. Here, a frame
can refer to an image frame in a video stream, or more
generally any set of measurements produced at the same time
and corresponding to a single robot pose.

Letting Gi(r) refer to the graph produced from G by
keeping only n, /r pose nodes, it is easy to see that

C(G(r), P) ~ (dim + ") (a.22)" @

Compared to (), shows an asymptotic complexity
reduction of between 72 and r3. It will be demonstrated

Algorithm 1 Decimation

1: procedure TESTDECIMATE(Obs, 1)
2 i <— Obs.Poseldx

3: k < Offset[Obs.Landmarkldx]
4: if 7 mod r = k then
5

6
7

Keep Obs
else
Discard Obs

numerically that this reduction in practice can be much
closer to r3. As noted by Ila et al. [11], reducing the
number of redundant poses in the SLAM system has the
added benefit of improving estimator consistency, because
in GN approaches each pose corresponds to a first-order
noise propagation. All in all, this makes keyframing an
ideal computation-reduction strategy if intermediate pose
estimates are not of direct interest.

C. Decimation

In contrast to keyframing, decimation can be applied per
measurement, and is particularly useful if the set of poses
in the graph is fixed — i.e., if estimation of the pose at
each frame is of direct interest. Algorithm || defines the
decimation rule used here. By taking every r-th observation
of each landmark in a non-aligned fashion, decimated graphs
demonstrate a pattern of offset partitioning as shown in
Figure |5| Here r is the decimation rate and k; refers to
the offset associated with a particular landmark j. Usually,
the decimation offset k; is determined by the pose index
corresponding to the first available observation of landmark
7. For a landmark observed by a set of consecutive frames,
this ensures that the maximum number of observations are
accepted under the decimation constraint, and allows for
landmark measurements to be included in the optimization
as early as possible.

Applying the elimination ordering P to this graph Gaec
yields

_ 2
C(Glaees P) ~ (mady + Inocdy) (ds ) ©

To obtain (9), we follow ordering P and eliminate the n;
landmarks first. This involves a total of n;d;(d;+nyd, /7)? ~
nydy(ngd,)?/r? operations. Assuming the worst-case, this
leaves each II; as a clique, with additional (assumed com-
plete) connections to its neighboring cliques II;_; and
IIx41. Eliminating each of these cliques one-by-one involves
computation upper-bounded by

o ne\2 g N )2
I;J;dgg(dm—k?)me) ~r7dw<3d17) (10)
= (e (11)

and adding this computation to the previous step gives (9).

Thus, we see that decimation produces a partitioned super-
structure which reduces graph complexity asymptotically
by r2/9 compared to (7). Comparing to keyframing (8),
decimation is clearly less effective at reducing computation.
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Fig. 5: [top] Decimated SLAM example with » = 3. Each
landmark /; is associated (arbitrarily) with a particular offset
k; € {0,1,...,r—1}, which together with the rate r defines
which observations are accepted. Here, [ has offset 0, [; and
l4 have offset 1, and [ and l3 have offset 2. [middle] The
same decimated graph, redrawn to highlight how landmarks
are grouped by decimation offset, partitioning the overall
graph. [bottom] A generalized representation of decimated
structure. Note that the r subgraphs have limited inter-
connectivity arising only from odometry edges.

Nonetheless, decimation can have other advantages, particu-
larly if estimating the full trajectory (including intermediate
poses) is of direct interest. A full comparison of keyframing
and decimation is outside the scope of this paper.

The experimental results in the next section emphasize
that it is the unique partitioned structure shown in Figure [5]
rather than simply the reduction in number of measurements,
which produces this computational savings.

D. Experimental Results

A suite of simulation experiments were performed to
verify the analytic results discussed above in a full 3D,
incremental visual SLAM setting. In the simulation, a robot
drives a sinusoidal trajectory, observing nearby landmarks
according via a monocular visual sensor. At each step of
the simulation, a new pose node is added to the graph,
and newly-triangulated landmarks are added to the graph.
Because of the under-rank nature of monocular measure-
ments, landmarks are not initialized (i.e. added to the graph)
until they have been observed a minimum number of times.
Poses are represented as elements of SE(3), and landmarks
as points in R3.

Fig. 6: Simulated visual-odometry dataset. [left] Top-down
view of the full trajectory (blue pose nodes) and landmarks
(green). The robot moves in a sinusoidal pattern along the
horizontal plane, starting from the left and moving right. Red
edges indicate the full set of monocular vision observations,
and blue edges represent pose-pose odometry. [right] A
partially-completed trajectory, with landmark observations
decimated at a rate of r = 4.

The full trajectory, landmark distribution, and set of
available landmark observations are shown in Figure [6] As
this simulation accounts for realistic sensor limitations, any
given landmark is only observed by a subset of robot poses.
This means that the complexity results derived in Section
[ which assume all landmarks are observable from all
poses, may provide significant overestimates of the realized
complexity Ccoramp-

Several pruning strategies are evaluated here, all parame-
terized by pruning rate 7.

e rand: Random pruning, parameterized to remove a
similar number of observations to the other methods.

e tgreedy: Greedy algorithm of [6] which attempts to
maximize the number of spanning trees in the graph.

e kf: Simple keyframing strategy which represents only
every r-th timestep in the optimization.

e dec: Decimation strategy described in Section [III-C|
which always accepts the first available observation of
each landmark.

As a comparison, results with no pruning are shown as full.
In all cases, only visual observations (pose-landmark edges)
are considered for pruning.

The goal of these experiments is to the verify the com-
plexity reduction estimates derived in the previous section.
As expected, the predicted complexity reduction of both
keyframing and decimation methods are well-supported by
the experimental results shown in Figures [7] and [§] In
each case, the plotted dashed lines represent a complexity
“prediction” produced by a simple scaling of the elimination
complexity of full. For keyframing this prediction is scaled
by 1/r3, and for decimation by 9/72, based on () and
(@) respectively. As can be seen, the realized complexity
follows this prediction well, verifying the method of analysis
presented in Section

The average iISAM2 update computation times are in Table
[ which combined with the EC plots in Figures [7] and [§]
shows that the savings achieved by rand and tgreedy are
relatively small and do not scale with increased pruning. In
contrast, dec and kf provide significant reduction at r = 4
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Fig. 7: Elimination complexity during a simulated SLAM experiment with » = 4. [left] All three pruning methods maintain a
similar number of factors in the graph. [right] In all cases, elimination complexity grows over time. Though the three pruned
estimators maintain a similar number of measurement factors, they have significantly different elimination complexities.
Because rand prunes without any regard for global structure, it produces underwhelming EC reduction compared to dec
or kf. The dashed lines demonstrate the predicted complexities for dec and k£, based on scalings of full derived from
() and (8). The actual complexities match these predictions well, validating the method of analysis presented in this paper.
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Fig. 8: Elimination complexity during a simulated SLAM experiment with = 6. The trends here are very similar to those

demonstrated in Figure m
and continue to improve at r = 6.

IV. CONCLUSIONS

Many existing measurement selection techniques focus
narrowly on edge count reduction [4], [6], [10] or locally-
sparse structure [8], [9]. By neglecting global structure, these
methods can produce limited computation reduction even
after aggressive sparsification. This paper proposes the use
of elimination complexity (EC) as a link between graph
structure and computation, and demonstrates how simple
heuristics like decimation and keyframing produce dramatic
computation savings.

As an analytic tool, the EC framework is used to predict
asymptotic computation reduction scaling with r2/9 and 73

for decimation and keyframing, respectively. These predic-
tions are confirmed numerically, and shown to far outperform
structurally naive methods which remove the same number
of edges. In addition to the fact that many sophisticated
selection approaches can be computationally impractical for
high-rate, realtime use, this demonstrates that they also may
not be as effective at reducing computation as these much
simpler policies.

Ultimately, this motivates the search for new measurement
selection strategies which directly and efficiently reduce EC,
rather than focusing naively on edge count or local sparsifi-
cation. As was seen here, EC itself can be used to evaluate
existing strategies, and provides the link between graph
structure and computation that to the best of the authors’



TABLE I: iISAM2 performance in simulation shown in Figure
@ Note that rand and tgreedy fail to improve mean
iSAM?2 update times significantly between » = 4 and r = 6,
while dec and kf continue to reduce computation with
increased pruning.

Method Avg. iISAM2 update time [s]
full 0.205
rand4 0.154
tgreedy4 0.138
dec4 0.087
kf4 0.023
rand6 0.131
tgreedy6 0.137
dec6 0.062
kf6 0.012

knowledge has been lacking from the SLAM literature.
Because it can be evaluated from and updated alongside
the iISAM2 Bayes Tree, EC can also be applicable for
adaptation of computation-management policies online. For
example, if a robot using a sliding-window or fixed-lag esti-
mator [3], [5], [20] enters a new environment with relatively
fewer landmarks, the active SLAM graph will decrease in
complexity. By monitoring EC, the estimator could choose
to increase the window length to fill its computation budget
and ensure sufficient landmarks are tracked at all times.
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