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Abstract

Deep learning1 has emerged as a class of optimization algorithms proven to be effec-
tive for a variety of inference and decision tasks. Similar algorithms, with appropriate
modifications, have also been widely adopted for computational imaging.2 Here, we
review the basic tenets of deep learning and computational imaging, and overview
recent progress in two applications: super resolution and phase retrieval.

1. COMPUTATIONAL IMAGING

Let f denote an unknown vector, which we seek to establish from optical measure-
ments. We may think of f as the spatial description of a physical object, e.g. the
index of refraction n(r) as function of Cartesian coordinates r sampled appropriately.
The optical system forms an intensity pattern, which is also sampled to a vector g
and we refer to as the raw image measured on the digital camera. In the absence of
noise, the relationship between the object and raw image is denoted as

g = Hf, (1)

where H is the imaging system’s forward operator. H includes the illumination
model; the model of light scattering by the object; the propagation to the detector,
including the transfer function of the optics in the system; and the detector’s photo-
electric conversion model. In actuality, (1) is stochastic due to the particle nature of
light and the detector’s noise statistics; however, to avoid overcomplicating, we will
limit the discussion in this paper to the deterministic description.

It is worthwhile to note that the choice of f as being spatially faithful represen-
tation of the object isn’t the only one. It is possible to structure f as representing
higher level questions about the object; for example, we could require each element
in f to represent “the 3D coordinates from the scene where a cat is present.” This is
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the broadest definition of Computational Imaging, but it presents the obvious prob-
lem that H, in almost all such cases, cannot be expressed explicitly. Recognition of
hand-written characters from the output of multi-mode fibers where the spatial infor-
mation is highly diffuse3 is a good example of this approach; however, in the interest
of confining the content of the present paper somewhat, we will limit discussion to
spatially faithful f ’s.

There are several strategies to invert (1) and obtain an estimate f̂ of the object.
We discuss them briefly here, together with their properties and caveats.

1.1 The direct inverse

If the matrix H is non-singular, then direct inversion of (1) yields

f̂ = H−1g. (2)

If H represents a spatially invariant optical system, then it is appropriate to refer
to the direct inverse as “deconvolution.” Unfortunately, this approach seldom yields
good results, because the effect of the noise on the inverse estimate is amplified.

To see why, consider a very simple 2× 2 linear imaging system with

H =

(
1 ε
ε 1

)
, 0 < ε < 1, (3)

and additive noise, i.e. g = Hf+n, where n is a random process whose statistics are
irrelevant to the present discussion. We may see immediately that the direct inverse
yields

f̂ = f +
1

1− ε2

(
1 −ε
−ε 1

)
n. (4)

If the “cross-talk” term ε is near 1, e.g. ε ∼ 0.9, the noise gain is as high as ∼ 5.
More generally, if µn are the eigenvalues of H, then a simple linear algebra argument
shows that the noise amplification may be as high as

∼

(∏
n

µn

)−1

.

Therefore, forward operators whose majority of eigenvalues are significantly smaller
than the maximum eigenvalue are referred to as “ill-conditioned.” The forward op-
erators of diffraction-limited optical systems become invariably ill-conditioned if the
attempt is made to sample the object at a spacing finer than the so-called Rayleigh
resolution limit ∼ λ/ (NA), where NA is the numerical aperture (more on this in
section 2.1.) In the presence of aberrations, ill-conditioning becomes worse.
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1.2 Wiener filter and Tikhonov inverse

In the Wiener filter4–7 approach the estimated inverse is obtained through a linear
filter as

f̂ = Ŵg, where Ŵ =argmin
W

||Wg − f ||22 . (5)

The optimal filter Ŵ is required to minimize the quadratic (L2) error between the
reconstruction Ŵg and the true object f . Additional assumptions are that the noise
process n is zero-mean and independent of the object f . Then, solving the resulting
quadratic minimization problem yields

Ŵ = Cff H
† (H Cff H

† + Cnn

)−1
, (6)

where Cff and Cnn are the correlation operators of the signal and noise, respectively,
and † denotes the transpose. In the special case when the correlation operators
reduce to P0I and N0I, respectively, where P0 is the average signal power, N0 is the
average noise power,∗ and I is the unitary operator; then

Ŵ = H†
(
HH† +

I

(SNR)

)−1

, where (SNR) ≡ P0

N0

. (7)

It can be seen that in the limit N0 � P0 the above expression reduces to Ŵ ≈ H−1,
i.e. the direct inverse. If the noise is non-negligible, then Ŵ according to (7) is
better than H−1 because it is designed to minimize the effect of the noise in the
reconstruction, at least in the quadratic sense (see eq. 5). However, the linear inverse
filter (7) is known to also introduce blur in the reconstructions, as the price to pay
for compensating noise amplification.8

Interestingly, the same linear inverse filter is obtained from a different principle,
originally developed by Tikhonov,9–11

f̂ =argmin
f

{
||Hf − g||22 +

κ

2
||f ||22

}
, with κ =

1

(SNR)
. (8)

The second term in the above functional is called the regularizer and κ the regu-
larization parameter, because they are meant to contain (regularize) the energy of
the noise that the direct inverse would have otherwise amplified. This is why the
regularizer is the L2 norm, i.e. the energy of the object’s estimate in the functional.
It is also worthwhile to note that the Kalman filter12 derivation also follows from the
Wiener filter principle.

∗This implies that both signal and noise are white noise-like. Such an assumption is
seldom realistic for typical objects of imaging systems, but it does apply to communication
signals that have been pre-compressed; it also leads to a neat result.
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1.3 Sparsity-regularized inverse

Tikhonov’s functional (8) is generalized as

f̂ =argmin
f

{
||Hf − g||22 + Φ(f)

}
, (9)

where Φ(f) may be designed to still contain the effects of noise in the reconstruc-
tion while ameliorating the blur problems of the Wiener-Tikhonov approaches. A
particularly effective choice of regularizers results from transforming the object as

s = Sf, (10)

such that S is invertible and the new representation s is sparse, i.e. it contains few
non-zero elements. It may then be shown13 that an equivalent resilient solution is
obtained from

ŝ =argmin
s

{
||As− g||22 + α ||s||1

}
, (11)

where A = HS−1, α is another regularization parameter and we can see that the
regularizer function is now the L1 norm. The basic solution to (11) is the iterative
shrinkage-thresholding algorithm14 (ISTA)

ŝ[m+1] = Pε

{(
I − αA†A

)
ŝ[m] + αA†g

}
, m = 1, 2, . . . (12)

After the iteration has terminated, the object estimate is obtained as f̂ = S−1ŝ.
Here, Pε represents the proximal gradient15,16 (soft thresholding) operator

Pε (u) =


u+ ε, u < −ε;

0, −ε < u < ε;
u− ε, u > ε.

(13)

The purpose of soft thresholding is to get around the problem that the L1 norm regu-
larizer in the functional (11) is non-differentiable. Faster and more numerically stable
versions of ISTA have been developed, e.g. TwIST.17 Alternatively, the problem may
instead be formulated as one of constrained minimization18–20

ŝ =argmin
s

||s||1 subject to g − As = 0. (14)

The sparsifying transform S is typically chosen as a redundant basis,13,18–20 e.g.
wavelets.21 Another common regularizer that promotes sharpness in the reconstruc-
tions is Total Variation (TV),19 which requires a separate computation for the prox-
imal gradient (not given here.) Alternatively, S may be learnt from data that are
statistically similar to typical objects, if available; it is then referred to as a dictio-
nary.22,23
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(a) Recurrent architecture.2,24,25 (b) Unfolded (cascaded) architecture.2,24,25

(c) Pre-processor or (d) End-to-End architecture.2,26

“Approximant” architecture.2,27,28

Figure 1. Using neural networks to regularize and invert the problem (1). Reprinted from
Ref. 2.

1.4 Inversion by neural networks

As an extension of dictionaries, it is natural to suggest replacing the proximal gra-
dient operator itself with a learning algorithm, whose purpose is to learn the correct
regularization principle directly from examples on the original object f , without
necessarily sparsifying. In that case, (12) becomes

f̂ [m+1] = DNN
{(

I − αH†H
)
f̂ [m] + αH†g

}
, m = 1, 2, . . . , (15)

where now DNN {·} represents the input-output relationship of a deep neural net-
work. Among the first uses of this approach were for tomography24,25,29 but its
origins are in an insight by Gregor and LeCun.30 Equation 15 suggests a recurrent
architecture, as shown in Figure 1(a), with m acting as the time step in the dy-
namical process. In practice, the recurrence is typically unfolded to a cascade of
DNNs for better numerical stability, as shown in Figure 1(b). However, the number
of parameters to be learnt (the weights of the DNNs) also increases. A generative
adversarial approach, where the recurrent scheme acts as generator, has also been
implemented.31 The operator

N = I −H†H (16)

is the null space projection: essentially, what the direct inverse of section 1.1 would
have missed, if it were näıvely applied.
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Figures 1(c-d) are two simpler alternatives. In Figure 1(c) we have a single stage
only, with a pre-processor H∗, which we call the Approximant, resulting from an
approximate inversion of the original forward operator H. The Approximant’s role
is to produce an initial estimate f̂ [0], which may be crude and prone to noise artifacts
yet the subsequent DNN learns how to improve toward a final reconstruction f̂ of
decent quality. Finally, in the End-to-End architecture of Figure 1(d) we discard the
Approximant altogether and train the DNN to receive the raw intensity g as input
and produce the estimate f̂ as output. Naturally, the learning burden is higher in
this last case, because the physical model H and the priors need to both be encoded
in the DNN input-output relationship through the training process; because of that,
the simple architecture of Figure 1(d) tends to not behave well when the raw images
are highly noisy.

2. EXAMPLES

To illustrate the formulation of inverse problems and the use of the machine learning
architectures of section 1.4, we develop two examples: spatially incoherent imag-
ing of intensity objects; and spatially coherent imaging of phase objects. We will
use the scalar and paraxial approximations; extension to more accurate models is
straightforward albeit arduous.

Figure 2. Simple spatially incoherent imaging system with a single imaging lens of focal
length f0.

2.1 Spatially incoherent imaging

The geometry for constructing this problem is in Figure 2. The object-lens distance
zo and lens-image plane distance zi satisfy 1/zo + 1/zi = 1/f0 and without loss of
generality we also assume zo = zi, i.e. unit magnification.

The object consists of uncorrelated monochromatic point emitters of wavelength
λ, regularly spaced on a Px×Py grid with coordinates (xp, yp), p = 1, . . . , P = PxPy.
The user wishes to retrieve the strengths Iin (xp, yp) of these emitters by sampling
the intensity Iout(x

′
q, y
′
q) on the camera plane at pixels regularly spaced on a Qx×Qy
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grid with coordinates (x′q, y
′
q), q = 1, . . . , Q = QxQy. If Q > P the problem is

oversampled, also referred to as overdetermined. If Q < P , it is undersampled and
the recovery of f from g is sometimes referred to as “super resolution,” especially in
the community of machine vision.

In the generic notation of (1), the object is represented as f =
{
Iin (xp, yp)

}
p=1,...,P

,

while the measurement is represented as g =
{
Iout

(
x′q, y

′
q

)}
q=1,...,Q

. It is well known32,33

that the intensity at the output plane of a monochromatic spatially incoherent sys-
tem is linearly related to the intensity at the input plane. If the optical system is shift
invariant the relationship becomes a convolution and if, moreover, it is diffraction-
limited with a circular aperture of maximal angular admittance equal to NA (nu-
merical aperture), then is expressed simply as

Iout

(
x′q, y

′
q

)
=
∑
p

jinc2
(ρqp
b

)
Iin (xp, yp) , where (17)

ρqp ≡
{(
x′q − xp

)2
+
(
y′q − yp

)2
}1/2

, jinc (u) ≡ J1(u)

2u
,

J1(.) is the Bessel function of the first kind and 1st order, and b is the main half-lobe
of the Airy diffraction spot b = λ/(NA). The simple linear 2× 2 operator mentioned
in section 1.1 is a special case with Q = P = 2 and ε = jinc2 (ρ12/b).

If the main lobe width of the Airy function 1.22b >
∼

min
p,q

ρqp then H creates in

g a blurred version of the object f . This simplified expression for the blur is valid
for the diffraction-limited paraxial case. More generally, a linear equation of the
form (17) remains valid but the kernel H is influenced by additional factors such as
aberrations, motion blur, etc. and it may also become space variant. The situation
where the sampling distance ∆ρ at the object plane is less than b is also referred to,
confusingly, as “super resolution,” especially in the optical imaging community, even
though it is clearly different than the earlier mention of the term.

The undersampling super resolution problem Q < P was one of the earliest in-
stances of using a deep neural network to reconstruct the object at a denser sampling
grid,34,35 using an End-to-End architecture similar to the one in Figure 1(d). The
cascaded architecture of Figure 1(b) was later considered, in a generative adversarial
scheme, for the same problem.31,36

One of the earliest attempts to solve the super resolution problem ∆ρ < b was
by training a neural network to receive images by a low-NA objective as inputs and
reproduce images of high-NA quality as outputs.27,37 In this approach, training of the
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Figure 3. Lensless spatially coherent imaging system with free-space propagation distance
z. The presence of a reference beam is optional (see discussion in Example 2.)

DNN takes place experimentally using images obtained by the two objective lenses,
high-NA and low-NA. An adversarial training approach has also been developed.38

2.2 Lensless quantitative phase imaging

The geometry is shown in Figure 3. Let us suppose that the unknown object is a
transparent plate, with uniform index of refraction and variable thickness; and that
the user wishes to retrieve the phase delay φ at pixels regularly spaced on a Px×Py

grid with coordinates (xp, yp), p = 1, . . . , P = PxPy. Then f =
{
φ (xp, yp)

}
p=1,...,P

.

The plate is illuminated on-axis by a monochromatic plane wave at wavelength λ.
Under the additional scalar and paraxial approximation assumptions, the field im-
mediately after the plate is

ψin(x, y) = exp {iφ(x, y)} . (18)

After free-space propagation by distance z, the intensity is sampled at pixels regularly
spaced on a Qx×Qy grid with coordinates (x′q, y

′
q), q = 1, . . . , Q = QxQy. In discrete

notation, the intensity measurement is

gq =
∣∣ψout

(
x′q, y

′
q

)∣∣2 =

∣∣∣∣∣∑
p

exp

{
iφ(xp, yp) + iπ

(
x′q − xp

)2
+
(
y′q − yp

)2

λz

}∣∣∣∣∣
2

. (19)

Here, we have neglected the effect of spatial integration over the detector pixel area.

The measurement vector then is g =
{
gq

}
q=1,...,Q

. Clearly, the operator H is nonlin-

ear in this example. In the community of x-ray optics, this method is referred to as
Coherent Diffraction Imaging (CDI).
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Figure 4. Quantitative phase retrieval in highly noisy conditions, ∼ 1 photon/pixel on
average. (PhENN26,28,46) with limited illumination of (a) Ground-truth phase modula-
tion f projected on the Spatial Light Modulator. (b) Approximant f̂ [0] obtained as single
iteration of the Gerchberg-Saxton algorithm. (c) Reconstruction by the End-to-End archi-
tecture, Figure 1d.26 (d) Reconstruction by the Approximant architecture, Figure 1c with
the signal (b) as Approximant.28 (e) Reconstruction by the Learnting-to-Synthesize (LS)
architecture which processes low and high spatial frequencies separately.46 Figures (a-d)
are reprinted from Ref. 28 and Figure (e) from Ref. 46.

Classical iterative solutions to this problem are the Gerchberg-Saxton algorithm;39

the input-output algorithm and its variants proposed by Fienup;39–43 and the gradi-
ent descent44,45 with its well-known variants such as steepest descent and conjugate
gradient algorithms. Prior knowledge about the object such as positivity and sup-
port constraints are often imposed at each iteration in the object and measurement
domains.

Figure 4 shows CDI reconstruction results obtained with DNNs on the phase
retrieval problem under noisy experimental conditions (∼ 1 photon per pixel on the
detector.) The End-to-End architecture,26 Figure 4(b), performs worst, because the
highly noisy problem requires strong priors to be learnt and the burden on the DNN to
learn the priors as well as the physical model becomes too high. Using the Gerchberg-
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Saxton reconstruction of Figure 4(b) as Approximant improves significantly,28 even
though the Approximant itself is quite noisy. Even higher fidelity reconstructions are
obtained by splitting the reconstruction job into two separate channels for the high
and low spatial frequencies, and training two DNNs to process them respectively
plus a third DNN to recombine (synthesize) them into a final reconstruction that
has even quality over all spatial frequency bands.46

The free-space propagation (CDI) approach is just one of the widely used meth-
ods for phase retrieval. DNN reconstructions have been successfully demonstrated
in, for example, holographic,47,48 ptychographic,49 and coherent modulation imag-
ing (CMI).50 In these cases, the forward operators H are still nonlinear but they
benefit from modulation by the reference beam (in holography) or the wavefront (in
ptychography and CMI).

3. CONCLUSIONS AND OUTLOOK

A persistent concern in any engineering enterprise that utilizes machine learning is
verifiability. Neural networks typically contain millions of parameters (the inter-
connection weights) which are trained through an optimization process, typically
stochastic gradient descent. Unfortunately, there is no guarantee that this optimiza-
tion is convex. Worse, there is no good way to ascertain that the examples chosen
for training are statistically representative of the intended class and, thus, result
in correct learned priors. One way to make progress in this difficult problem is to
investigate the relative importance of physical models and priors, such as dataset
complexity, as they are “hard-wired” into the DNN during training.51 Better ways
to integrate neural networks into first principle physical models52 will certainly ac-
celerate the pace of this desirable evolution.

This research was supported by the U. S. Intelligence Advanced Research Projects
Activity (IARPA) and Singapore’s National Research Foundation (NRF) through the
Campus for Research Excellence and Technological Enterprise (Create) programme.
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