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Motion Planning Among Dynamic, Decision-Making Agents
with Deep Reinforcement Learning

Michael Everett‡, Yu Fan Chen†, and Jonathan P. How‡

Abstract— Robots that navigate among pedestrians use col-
lision avoidance algorithms to enable safe and efficient opera-
tion. Recent works present deep reinforcement learning as a
framework to model the complex interactions and cooperation.
However, they are implemented using key assumptions about
other agents’ behavior that deviate from reality as the number
of agents in the environment increases. This work extends
our previous approach to develop an algorithm that learns
collision avoidance among a variety of types of dynamic agents
without assuming they follow any particular behavior rules.
This work also introduces a strategy using LSTM that enables
the algorithm to use observations of an arbitrary number of
other agents, instead of previous methods that have a fixed
observation size. The proposed algorithm outperforms our pre-
vious approach in simulation as the number of agents increases,
and the algorithm is demonstrated on a fully autonomous
robotic vehicle traveling at human walking speed, without the
use of a 3D Lidar.

I. INTRODUCTION

Robots that navigate among pedestrians will observe many
human behaviors, such as cooperation or obliviousness. Not
only are pedestrians moving obstacles, but they are constantly
making decisions that a robot can only partially observe.
This work addresses the collision avoidance problem of
an agent operating in a world of other decision-making
agents, particularly considering the robot-pedestrian domain.
A fundamental question in decentralized collision avoidance
algorithms is: what does the agent know and assume about
other agents’ belief states, policies, and intents? Without
communication between agents, these properties are not
directly measurable, but it is possible that they can be inferred.

The assumptions an agent makes about the behavior of
other agents affects how it decides which action to take. In
the simplest case, agents assume other agents are static, and
re-plan quickly enough to avoid collisions. Another approach
assumes other agents are dynamic obstacles, but with a
constant velocity [1]. Further, agents can assume other agents
are decision-makers, whose velocities may change at any
moment according to known or unknown policies (decision
rules). Even if the robot knew the pedestrians’ decision rule,
because the other agents’ intents are unknown (e.g. goal
destination), it is impossible to perfectly predict how other
non-communicating decision-making agents (e.g. pedestrians)
will respond to an agent’s decisions. Thus, instead of trying to
explicitly predict other agents’ behaviors, recent approaches

‡Aerospace Controls Laboratory, Massachusetts Institute of Technology,
77 Massachusetts Ave., Cambridge, MA, USA. {mfe, jhow}@mit.edu

†Oculus Research, Redmond, WA, USA
steven.chen2@oculus.com

Fig. 1: A robot navigates among pedestrians. Robots use onboard
sensors to perceive the environment and run collsion avoidance
algorithms to maintain safe and efficient operation.

have used reinforcement learning (RL) to model the complex
interactions and cooperation among agents [2]–[7].

Although learning-based methods have been shown to
perform well in this domain, existing approaches make subtle
assumptions about other agents such as homogeneity [5] or a
specific motion model over short timescales [2], [3]. In this
work, we extend our previous algorithms [2], [3] to learn a
collision avoidance policy without assuming that other agents
follow any particular behavior model.

Another key challenge in collision avoidance is that the
number of other agents in the environment varies, however
the typical feedforward neural networks used in this domain
require a fixed-dimension input. Existing strategies define a
maximum number of agents that the network can observe, or
use raw sensor data as the input. This work instead uses an
idea from Natural Language Processing [8], [9] to encode the
varying size state of the world (e.g. positions of other agents)
into a fixed-length vector, using long short-term memory
(LSTM) [10] cells at the network input. This enables the
algorithm to make decisions based on an arbitrary number
of other agents in the robot’s vicinity.

The main contributions of this work are (i) an extension
to our collision avoidance algorithm that does not assume
the behavior of other decision-making agents, (ii) a strategy
that enables the algorithm to use observations of an arbitrary
number of other agents (iii) simulation results demonstrating
the benefits of our new framework, and (iv) demonstration
of the algorithm on a robot among pedestrians, without the
use of a 3D Lidar. The software has been released as an
open-source ROS package cadrl ros1.

1https://github.com/mfe7/cadrl_ros
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II. BACKGROUND

A. Related Work

The problem of decentralized collision avoidance among
non-communicating, dynamic agents can be broadly classified
into reaction-based methods and trajectory-based methods -
many of which are non-learning based [2]. Reaction-based
methods use one-step interaction rules based on geometry
or physics to ensure collision avoidance, but are often short-
sighted in time. Trajectory-based methods compute plans
on longer timescale to produce smoother paths, but are
often computationally expensive or require knowledge of
unobservable states. Instead, some of our previous works on
collision avoidance use deep reinforcement learning [2], [3]
to learn a value function that encodes the expected time for
an agent to reach its goal from a given state. The expensive
operation of modeling the complex interactions is learned
in an offline training step, whereas the learned policy can
be queried quickly online, combining the benefits of both
classes of methods. This algorithm was demonstrated on a
robot navigating autonomously among pedestrians at human
walking speed in a wide variety of indoor and outdoor
environments. Cooperation is embedded in the learned value
function, and the algorithm compares possible actions by
querying the value of future states after an arbitrary forward
propagation of other agents.

Other deep RL approaches [5], [11], [12] learn to select
actions directly from raw sensor readings (either 2D laserscans
or images) with end-to-end training. The raw sensor approach
has the advantage that both static and dynamic obstacles
(including walls) can be fed into the network with a single
framework. However in real environments, it is useful to
extract an agent-level representation of the world from
multiple sensors (e.g. cameras and Lidar). For example, a
trash can and stationary person may look similar in a raw
laserscan return, but the person has the potential to move at
any moment, and the trash can will not become uncomfortable
if the robot gets too close. This agent-level understanding
of the world therefore has important implications for the
robot’s motion plans that are not captured in the agent-free
(end-to-end) framework.

To address the challenge of a variable number of agents in
the environment, one solution is to define a maximum number
of agents that the network can handle, and pad the observation
space if there are actually fewer agents in the environment.
This maximum number of agents is limited by the increased
number of network parameters (and therefore training time)
as more agents’ states are added. Another approach, using raw
sensor inputs, maintains a fixed size input, but still has the
same limitations. The approach in [13] is to learn to develop
an overhead map from a sequence of onboard camera views,
while also learning to plan in the generated overhead map
space, which was shown to work in static environments. For
dynamic environments, we do not know of a method to learn
from observations of an arbitrary number of agents, that can
also leverage the recent advances in multi-sensor semantic
labeling applied on a agent-by-agent basis.

B. Collision Avoidance with Deep RL (CADRL)

The multiagent collision avoidance problem can be for-
mulated as a sequential decision making problem in a
reinforcement learning framework [2], [3]. Denote the agent’s
state, st, its action, ut, and the state of another agent,
s̃t. The state vector is composed of an observable and
unobservable (hidden) portion, st = [sot , s

h
t ]. In the global

frame, observable states are the agent’s position, velocity,
and radius, so = [px, py, vx, vy, r] ∈ R5, and unobservable
states are the goal position, preferred speed, and orientation2,
sh = [pgx, pgy, vpref , ψ] ∈ R4. The action is a speed and
heading angle, ut = [vt, ψt] ∈ R2. A policy, π : (st, s̃t

o) 7→
ut, is developed with the objective of minimizing expected
time to goal E[tg] while avoiding collision with other agents,

argmin
π(s, s̃o)

E [tg|s0, s̃
o
0, π] (1)

s.t. ||pt − p̃t||2 ≥ r + r̃ ∀t (2)
ptg = pg (3)
pt = pt−1 + ∆t · π(st−1, s̃

o
t−1)

p̃t = p̃t−1 + ∆t · π(s̃t−1, s
o
t−1), (4)

where (2) is the collision avoidance constraint, (3) is the goal
constraint, (4) is the agents’ kinematics, and the expectation
in (1) is with respect to the other agent’s unobservable states
(intents) and policy. An RL framework can be used to solve
for the policy, by considering an agent’s joint configuration
with its neighbor, sjn = [s, s̃o]. The agent is penalized for
colliding with others, and rewarded for reaching its goal
position, as described by a reward function, Rcol(sjn, u).

Previous approaches [2], [3] solved this RL problem by
learning an approximation to the optimal value function,
V ∗(sjnt ), which encodes an estimate of the expected time to
goal for a particular joint configuration state. But, a value
function of the current state can not be directly implemented
as a policy. For RL problems where the subsequent state
is a known function of current state and action (e.g. chess),
the optimal policy, π∗(sjnt ) can be generated from V ∗(sjnt ),
according to:

π∗(sjnt ) = argmax
u

Rcol(st,u)+

γ∆t·vpref
∫
sjnt+1

P (sjnt+1|s
jn
t ,u)V ∗(sjnt+1)dsjnt+1. (5)

This rule predicts the next state, sjnt+1, from the current state,
sjnt , for each potential action, u (potentially a stochastic
process), and selects u that leads to the state with highest
value, V ∗(sjnt+1).

However in the collision avoidance domain, other agents’
policies and intents are unknown, which means the state-
transition dynamics, P (sjnt+1|s

jn
t ,u), are also unknown. Pre-

vious approaches avoid the integral in (5), by assuming that
other agents continue their current velocities, v̂t, for a duration

2Other agents’ positions and velocities are straightforward to estimate
with a 2D Lidar, unlike human body orientation



∆t, meaning the policy can be extracted from the value
function

ŝjnt+1,u ← [propagate(st,∆t · u), propagate(s̃ot ,∆t · v̂t)]

(6)

π∗
CADRL(sjnt ) = argmax

u
Rcol(st,u) + γ∆t·vprefV ∗(ŝjnt+1,u)

(7)

The introduction of parameter ∆t leads to a difficult trade-
off. Due to the the approximation of the value function in a
deep neural network (DNN), a sufficiently large ∆t is required
such that each propagated sjnt+1,u is far enough apart, which
ensures V ∗(sjnt+1,u) is not dominated by numerical noise in
the network. The implication of large ∆t is that agents are
assumed to follow a constant velocity for a significant amount
of time, which neglects the effects of cooperation/reactions
to an agent’s decisions. As the number of agents in the
environment increases, this constant velocity assumption is
less likely to be valid. Agents do not actually reach their
propagated states because of the multi-agent interactions.

In addition to not capturing decision-making behavior of
other agents, our experiments suggest that ∆t is a crucial
parameter to ensure convergence while training the DNNs
in the previous algorithms. If ∆t is set too small or large,
the training does not converge. A value of ∆t = 1 sec was
experimentally determined to enable convergence, though
this number does not have much theoretical rationale. The
challenge of choosing ∆t motivated the use of a different
RL framework.

C. Policy-Based Learning

Therefore, this work considers RL frameworks which
generate a policy that an agent can execute without any
arbitrary assumptions about state transition dynamics. A
recent actor-critic algorithm called A3C [14] uses a single
DNN to approximate both the value (critic) and policy (actor)
functions, and is trained with two loss terms

fv = (Rt − V (sjnt ))2, (8)

fπ = log π(ut|sjnt )(Rt − V (sjnt )) + β ·H(π(sjnt )), (9)

where (8) trains the network’s value output to match the future
discounted reward estimate, Rt =

∑k−1
i=0 γ

irt+i+γ
kV (sjnt+k),

over the next k steps, just as in CADRL. For the policy
output in (9), the first term penalizes actions which have high
probability of occurring (log π) that lead to a lower return
than predicted by the value function (R−V ), and the second
term encourages exploration by penalizing π’s entropy with
tunable constant β.

In A3C, many threads of an agent interacting with an
environment are simulated in parallel, and a policy is trained
based on an intelligent fusion of all the agents’ experiences.
The algorithm was shown to learn a policy that achieves super-
human performance on many video games. Its implementation
was modified by [15] to efficiently use GPUs to maximize
the number of training experiences processed per second -
the so-called GA3C learns an order of magnitude faster than

A3C in many cases. As DNNs can be efficiently trained
and evaluated in batches on a GPU, a main contribution
of GA3C is the use of queues for training experiences and
action predictions, so that the GPU always has a batch of
information to process. This requires small modifications,
related to the lag between experience and training induced
by queuing, to the learning Equations (8) and (9). Our work
builds on open-source GA3C implementations [15], [16].

III. APPROACH

A. GA3C-CADRL

Recall the RL training process seeks to find the optimal
policy, π : (st, s̃t

o) 7→ ut, which maps from an agent’s
observation of the environment to a probability distribution
across actions. We use a local coordinate frame as in [2], [3],
and separate the state of the world in two pieces: information
about the agent itself, and everything else in the world.
Information about the agent can be represented in a small,
fixed number of variables. The world, on the other hand, can
be full of any number of other objects, or even completely
empty. Specifically, there is one s vector about the agent
itself, and one s̃o vector per other agent in the vicinity:

s = [dg, vpref , ψ, r] (10)

s̃o = [p̃x, p̃y, ṽx, ṽy, r̃, d̃a, r̃ + r] , (11)

where dg = ||pg − p||2 is the agent’s distance to goal, and
d̃a = ||p− p̃||2 is the distance to the other agent.

The agent’s action space is composed of a speed and
change in heading angle. It is discretized into 11 actions:
with a speed of vpref there are 6 headings evenly spaced
between ±π/6, and for speeds of 1

2vpref and 0 the heading
choices are [−π/6, 0, π/6]. These actions are chosen to mimic
real turning constraints of robotic vehicles.

The sparse reward function is defined as

Rcol(s
jn) =


1 if p = pg

−0.25 if dmin < 0

−0.1 + 0.05 · dmin if 0 < dmin < 0.2

0 otherwise

(12)

where dmin is the distance to the closest other agent. Note
that we use discount γ < 1 to encourage efficiency instead
of a step penalty.

This RL problem formulation is solved with GA3C in a
process we call GA3C-CADRL (GPU/CPU Asynchronous
Advantage Actor-Critic for Collision Avoidance with Deep
RL). As opposed to many RL problems that involve a single
agent exploring in an environment, the collision avoidance
domain often has several agents using the learned policy in
each training episode. Since experience generation is one of
the time-intensive parts of training, this work extends GA3C
to learn from multiple agents’ experiences each episode.
Training batches are filled with a mix of agents’ experiences
({sjnt ,ut, rt} tuples) to encourage policy gradients that
improve the joint expected reward of all agents. The extended
implementation accounts for agents reaching their goals at
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Fig. 2: LSTM unrolled to show each input. At each decision step,
the agent feeds one observable state vector, s̃oi , for each nearby
agent, into a LSTM cell sequentially. LSTM cells store the pertinent
information in the hidden states, hi. The final hidden state, hn,
encodes the entire state of the other agents in a fixed-length vector,
and is then fed to the feedforward portion of the network. The order
of agents is sorted by decreasing distance to the ego agent, so that
the closest agent has the most recent effect on hn.
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Fig. 3: Network Architecture. Observable states of nearby agents, s̃oi ,
are fed sequentially into the LSTM, as unrolled in Fig. 2. The final
hidden state is concatenated with the agent’s own state, s, to form
the golden vector, se. For any number of agents, se contains the
agent’s knowledge of its own state and the state of the environment.
The encoded state is fed into two fully-connected layers (FC). The
outputs are a scalar value function (green, top) and policy represented
as a discrete probability distribution over actions (green, bottom).

different times, and ignores experiences of agents running
other policies (e.g. non-cooperative agents).

B. Handling a Variable Number of Agents

Recall that one key limitation of many learning-based
collision avoidance methods is that the feedforward NNs
typically used require a fixed-size input. Convolutional and
max-pooling layers are useful for feature extraction and can
modify the input size, but still convert a fixed-size input
into a fixed-size output. Recurrent NNs, where the output
is produced from a combination of a stored cell state and
an input, accept an arbitrary-length sequence to produce a
fixed-size output. Long short-term memory (LSTM) [10]
is recurrent architecture with advantageous properties for
training3.

Although LSTMs are often applied to time sequences
of data (e.g. pedestrian motion prediction [17]), this paper
leverages their ability to encode a sequence of information
that is not time-dependent. In this work, we treat the variable
number of s̃o vectors as a sequence of inputs that encompass
everything the agent knows about the rest of the world. At
each decision step, the agent feeds each s̃o into a LSTM cell

3In practice, TensorFlow’s LSTM implementation requires a known
maximum sequence length, but this can be set to something bigger than the
number of agents agents ever expected (e.g. 20)

sequentially, as in Fig. 2. That is, the LSTM initially has an
empty state and accepts s̃o1 to generate h1, then feeds h1 and
s̃o2 to produce h2, and so on. As agents’ states are fed in, the
LSTM stores the pertinent information in its hidden state, and
forgets the less important parts of the input. After inputting
the final agent’s state, we can interpret the LSTM’s final
hidden state as a fixed-length, encoded state of the world, for
that decision step.

Given a sufficiently large hidden state vector, there is
enough space to encode a large number of agents’ states
without the LSTM having to forget anything relevant. In the
case of a large number of agent states, to mitigate the impact
of the agent forgetting the early states, the states are fed in
reverse order of distance to the agent, meaning the closest
agents (fed last) should have the biggest effect on the final
hidden state, hn.

The idea is visualized in Fig. 3, where the blue box labeled
is the agent’s own state, s, and the group of blue boxes is the
n other agents’ observable states, s̃oi . After passing the n other
agents’ observable states into the LSTM, the agent’s own state
is concatenated with hn, and this new vector becomes the
input to a typical feedforward DNN with 2 fully-connected
layers. The network produces two output types: a scalar state
value, and policy composed of a probability for each action in
the discrete action space. During the backpropagation training
process, the LSTM’s weights are updated to learn how to
represent the variable number of other agents in a fixed-length
h vector.

C. Training the Policy

The original CADRL and SA-CADRL (Socially Aware
CADRL) algorithms used several clever tricks to enable
convergence when training the networks. Specifically, forward
propagation of other agent states for ∆t seconds was a critical
component that required tuning, but does not represent agents’
true behaviors. Other details include separating experiences
into successful/unsuccessful sets to focus the training on cases
where the agent could improve. The new GA3C-CADRL
formulation is more general, and does not require such
assumptions or modifications.

In this work, to train the model, the network weights
are first initialized in a supervised learning phase, which
converges in < 5 minutes. The initial training is done on a
large set of state-action-value pairs from an existing CADRL
solution, where the network loss combines square-error loss
on the value output and cross-entropy loss on the policy
output. This training set is released to the public to aid in
network initialization.

The initialization step is necessary to enable any possibility
of later generating useful RL experiences (non-initialized
agents wander randomly and probabilistically almost never
obtain positive reward). Agents running the initialized GA3C-
CADRL policy reach their goals reliably when there are no
interactions with other agents. However, the policy after this
supervised learning process still performs poorly in collision
avoidance. This observation contrasts with CADRL, in which
the initialization step was sufficient to learn a policy that



performs comparably to existing reaction-based methods, due
to relatively-low dimension value function combined with
manual propagation of states. Key reasons behind this contrast
are the reduced structure in the GA3C-CADRL formulation
(no forward propagation), and that the algorithm is now
learning both a policy and value function (as opposed to just
a value function), since the policy has an order of magnitude
higher dimensionality than a scalar value function.

To improve the solution with RL, experiences are gen-
erated from simulations of randomly-generated scenarios.
These scenarios include several agents trying to get to their
randomly-positioned goals, running a random assortment
of policies (Non-Cooperative, Zero Velocity, or the learned
GA3C-CADRL policy at that iteration), but only experiences
from agents using the GA3C-CADRL policy are fed back to
the trainer. Agent parameters vary between r ∈ [0.2, 0.8]m,
and vpref ∈ [0.5, 2.0]m/s, chosen to be near pedestrian
values.

An important benefit of the new framework is that the
policy can be trained on scenarios involving any number of
agents, whereas the maximum number of agents had to be
defined ahead of time with CADRL/SA-CADRL4. This work
begins the RL phase with 2-4 agents in the environment,
so that the policy learns the idea of collision avoidance in
reasonably simple domains. Upon convergence, a second RL
phase begins with 2-10 agents in the environment.

IV. RESULTS

A. Computational Details

The DNNs in this work were implemented with Tensor-
Flow [18] in Python. A query of the new GA3C-CADRL
network only requires the current state vector, while the
previous approach queried the value of a batch of future
propogated states to choose which action is best. Accordingly,
this implementation is much more efficient than the networks
in [2], [3]: a single query takes on average 0.4-0.5ms on a
i7-7700K CPU, ∼20x faster than before. Note that a GPU is
not required for fast execution of a trained model.

In total, the RL converges in about 12 hours (after 2 · 106

episodes) for the multi-agent, LSTM network on a computer
with an NVIDIA GTX1060 graphics card. A limiting factor
of the training time is the low learning rate required for stable
training. Recall that the previous approach took 8 hours to
train a 4-agent value network, but now in a similar amount
of time (albeit using many more episodes) the network learns
both the policy and value function, and without being provided
any structure about the other agents behaviors. The increased
number of episodes required can also be attributed to the stark
contrast in initial policies upon starting RL: CADRL was
fine-tuning a decent policy, whereas GA3C-CADRL learns
collision avoidance entirely in the RL phase.

After initialization, the agents receive on average 0.15
reward per episode. After RL phase 1 (converges in 1.5 · 106

episodes), they average 0.90 reward per episode. When RL
phase 2 begins, the average reward drops to 0.85 initially

4Experiments suggest this number should be below about 6 for convergence

since the domain becomes much harder (nmax increases from
4 to 10), and then increases until converging at 0.93 (after
a total of 1.9 · 106 episodes). Reward is computed as the
sum of the rewards accumulated in each episode, averaged
across all GA3C-CADRL agents in that episode. Reward is
just a measure of success/failure, as it does not include the
discount factor and thus is not indicative of time efficiency.
Because the maximum receivable reward on any episode is
1, an average reward < 1 implies there are some collisions
(or other penalized behavior) even after convergence. This
is expected, as agents sample from their policy distributions
when selecting actions in training, so there is always a non-
zero probability of choosing a sub-optimal action in training.
Later, when executing a trained policy, agents select the action
with highest probability.

Key parameter values include: learning rate Lr = 2 · 10−5,
entropy coefficient β = 1 · 10−4, discount γ = 0.97, training
batch size bs = 100, and we use the Adam optimizer [19].

B. Simulation Results

Although the original 2-agent CADRL algorithm [2] was
also shown to scale to multi-agent scenarios, its minimax
implementation is limited in that it only considers one
neighbor at a time as described in [3]. For that reason, this
work focuses the comparison against SA-CADRL which has
better multi-agent properties - the policy used for comparison
is the same one that was used on the robotic hardware in [3].
That particular policy was trained with some noise in the
environment (p = pactual + σ) which led to slightly poorer
performance than the ideally-trained network as reported in
the results of [3], but more acceptable hardware performance.

The version of the new GA3C-CADRL policy after RL
phase 2 is denoted GA3C-CADRL-10, as it was trained in
scenarios of up to 10 agents. To create a more fair comparison
with SA-CADRL which was only trained with up to 4 agents,
let GA3C-CADRL-4 denote the policy after RL phase 1
(which only involves scenarios of up to 4 agents). Recall
GA3C-CADRL-4 can still be naturally implemented on n > 4
agent cases, whereas SA-CADRL can only accept up to 3
nearby agents’ states regardless of n.

1) n ≤ 4 agents: The previous approach (SA-CADRL) is
known to perform well on scenarios involving a few agents
(n ≤ 4), as its trained network can accept up to 3 other
agents’ states as input. Therefore, the goal is to confirm that
the new algorithm can still perform comparably. This is not a
trivial check, as the new algorithm is not provided with any
structure/prior about the world’s dynamics, so the learning is
more difficult.

Trajectories are visualized in Fig. 4: the top row shows
scenarios with agents running the new policy (GA3C-CADRL-
10), and the bottom row shows agents in identical scenarios
but using the old policy (SA-CADRL). The colors of the
circles (agents) lighten as time increases and the circle
size represents agent radius (not constant). The trajectories
generally look similar for both algorithms, with SA-CADRL
being slightly more efficient. A rough way to assess efficiency



(a) GA3C-CADRL trajectories with n ∈ [2, 3, 4] agents

(b) SA-CADRL trajectories with n ∈ [2, 3, 4] agents

Fig. 4: Scenarios with n ≤ 4 agents. The top row shows agents executing GA3C-CADRL-10, and the bottom row shows same scenarios
with agents using SA-CADRL. Circles lighten as time increases, and the numbers represent the time at agent’s position. GA3C-CADRL
agents are slightly less efficient, as they reach their goals slightly slower than SA-CADRL agents. However, the overall behavior is similar,
and the more general GA3C-CADRL framework generates desirable behavior without many of the assumptions from SA-CADRL.

in these plotted paths is time indicated when the agents reach
their goals.

Although it is easy to pick out interesting pros/cons for any
particular scenario, it is more useful to draw conclusions after
aggregating over a large number of randomly-generated cases.
Thus, we created test sets of 500 random scenarios, defined by
(pstart, pgoal, r, vpref ) per agent, for many different numbers
of agents. Each algorithm is evaluated on the same 500 test
cases. The comparison metrics are the percent of cases with
a collision, percent of cases where an agent gets stuck and
doesn’t reach the goal, and of the remaining cases where all
algorithms were successful, the average extra time to goal,
t̄eg beyond a straight path at vpref 5. These metrics provide
measures of efficiency and safety.

Aggregated results in Table I suggest that both of the
new GA3C-CADRL policies perform comparably to, though
slightly worse than, SA-CADRL with n ≤ 4 agents in the
environment. SA-CADRL has the lowest t̄eg, and the agents
rarely fail in these relatively simple scenarios. The difference
between GA3C-CADRL-4 and GA3C-CADRL-10 is small
for n ≤ 4, which makes sense because GA3C-CADRL-
4 converged after being trained in scenarios involving few
agents. The minor improvement could be explained by GA3C-
CADRL-10’s LSTM weights, which would have seen more
examples of various numbers of agents, and therefore are
better trained to represent n observations in a fixed-size h
vector.

2) n > 4 agents: A real robot will likely encounter more
than 3 pedestrians at a time in a busy environment. Recall
SA-CADRL cannot accept more than 3 other agents’ states

5This evaluation could be slightly unfair to the algorithm that has fewer
failures, because it ignores potentially highly efficient cases for one algorithm
that led to failures by another algorithm

Fig. 5: Robot hardware. The compact, low-cost (< $1000) sensing
package uses a single 2D Lidar and 3 Intel Realsense R200 cameras.
The total sensor and computation assembly is less than 3 inches
tall, leaving room for cargo.

as input, so the approach taken here is to supply only the
closest 3 agents’ states in crowded scenarios. The number
of agents is not limited in GA3C-CADRL, as any number
of agents can be fed into the LSTM and the final hidden
state can still be taken as a representation of the entire world
configuration.

Even in n > 4-agent environments, interactions still often
only involve a couple of agents at a time. Some specific cases
where there truly are many-agent interactions are visualized
in Fig. 6. In the 6-agent swap (left), GA3C-CADRL agents
exhibit interesting multi-agent behavior: the orange and yellow
agents form a pair while passing the blue and purple agents.
This phenomenon leads to a particularly long path for yellow
and purple, but also allows the outside agents, green and
light blue, to not deviate as much from a straight line. In
contrast, in SA-CADRL the green agent starts moving right
and downward, until dark blue becomes one of the closest 3
neighbors. Green then makes an escape maneuver and passes
purple on the outside. In this case, SA-CADRL agents reach
the goal more quickly than GA3C-CADRL agents, but the



interesting multi-agent behavior is a result of GA3C-CADRL
agents having the capacity to observe all of the other 5 agents
each time step, rather than SA-CADRL which just uses the
nearest 3 neighbors.

GA3C-CADRL agents successfully navigate the 10- and 20-
agent circles (antipodal swaps), whereas several SA-CADRL
agents get stuck or collide6

Statistics across 500 random cases of 5,6,8, and 10 agents
are listed in Table I. The performance gain by using GA3C-
CADRL becomes stronger as the number of agents in the
environment increases. The performance of each algorithm
is similar when n = 5, but a large change occurs at n = 6,
with a 5x reduction in failed cases and a shorter t̄eg for
GA3C-CADRL-10 agents over SA-CADRL. GA3C-CADRL-
10 outperforms the other algorithms when n = 8 and n =
10 as well. GA3C-CADRL-10’s percent of success remains
above 95% across any n < 10, whereas SA-CADRL drops
to under 80%. It is worth noting that SA-CADRL agents’
failures are more often a result of getting stuck rather than
colliding with others, however neither outcomes are desirable.
The domain size of n = 10 agent scenarios is set to be larger
(6x6 vs. 4x4 m) than cases with smaller n to demonstrate
cases where n is large but the world is not necessarily more
densely populated with agents. Accordingly, GA3C-CADRL
agents’ probability of success is actually slightly better with
n = 10 vs. n = 8, even though there are more agents.

The results comparing just the two GA3C-CADRL policies
demonstrate the benefit of the second RL training phase, as
there is a large decrease in failed cases and a slight decrease
in t̄eg after training and converging in every one of the n ≤ 10
environments. The ability for GA3C-CADRL to retrain in
complex scenarios after convergence in simple scenarios, and
yield a significant performance increase, is a key benefit of
the new framework. This result suggests there could be other
types of complexities in the environment (beyond increasing
n) that the general GA3C-CADL framework could also learn
about after being initially trained on simple scenarios.

C. Hardware Experiment

A GA3C-CADRL policy implemented on a ground robot
demonstrates the algorithm’s performance among pedestrians.
We designed a compact, low-cost (< $1000) sensing suite
with sensors placed as to not limit the robot’s cargo-carrying
capability (Fig. 5). The sensors are a 2D Lidar (used for
localization and obstacle detection), and 3 Intel Realsense
R200 cameras (used for pedestrian classification and obstacle
detection). Pedestrian positions and velocities are estimated
by clustering the 2D Lidar’s scan [20], and clusters are labeled
as pedestrians using a classifier [21] applied to the cameras’
RGB images [22]. Further details are in [23].

The lack of 3D Lidar is noteworthy, as it reduces the
sensing suite’s pricetag by an order of magnitude, yet
also increases the uncertainty in the robot’s knowledge

6Note there is not perfect symmetry in these SA-CADRL cases: small
numerical fluctuations affect the choice of the closest agents, leading to
slightly different actions for each agent. And after a collision occurs with a
pair of agents, symmetry will certainly be broken for future time steps.

about the state of the environment, particularly due to a
reduction in perception range and accuracy. The robot is
still able to safely navigate in many challenging scenarios.
Future work will involve further analysis of the robot in
more complicated environments to quantify the change in
performance associated with the new algorithm and sensors.

A hardware video is included with this manuscript.

V. CONCLUSION

This work presented a collision avoidance algorithm,
GA3C-CADRL, that is trained in simulation with deep
reinforcement learning without requiring any knowledge of
other agents’ dynamics. It also proposed a strategy to enable
the algorithm to select actions based on observations of
an arbitrary number of nearby agents, using LSTM at the
network’s input. The new approach is shown to outperform the
existing method as the number of agents in the environment
grows. These results demonstrate the algorithm’s ability
to learn the problem’s structure without it being explicity
enforced, and support the use of LSTMs to encode a large
number of agent states into a fixed-length representation of
the world. The new algorithm is also implemented on a small
ground robot that is shown to navigate at human walking
speed among pedestrians, without the use of a 3D Lidar.
Future work will leverage this paper’s new, more general
formulation to study the effects of signaling intent more
explicitly through an agent’s choice of action.
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