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PHYSICS-INFORMED NEURAL NETWORKS WITH HARD
CONSTRAINTS FOR INVERSE DESIGN\ast 

LU LU\dagger , RAPHA\"EL PESTOURIE\ddagger , WENJIE YAO\ddagger , ZHICHENG WANG\S ,

FRANCESC VERDUGO\P , AND STEVEN G. JOHNSON\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Inverse design arises in a variety of areas in engineering such as acoustic, mechanics,
thermal/electronic transport, electromagnetism, and optics. Topology optimization is an important
form of inverse design, where one optimizes a designed geometry to achieve targeted properties pa-
rameterized by the materials at every point in a design region. This optimization is challenging,
because it has a very high dimensionality and is usually constrained by partial differential equations
(PDEs) and additional inequalities. Here, we propose a new deep learning method---physics-informed
neural networks with hard constraints (hPINNs)---for solving topology optimization. hPINN lever-
ages the recent development of PINNs for solving PDEs, and thus does not require a large dataset
(generated by numerical PDE solvers) for training. However, all the constraints in PINNs are soft
constraints, and hence we impose hard constraints by using the penalty method and the augmented
Lagrangian method. We demonstrate the effectiveness of hPINN for a holography problem in optics
and a fluid problem of Stokes flow. We achieve the same objective as conventional PDE-constrained
optimization methods based on adjoint methods and numerical PDE solvers, but find that the de-
sign obtained from hPINN is often smoother for problems whose solution is not unique. Moreover,
the implementation of inverse design with hPINN can be easier than that of conventional methods
because it exploits the extensive deep-learning software infrastructure.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . inverse design, topology optimization, partial differential equations, physics-
informed neural networks, penalty method, augmented Lagrangian method

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35R30, 65K10, 68T20

\bfD \bfO \bfI . 10.1137/21M1397908

1. Introduction. Metamaterials are artificial materials that achieve targeted
properties through designed fine-scale geometry rather than via material proper-
ties. They arise in a variety of areas in engineering, e.g., acoustics, mechanics, ther-
mal/electronic transport, and electromagnetism/optics [25]. Designing a metamate-
rial's geometry for a particular functionality is a challenging task, because the design
space has a very high dimensionality (millions to billions of parameters). In contrast
to intuition-based approaches using heuristics and a handful of hand-tweaked geo-
metric parameters, inverse design starts with the targeted functionality and sets it
as an objective function to be optimized via partial-differential-equation-constrained
(PDE-constrained) large-scale optimization [38]. When the parameterization of the
geometry is via the parameters of discrete geometric components, inverse design is
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B1106 LU ET AL.

called shape optimization [4,45]. When the parameterization of the geometry is via a
density function or level set so that the connectivity/topology is arbitrary, inverse de-
sign is called topology optimization [38]; this is the variant of inverse design considered
in this study.

PDE-constrained inverse design, especially PDE-constrained topology optimiza-
tion, is important for various subjects in computational science and engineering, e.g.,
optics and photonics [4,38,45], fluid dynamics [7,14,16,52], and solid mechanics [5,37].
Different numerical methods have been developed to solve PDE-constrained inverse
design, and these traditional methods are commonly based on a numerical PDE solver
(either approximate [45] or brute force [38]). The large-scale optimization is performed
via gradient-based optimization algorithms, where the gradient is obtained using an
adjoint method, which computes the gradient of the objective function with respect
to all parameters at the cost of at most a single additional simulation.

Recently, deep learning in the form of deep neural networks has been used in
many areas of inverse design, including nanophotonics [21, 57], mechanical materi-
als [17], aerodynamics [53], and electromagnetism [51]. As the dominant approach
nowadays for data-driven problems, deep neural networks are usually employed in
the supervised-learning paradigm to learn the nonlinear mapping from arbitrary de-
signs to their associated functional properties [17, 30, 33, 43, 44, 46, 51, 58, 63] or vice
versa [33, 53, 58], i.e., neural networks are used as surrogate models of PDE solvers
to accelerate the optimization. However, it may require a vast quantity of data to
train a neural network for complex problems, and the generation of such datasets
via ``brute-force"" PDE solvers could be very expensive (although many strategies are
being investigated to reduce the amount of training data, e.g., active learning [44]).
Alternatively, in unsupervised learning and reinforcement learning, neural networks
are employed as generators to generate candidate designs [21, 22, 34, 57], which are
then evaluated by numerical solvers.

Physics-informed neural networks (PINNs) have been developed as an alternative
method to traditional numerical PDE solvers [35, 48]. PINNs solve PDEs by mini-
mizing a loss function constructed from the PDEs, and the PDEs are solved when
the loss is close to zero. Compared to traditional numerical solvers, a PINN is mesh-
free and thus can easily handle irregular-domain problems. Moreover, PINNs have
been successfully employed to solve diverse inverse problems, including in optics [11],
fluid mechanics [49, 59], systems biology [64], biomedicine [29, 50], and even inverse
problems of stochastic PDEs [66] and fractional PDEs [42]. Here, the inverse prob-
lems were to infer unknown data (such as PDE coefficients/geometries) from partial
observations of the PDE solutions in some regions, and a major concern is often reg-
ularizing the problem in order to ensure a unique ``correct"" solution. In contrast, for
inverse design, one may not have any data of the PDE solution, and any realizable
design that approximately maximizes the objective functional is acceptable (even if
it is not unique).

For conventional numerical methods, inverse problems and inverse design might be
solved by similar methods, because the PDE is directly solved via a numerical solver,
and we need only find the best PDE solution to minimize the objective function or
match the observed data. However, in PINN, inverse design poses new challenges.
The inverse problems are solved with PINNs by using the mismatch between the
PDE solution and the data as a loss function (data-based loss), so that the network
is trained to minimize the sum of the data-based loss and the PDE-based loss [11,35].
Such an optimization problem can be solved relatively easily, because these two losses
are consistent and can be minimized to zero simultaneously. In contrast, for inverse
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HARD-CONSTRAINED PHYSICS-INFORMED NEURAL NETWORK B1107

design, the PDE-based loss and the objective function are usually not consistent---it
is not generally possible to both exactly solve the PDE and make the design objective
arbitrarily good with the same solution---and so they compete with each other during
optimization. Hence, a PINN that merely optimizes the sum of the objective and
the PDE loss will usually end up in an optimum that is not a solution to the PDE.
Moreover, inverse design problems often have additional inequality constraints, such as
from manufacturing constraints, that must be satisfied for the design to be acceptable.

To overcome these difficulties, we develop a new PINN method with hard con-
straints (hPINN) to solve PDE-constrained inverse design. We also consider inequality
constraints in hPINN. We propose two approaches to impose the equality and inequal-
ity constraints as hard constraints, including the penalty method and the augmented
Lagrangian method. We also use the approach of soft constraints for comparison. Im-
posing hard constraints to neural networks has been considered very recently [12,40]
for data-driven problems in the supervised learning paradigm.

This paper is organized as follows. In section 2, after introducing the setup of
inverse design and the algorithm of PINN, we present the method to exactly impose
Dirichlet and periodic boundary conditions by directly modifying the neural network
architecture. We then propose a soft-constraint approach and two hard-constraint ap-
proaches to impose PDEs and inequality constraints in hPINN, including the penalty
method and the augmented Lagrangian method. In section 3, we demonstrate the
effectiveness and convergence of hPINN for a holography problem in optics and a fluid
problem of Stokes flow. By comparing with traditional PDE-constrained optimiza-
tion methods based on adjoint methods with the finite-difference frequency-domain
(FDFD) method and finite element method (FEM) as the numerical PDE solvers, we
find that hPINN achieves the same objective-function performance but often seems
to obtain a smoother design (without imposing additional constraints on the design
lengthscales or smoothness, as is typically done in topology optimization). Finally,
we conclude the paper in section 4.

2. Methods. We first introduce the problem setup of inverse design consid-
ered in this paper and then present the method of physics-informed neural networks
(PINNs) with hard constraints (hPINNs) for solving inverse design.

2.1. Inverse design. We consider a physical system governed by partial differ-
ential equations (PDEs) defined on a domain \Omega \subset \BbbR d:

(2.1) \scrF [u(x); \gamma (x)] = 0, x = (x1, x2, . . . , xd) \in \Omega 

with suitable boundary conditions (BCs):

(2.2) \scrB [u(x)] = 0, x \in \partial \Omega ,

where \scrF includes N PDE operators \{ \scrF 1,\scrF 2, . . . ,\scrF N\} , \scrB is a general form of a
boundary-condition operator, and \partial \Omega is the boundary of the domain \Omega . u(x) =
(u1(x), u2(x), . . . , un(x)) \in \BbbR n is the solution of the PDEs and is determined by the
parameter \gamma (x), which is our quantity of interest (QoI) for the inverse design prob-
lem. (\gamma generally describes some structure to be manufactured in order to realize an
optimized device.)

In an inverse-design problem, we search for the best \gamma by minimizing an objective
function \scrJ that depends on u and \gamma . The pair (u, \gamma ) must satisfy the equality
constraints enforced by the PDEs in (2.1) and the BCs in (2.2); in certain situations,
we may also have additional equality or inequality constraints for u and \gamma (e.g.,
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B1108 LU ET AL.

stemming from manufacturing constraints or multiobjective problems). In this paper,
we only consider inequality constraints, as equality constraints can be tackled in
the same way as the PDE and BC constraints. Then the inverse design problem is
formulated as a constrained optimization problem:

min
\bfu ,\gamma 
\scrJ (u; \gamma )

subject to

(2.3)

\left\{   \scrF [u; \gamma ] = 0,
\scrB [u] = 0,
h(u, \gamma ) \leq 0,

where the last equation is the inequality constraint(s). We note that the optimal
solution \gamma of this optimization problem may not be unique, and moreover, there may
be many acceptable local optima with similar performance. (An inverse problem
could be viewed a special case of inverse design, where the objective function \scrJ is
the error between the PDE solution u and the observed measurements, but in this
context there is typically a unique ``ground-truth"" solution that is desired, and hence
special attention must be paid to conditioning and regularization.)

2.2. Physics-informed neural networks. One difficulty of the constrained
optimization problem is that u and \gamma must satisfy the PDEs, and a common strategy
is for u to be obtained from solving the PDEs for a \gamma by using numerical methods
such as finite differences or finite elements. In this paper, we will instead use PINNs.

In a PINN, we employ n fully connected deep neural networks \^u(x;\bfittheta u) to approx-
imate the solution u(x) (Figure 1A), where \bfittheta u is the set of trainable parameters in the
network. The network takes the coordinates x as the input and outputs the approxi-
mate solution \^u(x). Similarly, we also employ another, independent, fully connected
network \^\gamma (x;\bfittheta \gamma ) for the unknown parameters \gamma (Figure 1A). We then restrict the
two networks of \^u and \^\gamma to satisfy the PDEs by using a PDE-informed loss function
(Figure 1A):

(2.4) \scrL \scrF (\bfittheta u,\bfittheta \gamma ) =
1

MN

M\sum 
j=1

N\sum 
i=1

| \scrF i [\^u(xj); \^\gamma (xj)]| 2 ,

where \{ x1,x2, . . . ,xM\} are a set of M residual points in the domain \Omega , and
\bigm| \bigm| \scrF i

\bigl[ 
\^u(xj);

\^\gamma (xj)
\bigr] \bigm| \bigm| measures the discrepancy of the ith PDE \scrF i[u; \gamma ] = 0 at the residual point

xj .
There are multiple ways to sample the residual points, e.g., uniformly distributed

random points or grid points, and in this study, we use a Sobol sequence to sample
the residual points [42]. \scrF i requires the derivatives of the network output \^u with
respect to the input x (e.g., \nabla \^u), which are evaluated exactly and efficiently via au-
tomatic differentiation (AD; also called ``backpropagation"" in deep learning) without
generating a mesh. In order to compute arbitrary-order derivatives, we need to use
a smooth activation function; in this study, we choose the hyperbolic tangent (tanh).
For more details of PINNs, we refer the reader to the review article [35].

2.3. Hard-constraint boundary conditions. We can also enforce the BCs in
(2.2) via loss functions in the same way as the PDE loss in (2.4). This approach can
be used for all types of BCs, including Dirichlet, Neumann, Robin, or periodic BCs.
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Fig. 1. Physics-informed neural networks with hard-constraint Dirichlet and periodic boundary
conditions. (A) Two independent neural networks \^\bfu (\bfx ;\bfittheta u) and \^\gamma (\bfx ;\bfittheta \gamma ) are constructed to approx-
imate \bfu (\bfx ) and \gamma (\bfx ). The gradients in the PDE-informed loss is computed via AD. (B) Dirichlet
BCs are strictly imposed into the network architecture by modifying the network output. (C) Peri-
odic BCs are strictly imposed into the network architecture by modifying the network input.

In the examples of this study, we mainly consider Dirichlet and periodic BCs, and
here we introduce another way to strictly impose the Dirichlet BCs and periodic BCs
by modifying the network architecture. Compared to the approach of loss functions,
this approach satisfies the BCs exactly and thus reduces the computational cost, and
is also easier to implement.

Dirichlet BCs. Let us consider a Dirichlet BC for the solution ui (1 \leq i \leq n):

ui(x) = g0(x), x \in \Gamma D,

where \Gamma D \subset \partial \Omega is a subset of the boundary. To make the approximate solution
\^ui(x;\bfittheta u) satisfy this BC, we first construct a function g(x) as a continuous extension
of g0(x) from \Gamma D to \Omega . If the expression of g0 has a simple analytic form, then it
is straightforward to construct g, as shown in the numerical examples; otherwise, we
can approximate g by spline functions or even train a network to represent g. Next,
we construct the solution in \Omega as (Figure 1B)

\^ui(x;\bfittheta u) = g(x) + \ell (x)\scrN (x;\bfittheta u),

where \scrN (x;\bfittheta u) is the network output, and \ell is a function satisfying the following two
conditions: \biggl\{ 

\ell (x) = 0, x \in \Gamma D,
\ell (x) > 0, x \in \Omega  - \Gamma D.

If \Gamma D is a simple geometry, then it is possible to choose \ell (x) analytically [31, 32, 42].
For example, when \Gamma D is the boundary of an interval \Omega = [a, b], i.e., \Gamma D = \{ a, b\} , we
can choose \ell (x) as (x  - a)(b  - x) or (1  - ea - x)(1  - ex - b). For complex domains, it
is difficult to obtain an analytical formula of \ell (x), and we can use spline functions to
approximate \ell (x) [54].
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Periodic BCs. If ui(x) is a periodic function with respect to xj of the period P ,
then in the xj direction, ui(x) can be decomposed into a weighted summation of the

basis functions of the Fourier series \{ 1, cos( 2\pi xj

P ), sin(
2\pi xj

P ), cos(
4\pi xj

P ), sin(
4\pi xj

P ), . . .\} .
Hence, we can replace the network input xj with the Fourier basis functions to impose
the periodicity in the xj direction (Figure 1C):

ui(x) = \scrN 
\biggl( 
x1, . . . , xj - 1,

\biggl[ 
cos
\Bigl( 2\pi xj

P

\Bigr) 
, sin

\Bigl( 2\pi xj

P

\Bigr) 
,

cos
\Bigl( 4\pi xj

P

\Bigr) 
, sin

\Bigl( 4\pi xj

P

\Bigr) 
, . . .

\biggr] 
, xj+1, . . . , xd

\biggr) 
.

In classical Fourier analysis, many basis functions may be required to approximate
an arbitrary periodic function with a good accuracy, but as demonstrated in [65], we

can use as few as two terms \{ cos( 2\pi xj

P ), sin(
2\pi xj

P )\} without loss of accuracy, because
all the other basis functions \{ cos( 4\pi xj

P ), sin(
4\pi xj

P ), . . .\} can be written as a nonlinear

continuous function of cos(
2\pi xj

P ) and sin(
2\pi xj

P ) and neural networks are universal
approximators of nonlinear continuous functions. Here, we consider the case where
ui and all its derivatives are periodic; this approach can also be extended to the case
where its derivatives up to a finite order is periodic [13].

2.4. Soft constraints. While the BCs in (2.3) can be imposed directly during
constrained optimization, it is difficult to satisfy the PDEs and inequality constraint
exactly. The simplest way to deal with these constraints is to consider them as soft
constraints via loss functions. Specifically, using the PDE loss in (2.4), we convert
the original constrained optimization to an unconstrained optimization problem:

(2.5) min
\bfittheta u,\bfittheta \gamma 

\scrL (\bfittheta u,\bfittheta \gamma ) = \scrJ + \mu \scrF \scrL \scrF + \mu h\scrL h,

where \scrL h is a quadratic penalty to measure the violation of the hard constraint
h(u, \gamma ) \leq 0:

(2.6) \scrL h(\bfittheta u,\bfittheta \gamma ) = 1\{ h(\^\bfu ,\^\gamma )>0\} h
2(\^u, \^\gamma ),

and \mu \scrF and \mu h are the fixed penalty coefficients of the soft constraints. Then the
final solution is obtained by minimizing the total loss via gradient-based optimizers:

\bfittheta \ast 
u,\bfittheta 

\ast 
\gamma = arg min

\bfittheta u,\bfittheta \gamma 

\scrL (\bfittheta u,\bfittheta \gamma ).

If \mu \scrF and \mu h are larger, we penalize the constraint violations more severely,
thereby forcing the solutions to better satisfy the constraints. However, when the
penalty coefficients are too large, the optimization problem becomes ill-conditioned
and hence makes it difficult to converge to a minimum [6, 41]. On the other hand,
if the penalty coefficients are too small, then the obtained solution will not satisfy
the constraints and thus is not a valid solution. Therefore, although this approach
is simple, it cannot be used in general. In contrast, the soft-constraint approach has
worked well for inverse problems to match observed measurements [11, 49, 64], as we
discussed in section 1.

2.5. Penalty method. To overcome the optimization difficulty of the soft con-
straints with large penalty coefficients, we consider the penalty method. Unlike the
approach of soft constraints, which converts a constrained optimization problem to an
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unconstrained optimization problem with fixed coefficients, a penalty method replaces
the constrained optimization problem by a sequence of unconstrained problems with
varying coefficients. The unconstrained problem in the kth ``outer"" iteration is

min
\bfittheta u,\bfittheta \gamma 

\scrL k(\bfittheta u,\bfittheta \gamma ) = \scrJ + \mu k
\scrF \scrL \scrF + \mu k

h\scrL h,

where \mu k
\scrF and \mu k

h are the penalty coefficients in the kth iteration. In each iteration,
we increase the penalty coefficients by constant factors \beta \scrF > 1 and \beta h > 1:

\mu k+1
\scrF = \beta \scrF \mu 

k
\scrF , \mu k+1

h = \beta h\mu 
k
h.

Here, we need to choose the initial coefficients \mu 0
\scrF and \mu 0

h and the factors \beta \scrF and \beta h.
The choice of these hyperparameters is problem dependent [6]. Similar to the soft-
constraint approach, we would have an ill-conditioned optimization problem when
their values are large, leading to slow convergence. However, if their values are small,
we may need many outer iterations, and gradient-descent optimization may get stuck
at poor local minima, as we will show in our numerical experiments. Algorithm 2.1
presents the pseudocode for the penalty method.

Algorithm 2.1 hPINNs via the penalty method.

Hyperparameters: initial penalty coefficients \mu 0
\scrF and \mu 0

h, factors \beta \scrF and \beta h

k \leftarrow  - 0
\bfittheta 0
u,\bfittheta 

0
\gamma \leftarrow  - argmin\bfittheta u,\bfittheta \gamma 

\scrL 0(\bfittheta u,\bfittheta \gamma ): Train the networks \^u(x;\bfittheta u) and \^\gamma (x;\bfittheta \gamma ) from
random initialization, until the training loss is converged
repeat
k \leftarrow  - k + 1
\mu k
\scrF \leftarrow  - \beta \scrF \mu 

k - 1
\scrF 

\mu k
h \leftarrow  - \beta h\mu 

k - 1
h

\bfittheta k
u,\bfittheta 

k
\gamma \leftarrow  - argmin\bfittheta u,\bfittheta \gamma 

\scrL k(\bfittheta u,\bfittheta \gamma ): Train the networks \^u(x;\bfittheta u) and \^\gamma (x;\bfittheta \gamma )

from the initialization of \bfittheta k - 1
u and \bfittheta k - 1

\gamma , until the training loss is converged

until \scrL \scrF (\bfittheta k
u,\bfittheta 

k
\gamma ) and \scrL h(\bfittheta 

k
u,\bfittheta 

k
\gamma ) are smaller than a tolerance

As k \rightarrow \infty , given that the networks are well trained, the solutions of the succes-
sive unconstrained optimization problems will converge to the solution of the original
constrained optimization problem [6, 41]. In the first iteration (k = 0), the neu-
ral networks are trained from a random initialization, while the neural networks in
the (k + 1)th iteration are trained by using the solution of the kth iteration as the
initialization---this good starting point helps to counteract the slow convergence that
would otherwise arise when \mu k

\scrF and \mu k
h are large.

2.6. Augmented Lagrangian method. The third method we considered in
this study is the method of multipliers or the augmented Lagrangian method [60].
Similar to penalty methods, the augmented Lagrangian method also uses penalty
terms, but it adds new terms designed to mimic Lagrange multipliers. The uncon-
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strained problem in the kth iteration is

(2.7)

min\bfittheta u,\bfittheta \gamma 
\scrL k(\bfittheta u,\bfittheta \gamma ) = \scrJ 

+\mu k
\scrF \scrL \scrF 

+\mu k
h1\{ h>0\vee \lambda k

h>0\} h
2

+ 1
MN

\sum M
j=1

\sum N
i=1 \lambda 

k
i,j\scrF i [\^u(xj); \^\gamma (xj)]

+\lambda k
hh,

where the symbol ``\vee "" in the third term is the logical OR, and \lambda k
i,j and \lambda k

h are multi-
pliers. We note that the second penalty term \scrL \scrF is the same as the term in (2.4) in
the soft constraints and penalty method, but the third penalty term of h depends on
the multiplier \lambda k

h, and is slightly different from the penalty term \scrL h in (2.6).
The last two terms in (2.7) are Lagrangian terms, and we take the term \scrF i

\bigl[ 
\^u(xj);

\^\gamma (xj)
\bigr] 
as an example to demonstrate its effect and how to choose \lambda k

i,j . It is clear that
the gradient\nabla \scrF i [\^u(xj); \^\gamma (xj)] is always orthogonal to the constraint of \scrF i [\^u(xj); \^\gamma (xj)].
In the kth iteration, we choose \lambda k

i,j to generate exactly the gradient that was previ-

ously generated in the (k  - 1)th iteration by the penalty term | \scrF i [\^u(xj); \^\gamma (xj)]| 2 in
\scrL \scrF [6, 41,60], i.e., we require that

\lambda k
i,j\nabla \scrF i

\bigl[ 
\^u(xj ;\bfittheta 

k - 1
u ); \^\gamma (xj ;\bfittheta 

k - 1
\gamma )

\bigr] 
= \mu k - 1

\scrF \nabla 
\bigm| \bigm| \scrF i

\bigl[ 
\^u(xj ;\bfittheta 

k - 1
u ); \^\gamma (xj ;\bfittheta 

k - 1
\gamma )

\bigr] \bigm| \bigm| 2 + \lambda k - 1
i,j \nabla \scrF i

\bigl[ 
\^u(xj ;\bfittheta 

k - 1
u ); \^\gamma (xj ;\bfittheta 

k - 1
\gamma )

\bigr] 
,

and thus we have

\lambda k
i,j = \lambda k - 1

i,j + 2\mu k - 1
\scrF \scrF i

\bigl[ 
\^u(xj ;\bfittheta 

k - 1
u ); \^\gamma (xj ;\bfittheta 

k - 1
\gamma )

\bigr] 
.

Similarly, for \lambda k
h, we have [60]

\lambda k
h = max

\bigl( 
\lambda k - 1
h + 2\mu k - 1

h h
\bigl( 
\^u(x;\bfittheta k - 1

u ), \^\gamma (x;\bfittheta k - 1
\gamma )

\bigr) 
, 0
\bigr) 
.

The initial values of all the multipliers are chosen as 0. We will show in our numerical
examples that \lambda k

i,j/\mu 
k
\scrF and \lambda k

h/\mu 
k
h converge after several iterations. The pseudocode

is presented in Algorithm 2.2. Compared to the penalty method, the augmented
Lagrangian method has two main advantages: (1) it is not necessary to increase \mu \scrF 
and \mu h to infinity in order to induce convergence to a feasible solution, which further
avoids the ill-conditioning; (2) the convergence rate is considerably better than that
of the penalty method.

We note that the proposed hPINNs use an idea similar to full-space methods for
PDE-constrained optimization [19], where the objective is optimized and the PDE is
solved simultaneously. In this sense, hPINN is a type of full-space method, but in
hPINN we compute the PDE residual using neural networks instead of traditional
numerical methods.

3. Results. We will apply our proposed hPINNs to solve two different problems
of inverse design in optics and fluids. We compare hPINNs with a few traditional PDE-
constrained optimization methods based on the adjoint method and a numerical PDE
solver, and demonstrate the capacity and effectiveness of hPINNs. All the hPINN
codes in this study are implemented by using the library DeepXDE [35], and will be
deposited in GitHub at https://github.com/lululxvi/hpinn.
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Algorithm 2.2 hPINNs via the augmented Lagrangian method.

Hyperparameters: initial penalty coefficients \mu 0
\scrF and \mu 0

h, factors \beta \scrF and \beta h

k \leftarrow  - 0
\lambda 0
i,j \leftarrow  - 0 for 1 \leq i \leq N, 1 \leq j \leq M

\lambda 0
h \leftarrow  - 0

\bfittheta 0
u,\bfittheta 

0
\gamma \leftarrow  - argmin\bfittheta u,\bfittheta \gamma 

\scrL 0(\bfittheta u,\bfittheta \gamma ): Train the networks \^u(x;\bfittheta u) and \^\gamma (x;\bfittheta \gamma ) from
random initialization, until the training loss is converged
repeat
k \leftarrow  - k + 1
\mu k
\scrF \leftarrow  - \beta \scrF \mu 

k - 1
\scrF 

\mu k
h \leftarrow  - \beta h\mu 

k - 1
h

\lambda k
i,j \leftarrow  - \lambda k - 1

i,j + 2\mu k - 1
\scrF \scrF i

\bigl[ 
\^u(xj ;\bfittheta 

k - 1
u ); \^\gamma (xj ;\bfittheta 

k - 1
\gamma )

\bigr] 
for 1 \leq i \leq N, 1 \leq j \leq M

\lambda k
h \leftarrow  - max

\bigl( 
\lambda k - 1
h + 2\mu k - 1

h h
\bigl( 
\^u(x;\bfittheta k - 1

u ), \^\gamma (x;\bfittheta k - 1
\gamma )

\bigr) 
, 0
\bigr) 

\bfittheta k
u,\bfittheta 

k
\gamma \leftarrow  - argmin\bfittheta u,\bfittheta \gamma 

\scrL k(\bfittheta u,\bfittheta \gamma ): Train the networks \^u(x;\bfittheta u) and \^\gamma (x;\bfittheta \gamma )

from the initialization of \bfittheta k - 1
u and \bfittheta k - 1

\gamma , until the training loss is converged

until \scrL \scrF (\bfittheta k
u,\bfittheta 

k
\gamma ) and \scrL h(\bfittheta 

k
u,\bfittheta 

k
\gamma ) are smaller than a tolerance

3.1. Holography. We first consider the challenging problem of holography for
an image in depth (in the direction of propagation). In contrast to holograms of
images that are parallel to the scattering surface, and which can be designed via
algorithms relying on Fourier optics [15], in-depth holograms require us to use inverse
design on the full Maxwell""s equations. We propose designing the permittivity map
of a scattering slab that scatters light so that the transmitted intensity has a targeted
shape.

3.1.1. Problem setup. We consider a holography problem defined on a rectan-
gular domain \Omega = [ - 2, 2]\times [ - 2, 3] (Figure 2A). In the lower part of \Omega (i.e., \Omega 1), we have
a time-harmonic current J to generate an electromagnetic wave E(x, y) = \Re [E]+i\Im [E]
in the whole space. There is a lens in the region \Omega 2 (the blue region), whose permit-
tivity function \varepsilon (x, y) (the square of the refractive index) is to be designed to produce
our target transmitted-wave pattern f(x, y) in the top region \Omega 3 = [ - 2, 2] \times [0, 3],
while the permittivity in other region is one. Specifically, our objective function in
this problem is

\scrJ (E) =
1

Area(\Omega 3)
\| | E(x, y)| 2  - f(x, y)\| 22,\Omega 3

(3.1)

=
1

Area(\Omega 3)

\int 
\Omega 3

\bigl( 
| E(x, y)| 2  - f(x, y)

\bigr) 2
dxdy,

where | E| 2 = (\Re [E])2 + (\Im [E])2 is the square of the magnitude of the electric field.
In this study, we choose the target function as

f(x, y) =

\biggl\{ 
1, (x, y) \in [ - 0.5, 0.5]\times [1, 2],
0 otherwise,

i.e., f is equal to 1 inside the black square in Figure 2A and 0 otherwise. We can think
of the target as an input defined by a user who does not need to know Helmholtz's
equation. Still in that case, our inverse design tool should find the geometry that
scatters the transmitted intensity in a shape as close to the user input as possible. In
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the case of our example, the target function is not a solution of Helmholtz's equation
(equivalent to Maxwell's equations in two dimensions). So, we expect the neural
network to have to make a trade-off between reaching the target shape and making
sure that Helmholtz's equations are accurately solved.

A

x

y

1

Ω1

Ω2

Ω3

-2

-1

3

-2 2

B

 0

 1

 2

 3

-3 -2 -1  0  1  2  3  4

J(
x,

y)

y

C
Periodic BC in x

Zero Dirichlet BC in y
x

y

cos
(
2πx
P

)

sin
(
2πx
P

)

· · ·

y
cos (ωy)

sin (ωy)

σ
...
σ

σ
...
σ

N1 <[E] = (1− e−3−y)(1− ey−4)N1

σ
...
σ

σ
...
σ

N2 =[E] = (1− e−3−y)(1− ey−4)N2

σ
...
σ

σ
...
σ

N3 ε = 1 + 11 sigmoid(N3)

Fig. 2. Holography problem setup and the neural network architecture. (A) The whole com-
putational domain includes the main domain \Omega = [ - 2, 2] \times [ - 2, 3] and a PML of depth one in the
shaded region. The design region for the permittivity \varepsilon is in blue, and the center of the current
J is the dashed red line in the domain \Omega 1. The target electrical field is defined in \Omega 3. (B) The
time-harmonic current J. (C) The architecture of the hPINN with the Dirichlet and periodic BCs
embedded directly in the network. The network inputs are x and y, and the outputs are \Re [E], \Im [E],
and \varepsilon .

The holography problem can be described by the following PDEs:

(3.2) \nabla 2E + \varepsilon \omega 2E =  - i\omega J,

where the frequency \omega is chosen as 2\pi (corresponding to a wavelength 1 in the \varepsilon = 1
region), and the electric current source J is chosen as a Gaussian profile in y (Fig-
ure 2B) and a constant in x, which generates an incident planewave propagating in
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the y direction:

J(x, y) =
1

h
\surd 
\pi 
e - ( y+1.5

h )2
1[ - 1, - 2](y),

where h = 0.2 and 1[ - 1, - 2] is the indicator function that truncates J to be supported
in a finite-width strip y \in [ - 1, - 2] (centered on the dashed-red line in Figure 2A). This
problem is formally defined in an infinitely large domain with outgoing (radiation)
boundary conditions. To reduce the problem to a finite domain for computation,
we apply the technique of perfectly matched layers (PMLs) [24], which works as
an artificial absorbing layer (the black-dotted region in Figure 2A) to truncate the
computational domain. After applying the PML, the PDE in (3.2) becomes
(3.3)

1

1 + i\sigma x(x)
\omega 

\partial 

\partial x

\Biggl( 
1

1 + i\sigma x(x)
\omega 

\partial E

\partial x

\Biggr) 
+

1

1 + i
\sigma y(y)

\omega 

\partial 

\partial y

\Biggl( 
1

1 + i
\sigma y(y)

\omega 

\partial E

\partial y

\Biggr) 
+ \varepsilon \omega 2E =  - i\omega J,

where
\sigma x(x) = \sigma 0( - 2 - x)21( - \infty , - 2)(x) + \sigma 0(x - 2)21(2,\infty )(x),

\sigma y(y) = \sigma 0( - 2 - y)21( - \infty , - 2)(y) + \sigma 0(y  - 3)21(3,\infty )(y),

with \sigma 0 =  - ln 10 - 20/(4d3/3) \gg 1 where d = 1 is the depth of the PML layer. For
BCs of the PML, we use a periodic BC for the x direction (x =  - 3 and x = 3)
and a zero Dirichlet BC for the y direction (y =  - 3 and y = 4). Corresponding
to semiconductor dielectric materials commonly used in infrared optics, we require
\varepsilon \in [1, 12] in the design region.

3.1.2. hPINN. We will apply hPINN to solve this inverse design problem of
holography. The objective function is defined in (3.1) and is approximated by Monte-
Carlo integration. The PDEs are the real and imaginary parts of (3.3) (see section
SM1 of the supplementary material), i.e., N = 2, and the PDE-informed loss function
is

(3.4) \scrL \scrF =
1

2M

M\sum 
j=1

(\Re [\scrF [xj ]])
2
+ (\Im [\scrF [xj ]])

2
,

where

\scrF [xj ] =
1

\omega + i\sigma x(x)

\partial 

\partial x

\biggl( 
1

1 + i\sigma x(x)
\omega 

\partial E

\partial x

\biggr) 

+
1

\omega + i\sigma y(y)

\partial 

\partial y

\biggl( 
1

1 + i
\sigma y(y)

\omega 

\partial E

\partial y

\biggr) 
\varepsilon \omega E + iJ

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bfx j

.

Here, we scaled the PDE in (3.3) by 1
\omega to make \scrF of order one. In this problem, we

do not have any inequality constraint.
We construct three networks to approximate \Re [E], \Im [E], and \varepsilon (Figure 2C),

respectively. The periodic and Dirichlet BCs are imposed directly into the network.
The restriction of \varepsilon \in [1, 12] is satisfied by using the transformation \varepsilon (x, y) = 1 +
11 sigmoid(\scrN 3(x, y)), where sigmoid(x) = 1

1+e - x and \scrN 3(x, y) is a network output.
In addition, as demonstrated in [64], it is usually beneficial for the network training
to add extra features, which may have a similar pattern of the solution (even if they
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are not accurate), to the network input. In our study, we use the two extra features
cos(\omega y) and sin(\omega y), because we expect the current J to generate an incident plane
wave with the frequency \omega in the y direction (in addition to scattered waves from
\varepsilon \not = 1 regions).

3.1.3. Hyperparameters and verification on a forward problem. To ver-
ify that hPINN is capable of solving the holography problem, we first solve a forward
problem, where \varepsilon = 1 is given and we only optimize the network to minimize the
loss \scrL \scrF in (3.4). We choose M = 17000 such that the average spacing between two
adjacent random points is \sim 0.05. Each network in Figure 2C has 5 layers with 32 neu-
rons per layer, and we use 4 Fourier basis functions \{ cos

\bigl( 
2\pi x
P

\bigr) 
, sin

\bigl( 
2\pi x
P

\bigr) 
, cos

\bigl( 
4\pi x
P

\bigr) 
,

sin
\bigl( 
4\pi x
P

\bigr) 
\} . To train the networks, we first use the Adam optimizer [28] with the

learning rate 1\times 10 - 3 for 2\times 104 steps, and then switch to L-BFGS [8] until the loss
is converged.

After the network training, the solution of hPINN (Figures 3A and B) is consis-
tent with the reference solution obtained from the finite-difference frequency-domain
(FDFD) method [9] with the spatial resolutions \Delta x = 0.01 (Figures 3C and D). We
also show that the pointwise PDE-informed loss \scrF [x] is very small (between  - 5\times 10 - 3

and 5 \times 10 - 3; Figures 3E and F). During the training process, the loss function de-
creases (Figure 3G), while the L2 relative error computed using the reference solution
also decreases (Figure 3H). There is a clear correlation between the training loss and
the L2 relative error (Figure 3I), and when the training loss is \lesssim 10 - 4, the L2 rela-
tive error is < 1\%. This criterion is useful for the following reverse design problem,
because we can easily check the accuracy of the hPINN solution during the training
process by monitoring the loss \scrL \scrF directly without comparing to the FDFD reference.

3.1.4. Soft constraints. We first use the approach of soft constraints to solve
the holography inverse-design problem by minimizing

\scrL = \scrJ + \mu \scrF \scrL \scrF .

The permittivity function \varepsilon is randomly initialized, and three random examples are
shown in Figure 4A. The objective value for a random permittivity function is \sim 0.1.
As we discussed in section 2.4, the choice of \mu \scrF plays an important role in the final
design, and we will compare the performance of different values of \mu \scrF using the first
case in Figure 4A as the initial permittivity.

We use the same hyperparameters and training procedure as we used in the
forward problem. After the network training, the third network is the permittivity
function \varepsilon . However, we will show that the electric field E of the first and second
networks is not accurate enough, and thus we do not use the electric field of the
network to compute the objective \scrJ . Instead, we use FDFD to simulate the correct
electric field for the obtained permittivity, and then compute the objective. We show
that when \mu \scrF is too large or too small, the final objective is relatively large, and the
smallest objective is obtained when \mu \scrF \approx 2 (Figure 4B).

When \mu \scrF is small, e.g., 0.1, the PDE loss cannot be optimized well (\scrL \scrF \sim 10 - 1;
Figure 4C, bottom left), and thus the PDEs are not satisfied well. If we use the
obtained permittivity function (Figure 4C, top left) to simulate the corresponding
electric field | E| 2 via FDFD (Figure 4C, right), this is very different from the | E| 2
obtained from hPINN (Figure 4C, center). On the other hand, when \mu \scrF is large,
e.g., 10, the final PDE loss is \sim 10 - 5, and the fields of | E| 2 from hPINN and FDFD
are almost identical (Figure 4D), i.e., the PDE constraints are satisfied very well.
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Fig. 3. hPINN for solving a forward problem. (A) and (B) The (A) real part \Re [E] and (B)
imaginary part \Im [E] of the hPINN solution. (C) and (D) The (C) real part \Re [E] and (D) imaginary
part \Im [E] of the FDFD solution. (E) and (F) The (E) real part \Re [\scrF [\bfx ]] and (F) imaginary part
\Im [\scrF [\bfx ]] of the PDE-informed loss in (3.4). (G) and (H) The (G) training loss \scrL \scrF and (H) L2

relative error versus the number of optimization iterations. (I) The correlation between the training
loss and the L2 relative error during the training process.

However, the permittivity function is not meaningful and the objective is very large
(Figure 4D), because of the ill-conditioning of the optimization. The case of the
smallest objective (\approx 0.0547) with \mu \scrF = 2 is shown in Figure 4E, but the prediction
of | E| 2 is still of low accuracy. Therefore, the soft constraint approach cannot satisfy
the PDE constraints for small \mu \scrF , and thus a large \mu \scrF is required. However, for
large \mu \scrF , the optimization failed to make progress on the design objective due to the
ill-conditioning.

3.1.5. Penalty method. To address the issue in the soft constraint approach,
we gradually increase the value of \mu \scrF by using the penalty method in Algorithm 2.1.
The initial value of \mu \scrF is \mu 0

\scrF and the increasing factor is \beta \scrF , i.e., \mu k
\scrF = (\beta \scrF )k\mu 0

\scrF .
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Fig. 4. hPINN for the inverse design of holography via the approach of soft constraints. (A)
Three examples of random initialization of \varepsilon . (B) The objective \scrJ of different designs obtained from
hPINNs with different \mu \scrF . (C) Results of \mu \scrF = 0.1: (top left) the final permittivity \varepsilon , (bottom left)
training trajectory, (center) hPINN solution | E| 2, and (right) the reference | E| 2 solved by FDFD
for the final permittivity. (D) Results of \mu \scrF = 10. (E) Results of \mu \scrF = 2.

We need to tune \mu 0
\scrF and \beta \scrF in the penalty method. As an example, we first show

the results of the case \mu 0
\scrF = 2 and \beta \scrF = 2 (Figures 5A--D). When we increase the

value of \mu \scrF , the PDE loss decreases (Figure 5A), and we find that in order to make
\scrL \scrF < 10 - 4, we need to increase \mu \scrF until \mu \scrF > 100. After we train the network with
\mu k
\scrF , the objective first decreases and then increases (Figure 5B). In the soft-constraint
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approach, when \mu \scrF = 10, the network would get stuck at a poor local minimum due
to the ill-conditioning, but here, even if \mu \scrF > 100, we still obtain a meaningful
result and objective. However, the objective still becomes worse when \mu k

\scrF > 10, and
thus the ill-conditioning problem still exists, albeit weaker than before. The smallest
objective \sim 0.0537 is obtained at k = 1, which is \sim 2\% better than the approach of
soft constraints. The design for k = 1 is in Figure 5C, and the corresponding | E| 2
obtained from FDFD is in Figure 5D. In terms of the computational cost, although the
penalty method requires seven rounds of training, the total number of optimization
iterations is \sim 5.6 \times 104, which is only 70\% more than that of the soft-constraint
approach with \mu \scrF = 2 (\sim 3.3 \times 104), because as shown in Algorithm 2.1, for the kth
training, we use the (k  - 1)th solution as the initial guess and thus the network can
be trained much faster than the first round of training which is initialized randomly.

Next, we investigate the effects of \mu 0
\scrF and \beta \scrF . We choose \mu 0

\scrF = 1 and compare
different values of \beta F . For different \beta F , we increase \mu \scrF until \mu \scrF > 100, and the
objective has a similar behavior, i.e., decreasing first and then increasing (Figure 5E).
Among these \beta F , the smallest objective is obtained from \beta \scrF = 2. When \beta \scrF increases,
we need fewer rounds of training and thus the computational cost decreases, but if
\beta \scrF is very large, the computational cost increases again because in each round of
training we need more iterations (Figure 5F). We also investigate the effects of \mu 0

\scrF 
by fixing \beta \scrF = 2, and the smallest objective is obtained by using \mu 0

\scrF = 2. Therefore,
the combination of \mu 0

\scrF = 2 and \beta \scrF = 2 we presented is almost the best case in the
problem.

3.1.6. Augmented Lagrangian method. In the penalty method, the objec-
tive eventually worsens when \mu k

\scrF is large due to the ill-conditioning. To overcome
this difficulty of convergence, we employ the augmented Lagrangian method in Algo-
rithm 2.2. The (2.7) in this case becomes

\scrL k = \scrJ + \mu k
\scrF \scrL \scrF +

1

2M

M\sum 
j=1

\bigl( 
\lambda k
\Re ,j\Re [\scrF [xj ]] + \lambda k

\Im ,j\Im [\scrF [xj ]]
\bigr) 

and

(3.5) \lambda k
\Re ,j = \lambda k - 1

\Re ,j + 2\mu k - 1
\scrF \Re [\scrF [xj ]] , \lambda k

\Im ,j = \lambda k - 1
\Im ,j + 2\mu k - 1

\scrF \Im [\scrF [xj ]] .

We use the same hyperparameters as the penalty method, i.e., \mu 0
\scrF = 2 and \beta \scrF = 2.

After the training, the PDE loss is below 10 - 4 (Figure 6A), and the L2 relative error
of | E| 2 between hPINN and FDFD for the final \varepsilon is 1.2\%, so the solution of hPINN
satisfies the PDEs very well. The final value of the objective function from hPINN
also converges. The objective does not worsen even when \mu k

\scrF > 103 (Figure 6B), and
thus the augmented Lagrangian method solves the convergence issue in the penalty
method.

We next investigate the distribution and evolution of the multipliers. Because
we choose \lambda 0

\Re ,j = \lambda 0
\Im ,j = 0 in (3.5), then \lambda 1

\Re ,j and \lambda 1
\Im ,j are proportional to the

pointwise PDE loss \scrF [xj ]. After the first round of training, the points around the
region [ - 0.5, 0.5]\times [1, 2] (i.e., the black square in Figure 2A) have the largest values
of \lambda 1

\Re ,j and \lambda 1
\Im ,j (Figure 6C, left) and thus the largest PDE error. Hence, the points

with larger PDE errors would have larger weights for the next round of training, i.e.,
the multipliers automatically tune the relative weights of different training points.
The distributions of \lambda k

\Re ,j and \lambda k
\Im ,j become more uniform for a larger k (Figure 6C).

Moreover, for each single point, \lambda k
\Re ,j and \lambda k

\Im ,j increase with k, but the normalized
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Fig. 5. hPINN for the inverse design of holography via the penalty method. (A) to (D) The
results of \mu 0

\scrF = 2 and \beta \scrF = 2. (A) The losses versus the number of optimization iterations. (B)

the objective value after the network is trained with \mu k
\scrF , (C) the optimized permittivity function \varepsilon at

k = 1, and (D) the corresponding electric field | E| 2. (E) The objective value versus \mu k
\scrF when using

different values of \beta \scrF . (F) The total number of optimization iterations (which is proportional to the
computational cost) for different \beta \scrF . (G) The objective value versus \mu k

\scrF for different values of \mu 0
\scrF .
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Fig. 6. hPINN for the inverse design of holography via the augmented Lagrangian method.
(A) and (B) The results of \mu 0

\scrF = 2 and \beta \scrF = 2. (A) The losses versus the number of optimization

iterations and (B) the objective value after the network is trained with \mu k
\scrF . (C) The values of \lambda k

\Re ,j

and \lambda k
\Im ,j at all \bfx j locations for k = 1, 4, and 9. (D) The convergence of \lambda k

\Re ,j/\mu 
k
\scrF and \lambda k

\Im ,j/\mu 
k
\scrF in

three examples. (E) and (F) The distributions of (E) \lambda k
\Re ,j/\mu 

k
\scrF and (F) \lambda k

\Im ,j/\mu 
k
\scrF converge.

multipliers \lambda k
\Re ,j/\mu 

k
\scrF and \lambda k

\Im ,j/\mu 
k
\scrF converge with respect to k; see the three examples

in Figure 6D. Also, the histogram of \lambda 1
\Re ,j/\mu 

1
\scrF for all xj is shown in the black curve

in (Figure 6E), which is symmetric and concentrates around zero. The distributions
of \lambda k

\Re ,j/\mu 
k
\scrF converge with respect to k, and become almost converged when k \geq 6

(Figure 6E). Similarly, \lambda k
\Im ,j/\mu 

k
\scrF also converge in a similar way (Figure 6F).
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We have demonstrated the effectiveness of the augmented Lagrangian method,
and to further improve our design, we tune two hyperparameters: the network width
and the number of Fourier basis terms used in the periodic BC. We need to choose
an optimal network size to avoid the problems of underfitting and overfitting, and the
optimal network width is around 60 when we choose the depth to be 5 (Figure 7A).
As we discussed in section 2.3, two Fourier basis terms are sufficient in the network to
implement the periodic BC, but by using more basis terms, we can achieve a smaller
objective (Figure 7B). Hence, we choose the width as 48 and use 12 Fourier basis
terms. This problem has many local optima with similar performance, and the exact
solution found depends on the initialization of \varepsilon : when we trained the network from
three random initializations, the objective values were 0.0517, 0.0525, and 0.0528.
Here, the final PDE loss is \sim 3 \times 10 - 5, which is small enough for this problem. To
reach an even smaller PDE loss, we can use a larger network with more representation
power. For example, when we used a wider network of 128 neurons per layer, we can
achieve the PDE loss of 3 \times 10 - 6. We also note that, instead of the single-precision
floating point commonly used in deep learning, double precision is required to achieve
the PDE loss of 10 - 6.
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Fig. 7. Effect of hyperparameters and comparison between hPINN, FDFD, and FEM. (A)
Effect of the network width on the objective. (B) Effect of the number of Fourier basis terms used
in the periodic BC on the objective. (C)--(E) The design \varepsilon and the field of | E| 2 of (C) hPINN, (D)
FDFD, and (E) FEM.

As a comparison, we also solve this problem by using the method for PDE-
constrained inverse design discussed in [38], and here we have considered two nu-
merical PDE solvers: FDFD [9] and FEM [2, 5, 20] (see the details in supplementary
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sections SM2 and SM3, respectively). The objective values obtained from FDFD and
FEM are 0.0523 and 0.0528, respectively, which is almost the same as that of hPINN,
even though the designs are very different (because of the many local optima dis-
cussed above). In addition to the good performance, we observe that hPINN designs
(Figure 7C, top) tend to be smoother than the designs of FDFD (Figure 7D, top)
and FEM (Figure 7E, top), although smoothness can also be explicitly imposed by
filtering if desired [37]. This could be explained by the analysis that neural networks
trained with gradient descent have an implicit regularization and tend to converge to
smooth solutions [23, 39, 47]. The electrical fields | E| 2 in the target domain \Omega 3 for
these three methods are similar (Figures 7C, D, and E, bottom).

3.2. Fluids in Stokes flow. Optimal design has wide and valuable applications
in many fluid mechanics problems. Next, we use the proposed hPINN to solve the
problem of topology optimization of fluids in Stokes flow, which was introduced by [7]
and has been considered as a benchmark example in many works since then [14,16,52].

3.2.1. Problem setup. In this problem, we consider a design domain \Omega =
[0, 1]\times [0, 1] composed of solid material and fluids (Figure 8A). The goal is to determine
at what places of \Omega there should be fluid and where there should be solid, in order
to minimize an objective function of dissipated power. We use \rho = 0 to represent
the solid places, and \rho = 1 as the fluid. Then this problem is a discrete topology
optimization for \rho , and solving a large-scale discrete topology optimization is generally
computationally prohibitive [16]. To circumvent this issue, the common procedure is
to allow the intermediate media values of \rho between 0 and 1.

A
Ω

u

B Dirichlet BCs

x

y

σ
...
σ

σ
...
σ

N1 u = `b(x, y)N1 + 1

σ
...
σ

σ
...
σ

N2 v = `b(x, y)N2

σ
...
σ

σ
...
σ

N3 p = `r(x, y)N3

σ
...
σ

σ
...
σ

N4 ρ = max (0,min (1, `b`cN4 + g))

Fig. 8. Problem setup of fluids in Stokes flow and the neural network architecture. (A) The
design domain with the boundary condition. (B) The architecture of the hPINN with the Dirichlet
BCs embedded directly in the network. The network inputs are x and y, and the outputs are u, v,
p, and \rho .

We consider the flow is a Stokes flow, and the fluid and the solid satisfy a gen-
eralized Stokes equation by treating the solid phase as a porous medium with flow
governed by the Darcy's law [7,14,16]:

 - \nu \Delta u+\nabla p = f ,(3.6)

\nabla \cdot u = 0,(3.7)
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where u = (u, v) is the velocity, and p is the pressure. \nu = 1 is the viscosity, and
f = \alpha u is the Brinkman term from the Darcy's law. \alpha is the inverted permeability
depending on \rho , and we use the following interpolation function proposed in [7]:

\alpha (\rho ) = \alpha + (\alpha  - \alpha )\rho 
1 + q

\rho + q
,

where \alpha = 2.5\nu 
0.012 and \alpha = 0 are the inverted permeability of solid and fluid phases,

respectively. The parameter q > 0 is used to control the transition between solid
and fluid phases. When q is large, the interpolation has a sharper transition, and
the optimization becomes more ill-conditioned. Here, we choose q = 0.1 as suggested
in [7]. At the boundary, the velocity is constant u = (1, 0), and the pressure at the
right boundary is zero (Figure 8A).

The objective function of dissipated power is defined as

(3.8) \scrJ =

\int 
\Omega 

\biggl( 
1

2
\nabla u : \nabla u+

1

2
\alpha u2

\biggr) 
dxdy.

To make the problem meaningful, we also need to consider a fluid volume constraint:\int 
\Omega 

\rho dxdy \leq \gamma ,

and the volume fraction \gamma is chosen as 0.9. Without this volume constraint, the
optimal solution is \rho = 1 everywhere.

3.2.2. hPINN. The PDE-informed loss function for this problem is

\scrL \scrF =
1

3M

M\sum 
j=1

(\scrF 1[xj ])
2 + (\scrF 2[xj ])

2 + (\scrF 3[xj ])
2,

where \scrF 1 and \scrF 2 correspond to the u and v components of (3.6), respectively, and
\scrF 3 corresponds to (3.7). Similar to the holography problem, we scale \scrF 1 and \scrF 2 by
0.01 and \scrF 3 by 100. In this problem, we also have an inequality constraint for the
fluid volume:

h(\rho ) =

\int 
\Omega 

\rho dxdy  - \gamma \leq 0,

which is used to compute the loss in (2.6) and (2.7).
We construct four networks to approximate u, v, p, and \rho (Figure 8B), and each

network has 5 layers with 64 neurons per layer. To impose the Dirichlet BCs of u and
v into the network, we choose

\ell b(x, y) = 16xy(1 - x)(1 - y),

which is equal to zero at the boundary, and the coefficient ``16"" is used to scale the
function to be of order one inside \Omega . Similarly, for the BC of p at the right boundary,
we use

\ell r(x, y) = 1 - x.

To restrict \rho between 0 and 1, we use the function max(0,min(1, \cdot )). We do not
use the sigmoid function as in the holography problem, because the sigmoid function
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cannot be equal to 0 and 1 exactly. To prevent the optimization getting stuck at a
local minimum [7, 14], a small portion of \Omega close to the boundary is prescribed as
fluid, and the initial guess of \rho should be chosen properly. Here, we also add similar
restrictions: the boundary is prescribed as fluid, and the center is prescribed as solid,
i.e., \rho (x, y) = 1 when (x, y) is at the boundary, and \rho (x, y) = 0 when x = y = 0.5.
This is imposed by constructing \rho as

(3.9) \rho (x, y) = max (0,min (1, \ell b(x, y)\ell c(x, y)\scrN 4(x, y) + g(x, y))) ,

where

\ell c(x, y) = (x - 0.5)2 + (y  - 0.5)2,

g(x, y) =

\biggl( 
1 +

\epsilon 

min(x,y) \ell c(x, y)

\biggr) 
(1 - \ell b(x, y))

\ell c(x, y)

\ell c(x, y) + \epsilon 
.

By choosing a small number \epsilon > 0 (e.g., \epsilon = 10 - 6), it is easy to check that \rho (0.5, 0.5) =
0 and \rho (x, y) = 1 when (x, y) is at the boundary.

3.2.3. Soft constraints. We first solve this problem using the approach of soft
constraints by minimizing (2.5) with \mu \scrF = 0.1 and \mu h = 104. We use 10000 points for
training, i.e., M = 10000. The same training procedure in the holography problem is
used, but with a smaller learning rate 1\times 10 - 4.

One random initialization of \rho using (3.9) is shown in Figure 9A, which satisfies
our requirements for \rho at the boundary and center. Using this initial guess, the loss
trajectory during the training is shown in Figure 9B. Initially, \rho satisfies the volume
constraint, and after about 2000 iterations, the fluid volume

\int 
\Omega 
\rho dxdy is always larger

than \gamma , because more fluid makes the objective smaller. At the end of the training,
the fluid volume is about 0.906, which is 0.7\% larger than \gamma . The final fields of \rho 
(Figure 9C) and \alpha (Figure 9D) have rugby ball-like shapes, which is consistent with
the designs optimized by other methods [7, 14, 16, 52]. We use the smoothed profile
method (SPM) [36,62] in the context of the spectral element method [26] to compute
the velocity from the design (see the details in section SM4 of the supplementary
material), and the velocity magnitude | u| and the streamline are in Figures 9E and
F. We note that although the PDE loss only decreases by two orders of magnitude
from \sim 1.5 \times 103 to \sim 7 (Figure 9B), the L2 relative error of | u| between hPINN and
SPM is 4.3\%, i.e., the PDEs are satisfied well.

The objective value in (3.8) of our design is 13.73. For comparison, in [7], the
same setup and parameters are used as ours, and their objective value obtained from
the method of moving asymptotes with FEM is 14.07, which is 2.4\% worse than ours.
However, this does not mean that the soft-constraints approach is a better method:
our objective is smaller only because the design slightly violates the volume constraint,
permitting a reduced objective value.

3.2.4. Augmented Lagrangian method. To make the design satisfy the con-
straints better, we use the augmented Lagrangian method with \mu 0

\scrF = 0.1, \mu 0
h = 104,

\beta \scrF = \beta h = 2, and k \leq 9. As we discussed in the previous section, in the soft constraint
approach, the network solution has already satisfied the PDE and volume constraints
well, and thus when using the augmented Lagrangian method, we only need \sim 400
more iterations (Figures 9B and 10A), i.e., \sim 2\% more computational cost.

After training with the augmented Lagrangian method, compared to the soft
constraint approach, the loss of the fluid volume decreases from 10 - 5 to 10 - 8 (Fig-
ure 10A). The final design (Figure 10B) has the fluid volume of 0.901, which is almost
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Fig. 9. hPIN for the topology optimization of fluids in Stokes flow via the soft constraint
approach. (A) The initialization of \rho . (B) The training losses versus the number of optimization
iterations. (C)--(F) The optimization result: (C) \rho , (D) inverted permeability \alpha , (E) velocity mag-
nitude | \bfu | , and (F) the velocity streamline.

identical to our restriction \gamma . On the other hand, the PDE loss only becomes a little
bit smaller, and the L2 relative error of | u| between hPINN and SPM is improved to
2.0\%. The corresponding objective value is 14.12, which is consistent with the result
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Fig. 10. hPIN for the topology optimization of fluids in Stokes flow via the augmented La-
grangian method. (A) The training losses versus the number of optimization iterations. (B) The
design of \rho . (C) \lambda k

h/\mu 
k
h converges with respect to k. (D)--(F) The values of (D) \lambda 9

1,j , (E) \lambda 9
2,j , and

(F) \lambda 9
3,j at all \bfx j . (G)--(I) The distributions of (G) \lambda k

1,j/\mu 
k
\scrF , (H) \lambda k

2,j/\mu 
k
\scrF , and (I) \lambda k

3,j/\mu 
k
\scrF for

k = 1 and k = 9.

in [7].
Similar to the holography problem, here the normalized multipliers also converge.

The normalized multiplier for the volume constraint \lambda k
h/\mu 

k
h converges to 0.001 (Fig-

ure 10C). The values of \lambda k
i,j for i = 1, 2, and 3 at k = 9 are shown in Figures 10D, E,

and F, respectively. \lambda 9
3,j is almost uniform, but \lambda 9

1,j and \lambda 9
2,j have the largest values

near the interface between the solid and fluid phases. The distributions of normalized
\lambda k
1,j and \lambda k

2,j do not change too much from k = 1 to k = 9 (Figures 10G and H). How-

ever, the distribution of normalized \lambda k
3,j changes a lot and converges to a Gaussian

distribution (Figure 10I), because \lambda k
3,j corresponds to (3.7), i.e., the mass continuity

equation for incompressible fluid. This is consistent with our analysis that during the
training, the fluid volume is the main variable to be improved.

4. Conclusion. In an inverse design problem, we aim to find the best design by
minimizing an objective function, which is subject to various constraints, including
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partial differential equations (PDEs), boundary conditions (BCs), and inequalities.
In this study we have developed a new method of physics-informed neural networks
(PINNs) with hard constraints (hPINNs) for solving inverse design. In hPINN, we
enforce the PDE and inequality constraints by using loss functions, while we impose
exactly Dirichlet and periodic BCs into the neural network architecture. We proposed
the two approaches of the penalty method and the augmented Lagrangian method
to enforce the loss function as hard constraints. We note that hPINN belongs to
unsupervised learning and does not need a training dataset generated by numerical
solvers.

We demonstrated the effectiveness of hPINN for two examples: the holography
problem in optics and fluids of Stokes flow. Our numerical results of both examples
show that although the approach of soft constraints cannot satisfy the PDE or inequal-
ity constraints to a good accuracy during the network training, we may still obtain
a relatively good design if the penalty coefficients are chosen properly. The penalty
method is able to impose hard constraints, but it has the issue of convergence when
the penalty coefficients are too large. By using the augmented Lagrangian method,
we can impose hard constraints and also achieve a better design. In addition, the
objective function and the multipliers converge quickly after only several rounds of
training. We also show that the computational cost of the augmented Lagrangian
method is comparable to the soft constraint approach, because we use the network
solution of the previous round as the network initialization for the next round of
training.

Compared to traditional PDE-constrained optimization methods based on ad-
joint methods and numerical PDE solvers, the results obtained from hPINN have the
same objective value, but the design is smoother for the case of nonunique solutions,
which could also be achieved in traditional methods by using explicit filtering or other
regularizations. The code implementation of hPINN is quite similar for different prob-
lems of inverse design because it leverages extensive deep-learning frameworks such
as TensorFlow [1], so hPINN potentially reduces the human effort of programming.
However, the suitable hyperparameters of hPINN (e.g., network size) are problem de-
pendent, and thus hyperparameter tuning is required. This tuning could be performed
by trial-and-error or even automatically, such as by a brute-force grid search, Bayesian
approaches [10], or other advanced search algorithms [18]. hPINN saves human effort
at the cost of code runtime: for the holography problem, hPINN (\sim 1.7 hours using
an NVIDIA TITAN Xp GPU) is slower than the traditional methods (\sim 1 hour using
CPU); but hPINN can be sped up at least one order of magnitude by parallel training,
as demonstrated recently in [56]. Traditional PDE-constrained optimization methods
are very mature and often provide strong convergence guarantees, while PINNs, as a
complementary approach to solving PDEs, are still in their infancy. Our paper shows
that hPINN can solve inverse-design problems where the PDE is a hard constraint,
unlike previous PINN work---this is a baseline requirement for further development
in the emerging fields of scientific machine learning [3] and physics-informed machine
learning [27].

In the current hPINN, because we used one multiplier for each residual location
x, the residual locations have to be fixed. Hence, the optimization of hPINN is deter-
ministic, and other algorithms for constrained optimization could also be used, such as
sequential quadratic programming or interior-point methods. In addition, the number
of multipliers is equal to the number of residual locations, so that many multipliers
are required, which could be expensive and inefficient for large-scale problems. In
fact, we observed that the profile of multipliers is continuous with respect to x, and
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thus it is possible to use one single multiplier function \lambda (x) (e.g., represented by a
neural network) for the entire computational domain. This approach also leverages
the continuity of the multiplier, and may induce a faster convergence. Moreover, by
using one single multiplier function, we can apply stochastic sampling of residual loca-
tions in hPINN, which is extremely widespread in scaling NNs to very large problems.
Hence, it is important to have a constrained-optimization method that generalizes
to stochastic constrained-optimization problems. The augmented Lagrangian method
can work with stochastic optimization [61], whereas other constrained-optimization
methods largely do not.

In our numerical results, we showed that hPINN with an augmented Lagrangian
converges to a good solution, but there are currently few theoretical guarantees due
to the nonlinear, nonconvex nature of this formulation. However, the convergence of
stochastic optimization with the augmented Lagrangian method was analyzed in [61],
and the convergence of PINN for certain linear PDEs was proved in [55]. In future
work, we hope to theoretically analyze the convergence of hPINN based on these
results.
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