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SUMMARY

Learning valence-based responses to favorable and unfavorable options requires judgments of the 

relative value of the options, a process necessary for species survival. We have found, using 

engineered mice, that circuit connectivity and function of the striosome compartment of the 

striatum are critical for this type of learning. Calcium imaging during valence-based learning 

exhibited a selective correlation between learning and striosomal, but not matrix, signals. This 

striosomal activity encoded discrimination learning and was correlated with task engagement, 

which could, in turn, be regulated by chemogenetic excitation and inhibition. Striosomal function 

during discrimination learning was disturbed with aging, and severely so in a mouse model of 

Huntington’s disease. Anatomical and functional connectivity of parvalbumin-positive, putative 

fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes 

compared to matrix in mice that learned. Computational modeling of these findings suggests that 

FSIs can modulate striosomal signal-to-noise ratio, crucial for discrimination and learning.
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Graphical Abstract

eTOC blurb

Friedman and Hueske et al. find that specialized regions of the striatum, a key part of the brain’s 

movement and motivation control system, are essential for learning about the values of good and 

bad outcomes of decisions. The learning signals in these striosomes, unlike in the surrounding 

matrix, scale according to subjective value and are vulnerable to decline with aging and 

neurodegenerative disorders. Striosomal signal-to-noise ratio improves with learning, and local 

inhibition, via parvalbumin-positive interneurons.

Keywords

Corticostriatal; approach-avoidance; cost-benefit; decision-making; utility; subjective value; 
motivation; parvalbumin interneurons; VGluT1; excitation-inhibition balance

INTRODUCTION

The striatum is a key input-output structure of the basal ganglia and is the origin of 

movement- and motivation-modulating output circuits affected in disorders including 

Parkinson’s disease, Huntington’s disease (HD) and a remarkable range of other disorders 

affecting motoric, affective, and cognitive functions (Alexander and Crutcher, 1990; Bates et 
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al., 2015; Gittis and Kreitzer, 2012; Gleichgerrcht et al., 2010; Nelson and Kreitzer, 2014). 

Striatal neurons have multiple phenotypes including principal projection neurons (SPNs), 

subdivided into dopamine D1 receptor-expressing (direct pathway) and dopamine D2 

receptor-expressing (indirect pathway) neurons, and multiple interneuronal subtypes 

(Kreitzer and Berke, 2011; Miyamoto et al., 2018; Surmeier et al., 2007; Tepper and Bolam, 

2004). A prominent second dimension of striatal organization is represented by its 

neurochemically distinct compartments, distinguished by a labyrinthine striosome 

compartment embedded in a larger surrounding matrix compartment (Brimblecombe and 

Cragg, 2017; Cox and Witten, 2019; Crittenden and Graybiel, 2011; Graybiel and Ragsdale, 

1978). These compartments, the main focus of our study, are the least well understood of 

these striatal subdivisions, with only emerging studies of their functions (Bloem et al., 2017; 

Friedman et al., 2017; Friedman et al., 2015a; McGregor et al., 2019; Xiao et al., 2020; 

Yoshizawa et al., 2018). It is known, however, that striosomes and matrix each have distinct 

patterns of development (Graybiel and Hickey, 1982; Kelly et al., 2018; Lanca et al., 1986; 

Matsushima and Graybiel, 2020), neurotransmitter expression (Graybiel, 1995), input-output 

connections, and single-nucleus mRNA signatures identified by snRNA-seq (Gokce et al., 

2016; Märtin et al., 2019; Saunders et al., 2018).

Critical evidence suggests that striosomal SPNs (sSPNs) project directly to dopamine-

containing neurons of substantia nigra pars compacta (SNpc) (Crittenden et al., 2016; Evans 

et al., 2020; Fujiyama et al., 2011; Watabe-Uchida et al., 2012) and also to lateral habenula 

(Hong et al., 2019; Rajakumar et al., 1993; Stephenson-Jones et al., 2013), both implicated 

in reinforcement signaling, reward-based learning, and behavioral choice (e.g., Hikosaka, 

2010; Schultz, 2016), as well as the impetus to move (e.g., da Silva et al., 2018; Howe and 

Dombeck, 2016). Moreover, striosomes receive inputs from cortical and subcortical regions 

related to the limbic system (Crittenden and Graybiel, 2011; Eblen and Graybiel, 1995). 

These remarkable circuit connections of striosomes make them well-placed to influence 

value-related learning and decision-making modulated by motivation. Available evidence 

suggests that striosomes and striosome-based circuits are differentially implicated in 

reinforcement-related updating paradigms (Bloem et al., 2017; Yoshizawa et al., 2018), and 

that they influence cost-benefit conflict decision-making in both non-human primates 

(Amemori and Graybiel, 2012; Amemori et al., 2018; Amemori et al., 2020) and rodents 

(Friedman et al., 2017; Friedman et al., 2015a).

These studies were performed in well-trained subjects, leaving it unclear what functions 

striosomes might perform during the process of learning how to decide in the face of 

potential rewarding and costly outcomes, a central focus here. Such functions are susceptible 

to decline with aging and in age-related neurodegenerative disorders, but again, little is 

known about the relative contributions of striosomes and matrix to these impairments. 

Evidence from studies of postmortem brains of HD patients with early onset and with 

histories of mood abnormalities (Hedreen and Folstein, 1995; Tippett et al., 2007) has 

implicated differential striosomal vulnerability. In addition, the ability to develop effective 

decision-making strategies based on expected value not only declines with age (Tymula et 

al., 2013), but also in the wake of neurodegenerative disorders, including in HD 

(Gleichgerrcht et al., 2010; Perry and Kramer, 2015; Walker, 2007).
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Here, we investigated the neurobiology of decision-making during valence-discriminaton 

learning across healthy aging and in a mouse model of HD relying on mouse engineering 

and a combination of functional, behavioral and anatomical methods. We further tracked the 

activity of striatal microcircuits interconnecting striosomes including striatal parvalbumin 

(PV) interneurons (Friedman et al., 2017; Friedman et al., 2015a; Gittis and Kreitzer, 2012) 

known to be affected in HD and HD models (Cepeda et al., 2013; Holley et al., 2019; 

Indersmitten et al., 2015; Lallani et al., 2019; Reiner et al., 2013). Our findings demonstrate 

that striosomal circuits, modulated by putative PV interneurons, underpin the capacity for 

reinforcement-driven valence discriminaton learning and engagement under normal 

conditions and that these circuits are differentially vulnerable through the course of aging 

and in an HD context.

RESULTS

Striosomal Activity, but Not Matrix Activity, Is Shaped by Discrimination Learning

In the behavioral task (Figure 1A), each mouse was presented with one of two tones (4 or 8 

kHz for 2 s), indicating either reward delivery (tone 1; 4, 12 or 24 μl of 10% sucrose) or cost 

delivery (tone 2; 4, 40 or 400 lux of light from an LED panel facing the mouse), followed by 

a 1-s response period. Depending on the auditory cue, mice could maximize reward delivery 

by licking more during the response period to tone 1, and could minimize aversive light 

exposure by licking less during the response period to tone 2 during each trial of the 150-

trial sessions. As daily training proceeded, we estimated their response-period (RP) licking 

patterns, that is, the time between tone off and reinforcement. We required that the 

difference developed by individual mice in RP lick rate distributions between reward and 

cost trials meet significance (p < 0.05, Kolmogorov-Smirnov [K-S] test; Figures 1B, 1C, and 

S1A–S1C) to qualify as having met learning criterion. We measured these both across 

training and during reversal learning of cue-outcome contingencies (Figure S1D).

We used a standard signal detection theoretic (SDT) approach to evaluate discrimination as a 

measure of learning (d’), and response bias as a measure of task-engagement (C) (Figures 

1D and 1E) (e.g., Berditchevskaia et al., 2016b). We applied a hidden Markov model 

(HMM)-based approach, modified to accommodate the dynamic process of learning (e.g., 

Friedman et al., 2016) in order to assign, trial-by-trial, the behavior of mice as being in an 

engaged state or not in an engaged state (Figures 1F and S1E–S1H; see STAR Methods).

To tag and characterize striatal compartments (Figures S1I–S1T), we crossed inducible 

Mash1(Asc1)-CreER (Kim et al., 2011) or Dlx1-CreER (Taniguchi et al., 2011) mice with 

mice from a line encoding a Cre-dependent Flp recombinase (LSL-Flpo), and then we 

administered to the pregnant dams tamoxifen to induce Cre recombinase activity at 

embryonic timepoints targeting the birthdates of striosomal (~E11) or matrix (~E15) 

populations (Bloem et al., 2017; Kelly et al., 2018; Matsushima and Graybiel, 2020). We 

called these lines ‘striosome’ and ‘matrix’ lines, with the understanding that full selectivity 

cannot be achieved by these methods (STAR Methods). To perform photometric recordings 

of striosomal and matrix calcium transients, we injected the anterior dorsomedial striatum 

(DMS) of these striosomal or matrix birthdate-labeled mice with AAV8-EF1a-fDIO-

GCaMP6m (AAV8 viral vector encoding a Flp-dependent construct of genetically encoded 
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calcium indicator, GCaMP6m; Figures 1G–J and S1U–S1AF). We found that compartmental 

selectivity corresponded to ~75% of labeled cells or GCaMP6m-positive (+) cells residing in 

striosomes in striosome-labeled mice and ~85% residing in matrix in matrix-labeled mice 

(Figures 1I–J and S1S–S1W) indicating high compartmental selectivity for both mouse 

lines.

We simultaneously recorded neural activity and behavioral performance as mice acquired 

valence-based associations (Figures 1K–1P and S2A–S2L). We found no behavioral 

differences between striosomal and matrix mice in the acquisition of valence-based 

discrimination, task engagement, licking rates, or learning rates (Figures 1L, 1M and S2A–

S2C). Strikingly, however, in photometric recordings of striatal compartments across 

learning, in the majority of striosome mice, the frequency of striosomal Ca++ transients 

declined (27% decrease on average, p = 0.0024), but no such changes were detected in 

matrix mice (Figures 1O and 1P). By contrast, amplitudes of transients in striosomes were 

significantly higher than those in matrix (p < 0.0001; Figure S2M), and these amplitudes 

trended higher across learning (p = 0.09), unlike those in matrix (p = 0.25; Figures S2N and 

S2O). In striosome mice, but not in matrix mice, signal-to-noise ratio (SNR) of transients 

also increased with learning (p = 0.017; Figure S2P). These results demonstrated that 

striosomal signals were selectively modified during discrimination learning, with their 

numbers declining but their amplitudes increasing.

Striosomes, but Largely Not Matrix, Encode Discrimination Levels during Learning

We next asked, again with targeting of anterior DMS, whether striosomal activity were 

related to the degree of discrimination learning attained. In individual striosome mice, the 

difference in RP activity between reward and cost trials (R−CRP), measured as the average 

integrated activity in reward-trial RP minus that in cost-trial RP, was larger when d’ was 

high than when d’ was low, regardless of high or low numbers of response licks. Further, 

striosomal, but not matrix, R−CRP values were larger toward the end of learning (Figures 

2A, 2B, S2Q, and S2R). Lick rates were negatively correlated with activity in striosome 

mice during the RP in cost trials (CRP) and correlated positively during the RP in reward 

trials (RRP). These results indicate that licking frequencies cannot explain striosomal 

activity. By contrast, a positive correlation between lick rates and matrix neural activity 

occurred only in reward trials (Figure S2S).

There was a remarkable contrast between the respective levels of correlation between d’ and 

striosomal or matrix R−CRP activity. In striosome mice, R−CRP signals were correlated with 

d’ (Pearson correlation, r = 0.95, p = 0.0004), but not with lick frequency (r = −0.09, p = 

0.83; Figures 2C, 2D, and S2T). In matrix mice, R−CRP signals were not correlated with d’ 

but were positively correlated with RP lick rates (Figures 2E, 2F, and S2U). We performed 

conditional analyses to delineate more thoroughly correlations of striatal compartmental 

activity with licking behavior versus discrimination and confirmed that striosomal activity 

scaled with d’, but not with licking rates (Figure S2V–S2Y). As a control for the specificity 

of these effects to RP, we looked for, but failed to detect, such correlations in signals 

recorded during tone periods, outcome periods, or inter-trial intervals (ITI) of the task 

(Figures S2Z and S2AA), highlighting the importance and selectivity of striosomal function 
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during RP related to learning of this task. The emergence of correlations across learning 

between d’ and striosomal R−CRP grew in almost all of striosome birthdate-labeled mice: 

striosomal signals tracked initial discrimination (n = 9/9), and re-emerged during reversal (n 

= 8/9) learning (Figures 2G, 2H, and S3A–S3D).

This striosome-specific correlation between R−CRP and d’ was equally strong in two 

independent CreER birthdate-labeled lines, Dlx1-CreER and Mash1-CreER lines (Bloem et 

al., 2017; Kelly et al., 2018) used to label striosomes. These lines had differing proportions 

of cells expressing D1 and D2 receptors in striosomes (E11-tagged Dlx1 D1 proportion: 

min-to-max = 0.37–0.62, mean ± SEM = 0.51 ± 0.09; E11-tagged Mash1 D1 proportion: 

min-to-max = 0.50–0.93, mean ± SEM = 0.66 ± 0.16; Figures S3E, S1M, and S1O). Thus, 

there was not a clear and close correlation between the similar striosomal encoding of 

learning in the two lines and the proportion of cells expressing D1 and D2 receptors (Figures 

1L, 1M, S2A–S2C, and S1M–S1T). These findings suggest that striosomal activity, as 

measured in the birthdate-labeled striosome mice, but not matrix activity, as measured in the 

birthdated-labeled matrix mice, is correlated with d’ during acquisition of the valence 

discrimination task.

Striosomal Activity Reflects Task Engagement and Expected Outcome Valence and Value

To be successful in the task, both engagement in the task and assessment of the outcome 

value associated with each cue were necessary. The positive striosomal R−CRP correlation 

with d’ was significantly stronger when photometric signals were filtered for HMM-assigned 

engaged state (~3x stronger, p = 0.11 for not engaged, 0.01 for engaged), suggesting that 

engagement and task learning were aligned (Figures S3F–S3H).

We examined striosomal activity across binned levels of licking responses to cost and reward 

cues (Figure 3A). Striosomal RRP activity became increasingly positive as mice licked more 

to receive greater positive outcomes, but striosomal CRP activity became increasingly 

negative in cases in which mice licked more in advance of greater aversive outcomes. The 

opposite modulation of striosomal signals in reward and cost trials, a modulation not seen in 

matrix (Figure 3A), reinforces the view that striosomal signals do not reflect motor lick 

behavior to a degree detectable by our methods. Moreover, task engagement cannot be the 

sole driver of this modulation, given the more negative CRP signals with greater lick activity 

on cost trials. Instead, our fiindings suggest that striosomal signals reflect expected outcome 

valence (positive in advance of reward, negative in advance of cost) as well as value (signals 

are more strongly positive or negative with greater expected reward or greater expected 

cost). The matrix compartment appeared sensitive only to expected positive outcome.

To test how manipulating outcome value would affect striosomal signals, we implemented a 

reward devaluation protocol. Prior to discrimination task sessions, we satiated mice with 

either sucrose or water in their home cage (STAR Methods). We found a selective decrease 

in striosomal activity in RRP, but not CRP, signals, accompanied by a reduction in task 

engagement. No such modulation was detectable in matrix activity in devaluation protocols 

(Figures 3B, 3C, and S3I–S3K). Again recording in anterior DMS, we examined the effects 

of treatment with the anxiolytic, diazepam. In striosomes, this treatment increased both RRP 

and CRP signal amplitudes in proportion to increased task engagement, but in matrix, signal 
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amplitudes were not detectably influenced by diazepam (Figures 3D and S3L–S3N). Thus, 

as task engagement was driven down by reward devaluation and was driven up by anxiolytic 

treatment, striosomal signals changed in tight correlation, suggesting that signals in 

striosomes, unlike those in matrix, integrate or reflect subjective value.

Finally, we asked whether task engagement exhibited by individual mice correlated with 

their striosomal and matrix RP signals (n = 37 striosome and 32 matrix mice). For reward 

trials, we found that striosomal RRP signals correlated positively with task engagement, so 

that mice that were more task-engaged had larger striosomal RP signals. Remarkably, no 

such correlation was found for matrix signals in our striatal region of study (Figure 3E). 

Together with findings from devaluation experiments, these findings indicate that striosomal, 

but not appreciably matrix, signals are sensitive to task engagement and reflect subjective 

value.

Chemogenetic Manipulation of Striosomes, but Not of Matrix, Can Causally Decrease or 
Increase Task Engagement

This correlational work did not ensure causality. We therefore applied chemogenetic 

methods, expressing designer receptors exclusively activated by designer drugs (DREADDs) 

selectively in striosomal or matrix neurons, and then modulated their activity with the 

DREADD ligand clozapine-N-oxide (CNO) (Roth, 2016). We expressed Flp-dependent 

inhibitory DREADD constructs (AAV8-EF1a-fDIO-hM4Di-mCherry) in mice with Flp-

expressing striosomal or matrix populations while recording photometrically from these 

compartments. We found ~80% colocalization between DREADD and GCaMP6m viruses 

(Figures 3F–3H and S3O–Q). In striosome mice expressing inhibitory DREADDs, Ca++ 

transients were reduced with CNO treatment relative to saline administration in the same 

mice (n = 8 mice, p = 0.002, Figures 3I and 3J). The more the numbers of Ca++ transients 

decreased in striosomes, the more task engagement decreased (Figure 3K). No such effect 

was detectable with the same inhibitory DREADD manipulation of matrix populations (n = 

5 mice, p = 0.71, Figure 3L).

Conversely, the numbers of Ca++ transients increased following CNO administration in 

striosome mice expressing excitatory DREADD constructs (AAV8-EF1a-fDIO-hM3Dq-

mCherry) relative to the transient numbers in sessions in the same mice with saline instead 

of CNO administration (n = 4 mice, p = 0.04, Figures 3M and 3N). The more Ca++ 

transients increased in striosomes, the more task engagement increased (Figure 3O). No 

such effect was seen with excitatory manipulation of matrix populations (n = 6 mice, p = 

0.3; Figure 3P).

These findings constitute evidence that a modulation of striosomal circuits drives a 

corresponding change in task engagement, so that inhibiting striosomes decreases task 

engagement, whereas exciting striosomes increases task engagement, effects not achieved by 

comparable modulation of matrix populations. Despite the ability to decrease and increase 

engagement, we failed to improve d’ and learning, perhaps due to DREADD manipulation 

not modulating the specific patterns of activity of striosomal neurons, a possibility that could 

be addressed by future methods.
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Striosomal Discriminative R−CRP Activity Fails to Develop in Mice That Do Not Learn and 
Is Altered in Aged Mice

We next asked whether photometric striosomal signals were impacted by age or learning 

status. In younger aged control mice (age 6–12 mo.) that learned the discrimination task 

(CT-LY), there was a larger separation between striosomal signals in reward and cost trials 

than there was in older (age 13–21 mo.) mice (p < 0.05; Figure 4A). This difference 

appeared to be attributable to a more negative cost-trial activity in CT-LY mice relative to the 

cost-related signals in older aged mice that learned (CT-LO) (Figure 4B). In control mice 

that did not learn (CT-NL), the difference in striosomal R−CRP activity was scarcely 

divergent (Figure 4C). Nor were differences in R−CRP activity detectable in matrix 

populations regardless of age or learning status (Figures 4D, 4E, and S4A–S4C).

We found a close correlation between striosomal R−CRP activity and engagement (C) in 

younger aged mice (CT-LY), but not in older aged mice (CT-LO mice) (Figures S4D–S4F). 

Only CT-LY mice showed modulation of d’ in relation to C (Figure S4G), consistent with 

the gating of learning by task engagement. Regardless of age, CT-L mice exhibited 

striosomal signals that correlated with d’, whereas CT-NL mice showed no such correlation 

(Figure S4H). These findings suggest that aging results in (1) less negative CRP striosomal 

activity, (2) reduced correlation between striosomal activity and task engagement, and (3) a 

lessened relationship between task engagement and learning.

Valence-Based Discrimination Correlates with Reward in Control Mice, but Correlates with 
Cost in HD Model Mice

We crossed the zQ175 knock-in HD model mouse line (Menalled et al., 2012) with our 

striosome and matrix lines to ask whether we could identify functional impairments at the 

level of compartmental deficits. A significantly lower proportion of the offspring of these 

crosses (here termed ‘HD mice’) achieved our learning criterion, including in reversal 

learning, compared to the proportion of CT mice that learned (Figures 5A, 5B, and S4I–

S4K). These declines occurred despite the ability of HD mice to lick at normal rates during 

sucrose consumption, and despite their normal sensitivities to aversive and appetitive 

outcomes in the context of this task (Figures S4L–S4R).

These HD mice exhibited lower task engagement than did CT mice, as evaluated both by the 

SDT metric C and HMM-based evaluation of the proportion of trials assigned as engaged-

state (Figures 5C and S4S–S4U). In younger aged HD mice that reached the learning 

criterion, as in CT mice, engagement increased (p = 0.0009 for CT mice, p = 0.0041 for HD 

mice, age: 6–9 months). These findings suggest that learning itself can affect engagement.

In the HD mice, striosomal, but not matrix, R−CRP was lower than in CT-L mice, due to a 

major reduction in reward-trial signals (Figures 5D–5F). On average, in the small group of 

HD mice that learned, no correlation between R−CRP and d’ was detected (Figure 5G). 

However, in individual mice of this group, negative correlations between striosomal R−CRP 

and d’ sometimes occurred and could be strong and even track discrimination and reversal 

learning despite an overall reduced dynamic range of striosomal R−CRP magnitude (Figures 

5H, 5I, S4V, and S4W). Similarly, in the larger group of HD mice that failed our learning 
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criterion (designed to capture sustained discrimination), the mice periodically exhibited high 

d’s that correlated negatively with striosomal R−CRP activity (Figures S4X and S4Y). Thus, 

the lack of correlation between striosomal R−CRP and d’ at the group level in HD mice 

might have reflected a mixture of positive and negative correlations for reward and cost trials 

in individual mice. To test this possibility, we examined CT and HD mice with high 

correlation strengths (|r| > 0.7) between striosomal signals and d’ (Figures 5J–5L and S4Z). 

HD mice were significantly more likely than CT mice to exhibit negative correlations 

between striosomal R−CRP and d’ (Figure 5J). When broken down by RRP or CRP signals, 

CT mice were significantly more likely to exhibit strong correlations between d’ and RRP 

(Figure 5K), but HD mice exhibited strong correlations between d’ and CRP (Figure 5L). 

These findings suggest that valence-associated learning in HD mice, which have transient 

high levels of discrimination for short periods of time, could be driven by striosomal cost 

signals, in sharp contrast to reward-driven discrimination in CT mice.

Inhibitory and Excitatory Inputs to Striosomes Identified by Histochemical Markers Are 
Altered in HD Mice and in CT Mice that Fail to Learn

Given our previous findings suggesting that putative PV interneurons regulate striosomal 

firing (Friedman et al., 2017; Friedman et al., 2015a), and evidence that degradative changes 

occur in PV interneurons in HD proper (Holley et al., 2019; Indersmitten et al., 2015; 

Lallani et al., 2019; Reiner et al., 2013), we evaluated CT and HD tissues for evidence of 

disruption of excitatory-inhibitory balance (Figures S5A–S5M). We found both an inability 

to learn (CT-NL) and HD status were associated with strikingly low numbers of putative PV

+ terminals contacting sSPNs (CT-LO 7 mice and 848 cells; CT-LY 3 mice and 128 cells; 

CT-NL 3 mice and 196 cells; HD 5 mice and 475 cells). Surprisingly, putative PV inputs to 

the matrix were oppositely, and significantly, increased in CT-NL and HD mice, a finding 

that we confirmed also with immunostaining for the presynaptically localized vesicular 

GABA transporter, VGAT (Figures 6A–6E, S5N–S5W and S6A–S6C; CT-LO 2 mice and 

871 cells; CT-LY 2 mice and 13 cells; CT-NL 4 mice and 3602 cells; HD 4 mice and 5163 

cells), perhaps indicative of a compensatory mechanism (De la Rosa-Prieto et al., 2016). 

Taken together, these results suggest the presence of more putative PV-SPN connections in 

striosomes than in matrix of CT-L mice, but relative to these control mice, in both the 

modeled HD and CT-NL mice, a disruption in PV-SPN connections in striosomes, and an 

increase the matrix.

We also investigated putative excitatory corticostriatal inputs to striosomes in CT and HD 

mice by immunostaining for VGluT1. In the CT mice, VGluT1 puncta density was 

significantly higher in striosomes than in matrix, and this striosomal enrichment was 

reduced in HD mice by ~23% along with VGluT1 puncta intensity in both striosome and 

matrix compartments (Figures 6F, 6G, and S6D–S6H). We also found lower dendritic spine 

density on striosomal, but not matrix, SPNs in HD compared with CT mice (Figures S6I–

S6N), a finding that could not be attributed to reduced cross-sectional area in HD mice 

(Figure S6O) or to differences in D1 and D2 spine density in CT mice (Figure S6P).

Of these measures of excitatory and inhibitory circuit connectivity markers, putative PV- 

sSPN connection number was the only measure found to be correlated with R−CRP activity 
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in both CT and HD mice (Figures S6Q–S6S). These findings point to a disconnection of 

striosomal circuits, but not of matrix circuits, in HD model mice as well as in CT-NL mice, 

and suggest that inhibitory input to striosomes from PV neurons could serve as an important 

mediator of learning. Future work is required to consider whether other sources of 

inhibition, such as interneuronal subtypes, SPN collaterals or even glial cells, are involved 

(Khakh, 2019).

Difference in Compartment-Specific Functional Connectivity between Striatal Fast-Spiking 
Interneurons and SPNs

To examine compartment-specific functional connectivity between striatal FSIs (putative PV 

interneurons) and putative SPNs, we turned to rats, with their larger brain size, to perform 

simultaneous electrophysiological recordings from FSIs and SPNs. We were able to record 

with high temporal resolution 38 putative FSI-sSPN pairs, 76 putative FSI-matrix SPN 

(mSPN) pairs, and 7 FSI-sSPN-mSPN triplets across 8 rats, which required recording from 

14,785 well-isolated neuronal units (STAR Methods). We found strikingly different 

modulation of sSPNs and mSPNs studied out of task (Figure 7A–7F). In striosomes, FSIs 

modulated SPNs by decreasing SPN activity with a graded slope, whereas in matrix, the 

modulation was a sharp step-function. This surprising finding led us to speculate that sSPNs 

were contacted by multiple putative PV+ terminals, potentially allowing a greater range in 

the levels of inhibition exerted by FSIs onto sSPNs than mSPNs (Figures 6D, 6E, 7E, and 

7F). In other words, activation of one terminal could result in a low level of inhibition, 

whereas activation in multiple terminals might result in higher levels of inhibition. This 

anatomical pattern might underlie the graded decay response observed in FSI-sSPN pairs.

Modeling of PV-Striosomal Connection to Test for Plausible Links between Striosomal 
Activity and Striosomal Circuit Architecture

To test the hypothesis that PV-striosomal functional connectivity is important for 

discrimination learning, we developed a model linking striosomal activity and histological 

measures. Our main hypothesis was that varying connection strengths between PV neurons 

and sSPNs could produce the difference in striosomal R−CRP across different groups of 

mice. A decay of PV-SPN connectivity in striosomes might therefore disrupt the 

development of learning-related striosomal signals. We implemented a stochastic spiking 

neural network model and designed models of CT-LY, CT-LO, CT-NL, and HD mice 

(Figures 7G, 7H, S7A, and S7B). We constructed these models to replicate the average R

−CRP across groups (Figures 7I, S7C, and S7D) in which task information was represented 

by inputs reflecting reward tone, cost tone, noise and task engagement. In HD and CT-NL 

models, given PV→SPN constraints in our network architecture, weights of other elements 

representing cortical inputs could not be optimized to reach best-performing group 

discrimination levels shown by CT-LY mice, as measured by the error between 

photometrically observed and modeled activity outputs (Figure S7E).

We then hypothesized that PV neurons could potentially contribute direct inhibition during 

cost trials, resulting in increased SNR in sSPNs, thereby improving stimulus selectivity 

alongside modulation of SPN gain. We hypothesize that in an “engaged” state, this 

architecture would result in enhanced performance, an aspect of the model represented by 
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way of a “state” neuron. This increase of inhibitory currents would result in noise signals 

being unable to overcome striatal inhibition, whereas more strongly connected task signals 

would be capable of doing so, resulting in an improved SNR. The model thus posits that 

additional inhibition during performance will improve discrimination and decrease noise 

(Figure S7F).

Our model suggested that PV neurons modulate striosomal SNR. Thus, we asked whether 

this phenomenon might indeed be plausible in striosomal microcircuits. We developed two 

analyses to measure how SNR is modulated by FSI activity. We demonstrated that the FSI-

induced decrease in sSPN activity could be modeled as enhanced SNR. In matrix, decaying 

SPN activity could be modeled as decaying SNR (Figures 7J, 7K, S7G, and S7H). We 

speculate that FSI-striosomal functional connectivity, by way of SNR modulation, could 

serve as a ‘filter’ of cortical activity, allowing selective signal passage. By contrast, FSI-

matrix functional connectivity could serve solely as a ‘gain’ modulator of incoming signals 

to striatum, diminishing all signals. This finding is in accord of our observation that SNR 

increased in recordings of Ca++ transients across learning in striosomes but not in matrix 

(Figure S2P). Therefore, the observed capacity of FSIs to modulate striosomal SNR may be 

critical to the process of valence-based discrimination learning.

DISCUSSION

Our findings suggest that the striosome compartment of striatum, here examined in its 

anterior part (DMS), is critical for valence-based learning. We found a strong correlation 

between population activity of striosomal SPNs and successful valence-associated 

discrimination. These signals and correlations were sensitive to motivational value as tested 

by outcome devaluation. Chemogenetic manipulation of striosomal circuits produced shifts 

in the engaged state that modulates learning. In sharp contrast to these findings for 

striosomes, we did not observe such correlated activity patterns or motivational sensitivities 

for the populations of mSPNs examined with the same methods. Selective dysfunction of 

striosomal neurons was accompanied by an inability to achieve valence-based learning, 

whether these problems were induced by age or modeled HD status. Our work further 

demonstrates striking compartmental differences in functional and local circuit connectivity 

of striosomes and surrounding matrix. We hypothesize that such targeted microcircuits 

including putative PV-striosome circuits control SNR of sSPN firing by filtering out noise 

during the process of learning (Figure 7L).

Striosomes Could Serve as a Subjective Value Filter via Integration of Cortical Task 
Information and Engagement State

Regions of frontal neocortex, including specific regions of anterior cingulate and 

orbitofrontal cortex, preferentially project to striosomes (Donoghue and Herkenham, 1986; 

Eblen and Graybiel, 1995). In many of these regions, value-related signals have been 

recorded (e.g., Amemori and Graybiel, 2012; Padoa-Schioppa and Assad, 2006; 

Schoenbaum et al., 2009; Wallis, 2011). As we show here, striosomal activity increases or 

decreases with expected value and is sensitive to engagement and motivational states. Direct 

chemogenetic excitation or inhibition of striosomal populations shifted behavioral 
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expression of motivational state. Based on our findings, we speculate that striosomes 

integrate engagement states and expected value signaling, which together could reflect 

subjective value on the path toward learning. Striosomes are considered to be the main 

source of direct projections from striatum to midbrain dopamine-containing neurons in 

SNpc, which, in turn, are a major source of dopaminergic projections to striatum. Our 

findings suggest that this striosomal targeting of SNpc neurons could contribute to shaping 

value-based parameters attributed to midbrain dopamine neuron signaling (Cohen et al., 

2012; Kawagoe et al., 1998; Lak et al., 2014; Schultz, 2017).

Difference between Striosomes and Matrix in Experience-Dependent Plasticity

During learning, Ca++ transients in striosomal populations that we recorded decreased in 

frequency and showed a trend toward increasing amplitude. This pattern is consistent with 

the possibility that, as learning occurs, striosome-based circuitry undergoes refinement via 

plasticity mechanisms (Harada et al., 2019; Owen et al., 2018; Xiong et al., 2015; 

Znamenskiy and Zador, 2013). We note here that given the slow time-course of GCaMP6m 

signaling, the frequency and amplitude of Ca++ transients might together reflect the 

development of more synchronized or patterned spike activity indicated by increased SNR. 

Work in slice preparations suggests that striosomal neurons are differentially sensitive to 

dopamine and are more excitable than neurons of surrounding matrix (Prager and Plotkin, 

2019), a difference that we also see in our electrophysiology recordings reported here. These 

features of higher excitability coupled with dopamine sensitivity could promote differential 

striosomal circuit refinement by plasticity mechanisms relative to those of matrix circuits.

Physiological Function of the Matrix Compartment

Unlike striosomal activity, activity in matrix did not change in correlation with 

discrimination. Instead, the matrix signals recorded were correlated specifically with reward-

trial RP lick rates, yet not cost-trial or reward consummatory licks in single sessions, 

indicating that the matrix signals do not simply reflect motor lick rates. This pattern is 

reminiscent of neuronal representations encoding higher levels of abstraction, such as 

chunked behavioral units, rather than simple movements (Graybiel, 1998; Martiros et al., 

2018). These observations could indicate that activity in matrix, as reported for striatum in 

general (e.g., Samejima et al., 2005), reflects action value, given that lick rates in reward 

trials scaled with value. When we looked for devaluation sensitivity in matrix signals, we 

found that they, unlike the striosome signals, were not susceptible to reward devaluation, and 

that they were not correlated with the degree of task engagement. Striosomes, as identified 

in our ‘striosome mice’, integrated both reward-related and cost-related values, as well as 

motivation-related influences, with the result that they encoded a comprehensive subjective 

value signal about the impending outcome.

Computational Role of PV Neurons in Reducing Noise Affecting Discrimination Learning

We developed a graph-based model by which PV interneurons exerting inhibition onto 

striosomal neurons could improve discrimination through shifting excitation-inhibition 

balance (van Vreeswijk and Sompolinsky, 1996; Vogels and Abbott, 2009) due to 

modulating SNR alongside gain (Atallah et al., 2012; Carandini and Heeger, 1994; 

Carandini et al., 1997; Kvitsiani et al., 2013; Wilson et al., 2012). In FSI-sSPN pairs, we 
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found enhanced SNR with increased FSI firing rate, suggesting that this connection could 

function as a filter by which weak signals are suppressed as noise and stronger signals pass. 

This filtering would result in a relative SNR increase, even while inhibition is driving down 

overall activity. By contrast, in FSI-mSPN pairs, increased FSI firing rate drove down SPN 

‘signal’ and ‘noise’ without enhancing SNR of activity, in a simple modulation of gain. 

Critically, our results suggest that minor differences in network composition can translate to 

a circuit’s function, whether this composition encodes SNR or gain.

Learning from Cost vs. Learning from Reward: Two Striosomal Loops with the Dopamine 
System

To our surprise, HD mice were more likely to exhibit cost-related learning than reward-

related learning, in marked contrast to signaling in CT mice. A working hypothesis is that 

this phenomenon could reflect an abnormality in striosomal encoding of influence on both 

cost and benefit signals conveyed by striosomal downstream projections to both the 

dopamine-containing neurons of the SNpc (Crittenden et al., 2016; Evans et al., 2019; 

Fujiyama et al., 2011; McGregor et al., 2019) and the LHb (e.g., Hong et al., 2019), known 

to have neurons that can be excited by unrewarding options and to inhibit dopaminergic 

neurons (e.g., Hikosaka, 2010). Thus striosomes, by virtue of their input to these two 

circuits, could influence state-dependent modulation of dopaminergic neurons (Figure S7I). 

If the function of the striosome-SNpc circuit is degraded, as in neurodegenerative HD 

patients, the striosome-LHb-SNpc pathway might then prevail, facilitating learning from 

cost as observed in psychiatric disorders (Jean-Richard-Dit-Bressel et al., 2018). This circuit 

balance, itself dynamic, could participate, in coordination with other circuits, in shifts in 

decision-making and learning strategies that have been observed in aging, in HD and in 

other neurodegenerative disorders (Eppinger et al., 2011; Gleichgerrcht et al., 2010; Strough 

et al., 2015). We appreciate that other circuit modifications could as well affect such 

balancing of circuit function.

Striatal Microcircuit Degradation in Human HD Versus HD Mouse Models

In human HD patients, indirect (D2) pathway degeneration has classically been interpreted 

to prevail earlier followed by direct (D1) pathway decline (Glass et al., 2000; Reiner et al., 

1988; Richfield et al., 1995a; Richfield et al., 1995b), whereas in mouse studies earlier 

degeneration in D1 SPNs has been observed (Goodliffe et al., 2018). In these early studies, 

human HD tissue was evaluated without reference to striatal compartmentalization, but with 

markers such as substance P and endocannabinoid receptor, CB1, which tend to show 

enriched expression in the striosomal compartment. In HD model mice, we observed spine 

density decreases selectively in striosomes, but, consistent with other work (Deng et al., 

2013), VGluT1 levels decreased more generally across compartments. This dual pattern is in 

accord with earlier work on human HD tissue in which general loss was observed across 

striatum, even when augmented loss was observed in striosomes (Tippett et al., 2007). This 

parallel raises the interesting possibility that our findings along with those of prior studies in 

mouse and human could potentially find agreement in declines in striosomal circuits in HD.

We discuss limitations of the study in STAR Methods (Limitations of This Study and 
Issues for Further Work). Despite these, the differences that we have found between 
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putative striosomal and matrix signals suggest that this compartmentalization of the striatum 

has profound effects on the differential control of valence-based learning and decision-

making and their vulnerability across aging and neurodegenerative disease.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for data and reagents should be directed 

to and will be fulfilled by the Lead Contact, Ann M. Graybiel (graybiel@mit.edu)

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The published article includes all datasets and code 

generated or analyzed during this study.

Datasets generated during this study are available at Mendeley at http://dx.doi.org/

10.17632/6z4fvrspt3.1, http://dx.doi.org/10.17632/6r6d39rs7j.1, and http://dx.doi.org/

10.17632/3xdtk8gdbd.1.

Code generated for this study have been deposited at github at https://github.com/sdrammis/

Friedman-Hueske-2020/tree/v1.0.2.

Details on the use of the code for the processing of the raw data are found in the 

Supplemental file, Data S1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mouse colonies were maintained in accordance with the policy at the Massachusetts 

Institute of Technology (MIT) and the U.S. National Research Council Guide for the Care 

and Use of Laboratory Animals. All experimental procedures were approved by the 

Committee on Animal Care at MIT. All mice were kept under constant temperature (25°C) 

and humidity (50%), and a 12:12 hr light/dark cycle. Mice were housed 2–5 per cage unless 

experimentally implanted in which they were housed individually. All mice were housed in 

an enriched environment with ecobedding, nestlets and PVC tube cylinders. All experiments 

were conducted using mice of age ranges specified or, for birthdate breeding, dosed 

according to developmental stages as described. All experiments included roughly equal 

male and female subjects randomly assigned. No influence of sex was found on the results 

reported in this study.

Transgenic Mice—The following mouse strains were used for behavioral, neural 

recording and histological experiments: Mash1-CreER (Kim et al., 2011), Dlx1-CreER 

(Taniguchi et al., 2011), Ai14 (Madisen et al., 2010), LSL-Flpo (He et al., 2016) and Q175z 

knock-in (KI) mice (Menalled et al., 2012). To evaluate proportions of D1- and D2-type 

neurons labeled by this method at striosomal and matrix timepoints, the following mouse 

strains were used: Mash1-CreER or Dlx1-CreER mice crossed with Ai14 were mice 

backcrossed in-house and maintained on an FVB background corrected for behavioral 

optimization. Mouse lines targeting striosomal and matrix cell populations were generated 
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according to inducible genetic fate-mapping procedures previously described (Kelly et al., 

2018). We crossed either Dlx1-CreER or Mash1-CreER mice to the Cre-dependent LSL-

Flpo on an FVB background corrected for behavioral optimization. Subsequently, by 

crossing female Dlx1-CreER;LSL-Flpo or Mash1-CreER;LSL-Flpo mice with male 

heterozygous Q175z KI mice on a C57BL/6J background, F1 hybrid mice were produced to 

better suit behavioral characterization (Menalled et al., 2014). Upon observing a vaginal 

plug, noon of that day was counted as embryonic day 0.5 (E0.5), and tamoxifen was 

administered by gavage to the pregnant female at E10.5–11.5 to achieve striosomal Flp 

expression or E15 to achieve matrix Flp expression (Taniguchi et al., 2011). To reduce 

disruption to pregnant females by estrogenic effects of tamoxifen, females were co-

administered progesterone (tamoxifen and progesterone dissolved in corn oil by gentle 

agitation for 24 hr), using a 20-gauge 33-mm gavage tool at a dose of 100 mg/kg body 

weight determined empirically to maximize expression while maintaining dam and pup 

health. For evaluations of proportion of D1R- and D2R-expressing cells targeted in each 

cross and Cre-induction timepoint, Dlx1-CreER;Ai14 or Mash1-CreER;LSL-Flpo mice were 

crossed with D1-eGFP and D2-eGFP mice (Gong et al., 2007); tamoxifen was administered 

at E11 or E15 for each cross.

Limitations of This Study and Issues for Further Work—Our tamoxifen-dependent 

birthdate-labeling approach only labeled a minority of striosomal neurons (Bloem et al., 

2017; Kelly et al., 2018). Further, in ~E11 born striosomal cell populations, we observed a 

bias toward D1 SPNs, and, in the ~E15 born matrix neurons, there was a bias toward D2-

expressing SPNs (Kelly et al., 2018; Tinterri et al., 2018). However, it has been 

demonstrated that in some regions of striatum, striosomes are highly D1 biased and matrix 

are D2 biased (Miyamoto et al., 2018). Additionally, whereas we observed that spine density 

in the zQ175 HD model mouse was selectively reduced in striosomes, other studies suggest 

more widespread decreases in spine density (Indersmitten et al., 2015) or decreases selective 

to D1 SPNs (Goodliffe et al., 2018). In contrast to our own measurements in anterior DMS, 

these reports were based on counts for the dorsolateral striatum. Given the gradients of D1 

and D2 and other neurochemicals and intraneuronal circuits (Cox and Witten, 2019; 

Miyamoto et al., 2018; Stalnaker et al., 2010; Voorn et al., 2004), and the variety of 

differences across HD models (Donzis et al., 2019), an intersectional approach to evaluate 

both D1 and D2 SPN populations in striosome and matrix compartments could help in 

clarifying these issues.

A further concern is that the numbers of striosomal and matrix cells that contributed to 

population Ca++ photometric signals were different. However, we observed clear transients 

across different task conditions for both striosome and matrix mice, and in the striosome 

mice, but not the matrix mice, DREADD manipulations altered engagement.

We examined only putative PV interneurons, and did not examine other interneuronal cell 

types, including somatostatin+ neurons (e.g., Gittis and Kreitzer, 2012; Holly et al., 2019), 

astrocytes (Wojtowicz et al., 2013), or even recursive collaterals directly emanating from 

striatal SPNs (Tepper et al., 2008), which might contribute to the findings that we report 

here.
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Engagement state could reflect mechanisms not studied here, including reduced 

dopaminergic or other aminergic signaling (Kanazawa et al., 1993), cholinergic activity, 

and/or reduced thalamic attentional gating mechanisms as seen in model HD mice (Deng et 

al., 2014) and in HD patients (Finke et al., 2006).

Despite these limitations, the differences we found between striosomal and matrix signals 

suggest that the compartmentalization of striatum has profound effects on the differential 

control of valence-based learning and decision-making across aging and HD.

Details of Water Restriction—To preserve the health of aged HD and control mice, 

daily HydroGel (ClearH2O, Portland, ME) was provided to bring session-obtained water to 

approximately 2 ml of water per day (1.7–2.7 depending on mouse body condition). Mice 

were maintained at >90% body weight with free access to food. Mice had free access to 

water on weekends and resumed water restriction 12 hr before the next session. For 

DREADD experiments, mice continued water restriction over weekends to reduce day-of-

week effects.

METHOD DETAILS

Surgery Procedure—Prior to surgery, mice were injected with meloxicam as a pre-

surgical analgesic at 3 mg/kg (IP) and for 3 days post-surgically as needed at 1 mg/kg. Mice 

were anesthetized with 3% isoflurane and were maintained under anesthesia with 1–2% 

isoflurane. Antibiotic ointment was applied to the incision once a day, and 0.5 ml of 

Ringer’s solution was administered (IP) for three post-surgical days, including the day of 

surgery. These extra measures were taken to ensure the health of aged HD and control mice.

For surgical coordinates and details of chemogenetic manipulation experiments, see 

‘DREADD with Photometry Experiments.’ For photometry recordings during behavior, 

mice were injected bilaterally with AAV8-Ef1a-fDIO-GCaMP6m (Stanford Vector Core) 

targeting anterior central dorsal striatum. To achieve this location across a range of aged 

mice in our mouse strain, coordinates were determined empirically according to the 

following: Intended atlas coordinates for virus injection based on 26–30 g C56BL/6J mouse 

(Paxinos and Franklin, 2001) were AP +1.1 mm from bregma; ML ±1.25 mm; DV −2.0 mm 

from brain surface. Intended implant atlas coordinates were AP: +1.1 mm from bregma; 

ML: ±1.25mm; DV: −2.1mm from brain surface.

Empirically determined coordinates for aged F1 hybrid background birthdate-labeled mice 

were as follows:

Bilateral viral injections of 500 nl volume:

• for age 6 months: AP: +1.1 mm; ML: ±1.5 mm; DV: −2.0 mm from brain surface

• for age 9 months: AP: +1.3 mm; ML: ±1.5 mm; DV: −2.0 mm

• for age >12 months: AP: +1.6 mm; ML: ±1.5 mm; DV: −2.0 mm

Unilateral fiber implant:

• for age 6 months: AP: +1.1 mm; ML: ±1.5 mm; DV: −2.1 mm from brain surface
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• for age 9 months: AP: +1.3 mm; ML: ±1.5 mm; DV: −2.1 mm

• for age >12 months: AP: +1.6 mm; ML: ±1.5 mm; DV: −2.1 mm

Injections were performed using a 33-gauge needle attached to a Hamilton syringe at a rate 

of 0.1 μl/min. After each injection, the injection needle remained in place for 8–10 min to 

allow full dispersion of the virus. Once the virus was injected, we allowed 4 weeks before 

implantation of optical fibers (Doric Lenses, MFC_400/430–0.48_5mm_MF1.25_FLT). In 

order to aid fiber penetration of brain tissue, a 23-gauge needle was lowered to the injection 

site. The optical fiber was implanted at 100 nm ventral to injection coordinates. Each fiber 

was tested to ensure more than 95% efficiency in advance of implant. A head-bar was 

cemented to the animal’s skull 8 mm to 10 mm posterior from the bregma for the head-fix 

apparatus. Recordings during behavioral tasks began 2–4 weeks after fiber implants.

Apparatus—In order to train mice on a discrimination learning task while performing 

photometry imaging, we designed and built a custom-developed Arduino-controlled 

(Adafruit 50) head-fixed behavioral apparatus. The apparatus was comprised of 3D-printed 

components including a retractable lick spout for liquid reward delivery and a semi-circular 

panel of LEDs (super bright blue; Adafruit 301) for delivery of varying intensities of light as 

aversive outcome. Components were assembled on an aluminum breadboard (ThorLabs 

MB6) with optical posts (ThorLabs TR4-P5 and TR3-P5). Sound isolation chambers were 

constructed from acrylic board and acoustic foam (McMaster-Carr 9710T11) in order to 

buffer auditory stimuli delivered inside by standard speakers. Mice were head-fixed using a 

custom-made head-bar, with their body held inside a PVC tube with forepaws placed on a 

foot pedestal. In order to provide liquid reward, a servo (Sparkfun 09065) allowed 

positioning of the lick spout in front of the snout of the mouse during response and outcome 

periods, which allowed retraction of the lick spout during the inter-trial interval (ITI) and 

tone periods. The lick-spout start position was aligned at the beginning of the experiment to 

allow for accurate detection of licks by the embedded lickometer using an infrared emitter-

detector set (Sparkfun 00241) and consumption of delivered liquid rewards (Parker Hannifin 

003-0260-900). The number of licks during the response period was measured by IR beam 

breaks at the lickometer. A speaker (iHome iM70BC) was positioned inside the sound 

isolation chamber to deliver auditory stimuli. Behavioral protocols were administered using 

an arduino-based microcontroller wired through a custom-designed printed circuit board 

(https://github.com/sdrammis/Friedman-Hueske-2020/tree/v1.0.1/circuit_arduino-

hardware_behavior_apparatus). In order to record the timestamp and identity of task events, 

the Arduino microcontroller was connected to a PC using serial port, and the data were 

acquired using a custom-developed Python program described in Data S1 section ‘Codes for 
Photometry and Behavior Data Acquisition’.

Approach-Avoidance Behavioral Assays

Acclimation: In order to acclimate the mice to the environment of the head-fix apparatus, 

mice were housed with the PVC tube used for head-fixing in their home cages a week before 

the start of training. On the first two days, mice were placed in the head-fix apparatus for 

half an hour.
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Approach-Avoidance Discrimination Task: Each daily behavioral training session on a 

discrimination task consisted of a maximum of 150 trials, comprised of randomly 

interleaved reward and cost trials. The trial structure had a sequence of four events: an 

auditory tone (2 s, 4 or 8 kHz) signifying a reward and cost trial (or vice versa), a 1-s 

response period (abbreviated as RP in main text) in which a lick spout became available and 

response licks were measured using a lickometer, an outcome period in which either 10% 

sucrose drops (4 μl) were delivered from the lick spout during reward trials or, in the case of 

cost trials, a semi-circular LED positioned around the head of the mouse delivered light at 

4–400 lux. The number of licks during the response period determined the magnitude of 

reward or cost delivery in the outcome period. Reward and cost were implemented as the 

number of sucrose drops delivered from the lick spout, and the delivery of LED light, 

respectively, such that <3 licks resulted in 1 drop of sucrose or 4-lux light, 3–4 licks in 3 

drops of sucrose or 40-lux light, and >4 licks in 6 drops of sucrose or 400-lux light. An ITI 

(6–14 s) followed the outcome period before the next trial.

Performance Criterion—In order to determine when a mouse learned a task, we 

compared distributions of response-period (RP) lick rates for reward and cost trials. In order 

to have enough trials to calculate and compare lick-rate distributions, we collected data from 

two consecutive sessions and calculated the significance of the difference in cumulative 

distribution functions (CDF) of response-period licks between reward and cost trials using a 

Kolmogorov-Smirnov test (K-S test). We determined that each mouse learned a task when 

there was a significant difference in two consecutive K-S tests. Since each K-S test was 

performed on data from two consecutive days, the significance was determined by sessions 

spanning three days; the first significant K-S test was based on days 1 and 2, and the second 

K-S test was based on days 2 and 3. All mice participated in the analysis without exclusion 

criteria. For K-S test analysis functions, see Data S1 section ‘Performance Criterion 
Functions’.

Reversal of Cue-Outcome Contingencies—Once a mouse reached the performance 

criterion of learning the original cue-outcome associations in the discrimination task, these 

contingencies were reversed, and the mouse was trained until the performance criterion was 

met again for the reversal learning.

Reward Devaluation—In order to assess hedonic processing, we devalued the rewarding 

outcome by providing mice free access to sucrose or water for 1 hr prior to a session of the 

discrimination task. We evaluated the response after free access to sucrose or water to 

determine the development of a habit as a conditioned response to the stimulus or decline in 

response based on satiety or reduction in seeking reward.

Enhancing Cost-Tolerance—In order to evaluate the effects on behavior and striatal 

compartment function of an anxiolytic, which is thought to increase cost-tolerance, mice 

were dosed with diazepam (0.5 mg/kg, IP) or saline 10 min prior to the beginning of a 

session of the discrimination task.

Control Tasks—Subsets of mice were tested in a battery of control tasks that took place in 

an approximately balanced manner before or after training on the discrimination task.
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Light Avoidance—To assess whether the aged and HD mice perceived and showed 

equivalent aversion to light, we ran the mice through a 6-day protocol to observe light 

avoidance tendency. Mice were habituated to TruScan activity monitor chambers (Coulbourn 

Instruments, Whitehall, PA) over 5 days (2 days with a 15-min period and 3 days with a 1-hr 

period, also used to assess locomotor activity) before starting light aversion testing. A black 

acrylic chamber divider separated a dark side from a side bathed in white LED light with a 

door at the center. In the bright compartment, the light was calibrated to 4, 40, or 400 lux. 

Mice were initially placed into the dark side of the box and then allowed to move between 

the dark and light compartments for 5 min. Boxes were cleaned between sessions. All mice 

completed the light-avoidance task battery in the following order: 4 lux, 40 lux, and 400 lux. 

Lights remained constant on one side of the box, and mice were moved between boxes to 

alternate which side was bright. Mice were balanced for whether they ran this task before or 

after training, and for left-right location of the light in the chamber. Mice spent significantly 

less time on the lit chamber side with increasing light levels (Figure S4R).

Sucrose Preference—To assess whether HD mice differed from control mice in reward 

preference for sucrose, mice were put into a fresh cage with two bottles containing 10% 

sucrose solution and water. They were given free access to the two bottles over a 4-hr period, 

and bottles were weighed before and after the session. Mice were tested in a water-restricted 

state or normal state, and the test was performed once before locomotor/light aversion 

testing and once after.

Pupil Diameter Measurement—As a supplementary way to estimate the states of 

arousal, we measured pupil diameter during the discrimination task. During the task, a 

camera that could take images under infrared light (Sparkfun 11610) captured an image 

using a microcontroller (Arduino Uno) when the TTL pulse was sent from the Arduino 

controlling the multi-color multi-fiber photometry system to the camera. The 

microcontroller also kept an 850-nm LED (Sparkfun 09469) on during recording. To ensure 

no movement during recording, the camera along with two magnifying lenses were mounted 

to an optical post. We put the lenses directly in front of the camera, and placed the lens close 

to the eye (15 cm away). In order to reduce glare, the 850-nm LED was set to the side of the 

mouse’s camera 10 cm away. The images were stored to a micro SD card (Samsung MB-

ME256GA/AM) via a micro SD card shield (Sparkfun 1276) attached to the microcontroller. 

See Figure S1H.

Multi-Color Multi-Fiber Photometry System—To capture the brain activity in five 

mice simultaneously, we developed a five-fiber photometry system (Kim et al., 2017), 

interleaving blue (470 nm) LED light to activate GCaMP and purple (405 nm) LED light as 

a control (Figure S2D). We delivered the LED light into the brains of individual mice with a 

custom-made five-fiber patch cord (Doric Lenses) and recorded signals from each mouse 

with a sCMOS camera (Hamamatsu, ORCA-Flash4.0). With HCImage Live and functions 

custom-written in Matlab (Mathworks), we captured 512 × 512 images and selected regions 

of interest for each fiber. In order to easily adjust and align each component, we used 

Thorlabs optomechanical products.
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Optical Elements for Photometry System—To ensure both the 405-nm and 470-nm 

LED lights reached each brain, and the successful recording of GCaMP signal, we used a 

series of dichroic mirrors and filters. To first focus the 470-nm and 405-nm light, we passed 

both lights through a fiber collimation package (F240SMA-A, Thorlabs). Afterwards, the 

470-nm and 405-nm light were filtered using Thorlabs, MF469–35 and Thorlabs, FB405–10. 

In order to combine both lights into one beam, we used a 425-nm long-pass dichroic mirror 

(Thorlabs, DMLP425R) to reflect the 405-nm light into the same beam as the 470-nm light. 

In order to allow the 470-nm and 405-nm light to reach the brain target and the return 

GCaMP signal to the camera, we used a 495-nm edge BrightLine® single-edge dichroic 

beamsplitter (Semrock, FF495-Di03–25x36). The 470-nm and 405-nm light passed through 

the 495-nm dichroic beamsplitter and focused into the five-fiber bundle by a 20×/0.75-NA 

objective (Nikon, CFI Plan Apo Lambda 20×). The GCaMP signal from each brain was 

picked up by the fiber bundle, magnified by the 20×/0.75-NA objective, and passed through 

the 495-nm dichroic beamsplitter. The fiber bundle was connected to each mouse with a 

zirconia sleeve (Doric Lenses, SLEEVE_ZR_1.25). To filter the GCaMP signal, we passed it 

through a 525-nm emission filter (Thorlabs, MF525–39). To further focus the fiber bundle 

image onto the camera, we focused the light with an adjustable lens in rotating housing 

(Thorlabs, SM1NR1). For more details see Figure S2D and resource table.

Photometric System Validation and Signal Verification—To avoid autofluorescence 

and cross-talk between the fibers, we used custom-made optical fibers from Doric Lenses. 

We requested fibers that used low autofluorescence epoxy, and cladding around each fiber to 

disrupt cross-talk.

There were multiple tests for the system. Test 1 was designed to ensure that there was no 

cross-talk between the bundled fibers. We placed the end of one of the five fibers into a 

beam trap (Thorlabs, BT600/M) and shined 10 kLux light through all of the remaining 

fibers. We then measured, using a camera, light intensity from the bundled five fibers. We 

verified that the value of light from the trapped fiber was below 200 when the value from the 

other four fibers was around 65,000 in a camera with dynamic range of 100–65,353. Test 2 

was performed to ensure that the autofluorescence of the entire system was minimal. While 

the 470-nm LED lights were on, we ensured that there was no reading of more than 1800 by 

the camera. Otherwise, the fiber cable was bleached using 470-nm laser for 24 hr. In order to 

have equivalent excitation and control light to each mouse, we adjusted the optics so that 

each fiber was within a 10% range in μWs of LED light. The connection between the fiber 

bundle and the implant was also measured so that each implant had at least 90% yield. To 

ensure optimal SNR of the system, we tested striosome-expressing GCaMP6m mice with 

different intensities of the 470-nm and 405-nm light. We found that 100 μW of 470-nm light 

and 65 μW of 405-nm light, with an exposure time of 53 ms, were ideal.

Microcontroller System to Drive LEDs and Camera—To control and synchronize 

the LEDs and camera, we used a microcontroller (Arduino, Arduino Uno Rev3). In cycles of 

66 ms, we programmed the microcontroller to alternate between the 470-nm light and 405-

nm light. Each time an LED was turned on, the microcontroller signaled the camera to 

capture a frame. Through the HCImage Live software, we controlled the exposure time to 53 
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ms to ensure the camera captured only while the LED light was on. To avoid exposure 

overlap, we included a 13-ms delay after each frame. In order to synchronize the frames 

captured with our behavioral system (see below), our program for the microcontroller also 

sent a TTL pulse after every 200 frames to each of the behavioral apparatuses.

Temporal Synchronization with Behavioral Apparatuses—To ensure that the 

behavioral recordings and photometry frames were synchronized in terms of their internal 

clocks, we measured the jitter of each and aligned according to TTL interrupts to realign the 

recordings.

Acquiring and Digitizing GCaMP Emission in Photometric System—In order to 

image the GCaMP emission signal, we used a digital sCMOS camera (Hamamatsu, orca 

flash 4.0 v2) to record 512 × 512 pixel images, with a 4 × 4 binning readout, and a pixel size 

of 6.5 μm × 6.5 μm. Each region of interest, i.e., each fiber, was approximately 175 × 175 

pixels. To avoid dropped frames, we first saved the recordings to RAM, and to ensure 

precise time measurements for synchronization, we recorded in CXD file format. To 

distinguish between each fiber, we applied five regions of interest using functions custom-

written in Matlab. To decipher signals from 470-nm light excitation compared to the baseline 

405-nm light, we extracted signal from frames taken during 470-nm and 405-nm exposures 

separately. For phometric preprocessing and extraction codes, see Data S1 section 

‘Photometry Recording Preprocessing.’

Calcium Transients Extraction and 405-nm and 470-nm Comparison—To 

extract, isolate, characterize, and validate transients, we created a custom-designed 

algorithm (see Data S1 section ‘Calcium Recordings Transient Extraction and Signal-to-
Noise Ratio Codes’). We began our analysis by removing artifacts that came from animals’ 

movements or rare large disturbances of the system. We then determined which function 

among one-degree polynomial, two-degree polynomial, one-degree exponential, and two-

degree exponential best fitted the regression trend caused by GCaMP bleaching. We then 

subtracted the best fit function to remove the trend. After these cleaning steps, we converted 

the 405-nm and 470-nm channel signals to z-scores. In order to find exact transient start and 

peak times and to discriminate transients within bursts, we smoothed the filtered signals and 

then examined their local minima and maxima and their acceleration. Finally, we were able 

to rate the reliability of transients by comparing the 470-nm channel to the control 405-nm 

channel.

Initial Artifact Removal and Detrending—To accurately determine the mean and 

standard deviation of the signals, we first cleaned the signal by removing artifacts and trends 

from it. Large artifacts due to system disturbances occurred 0–5 times per session and 

affected all five recording channels in a session. To eliminate these artifacts, we removed all 

activity when all channels across all behavioral systems showed a simultaneous spike in 

signal velocity at least 1.5 standard deviations above the mean. We defined velocity as the 

differential of the photometry recordings. To remove artifacts originating from an animal’s 

movement, which occur in a single channel, we eliminated all spike-like activity when the 

velocity was greater than 20 standard deviations above the mean, an empirically determined 
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threshold. We also cut the first 4 min of recordings in each session since the initial steep 

bleaching of the GCaMP signal did not fit the best fit function for signal decay, generally a 

double-exponential regression (i.e., f x = AeBx + CeDx). To determine significant and 

reliable transients and to compare transient amplitudes across recordings, we converted the 

detrended 405-nm and 470-nm signals to z-scores. We did not use df/f analysis since the 

mean of the trace was close to zero after removing the double-exponential trend.

Isolating and Characterizing Transients and Bursts—In order to determine 

thresholds to be used for transient isolation and extraction in the 470-nm channel, we began 

by using a few methods to filter and smooth recorded signals. The filtered and smoothed 

data were used to determine transient times and to analyze transient rates; transient 

amplitudes were determined by using transient timestamps to return to unsmoothed, 

unprocessed signals.

We began with a 3rd order Butterworth bandpass filter with a lower threshold of 0.1 Hz and 

an upper threshold of 1 Hz. To smooth the data, we used a Hanning window with a width of 

1 s and then applied locally weighted scatterplot smoothing (LOWESS). The result of band-

pass filtering introduced a negative deflection aligned with the start of the spike. We used 

this artificial negative deflection to measure the timestamps of potential transients. In order 

isolate a potential transient, we set two thresholds: a lower threshold of less than −0.5 

standard deviations, followed by a peak with an upper threshold of greater than 1.5 standard 

deviations. In order to measure transient duration, we calculated transient velocity and 

acceleration. We determined transient velocity and acceleration local minimums and 

maximums. Then, we determined the start time of these potential transients as the time of 

first local maximum acceleration. Then, we computed the local maximum of the trace and 

required that the duration of transients must be <0.5 s. Signals that passed these initial 

criteria were further refined and classified as described below.

In the case of a burst of transients, we specified that at least one transient in a burst must 

cross the upper threshold and that the first transient must start below the lower threshold. We 

then checked whether the magnitude of each of the transients in a burst is >1 standard 

deviation and whether the burst duration was between 0.5 and 5 s. Each transient’s 

magnitude was defined as the difference between its maximum and minimum points. For 

details, see Figures S2E and S2F.

Transient vs. Noise Classification—In order to classify these potential transients, we 

calculated four features (Figures S2G–S2L):

a. Linear regression coefficient between 405 nm and 470 nm of the potential 

transient at each timepoint from the start of the potential transient to the peak of 

the potential transient.

b. Velocity of the transient peak calculated as the difference between the peak time 

stamp and two time stamps prior to the peak for both 470-nm and 405-nm z-

scored waveform.
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c. Difference in values between most similar projections of both 470-nm and 405-

nm signals determined independently from a manually selected transient library 

of 50 470-nm z-scored transients.

d. Area under peak (peak time ± 2 timestamps) between 470-nm and 405-nm raw 

waveforms.

Using these features and the following criteria, we classified transients into 3 groups: noise, 

transient, and potential transient:

1. Transients were removed if the 405-nm and 470-nm coefficients (see “a” above) 

were outside of ± 2STD of the mean of all potential transient coefficients.

2. Transients were removed if the velocity calculated in “b” was <−2STD over 

distribution of all potential transient velocities, indicating that they had no sharp 

or even negatively deflected peak.

3. Transients were removed if real(log(score)), where score is given according to 

“c”, was less than a cutoff defined as: real(log(score)) < scoresCutoff, where 

scoresCutoff = real(mean(log(scores))) − 2 * std(log(scores)).

4. For all transients that remain, we aimed to identify transients that have 405-nm 

and 470-nm waveform comparisons with a linear regression value (low “a”) 

close to 0 and a large difference in principal component projections of transients 

(high “c”). To add weight to large transients and improve the accuracy of burst 

detection, as well as simple transients, we multiplied the difference by the area 

between 470-nm and 405-nm transients (c * d), creating an area-weighted 

difference. These values are combined to compute the final transient grade by the 

following equations:

scoreS i = s i
mean s + std s , where s = projections (“c”) * areas (“d”)

scoreB i = abs b i
mean b + std b , where b = linear regression values (“a”)

grade i = min max scoreS i + 1 − scoreB i
2 , 0 , 1

5. In order to establish a grade cutoff to select transients for analysis, we 

established that those transients that lie higher than a threshold of 0.55 were 

considered to be true transients. The threshold was determined using 

classification based on a receiver operating characteristic curve.

Photometry Analyses—Transient rate comparisons between striosome and matrix mice 

(Figures 1O, 1P and S2M–S2O) and chemogenetic experiments (Figures 3F–3P) relied on 

the detection of GCaMP6m-reported Ca++ transients, as described above. The remaining 

evaluations of photometry measures, including signal magnitudes (e.g., R−CRP and 

equivalent measures) and correlations of these measures with behavior, relied only on 

detrending and artifact removal (see above) followed by z-score calculations of the 470-nm 

signal using whole session data as baseline.
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Limitations for Classifying Transients—Our classification is not sensitive to changing 

baseline fluorescence. The implications of transient shape and intensity are also unclear.

Histology and Microscopy

Immunofluorescence Staining: Mice were perfused using a 0.9% saline solution followed 

by 4% paraformaldehyde in 0.1 M phosphate buffer (PB). Brains were harvested, 

cryoprotected, and blocked before being frozen in dry ice. Using a sliding microtome, 30-

μm thick coronal sections were made. Sections were stored at 4°C in 0.02% sodium azide in 

0.1 M PB until use.

Three striatal sections per animal were used for each experiment. For all reactions, sections 

were rinsed for 5 min in 0.01 M phosphate buffered saline (PBS) with 0.2% Triton X-100 

(Tx) 3 times and were then blocked with tyramide signal amplification (TSA) blocking 

solution for 1 hr at room temperature, and then incubated with primary antibodies diluted in 

TSA blocking solution.

To visualize striatal PV-SPN connectivity and VGLUT1 in striosome and matrix 

compartments, as well as GCaMP6m expression, we used two protocols. In the first, we 

incubated sections for 48 hr at 4°C in rabbit polyclonal anti-VGLUT1 (1:500, Invitrogen 48–

2400), chicken polyclonal anti-GFP (1:2000, abcam ab13970), goat polyclonal anti-MOR1 

(1:500, Santa Cruz sc-7488), and guinea pig polyclonal anti-PV (1:4000, Synaptic Systems 

195004). Sections were again rinsed with PBS-Tx for 3 × 5 min and incubated with the 

following secondary antibodies (all diluted 1:300): donkey anti-rabbit conjugated with 

AlexaFluor 405 (abcam ab175649), donkey anti-chicken conjugated with FITC (abcam 

ab63507), donkey anti-goat conjugated with AlexaFluor 546 (Invitrogen A-11056), and 

donkey anti-guinea pig conjugated with AlexaFluor 647 (Jackson Immuno 706-605-148). In 

the second, we incubated sections for 48 hr at 4°C in guinea pig polyclonal anti-VGLUT1 

(1:2500, Millipore AB5905), chicken polyclonal anti-GFP (1:2000, abcam ab13970), mouse 

monoclonal anti-PV (1:2000, MAB1572), and rabbit monoclonal anti-MOR1 (1:500, abcam 

134054). Sections were again rinsed with PBS-Tx for 3 × 5 min and incubated with the 

following secondary antibodies (all diluted 1:300): goat anti-guinea pig conjugated with 

AlexaFluor 405 (abcam ab175678), goat anti-chicken conjugated with AlexaFluor 488 

(Invitrogen A-11039), goat anti-mouse conjugated with AlexaFluor 546 (Invitrogen 

A-11030), and goat anti-rabbit conjugated with AlexaFluor 647 (Invitrogen A-21245).

To visualize projections from GCaMP6m-expressing striatal SPNs to other brain regions, 

such as globus pallidus and substantia nigra, we incubated sections for 48 hr at 4°C in 

chicken polyclonal anti-GFP (1:2000, abcam ab13970) and rabbit polyclonal anti-TH 

(1:4000, abcam ab112–100). Sections were rinsed with PBS-Tx for 3 × 5 min and incubated 

with the following secondary antibodies (diluted 1:300): goat anti-chicken conjugated with 

AlexaFluor 488 (Invitrogen A-11039) and goat anti-rabbit conjugated with AlexaFluor 647 

(Invitrogen A-21245).

To visualize the impact of mHTT aggregates on striatal circuitry, we incubated sections for 

48 hr at 4°C in mouse monoclonal anti-mHTT, clone EM48 (1:100, Millipore MAB5374), 

chicken polyclonal anti-GFP (1:2000, abcam ab13970), and guinea pig polyclonal anti-PV 
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(1:4000, Synaptic Systems 195004). Sections were again rinsed with PBS-Tx for 3 × 5 min 

and incubated with the following secondary antibodies (all diluted 1:300): donkey anti-

mouse conjugated with AlexaFluor 405 (abcam ab175658), donkey anti-chicken conjugated 

with FITC (abcam ab63507), and donkey anti-guinea pig conjugated with AlexaFluor 647 

(Jackson Immuno 706-605-148).

To better understand D1/D2 expression ratios of SPNs in striosome and matrix 

compartments in our mouse models, we stained sections from the following mouse line 

crosses: D1-GFP/Mash1-CreER;Ai14, D2-GFP/Mash1-CreER;Ai14, D1/Dlx1-CreER;Ai14, 

and D2-GFP/Dlx1-CreER;Ai14. These sections were first incubated for 48 hr at 4°C in 

chicken polyclonal anti-GFP (1:2000, abcam ab13970), rat monoclonal anti-mCherry 

(1:1000, Life Technologies M11217), and rabbit monoclonal anti-MOR1 (1:500, abcam 

ab134054). Sections were again rinsed with PBS-Tx for 3 × 5 min and incubated with the 

following secondary antibodies (all diluted 1:300): goat anti-chicken conjugated with 

AlexaFluor 488 (Invitrogen A-11039), goat anti-rat conjugated with AlexaFluor 546 

(Invitrogen A-11081), and goat anti-rabbit conjugated with AlexaFluor 647 (Invitrogen 

A-21245).

To visualize PV+ perisomatic synapses onto SPNs in conjunction with VGAT staining, we 

incubated sections for 48 hr at 4°C in chicken polyclonal anti-GFP (1:2000, abcam 

ab13970), guinea pig polyclonal anti-PV (1:4000, Synaptic Systems 195004), and rabbit 

polyclonal anti-VGAT (1:1000, Millipore AB5062P). Sections were again rinsed with PBS-

Tx for 3 × 5 min and incubated with the following secondary antibodies (all diluted 1:300): 

goat anti-chicken conjugated with AlexaFluor 488 (Invitrogen A-11039), goat anti-guinea 

pig conjugated with AlexaFluor 555 (Invitrogen A-21435), and goat anti-rabbit conjugated 

with AlexaFluor 647 (Invitrogen A-21245).

After DREADD behavioral and recording experiments were completed, we visualized 

colocalization of DREADD and GCaMP expression, along with the striosome-matrix 

compartmental selectivity of our viral vectors. For this we incubated sections for 48 hr at 

4°C in chicken polyclonal anti-GFP (1:2000, abcam ab13970), rat monoclonal anti-mCherry 

(1:1000, Life Technologies M11217), and rabbit monoclonal anti-MOR1 (1:500, abcam 

ab134054). Sections were again rinsed with PBS-Tx for 3 × 5 min and incubated with the 

following secondary antibodies (all diluted 1:300): goat anti-chicken conjugated with 

AlexaFluor 488 (Invitrogen A-11039), goat anti-rat conjugated with AlexaFluor 546 

(Invitrogen A-11081), and goat anti-rabbit conjugated with AlexaFluor 647 (Invitrogen 

A-21245).

To confirm mHTT expression in Q175 mice for DREADD experiments, we incubated 

sections for 48 hr at 4°C in chicken polyclonal anti-GFP (1:2000, abcam ab13970), rat 

monclonal anti-mCherry (1:1000, Life Technologies M11217), and mouse monoclonal anti-

mHTT, clone EM48 (1:100, Millipore MAB5374). Sections were again rinsed with PBS-Tx 

for 3 × 5 min and incubated with the following secondary antibodies (all diluted 1:300): goat 

anti-chicken conjugated with AlexaFluor 488 (Invitrogen A-11039), goat anti-rat conjugated 

with AlexaFluor 546 (Invitrogen A-11081), and goat anti-mouse conjugated with 

AlexaFluor 647 (Invitrogen A-21236).
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After all secondary incubations, sections were rinsed 3 × 5 min in 0.1 M phosphate buffer 

(PB). For reactions that did not include secondary antibodies with 405 conjugates, sections 

were then incubated for 2 min in DAPI diluted in PBS (1:1000, Invitrogen 62248) and 

subsequently rinsed 3 × 5 min in 0.1 M PB. All sections were mounted with ProLong Gold 

antifade reagent (Invitrogen) and subjected to imaging.

Microscopy: For VGLUT1/GFP/PV/MOR1 quadruple stains, mHTT/GFP/PV triple stains, 

and GFP/mCherry/MOR1 triple stains in tissue from offspring of D1/D2-GFP & Mash1/

Dlx1 mouse line crosses, images were taken using a TissueFAXS SL Confocal Slide Loader 

system from TissueGnostics (63x 1.4NA Zeiss Plan-Apochromat oil immersion objective, 

Hamamatsu Orca FLASH 4.0 V2 sCMOS camera, Lumencor Spectra X light engine, 

CrestOptics spinning disk confocal imager, motorized stage). This system combines 

TissueGnostics’ spinning disc confocal microscope with an autofocus algorithm and an 

automatized robotic slide loader to enable automated, high-throughput, tiled confocal 

imaging. After applying immersion oil, slides were loaded into the slide loader. Each slide 

was then loaded onto the microscope’s stage using the system’s robotic gripper arm and a 

2.5x preview scan (2.5x 0.3NA Zeiss EC Plan-NEOFLUAR) was taken of the entire slide. 

We used this preview to draw and select regions of interest for acquisition (dorsal central 

striatum for all sections). Tiled images of the dorsal central striatum for all sections were 

acquired in 16-bit format with 4 channels (filter sets DAPI, FITC, Cy3, Cy5) and a 25-step 

Z-stack with 1-μm thick steps. We also utilized the system’s extended focus option, which 

allows for the automatic calculation of a maximum projection image. Once acquisition 

finished, images were validated for focus quality. Data totaled about 10 TB, so images were 

periodically transferred to other hard drives for permanent storage.

For all stains pertaining to DREADD experiments, images were collected using a 

TissueFAXS Whole Slide Scanning System from TissueGnostics (Zeiss 20x 0.5 NA EC 

Plan-NEOFLUAR objective, Hamamatsu Orca Flash 4.0 V2 cooled digital CMOS camera 

C11440–22CU for fluorescence imaging, Lumencor Spectra X light engine, motorized 

stage). Due to the motorized stage and TissueGnostics’ autofocus algorithm, this system 

allowed for high-throughput, tiled epifluorescence imaging. Slides were first loaded onto the 

system’s stage, which holds 8 slides at a time. After loading, a 2.5x preview scan (2.5x 

0.3NA Zeiss EC Plan-NEOFLUAR) was taken of all slides. We used these preview scans to 

draw and select regions of interest for acquisition (dorsal central striatum for all sections). 

Tiled images of the dorsal central striatum for all sections were acquired in 16-bit format 

with 4 channels (filter sets DAPI, FITC, Cy3, Cy5). Once acquisition finished, images were 

validated for focus quality and transferred to an external hard drive for storage.

For GFP/PV/VGAT triple stains, images were collected using a Zeiss LSM 710 Laser 

Scanning Confocal System. Images were taken using a 63x 1.4NA Zeiss Plan-Apochromat 

oil immersion objective. Images were acquired with 4 channels (laser lines used: 405nm, 

488nm, 561nm, 633nm) and an 11 step Z-stack with 1-μm thick sections. These were not 

tiled; only one field of view was acquired per image. Once acquisition was finished, images 

were transferred to an external hard drive for storage.
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To prepare for semi-automated image analysis, we exported all images taken by TissueFAXS 

or TissueFAXS SL systems in 16-bit format with the full range of bit color intensity values 

(0–65536). Maximum projection images were used for semi-automated analyses of spine 

and VGLUT1; z-planes were used for analyses of cell body identification in D1/D2 

experiments and cell bodies and perisomatic PV puncta in PV-related experiments.

DREADD with Photometry Experiments—For chemogenetic manipulation 

experiments, mice were injected bilaterally with the same GCaMP6m viral vector as well as 

viral vectors expressing inhibitory DREADD (AAV8-Ef1a-fDIO-hM4D(Gi)-mCherry), 

excitatory DREADD (AAV8-Ef1a-fDIO-hM3D(Gq)-mCherry) or mCherry control (AAV8-

Ef1a-fDIO-mCherry) constructs (Stanford Vector Core) targeting anterior central dorsal 

striatum. In order to avoid viral transduction of medial structures by DREADDs, slightly 

lateral coordinates were used.

Four injections total were made per mouse: a mixture of viral vectors with 500 nl DREADD 

and 500 nl GCaMP6m was injected bilaterally at anterior coordinates, and 500 nl DREADD 

alone were injected bilaterally at posterior coordinates. We found that DREADD and 

GCaMP6m viral vectors colocalize in ~80% of transduced cells (Figure S3O–Q).

• for age 6 months:

– AP: +1.1 mm; ML: ±1.7 mm; DV: −2.0 mm from brain surface

– AP: +0.1 mm; ML: ±2.2 mm; DV: −1.8 mm from brain surface

• for age >12 months:

– AP: +1.6 mm; ML: ±1.7 mm; DV: −2.0 mm

– AP: +0.6 mm; ML: ±2.2 mm; DV: −1.8 mm

In order to balance for day-of-week effects resulting from weekend water access, mice were 

run on Monday through Friday on the task, and CNO was administered on Wednesday with 

two flanking saline administration days on Tuesday and Thursday. To control for behavioral 

effects of CNO, CNO was administered in groups of mice that did not express Cre, or in 

mice injected with the mCherry control viral vector in place of DREADD viral vector. 

Codes associated with these methods can be found in Data S1 section ‘Creating the 
DREADD Analysis Database.’

QUANTIFICATION AND STATISTICAL ANALYSIS

Signal Detection Theoretic Analysis—We took a signal detection theoretic (SDT) 

approach to model the internal decision-making process of a subject in a discrimination task 

learning experiment (Berditchevskaia et al., 2016a). We evaluated the SDT sensitivity 

measure, d’, as a measure of discrimination performance. We measured task engagement 

using SDT-based response bias, C, the “criterion” at which the mouse designates the 

threshold to produce a response.

We calculated d’ from the inverse normal cumulative distribution of true positive (TP; mouse 

responded on a reward trial) and false positive (FP; mouse responded on a cost trial) rates: d’ 
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= z(TPR) − z(FPR). TP and FP rates were calculated over a given session or bins of trials as 

indicated. TP rates were calculated as TPs/total-reward-trials and FP rates were calculated as 

FPs/total-cost-trials. Rates were clipped at >0.99 and <0.01. The SDT model can be 

characterized by two overlapping normal distributions, with the one representing the 

distribution of sensory magnitudes for reward and, therefore, approach tone and the lower 

one representing the distribution for cost and, therefore, avoidance tone. In any trial, the 

subject randomly samples a value from the distribution for that trial type and must use that 

to decide whether the approach signal was presented or not.

Discriminability, d’, was used as a measure of discrimination between cost and reward trials, 

representing the number of standard deviations between the means of the two distributions. 

The greater d’, the less overlap between the two distributions. The response bias, C, is a 

measure of the distance in standard deviations from the midpoint between the two 

distributions. When C equals zero, there is no bias toward approaching or avoiding. A 

relatively higher C (more positive) value therefore reflects a stringent threshold for response 

and avoidance-heavy behavior, whereas a relatively lower C (more negative) value reflects a 

more lenient threshold, and approach-heavy behavior. For SDT analysis codes, see Data S1 

section ‘SDT Analysis Functions.’

HMM-Based Identification of Engaged and Not Engaged Trials—In order to 

identify each trial as engaged or not engaged, we used an approach based on hidden Markov 

model (HMM). Codes for data binning, training, decoding, and model selection can be 

found in Data S1 section ‘HMM-Based Engagement Analysis Functions.’

Data Selection for HMM Training—Some mice constantly participate in task learning, 

and some mice have periods of active engagement in the task and periods of not engaged 

behavior. Once a mouse is actively participating in the task, we call it engaged. We decided 

to use an HMM-based approach to determine engagement for each mouse. In the HMM 

model, the transition matrix determines the probabilities of switching from states (engaged 

and not engaged) for a mouse. In addition, the emission matrix determines the probability of 

licking rates for each state.

Determining State for Cost Trials—Performing in a manner that maximizes reward and 

minimizes cost requires the mouse to refrain from licking in response to the cost-associated 

tones, which confuses the HMM algorithm. Therefore, we trained the HMM model on the 

reward-associated tone trials and used an algorithm to determine the neighboring cost-

associated tone trials as engaged. If a cost trial follows an engaged reward trial, then it is 

considered engaged. If a cost trial follows a not engaged reward trial, then it is considered 

not engaged.

Data Binning to Accommodate Learning Dynamics—Learning is a dynamic 

process, and HMM is a static model. In addition, some mice are fast learners and learn the 

task in 201 trials, whereas some mice are slow learners and learn the task in 13,188 trials. 

This results in a learning process that is extremely heterogeneous across mice potentially at 

a 60-fold scale. We also observed that some mice have a very wide range of C values (SDT-

based analysis metric reflecting task engagement) across leaning (+2.2 to −2.2). This results 
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in periods of extremely different engagement models across learning for each mouse. 

Therefore, we created a ‘dynamic HMM model’ where the data across learning are split into 

equally sized bins. Using simulation experiments to determine the limits of bin size, we 

discovered that the HMM model can be estimated reliably with bin sizes greater or equal to 

300 trials. This encompasses at least 4 behavioral sessions that will include multiple periods 

of active task participation (engagement) and dormant, not engaged, behavior. We used a 

dynamic window because probabilities of being engaged and not engaged are changing 

during learning.

Determining Best-Fit Set of Models for Each Mouse—Differences in task 

engagement levels among individual mice require a different model for each mouse. For 

each mouse, we tried several window sizes for trial binning to determine the best-fit model 

(300, 600, 1200, 2400, 4000, 8000, and all trials). This procedure creates a set of models for 

each mouse, and each window’s model was trained with equal starting parameters. In order 

to keep the model simple, we used 2 emissions for licking rates, low and high, determined 

by a threshold for the emission matrix. Because each mouse had a different baseline lick rate 

(0.2–3 Hz), we tried different lick thresholds (1, 2 or 3 licks) for individual mice. We 

observed that mice had different lick densities across trials, and thus we used a 2-state model 

(engaged and not-engaged) and a 3-state model (where one state was considered as not 

engaged and other 2 states had different probabilities of engagement) for each mouse. Based 

on these parameters, we trained all possible sets of models for each mouse and determined 

the best bin size, lick threshold, and number of states. We calculated the average Bayesian 

information criterion (BIC) for each set of models and chose the set with the lowest BIC.

Initialization and Decoding of HMM Algorithm—For the 2-state models, we used 

initialization matrices with Transition = [0.8, 0.2; 0.2, 0.8] ([engaged to engaged, engaged to 

not engaged; not engaged to engaged, not engaged to not engaged]) and Emission = [0.6, 

0.4; 0.4, 0.6] ([engaged high licks, engaged low licks; not engaged high licks, not engaged 

low licks]) for the initial attempt, determined empirically. Since the HMM is a gradient 

descent algorithm, we encountered the problem of the model getting stuck in a local 

minimum, so we also trained a 3-state model with 2 different initializations: (1) Transition = 

[0.7, 0.15, 0.15; 0.15, 0.7, 0.15; 0.15, 0.15, 0.7] ([engaged to engaged, engaged to not 

engaged, engaged to unknown; not engaged to engaged, not engaged to not engaged, not 

engaged to unknown; unknown to engaged, unknown to not engaged, unknown to 

unknown]) and Emission = [0.8 0.2; 035, 0.65; 0.6, 0.4] ([engaged high licks, engaged low 

licks; not engaged high licks, not engaged low licks; unknown low licks, unknown high 

licks]); and (2) Transition = [0.8, 0.01, 0.19; 0.01, 0.09, 0.9; 0.15, 0.15, 0.7] and Emission = 

[0.8, 0.2; 0.35, 0.65; 0.6, 0.4]. The 3-state model introduces a new “unknown” state that 

allows a crisper separation between engaged and not engaged states.

For each segment, we estimated the transition and emission probabilities for a HMM using 

the Baum-Welch algorithm (hmmtrain, Matlab). We used BIC to find a model with the best 

fit for our data.

Quantification of SNR for Striosomal and Matrix Transients during Learning—
To understand the role of transient dynamics in learning, we computed a measure of SNR by 
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calculating a modified Fano factor of the RP transients and compared SNRs between 

striosome and matrix CT mice that learned the task. For each group, we compared SNR of 

early learning (first 250 trials) to SNR of late learning (last 150 trials), using only reward 

trials in which mice were classified as engaged by our HMM algorithm. Because we used 

data from 400 trials in total, all mice with fewer than 400 such trials were not included in the 

analysis. We used the modified Fano factor to measure SNR according to the following 

equation: Modified Fano factor = var transient times
mean transient amplitude . We included only RP transients, 

and in this equation, transient time is the time relative to the start of the trial. Similarly, the 

transient amplitude is the mean of the RP transients across all trials in a learning phase 

(early or late). With the modified Fano factor, larger values represent lower SNR, and 

smaller values represent higher SNR. Therefore, we inverted the y-axis to clearly represent 

increasing SNR (Figure S2P). Our methodology demonstrated that in striosome mice that 

learned the task, the variance of transient times in the response period decreased and the 

amplitude of transients increased with learning, resulting in increased SNR. Code for this 

analysis can be found at https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

FigS2P_transients-snr/runme.m. Details for transient extraction can be found in section 

‘Calcium Transients Extraction and 405-nm and 470-nm Comparison.’ For transient 

amplitude analysis and transient frequency analysis, see quantification and statistical 

analysis of Figures 1O, 1P, and S2M–S2O.

Image Analysis Pipeline—Using a confocal scanner, we imaged over 589 tissue 

sections, including 2628 z-planes, over the entire left and right hemispheres of striatum; we 

recorded over 10 TB of exported histological images. The size of the data made it 

impossible to perform a manual analysis. Therefore, we designed many computer vision 

algorithms (see ‘Histology and Microscopy‘ and ‘Image Analysis Algorithms and Analysis‘) 

to aid us in analysis. We utilized human verification of the algorithm outputs, and parallel 

manual verification analyses were done in a manner blind to group identity on subsets of 

data from each dataset due to the high-throughput nature of our image data collection and 

analysis pipeline. Sometimes our imaging data were not perfect due to bright background, 

high overlap in 3D structures, objects at the very edge of microscope resolution, and 

occasional low SNR. Therefore, our image analysis algorithms could occasionally fail. In 

these instances, the output could be recovered using different algorithmic parameters. The 

algorithms may perform better on some parts of the image than others, so we needed to 

manually mask the incorrectly identified image parts. The failed output was ultimately 

removed from the next step of analysis if the quality of the image segment was poor or if 3D 

structures were not accurately captured in 4D. Therefore, continual human verification of the 

algorithm output, again by individuals blind to genotype/group, enhanced the quality of our 

object recognition. We designed a semi-automatic system to perform large amounts of image 

analysis on a remote server with a local client to manually check and select output (Figures 

S5A–S5M). The implemented algorithms in the system are SPN cell body detection, SPN 

dendrite and spine detection, striosome detection, D1/D2 and striosome/matrix overlap 

detection, PV terminals on striosomal/matrix cell body detection, PV cell body detection, 

PV dendrite detection, and PV expression. In addition to the image analysis pipeline, 

additional algorithms were built as dependencies of the pipeline algorithm output. The 

additional algorithms were not integrated into the pipeline because they were easier to run/
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verify or had different requirements. Due to the size of the images, in order for the user to 

evaluate the accuracy of small object detection (e.g., dendritic spines or presynaptic puncta), 

we divided the image into a 10 × 10 matrix of image segments.

The client was built using Node.js and TypeScript with the React.js framework. We used 

Electron to make the client a native application instead of a web application. This was 

because the server and client communicated through a shared file system, and the client 

must be able to read and write to the filesystem, which was not possible in browser 

applications. For an explanation of how to run the image analysis pipeline codes, and for a 

more detailed description of the system design, see https://github.com/sdrammis/Friedman-

Hueske-2020/tree/v1.0.1/image-analysis and read the README.md file.

An Overview of the Image Analysis System Design—We built a client application 

that runs locally on Mac and Linux machines. A user began using the system by creating an 

‘execution’ (Figure S5D). The user selected an image and analysis type, and gave the task a 

unique execution name. Once created, the server recognized the new execution in the system 

and applied the appropriate analysis algorithm. Execution meta-information (e.g., which 

image it is associated with and when it was created) was stored in a file called ‘db.json’ at a 

user configured location.

The server had a central daemon, called the decider, that was always running and checking 

the state of the system. The decider listened for updates from the client. When it heard a new 

execution, it determined what algorithms could be run to complete the execution. Here, we 

define the daemon performance of user executions as ‘work.’ Any work that could be 

performed was added to the decider’s queue (the only queue in the system). When there was 

space on the server, the decider selected the oldest item from the queue and ran the 

algorithm on the image for that unit of work. Once the algorithm (also called “worker”) was 

completed, output images and data were saved to disk, and the client was notified of the 

completed work. The output of the algorithm was then visualized for the user. In the next 

step, the user could do one of following:

a. If the output failed due to algorithm performance but the data quality was high, 

the user could change the parameters of the algorithm and resubmit the work.

b. If the output was inadequate because of low data quality, the user could negate 

the output, preventing any downstream work from being done.

c. If the output was successful, the user could indicate to keep the output, sending it 

downstream for further analysis.

Once the user selected and submitted adequate algorithm outputs, the decider checked for 

any work dependent on the submitted results. In this case, it would queue this work. This 

continued until all work was done and nothing was left in the queue. Then, the decider 

waited for new executions.

Work was structured as a directed acyclic graph. Algorithms could be dependent on the 

human-verified output of other algorithms as long as there were no cycles. The daemon ran 

constantly, trying to find new work. It ran a constant number of algorithms (generally 5) in 
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parallel to ensure that we were not using up all of the resources in the shared server. If 

needed, we could adjust the maximum amount of allowed parallel work.

Aggregation Scripts to Analyze Pipeline Output—We used multiple one-off scripts 

that ran automatically or did not require intense manual verification and therefore could be 

run outside of the pipeline system. These scripts shared many codes with the workers, and 

many even called the workers directly.

Image Analysis Algorithms and Analysis—In ‘Image Analysis Pipeline’, we describe 

the system that ran many image analysis algorithms (called workers) on data as parallel 

processes with human verification. Here, we will describe all the workers in the pipeline 

system, their input dependencies in detail, and where to find the code. We will also explain 

the analysis aggregation scripts that collected the outputs from the pipeline and performed a 

final analysis on the data. Some analysis scripts did not require the pipeline and human 

verification as they were highly accurate and/or easy to verify manually without the client. 

These scripts did, however, often leverage shared code with pipeline workers. We will 

describe these analyses in detail in this section as well.

Striosomal Detection Worker Using MOR1 Staining Analysis—In our image 

analysis pipeline, we had a worker to identify the striosomes and striosomal rims in the input 

images. We used the detection output to create striosome and matrix masks used in other 

analysis scripts.

In order to identify striosomes automatically based on confocal scans, we used 

quantification of MOR1 staining. Below are several steps that were used to find striosomal 

centers, striosomal rims, and matrix. First, in order to visualize the signal of 16-bit images 

within a dynamic range for visual perception, we fit the pixel intensity distribution to a beta 

distribution using Matlab.

In order to set an appropriate threshold for striosome extraction, we hand-circled four 

regions in the image, taking care to keep striosomes with similar intensity and size together 

because we had a wide range of intensities and striosomal sizes across the image from the 

medial-lateral and dorsal-ventral axis. The hand drawing was a ‘pre’ dependency of the 

striosome detection worker (Figure S5E). A CDF of the pixel intensity histogram was used 

to set a threshold, empirically determined by the user across all images by keeping the top 

percentage of the brightest pixels to distinguish striosomal centers. Once these thresholds 

were applied, we removed all pixel clusters smaller than 481.3 μm2 using bwareaopen.m 

function in Matlab to reduce noise in the output. Finally, we generated masks that 

represented striosomal centers and rims. One limitation was that this process was only semi-

automatic due to the initial hand-drawing step. The striosome manual drawing code can be 

found at https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/image-analysis/

workers/pre_strio_analysis/PreStrioAnalysis_select_regions.m, and the striosome 

identification code can be found at https://github.com/sdrammis/Friedman-Hueske-2020/

blob/v1.0.1/image-analysis/workers/strio_analysis/StrioAnalysis_run.m.
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SPN Cell Body Detection Worker of GCaMP6-Labeled Cell Bodies—The image 

analysis pipeline contained a worker to detect SPN cell bodies. In order to automatically 

identify the GCaMP6m-labeled cell bodies across any image, we calculated the pixel 

intensity histogram and created a CDF. We used a threshold to keep the top 5% of brightest 

pixels in order to remove darker objects from the original image and converted the original 

image to binary. Next, we removed some artifacts by removing all pixel clusters below 10.7 

μm2 that were too small to be considered cell bodies using bwareaopen.m. We filled ‘holes’ 

of lower GCaMP6m expression inside of cells using imfill.m to maintain the shape of the 

cell bodies. The worker code for detecting SPN cell bodies can be found at https://

github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/image-analysis/workers/

msn_cell_body_detection/MSNCellBodyDetection_run.m.

Quantifying Density of GCaMP6m+ Cells in Striosome and Matrix 
Compartments in E11/E15 Model Mice—To verify that GCaMP6m labeled 

predominantly sSPNs and mSPNs in our striosome (E11 tamoxifen induction date) and 

matrix (E15 tamoxifen induction date) mouse models, we counted all cell bodies semi-

automatically across all 25 z-planes for each image for 5 mice of each type. To aid with the 

counts in more dense images, we used the function CellCountingHelper.m (https://

github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/spn-cell-density/

CellCountingHelper.m), which allowed us to mark each cell body center across all z-planes 

with a data cursor in a Matlab figure and then to remove all cell bodies that were within 100 

pixels of each other. For each mouse, one Matlab structure that contained the location of all 

cell body centers and whether the cell was in a striosome or the matrix was saved. 

Furthermore, the structure assigned a label to each striosome that had labeled cells and 

assigned cells to these striosomes.

We quantified density via two different measures. In the first measure, we calculated a 

pseudo-maximum density for each compartment type in striatum. To quantify pseudo-

maximum density of labeled striosomal GCaMP6m+ cells, we created one circle for each 

striosome for which the center was the average position of all labeled cells in that striosome. 

The radius was the smallest radius to contain all labeled cells in that striosome. Then the 

density of that striosome was taken as the number of cells in that striosome divided by the 

area of its corresponding circle. The pseudo-maximum striosomal density was the maximum 

across all calculated striosomal densities. The radius of the circle of pseudo-maximum 

density was saved and used to calculate matrix density. A circle of that radius was placed at 

every labeled matrix cell such that the cell body was the center of the circle. Local density 

within the circle was calculated, and the pseudo-maximum matrix density was taken as the 

maximum density of the overlaid circles with a matrix cell as their center. This was done in 

CellClusterCounter.m (https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

spn-cell-density/CellClusterCounter.m).

Because GCaMP6m viral injections do not spread to all striosomes, calculated striosomal 

density may be under-representative of its effective density. Thus, our second measure of 

density was a count of “sufficiently dense” cell body clusters. To quantify such a cluster of 

labeled striosomal cells and such a cluster of labeled matrix cells, we placed the previously 

defined circle at every labeled cell body such that the cell body was the center. If that circle 
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contained enough cell bodies of the same type (striosomal or matrix) as the center cell to 

have a density 30% of the pseudo-maximum striosomal cell density, that circle was 

considered to be a cell cluster. The number of matrix clusters and striosome clusters were 

then calculated. This was performed in CellClusterCounter.m.

For methods on labeling of tdTomato+ cells as striosomal or matrix, see the ‘Assessment of 

D1 and D2 Proportion in Birthdate-Labeled Cells‘ section, along with the quanitification and 

statistical analysis sections for Figures 1I, S1S, and S1T.

Code for the Density Quantifications of GCaMP6m+ SPNs in Striosome and 
Matrix Compartments in E11/E15 Model Mice—We designed the following custom 

analysis code to a) identify cell bodies, b) record their locations, c) load the z-planes of one 

mouse section with SPNs labeled with GCaMP6m and d) overlay striosomal boundaries, 

implemented in function StrioVsMatrixClusterHistogram.m (https://github.com/sdrammis/

Friedman-Hueske-2020/blob/v1.0.1/spn-cell-density/StrioVsMatrixClusterHistogram.m). To 

avoid counting cells multiple times, as they often span multiple z-planes, we developed a 

methodology to remove possible duplications, implemented in function 

CellCountingHelper.m (https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

spn-cell-density/CellCountingHelper.m). We stored matrix density quantifications in 

finalMatrixAnalysis.mat (https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

spn-cell-density/finalMatrixAnalysis.mat) and striosomal density quantifications in 

finalStrioAnalysis.mat (https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

spn-cell-density/finalStrioAnalysis.mat), which were compiled by CellClusterCounter.m 

(https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/spn-cell-density/

CellClusterCounter.m). For details of use, see helper function.

Assessment of D1 and D2 Proportion in Birthdate-Labeled Cells—In order to 

evaluate the proportion of D1 and D2 cells labeled in Dlx1-CreERT2:Ai14 and Mash1-

CreERT2:Ai14 mouse lines with tamoxifen dosed at E11 (striosomal) or E15 (matrix) 

timepoints, we crossed these lines to D1-GFP (n = 4 per group) or D2-GFP (n = 4 per group) 

mice. We stained for tdTomato to indicate striosomal or matrix birthdate-labeled cells and 

for GFP to indicate D1- or D2-type cells. To analyze the images, we created a semi-

automated algorithm. First, the algorithm identified tdTomato+ cells by finding potential 

cells using the function described in ‘SPN Cell Body Detection Worker of GCaMP6-Labeled 
Cell Bodies’. All sections from the 32 mice across groups were stained together, and an 

empirically determined threshold was used across all images to identify cells across 5 z-

planes in 3–4 tissue sections per mouse. We set a minimum area threshold of 40 pixels in 

size. We then iterated over all potential cells and computed their energy, area, and solidity as 

described in ‘Identification of SPN Cell Bodies and Connectivity between PV and SPNs’. 

We kept cells with an energy value above an empirically determined energy threshold, an 

area greater than 200 pixels, and a solidity of at least 0.85. The energy threshold was set to 

100 if the distribution of nonzero pixel intensities of the images had a standard deviation of 

over 400 or below 20.

After selecting potential cells that matched the criteria, we applied a watershed filter for 

segmentation using the Matlab function edge with the parameter ‘Canny’ to find the edges 
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of a potential cell. We again used the same area, energy, and solidity thresholds to improve 

the selection of identified cells.

In order to determine whether the tdTomato-labeled cells colocalized with cells expressing 

D1-GFP or D2-GFP, we compared the identified tdTomato+ cells to the GFP signal. In order 

to accommodate the high variance in GFP and background signals across tissue sections, we 

calculated z-scores for each region in a grid of 9 × 9 sub-regions and set an empirically 

determined high and low pixel intensity threshold of 1.3 and −0.1, respectively. 

Colocalization of tdTomato+ cells with GFP signals above the high threshold were 

considered positive for GFP (of D1 or D2 lines), and colocalizations with GFP signals below 

−0.1 were considered negative. If the colocalized GFP signal fell between these thresholds, 

we made no conclusions about labeling and marked the cell as unknown. The functions 

described can be found at https://github.com/sdrammis/Friedman-Hueske-2020/tree/v1.0.1/

image-analysis/analysis/%2Bcellcounts.

Identification of SPN Cell Bodies and Connectivity between PV and SPNs—In 

order to count the potential number of perisomatic PV puncta on SPN cell bodies, we first 

split images of PV- and GCaMP6-labeled striatal sections into overlapping 141 × 161 sub-

images and compiled them into a Matlab matrix. In order to automatically identify the 

GCaMP6m-labeled cell bodies across any image, we then iterated through each element of 

this matrix to determine which of the matrices contained a cell body by applying a threshold 

based on variance in pixel intensity. If the submatrix pixel intensity variance was above 200, 

we calculated a corresponding pixel intensity histogram and created a CDF. From the CDF, 

we kept the top 20% of the brightest pixels to convert the matrix to a binary mask. If the 

pixel intensity variance was below that threshold, we made the entire submatrix black. We 

then filled holes in the image using imfill.m to obtain proper elliptical cell bodies. We 

restructured each pixel cluster with imopen.m to obtain more elliptical outputs. All clusters 

smaller than 13.7 μm2 were removed with bwareaopen.m, as they were too small to be cell 

bodies. The code to run the SPN cell body detection can be found at https://github.com/

sdrammis/Friedman-Hueske-2020/blob/v1.0.1/image-analysis/analysis/%2Bpvmsnconn/

detect.m (follow the README to run the analysis). The code should be run from the 

analysis folder. The input imgsDir_ is the subdirectory of images you wish to run the 

algorithm on, outDir is the output path to write the cell body masks, and debugDir is the 

folder to write optional debug images to manually check the accuracy and success of the 

algorithm.

Next, we found the area around the rim of each cell body. To find high-intensity puncta in 

the PV channel, we iterated through each SPN location in the PV channel and took the 

gradient image using imgradient.m. We applied a mini-max threshold to adjust the gradient 

image according to its intensity range. In this adjusted image, we only considered pixels 

with intensity greater than 0.25. After removing clusters with fewer than 8 pixels using 

bwareaopen.m, filling holes in the image using imfill.m, and bridging unnecessary gaps in 

the image using bwmorph.m, we considered all remaining puncta within the rim mask to be 

potential PV-SPN connections. We then iterated through each potential punctum and kept 

the ones with the following empirically determined parameter settings: solidity (a roundness 

metric computed by Matlab regionprops function) above 0.83 (using regionprops.m), area 
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above 6 and below 100, and total “energy” (intensity metric) above 10, where the “energy” 

of one pixel is given by the equation: 

energy = ∑cellPixel
  cellPixel−edgeMeanIntensity

edgeStdIntensity
3

/cellArea. The code to determine the PV 

puncta on the SPN cell bodies can be found at https://github.com/sdrammis/Friedman-

Hueske-2020/blob/v1.0.1/image-analysis/analysis/%2Bpvmsnconn/compstats.m. The code 

is to be run from the striomatrix-cv/analysis folder. The variable DATA_PATH should point 

to the output folder from the SPN detection. The output is a csv file with cells and their 

corresponding number of puncta.

VGluT1 Puncta Detection and Analysis—In order to evaluate differences in 

populations of VGluT1 puncta between groups of mice and across many tissue sections, we 

first established an analysis protocol in ImageJ. We subsequently built a batch process 

calling a Java program built on the ImageJ library including the following steps:

1. Enhance image contrast (saturation 0.01).

2. Apply automated thresholding routine visually determined using a subset of data 

to identify VGluT1 puncta.

3. Convert the image to a binary mask.

4. Apply a watershed filter.

5. Use the particle analysis function (size ≥ 10 pixels) to identify and enumerate 

each segregated VGluT1 punctum as a region of interest and output 

measurements such as maximum pixel intensity and area for each punctum.

The ImageJ function only returned puncta within the given manually determined region-of-

interest coordinates kept in an excel spreadsheet. Each coordinate pair corresponded with the 

dorsal central area of striatum. Codes for the batch process can be found at https://

github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/image-analysis/analysis/

%2Bvglut/%2Bpoints/%2Bdetection/vglutij/src/VGlutIJ.java, and codes for the ImageJ Java 

function can be found at https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/

image-analysis/analysis/%2Bvglut/%2Bpoints/%2Bdetection/detect.m.

The batch process output a text file containing tab-delimited arrays of detected VGluT1 

puncta boundaries. We then aggregated many values of potential interest over the detected 

output. VGluT1 puncta could be in either the striosome or matrix compartment of striatum; 

therefore, in order to perform VGluT1 compartmental analysis, we first identified striosome 

and matrix compartments of striatum (see section ‘Striosomal Detection Worker Using 

MOR1 Staining Analysis‘). We first used the results of the striosomal detection worker in 

the image analysis pipeline to find the striosome and matrix masks for each slice. Then we 

applied these masks to the VGluT1 channel. We thereafter computed features for each 

punctum, such as maximum puncta intensity, total puncta intensity, and puncta area.

From the ImageJ-determined outputs, we calculated probability density functions (PDFs) 

and CDFs for puncta area and puncta max pixel intensity in striosome and matrix groups. To 

ensure that each tissue section contributed equally to the statistical output, the distribution of 
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these features were resampled (1000 values). The resampling function can be found at 

https://github.com/sdrammis/Friedman-Hueske-2020/blob/v1.0.1/image-analysis/analysis/

%2Bvglut/%2Bpoints/%2Bcompute/resample.m. The function for computing the values of 

interest and saving the outputs can be found at https://github.com/sdrammis/Friedman-

Hueske-2020/blob/v1.0.1/image-analysis/analysis/%2Bvglut/%2Bpoints/%2Bcompute/

compute.m. We performed statistical analysis of the pooled resampled histograms using 

Prism software. Data can be found at the following link: http://dx.doi.org/

10.17632/6z4fvrspt3.1#file-3d9d5d2a-2893-4a14-b463-b10861693443.

SPN Dendrite and Spine Identification Worker of GCaMP6m-Labeled Dendrites 
and Spines—The SPN dendrite and spine detection pipeline worker was dependent on the 

output of the SPN cell body detection worker. The worker took the detected SPN cell bodies 

and removed them from the image. This ensured that we did not accidently count cell area as 

a part of dendrites. Furthermore, we introduced an eraser tool to delete poorly identified 

dendrites. This allowed the user to erase cell bodies (that were not detected by the SPN cell 

body worker), other non-dendrite shapes that may have been mistaken as dendrites, or other 

cases of bad spine detection. The eraser tool gave the user, again blind to group/genotype 

identity, fine control of the accuracy of the output (Figure S5G).

In order to automatically detect SPN dendrites from any image, we first created a histogram 

of pixel intensity starting from the most frequent intensity. We constructed a CDF for this 

histogram and set our threshold to be the top 5% of brightest pixels. We applied this 

threshold to the image and then removed pixels clusters that were below a certain size such 

that spines were unlikely to be detected on those dendrites and the remaining white in the 

binary image represented dendrites.

In order to automatically detect SPN spines from any image, we used bwmorph.m to create a 

skeleton image of the dendrite mask. On the skeleton images, there were branches, some of 

which were too short and did not protrude from the dendrite as spines did. Therefore, we 

removed the shortest branches from the image by first finding all the branch points with 

bwmorph.m, then by removing all branches that were fewer than ten pixels in length. Then 

we kept track of all the endpoints in the skeleton as these were potentially spines. All spines 

in the image were small regional intensity maxima, so to finally find the spines, we 

considered all regional intensity maxima, using imregionalmax.m, that were smaller than ten 

pixels in area and within four pixels from a skeleton endpoint as our spines. The code for the 

SPN dendrite and spine detection worker can be found at https://github.com/sdrammis/

Friedman-Hueske-2020/blob/v1.0.1/image-analysis/workers/

msn_dendrites_spines_detection/MSNDendritesSpinesDetection_run.m.

Limitations of Image Analysis—We do not have direct evidence of functional 

connectivity. Evaluating striosomality of GCaMP6m in our birthdate-labeled mice may 

reflect birthdate-related differences rather than compartmental differences. A minority of 

cells are labeled in striosomes or matrix by this method and, as with many transgenic 

models, the possibility exists that we are labeling a subtype of neurons, or a complex 

mixture of neurons.
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Estimating Functional Connectivity and SNR of FSI-sSPN/mSPN Pairs

Electrophysiological Recordings and Microstimulations of Anterior DMS: To identify 

striosomal neurons, we implanted two microelectrodes (AP: 3.1 mm; ML: ±0.7 mm; DV: 3.4 

mm) to apply electrical microstimulation in the prelimbic region of prefrontal cortex (PFC-

PL; 15 μA, 2-s interval between 100 pulses, 0.5 ms pulse), and synchronously recorded the 

striatal responses using 24 tetrode arrays implanted in the DMS (AP: 2.0–1.4 mm; ML: 

±1.5–2.1 mm; DV: 3.6–5.0 mm). Surgical procedures, microstimulation protocols, and other 

details are described in our previous publication (Friedman et al., 2017). We sorted single 

units from recorded activity using our previously developed algorithm (Friedman et al., 

2015b).

Identification of SPNs and FSIs: Among 14,785 units recorded in the DMS in 8 control 

rats, we first selected well-isolated units with average spike amplitudes greater than 80 μV. 

Then, we classified our units based on three features of averaged spike waveforms: (1) peak-

to-valley time, defined as the time from the global maximum to the global minimum; (2) 

half-peak width and (3) velocity-based valley recovery time. We used a threshold for each of 

these parameters to identify FSIs. For details and codes of the quantification algorithm, see 

our previous publication (Friedman et al., 2017).

Identification of Striosomal and Matrix Units: We identified striosomal units as units that 

significantly responded to PFC-PL microstimulation, and matrix units as those that had no 

response to this stimulation. A unit was identified to be a striosomal neuron if it had 

significant response to PFC-PL microstimulation followed by inhibition, and then by 

rebound, or if it had excitation followed by inhibition. A unit was identified to be a matrix 

neuron if it showed no excitation, inhibition, or rebounds. We developed a bootstrap method 

to compare shuffled baseline firing rates to the response of a neuron to stimulation in all the 

three phases. For full details and algorithms, see our previous publications (Friedman et al., 

2017; Friedman et al., 2015b).

Finding Functionally Connected Pairs of FSIs and sSPNs/mSPNs: From the dataset of 

the anterior dorsomedial striatal electrophysiology recordings (twdb_control.mat), we 

selected all FSIs, sSPNs, and mSPNs using the find_neuron_id.m function. We only 

analyzed high-quality and well-isolated units using methods described in in our previous 

publication (Friedman et al., 2015b). From these lists, we identified pairs of neurons where 

SPNs and FSIs had been recorded in the same session in the same rat. We then determined 

the relational firing-rate dynamics of these neurons through a custom method. First, we 

segmented trial periods into different bin sizes (0.25, 0.5, 0.75, 1, 1.25, 1.5, and 2 sec) and 

computed the firing rates of the FSI and corresponding SPNs for each bin. Next, we 

identified all unique FSI firing rates and averaged the corresponding SPN firing rates for 

each unique FSI firing rate.

For example, we used the bin size of 0.5 sec to split a recordings of duration 3 sec into 6 

bins. Next, we computed the FSI firing rate in each bin and obtained an array of values (e.g., 

[0, 2, 6, 8, 0, 24]). We then found the SPN firing rate for each bin (e.g., [8, 8, 2, 4, 12, 0]). 
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For each FSI firing rate, we averaged the firing rates of the corresponding SPN bins. So, for 

an FSI firing rate of 0, our corresponding SPN firing rate would be (8 + 12) / 2 = 14.

We constructed a function to approximate the FSI-SPN pair relational dynamics by plotting 

the FSI firing rates against the averaged SPN firing rates and by applying a four-parameter 

logistic regression, a + b − a
1 + exp c − d * x , for all bin sizes. We then selected the bin size that 

maximized the r2 of the logistic regression fit (see Figures 7A–7D) and ignored any pairs in 

which all r2 values were below a threshold of 0.4 for FSIs with high firing rates and 0.5 for 

FSIs with low firing rates. Finally, we manually examined all automatically selected pairs 

and triplets, and we randomly selected a set of pairs to be representative examples.

Computing the FSI Decay Range: We fitted the four-parameter logistic regression function 

that resulted in a sigmoidal function. The fitted sigmoids had three sections: left and right 

(FSI firing rate does not modulate SPN firing rate) and middle (FSI firing rate reduces SPN 

firing rates). We defined the decay range of the FSI firing rate as the duration from the start 

to the end of the middle sigmoidal section (see Figures 7C and 7D). We identified the two 

deflection points of the sigmoid function. At the first point, the signal started to decrease, 

and at the second point, the signal returned to a slope of 0. To identify this section, we took 

the first derivative of the sigmoidal fit. The beginning point of the sigmoid fit was the first 

point that had the first derivative less than a threshold, which we picked to be −0.01 here. 

Note that a sigmoidal curve generally started flat, so the derivative should be close to 0. 

Similarly, the ending point of the region was when the curve became flat enough again, 

meaning the next point when the derivative was bigger than −0.01 (but still smaller than 0). 

The slope of the linear region was the linear slope between the beginning and end points.

Performing a Variance Analysis of Striosomal and Matrix FSI Activity Range: We 

analyzed the FSI decay range (described in section ‘Finding Functionally Connected Pairs of 

FSIs and sSPNs/mSPNs’) by comparing the variability of these ranges across FSI-sSPN 

pairs and FSI-mSPN pairs. We compared the significance of the difference in variance of 

decay range distributions between striosomal and matrix FSI-SPN pairs using an f-test 

(Matlab vartest2.m).

FSI-Modulated Striosomal SNR Quantification Using Informational Theory and 
Poisson Process Statistics: We used two models to analyze SNR of SPN spike times: a 

Poisson process model and an information theory model. A Poisson process assumes that 

spiking happens randomly without any influence of prior spiking. If firing rates become less 

characteristically Poisson-like (and the firing rate distribution becomes less exponential), 

then firing is less random. We selected all bins of SPN based on temporally corresponding 

FSI firing rates and fitted an exponential model to the ISI distribution of SPN firing rates. 

SNR was defined as: SRN = 1/μ, where μ is the mean of the assumed Poisson distribution.

Our second model was an information theory-based analysis for SNR quantification. We 

computed an entropy, −sum (p * log2(p)), for the ISIs of SPN firing rates. Entropy is a 

measure of uncertainty. High entropy means the observed firing does not convey 

information. We defined SNR = (1/entropy) for the SPN ISIs for each FSI firing rate bin. We 
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then plotted the SNR alongside the SPN firing rate as a function of the FSI firing rates, as 

shown in Figures 7J, 7K, S7G and S7H.

Modeling the Striosomal Circuit: In order to explain how anatomical network organization 

determined by histology relates to physiological activity measured with photometry, we 

constructed a formal model of striosomal microcircuits. In this model, we considered 

excitatory input from the neocortex and inhibitory input coming from striatal interneurons. 

We adjusted connection strengths in neuronal network models using the measured 

histological connectivity between the cortex, PV interneurons, and sSPNs for each 

experimental group. We input the model with trial information, being reward or cost, 

engagement state, and noise. We used modeled sSPN activity as model output for 

optimization against empirical SPN activity. Our model interpreted the role of striosomes in 

discriminating between cost and reward (Figures S3F–S3H). The model also offers an 

explanation about how this ability is affected by aging and HD (Figures 4 and 5). Finally, the 

model demonstrates a plausible relationship between the reduction in the number of putative 

PV terminals in aging and HD model mice and the decline in striosomal signals 

differentiating reward and cost trials (Figure 6D).

We considered multiple neuron-based modeling approaches and ultimately decided on a 

stochastic spiking model (Lynch and Musco, 2018; Lynch et al., 2019) for reasons described 

below. We used this model to formally define our striosomal network. With the formal 

definition, we built a Python library for building and running directed acyclic stochastic 

spiking models. Using the library, we built a model of our network and ran multiple 

simulations to replicate and interpret our experimental findings. The network simulations 

were able to reproduce and explain our observed results of SPN signal differences across 

mouse groups and states. Python and Matlab codes for the model can be found at https://

github.com/sdrammis/Friedman-Hueske-2020/tree/v1.0.1/model.

Choosing a Model: There are multiple methods that we considered for modeling neural 

networks. Here are the models we considered:

a. Hodgkin-Huxley (Hodgkin and Huxley, 1952): Using the Hodgkin-Huxley 

model requires knowledge or assumptions of how the network neurons function 

at a biophysical level. However, we lacked biophysical measurements of the 

cortico-striosomal network in our current work. Furthermore, this model is a 

continuous time model, and we did not have a good understanding of neural 

activity outside of the response period (specifically outcome and ITI).

b. Integrate-and-fire: In integrate-and-fire networks, a neuron builds up a history of 

neighboring neuron activity by updating a single history variable when 

neighboring neurons fire. After the history variable exceeds a threshold, the 

associated neuron fires (Abbott, 1999; Maass, 1997). This model is again a 

continuous time model. It was unclear in our results how the striatal network 

behaved outside of the response period. Thus, a model with timing dependencies 

would fail. It was also unclear how to model the dynamics of single-neuron 

memory and firing, as we recorded the activity of a population of neurons and 

not the activity of individual neurons.
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c. McCulloch-Pitts/perceptrons: Networks are constructed from McCulloch-Pitts 

neurons. Neurons are modeled here as having a binary output dependent from an 

internal threshold. A neuron computes its output value by comparing a weighted 

sum of its inputs from its neighbors, and comparing this sum to a threshold 

value. If the sum is above the threshold, then the output is 1 (or “fire”); 

Otherwise it is 0 (or “not-fire”), as seen in the equation:

ni t + 1 = Θ(∑
j

 
wijnj t − μi)

Θ x = 1 if x ≥ 0,   0 otℎerwise 

where ni represents neuron i, t is the current time-step in a discrete time system, 

wij is the weight of the connection from neuron i to neuron j, and μi is the 

threshold (or bias) of neuron i.

This model was appealing because of its simplicity, and because it would have 

allowed us to model only the response period. However, this model lacked a 

system noise input (Hertz et al., 1991; Maass, 1997; McCulloch and Pitts, 1943).

d. Activation functions: These networks are an extension of the McCulloch-Pitts 

model. In these networks, instead of a step-function output describing integration 

of inputs leading to neuron spiking, the output allows for continuous functions. 

Commonly used functions include sigmoid and tanh. For example, in the 

McCulloch-Pitts equation, we replace the function Θ (x) with the sigmoid 

function:

Θ x = 1
1   +   e−x

Although our photometric data were continuous, it was unclear how we would 

construct a neuron output function. Furthermore, we would need to assume 

output functions for neurons in our network that are not being recorded.

As described in the equation above, all neurons have a “temperature” variable. 

All neurons in our network have a temperature parameter of lambda = 1.

e. Ultimately, we decided to use the Lynch-Musco model, an extension of the 

McCulloch-Pitts model. The model approaches neural modeling from a 

distributed-algorithm perspective where neurons represent automata. 

Furthermore, neurons spike stochastically, as observed in our recordings of 

sSPNs (Friedman et al., 2017; Friedman et al., 2015a).

For each neuron (that is not an input neuron) u, we used the previous round of firing 

information C′ and the weights of u’s as incoming edges to compute the neuron’s potential:
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potu = ∑ u, v ∈ E C′ v weigℎt v, u − bias u

and firing probability:

pu = 1
1 + e−potu/λ

where C′ (v) is 1 if neuron v fired in the previous round or 0 otherwise. The probability 

function takes a parameter λ to adjust the “temperature” of the neuron, or more concretely, 

the range of the sigmoid function (this affects the likelihood to fire). As the temperature 

value goes to 0, the sigmoid becomes a step function, making the overall neuron 

computation equivalent to that of a McCulloch-Pitts neuron (Lynch and Musco, 2018; Lynch 

et al., 2019).

We chose this model because of its simplicity. Most importantly, using this model, we did 

not need to make many assumptions outside of what we experimentally observed. The 

model also provided a formal mathematical definition that allowed for rigorous analysis 

around model complexity such as asymptotic run time and network size. Finally, the 

network definition along with the size of our model allowed us to quickly train our network 

and quickly iterate on our theories.

Designing Our Striosomal Model: We used the Lynch-Musco model defined above to 

build our neural network model of the striosome compartment during the response period for 

four different mouse groups: younger aged control mice that learned the task (CT-LY), older 

aged control mice that learned the task (CT-LO), control mice that failed to learn the task 

(CT-NL), and Huntington model mice (HD). We then programmed a Python library to create 

Lynch-Musco networks. From this library, we built networks for all mouse groups and used 

Matlab to find the free parameters of our networks.

Building the Network Structure: We labeled neurons by unique names and called the set 

of all neuron names U. A neural network N contains:

a. N: A subset of, partitioned into input neurons Nin, output neurons Nout, and 

interneurons Ninterneuron. The set of neurons Ninterneuron ∪ Nout is known as 

locally controlled striatal neurons or Nlc. Each neuron u ∈ Nlc has an associated 

bias, bias u ∈ ℝ.

The set of neurons, N, in our network is defined by the subsets: Nin = {“Nois”, 

“Reward”, “Cost”, “State”}, Ninterneuron = {“PVSNR”, “PVGain”}, and Nout = 

{“SPN1”, “SPN2”, “SPN3”}.

Neurons in Nin represent input (e.g., from the cortex) to the striosome 

compartment of striatum. The “Noise” neuron represents all non-task-related 

activity (e.g., from the cortex) to our circuit. The “noise” neuron is stochastic and 

may not always be active. The “Reward” neuron is active (or “fires”) when either 

the cost or reward tone in the task is played. The “Cost” neuron is active when 
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the cost tone is played. And the “state” neuron is active when the mouse is 

actively participating in the task (i.e., engaged). For example, when the reward 

tone is played, the set of active inputs could be: {“Noise”, “Reward”, “State”} or 

{“Reward”, “State”} or {“Noise”, “Reward”} or {“Reward”}. This indicates 

whether the mouse is paying attention to the task and whether the “Noise” 

neuron fired. Neurons in Nout are the SPNs that represent the population of 

neurons that we recorded photometrically. The output of the model needed to 

match our experimentally obtained photometric recordings. We chose to have 

three neurons because it is the smallest number that we can select while still 

having a range of high, medium, and low activity. Neurons in Ninterneuron denote 

PV interneurons of striatum. Based on observations of SPN and PV neuron spike 

rates, in which we observe spike rates of PV neurons to be roughly four times 

higher than SPNs (Friedman et al., 2017), we defined a bias of all SPNs as 4, and 

PV interneurons as 1, since PV neurons have higher firing rates. As described in 

the Lynch-Musco model overview above, all neurons have a “temperature” 

variable. All neurons in our network have a temperature parameter of λ = 1. 

Neurons can be constructed with the classes Neuron or InputNeuron in the 

Neuron.py file.

b. E: A set of directed edges between neurons. Input neurons are assumed to have 

no incoming edges and a feedback loop in which the neuron collateral collection 

can inhibit or excite itself, as we define here as ‘self-loops’. Self-loops are 

permitted for u ∈ Nlc. Each edge e has a weight, weight(e), which is a nonzero 

real number.

In our network, all neurons in Ninternruron receive connections from all neurons in 

Nin. All neurons in Nout receive connections from Nint and connections from Nin 

– {“State”}. The “State” neuron drives the ability to perform the task with high 

discrimination probabilities. The ability to perform the task is centered on the 

activity of PV interneurons. So, “State” is only a contributor to PV activity and 

not SPN activity.

We constructed our network and edge connections programmatically with the 

make_net function in run_net.py. The function takes an array of connection 

weights as input and uses the Network class in Network.py to create neurons and 

add connections.

To define network weights, we first determined weight ratios and ranges from the 

results of histological experiments. We constructed the four networks that 

corresponded to four experimental mouse groups (CT-LO, CT-LY, CT-NL, HD) 

such that all weights in the network, except the connections from “PVSNR” to 

Nout (SPNs), were fixed. The only free parameters across networks were the 

weights from “PVSNR” to the SPNs.

To determine the network connectivity of the fixed weights, we first began with 

the ‘toy’ problem of defining the baseline activity. We focused on a subset of the 

network that included the “Noise”, “PVGain”, and “SPN1” neuron. We then 

empirically found weights that would result in the “SPN1” neuron being active 
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for about a third of the iterations. This baseline would allow room for large 

increase or decrease in SPN activity. Next we expanded the toy problem to 

include active “Reward” and “State” neurons. We empirically found weights that 

would reflect the experimental results in high reward-tone activity in engaged 

states. Finally, we introduced the “Cost” and “PVSNR” neuron to construct 

weights for the cost tone. We empirically found weights from the input “Cost” 

neuron to the internal “PVSNR” neuron that would allow for the weights from 

“PVSNR” to the output SPNs to have large control of the output activity.

The weight construction for the baseline activity can be found in the Matlab 

function +weights/base.m. All weights were constant except the variables 

pv1_msn1, pv2_msn2, and pv3_msn3.

The only weights not defined to this point were the weights from the “PVSNR” 

neuron to the SPN output neurons. To find the connection strengths from 

“PVSNR” to the SPNs, we constructed a function of reward- and cost-tone 

activity for discrete “PVSNR” windows, seen in Figure S7C. We constructed the 

function by running 100 simulations of the network on each window of “PVSNR” 

value ranges and averaging the results. Code for this plot construction can be 

found in the Matlab function +weights/find.m.

Figure S7C depicts the changes of reward and cost trials over different “PVSNR” 

to SPN connectivity strength ranges. From here, we can clearly see where the 

different mice fall in relation to the experimental photometry results in Figure 4. 

The weights for the groups CT-LY, CT-LO, CT-NL, and HD can be found in files 

+weights/WTL.m, +weights/WTOld.m, +weights/WTYng.m, and +weights/

HDNL.m, respectively.

c. F0: An initial firing pattern for the set Nlc neurons. This is the initial state of all 

non-input neurons before input is fed into the system. We start our network with 

the initial state of all neurons in Nlc = 0.

Executing the Network: We can describe the activity of a subset of neurons, V ∈ U, at a 

specific instance in time as a firing pattern. A firing pattern is a mapping from V to {0, 1}, 

where 0 represents ‘not firing’ and 1 represents ‘firing’. A configuration, C, of a network N
is a firing pattern for N at a distinct point in time (accounts for the activity of all neurons in 

the network, i.e., V = N). An input configuration is a firing pattern for the input neurons, 

Nin.

In our network, valid input configurations follow the rules:

a. The ′Noise′ neuron is active with probability 0.95.

b. If the reward tone is playing, ′Reward′ must be active, and ′Cost′ must be 

active.

c. If the cost tone is playing, ′Reward′ cannot be active, and ′Cost′ must be active.

d. If a mouse is actively participating in the task, “State” must be active.
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The Lynch-Musco model is a synchronous model, meaning that the network updates in 

rounds. Each round can be described by a configuration. An execution α of N is a (finite or 

infinite) sequence of configurations, C0, C1, …, where C0 is an initial configuration. An 

initial configuration requires an input configuration defined by an external source (like a 

user) and an initial firing pattern F0.

A new configuration is computed as follows. Let α′ be the length (t − 1). Let C be the final 

configuration of α and C′ the final configuration of α′. For each neuron u ∈ Nlc use C′ and 

the weights of u’s incoming edges to compute the neuron’s potential, potu, and firing 

probability, pu.

Neurons update their state and fire in rounds. Before deciding their state for round r, a 

neuron must know if its neighbors in round r − 1 are mapped to value 0 or 1 (“not fire” or 

“fire”). At every round in the synchronous execution, all neurons in the network will take 

into account their neighbors’ states and update their state, forming a new configuration.

For any particular infinite input execution, one can define a unique ‘probabilistic execution’. 

In our neural network, an iteration (or single run through) is a set of configurations Ck, Ck+1, 

Ck+2 where Ck only has active neurons in Nin, and Ck+2 is the final round where we record 

the output of the SPN activity. To run an iteration of the network, you first present the 

network with an input configuration. After three time-steps, the network will have run to 

completion. We capture the output values of the SPNs. In the next time-step, a new iteration 

can start (with the same or new input configuration).

A network can be constructed and called to run through the file Network.py. The function 

runRound runs an iteration of the network. It takes the iteration number (labeled as round_) 

and an array of firing input neurons as inputs. The function returns when the SPNs for the 

iteration have determined whether they should fire.

Simulating Striosomal Network Results: In the previous section, we discussed how we 

defined our model and built codes. Now we will discuss how we ran simulations to mirror 

our experimental results. The two results that we are trying to recreate with our model 

simulations are the differences in reward-tone vs. cost-tone SPN activity across mouse 

groups and influence of engagement state. To capture these results, we defined the function 

run_net in run_net.py. The function takes the engaged state and the probability of noise input 

(default to 0.9) as inputs. Then we executed 100 reward-trial simulations and 100 cost-trial 

simulations. SPN activity was measured as the mean of the sum of the SPN firing. A 

transient was recorded when 2 or more SPNs fired in an iteration. The number of transient 

outputs is the average number of transients over the 100 iterations. To compute the baseline 

activity of the network, we ran 100 simulations where only the ‘noise’ neuron was active.

To recreate the findings in Figures 4B, 4C and 5E, we ran the Python simulation for all 

mouse group networks. We ran 100 samples of 100 iteration simulations. From this, we 

obtained 100 samples of average activity for reward and cost trials across all four mouse 

group networks. We then found the network baseline by running the run_noise function. The 

network baseline was subtracted from the activity samples. This reproduced our 

Friedman et al. Page 45

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experimental results where older aged control mice that learned (CT-LO) had high reward 

and above-baseline cost activity with a large difference in reward and cost activity. Younger 

aged control mice that learned (CT-LY) had above-baseline reward-tone activity and below-

baseline cost-tone activity, resulting in a larger difference in tone-related activity. Control 

mice that failed to learn (CT-NL) and Huntington model mice (HD) had above-baseline 

reward- and cost-tone activity with smaller or no difference. The code for generating these 

results can be found in +plot/tones.m.

In order to evaluate the importance of PV-SPN connectivity constraints, we adjusted the 

model constraints such that we fixed PV-SPN connectivity values and widened the 

connectivity range constraints for all other weights by two-folds above the anatomically 

observed difference between cortical input and striosomes between CT and HD groups. We 

fixed the weights from the PV neurons and trained the network using genetic algorithm (GA; 

Matlab) to find the best weight values from the reward and cost neurons to the SPNs. We 

allowed GA to search for weights ±200% of the original weights. The GA was configured to 

run with the Matlab defaults with population size of 300 and max generations of 200. After 

GA training, we used the resulting networks to compute the mean reward and cost activity 

over 10,000 reward iterations and 10,000 cost iterations across all four mouse groups. We 

fed the results into our error surface in Figure S7D and compared the differences from all 

groups to the CT-LY group as seen in Figure S7E. The code for generating these results can 

be found in +plot/scores.m.

Ultimately, we sought to explain how engagement state and PV-SPN connectivity may affect 

discrimination-related network activity. To test this, for each mouse group, we ran 100 

samples of 100 iteration simulations with the ‘State’ input neuron turned on and 100 

samples of 100 iteration simulations with the ‘State’ input neuron turned off. We found that, 

in fact, there was a decrease in the number of transients in the engaged (Figure S7F). The 

code for generating these results can be found in +plot/spikes.m.

As a technical note, you may get an error message calling Python from Matlab in the form 

of a segmentation fault. To resolve this error, follow this instruction when using operation 

system Ubuntu 18.04., run: > py.sys.setdlopenflags(int32(10)) in the Matlab console (per 

https://www.mathworks.com/matlabcentral/answers/327193-calling-python-module-from-

matlab-causes-segmentation-fault-in-h5py).

Statistical Analysis

Figure 1.

Figure 1B–1D.: In order to visualize learning of a 16 month old mouse #2703, we split 

learning into 100 trial bins (1B) and averaged the lick frequency during the response period 

for cost and reward trials in each bin. We calculated the PDF and CDF for response lick 

frequency distribution of reward and cost trials. Same data were used to calculate d’ and C.

Figure 1E.: In order to visualize learning progression, we used data from 14 9–12 month 

old mice. We defined early learning as the first third of trials for each mouse, middle 

learning as the second third, and late learning as the last third. End of learning was defined 
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as the last 50 trials prior to reaching the performance criterion. We defined a true positive as 

a reward trial with licking ≥1. False positive rate was determined as a cost trial with a lick 

rate ≥1. Center of ellipse represents group mean, and ellipse is SEM for the group. Mean d’ 

and C for each period were calculated, and isoquant for the learning period were plotted as 

curves.

Figure 1F.: In order to visualize HMM selection of engaged and not engaged trials, we 

estimated a model using only reward trials for a 9 month old mouse #2782. We trained the 

model and decoded the state of each trial (see section ‘HMM-Based Identification of 

Engaged and Not Engaged Trials’). In the figure, the reward-trials RP lick frequency is 

shown with the decoded state for each trial represented with color (green: engaged, gray: not 

engaged). We select the model with minimal BIC (aicbic, Matlab).

Figure 1I.: In order to quantify the number of E11 and E15, Dlx1 or Mash1, birthdate-

labeled cells that overlaped with the striosome or matrix compartment of striatum, we used 

the methods described in ‘Assessment of D1 and D2 Proportion in Birthdate-Labeled Cells’. 

We used 8 striosome Dlx1 mice, 8 matrix Dlx1 mice, 8 striosome Mash1 mice, and 6 matrix 

Mash1 mice. We computed a comparison ratio by (# of striosomal cells − # of matrix cells) / 

(# of striosomal cells + # of matrix cells) for all E11/E15 Dlx1/Mash1 mouse groups, where 

the number of cells was measured per mm2. We showed that in Dlx1 groups, striosome mice 

had an average ratio of 0.45 ± 0.07 and matrix mice had an average ratio of −0.73 ± 0.05. 

We show that in Mash1 groups, striosome mice had an average ratio of 0.51 ± 0.06 and 

matrix mice had an average ratio of −0.80 ± 0.06. Statistical significance was determined by 

a one-way ANOVA test (p = 4.78e-16).

Figure 1J.: In order to quantify the differential expression of GCaMP6m in striosome and 

matrix compartments in E11 and E15 birthdate-labeled mice, we calculated the number of 

GCaMP6m+ sSPN clusters (S) and mSPN clusters (M) using the methods described in 

‘Quantifying Density of GCaMP6m+ Cells in Striosome and Matrix Compartments in 
E11/E15 Model Mice’. We used 5 striosome mice and 5 matrix mice. We then computed the 

ratio (S−M)/(S+M) for each mouse. We show that in striosome mice, the average ratio was 

0.5085 ± 0.1353 and that in matrix mice, the average ratio was −0.7457 ± 0.1066. These 

were shown to be significantly above zero (p = 0.0198) and significantly below zero (p = 

0.0022), respectively, by one-sample t-tests (ttest.m Matlab).

Figure 1L.: In order to test the similarities in the number of striosome and matrix CT mice 

that reached the learning criterion for the discrimination task, we used chi-square tests 

(dg_chi2test3.m). Learning criterion was defined as in section above (‘Performance 
Criterion’). No significant differences were found (dg_chi2test3.m; striosome vs. matrix <9 

months p = 0.83679, striosome vs. matrix 9–12 months p = 0.58117, striosome vs. matrix 

>12 months p = 0.55206, matrix <9 vs. 9–12 months p = 0.69894, matrix <9 vs. >12 months 

p = 0.83909, matrix 9–12 vs. >12 months p = 0.75748, striosome <9 vs. 9–12 months p = 

0.29528, striosome <9 vs. >12 months p = 0.70461, and striosome 9–12 vs. >12 months p = 

0.31509). We also measured duration of learning for mice that reached the learning criterion, 

which was determined as described in ‘Performance Criterion’. We calculated the number of 

Friedman et al. Page 47

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trials that each mouse took to reach learning criterion and determined the mean and SEM for 

age groups across striosome and matrix mice. No significant difference was found 

(striosomes vs matrix p = 0.7, age × striosomes vs matrix p = 0.85, 2-way ANOVA, 

anovan.m Matlab).

Figure 1M.: In order to test the similarities in the discrimation across learning of striosome 

and matrix CT mice, we used 41 striosome CT mice (10.9 ± 0.8 months old) and 32 matrix 

CT mice (9.4 ± 0.6 months old). For each mouse, we calculated the d’ in the first and last 

200 trials of learning. Mean and SEM were calculated across mice. No significant difference 

was found between striosome and matrix mice (striosomes vs matrix p = 0.41, striosomes vs 

matrix × learning period p = 0.14, 2-way ANOVA, anovan.m Matlab). A significant 

difference was found between learning periods (p < 0.0001, 2-way ANOVA, anovan.m 

Matlab).

Figure 1O.: In order to quantify the change in transients during learning, we calculated the 

average transient rate for early learning (all engaged trials in the first third of learning) 

against the average transient rate in late learning (all engaged trials in the last third of 

learning) for all striosome mice that learned the task. We used a total of 29 striosome mice 

(age range = [5,21], age distribution mean ± SEM = 10.1 ± 0.84). Statistical significance 

was determined by paired t-test (p = 0.0025) and Wilcoxon signed rank test (p = 0.005).

Figure 1P.: In order to quantify the change in transient frequency across learning in engaged 

trials for matrix mice, we performed the same analysis described in Figure 1O. We use a 

total of 25 matrix mice (age range = [6,19], age distribution mean ± SEM = 9.24 ± 0.57). No 

statistical significance was determined by paired t-test (p = 0.18) or by Wilcoxon signed 

rank test (p = 0.35).

Figure 2.

Figure 2A.: In order to explore how the striosomal signal evolves with learning, we split 

learning with bins of 100 trials. For each of the bins, we calculated the RP lick frequency as 

in Figure 1B and calculated the striosomal signal for cost trials (red) and reward trials (blue). 

The striosomal photometry signal was detrended, and z-scores were calculated using the 

whole session activity as the baseline. We aligned striosomal activity to the start of the tone 

event and calculated mean and SEM for each bin. We focused on 3 sets of bins. In the first 

set, there were an identical number of licks for cost and reward, for the second set, there 

were more licks for reward than for cost, and in the third set, there was similar 

discrimination to the second set but licking rate was twice as much. Example is from 17 

month old CT mouse (#2778).

Figure 2B.: Analysis, plotting, and statistics were performed as in Figure 2A, but for matrix 

mice. Examples are from 7 month old CT mouse (#4104).

Figure 2C.: In order to measure the correlation between d’ and the RP striosomal 

photometry signal, we used 9 6–21 month old mice that learned the task. For each mouse, 

we split all engaged learning trials into bins of 200 trials and calculated the discrimination 
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index d’ and the RP striosomal signal (as described in Figures 1D and 2A). We used the 

difference in RP striosomal activity between reward and cost trials (R−CRP). After collecting 

data for all bins for all mice, we split the data into segments of 0.2 d’ and calculated the 

mean and SEM for each segment. The correlation coefficient r was calculated using corr2.m 

(Matlab), and significance was determined by Pearson correlation coefficient using 

corrcoef.m (Matlab). For these mice that learned the task, the correlation between d’ and 

striosomal R−CRP was Pearson correlation coefficient, r = 0.95, p = 0.0004. In the insert, we 

calculated the d’ and R−CRP linear regression for each mouse and calculated the mean and 

SEM of the slopes across the group, where each observation was a mouse. For each linear 

regression, we split all engaged trials into 20 bins and calculated the discrimination index d’ 

and the RP striosomal signal (as described in Figures 1D and 2A). Significance of inset bar 

graph was determined by the Wilcoxon signed rank test (p = 0.01).

Figure 2D.: In order to measure correlation between RP licking rates and RP striosomal 

signal, we analyzed 9 mice that learned the task (6–21 month old). Because RP lick rates 

will begin to correlate with discrimination performance as mice learn, we restricted this 

analysis to the first quarter of training, presumably before mice exhibit evidence of 

discrimination learning. For each mouse, we split the first quarter of learning trials into bins 

of 100 trials and calculated the normalized licking rates and the RP striosomal signal (as 

described in Figure 2A). The normalized licking rates (z-score) were calculated using all 

trials as baseline for each mouse. Plotting and statistics were performed as in Figure 2C, but 

using z-scores of licks instead of d’. For these mice that learned the task, the correlation 

between RP lick rates and striosomal reward or cost signal magnitude, RRP and CRP, was 

Pearson correlation coefficient, r = −0.09, p = 0.83. In the insert, we calculated the 

normalized licking rates and RP striosomal signal correlation for each mouse and calculated 

the mean and SEM of the slopes across mice in each group. For each correlation, we split 

the first quarter of learning trials into 5 bins and calculated the normalized lick rates and the 

RP striosomal signal (as described in Figure 2A). Absence of significance was determined 

by the Wilcoxon signed rank test (p = 0.13).

Figure 2E.: In order to test for a correlation between d’ and RP matrix signal, we used 4 

matrix mice that learned the task (6–21 month old). Analysis, plotting and statistics were 

performed as in Figure 2C. Matrix mice showed no correlation between discrimination 

performance, d’, and matrix neural activity, R−CRP, by Pearson correlation coefficient, r = 

−0.13, p = 0.77. Insert and statistics were also calculated as in Figure 2C (p = 0.88).

Figure 2F.: In order to test for a correlation between RP lick rates and RP matrix signal, we 

used 4 mice expressing GCaMP6m in a population of matrix cells that learned the task (6–

21 month old). Analysis, plotting and statistics were performed as in Figure 2D. Matrix mice 

showed a correlation between lick rates, and matrix neural activity, reward or cost signal 

magnitudes, RRP and CRP, by Pearson correlation coefficient, r = 0.83, p = 0.04. Insert and 

statistics were also calculated as in Figure 2D (p = 0.13).

Figure 2G.: In order to visualize a dynamic of correlation shaping between striosomal 

activity (R−CRP) and discrimination index d’ during learning of discrimination task and 
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learning of reversal task for a CT mouse that learned the task (CT-L), we calculated the 

correlation coefficient using corr2.m (Matlab) and a rolling window approach. Each point 

represents the correlation coefficient of 5 bins each containing the average of 5% of all 

engaged trials across time. Example is from 6 month old CT mouse #53.

Figure 2H.: Quantification was performed the same as Figure 2G. Engaged trials were 

binned in 5% increments into 20 bins. Early bins were defined as the first 25% of learning; 

late bins were defined as the last 25% of learning. For each bin, the correlation coefficient (r) 

between R−CRP and d’ was calculated. Maximum r across the early bins and late bins was 

calculated. This algorithm was applied to both discrimination learning (left) and reversal 

learning (right) for each mouse (9 CT striosome mice, 9.0 ± 1.7 months old). Significance 

was determined by paired t-test (ttest.m Matlab). Discrimination task: p = 0.006; reversal: p 

= 0.01.

Figure 3.

Figure 3A.: In order to compare striosomal and matrix photometric signals across different 

levels of responding in the response period, we used data from 34 striosome mice (10.6 ± 

0.8 months) and 27 matrix mice (9.4 ± 0.6 months). For each mouse, we calculated a 

histogram of the RP lick frequency. We removed the top 10% of the distribution to avoid 

rare outlier events. For the remaining data, we determined levels as following: a) 0 licks, b) 

0–37.5 percentile, c) 37.5–75 percentile, and d) 75–100 percentile. This was done separately 

for reward and cost trials. Among reward trials, both striosomal and matrix RP signals 

increased with increasing response level (striosome: p < 0.001; matrix: p < 0.001; one-way 

ANOVA). Among cost trials, striosomal signals decreased with increasing response level. 

However, matrix signals did not vary (striosome: p = 0.0075; matrix: p = 0.2949; one-way 

ANOVA).

Figure 3B.: In order to determine a correlation between differences in reward trials 

striosomal activity vs. differences in response bias for sucrose devaluation, we used 18 CT 

mice (10.9 ± 1.0 months), with 18 sessions with sucrose devaluation. Each point represents 

the difference between the session in which learning criterion was reached (baseline) and 

devaluation session. Correlation coefficient r was calculated using corr2.m (Matlab), and 

significance was determined by Pearson correlation using corrcoef.m (r = −0.75, p = 

0.0003).

Figure 3C.: Analysis, plotting, and statistics were performed as in Figure 3B, but to 

determine a correlation between differences in reward-trial striosomal activity and 

differences in response bias for water devaluation. We used 18 CT mice (10.9 ± 1.0 months 

old), with 18 sessions for water devaluation (r = −0.53, p = 0.02).

Figure 3D.: In order to determine a correlation between differences in the reward-trial 

striosomal activity and differences in response bias for diazepam, we used 16 CT mice (8.1 

± 0.2 months), with 31 sessions with saline and 16 sessions with diazepam. Each point 

represents the difference between the saline and diazepam sessions. Saline sessions were 

given day before and day after diazepam sessions, and they were averaged. Correlation 
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coefficient r was calculated using corr2.m (Matlab), and significance was determined by 

Pearson correlation using corrcoef.m (r = −0.66, p = 0.005).

Figure 3E.: In order to determine a correlation between the reward-trial activity and 

response bias C for each mouse, we used 37 striosomal CT (10.2 ± 0.8 months old) and 32 

matrix CT (9.4 ± 0.6 months old). Striosomal activity and response bias during the response 

period were averaged for each mouse for reward trials during the session in which mice 

reached the learning criterion. Correlation coefficient r was calculated using corr2.m 

(Matlab), and significance was determined by Pearson correlation using corrcoef.m 

(Matlab). Striosomal CT mice: r = −0.58, p = 0.00015; matrix CT mice: r = −0.09, p = 0.63.

Figure 3J.: In order to measure the effect of striosomal inhibition on transient rate, we used 

8 CT mice (7.6 ± 0.4 months old). We compared the average transient rate of saline sessions 

vs. the average transient rate of CNO sessions. We compared transient rates in saline 

sessions within 2 days of the CNO session. Statistical significance was determined by paired 

t-test (p = 0.003) and Wilcoxon signed rank test (p = 0.002) over 20 CNO/saline groups.

Figure 3K.: In order to measure the effect of striosomal inhibition on task engagement C, 

we used 8 CT mice (7.6 ± 0.4 months old). We correlated the difference in the rate of 

transients between CNO and saline sessions (20 CNO, 40 saline) and difference in task 

engagement bias C between CNO and saline sessions. Saline sessions were determined as in 

Figure 3J. The correlation coefficient (r = −0.65) was calculated using corr2.m (Matlab), and 

significance (p = 0.002) was determined by Pearson correlation using corrcoef.m (Matlab).

Figure 3L.: In order to measure the effect of matrix inhibition on task engagement C, we 

use 5 CT (8.2 ± 0.4 months old) mice. We perform similar correlation as in Figure 3K (16 

CNO sessions, 32 saline sessions). r = 0.1, p = 0.71.

Figure 3N.: In order to measure the effect of striosomal excitation on transient rate, we used 

4 CT mice (8.5 ± 0.29 months old). We compared the average transient rate in saline 

sessions and the average transient rate in CNO sessions. Saline sessions were determined as 

in Figure 3J. Statistical significance was determined by paired t-test (p = 0.001) and 

Wilcoxon signed rank test (p = 0.008) over 8 CNO/saline groups.

Figure 3O.: In order to measure the effect of striosomal excitation on task engagement C, 

we use 4 CT (8.5 ± 0.3 months old) mice. We perform similar correlation as in Figure 3K (8 

CNO sessions, 16 saline sessions). r = −0.72, p = 0.045.

Figure 3P.: In order to measure the effect of matrix excitation on task engagement C, we use 

6 CT (7.7 ± 0.4 months old) mice. We perform similar correlation as in Figure 3K (12 CNO 

sessions, 24 saline sessions). r = 0.32, p = 0.31.

Figure 4.

Figure 4A.: In order to compare dynamic activity of striosomes, we used 19 6–12 month old 

CT-L mice, 10 13–21 month old CT-L mice and 6 6–21 month old CT-L mice. For each 

mouse, we calculated striosomal signals for cost trials (red) and reward trials (blue). 
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Striosomal signals were detrended, and z-scores were calculated using whole session activity 

as the baseline. We aligned striosomal activity in reward and cost trials to the tone onset and 

calculated the mean each trial type for each mouse in the group. Then we averaged the 

striosomal signal across mice in each group (mean ± SEM).

Figure 4B.: In order to compare striosomal RP activity in different age groups, we evaluated 

19 younger CT-L mice (average age ± SEM = 7.42 ± 0.3 months) and 10 older CT-L mice 

(17.60 ± 0.56 months) using the same method described in Figure 4A to calculate RP 

striosomal activity. Striosomal R−CRP signals were reduced more in aged compared with 

less aged CT-L mice (p = 0.024, two-tailed Mann-Whitney test, left panel). This reduction is 

attributable to a less pronounced cost-trial signal in older mice (main effect of reward vs. 

cost trial type: p < 0.0001, interaction with age: p = 0.017, 2-way ANOVA Prism Software) 

Bonferroni multiple comparisons revealed that older mice showed reduction in cost-trial 

signal decrement compared with younger mice (p = 0.021). Mean and SEM across mice 

were calculated.

Figure 4C.: In order to compare striosomal RP activity in mice that learned and those that 

did not learn, we used 29 6–21 month old CT-L mice and 6 6–21 month old CT-NL mice 

using the same method described in Figure 4B. Mice that learned the task had greater 

striosomal R−CRP signals than mice that did not learn the task (p = 0.0012, two-tailed 

Mann-Whitney test, left panel), and this difference was attributable to a significant 

divergence in reward and cost signals in mice that learned but not mice that did not learn. 

Reward and cost signals were significantly different in CT-L (p < 0.0001), but not in CT-NL 

mice (p > 0.99) by Bonferroni’s multiple comparisons test following a 2-way ANOVA 

(Prism Software) for trial type vs. learning status. There was also a significant main effect of 

reward vs. cost trial type, p < 0.0006, and interaction of trial type × learning status (p = 

0.0030).

Figure 4D.: In order to compare matrix RP activity in different aged cohorts, we evaluated 

21 6–12 month old CT-L mice and 3 13–21 month old CT-L mice using the same method 

described in Figure 4B. No difference was found between different groups of mice (p = 

0.7421, two-tailed Mann-Whitney test).

Figure 4E.: In order to compare matrix RP activity in mice that learned vs. those that did 

not learn, we evaluated 24 6–21 month old CT-L mice and 5 6–21 month old CT-NL mice 

using the same method described in Figure 4B. The figure shows the average of the 

difference between reward and cost activity calculated for each mouse. No difference was 

found between CT-L and CT-NL mice (p = 0.5184, two-tailed Mann-Whitney test).

Figure 5.

Figure 5B.: In order to test the difference in the number of CT and HD mice that reached 

the learning criterion for the discrimination task, we used chi-square tests (dg_chi2test3.m). 

Learning criterion was defined as in section above (‘Performance Criterion’). Significant 

differences were found in 6–9 months (p < 0.001), 9–12 months (p < 0.001), and >12 

months (p = 0.001) groups.
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Figure 5C.: In order to determine the effect of learning and aging on engagement in CT and 

HD mice, we used 33 6–9 month old CT mice, 23 9–12 month old CT mice, 14 >12 month 

old CT mice, 23 6–9 month old HD mice, 10 9–12 month old HD mice, and 11 >12 month 

old HD mice. We found significant main effects of aging as well as learning on engagement 

levels in CT mice (2-way ANOVA for age × learning, p = 0.0009 for main effect of age, p = 

0.028 for main effect of learning, Prism software). In HD mice, we found a main effect of 

age, and only in the youngest group of HD mice, we found a significant enhancement of 

engagement across learning (p = 0.035 for main effect of age, p = 0.0041 in 2-way ANOVA 

followed by Bonferroni test for multiple comparisons, Prism software).

Figure 5D.: We used 5 6–12 month old HD mice that learned the task (HD-L) to analyze the 

dynamic activity of striosomes. We used the same method described in Figure 4A.

Figure 5E.: In order to quantify differences in RP activity of striosomes, we used 19 6–12 

month old CT-L mice and 5 6–12 month old HD-L mice. We used the same method 

described in Figure 4B. Statistical significance was determined by two-tailed Mann-Whitney 

test (p= 0.0120) for left panel and by 2-way ANOVA followed by Bonferroni multiple 

comparisons test (reward/cost × genotype interaction, p = 0.0058; reward/cost, p = 0.0001) 

for the right panel.

Figure 5F.: In order to quantify absence of significant differences in RP matrix activity, we 

used 29 6–21 month old CT mice and 20 6–21 month old HD mice. We used the same 

method described in Figure 4B. The figure shows the average of the difference between 

reward and cost activity calculated for each mouse. Absence of statistical significance was 

determined by two-tailed Mann-Whitney test (p = 0.1155).

Figure 5G.: In order to measure correlation between d’ and RP striosomal signals, we used 

6 6–21 month HD-L old mice. We used the same method described in Figure 2C. r = 0.34, p 

= 0.78.

Figure 5H and 5I.: In order to measure correlation between d’ and striosomal activity, we 

used recordings from two 6 month old HD mice (5H and 5I left) and a 12 month old HD 

mouse (5I right). For each mouse, we split all engaged learning trials into 5 trial bins and 

calculated the discrimination index d’ and the RP striosomal signal (as described in Figure 

4A). We used the difference in striosomal signals between the reward and cost trials. The 

correlation coefficient r was calculated using corr2.m (Matlab), and significance was 

determined by Pearson correlation using corrcoef.m (Matlab) (H: r = 0.88, p = 0.05; I left: r 

= −0.86, p = 0.06; I right: r = −0.93, p = 0.02).

Figure 5J.: To evaluate the differences in tendencies to exhibit positive or negative 

correlations between neural activity and behavior between CT (n = 19, 11.9 ± 1.2 months 

old) and HD (n = 10, 10.1 ± 1.6 months old) mice, we compared proportions of mice that 

showed high correlation strengths (|r| > 0.7, Pearson correlation) between d’ and reward, cost 

or reward-cost striosomal activity during the response period. We determined significance 

with chi-square test (p = 0.023) using Prism software package.
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Figure 5K.: To evaluate CT (n = 19, 11.9 ± 1.2 months old) and HD (n = 10, 10.1 ± 1.6 

months old) mice for tendencies to exhibit correlations between d’ and reward-trial activity, 

we tabulated proportions of mice that showed high correlation strengths (|r| > 0.7, Pearson 

correlation) between d’ and reward-trial RP striosomal activity. We determined significance 

with chi-square test (p = 0.0002) using Prism software package.

Figure 5L.: Analysis, plotting, and statistics were the same as in Figure 5K, but to evaluate 

tendencies in the same mice to exhibit correlations between d’ and cost-trial activity. We 

determined significance with chi-square test (p = 0.0098) using Prism software package.

Figure 6.

Figure 6D.: To quantify the reduction in PV terminals on SPNs in striosome mice that failed 

to learn, we calculated the number of PV terminals on all detected SPNs. Bars represent 

mean ± SEM, and the mean represents the average number of PV terminals on SPNs of the 

given group where an observation is a cell (CT-LY mean 2.12 ± 0.16, CT-LO mean 2.33 ± 

0.07, CT-NL mean 1.21 ± 0.10, and HD mean 1.55 ± 0.07; CT-LO vs. CT-LY: p = 0.999; 

CT-LO vs. CT-NL: p < 0.0001; CT-LO vs. HD: p < 0.0001). Statistical significance was 

determined by Kruskal-Wallis followed by Dunn’s post-hoc multiple comparisons test. Age 

distributions for the histology groups were: CT-LY range = 7–10, mean = 8.7 ± 0.88, CT-LO 

range = 20–25, mean = 21.86 ± 0.83, CT-NL range = 9–22, mean = 18.25 ± 3.09, and HD 

range = 17–22, mean = 16.75 ± 2.36. There were 128 cells for 3 CT-LY mice, 848 cells for 7 

CT-LO mice, 221 cells for 4 CT-NL mice, and 475 cells for 5 HD mice.

Figure 6E.: To quantify the increase in PV terminals on SPNs in matrix mice that failed to 

learn, we calculated the number of PV terminals on all detected SPNs. Bars represent mean 

± SEM, and the mean represents the average number of PV terminals on SPNs of the given 

group where an observation is a cell (CT-LY mean 0.54 ± 0.24, CT-LO mean 0.79 ± 0.04, 

CT-NL mean 1.14 ± 0.03, and HD mean 1.8 ± 0.03; CT-LO vs. CT-LY, p = 1; CT-LO vs. CT-

NL, p < 0.0001; CT-LO vs. HD, p < 0.0001). Statistical significance was determined by 

Kruskal-Wallis followed by Dunn’s post-hoc multiple comparisons test. Age distributions 

for the histology groups were: CT-LY range = 9–9, mean = 9 ± 0, CT-LO range = 20–22, 

mean = 21 ± 1, CT-NL range = 19–22, mean = 20 ± 0.71, and HD range = 17–20, mean = 

18.67 ± 0.88. There were 13 cells for 2 CT-LY mice, 871 cells for 2 CT-LO mice, 3602 cells 

for 4 CT-NL mice, and 5163 cells for 4 HD mice. Statistical significance across the mean of 

all CT striosomal data compared to the mean of all CT matrix data was computed using a 

two-sample t-test (p < 0.0001) to determine the higher number of PV terminals on CT 

striosomal cell bodies vs CT matrix cell bodies. Insert compares number of PV terminals in 

striosomal groups / number of PV terminals across all matrix groups, using the same data 

from Figures 6D and 6E.

Figure 6G.: The number of VGluT1 puncta per unit area in striosomes and in matrix was 

determined using the same sets of detected puncta as in Figures S6E and S6F. In order to 

evaluate whether VGluT1 striosomal density differed from matrix density, within-subject 

ratios of striosome-to-matrix proportions were used to circumvent between subject 

variability (in CT brain sections, VGluT1 puncta density in striosomes was 32.8% higher 
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than matrix, and in HD brain sections only 8.4% higher in striosomes than in matrix). A 

significant difference was found between CT and HD mice (5 CT mice, 12 CT sections, 7 

HD mice, 16 HD sections, p = 0.0172, two-tailed Mann-Whitney test).

Figure 7.

Figures 7A and 7B.: We developed a method to examine how the firing rate of an FSI 

affects the activity of sSPNs and mSPNs. An example of a simultaneously recorded FSI-

sSPN-mSPN triplet is shown. For description of methods, see analysis methods section 

‘Finding Functionally Connected Pairs of FSIs and sSPNs/mSPNs’

Figures 7C and 7D.: To find a functional relationship between FSI activity and sSPN/mSPN 

activity, we fit a sigmoidal function to data from simultaneously recorded FSI-sSPN pairs 

and FSI-mSPN pairs. For a description of methods, see analysis methods section 

‘Computing the FSI Decay Range.’

Figure 7E.: To quantify variability of the decay ranges of FSIs in FSI-SPN pairs, we used 

methodology described in `Computing the FSI Decay Range`. We computed the decay 

firing-rate ranges over 35 striosomal FSI-SPN pairs (with 21 unique SPNs and 31 unique 

FSIs across 8 rats) and 77 matrix FSI-SPN pairs (with 59 unique SPNs and 56 unique FSIs). 

Bars represent group variance with upper and lower confidence intervals of the decay firing 

ranges (described in section `Performing a Variance Analysis of Striosomal and Matrix FSI 
Activity Range`). Statistical significance was determined by a two-sample F-test for equal 

variance (p < 0.0001).

Figure 7F.: In order to quantify the difference in decay range durations between striosomal 

and matrix FSI-SPN pairs, we computed CDFs of decay range durations (see analysis 

methods `Computing the FSI Decay Range`). The decay range duration was computed as 

(maximum SPN firing rate) − (minimum SPN firing rate) over 38 FSI-sSPN pairs (with 21 

unique SPNs and 31 unique FSIs across 8 rats) and 76 mSPN-FSI pairs (with 59 unique 

SPNs and 56 unique FSIs). Statistical significance was determined by a K-S test (p < 

0.0001).

Figure 7J.: We calculated the dependence of sSPN SNR on FSI activity, as detailed in 

analysis methods section ‘FSI-Modulated Striosomal SNR Quantification Using 
Informational Theory and Poisson Process Statistics.’ SNR was computed using 

informational theory methods.

Figure 7K.: We manually categorized FSI-SPN SNR as being “enhanced” or “not 

enhanced”. SNR was calculated using the information theory-based SNR method described 

in section ‘FSI-Modulated Striosomal SNR Quantification Using Informational Theory and 
Poisson Process Statistics.’ “Not enhanced” SNR was defined as SNR decreasing (with 

some noisy oscillation) as FSI firing rate increases. “Enhanced” SNR was defined as SNR 

increasing (at least 2 times above baseline) and then decreasing (below baseline) as FSI rate 

increases. We counted the number of “not enhanced” SNR and “enhanced” SNR across 

striosomal FSI-SPN pairs and matrix FSI-SPN pairs. For the striosomal pairs, 5 pairs 
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exhibited a “not enhanced” SNR trend, whereas 11 pairs exhibited an “enhanced” SNR 

trend. Among the matrix pairs, 14 pairs exhibited a “not enhanced” SNR trend, and 7 pairs 

exhibited an “enhanced” SNR trend. Statistical significance was determined using a chi-

squared test across 16 striosomal pairs and 21 matrix pairs (p = 0.033). Some pairs could not 

be anlayzed because we did not have enough data to compute SNR analysis on at least four 

FSI firing rate bins.

Figure S1.

Figure S1A.: Quantification as described in Figure 1B. Examples are from 11 month old CT 

mouse #2739 and 17 month old CT mouse #2795.

Figure S1B.: Quantification as described in Figure 1D. Examples are from 11 month old CT 

mouse #2739 and 17 month old CT mouse #2795.

Figure S1C and S1D.: Similar to Figure 1C insert. We averaged the CDF for reward- and 

cost-trial RP licks for the first 2 and last 2 sessions of the discrimination and reversal task. 

Mean and SEM were calculated across 8 CT (9.9 ± 0.4 months old) mice.

Figure S1E.: We separated engaged and not engaged trials, determined by HMM, for 8 

month old mouse #215 and calculated the PDF of licks in reward-trial RP for all learning 

trials.

Figure S1F.: In order to compare success of HMM algorithm to identify engaged and not 

engaged trials, we calculated engagement bias, C, for all trials and for engaged trials. Both 

reward and cost trials were included. Significance was determined with a paired t-test (p = 

0.00031891) from data from 29 mice (10.9 ± 1.0 months old) that reached learning criterion.

Figure S1G.: Similar to Figure 1F. We aligned reward-trial RP licking activity to engaged 

state onset for 5 mice.

Figure S1H.: In order to measure pupil diameter in a 22 month old CT mouse #3758 (for 

details see section ‘Pupil Diameter Measurement‘) during engaged and not engaged trials, 

determined by HMM, we separated cost and reward trials for response period. For each task 

session (n = 7), we normalized the pupil diameter (z-score) and separated the data for 

response period. We calculated the mean and SEM across sessions. Significance was 

determined using unpaired t-test (p = 0.13).

Figure S1L.: We compared automatic cell detection and overlap algorithm of D1/D2 

staining with E11/E15 staining algorithm, described in ‘Assessment of D1 and D2 
Proportion in Birthdate-Labeled Cells’, to manual detection of cells and staining overlap. 

For 25 mice (25 slices), we detected E11 or E15 cell bodies and measured overlap between 

E11 or E15 GFP staining to mCherry staining of D1/D2. For the same mice, we performed 

the same counts manually and measured the correlation between manual and automatic cell 

detection. Statistical significance was calculated using correlation coefficients (p < 0.0001, r 

= 0.85, slope = 0.73).
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Figure S1M–S1P.: In order to quantify overlap between classifications of striatal neurons 

into sSPNs and mSPNs and into D1-expressing and D2-expressing SPNs, we used crosses of 

4 D1 mice with Dlx E11 mice and 4 D2 mice with Dlx E11 mice. First, we used an 

automatic algorithm to detect the Dlx E11 cells, and we found the cells overlap with D1 or 

D2 as described in ‘Assessment of D1 and D2 Proportion in Birthdate-Labeled Cells’. We 

calculated D1 overlap with Dlx E11 for D1 Dlx E11 crossed mice. We calculated 1 minus 

D2 overlap with Dlx E11 for D2 Dlx E11 crossed mice. We calculated these averages across 

6 regions in striatum: ventral lateral, ventral central, ventral medial, dorsal lateral, dorsal 

central, and dorsal medial. We also measured dorsal central region manually to verify the 

correctness of the automatic algorithm. We averaged all 8 mice across all regions and 

calculated mean ± SEM. The same procedures were done for Dlx E15 mice, Mash E11 

mice, and Mash E15 mice.

Figure S1S.: In order to quantify the number of E11 Dlx1 or Mash1 birthdate-labeled cells 

that overlap with the striosome or matrix compartment of striatum, we used the methods 

described in ‘Assessment of D1 and D2 Proportion in Birthdate-Labeled Cells’. We used 8 

striosome mice and 8 matrix mice. We show that E11 labels striosomal cells across mice on 

average with the number of cells per mm2 mean ± SEM of 230.0 ± 50.1 in Dlx1 and 95.0 ± 

19.1 in Mash1. We show that E11 labels matrix cells across mice on average with the 

number of cells per mm2 mean ± SEM of 90.1 ± 34.1 in Dlx1 and 31.2 ± 7.8 in Mash1. 

Statistical significance was determined by two sample t-test (Dlx1: p = 0.037; Mash1: p = 

0.0079) and Wilcoxon rank sum (Dlx1: p = 0.05; Mash1: p = 0.003).

Figure S1T.: In order to quantify the number of E15 Dlx1 or Mash1 birthdate-labeled cells 

that overlap with the striosome or matrix compartment of striatum, we used the methods 

described in ‘Assessment of D1 and D2 Proportion in Birthdate-Labeled Cells’. We used 8 

striosomal mice and 6 matrix mice. We show that E11 tamoxifen administration labels 

striosomal cells across mice with a mean number of cells per mm2 ± SEM of 69.8 ± 18.0 in 

Dlx1 mice and 39.3 ± 15.6 in Mash1 mice. We show that E15 tamoxifen administration 

labels 398.8 ± 30.6 matrix cells in Dlx1 mice and 296.5 ± 56.3 cells in Mash1 mice. 

Statistical significance was determined by two sample t-test (Dlx1: p = 0.0000002; Mash1: p 

= 0.0013) and Wilcoxon rank sum (Dlx1: p = 0.0002: Mash1: p = 0.0021).

Figure S1W.: In order to quantify the differential expression of GCaMP6m in striosome and 

matrix compartments in E11 and E15 birthdate-labeled mice, we calculated the GCaMP6M+ 

pseudo-maximum sSPN density (S) and pseudo-maximum mSPN density (M) using the 

methods described in ‘Quantifying Density of GCaMP6m+ Cells in Striosome and Matrix 

Compartments in E11/E15 Model Mice’. We used 5 striosome mice and 5 matrix mice. We 

then computed the ratio (S−M)/(S+M) for each mouse. We show that in striosome mice, the 

average ratio is 0.3972 ± 0.0819 and that in matrix mice, the average ratio is −0.3607 ± 

0.1087. These were shown to be significantly above zero (p = 0.0083) and significantly 

below zero (p = 0.0294), respectively, by one-sample t-tests (ttest.m Matlab).
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Figure S2.

Figure S2A.: In order to determine the similarities of learning and aging on engagement in 

CT striosome and matrix mice, we used 18 6–9 month old striosome mice, 10 9–12 month 

old striosome mice, 13 >12 month old striosome mice, 15 6–9 month old matrix mice, 13 9–

12 month old matrix mice, and 4 >12 month old matrix mice. For each mouse, we calculated 

task engagement (C) in the first and last 200 trials of learning. Mean and SEM were 

calculated across mice. No significance was found between ages or striosome compartments 

(age p = 0.06, striosome vs matrix p = 0.21, age × striosome vs matrix p = 0.86, age × 

striosome vs matrix × learning period p=0.61, 3-way ANOVA, anovan.m Matlab). A 

significant difference was found between learning periods (p = 0.01, 3-way ANOVA, 

anovan.m Matlab).

Figure S2B.: In order to visualize similarities in learning progression, we used data from 9 

striosome CT mice (7.2 ± 0.8 months old) and 16 matrix CT mice (9.1 ± 0.5 months old). 

We defined early learning as the first third of trials for each mouse, middle learning as the 

second third, and late learning as the last third. End of learning was defined as the last 50 

trials prior to reaching the performance criterion. We define a true positive as a reward trial 

with licking ≥1. False positive rate was determined as a cost trial with a lick rate ≥1. Center 

of ellipse represents group mean, and ellipse is SEM for the group. Mean d’ and C for each 

period were calculated, and isoquant for the learning period was plotted as curves.

Figure S2C.: In order to visualize similarities in licking rates across learning, we used data 

from 26 striosome CT mice (7.7 ± 0.2 months old) and 20 matrix CT mice (7.8 ± 0.3 months 

old). We calculated the RP reward- and cost-trial lick frequency for each mouse. Licking 

rates were calculated at the first quarter of learning and the last quarter of all trials (including 

after learning). Mean and SEM were calculated across mice. No significance was 

determined between striosome and matrix mice (cost Q1: p = 0.15, reward Q1: p = 0.06, cost 

Q4: p = 0.86, reward Q4: p = 0.84, ttest2.m Matlab).

Figure S2M.: In order to quantify a higher transient rate in matrix than striosomes and a 

lower transient amplitude in matrix than striosomes, we calculated the average transient rates 

and amplitudes in the tone and response periods for all CT mice. We used 32 striosome mice 

(age range = 5–21 months, mean ± SEM = 11.69 ± 0.98) and 28 matrix mice (age range = 

6–19, mean ± SEM = 9.57 ± 0.66) in the transient rate calculations, and we used 35 

striosome mice (age range = 5–21, mean ± SEM = 11.31 ± 0.92) and 29 matrix mice (age 

range = 6–19, mean ± SEM = 9.55 ± 0.63) in the transient amplitude calculations. Statistical 

significance in transient rates was determined by two sample t-test (p = 0.00005) and 

Wilcoxon rank sum (p = 0.00001). Statistical significance in transient amplitudes was 

determined by two sample t-test (p = 0.0000000003) and Wilcoxon rank sum (p = 

0.00000001).

Figure S2N.: In order to quantify no change in transient rates during learning with all trials, 

we calculated the average transient rate for early learning (all trials in the first third of 

learning) against the average transient rate in late learning (all trials in the last third of 

learning) for all control type mice that have learned the task. We use a total of 33 striosome 
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mice (age range = 5–21, mean ± SEM = 10.72 ± 0.85) and 27 matrix mice (age range = 6–

19, age mean ± SEM = 9.37 ± 0.6). No statistical significance was determined for striosomes 

by paired t-test (p = 0.61) and Wilcoxon signed rank test (p = 0.17). No statistical 

significance was determined for matrix by paired t-test (p = 0.31) and Wilcoxon signed rank 

test (p = 0.52).

Figure S2O.: In order to quantify no change in transient amplitudes during learning with all 

trials, we calculated the average transient amplitude for early learning (all trials in the first 

third of learning) against the average transient amplitude in late learning (all trials in the last 

third of learning) for all CT mice that have learned the task. We used a total of 36 striosome 

mice (age range = 5–21, mean ± SEM = 10.44 ± 0.79) and 28 matrix mice (age range = 6–

19, age mean ± SEM = 9.36 ± 0.58). No statistical significance was determined for 

striosomes by paired t-test (p = 0.1) and Wilcoxon signed rank test (p = 0.26). No statistical 

significance was determined for matrix by paired t-test (p = 0.86) or Wilcoxon signed rank 

test (p = 0.8).

In order to quantify no change in transient amplitudes during learning with only engaged 

trials, we performed the same calculations for transient amplitudes as we did over all trials 

but filtered out all trials not labeled as engaged. We used the same mouse groupings. No 

statistical significance was determined for striosomes by paired t-test (p = 0.09) and 

Wilcoxon signed rank test (p = 0.1). No statistical significance was determined for matrix by 

paired t-test (p = 0.25) or Wilcoxon signed rank test (p = 0.66).

Figure S2P.: In order to quantify a change in SNR in striosomal transients compared to 

matrix transients during learning, we applied an SNR function to the beginning and end of 

learning in both groups. We considered only engaged-trial transients during the response 

period. We compared striosome (n = 11, age range = 8–26 months, mean = 16.14 ± 2.25) 

and matrix (n = 16, age range = 9–22 months, mean = 14.73 ± 1.22) CT-L mice. Early 

learning SNR was computed on the first 250 trials and late learning SNR was computed on 

the last 150 trials. The SNR computation and analysis methods can be found in section 

`Quantification of SNR for Striosomal and Matrix Transients during Learning`. Statistical 

significance in striosomes was determined by t-test (p = 0.0034) and Wilcoxon signed rank 

test (p = 0.0049). Lack of statistical significance in matrix was determined by t-test (p = 

0.999) and Wilcoxon signed rank test (p = 0.569).

Figure S2Q.: Same as Figure 2A. Example is from 16 month old CT mouse #2660.

Figure S2R.: In order to explore how the matrix signal evolves with learning, we split 

learning into bins of 100 trials. For each of the bins, we calculated the RP lick frequency as 

in Figure 1B and calculated the matrix signal for cost trials (red) and reward trials (blue). 

The matrix photometry signal was detrended, and z-scores were calculated using the whole 

session activity as the baseline. We aligned matrix activity to the start of the tone event and 

calculated mean and SEM for each bin. Examples are from a 19 month old CT mouse 

(#3758).
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Figure S2S.: In order to measure correlation between RP licking rates and RP striosomal or 

matrix signals, we analyzed 30 CT striosome mice (10.8 ± 0.9 months old) and 25 CT 

matrix mice (9.4 ± 0.7 months old). We calculated the normalized licking rates and RP 

striosomal or matrix signal correlation for each mouse and calculated the mean and SEM of 

the slopes across mice in each group. For each correlation, we split all trials (up to learning 

or including after learning) into 20 bins and calculated the normalized lick rates and the RP 

striosomal or matrix signal (as described in Figures 2A and 4A). For the correlations 

containing the first quarter of learning, we used the first 5 bins. These correlations were 

performed for both reward and cost RP signals separately. Significance was determined by 

the Wilcoxon signed rank test (striosomal reward-trial correlations: including after learning 

p = 0.009, up to learning p = 0.002, first 25% p = 0.85; striosomal cost-trial correlations: 

including after learning p = 0.08, up to learning p = 0.07, first 25% p = 0.16; matrix reward-

trial correlations: including after learning p = 0.006, up to learning p = 0.2, first 25% p = 

0.38; matrix cost-trial correlations: including after learning p = 0.77, up to learning p = 0.58, 

first 25% p = 0.24).

Figure S2T and S2U.: Examples of striosomal signal correlations with d’ (T) and matrix 

signal correlations with licking (U) (T top: p = 0.0005, r = 0.8; T bottom: p = 0.002, r = 

0.71; U top: p = 0.2, r = 0.77; U bottom: p = 0.2, r = 0.8). Methods are described in Figure 

2C for T and Figure 2F for U. Each panel corresponds to an individual mouse correlation 

used for the inserts in Figures 2C and 2F. Examples in T are from 16 month old CT mouse 

#2712 and 17 month old CT mouse #2795. Examples in U are from 15 month old CT mouse 

#2705 and 17 month old CT mouse #2775.

Figure S2V.: In order to demonstrate striosomal activity shaping and lack of matrix shaping 

during learning, we used 10 CT striosome mice (17.6 ± 0.6 months old) and 24 CT matrix 

(9.5 ± 0.7 months old) mice. For each mouse, we split all trials into 2 segments, before and 

after the learning criterion was reached, and then the trials that were given before the 

learning criterion was reached were split into 2 segments, first 10% and last 90% of trials. 

The striosomal/matrix activity was calculated as in Figures 2A and 4A for each segment. 

Mean and SEM were calculated across mice.

Figure S2W.: In order to demonstrate striosomal activity differences based on 

discrimination ability, we used 10 CT (17.6 ± 0.6 months old) striosome mice. For each 

mouse, we split learning into bins of 10 trials and calculated the discrimination index (d’) 

for each bin. The striosomal activity for reward and cost trials was calculated for 2 pools of 

data, one with bins that contained d’ in the range of 0–0.25 and another with bins that 

contained d’ >2. The striosomal/matrix activity was calculated as in Figures 2A and 4A for 

each pool of data. A significant difference was found comparing R−CRP between low and 

high d’ conditions (paired t-test, p = 0.0075). Mean and SEM were calculated across mice.

Figure S2X.: In order to demonstrate striosomal activity differences based on discrimination 

ability, we used 35 CT (11.3 ± 0.9 months old) striosome mice. For each mouse, we split the 

first fourth of learning into bins of 10 trials and for each bin calculated the discrimination 

index (d’) and the z-score of RP lick frequency of cost trials, where the baseline is the RP 
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lick frequency for all of learning. The striosomal activity for reward and cost trials was 

calculated for bins in all 4 possible combinations of d’ in the range of 0.01–0.25 or d’ >2 

and cost-trial RP lick frequency z-score less than or greater than 0.25. The striosomal 

activity was calculated as in Figures 2A and 4A for each pool of data.

Figure S2Y.: Same as Figure S2X but with 29 CT (9.6 ± 0.6 months old) matrix mice and 

reward trials instead of cost trials.

Figure S2Z.: In order to identify the task period during which striosomal activity maximally 

correlated with discrimination index d’, we performed correlation analysis using 39 

striosome CT-L mice (10.1 ± 0.8 months old). For each mouse, we split all trials into bins of 

200 trials and calculated the discrimination index d’ and the striosomal signal (as described 

in Figure 2C) for all periods (ITI, tone, response, and outcome). We used the difference in 

striosomal activity during each of these periods between reward and cost trials. After 

collecting data for all bins for all mice, we split the data into segments of 0.25 d’ and 

calculated the mean and SEM for each segment, as well as the correlation coefficient and 

significance (as described in Figure 2C). For striosome CT-L mice, ITI r = 0.63045, p = 

0.05; tone r = −0.4148, p = 0.23; response r = 0.97129, p = 0.0000028; outcome r = 

−0.96984, p = 0.0000034.

Figure S2AA.: In order to identify task period during which matrix activity maximally 

correlated with lick frequency, we performed a correlation analysis using 29 matrix CT-L 

mice (9.2 ± 0.6 months old). RP lick frequency was used to calculate z-scores. For each 

mouse, we split all trials into bins of 200 trials and performed z-score normalization 

independently for reward and cost trials (as described in Figure 2F). For matrix CT-L mice, 

ITI r = 0.48465, p = 0.15571; tone r = −0.52, p = 0.12; RP reward trials r = 0.93, p = 0.0027; 

RP cost trials r = −0.38, p = 0.31; outcome r = 0.40, p = 0.25.

Figure S3.

Figure S3A.: In order to visualize learning of a 16 month old mouse #2703 with striosomal 

recordings, we split learning, both discrimination and reversal tasks, into 100 trial bins and 

averaged the RP lick frequency for cost and reward trials in each bin. We calculated the PDF 

and CDF for RP lick frequency distribution of reward and cost trials. The same data were 

used to calculate d’ and C. The same procedure was repeated for a 7 month old mouse #27 

with matrix recordings. Insert: In order to test the similarities in discrimination across 

reversal learning of CT striosome and matrix mice, we used 9 CT striosome mice (9 ± 1.6 

months old) and 6 CT matrix mice (7.5 ± 0.8 months old). For each mouse, we calculated d’ 

in the first and last 500 trials of learning. Mean and SEM were calculated across mice. No 

significant difference was found between striosome and matrix mice (striosomes vs. matrix 

p=0.35, striosomes vs. matrix × learning period p=0.83, 2-way ANOVA, anovan.m Matlab). 

A significant difference was found between learning periods (p < 0.0001, 2-way ANOVA, 

anovan.m Matlab).

Figure S3B.: In order to explore how the striosomal signal evolves with reversal learning, 

we split learning into bins of 100 trials. For each of the bins, we calculated the RP lick 
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frequency as in Figure S3A and calculated the striosomal signal for cost trials (red) and 

reward trials (blue). The striosomal photometry signal was detrended, and z-scores were 

calculated using the whole session activity as the baseline. We aligned striosomal activity to 

the start of the tone event and calculated mean and SEM for each bin. We focused on 3 sets 

of bins. In the first set, there were an identical number of licks for cost and reward, for the 

second set, there was similar discrimination to the first set but licking rate was much lower, 

and in the third set there were more licks for reward than for cost. Example is from a 16 

month old CT mouse (#2703).

Figure S3C and S3D.: In order to test the differences in signals across reversal learning of 

CT striosome and matrix mice, we used 9 CT striosome mice (9 ± 1.6 months old) and 6 CT 

matrix mice (7.5 ± 0.8 months old). For each mouse, we calculated the difference in activity 

(striosomal or matrix) during the response period between reward and cost trials (R−CRP) in 

the first and last 500 trials of learning. Mean and SEM were calculated across mice. A trend 

for difference was found across learning for striosome mice but not for matrix mice 

(striosome p = 0.08, matrix p = 0.11, paired t-test, ttest.m, Matlab).

Figure S3E.: In order to determine whether there was a significant difference in correlation 

strengths between d’ and striosomal activity (R−CRP) in Mash1 and Dlx1 lines, we 

compared 23 Mash1 (6–21 months) and 6 Dlx1 (6–21 months) mice. Correlation was 

calculated for each indivicual mouse as in the insert of Figure 2C. We calculated the average 

and SEM of r2 across mice. Absence of statistical difference between Mash1 and Dlx1 mice 

was determined by two-sample unpaired t-test (p = 0.55).

Figure S3F.: In order to visualize the evolution of striosomal activity over learning, we 

estimated different epochs of learning by creating a rolling window of 500 trials and 

calculating the BIC of the HMM over these windows. In a window where the BIC increased 

significantly, by 20%, we split the trials into the different epochs and calculated the 

engagement proportion of each epoch separately based on the corresponding best model for 

that epoch. We found a non-significant correlation between striosomal activity and d’ in the 

first low-engagement epoch (r = 0.2, p = 0.1). Once engagement increased, however, 

striosomal activity was significantly correlated with d’ (r = 0.6, p < 0.0001). Example is 

from a 17 month old CT mouse #2778.

Figure S3G.: In order to measure correlation between d’ and RP striosomal signal, we used 

10 CT-L mice (13–21 months). Quantification and statistics were performed as in Figure 2C. 

The left panel shows the correlation for not-engaged trials (r = 0.79, p = 0.11), and the panel 

on the right shows the correlation for the engaged trials (r = 0.99, p = 0.01).

Figure S3H.: In order to evaluate how the engagement affects the correlation, we split the 

learning of each mouse into bins of 200 trials and calculated the proportion of engagement 

in each of the time bins. We calculated the correlation between striosomal signal and d’ 

within each of these bins. For each mouse, we generated a histogram containing three levels 

of engagement (0–33%, 33–67%, and 67–100% proportion of engagement), and calculated 

average correlation coefficient r across the mice. We calculated the mean and SEM for each 

bin across 8 striosome mice (17.4 ± 0.5 months) and 5 matrix mice (15.4 ± 1.5 months).
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Figure S3I.: To measure the effect of water devaluation and sucrose devaluation on response 

bias, we used 18 CT mice (10.9 ± 1.0 months), with 18 sessions with sucrose devaluation 

and 18 for water devaluation. Line represents the difference between session during which 

learning criterion was reached (baseline) and devaluation session. Mean and SEM were 

calculated for insert. Significance was determined by paired t-test (p = 0.00000007).

Figure S3J.: To measure the effect of water devaluation and sucrose devaluation on 

striosomal activity during response period for reward trials and cost trials, we used 18 CT 

mice (10.9 ± 1.0 months old), with 18 sessions for sucrose devaluation and 18 for water 

devaluation. Each line represents the difference between the session during which learning 

criterion was reached (baseline) and the devaluation session. Significance was determined by 

paired t-test (Matlab): p = 0.02 for reward striosomal activity, and p = 0.78 for cost 

striosomal activity.

Figure S3K.: To measure the effect of water devaluation and sucrose devaluation on matrix 

activity during response period for reward trials and cost trials, we used 3 CT-L mice (11.3 ± 

2.8 months old), with 3 sessions for sucrose devaluation and 3 for water devaluation (as 

described in Figure S3J). Significance was determined by paired t-test (Matlab): p = 0.19 for 

reward-trial striosomal activity, and p = 0.68 for cost-trial striosomal activity.

Figure S3L.: To measure the effect of diazepam (0.5 mg/kg) on response bias, we used 16 

CT mice (8.1 ± 0.2 months old), with 31 sessions with saline and 16 sessions with diazepam. 

Saline sessions were given day before and day after diazepam sessions, and those two saline 

sessions were averaged. Line represents difference between saline and diazepam sessions. 

Significance was determined by paired t-test (p = 0.15).

Figure S3M.: To measure the effect of diazepam on striosomal activity during response 

period for reward trials and cost trials, we used 16 CT mice (8.1 ± 0.2 months old), with 31 

sessions for saline and 16 sessions for diazepam. Saline sessions were given the day before 

and the day after diazepam sessions, and the two saline sessions were averaged. Significance 

was determined by paired t-test (Matlab): p = 0.016 for reward-trial striosomal activity, and 

p = 0.048 for cost-trial striosomal activity.

Figure S3N.: To measure the effect of diazepam on matrix activity during response period in 

reward trials and cost trials, we used 5 CT-L mice (7.4 ± 0.5 months old), with 5 sessions 

each for saline and diazepam (as described in Figure S3M). Significance was determined by 

paired t-test (p = 0.39 for reward-trial striosomal activity, and p = 0.071 for cost-trial 

striosomal activity).

Figure S3O.: In order to quantify GCaMP6m/DREADD overlap, we examined one 

hemisphere for each of the 7 slices from 3 mice. For each slice, we counted the number of 

cells that are only expressing GCaMP6m, the number of cells that are only expressing 

DREADD, and the number of cells that are expressing both viruses. We calculated the 

proportion of cells that are expressing both viruses from the cells that express only 

GCaMP6m. The same was calculated for DREADD expressing cells. Mean and SEM were 

calculated across slices.
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Figure S4.

Figure S4A.: In order to compare dynamic activity of matrix, we used 21 6–12 month old 

CT-L mice, 3 13–21 month old CT-L mice and 5 6–21 month old CT-NL mice. For each 

mouse, we calculated matrix signals for cost trials (red) and reward trials (blue). Matrix 

signals were detrended, and z-scores were calculated using whole session activity as the 

baseline. We aligned matrix activity in reward and cost trials to the tone onset and calculated 

the mean for each trial type for each mouse in the group. Then we averaged the matrix 

signals across mice in each group (mean ± SEM).

Figure S4B.: In order to compare matrix RP activity in different age groups, we evaluated 

21 younger CT-L mice (average age ± SEM = 8.4 ± 0.3 months) and 3 older CT-L mice (17 

± 1.2 months) using the same method described in Figure S4A to calculate RP matrix 

activity. Matrix R−CRP signals were similar in aged and less aged CT-L mice (p = 0.74, two-

tailed Mann-Whitney test Prism Software, left panel). There was also no significant effect of 

reward vs. cost × age (p = 0.93, 2-way ANOVA Prism Software). Mean and SEM were 

calculated across mice.

Figure S4C.: In order to compare matrix RP activity in mice that learned and those that did 

not learn, we used 24 6–21 month old CT-L mice and 5 6–21 month old CT-NL mice using 

the same method described in Figure S4B. Mice that learned the task had similar matrix R

−CRP signals to mice that did not learn the task (p = 0.52, two-tailed Mann-Whitney test 

Prism Software, left panel). There was also no significant effect of reward vs. cost trial type 

× learning status (p = 0.49, 2-way ANOVA Prism Software). Mean and SEM were 

calculated across mice.

Figure S4D and S4E.: In order to explore the dynamic of striosomal activity between 

different ages, we examined recordings from examples of a young and old mouse, a 7 month 

old CT-L mouse (D) and a 19 month old CT-L mouse (E). We applied a rolling window of 

5% of trials across all learning trials and calculated the reward- and cost-trial RP lick 

frequency and striosomal signal for each window.

Figure S4F.: In order to measure correlation between C and RP striosomal signal, we used 

19 6–12 month old CT-L mice and 10 13–21 month old CT-L mice. We used the same 

methods described in Figure 2C but with engagement bias C instead of discrimination index 

d’. For 6–12 month old CT-L mice, r = −0.92, p = 0.03; for 13–21 month old CT-L mice, r = 

−0.17, p = 0.79.

Figure S4G.: In order to measure correlation between C and d’, we used 19 6–12 month old 

CT-L mice and 10 13–21 month old CT-L mice. We used the same methods described in 

Figure 2C but with engagement bias instead of discrimination index and d’ instead of 

striosomal activity. For 6–12 month old CT-L mice, r = −0.91, p = 0.03; for 13–21 month old 

CT-L mice, r = −0.53, p = 0.34.

Figure S4H.: In order to measure correlation between d’ and RP striosomal signal, we used 

29 6–21 month old CT-L mice and 6 6–21 month old CT-NL mice. For each mouse, we split 
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all engaged learning trials into bins of 200 trials and calculated the discrimination index and 

the RP striosomal signal (as described in Figure 2C). We used the difference in striosomal 

activity during response period between reward and cost trials. After collecting data for all 

bins for all mice, we split the data into segments of 0.5 d’ and calculated the mean and SEM 

for each segment. In the figure, the orange points represent the average of 10–100 total bins, 

whereas the yellow points represent the average of 1–10 total bins. The correlation 

coefficient r was calculated using corr2.m (Matlab) and significance was determined by 

Pearson correlation using corrcoef.m (Matlab). For CT-L mice: r = 0.95, p = 0.003; for CT-

NL: r = −0.07, p = 0.95.

Figure S4I.: We measured duration of learning for mice that reached the learning criterion, 

which was determined as in section above (‘Performance Criterion’). We calculated the 

number of trials that each mouse required to reach learning criterion and determined the 

mean and SEM for each genotype and age group. We did not find any significant difference 

across all groups.

Figure S4J.: In order to test whether the number of mice that reached learning criterion for 

the reversal task was different between CT and HD mice (6–9 months), we used the chi-

square test (dg_chi2test3.m, p < 0.02). Learning criterion was determined as in section 

above (‘Performance Criterion’).

Figure S4K.: Same as Figure S4I except for reversal task.

Figure S4L and S4M.: Similar to Figure 1C insert. We averaged the CDF for reward- and 

cost-trial RP licks for the first 2 and last 2 sessions of the discrimination and reversal task. 

Mean and SEM were calculated across 6 HD (9.0 ± 0.3 months old) mice.

Figure S4N.: Reward-trial outcome-period lick number for each of the 3 levels of reward 

administered were compared across 8 CT (9.9 ± 0.4 months old) and 6 HD (9.0 ± 0.3 

months old) mice. For each mouse, we split the reward trials by level of reward administered 

and calculated the mean licking rate for each level. We calculated the mean and SEM for 

each reward level across mice. We examined the first four sessions in the beginning of 

learning (left), and the last four sessions at the end of learning (right).

Figure S4O.: Reward-trial outcome-period lick number for each of the 3 levels of reward 

administered were compared across 13 CT (10 >12 month striosome mice, 3 >12 month 

matrix mice) and 6 HD (1 >12 month striosome mice, 5 >12 month matrix mice) mice. For 

each mouse, we split the reward trials by level of reward administered and calculated the 

mean licking rate for each level. We calculated the mean and SEM for each reward level 

across mice, examining the first four sessions in the beginning of learning. There was no 

significant difference in licking rates between genotype (p = 0.99; two-way ANOVA, Prism 

Software).

Figure S4P.: In order to assess whether sucrose was a preferred reward versus water, we 

measured and compared sucrose solution consumption to water consumption as described in 

the ‘Sucrose Preference’ section. We averaged data from two sucrose preference sessions 
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with and without water deprivation per mouse. We used 23 CT mice (12.6 ± 1.1 months old) 

and 21 HD mice (10.2 ± 0.8 months old). Mice in all conditions preferred sucrose solution to 

water by means of paired t-test. CT water deprived p = 0.03989. HD water deprived p = 

0.0012. CT not water deprived p = 0.0001. HD not water deprived p = 0.0078.

Figure S4Q.: In order to test whether there was a difference in sucrose solution preference 

between CT and HD mice, we compared sucrose solution consumption minus water 

consumption between the groups. We used 23 CT mice (12.6 ± 1.1 months old) and 21 HD 

mice (10.2 ± 0.8 months old) in water deprived conditions and non-deprived conditions. No 

significant difference was found between CT and HD mice (two-sample t-test, deprived: p = 

0.49278, not deprived: p = 0.93421).

Figure S4R.: In order to determine whether mice avoided the light and whether there was a 

difference in light avoidance between CT and HD mice, we compared the percent time spent 

in light, as described in the section ‘Light Avoidance.’ We used 12 CT and 11 HD mice. 

With increasing light intensity, mice showed decreasing time spent in lit chamber side; no 

significant difference was found between genotypes (main effect of light, p = 0.02; no 

significant effect of genotype or interaction; 2-way ANOVA, post-hoc Tukey test for 

multiple comparisons).

Figure S4S.: In order to visualize evolution of discrimination ability and bias of mice, we 

performed SDT analysis on 8 CT and 6 HD 9 month old mice. For each mouse, all learning 

sessions were split into 3 equal bins, and the true positive rate, false positive rate, d’ and C 

were calculated for each session. True positive was defined as a reward trial in which licking 

occurred, and false positive was defined as a cost trial in which licking occurred. Each 

session’s true positive rate and false positive rate were plotted as a single point. The d’ and C 

averages were calculated across mice where each observation is a mouse. Isoquants for 

mean d’ and C were calculated and plotted as curves. The last panel only contains the last 3 

sessions of learning for each mouse.

Figure S4T.: In order to compare engagement levels between CT and HD mice, we used 64 

CT (10.5 ± 0.6 months old) mice and 42 HD (9.9 ± 0.6 months old) mice. For each mouse, 

we split training into 3 equal periods and calculated mean and SEM for each period across 

two groups, where each mouse was an observation. We found that HD mice exhibited lower 

engagement levels across training phase (main effect, genotype, p < 0.0001; learning phase, 

ns, by 2-way ANOVA Prism software).

Figure S4U.: In order to compare engagement levels among CT-L, CT-NL and HD-NL 

mice, we used 53 CT-L (8.7 ± 0.3 months old), 11 CT-NL (11.6 ± 1.7 months old) and 35 

HD-NL (10.5 ± 0.6 months old) mice. For each mouse, we split training into 3 equal periods 

and calculated mean and SEM for each period across two groups, where each mouse was an 

observation. We found a significant interaction in CT mice between learning phase and 

learning status (interaction between learning phase and learning status, p = 0.013; main 

effects of learning phase and learning status not significant by 2-way ANOVA) and that mice 

that did not learn exhibited a significant drop in engagement in the last third of learning 

compared to mice that did learn (Bonferroni multiple comparison’s test, p = 0.036). A 
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comparison of HD-NL and CT-NL mice revealed significantly lower engagement levels in 

HD-NL mice (main effect of genotype, p = 0.049; learning phase and interaction terms not 

significant by 2-way ANOVA).

Figure S4V.: Same as Figure 2G but for an example of a younger aged HD mouse that 

learned the task (HD-L, 6 month old, mouse #65), except that each point represents the 

correlation coefficient of 5 bins each containing an average of 4% of all engaged trials 

across time.

Figure S4W.: In order to calculate the dynamic range of correlations of striosomal signal 

with d’ during reward trials, cost trials and difference between reward and cost trials, we 

selected 19 CT (11.9 ± 1.2 months old) and 10 HD (10.1 ± 1.6 months old) mice that had 

high correlation strength (|r| > 0.7, Pearson correlation coefficient) between striosomal 

activity and d’. We measured minimum and maximum striosomal activity for each mouse 

and calculated mean and SEM across CT and HD groups and compared groups by two-

tailed t-test to determine significance (p = 0.007). One sample t-test: CT: p < 0.0001, HD: p 

< 0.0001.

Figure S4X and S4Y.: In order to demonstrate that learning dynamic of HD mice relies on 

striosomal cost signal in two different ways, we used recordings from two 6 month old HD-

L mice. These mice demonstrate that striosomal cost trace is above reward trace (S4X), or 

striosomal reward trace is above cost trace, but only cost trace is dynamically modulated 

during task (S4Y). We used the same methods as Figures S4D and S4E.

Figure S4Z.: To evaluate CT (striosome n = 35, 11.3 ± 0.9 months old, matrix n = 29, 9.6 ± 

0.6 months old) and HD (striosome n = 22, 9.9 ± 0.9 months old, matrix n = 20, 10.0 ± 0.8 

months old) mice for tendencies to exhibit correlations between d’ and reward-trial activity, 

we calculated the proportion of mice that showed high correlation strengths (|r| > 0.7, 

Pearson correlation) between d’ and reward-trial RP striosomal or matrix activity. Chi-

square test for CT striosome vs. matrix mice (dg_chi2test3.m, p = 0.03), for HD striosome 

vs. matrix mice (dg_chi2test3.m, p = 0.17), for CT vs. HD striosome mice (dg_chi2test3.m, 

p < 0.0001), and for CT vs. HD matrix mice (dg_chi2test3.m, p = 0.9).

Figure S5.

Figure S5M.: To validate the results from the semi-automated detection algorithm of PV 

boutons on GCaMP6m-labeled cell bodies, we compared the algorithm output to manual 

analysis in a subset of data. Data points represent average number of PV boutons on 

GCaMP6m-labeled cell bodies per mouse (13 mice, ~40 cells per mouse). The manual 

counts correlated significantly with the algorithm output by Pearson’s correlation test (r = 

0.9629, p = 0.0001).

Figure S5N.: In order to verify strengths of effect shown in Figure 6D using automatic 

identification of sSPN cell bodies and PV boutons on the cell bodies, we performed manual 

reconfirmation of PV boutons and SPN cell bodies identification. Statistical significance of 
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reduction of PV boutons on sSPN cell bodies in HD mice was determined by two sample t-

test (p = 0.0027). We used 133 cells from the CT mice and 129 cells from the HD mice.

Figure S5O.: In order to verify strengths of effect shown in Figure 6E using automatic 

identification of mSPN cell bodies and PV boutons on the cell bodies, we performed manual 

reconfirmation of PV boutons and SPN cell bodies identification. Statistical significance of 

increase of PV boutons on mSPN cell bodies in HD mice was determined by two sample t-

test (p = 0.01). We used 56 cells from the CT mice and 128 cells from the HD mice.

Figure S5P.: To quantify the reduction in PV terminals on SPNs in the dorsal central region 

of striatum in striosome mice, we calculated the number of PV terminals on all detected 

SPNs. Bars represent mean ± SEM. Mean represents the average number of PV terminals on 

SPNs of the given group where an observation is a cell (CT-LY mean = 2.25 ± 0.21; CT-LO 

mean = 2.51 ± 0.099; CT-NL mean = 1.56 ± 0.16; HD-NL mean = 1.57 ± 0.09; CT-LO vs. 

CT-LY, p = 0.78; CT-LO vs. CT-NL, p < 0.0001; CT-LO vs. HD-NL, p < 0.0001). To 

quantify the increase in PV terminals on SPNs in the dorsal central region of matrix mice, 

we also calculated the number of PV terminals on all detected SPNs (CT-LY mean = 0.44 ± 

0.18; CT-LO mean = 0.81 ± 0.07; CT-NL mean = 1.21 ± 0.03; HD-NL mean = 1.82 ± 0.03; 

CT-LO vs. CT-LY, p > 0.9999; CT-LO vs. CT-NL, p = 0.0009; CT-LO vs. HD-NL, p < 

0.0001). Data were analyzed using Kruskal-Wallis test followed by Dunn’s post-hoc 

multiple comparisons test. Error bars denote SEM. Age distributions for the histology 

groups are the same as in Figures 6D and 6E for striosome and matrix mice, respectively.

Figure S5Q.: To quantify the reduction in PV terminals on SPNs in the dorsal central region 

of striatum in striosome mice that failed to learn, we averaged the number of PV terminals 

on all detected SPNs per mouse. Bars represent mean ± SEM, where mean represents the 

average number of PV terminals on SPNs of the given group (CT-LY mean = 2.62 ± 0.44; 

CT-LO mean = 2.98 ± 0.62; CT-NL mean = 1.50 ± 0.10; HD-NL mean = 1.69 ± 0.15; CT-

LO vs. CT-LY, p > 0.9999; CT-LO vs. CT-NL, p = 0.24; CT-LO vs. HD-NL, p = 0.21). To 

quantify the increase in PV terminals on SPNs in the dorsal central striatal region of matrix 

mice that failed to learn, we averaged the number of PV terminals on all detected SPNs per 

mouse. Bars represent mean ± SEM, where mean represents the average number of PV 

terminals on SPNs of the given group (CT-LY mean 0.50 ± 0.17; CT-LO mean = 0.80 ± 

0.10; CT-NL mean = 1.18 ± 0.19; HD-NL mean = 1.54 ± 0.34; CT-LO vs. CT-LY, p > 

0.9999; CT-LO vs. CT-NL, p > 0.9999, CT-LO vs. HD-NL, p= 0.34). Data were analyzed 

using Kruskal-Wallis test followed by Dunn’s post-hoc multiple comparisons test. Error bars 

denote SEM. Age distributions for the histology groups the same as in Figures 6D and 6E 

for striosome and matrix mice, respectively.

Figure S5R.: To quantify the reduction in PV puncta on SPN cell bodies in striosomes of 

CT-NL and HD mice, CDFs were computed from the detected PV terminals on SPNs 

sampled in each mouse. Lines and shades represent the mean CDF ± SEM of CDFs of a 

group. We calculated significance using K-S test to compare CT-NL and HD pooled 

observations across mice in which the distribution from each mouse was resampled (1000 

values) to ensure each mouse contributes the same number of observations to the statistic 
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(CT-LO vs. CT-LY, p < 0.0001; CT-LO vs. CT-NL, p < 0.0001; CT-LO vs. HD, p < 0.0001). 

Mice and age distributions are the same as in Figure 6D.

Figure S5S.: To quantify the increase in PV puncta on SPN cell bodies in matrix of CT-NL 

and HD mice, we averaged CDFs of PV terminals on all detected SPNs. Lines and shades 

represent the mean CDF ± SEM of CDFs of a group. Individual CDFs are computed from 

the detected PV terminals on SPN cells. We calculated significance using K-S test over cell 

observations in which the distribution of each mouse was resampled to ensure each mouse 

contributes the same number of observations to the statistic (CT-LO vs. CT-LY, p < 0.0001; 

CT-LO vs. CT-NL, p < 0.0001; CT-LO vs. HD, p < 0.0001). Mice and age distributions are 

the same as in Figure 6E.

Figure S5T.: We evaluated the number of putative PV terminals on SPNs for two mouse 

models, Mash1 and Dlx1, which have a different ratio of D1 and D2 neurons. The number of 

PV terminals on SPNs was similar for Mash1 and Dlx1 mice across experimental groups 

(CT-LO striosome mice, CT-LO matrix mice, CT-LY matrix mice, and HD-NL matrix mice). 

Also, we calculated the linear regression between the number of PV terminals on SPNs in 

the Mash1 and Dlx1 mice across experimental groups, and the slope was near-diagonal 

(Pearson correlation, r = 0.933, p = 0.06). This suggests that PV-SPN connectivity is similar 

across both models. Age of mice and mean ± SEM values for each group can be found in the 

statistical description for Figures 6D and 6E.

Figure S5U.: To evaluate whether HD mice that did not reach the learning criterion 

nonetheless exhibited correlations between d’ and striosomal activity compared with CT 

mice, we compared the proportion of CT-NL and HD-NL mice that exhibited strong 

correlations (|r| > 0.7, Pearson correlation coefficient) between d’ and any of striosomal RRP, 

CRP or R−CRP. Although none of 10 CT-NL mice showed strong correlations between 

striosomal activity and discrimination behavior, 6 of 16 (38%) of HD-NL mice nonetheless 

exhibited strong striosomal activity-behavior correlations. Statistical trend was determined 

by chi-square test (p = 0.079) using Prism software.

Figure S5V.: In order to compare the number of PV boutons on sSPN cell bodies in HD 

mice across different classifications of learning level (see Figures 5H–5L), we split cells 

from 6 HD mice into three groups: 94 cells from 1 HD mouse that learned the task according 

to K-S test as described in ‘Performance Criterion’, 240 cells from 3 HD mice that did not 

reach learning criterion but showed strong Pearson correlation strength (|r| > 0.7) between 

striosomal activity and d’, and 235 cells from 2 HD mice that did reach learning criterion 

and did not exhibit strong correlation strength between striosomal activity and d’ (|r| < 0.7). 

Absence of significance was determined by Kruskal-Wallis test (p = 0.34).

Figure S5W.: In order to test whether PV-SPN connectivity is affected by age in striosomal 

CT-NL mice, we split the CT-NL group into young (≤10 months) and old (≥16 months) 

groups. Bars represent mean ± SEM, mean represents the average number of puncta per cell 

observation (young CT-NL mice = 0.85 ± 0.15, n = 25 cells, 1 mouse; old CT-NL mice = 

1.26 ± 0.12, n = 196 cells, 3 mice). No significant difference was found (p = 0.22; two-

sample t-test).
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Figure S6.

Figure S6C.: In order to measure the number of PV+ and VGAT+ puncta on striosomal and 

matrix cells, we imaged 6 CT (3 striosome and 3 matrix) and 6 HD (3 striosome and 3 

matrix) mice. We examined 19 CT striosomal cells, 21 HD striosomal cells, 41 CT matrix 

cells, and 36 HD matrix cells. We calculated mean and SEM of puncta which showed 

colocalization of PV and VGAT signal. Statistical significance was determined using two-

tailed t-test (striosomes: p = 0.008; matrix: p < 0.001).

Figure S6E and S6F.: In order to evaluate VGluT1 levels in striosome and matrix 

compartments of CT and HD mice, we measured maximum pixel intensities of each 

individually identified punctum in each brain section from CT mice (n = 7 mice, 12 sections, 

age range = 16–19 months, mean ± SEM = 17.57 ± 0.53) and HD mice (n = 7 mice, 16 

sections, age range = 12–15 months, mean ± SEM = 13.86 ± 0.46). In order to combine 

distributions from different brain sections for statistical comparison between groups, we 

resampled and concatenated 1000 samples from each brain section distribution to construct a 

PDF. We compared CDF distributions by K-S test (CT striosome vs. CT matrix, p < 0.0001; 

HD striosome vs. HD matrix, p = 0.91; CT striosome vs. HD striosome, p < 0.0001; CT 

matrix vs. HD matrix, p < 0.0001).

Figures S6G and S6H.: In order to evaluate VglutT1 puncta areas (size of putative vesicle) 

in striosome and matrix compartments of CT and HD mice, we measured pixel areas of each 

individually identified punctum in each brain section from the same mice shown in S6E and 

S6F. To combine distributions from different brain sections, we resampled the data as 

explained in S6E and S6F to construct a PDF. We compared CDF distributions by K-S test 

(CT striosome vs. CT matrix, p < 0.0001; HD striosome vs. HD matrix, p < 0.02).

Figure S6J.: To quantify the spines per dendrite length in mice expressing GCaMP6m in 

striosomes (Cre-induction timepoint at E11), we calculated the average number of spines per 

total dendrite length for each brain slice for CT mice (n = 15 mice, 53 brain sections, age 

range = 5–21 months, mean ± SEM = 16.071 ± 1.22) and HD mice (n = 6 mice, 24 brain 

sections, age range = 6–20 months, mean ± SEM = 13 ± 1.66) revealing a significant 

reduction in striosomal spine density in HD compared to CT mice (p = 0.045, two-tailed t-

test).

Figure S6K.: In the same analysis as S6J but in mice expressing GCaMP6m in matrix (Cre-

induction timepoint at E15), we calculated the average number of spines per total dendrite 

length for each brain slice for CT mice (n = 8 mice, 21 brain sections, age range = 10–19 

months, mean ± SEM = 14.6 ± 1.91) and HD mice (n = 7 mice, 16 brain sections, age range 

= 12–15 months, mean ± SEM = 13.57 ± 0.57) and found no significant difference in matrix 

spine density between CT and HD mice (p = 0.44, two-tailed t-test).

Figure S6M.: In order to calculate spine density across primary, secondary and tertiary 

dendrites of mice expressing GCaMP6m in striosomes (Cre-induction timepoint at E11), we 

performed 3D reconstruction of 12 cells from HD brains and 12 cells from CT brains. Using 

TissueFAXS software, we identified cell bodies and reconstructed dendritic trees of each 
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neuron. We calculated the mean and SEM spine density for each type of dendrite. 

Significant reduction in spine density was found in HD mice relative to CT mice (p = 0.0009 

by Bonferroni multiple comparisons test following 2-way ANOVA for genotype × dendrite 

type, finding a main effect of genotype, p < 0.0001).

Figure S6N.: We compared the reduction in striosomal spine density across CT-NL and HD-

NL mice. We also examined striosomal spine density between CT-NL and CT-L mice. Bars 

represent average spine density for individual groups (mean ± SEM) where an observation is 

a brain section (striosomes: CT-L = 802.04 ± 65.84, CT-NL = 912.84 ± 100.17, HD-NL = 

633.67 ± 76.20; CT-L vs. CT-NL, p = 0.41; CT-L vs. HD-NL, p = 0.10; CT-NL vs. HD-NL, 

p = 0.04, matrix: CT-L = 804.00 ± 116.19, CT-NL = 921.19 ± 30.93, HD-NL = 931.70 ± 

81.18; CT-L vs. CT-NL, p = 0.51; CT-L vs. HD-NL, p = 0.37; CT-NL vs. HD-NL, p = 0.93). 

Significance was determined by t-test. Age distributions for the striosomal histology groups 

were: CT-L age range = 7–25 months, mean ± SEM = 19.09 ± 1.69; CT-NL age range = 20–

22 months, mean ± SEM = 21 ± 0.41; HD-NL age range = 9–20 months, mean ± SEM = 

16.50 ± 1.60. Age distributions for the matrix histology groups were: CT-L age range = 12–

22 months, mean ± SEM = 17 ± 2.38; CT-NL age range = 19–22 months, mean ± SEM = 20 

± 0.71; HD-NL age range = 15–20 months, mean ± SEM = 18.43 ± 0.69. For striosomal 

groups, there were 41 sections from 11 CT-L mice, 12 sections from 4 CT-NL mice, and 27 

sections from 8 HD mice. For matrix groups, there were 15 sections from 4 CT-L mice, 7 

sections from 4 CT-NL mice, and 16 sections from 7 HD-NL mice.

Figure S6O.: In order to test whether striosomal cross-sectional areas and matrix cross-

sectional areas are different between CT and HD mice, we analyzed the output from the 

histological image analysis pipeline described in `Striosomal Detection Worker Using 

MOR1 Staining Analysis`. Bars represent average compartmental cross-sectional area (mean 

± SEM), where an observation is a brain section (striosomes: CT = 0.11 ± 0.01, HD = 0.13 ± 

0.01, matrix: CT = 0.52 ± 0.02, HD = 0.49 ± 0.02; striosomes CT vs. HD, p = 0.13, matrix 

CT vs. HD, p = 0.32). Lack of significance was determined using t-test. Age distributions for 

mouse groups were: CT age range = 20–25 months, mean ± SEM = 21.09 ± 0.46; HD age 

range = 17–20 months, mean ± SEM = 18.92 ± 0.36. There were 21 sections from 11 CT 

mice and 23 sections from 12 HD mice.

Figure S6P.: In order to test whether spine density is different between D1 and D2 neurons, 

we used 6 mice (3 D1 mice and 3 D2 mice), 3 neurons for each mouse and 3 dendrites for 

each cell (total 27 dendrites). We measured a length of each dendrite and manually counted 

the spines. We calculated the number of spines per millimeter of dendrite. There was no 

significant difference between D1 and D2 spine densities (p = 0.56, unpaired t-test, Prism 

Software).

Figure S6Q.: In order to relate PV-SPN connectivity with striosomal or matrix activity, we 

used photometric data from 23 striosome mice and 11 matrix mice. For each mouse, we 

calculated the average number of PV-SPN connections per cell and compared it to the 

corresponding striosomal/matrix signal during the response period. We correlated 

striosomal/matrix activity during the response period (R−CRP) with the average PV-SPN 
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connections per cell. The correlation coefficient r was calculated using corr2.m (Matlab), 

and significance was determined by Pearson correlation using corrcoef.m (Matlab). For 

striosome mice, r = 0.4324 and p = 0.0393. For matrix mice, r = −0.1082 and p = 0.7515.

Figure S6R.: In order to relate VGluT1 maximum intensity with striosomal or matrix 

activity, we used photometric data from 8 striosome mice and 6 matrix mice. For each 

mouse, we calculated the distribution of VGluT1 puncta maximum intensity. We then 

averaged the CDF from bins 8–14 because we found, as shown in Figure S6E, that there was 

the largest difference between CT and HD groups in those bins. We correlated striosomal/

matrix VGluT1 intensity with the corresponding striosmal/matrix activity as described in 

Figure S6Q. For striosome mice, r = −0.3368 and p = 0.4146. For matrix mice, r = −0.4987 

and p = 0.3150.

Figure S6S.: In order to relate striosomal or matrix spine density with corresponding 

striosomal or matrix activity, we used photometric data from 22 striosome mice and 12 

matrix mice. For each mouse we calculated the average number of dendritic spines per mm2 

of dendrite. We correlated striosomal/matrix dendritic spine density with the corresponding 

striosomal/matrix activity as described in Figure S6Q. For striosome mice, r = 0.1839 and p 

= 0.4127. For matrix mice, r = −0.2282 and p = 0.4756.

Figure S7.

Figure S7G.: We examined the SNR of a sSPN as a function of FSI firing rate. See analysis 

methods section ‘FSI-Modulated Striosomal SNR Quantification Using Informational 
Theory and Poisson Process Statistics.’ SNR was computed using Poisson process statistics.

Figure S7H.: We manually categorized FSI-SPN SNR as being “not enhance” or 

“enhanced”. SNR was calculated as described in section ‘FSI-Modulated Striosomal SNR 
Quantification Using Informational Theory and Poisson Process Statistics.’ “Not enhanced” 

SNR was defined as SNR decreasing (with some noisy oscillation) as FSI firing rate 

increases. “Enhanced” SNR was defined as SNR increasing (at least 2 times above baseline) 

and then decreasing (below baseline) as FSI rate increases. We counted the number of 

striosomal and matrix FSI-SPN pairs with “not enhanced” SNRs and “enhanced” SNR. For 

the striosomal pairs, 1 pair exhibited a “not enhanced” SNR trend, whereas 17 pairs 

exhibited an “enhanced” SNR trend. For the matrix pairs, 2 pairs exhibited a “not enhanced” 

SNR trend, and 2 pairs exhibited an “enhanced” SNR trend. Statistical significance was 

determined using a chi-squared test across 18 striosomal pairs and 4 matrix pairs (p = 

0.019). Many pairs could not be anlayzed because we did not have enough data to compute 

the Poisson process SNR analysis.

ADDITIONAL RESOURCES

All resources are listed in the STAR Methods and in Data S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Striosomal, not matrix, striatal activity is shaped with valence-based learning

• Striosomal, not matrix, DREADD manipulation opposingly modulates task 

engagement

• Striosome-selective circuit declines occur during aging and in mouse model 

of HD

• Interneuron-striosome connectivity modulates SNR and this increases with 

learning
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Figure 1. Striosomal Transients Are Selectively Modified by Learning
(A) Discrimination task.

(B-D) Licking response across learning (B), learning criterion defined by K-S test of cost 

and reward lick distributions (C), and discrimination index (d’) and response bias (“C”) in a 

typical mouse (D).

(E) During learning, d’ increases as reward response rate increases and cost response rate 

decreases (blue to green arc concavity), separable from changes in response bias, “C”, 

(orange to red arc concavity). We split learning into three phases and calculated the mean 

(ellipse center) and SEM (ellipse size) of d’ for each phase. Dots: performance of individual 

mice during given phase.

(F) HMM model assigns trials as engaged or not engaged state (top). Progression of a mouse 

from naïve to learning criterion and state assignments of trials (bottom).

(G and H) Striosomal (G) and matrix (H) Flp-expressing mice injected with Flp-dependent 

GCaMP6m virus. Scale bar, 200 μm.
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(I) Ratio of tdTomato+ cell density in striosomes (S) and matrix (M) calculated for Dlx1-

CreER;Ai14 and Mash1-CreER;Ai14 mice with tamoxifen induction at E11 or E15 (mean ± 

SEM, one-way ANOVA, striosomes vs. matrix ****p < 0.0001). Dots: individual mice (m).

(J) Specificity of GCaMP6m expression with tamoxifen induction on E11 and E15 (one-

sample t-test compared to zero, *p = 0.0198, **p = 0.0022). See ‘Quantifying Density of 

GCaMP6m+ Cells in Striosome and Matrix Compartments in E11/E15 Model Mice’ in 

STAR Methods.

(K) Fiber photometry setup.

(L) Percentage of mice that learned the task (bottom; chi-square test) and number of sessions 

to learn (top; 2-way ANOVA) were not different across age and compartment in CT mice.

(M) d’ in the first (early) and last (late) 200 trials of learning in CT mice (2-way ANOVA, 

****p < 0.0001).

(N) Example of 470 nm GCaMP6m Ca++ transients and control 405 nm signal. Insert 

magnifies 470 nm signal. Arrows: Ca++ transients.

(O and P) Striosomal (O; paired t-test, **p = 0.0025), but not matrix (P; p = 0.18), transient 

frequency during engaged trials decreased across learning. Lines: individual mice.
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Figure 2. Striosomes, but not Matrix, Encode Discrimination Learning
(A and B) Striosome (A) and matrix (B) mouse RP lick frequency (top) and photometric 

recordings for selected bins (bottom). Response period (white); other periods (gray).

(C) Correlation between striosomal R−CRP and d’ across trials (left, mean ± SEM, Pearson 

correlation) and average correlation slopes across mice (right, Wilcoxon signed-rank test, *p 

= 0.01).

(D) Correlation of striosomal RP activity (RRP, CRP) with RP lick rates across trials (left) 

and average correlation slopes across mice (right). The correlations of photometric signals 

with lick rates were restricted to the first quarter of trials to reach learning criterion, 

presumably before d’ and lick rates also begin to correlate.

(E and F) Same as C and D but for matrix transients.

(G) After training to learning criterion, cue-outcome contingencies were reversed (left). 

Correlation coefficient between R−CRP and d’ in a striosome mouse (right; dashed line 

indicates task switch).

(H) Maximum correlation coefficient between R−CRP and d’ in the first and last 25% of 

trials of discrimination learning (left; paired t-text, **p = 0.006) and reversal learning (right, 

*p = 0.01).
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Figure 3. Striosomal Activity Reflects Subjective Value and Causally Modulates Engagement
(A) Striosomal and matrix RRP increased with increasing reward level (one-way ANOVA, p 

< 0.001), but only striosomal CRP decreased with increasing cost level (striosomes: p = 

0.0075; matrix: p = 0.29).

(B and C) Reward devaluation by giving free access to sucrose (B) or water (C) before test 

sessions after criterion decreased task engagement (gray ramp) and striosomal RRP (Pearson 

correlation), relative to sessions in which learning criterion was reached. ↑E: more 

engagement; ↓E: less engagement. Dots: individual mice.

(D) Diazepam (0.5 mg/kg, 10 min pre-session) increased task engagement (gray ramp) and 

striosomal RRP (Pearson correlation).
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(E) Striosomal (left), but not matrix (right), RRP increased with task engagement in CT mice. 

E: engaged; NE: not engaged.

(F-H) Flp-dependent GCaMP6m and DREADD-mCherry constructs co-expressed in 

striosome (G) and matrix (H) mice allowed compartment-specific manipulation and 

photometry recording (F). Selectivity was examined with MOR1 striosomal marker. Scale 

bar, 200 μm.

(I) Ca++ transients in a striosome mouse expressing inhibitory DREADD after CNO (blue) 

or saline (green) injection.

(J) Transient rate decreased across mice after CNO injection (**p = 0.003, paired t-test). 

Each line shows a saline-CNO session pair.

(K and L) In striosome (K), but not matrix (L), mice expressing inhibitory DREADD, CNO 

injection decreased Ca++ transient rate and task engagement (higher C; Pearson correlation).

(M and N) Same as I and J, but in mice expressing excitatory DREADD. Transient rate 

increased after CNO (orange) compared to saline (green) injection (**p = 0.001).

(O and P) In striosome (O), but not matrix (P), mice expressing excitatory DREADD, CNO 

increased Ca++ transient rate and task engagement (lower C; Pearson correlation).
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Figure 4. Striosomal but Not Matrix Activity Is Reduced in Aged Mice and Mice That Failed to 
Learn
(A) In mice that learned the task, striosomal activity (mean ± SEM) during the cost-trial RP 

was suppressed more in younger (CT-LY) (left) than older (CT-LO) mice (middle). CT-NL 

mice (right) showed no difference between RRP and CRP.

(B) CT-LO (17.60 ± 0.56 months) mice showed reduced R−CRP signals (mean ± SEM) 

compared to CT-LY (7.42 ± 0.3 months) mice (left; *p = 0.024, Mann-Whitney test). In CT-

LO mice, a lower suppression of CRP is responsible for the reduction in R−CRP area (right; 

*p < 0.05, 2-way ANOVA).

(C) Compared to CT-L mice (6–21 months), CT-NL mice (6–21 months) showed 

significantly lower R−CRP signals (left; **p < 0.01, Mann-Whitney test). CRP and RRP were 

significantly different in CT-L but not CT-NL mice (right; ****p < 0.0001, 2-way ANOVA).

(D and E) No difference in matrix R−CRP across age (D; p = 0.7421, Mann-Whitney test) or 

learning status (E; p = 0.5184).

Friedman et al. Page 85

Cell. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Learning Correlates with Striosomal Reward-Trial Activity in CT Mice and with Cost-
Trial Activity in HD Mice
(A) Aggregates of mutant huntingtin (mHTT) protein (pink) present in GCaMP6m-

expressing striosomal neurons (green) in HD but not in CT mice. Scale bar, 10 μm.

(B) Fewer HD mice met the discrimination learning criterion than CT mice (***p < 0.001, 

chi-square test).

(C) “C” (mean ± SEM) decreased with age in CT mice in early training but was restored 

with learning (left: ***p = 0.0009 for age, *p = 0.028 for learning, 2-way ANOVA). Only 

young HD mice restored initially low task engagement across learning (right: *p = 0.035 for 

age, **p = 0.0041 for young HD group, 2-way ANOVA and Bonferroni multiple 

comparisons test). Arrowheads: increased task engagement.

(D) Striosomal activity (mean ± SEM) of HD-L mice (6–12 months).

(E) HD mice, even those that learned, showed lower R−CRP (left: 6–12 months, *p = 0.012, 

Mann-Whitney test), largely due to reduced RRP (right: *p = 0.034, 2-way ANOVA and 

Bonferroni multiple comparisons test).

(F) No difference in matrix R−CRP between CT and HD mice (p = 0.1155, Mann-Whitney 

test, 6–21 months).

(G-I) Striosomal R−CRP and d’ were not correlated in HD-L mice as a group (G; Pearson 

correlation), but were correlated in individual mice. Examples of positive (H) and negative 

(I) correlations are shown.

(J) Among mice with strong correlations between striosomal R−CRP and d’ (Pearson 

correlation, |r| > 0.7), HD mice (10.1 ± 1.6 months) showed more negative correlations, 

whereas CT mice (11.9 ± 1.2 months) showed more positive correlations (*p = 0.023, chi-

square test).

(K) Of mice shown in J, CT mice (11.9 ± 1.2 months) were more likely than HD mice (10.1 

± 1.6 months) to show strong (|r| > 0.7) RRP correlations with d’ (***p = 0.0002).

(L) HD mice were more likely than CT mice to show strong (|r| > 0.7) CRP correlations with 

d’ (**p = 0.0098).
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Figure 6. Enhanced Inhibitory and Excitatory Inputs to Striosomes Compared to Matrix Is 
Altered in HD and Mice that Fail to Learn
(A-C) Peri-somatic PV puncta (pink) in striosomes (A) and matrix (B) by detection of 

GCaMP6m-labeled cell bodies (green), and PV puncta (red) by automated image analysis 

(C). Scale bars, 20 μm (A and B), 2 μm (inserts for A and B), and 5 μm (C).

(D and E) PV puncta on GCaMP6+ cell bodies (c, mean ± SEM) were reduced in striosomes 

(D) and increased in matrix (E) in both CT-NL and HD mice (****p < 0.0001, Kruskal-

Wallis and Dunn’s multiple comparison test). The number of PV puncta was greater in 

striosomes than in matrix in CT-L mice (p < 0.0001, two-sample t-test). Striosome-to-matrix 

PV puncta ratio was greater than 1 in CT-L mice (insert).

(F) VGluT1 puncta detected (yellow) in a striosome. Scale bars, 50 μm, 5 μm (insert).

(G) Striosomal enrichment of VGluT1 puncta density, relative to matrix, was significantly 

higher in CT than in HD brain sections (**p = 0.0087, Mann-Whitney test).
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Figure 7. FSI-Striosomal Functional Connectivity Supports Model of PV Role in Striosome-
Mediated Discrimination Learning
(A and B) Firing rates of simultaneously recorded sSPNs and mSPNs as functions of FSI 

firing rate (A) and their raster plots (B) during periods of low (left: 0–2 Hz), medium 

(middle: 3–4 Hz), and high (right: 7–10 Hz) FSI firing rates.

(C and D) Sigmoidal function fitted to striosomal (C, two examples) and matrix (D, two 

examples) SPN firing rates as functions of FSI firing rates. In the middle portion of each 

sigmoid, SPN firing decayed as FSI firing increased (dashed gray line).

(E) Decay ranges were more variable for FSI-sSPN than FSI-mSPN pairs (variance ± 

confidence interval for variance, F-test, ****p < 0.0001).

(F) Decay ranges were longer for FSI-sSPN than FSI-mSPN pairs (K-S test, ****p < 

0.0001).
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(G and H) Probabilistic spiking network models constructed based on our histological 

observations from Figure 6. A neuron’s probability of firing was determined by a sigmoidal 

output function. Numbers above arrows show connection strengths. Reward (blue) and Cost 

(red) neurons inputted trial-type information. Noise neuron injected noise (black). State 

neuron (orange) controlled engaged and not engaged states. Input was a firing pattern of 

Boolean values, where the Noise neuron fired with probability 0.95. In reward trials, the 

Reward neuron fired, and Cost neuron did not; in cost trials, both neurons fired. We 

measured model output activity by averge number of activated SPNs per trial. Only 

connections between PVSNR and SPNs were different across the groups and provided strong 

inhibition in CT-LY (G), weak inhibition in CT-LO (Figure S6A), and even weaker in HD 

(H) and CT-NL (Figure S6B) mice. Connectivity ranges were estimated based on Figure 

S7C.

(I) Output activity of trained model SPNs (averaged from 10000 trials) reached observed 

target photometric activity in each group (compare to average striosomal activity in Figures 

4A and 5D). To evaluate relative activation of model sSPNs for cost and reward signals, we 

subtracted baseline activity computed by initiating the model only with noise input from 

model output.

(J) An example of FSI-striosomal connectivity in which FSIs modulate SNR of sSPN 

activity (STAR Methods), with SPN raster plots for low (0–3.8 Hz), medium (15.2–19 Hz), 

and high (22.8–26.6Hz) FSI activity (bottom). As the SPN firing rate decreases due to 

increasing FSI activity, SNR first increases then decreases (top). This suggests that when the 

peak of SNR is in the middle of the decay range of sSPNs, FSIs not only inhibit sSPNs, but 

also enhance SNR.

(K) Same as J, but for FSI-matrix connectivity in which FSIs modulate mSPN activity in a 

decay-like manner (top), with SPN raster plots for low (0–4 Hz), medium (4–8 Hz), and high 

(12–16 Hz) FSI activity (bottom). Comparison of FSI-striosomal and FSI-matrix pairs 

showed that SNR was enhanced more in sSPN than mSPNs (insert; chi-square test, *p = 

0.032).

(L) Summary of the findings. In mice that learned, levels of excitatory cortico-striosomal 

and inhibitory PV-striosomal connectivity together with discriminative striosomal signals 

were high (left). In mice that failed to learn and in HD mice, circuit connectivity level was 

low, and discriminative striosomal signals were absent. Green dots: excitatory cortical inputs 

onto SPN dendrites; blue lines: peri-somatic PV inputs onto SPN cell bodies.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Polyclonal chicken anti-GFP Abcam ab13970

Polyclonal guinea pig anti-PV Synaptic Systems 195004

Monoclonal mouse anti-PV Millipore MAB1572

Polyclonal guinea pig anti-VGLUT1 Millipore AB5905

Polyclonal rabbit anti-VGLUT1 Invitrogen 48–2400

Monoclonal rabbit anti-MOR1 Abcam ab134054

Polyclonal goat anti-MOR1 Santa Cruz sc-7488

Monoclonal mouse anti-Huntingtin Millipore MAB5374

Polyclonal rabbit anti-VGAT Millipore AB5062P

Polyclonal rabbit anti-TH Abcam ab112–100

Donkey anti-rabbit, AlexaFluor 405 Abcam ab175649

Donkey anti-chicken, FITC Abcam ab63507

Donkey anti-goat, AlexaFluor 546 Invitrogen A-11056

Donkey anti-guinea pig, AlexaFluor 647 Jackson Immuno 706-605-148

Goat anti-guinea pig, AlexaFluor 405 Abcam ab175678

Goat anti-chicken, AlexaFluor 488 Invitrogen A-11039

Goat anti-mouse, AlexaFluor 546 Invitrogen A-11030

Goat anti-rabbit, AlexaFluor 647 Invitrogen A-21245

Donkey anti-mouse, AlexaFluor 405 Abcam ab175658

Bacterial and Virus Strains

AAV8-Ef1a-fDIO-GCaMP6m (1.69x1013 vg/ml) Stanford Neuroscience Gene 
Vector and Virus Core

Flp-dependent GCaMP6m

AAV8-Ef1a-fDIO-hM3D(Gq)-mCherry (6.61E+12 vg/ml) Stanford Neuroscience Gene 
Vector and Virus Core

Flp-dependent excitatory 
DREADD

AAV8-Ef1a-fDIO-hM4D(Gi)-mCherry (8.47E+12 vg/ml) Stanford Neuroscience Gene 
Vector and Virus Core

Flp-dependent inhibitory 
DREADD

Deposited Data

Mendeley data set 1 http://dx.doi.org/
10.17632/6z4fvrspt3.1

Mendeley data set 2 http://dx.doi.org/
10.17632/6r6d39rs7j.1

Experimental Models: Organism/Strains

Ai14 (Madisen et al., 2010) Cre-dependent; express 
tdTomato; JAX 007914

Q175z KI (Menalled et al., 2012) zQ175 neo-deleted knock-in 
allele with mouse Htt exon 1 
replaced by the human HTT 
exon 1 sequence with a ~190 
CAG repeat tract; JAX 027410

D1-eGFP (Gong et al., 2007) MMRRC: MMRRC_000297-
MU; GENSAT: X60

D2-eGFP (Gong et al., 2007) MMRRC: MMRRC_000230-
UNC; GENSAT: S11

Python 2.7 Python https://www.python.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

Arduino https://www.arduino.cc

TruScan 2.03 https://www.coulbourn.com/
product_p/tru-scan-2.07.htm

Other

Behavior apparatus parts: Adafruit METRO 328 Fully Assembled - 
Arduino IDE compatible - ATmega328

Adafruit 50

Behavior apparatus parts: Super Bright Blue 5mm LED Adafruit 301

Behavior apparatus parts: Aluminum Breadboard 6” × 6” × 1/2”, 
1/4”-20 Taps

Thorlabs MB6

Behavior apparatus parts: Ø1/2” Optical Post, SS, 8–32 Setscrew, 
1/4”-20 Tap, L = 4”

Thorlabs TR4-P5

Behavior apparatus parts: Ø1/2” Optical Post, SS, 8–32 Setscrew, 
1/4”-20 Tap, L = 3”

Thorlabs TR3-P5

Behavior apparatus parts: Contoured
Sound-Absorbing Sheet
with Adhesive Backing, 26” ×
26” × 1”

McMaster-Carr 9710T11

Behavior apparatus parts: Servo - Generic (Sub-Micro Size) Sparkfun 09065

Behavior apparatus parts: Infrared Emitters and Detectors Sparkfun 00241

Behavior apparatus parts: Series 3 - Inert Solenoid ValveModerate - 
PEEK Body, EPDM Diaphragm3 Way Universal1/8 Barbs120.078”“

Parker Hannifin 003-0260-900

Behavior apparatus parts: LinkSprite JPEG Color Camera TTL Interface 
- Infrared

Sparkfun 11610

Behavior apparatus parts: LED - Infrared 850nm Sparkfun 09469

Behavior apparatus parts: MicroSDXC EVO Behavior apparatus parts: 
Select Memory Card w/ Adapter 256GB

Samsung MB-ME256GA/AM

Behavior apparatus parts: Speaker iHome iM70BC

Behavior apparatus parts: Tru Scan Activity Monitoring System Coulbourn E63

Photometry System: 470nm LED Thorlabs M470F3

Photometry System: 405nm LED Thorlabs M405FP1

Photometry System: Ø1” Bandpass Filter, CWL = 405 ± 2 nm, FWHM 
= 10 ± 2 nm (#3 on S2D)

Thorlabs FB405–10

Photometry System: 425nm longpass dichroic mirror Thorlabs DMLP425R

Photometry System: 543nm, f = 7.86mm, NA = 0.51 SMA905 Fiber 
Collimation Pkg.

Thorlabs F240SMA-A

Photometry System: SM1-Threaded Adapter for Ø12mm Cylindrical 
Components (#6 on S2D)

Thorlabs AD12F

Photometry System: SM1 Zoom Housing for Ø1” Optics, Non-Rotating, 
2” (50.8 mm) Travel

Thorlabs SM1NR1

Photometry System: 15 V, 2.4 A Power Supply Unit for One K-Cube or 
T-Cube (#8 on S2D)

Thorlabs KPS101

Photometry System: The LED control - driver enabling digital 
modulation up to 1 kHz (#9 on S2D)

Thorlabs LEDD1B

Photometry System: Ø1000μm, 0.50 NA, SMA-SMA Fiber Patch 
Cable, Low OH, 1 Meter (#10 on S2D)

Thorlabs M59L01

Photometry System: Ø1/2” × 1” Stainless Steel Optical Post, 8–32 Stud, 
1/4”-20 Tapped Hole

Thorlabs TR1

Photometry System: Dual Threaded Adapter with Internal M4 × 0.7 
Threads and External M6 × 1.0 Threads

Thorlabs AE4M6M

Photometry System: 1.19 adjustable post holder Thorlabs PH1E
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REAGENT or RESOURCE SOURCE IDENTIFIER

Photometry System: Small Clamping Fork, 1.25” Counterbored Slot, 
Universal

Thorlabs CF125

Photometry System: 30 mm Cage Cube Connector for C4W and C6W 
Series Cubes

Thorlabs C4W-CC

Photometry System: Kinematic Dichroic Filter 30 mm Cage Cube 
(Imperial and Metric Compatible)

Thorlabs DFM1/M

Photometry System: GFP Excitation Filter, CWL = 469nm, BW = 35nm 
(#17 on S2D)

Thorlabs MF469–35

Photometry System: 495 nm edge BrightLine® single-edge dichroic 
beamsplitter

Thorlabs FF495-Di03–25x36

Photometry System: GFP Emission Filter CWL = 525nm, BW = 39nm Thorlabs MF525–39

Photometry System: Kinematic, SM1-Threaded, 30mm-Cage-
Compatible Mount with Slip Plate for Ø1” Optic (#20 on S2D)

Thorlabs KC1-S

Photometry System: Aluminum Breadboard 10” × 12” × 1/2”, 1/4”-20 
Taps

Thorlabs MB1012

Photometry System: Beam Trap, 200nm - 3μm, 80 W Max Avg. Power, 
CW Only, M4 Tap

Thorlabs BT600/M

Photometry System: Cage Assembly Rod, 2” Long, Ø6 mm, 4 Pack Thorlabs ER2-P4

Photometry System: Cage Assembly Rod, 1” Long, Ø6 mm, 4 Pack Thorlabs ER1-P4

Photometry System: FC/PC Fiber Adapter Plate with External SM1 
(1.035”-40) Thread

Thorlabs SM1FC

Photometry System: Cage Assembly Rod, 3” Long, Ø6 mm, 4 Pack 
(#26 on S2D)

Thorlabs ER3-P4

Photometry System: Adapter with External C-Mount Threads and 
Internal SM1 Threads

Thorlabs SM1A9

Photometry System: 1/4”-20 Cap Screw and Hardware Kit Thorlabs HW-KIT2

Photometry System: Spanner Wrench for SM1-Threaded Adapters, 
Length = 1”

Thorlabs SPW909

Photometry System: SM1 Spanner Wrench, Graduated, Length = 3.88” Thorlabs SPW602

Photometry System: 30 mm Cage Plate, Ø1.2” Double Bore for SM1 
Lens Tube Mounting (#31 on S2D)

Thorlabs CP12

Photometry System: Adapter with External SM1 Threads and Internal 
M25 × 0.75 Threads

Thorlabs SM1A12

Photometry System: sCMOS camera Hamamatsu ORCA-Flash4.0

Photometry System: 20×/0.75-NA objective Nikon Instruments CFI Plan Apo Lambda 20×
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