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PROJECTIVE AND INJECTIVE BANACH SPACES

by

Nick Metas

Submitted to the Department of Mathematics on June 20, 1966
in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

ABSTRACT

The author defines projective and injective Banach
spaces and the classes Pr(? ) and In(\), 1 < ? < w, of
such spaces respectively. Necessary and sufficient
conditions for a space to be projective (injective) are
established and it is shown that every projective .
(injective) space is a member of Pr(\) (In(?)) for some 2.
It is shown that a necessary condition that a-space be
projective is that weak and strong convergence of sequences
coincide. Various alternative definitions and reductions
in the original definitions of projectivity (injectivity)
are shown to be equivalent to the original definitions.
A necessary geometric condition for a real Banach space
to be injective is established and this condition is used
to prove that if X is a real Banach space which is a
dual space and which is a member of In(l+E) for every
E > 0, then X is a member of In(l). It is-shown that the
class Pr(l) consists of only the zero space. It is shown
that the dual space of a projective space is injective
and that the dual space of every injective space is
projective if the dual spaces of a certain class of
injective spaces are projective. The notion of a
*-projective Banach space is defined and it is shown that
the dual space of a *-projective space is injective.
Finally the author proves that a non-zero Banach space
is se arable and projective if and only if it is equivalent
to I 5) for some at most countably infinite set S. Open

questions are discussed.
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Notation and Terminology

In this section we define explicitly the various

notations and terminologies which we shall be using.

Additional notation and terminology will be introduced

in particular chapters as needed.

If A and B are sets, A C B will mean that A

is a subset of B, with the possibility that A = B

not excluded. The empty set will be denoted by 0. If

A and B are non-empty sets, AxB will denote the

cartesian product of A and B, i.e.

AxB = ((a,b)| a e A, b e B).

If A and B are Banach spaces over the same

field of scalars, A C) B denotes AxB equipped with

the following Banach space structure: Addition of two

elements (a,, b1 ) and (a2, b2 ) of AxB is defined

by (a1 , b1 ) + (a2, b2 ) = (a1 + a2, b, + b2), multiplication

of (a, b) e AxB by a scalar a is defined by

a(a, b) = (aa, ab), and the norm of (a, b) is defined

to be ||(a, b)IA e B = |lallA + |iblB where || 1|A and

11 1B denote the norms in A and B respectively.

If A and B are non-empty subsets of the same

vector space, A + B denotes the set

(a + b I a e A, b e B}. If B consists of only one
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vector, say x, wewrite A+B=A+x= (a +x I a eA).

If a is a scalar, aA denotes the set {aa I a e A}.

If X and Y are normed linear spaces, we say

that X is equivalent to Y if there exists a one-one

bounded linear transformation T from X onto Y with

bounded inverse. We say that the normed linear spaces

X and Y are congruent if there exists a linear

transformation T from X onto Y such that

jjTxj| = ||x|| for all x e X. A linear transformation T

from a normed linear space X into a normed linear

space Y with the property that I|TxII = |ix|| for all

x e X will be called an isometry. We shall also refer

to congruent normed linear spaces as being isometric

spaces and isometrically isomorphic spaces.

If X is a vector space, a linear transformation

T from X into X is called a projection if T2 = T,

i.e. T(T(x)) = T(x) for each x E X.

When we say that a subset Y of a normed linear

space X is closed, we mean that Y is closed with

respect to the topology induced by the metric p on

XxX defined by p(x , x2) = 11x1 - x211, x1 , x2 E X.

Occasionally we shall refer to such a closed set as

being strongly closed.

When we say that a subset Y of a normed linear

space is a subspace, we mean that Y is a linear
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subspace and if we speak of the norm of an element

y e Y, we mean unless we specify otherwise the norm of

y when considered as an element of X.

If X is a Banach space and Y is a closed

subspace of X, we say that Y has a closed complement

in X if there exists a closed subspace W of X

such that X = Y + W and Y W = (0 . If Y has a

closed complement in X, we say that Y is complemented

in X.

If A, B, and C are non-empty sets and

f : A -> B and g : B -> C are functions, we shall

denote the composition mapping h : A -> C defined by

h(a) = g(f(a)), a e A, by gf. If f : A -> B is a

function and D is a non-empty subset of A, we denote

the restriction of f to D by f ID.

If X is a normed linear space, x0 e X, and r is

a non-negative real number, tne closed sphere of radius r

with center x0  is the set (x e X lx - x 0I < r). The

open sphere of radius r with center x0  is the set

(x e X lix - x0l < r).

If X is a normed linear space, the dual space of

X, i.e. the space of continuous linear functionals on X,

is denoted by X*.
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We say that a family of vectors (xs)seS, indexed

by a non-empty set S, in a normed linear space X is

summable and use the notation xs < oo if there

SES

exists a vector x E X such that if E > 0, there

exists a finite subset S of S such that if SF is

any finite non-empty subset of S containing SE, we

have lx - X xS11 < E. If such a vector x exists,

sESF

it is unique and we may write xs = x and call x

sES

the sum of the family (xSsES. For the basic properties

of this type of sunmability, the reader is referred to

Kelley [20, pages 77-79, exercise G and page 214,

exercise S] , Halmos [16, pages 17-19], or Day

[ 7, Chapter IV]. We assume the reader is familiar

with these properties. For example, if X is complete,

then xs < co if and only if for each E > 0, there

seS

The numbers in brackets refer to the Bibliography at
the end.



of S such that for every

non-empty finite subset S of S such that

sS~
SE F= we have uZ x5 11< E0

5ES F

Let (Xnin=1,2,... be a sequence of vectors in

n

a normed linear space X and let yn IX1, n = 1,2,...
i=l

If the sequence (Yndn=1,2,...

we write

converges to x E X,

xn = x and we say that the infinite series

n=l

00

Z Xn converges to x. Clearly if (xn n=1,2,...
n=1

is

summable with sum x, the series xn converges to x

n=l

00

(but not conversely). The notation xn < will

n=l

mean that (xn n=1,2, ... is summable. The notation

00

Z xn = x without any comment should be understood by
n=l

90

exists a finite subset S 6
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the reader to mean that the series

n=1

xn converges

-to x, without any implication of the summability of

[xn n=l,2,...

(xn)n=1,2,...

(although it will often

is indeed summable).

by the case

If S is a non-empty set and

by Ip(S)

functions

1 < p < o, we denote

the Banach space of all scalar valued

a defined on S such that

I1aIIAI (S)

by 2 (S)

functions

is defined to be (I
s ES

1

la(s) I P)PO We denote

the Banach space of all scalar valued

a defined on S such that

sup
s E S

sup
S E S

(|a(s)} < 00. Hall|
I W(S) is defined to be

(|a(s)|}. Addition and multiplication by scalars

of elements

If S = (81,

of
Ap (S)
p.)

(I C(S))

shall often for conveninece,

('9 (s)) by a = (al,

are defined pointwise.

countably infinite set, we

denote the elements a of

... ) where

te by c 0 (S)i = 1,2,... We deno

that

s
5 ES

Ap (S)

ai = a(s ), the closed

a(s) I < o.,
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subspace of AX,(S) consisting of those functions a

such that for each E > 0, the set [s e S | Ia(s)I > c)

is finite. Although we may neglect to say so in each

specific instance, whenever we refer to a set S in

connection with A P(S), A(S), etc., S will always be

a non-empty set.

If S is a non-empty topological space, we denote

by C(S) the closed subspace of continuous functions in

AJ,(S). Usually S will be compact and Hausdorff.

Let S be a non-empty set and let (A ssS be a

family of Banach spaces indexed by S. We denote by

s
s eS

( As the A direct sum of the spaces As' i.e.

SAs
5 ES

S into

is the Banach space of all functions

U As such that a(s) e A for each
seS

and such that I j|a(s)1A
SES I s

< co where Iia(s)|1A
s

the norm of the element a(s) e As. Addition and

multiplication by scalars of elements of Z (DA are
sSS

a from

s E S

denotes
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defined pointwise and the norm of a e ( 3)A. is

seS

defined to be |Ia(s)I"A '

sess

Let - co < a < b < oo. L [a, b] denotes the Banach

space of all equivalence classes of Lebesgue integrable

scalar valued functions defined on the closed interval

[a, b], two such functions being equivalent if their

difference is zero except on a set of Lebesgue measure

zero. As is ordinarily the case, we shall refer to the

members of L 1 [a, b] as if they were functions, rather

than equivalence classes of functions. Addition and

multiplication by scalars of "functions" in L 1 [a, b]

are defined pointwise and the rhorm of f e L [a, b] is

fbIf(x)|dx where the integral is of course the Lebesgue
a

integral.
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INTRODUCTION

Although the adjective "injective" is borrowed

from homological algebra and is consequently relatively

recent in origin, the study of injective spaces can be

said to have originated in the late 1920's and early

1930's with the Hahn-Banach theorem. This theorem asserts,

in one of its several forms, that a continuous linear

functional defined on a subspace of a normed linear

space can be extended to a continuous linear functional

defined on the whole space with the same norm as the

original functional. One is immediately led to consider

the following problem: Given a normed linear space I of

dimension greater than one, and a bounded linear trans-

formation T defined on a subspace Y of a normed linear

space X and having values in I, does there exist a

bounded linear transformation T : X -> I such that

||Th = |1Th and such that T(y) T(y) for all y e Y?

The answer to this question is in general no even if we

relax the requirement that ||T|| = |IT!|. An early example

to show that the answer is no can be found in Fichtenholz

and Kantorovitch [ 9]. Since the answer is no in general,

one is led to consider those spaces I for which the

answer is affirmative and to formulate the notion of an

injective space and in particular the notion of an



In() space, 1 < ?\ < 0o. One of the earliest examples

of such a space was given by Phillips [33] which we

present in Chapter I (Theorem 1.9). Our proof is

similar to that of Phillips although he obtained the

theorem as a corollary to his theorem giving the general

form of a bounded linear transformation from a Banach

space to 10(s).

Sobczyk announced in an abstract (Sobczyk [37]) a

result which is equivalent to the statement "If a

Banach space is injective, then it is a member of the

class In(?\) for some finite ?." He proved this result

in Sobczyk [38], but by rather complicated methods. We

present in Chapter III an elementary proof of Sobczyk's

theorem, based on a necessary (and sufficient) condition

for injectivity which we establish in Chapter II.

Nachbin [30] suggested fcr investigation the study

of "injective spaces" if we restrict some of the spaces

in the definition of injective space to certain categories

of spaces. In Chapter V we present some results of our

investigation of this topic. Our results are of the

1 Precise definitions of these terms will of course be
given in Chapter I.



type where it appears that we define a "weaker" sort of

injective space, but in reality the "weaker" type of

injective turns out to be injective in our original

sense. Some of the results in Chapter V were announced

without proof by the author in Metas [26].

For some time it has been known that if a Banach

space X has the property (which we shall call

property 6>) that for all Banach spaces Y which contain

X as a normed linear subspace, there exists a bounded

projection from Y onto X, then X is injective and

conversely. We have avoided using this definition of

injective as long as possible (Chapter VI) for the simple

reason that it is cumbersome to show that property 9 is

preserved under congruence. Since we need this definition

for our later work, we present a complete treatment of

the equivalence of the two definitions of injectivity as

well as their equivalence to two other definitions. In

order to establish the equivalence of these various

definitions of injectivity we require the lemma that

property Y is preserved under congruence and we present

1 Indeed most of the examples of non-injective spaces were
established by showing that there does not exist a
bounded projection from some superspace onto the space.

15.
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a complete proof of this fact (Lemma 6.4). It may be

pointed out that most writers in this field have used

this fact without explicitly stating it. Goodner [11]

states it as a lemma, but overlooks a logical difficulty

in his proof.1 We trust that we have not overlooked

anything in our proof of it. The equivalence between

some of the definitions of injectivity considered in

Chapter VI were observed by Akilov [2] and Phillips [33].

Nachbin [29] proved that a real Banach space X is

a member of the class In(l) if and only if the set of

all closed spheres in X has the binary intersection

property. We generalize the binary intersection property

to the 2 -intersection property, 1 < ?\ < c, (so that our

1-intersection property is the binary intersection

property) and we generalize the necessity part of

Nachbin's theorem so that it reads "If a real Banach

space X is a member of the class In(?\), then the set

of all closed spheres in X has the \-intersection

property." We present two proofs of this result, the

1 In hiq emma 2.3 Goodner [11, page 90] constructs a set
Z = X\- W' and proceeds to define a one-one mapping U
from Z onto a space W. Implicit in his definition
of U is the condition that X and W1 are disjoint
and it just is not necessarily the case that they are
disjoint.
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first of which imitates Nachbin's proof for the case

A = 1, and the second of which assumes Nachbin's result

and deduces the result for ?\ > 1 with the aid of our

necessary and sufficient condition for injectivity of

Chapter II. We use our generalization of Nachbin's

result to prove a special case of a theorem on injective

spaces announced without proof by Lindenstrauss [21].

We introduce the notion of a projective Banach space

by going directly to the definition of "projective" as

it appears in homological algebra (see for example

Northcott [31]) with Banach spaces as our objects and

bounded linear transformations as our maps. This definition

is obtained by merely reversing the arrows in the diagram

which describes the definition of "injective". We then

proceed to prove (Proposition 1.4) that projectivity is

equivalent to the existence of a bounded linear transformation

which lifts (with respect to the canonical quotient map)

a given bounded linear transformation from a Banach space

into a quotient space. This alternate definition of

projectivity enables us to define the classes

Pr(O), 1 < \ < co of projective spaces.

In Chapter II, we establish a necessary and sufficient

condition for a Banach space to be projective and in

Chapter III we use this result to prove the analogue for
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projective spaces of the theorem of Sobczyk, namely that

every projective Banach space is a member of Pr(O) for

some 7. This result, in slightly different notation,

was announced by the author in Metas [25]. In

Chapter IV we establish a necessary condition for

projectivity which allows us to construct examples of

non-projective spaces. In Chapter V we introduce some

apparently weaker definitions of projectivity and proceed

to show that these definitions are actually equivalent

to projectivity. Some of these results were announced

by the author in Metas [26]. In Chapter VIII we show

that the analogue for projective spaces of the theorem

of Lindenstrauss on injective spaces (which we referred

to earlier) is false by showing that the class Pr(l)

consists of only the zero space. In Chapter IX we

consider dual spaces of projective and injective spaces.

In Chapter X we give a complete proof of a difficult

theorem of Pelczynski which states that if S is a

countably infinite set and X is an infinite dimensional

closed subspace of X1(S) with a closed complement, then

X is equivalent to Jl(S). The proof we give differs

in several respects from the one given by Pelczynski [32].

We avoid Pelczynski's use of previous results of

Bessaga and Pelczynski [6] and of Nikolskii and replace

them by direct arguments, thereby making the proof
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completely self-contained. We have also corrected a

number of incorrect statements that appear in Pelczynski's

proof.

Finally using the theorem of Pelczynski together

with our necessary and sufficient condition for projectivity

of Chapter II and the well known result that a separable

Banach space is the image under a continuous linear

transformation of 11(s) for some countably infinite

set S (of which we give a proof in Chapter II), we

obtain a characterization of all separable projective

Banach spaces.
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CHAPTER I

Definitions and Examples

In this chapter we shall define the notion of an

injective Banach space and the notion of a projective

Banach space. The classes In( ) and Pr(?\), 1 < ?\ < m,

of such spaces respectively will be introduced and examples

of injective and projective spaces will be given.

1.1 Definition. A Banach space B is said to be

injective if for all Banach spaces X and Y and all

bounded linear transformations i and g where i maps

Y onto a closed subspace of X in a one-one manner and

g maps Y into B, there exists a bounded linear map

g :X -> B such that g = gi.

Using the diagrammatic notation of exact sequences

we can express the situation of the preceding definition

as follows

0 -> Y -> X (exact)

(1.1)

B

and we can say roughly that every bounded linear map

from Y into B "extends" to a map from X into B

such that the diagram is commutative. If we reverse all

the arrows in (1.1), we obtain the following diagram:
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O -Y --- X (exact)

(1.2) T /
B

We are thus led to the following definition which is in a

sense dual to Definition 1.1.

1.2 Definition. A Banach space B is said to be

projective if for all Banach spaces X and Y and all

bounded linear transformations g and f where g maps

X onto Y and f maps B into Y there exists a

bounded linear transformation f : B -0 X such that f = gf.

Roughly we can say that every bounded linear map f from

B into Y "lifts" to a map ? into X and we call f

a "lift" for f or we may say that "f lifts f".

1.3 Remark. The preceding two definitions are

meaningful in the case where all our Banach spaces are

complex as well as in the case where all our Banach spaces

are real. From this point on, when no mention is made of

the scalar field associated with the Banach space (or spaces)

under discussion, it is to be understood that the statements

made are valid both for the real and the complex cases.

The purpose of our first proposition is to show that

we can narrow down somewhat the classes of Banach spaces

and bounded linear maps that one must examine in order to

establish that a given Banach space is projective or

injective.



1.4 Proposition.

(a) Let P be a Banach space. Then P is

projective if and only if for every Banach space X,

every closed subspace X of X and every bounded linear

transformation T : P + X/X, there exists a bounded linear

transformation T : P X such that T = QT where Q is

the canonical quotient map from X onto X/Xo.

(b) Let I be a Banach space. Then I is

injective if and only if for every Banach space X,

every closed subspace Y of X, and every bounded linear

transformation g : Y + I, there exists a bounded linear

transformation g : X I I such that the restriction of

g to Y is g.

Proof. (=>) If P is projective, it is clear that

the map T with the properties asserted in (a) exists. If

I is injective we can let i : Y -* X be the identity

mapping and then the map g : X -+ I with the property that

gi = g has g as its restriction to Y.

(<=) (a) Assume that every bounded linear transformation

from P into a quotient space lifts and suppose that g is

a bounded linear transformation fram X onto Y, X and Y

arbitrary Banach spaces, and f is a bounded linear

transformation from P into Y. Let Xo = g (0).

Then Xo is closed in X and so X/Xo is a Banach space.



Let Q : X -> X/XO be the canonical quotient map.

Then there exists a one-one linear transformation C

from X/Xo onto Y such that *Q = g. Indeed 9 is

continuous. For let Y be an open set in Y. Then

?l (Yl) = Q~(g(Y)) and since g is continuous,

g~1 (Yl) is open in X. Since Q is an open map,

Q(g~ (Y )) is open in X/Xo. So ?P is continuous.

So $~' Y -> X/Xo is continuous. We have the

following situation:

P

(1.3) Y

XX/X

By hypothesis, there exists a bounded linear transformation

f : P -> X such that QIf= , f. Hence of = f,

that is, gf = f. So P is projective.

(b) Assume that every bounded linear trans-

formation from a closed subspace extends. Suppose that

i is a one-one bounded linear transformation from a

Banach space Y onto a closed subspace i[Y] of a

Banach space X and let g : Y -> I be a bounded

linear transformation. Let j : i[Y] -> Y be defined

by J(i(y)) = y. j is well defined, linear, and bounded.



So gj : i[Y] -> I maps a closed subspace of X into

I. By hypothesis, there exists a bounded linear

transformation g : X -> I such that the restriction

of g to i[Y] is gj. So for y e Y,

g((y)) = g(j(i(y))) = g(y). So gi = g. Hence I is

injective. Q.E.D.

Thus for the projective case we need merely

consider spaces Y = X/X with g (in Definition 1.2)

the canonical quotient map, and for the injective case

we need merely consider closed subspaces Y of X.

Indeed we shall use Proposition 1.4 as our definition of

projective and injective Banach spaces almost exclusively

from now on. Later we shall show how the class of

spaces X and Y in our original definition can be

narrowed down even further.

1.5 Definition. Let 1 < ?\ < co. An injective

Banach space I is said to be a member of the class

In,(A) if the map g in Proposition 1.4(b) can be

chosen such that 11|1 < A||gt. A projective Banach

space P is said to be a member of the class Pr(O)

if the map T of Proposition 1.4(a) can be chosen such

that |hI| < ?1'ITh|.

The familiar Ikn-Banach theorem states that the real

field and the complex field are both in In(l). Indeed

4". 8



one can view the study of injective Banach spaces as a

study of those Banach spaces for which a generalized

Hahn-Banach theorem holds.

We shall now proceed to construct examples of

projective and injective Banach spaces. We require a

lemma first.

1.6 Lemma. Let S be a non-empty set and let

(P 1S be a family of projective Banach spaces indexed

by the set S. Assume that each PS e Pr(2A ) and

that sup ? s } < co. Let L = Z P be the A direct
ses S

sum of the spaces P . Then L is projective and is a

member of Pr(N) where ?\ = sup (s *stS

Proof. For each s e S let is be the natural

injection of P5  into L. In other words, if y e P,

then is(y) is that function in L whose value is

Os, for s' / s (where Os, denotes the zero element

in PS,) and whose value at s is y. It is easy to

see that is is linear and that Ii( L P= II l

Let X be a Banach space and X a closed subspace

1 When there is no danger of confusion, we shall in the
future usually omit the name of the space as a subscript
and merely write |1 ||.



of X. Let f : L -> X/X e

transformation. Let f = fis Then f is a bounded

linear transformation from P5
into X/XO and since

E Pr(A 8), there exists a bounded linear transformation

: -> X

quotient map from

such that
Qs

= f s

X onto X/Xo)

(where Q is the

and I| 8,, < ?\ 11f5 1 .

We want to define a map : L -> X. It seems

reasonable to define f a

(1.4) f(a) =
seS

However we must first show

(1. 4) does

s follows:

8 (a(s)), a e L

that the right hand side of

indeed define an element of X, i.e. that

Now for every non-empty finite

of S we have

(a(s)
SES F

)| I

(1.5)

I

SES F

seSF

X NlSfIl Ila(s)l
sSSF

= 7'|lf|1 Hal < oo*< ?\lf 1 X ||a(
seS

So the family [IIff (a(s))II)s 5 is summable which implies

P5

-s

s
5 ES

f (a(s))
,5

< O.

subset S

be a bounded linear

.11fs|1 lla(s)||||f || Ila(s

X11fi 8 1 Ila(s) 11 <
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the summability of the family So the

right hand side of (1.4) does indeed &fine an element

of X and so if we define

a mapping from

by (1.4), we have

L into X. It is easy to see that

is linear.

Now to prove that f lifts ff, i.e. that Qf =

Let a e L. First we show that the family of vectors

in L is summable to a. Let e > 0.(is (a(s))),e

Now since ljal

subset S. :

X
5 ES

|ha(s) lip
.5

f S such that

fintte and non-empty, then I ||a|1L

there exists a finite

-
s5 SF

SC C SF C S,

|a(s) 1iPs < E.

a -

SESF

is that function in L whose

value is a(s) if s / SF and whose value is

if s C SF 0

|la - X
ses F

i (a(s))I|L

= a|uL - I
ses F

I|a(s)||1,
I s

1I ahllL I
6SesF

||a(s) lip I

(We have used here the fact that if

sunmable family of Vectors and if

Now

So

o eP5 5

=
sS-S

|ia(s)lip
- s

< E.

(XS) SES is a

({ 8(a(s))}) S.

S F



Lb.

then the

families (xS IsA and [x I eB are both summable and

indeed xs = xs + xs.)

seS sEA s EB

that a = z i s(a(s)). Now

sES

Qf(a)

(1.6)

So we have shown

= (s(a(s))) =Z Qfs(a(s))
sES SES

= f5 (a(s)) = f(is(a(s)))
seS seS

S S (a(s)) -
sS

So Qf = f. Finally we have to show that |lf1 _< X||f |.

Now I(a)| = || fs(a(s))I| which equals

SES

(since the

norm on a normed linear space is a continuous function)

1 The pulling of Q inside the summation sign and the
pulling of f outside the summation sign is justified
by the fact that Q and f are continuous and that our
definition of the sum x of a summable family of vectors
{x dses in a normed linear space X coincides precisely

with the definition of limit of a generalized sequence
if we take as our generalized sequence the set of all

finite sums Zxs, d a finite non-empty subset of S.

sed
More precisely, let D denote the set of all finite
non-empty subsets of S and let : D -> X be defined

by .(d) = xs, d e D. If we make D into a directed

sed

S = A UB, AnB = 0, A /' 0, B /' 0,



lii ifs(a(s))II where D is the directed set of all

D sed

non-empty finite subsets of S (see Footnote 1, page 28).

But by (1.5)

|| f s(a(s))| |lf (a(s))II A 1f||a|l

sEd sed

which implies that lim || (ct(s))jj < AIf| |aI .
D sed

So lIf(ct) I| < AIJfllI| jall. So lif|1 ?ilfj|. Q.E.D.

Using Lemma 1.6 we can now prove a theorem which

provides us with examples of projective Banach spaces.

1.7 Theorem. Let S be a non-empty set. Then

L9(S) is projective and belongs to Pr(l+e) for every

E > 0.

Proof. Let K denote the scalar field. For each

s e S, let Ks = K. Then L8(S) = X (Ks and

5ES

so by Lemma 1.6 it suffices to show that K e Pr(1+e)

for every e > 0. Let X be a Banach space, X 0 a

1 set by taking as our relation ordinary set inclusion
for the finite subsets of S, then "the eneralized
sequence : D -> X converges to x symbolically
lim c(d) = x)" means precisely that "txs seS is
D
summable to x." (See Dunford and Schwartz [8 , page 26,
Definition 1 and page 27, Lemma 4]).



closed subspace of X, Q the canonical quotient map

from X onto X/XO and f a bounded linear trans-

formation from K to X/X . Let e > 0 be given.

Now since

inf ({1|x| X) 1f( )1X/X 1f11 1= lf1'
xef(l) X 0

there exists an x e f(l) such that lixel < (1 + E)j|11|.

Define f : K -> X by f(a) = ax. Then f is linear

and |i||| < (1 + e)I1fl|. Also Qf(a) = aQ(xE) = af(l)

f(al) = f(a). So Qf = f. Q.E.D.

1.8 Remark. A natural question to ask at this

point is whether 1(S) e Pr(l). It will be shown in

a later chapter when a more general question is answered

that the answer is no.

Our rext theorem provides us with examples of

injective Banach spaces.

1.9 Theorem. Let S be a non-empty set. Then

100(s) e In(l).

Proof. For each s e S define a linear functional

f, on A,(S) by f5 (a) = a(s). Then since |f 5(a)l

= |a(s)l sup |a(t)j = ||a|iA(s), we have hf S1 <1

Let X be a Banach space, Y a closed subspace of X,

and g a bounded linear transformation from Y to 2.(S).



We want to extend g to g : X -> I (S) with

|g|h 1 |g|. Let g = f g. Then g is a linear

functional on Y and indeed 11gs1 11fsgjj < 11fs11 h1a1i

< |g|. By the Hahn-Banach theorem each g extends

to a linear functional 9. on X with ||g1 = 1g*11.

Define g : X -- > ,(S) as follows. For x E X,

define (g(x))(s) = N(x). Now sup {|(g(x))(x)|}
seS

sup 1|0V(x)|} < sup 1II |h1 ||x|) < 1|gl ||xi| (since
E - SES

119"', 11||g 11 < |lgI for all s E S) < co and so 2(x)

E ,(X). That g is linear is clear and since

|,VX) 1 S) ||lIxhl, it follows that ||g|| 1 < |g|. All

that remains to be shown is that g restricted to Y

is g. Let y e Y. Then for each s e S, we have

(~(y))(s) = is(y) = gs(y) fs(g(y)) = (g(y))(s).

So g extends g. Q.E.D.

In a later chapter we shall give -a geometrical

proof of Theorem 1.9 for the case where our scalar

system is the real field.

1.10 Remark. The reader will have noticed that

our examples of projective and injective Banach spaces

were in fact members of the classes Pr(X) and In(? )

respectively. That this was not accidental will be



shown in a later chapter when the following striking

results will be established: If a Banach space is

injective, then it is a member of In(A) for some

finite A. If a Banach space is projective, then it

is a member of Pr(O) for some finite A.

1.11 Remark. In the next chapter we shall show

that if a Banach space X is injective (projective) and

X is equivalent to a Banach space Y, then Y is

injective (projective). If we assume this fact, it is

easy to see that a finite dimensional Banach space B

is injective and projective. For let B have dimension

n > 0. (If the dimension of B is zero, the result is

immediate.) Then B is equivalent to the space I 8(Sn)

and to the space Y(Sn) where Sn = (1, 2, ... , n}.

In later chapters we shall give examples of

non-projective Banach spaces as well as examples of

non-injective Banach spaces.



CHAPTER II

Necessary and Sufficient Conditions

for InJectivity and Projectivity

In this chapter we shall prove a theorem (2.4)

which establishes necessary and sufficient conditions

for a Banach space to be projective and an analogous

theorem (2.8) which establishes necessary and sufficient

conditions for a Banach space to be injective. Unfortunately

these conditions are not very helpful for constructing

concrete examples of such spaces. They will be used

however in subsequent chapters for establishing various

theoretical results.

2.1 Lemma. Let T be a bounded linear transformation

from a Banach space X onto a projective Banach space P.

Then there exist closed subspaces A and Y of X such

that X = Y + A, A Y = (0) and Y is equivalent to P.

Proof. Put A = T ((0). Then A is a closed

subspace of X. Let Q be the quotient map from X

onto X/A. As in the proof of Proposition 1.4, part (a),

it follows that there exists a one-one bicontinuous

linear transformation T from P onto X/A such that

TT = Q. So we have the following situation:



~yt.

P

IT
X-> X/A

Q

Since P is projective, there exists a bounded linear

transformation S : P -> X such that QS = T. Since

T is invertible and T = QS = TTS, it follows that

TS =1 = the identity map on P. Let Y = S(P). First
P:

we shall establish that X = Y + A, A Y = 10). Let

x e X and let y = S(T(x)). Then y e Y and

T(x-y) = Tx - Ty = Tx - T(ST(x)) = Tx - Tx (since TS = I )

-0. So x - y e A and so X= Y + A since x= y + x -y.

Now suppose z e A Y. Then z = S(p) for some p e P

and Tz =0. So p = 1 (p) = TS(p) = Tz = 0. So

z = S(0) 0. So A Y= (0).

To show Y is closed in X, let yn e Y, n = 1,2,3,...,

and let lim y = x E X. We want to show that x e Y.
n -> o

Let yn n ' n E P. Then S(pn) >x and so

QS(pn n) -> Q(x). But Y~ is continuous and hence

pn = T((pn)) -> T (Q(x)). Since S is continuous

and pn -> T 1 (Q(x)), it follows that Spn -> 5T*Q(x).

But Spn -> x and so x = S(T~ Q(x)) e S(P) = Y. So

Y is closed and in particular Y is a Banach space.



Finally to show that Y is equivalent to P, let

S(p)= 0. Then p = 1(p) = TS(p) = 0. So S is aP
one-one continuous linear transformation from the Banach

space P onto the Banach space Y. By the closed graph

theorem, S-1 : Y -> P is continuous. So Y is

equivalent to P. Q.E.D.

2.2 Lemma. Let B be a Banach space. Then

(1) there exist a set S and a bounded

linear transformation T with ||Th| < 1 from 81(s) onto

B; and

(2) each y e B has at least one

pre-image in I (S) with the same norm as y.

tf B is separable, there exists a countably infinite

set S satisfying (1) above.

Proof. Let U= [x e B IixI < 1) and let S = U.

Let a e 21(S) and let S. denote any finite non-empty

subset of S. Then

Ia(x)xl| = a(x) I |x|1 < a(x) I Ia(x) I = |1aI <0.

xeSF ' xES xeSF XES

So the family (Ia(x)x||)xes is summable which implies

the summability of the family (a(x)x} xC. So a(x)x

xES



defines a vector in B and indeed |1 a(x)xl| 11a|4.

xeS

Define T : Ai(S) -> B by T(a) = Za(x)x. Then

xeS

T is bounded, linear, and 11T1 < 1. Now for each x E S,

define e on S by e (s) = 1 if a = x and e (s) =0

if s / x. It is clear that E C A(S). If y e B

and y / 0, then e S and T(jly|fE ) = |jyjjT(e )

- Hly|l = y. So T maps 11(s) onto B and an

element y L 0 in B is the image under T of the

element Ilye and 11 |ly1E y y 0 hIYIh1 () 11y1ll Hyl.

So (1) and (2) are proved.

If B is separable, then so is the closed unit

sphere U = (x E B ||x! < 1) of B. Let

S = (y1, y2 , ... } be a countably infinite subset of U

which is dense in U. 1 We construct our map T from

21(S) to B as before. Indeed in this case we can

for convenience denote our elements a e Xl(S) by

1 If B consists of only one element, namely 0, then
there does not exist such an infinite set, but in this
case the lemma is trivial since we can take S to be
any countably infinite set and T to be the zero map
from 21(S) onto B.



Ji j

a = (al., a2, ... ) where a = a(yi), 1, 2,.

CO

and write T(a) = Z y . T is as before bounded and

i=l

linear and |1T|| < 1. We want to show that T maps

Xl(S) onto B. It suffices to show that U C T(11(S)),

for if z E B, z / 0, then w = e U and hence

w = T(a) for some a e I (S) and therefore

z = ||zI|w = T(|lza).

Let u e U, u / 0, be fixed, Let u = n u, n =1,2,...,
2

and let cn = n = 1,2,.... Let G denote the
2

1 H~ull
open sphere in B of radius ( +) and center

C1 2

at U1 . It is easy to see that G consists of all

vectors in B of the form 1 (u + a) where
l.1

ail < . G C U since

u + a)11< 2 u + |< 3uI 2 + li)

2 31lul.
<31u||1 2

Since S is dense in U, there exists a point (indeed

infinitely many points) of S in G Let n be the

smallest positive integer such that yn e 1 G. Then



38.

1 (u1 + a1) for some
Yn -1 11

|a 1 i <k . Let b = u 1 +al. Then yn = . LetCl

G2 denote the open sphere in B of radius 1

and center at ( - a,). G2  consists of all vectors
2

in ~~c 2 2 2 hr hi ~

in B of the form - a + a) where lal < .

02 C U since H (u2 - a + a)hl < (| u2l + h|all + lail)
2 2 21u1 21

< + + lI4+Y ) < 3 u J=1. Since S is

dense in t, there exist infinitely many points of S

in G20 Let n2 be the smallest positive integer

greater than n such that y

yn2 = (u2 - a + a2)2 2

E G2 . Then

for some a2 (a2 = c2y 2
-u 2 + a,)

with Ia 2 l< 1  . Let b 2 =u2 - a + a2 . Then

_b 2
y - . If we let a =0, then by induction there

2 0

exist sequences (an n=o,1,2,... and [b =

in B such that lan 1 , n = 0,1,2,...,

bn = un - a n- + a n n = 1,2,..., and an increasing

sequence of positive integers (n and a

al(al = C yn - u) with



sequence

such that

(yn 1 =1,2,.
i

of distinct vectors in S

= , i = 1,2,... For suppose m is a

positive integer and a0 , al ... , am and b , b ... , bm

and ni, n2 , ... , n. and yn ' n ' '' nm have been

chosen and satisfy the aforementioned conditions. We

want to choose am+1, bM+1, nm+l, and y nm+. Let Gm+1

denote the open sphere in B of radius 1 hu
cm+l 2m+2

and center at

vectors in B

Hall < Jh2IL
em+2

c+1 %+l - am) . Gm+1 consists of all

of the form c (utn+l - am + a)
m+l

Gm+l C U since

where

+1 - am + a)|| <12u11 (Ij+1h + |iamhl + |1a|l)

2ml (1L + 2J+J + )31u12Jr+l 2m+l 2m+

2 m+1 3m+ uI 1

3 Hul| 2m+l

There exist infinitely many points of S in Gm+,-

Let n,+, be the smallest positive integer greater than

nm such that ynm+l
EG+1 . Then y

m+1 0 m+l c + (um+1 - am + am+1

1

Yi

.a



I4'.-,.

for some am+, with | iam+11 .< We let
ifl+1 2

bM+1 = Um+l - am + am+1 and hence y
xn~l m +1l

= M+- and
cm+l

our induction is completed.

Now it is clear that un = u and that

n=1

lim an = 0. Also since
n -> n

b1 + b2 + ... + bn = u1 + a1 + u2 - a1 + a2 + ... + u - an-l + an

= U1 + u2 + ... + un + an

n

u + an
i=l

-> u as n->o,

it follows that bn = u. Let S = ,in

n=1
n2 n3

Define a scalar valued function on S by

(s) = 0 if s S ,

n ) = , i = 1, 2,.

Since c = 3hI|ull, i = 1, 2, ... , it is clear that
2



E 21(S). Also T( ) = b c =
1=1 c=

b = u. So U C T(21 (S)) and hence T maps 11(S)

i=l

onto B. Q.E.D.

2.3 Lemma. Let P be a projective Banach space

and let X be a Banach space equivalent to P under

the mapping : P -> X. Then X is projective. If

P c Pr(?\), then X E Pr(?') where 'N ?1-II 115 i

(and in particular if X is congruent to P, X E Pr( )).

Proof. Let Y be a Banach space, Y0 a closed

subspace of Y, Q the quotient map from Y onto

Y/Yo, and f a bounded linear transformation from X

to Y/Yo. Then f : P -> Y/Yo lifts to g : P -> Y.

But then ~1 : X ->Y is a lift for f since

Q(g2~1) - f (since g lifts f)= f. So X

is projective. Finally if P e Pr(?N), the map g can

be chosen so that ughJ < ?\11f 11and hence

So X c Pr(\'). Q.E.D.

2.4 Theorem. A Banach space P is projective if

and only if P is equivalent to a closed subspace with

a closed complement of some 1(S).



Proof. (a) Assume first that P is projective.

By Lemma 2.2 there exists a set S and a bounded linear

transformation T from Il(S) onto P. By Lemma 2.1

there exist closed subspaces A and Y of 21 (S)
such that 41(S) = Y + A, A Y = t0), and Y is

equivalent to P.

(b) Now assume that there exists a set S,

closed subspaces Y and A of Il(S) with Y n A = (0)

and 1 (S) = Y + A and such that Y is equivalent to P.

We want to show that P is projective. By Lemma 2.3

it suffices to prove that Y is projective. Now

because Il(S) = Y + A, and A and Y are closed

subspaces with A Y = to), there exists a bounded

projection T from .9(S) onto Y (see Dunford and

Schwartz [8 , page 480]). Let X be a Banach space,

Xe .a closed subspace of X, f a bounded linear

transformation from Y to X/Xo and Q the quotient

map from X onto X/Xo. Let i : Y -> 2 (S) be the

identity map and let = fT. We have the following

situation:



LMT

y

X > X/XO

Since A(S) is projective (Theorem 1.7) there exists

a bounded linear transformation : 11(S) -> X

such that Q = = fT. Define f : Y-> X by

f = ji. Then f lifts f since for y e Y we have

Qf(y) = Q3i(y) = Q (y) = (y) = fT(y) = f(y) since

the restriction of a projection to its image (in our

case T restricted to Y) is the identity map on that

image. So Y is projective and hence so is P. Q.E.D.

2.5 Lemma. Let

transformation from an

a closed subspace of a

exist closed subspaces

X= Y4-A, AnY= (o)

If T is an isometry,

T be a one-one bounded linear

injective Banach space I onto

Banach space X. Then there

A and Y of X such that

and Y is equivalent to I.

Y is congruent to I.

Proof. Let Y = T(I). Then Y is closed in X

and hence is a Banach space. By the closed graph

theorem, T~ : Y -> I is bounded. Since I is



injective,

formation

closed in

extends to a bounded linear trans-

S : X -> I. Let A = S~ (O)).

X and if z e A n Y,

A is

then T (z) = S(z)

and so z = 0 (since is one-one). So A n Y

If x E X, then x = y + x - y where y = TS(x).

Certainly y E Y while S(y) = S(TS(x)) = T~ (TS(x))

so that x - y e S( )

equivalence between I an

congruence between them if

-A. Hence X = Y + A.

d Y is clear and so is

T is an isometry.

The

the

Q.E.D.

2.6 Lemma. Let B be a Banach space. Then there

exists an isometry T from B onto a closed subspace

of AI,(S)

Proof.

S = (f E B

by (Tx)(f)

< ||xl

2 (S)

for some set S.

Let K denote the scalar field and

I Ilfil < 1).

= f(x).

For x E B, define

Then I(Tx)(f)|

and so Tx e Y, (S).

defined by x -> Tx

The mappi

let

Tx : S -> K

= |f(x)| I < lfl| lixil

ng T from B into

is clearly linear and bounded

since IITxlI 2 (,) = sup
feS

<sup
feS

(ITx(f)|}

Indeed T

= sup
feS

(If(x)|)

is an isometry since

jjx|j = sup
feS

{|f(x)l) = sup
feS

(ITx(f)I} =

that T(B)

I|Tx| |8 ( S)C*

for us to show

= 0

= S(x)

T-1

.

It remains is closed in

(11fil 11xl|} < |1x||.



Let yn e T(B), n = 1, 2, ... , and assume

lim yn =y A(S). We want to show that y E T(B).
n -> o-

Now since the sequence (yn n=1,2,... converges, it is

Cauchy. Let yn = Txn' Xn e B, n = 1, 2, .... Then

it follows that the sequence (x n=1,2,... is also

Cauchyand so there exists an element x e B such that

lim xn = x. So T(xn) -> T(x). But T(xn) = yn -> y.
n ->o

So y = T(x) E T(B). So T(B) is closed in A,(S). Q.E.D.

2.7 Lemma. Let I be an injective Banach space

and let X be a Banach space equivalent to I under

the mapping : I -> X. Then X is injective. If

I e In(?'), then X e In(M') where ' = ? Ij| 11 || I

(and in particular if X is congruent to I, X e In(\)).

Proof. Let A be a Banach space, Y a closed

subspace of A, and f a bounded linear transformation

from Y into X. Let g = f. Then g is a bounded

linear transformation from Y into I. Since I is

injective, g extends to a bounded linear transformation

9 from A into I. Define f : A->X by f= g.

Then f extends f since for y e Y,

(y) = (y) = g(y) = lf(y) = f(y). So X is

I' -; 0



injective. Finally if I e In(\), the map g can be

chosen so that Ig|I < \IjgJI = XiI j1f 11 and so

So X c In(6). Q.E.D.

2.8 Theorem. A Banach space I is injective if

and only if I is congruent to a closed subspace with

a closed complement of some 10(s).

Proof. (a) Assume first that I is injective.

By Lemma 2.6 there exists an isometry T from I onto

a closed subspace of .(S) for some set S. By

Lemma 2.5 there exist closed subspaces A and Y of

A,(S) such that .90(S) = Y + A, A n Y = (0} and Y

is congruent to I.

(b) Now assume that there exists a set S,

closed subspaces Y and A of AO(S) with Y A = (0)

and I.&(S) = Y + A and such that Y is congruent to I.

We want to show that I is injective. By Lemma 2.7 it

suffices to show that Y is injective. Now because

c,(S) = Y + A and Y and A are closed subspaces

with Y A = (0), there exists a bounded projection T

from 1,(S) onto Y. Let X be a Banach space, B a

closed subspace of X, and f a bounded linear trans-

formation from B into Y. Let i : Y -> A.(S) be

the identity map and let g = if. Since A(S) is



injective (Theorem 1.9), there exists a bounded linear

transformation ; : X -- > (S) which extends g.

Define if : X -> Y by f = Tg. Then f extends f

since for b e B, we have f(b) P Tg(b) = Tg(b) = Tif(b)

= Tf(b) = f(b). So Y is injective and hence so is I. Q.E.D.

The two theorems in this chapter reduce the study of

projective Banach spaces to the study of closed subspaces

with closed complements of the spaces Al(S) and the

study of injective Banach spaces to the study of closed

subspaces with closed complements of the spaces A(S).

We shall use this reduction in some subsequent chapters

to deduce various theoretical results.



CHAPTER III

Pro~Jectivity Implies Pr('\); Injectivity Implies In(? )

In this chapter we shall establish the results

mentioned in Remark 1.10.

3.1 Theorem. If a Banach space P is projective,

then P is a member of the class Pr(?\) for some

finite \.

Proof. Since P is projective, there exist by

Theorem 2.4 a set S and closed subspaces Y and A

of (S) with Y A = (0) and A (S) = Y + A and

such that P is equivalent to Y. We shall show that

Y is a member of Pr(? 1 ) for some from which it

will follow by Lemma 2.3 that P c Pr(7). Because

l1(S) = Y + A, Y and A closed subspaces with

Y r A = (0), there exists a bounded projection T from

9 (S) onto Y. Let X be any Banach space, X0 a

closed subspace of X, Q the quotient map from X

onto X/X and f a bounded linear transformation from

Y into X/XO. Let g : X1(S) -> X/X0 be defined by

g = fT. Because 1 (S) e Pr(1 + e) for every 6 > 0

(Theorem 1.7), there exists (for a fixed E > 0) a

bounded linear transformation g : Xl(S) -> X such

that Qg = g = fT and such that



~K).

1|I;1 ! (1 + E)fJgJI = (1 + E )IfTII. Let i : Y -> l(S)

be the identity map. Then gi lifts f since for

y E Y, we have Qgi(y) = Q2(y) = fT(y) = f(y). Also

II"i|| 1II|1I Hill 11911 < (1 + E)j|g|l = (1 + E) JfTjj

< (1 + e)ITI lil. So Y e Pr(2\) with N 4 (1 + E)IITI

and so P e Pr(N) for some finite ?. Q.E.D.

The next theorem is the analogue of Theorem 3.1 for

injective Banach spaces.

3.2 Theorem. If a Banach space I is injective,

then I is a member of the class In(N) for some

finite 2.

Proof. Since I is injective, there exist by

Theorem 2.8 a set S and closed subspaces Y and A

of AC,(S) with Y A = (0) and A,(S) = Y + A and

such that I is congruent to Y. We shall show that

Y E In(N) from which it will follow by Lemma 2.7 that

I e In(N) also. Because Am(S) = Y + A, Y and A

closed subspaces with Y A = (0), there exists a

bounded projection T from .8.(S) onto Y. Let X

be any Banach space, B a closed subspace of X and

f : B -> Y a bounded linear transformation. Let

i : Y -> A,,(S) be the identity map and let

g : B -- > (S) be defined by g = if. Because .8(S)



e In(l) (Theorem 1.9), there exists a bounded linear

transformation g : X -> CO(S) which extends g and

such that 11g1! = |g|. Define f : X -> Y by f = Tg.

Then if extends f since for b E B, we have

(b) = Tg(b) = Tg(b) = Tif(b) = Tf(b) = f(b). Also

||1ff| = IlTg 1 < lIT1! 1111 = |T11| JJgjj = |IT| flifi 1 JIT| 11ff1.

So Y E In(?\) with A = |ITI| and hence I E In(?\). Q.E.D.

Thus we see that although in our concepts of

projective and injective as expressed by Proposition 1.4,

we did not require any restricting relation between the

norm of the extension map and the norm of the map

being extended, or between the norm of the lifting map

and the norm of the map being lifted, we do in fact

have a pleasant and surprising relation between the two.



CHAPTER IV

Some Non-projective Banach Spaces

The purpose of this chapter is to give some

examples of Banach spaces which are not projective.

Our method for accomplishing this is to prove that a

necessary condition for projectivity is that weak and

strong convergence of sequences coincide. Thus any

example of a Banach space in which weak and strong

convergence of sequences do not coincide is auto-

matically an example of a non-projective Banach space.

4.1 Definition. Let X be a normed linear

space. We say that a sequence of elements (xn n=l,2,...

in X converges weakly to an element x E X if

lim fn) = f(x) for every f E X. We say thatn -> o n

(xn n=l,2,... converges strongly to x if

lim IIxn - x~l = 0. (Thus strong convergence s ordinary

convergence with respect to the norm which we have

already had occasion to use although we have not called

it by any special name.) We say that weak and strong

convergence of sequences in X coincide if "(x n

converges to x weakly" implies "(xn) converges to x

strongly."

4.2 Remark. It is easy to see that if Cx n

converges weakly to x and to y, then x = y. Also

) L *



if (xn} converges strongly to x, then Cxtn converges weakly

to x. Thus the term "coincide" in the preceding

definition is justified.

4.3 Lemma. Let X be a Banach space with the

property that weak and strong convergence of sequences

coincide. Let Y be a Banach space equivalent to X.

Then weak and strong convergence of sequences in Y

coincide.

Proof. Let the sequence {Yn n=1,2,... in Y

converge weakly to y C Y. We want to show that

Ijyn -yi -> 0 as n -> co. Let T : X -> Y be the

mapping defining the equivalence between X and Y,

let yn = Txn, n = 1,2,..., and let y = Tx. So

T yn nxn and T = x. Let f be any continuous

linear functional on X. Define a functional fY on

Y by fy(z) = fX(T 1 (z)), z e Y. fY is linear and

since IfY(z)I = IfX(T'z)I < 11f 11 lIT Z11

X11f 1 11T 111 lzil, f is continuous. Since y -> y

weakly, fy(y) -> fy(y). In other words

fX(Tyn) -> fX(T 1 y), that is fX(xn) -> fX(x). So

x -> x weakly and hence 1|xn IX --> 0. So
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|lyn - ylly = |ITxn - TXY 11 liXn - Xix -> 0. So

yn -> y strongly. Q.E.D.

4.4 Lemma. Let Y be a subspace of a normed

linear space X. Let (yn n=,2,... and y be elements

of Y. Then (yn} converges weakly to y when considered

as elements of the normed linear space Y if and only

if (yn} converges weakly to y when considered as

elements of the normed linear space X.

Proof. (a) Assume {yn) converges weakly to y

when considered as elements of Y. Let f E X . We want

to show that f(yn) -> f(y) as n -> co. Let g be

the restriction of f to Y. Then g e Y and so

g(yn) -> g(y). But g(yn) = f(yn) and g(y) = f(y).

So f(yn) -> f(y).

(b) Assume (yn) converges weakly to y

when considered as elements of X. Let f e Y . We

must show that f(yn) -> f(y). By the Hahn-Banach

theorem, there exists an f e X such that the

restriction of f to Y is f. f(yn) -> f(y). But

(y f(y) and f(y) = f(y). So f(yn) -> f(y). Q.E.D.

4.5 Theorem. If P is a projective Banach space,

then weak and strong convergence of sequences in P

coincide.



Proof. Because P is projective, P is equivalent

to a closed subspace, say Y, of some 11 (S). Now weak

and strong convergence of sequences in 11 (s) coincide

(see Day [7 , page 33, Corollary 2]). By Lemma 4.4

weak and strong convergence of sequences in Y (when

considered as elements of the Banach space Y) coincide.

For if yn -> y weakly (yn y c Y, n = 1,2, ...) with

respect to Y, then yn -> y weakly with respect to

91 (S) which implies that ||yn - Y11 1 (S) -> 0 which

is of course the same as saying lyn ~Yl - -> 0. By

Lemma 4.3 weak and strong convergence of sequences

in P coincide. Q.E.D.

4.6 Corollary. If 1 < p < co and S = (s1,s2,,,,-

is a countably infinite set, the Banach space P(S) is

not projective.

Proof. Since S is countably infinite, we shall

use the convenient standard notation. For n = 1,2,...,

let fn Jn' 5n2' 6n3, ... ) where = 0 for

i / n and 5n = 1. Each fn c p(S). The sequence

(fn) converges weakly to 0. For let be any

continuous linear functional on 2 (S). Then there

exists g= (ge, g2 I --) E A(S) where -+-= 1(V 21q p q



such that for all y = (y, y2 -' 'pS'Y is

given by g iy. In particular (fn) 1'nl + 2" + .

i=l

gn But lim Ijgn|j = 0 since (g1, g2, ... ) E (S)
n -> co

and so lir, gn = 0. So >rm (fn) = 0 which means
n -> co n ->001

that the sequence (f ) converges weakly to 0. But

[fn) does not converge strongly to 0 since ||fn I (S) 1

for each n. So p (S) for 1 < p < co is not projective. Q.E.D.

4.7 Corollary. The complex Banach space L [0,1]

is not projective.

Proof. For n = 1, 2,..., and for x e [0,1]

define fn(x) =einx. fn E 1[0,1]. Let be a

continuous linear functional on L 1 [0,1]. Then there

exists a bounded measurable (and hence integrable)

function g on [0,1] such that for all

f E 1 [0,1], (f) f f(x)g(x)dx. In particular,
0 1

(fn) =fl eig(x)dx -> 0 (by the Riemann-Lebesgue

lemma') =f Og(x)dx = (0). So the sequence [fn

1 See Wiener [42, page 14] or McShane [23, pages 231-232].
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converges weakly to 0. However fr n does not converge

strongly to 0 since ffnL [0,l] - e |dx = flldx=l
0 0

for each n. So L [0,1] is not projective. Q.E.D.

4.8 Remark. There is nothing special about

complex L1 [0,1] that it fails to be projective, nor

about the finite interval [0,1]. For example, the

real Banach space 11[0,T] is not projective. For

let fn(x) = sin nx, x E [0,ir], n = 1, 2, 3, 9...

Then (fn) converges weakly to 0, again by the

Riemann-Lebesgue lemma, but (f n does not converge

strongly to 0 since f [L [0,7r] = f Isin nxl dx = 2
1 0

for each n.



CHAPTER V

Some Further Reductions in the

Definitions of Projective and Injective

In this chapter we shall show that we can narrow

down even further the class of Banach spaces X one

must consider in Proposition 1.4 in order to establish

that a particular Banach space is injective or projective.

5.1 Definition. A Banach space I is said to be

dually injective if for every Banach space X which is

congruent to the dual space of some Banach space, every

closed subspace Y of X, and every bounded linear

transformation T from Y into I, there exists a

bounded linear transformation T from X into I

which extends T. Clearly every injective Banach space

is dually injective.

5.2 Lemma. Let X be a Banach space which is

congruent to the dual space of some Banach space and

let I be a dually injective Banach space. Let T be

a one-one bounded linear transformation from I onto

a closed subspace of X. Then there exist closed

subspaces A and Y of X such that X = Y + A,

A n Y = {0) and Y is equivalent to I. If T is

an isometry, Y is congruent to I.

Proof. Let Y = T(I). Then Y is closed in X

and hence is a Banach space. By the closed graph
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theorem,, T1 : Y -> I is bounded. Since I is

dually injective, T extends to a bounded linear

transformation S : X -> I. Let A = S~ ({01). The

rest of the proof proceeds exactly as the proof of

Lemma 2.5 starting at the point where A is defined. Q.E.D.

5.3 Lemma. If I is a dually injective Banach

space, then there exist a set S and closed subspaces

Y and A of 1,c(S) with A,(S) = Y + A, Y n A = (0)

and such that I is congruent to Y.

Proof. By Lemma 2.6 there exists an isometry T

from I onto a closed subspace of O,(S) for some

set S. Now C,(S) is congruent to the dual space of

1(S) (see Day [7 , pages 29-30]). By Lemma 5.2

there exist closed subspaces Y and A of X.(S)

such that c(S) = Y + A, Y A = (0) and such that

Y is congruent to I. Q.E.D.

So we have shown that a dually injective Banach

space is congruent to a closed subspace with a closed

complement of some 20,(S). But by Theorem 2.8 we know

that if a Banach space I is congruent to a closed

subspace with a closed complement of some JO(S), then

I is injective. Hence we conclude
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5.4 Theorem. A Banach space I is injective if

and only if I is dually injective.

5.5 Definition. A Banach space P is said to be

dually projective if for every Banach space X which

is congruent to the dual space of some Banach space,

every closed subspace X0  of X, and every bounded

linear transformation T from P to X/X0 , there

exists a bounded linear transformation T from P

to X such that QT = T where Q is the quotient map

from X onto X/Xo. Clearly every projective Banach

space is dually projective.

5.6 Lemma. Let X be a Banach space which is

congruent to the dual space of some Banach space and

let P be a dually projective Banach space. Let T

be a bounded linear transformation from X onto P.

Then there exist closed subspaces A and Y of X

such that X = Y + A, Y A = (0) and Y is equivalent

to P.

Proof. Let A = T~ (0}). A is a closed subspace

of X. Let Q be the quotient map from X onto X/A.

There exists a one-one bicontinuous linear transformation

T from P onto X/A such that TT = Q. So we have the

following situation:



P

X g > X/A

Since P is dually projective, there exists a bounded

linear transformation S : P -> X such that QS = T.

Since is invertible and T = QS = (TT)S, it follows

that TS = 1P = the identity map on P. Let Y = S(.

The rest of the proof proceeds exactly as the proof of

Lemma 2.1 starting at the point where Y is defined. Q.E.D.

5.7 Lemma. If P is a dually projective Banach

space, then there exist a set S and closed subspaces

Y and A of A (S) with X1(S) =Y + A, Yn A= (0)

and such that P is equivalent to Y.

Proof. By Lemma 2.2 there exist a set S and a

bounded linear transformation T from 1(S) onto P.

Now 11(s) is congruent to the dual space of c0 (S)

(see Day [7 , pages 29-30]). By Lemma 5.6 there exist

closed subspaces A and Y of 11(s) such that

11(S) = Y + A, Y A = (0) and Y is equivalent

to P. Q.E.D.

So we have shown that a dually projective Banach

space is equivalent to a closed subspace with a closed

j %-,, 0
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complement of some Al(S). But by Theorem 2.4 we know

that if a Banach space P is equivalent to a closed

subspace with a closed complement of some 21(S), then

P is projective. Hence we conclude

5.8 Theorem. A Banach space P is projective if

and only if P is dually projective.

5.9 Remark. We can define a Banach space P to

be 21 -projective if for every 21(s), every closed

subspace X0  of Al(S) and every bounded linear

transformation T from P to 21 (S)/X0 , there exists

a bounded linear transformation T from P to X1 (S)

such that QT = T where Q is the quotient map from

21 (s) onto ll(s)/Xo. It is clear that the argument

that was used to establish Theorem 5.8 also proves that

P is 21 -projective if and only if P is projective.

Similarly we can define a Banach space I to be

I.-injective if for every 2,(S), every closed subspace

Y of 2,(S), and every bounded linear transformation T

from Y into I, there exists a bounded linear trans-

formation T from 2.(S) into I which extends T.

It is clear again that the argument that was used to

establish Theorem 5 .4 also proves that I is injective

if and only if I is I.-injective. Finally we can
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define a Banach space I to be C(S)-injective if for

every Banach space X which is congruent to a space

C(S) of all continuous scalar valued functions defined

on a non-empty compact Hausdorff space S, every closed

subspace Y of X, and every bounded linear transformation

T from Y into I, there exists a bounded linear

transformation T from X into I which extends T.

Again the argument that we used to establish Theorem 5.4

can be used to prove that I is injective if and only

if I is C(S)-injective although in this case the

following details ought to be mentioned. Lemma 5.2

goes through as before with the hypothesis that X is

a Banach space congruent to a C(S) space and I is

a C(S)-injective Banach space. Now if we put the

discrete topology on an arbitrary set S, then S

becomes a completely regular topological space and

IO(S) is nothing but the set of all bounded continuous

scalar valued functions on S. So A,(S) is congruent

to C(PS) where PS denotes the Stone-Cech compactifi-

cation of S. Then Lemma 5.3 goes through with the

hypothesis that I is a C(S)-injective Banach space

and so we obtain the conclusion that a C(S)-injective

See Day [7 ], Kelley 20 ], or Simmons 35 ]-



Banach space is congruent to a closed subspace with a

closed complement of some 2,(S) and is therefore

injective.

5.10 Definition. A Banach space P is said to be

injectively projective if given any injective Banach

space I, any closed subspace 10 of I, and any bounded

linear transformation T from P to I/Io, there exists

a bounded linear transformation T from P to I such

that QT = T where Q denotes the quotient map from I

onto I/I.

It is clear that a projective Banach space is

injectively projective. The following theorem establishes

the converse.

5.11 Theorem. If a Banach space P is injectively

projective, then it is projective.

Proof. Let X be any Banach space, X0 any

closed subspace of X, T a bounded linear trans-

formation from P to X/X0 , and Q the quotient map

fram X onto X/Xo. By Lemma 2.6 there exists an

isometry from X onto a closed subspace, say X',

of some ,(S). In particular, X is congruent to a

closed subspace of an injective Banach space. Let

X = (Xo). X ' is also a closed subspace of 2,(s).

Indeed X is closed in X' since Xo' = X' nX '
0
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Let X + x e X/Xo (x e X).

o 

X/X

-x 0/xo'

show that

by *(X 0 + x)

is well defined,

' + ?(x).

suppoae Xo + x X

Then x - x E X

- %(xl)i.e. (x)

X0' +

So (x - x1 )

e X0

+

E Xo',

' which means that

). So ?p is well defined.

is linear. For consider two elements X0 + x

and X0 + x2
of X/Xo. Then *(x0 + xi

=(x 
0 + x1

+ x2) = Xo' + (x

+ Xo' +

Also if

= X0' +

f (x2)

a is a scalar,

= 'P(X0 + x1 )

(a(Xo 0+ xl)) = *(X,

+ P(Xo + x2 )

+ ax1 )

= Xj' + a (xl)

= a'p(X0 + xl). So t is linear. t is bounded.

llp (x0 + X)IlX

=inf
x0'EX01

[j|x 0 '

'/X' 0 = lix +

+ WIXI)

(I1 (xo) + (x) X) (because :X -> X ' is onto)

(11 o(xo + x)I|X']

([lxo + x1X) (because is an isometry) = 1X 0 + xll 1/ 0

Define

To

+ x 1

0 + x2)

+ x2) = Xo' + o(xl ) + 2

For

= inf
XEx

= inf
XEX

= inf
x EX

(axl)1 = a(t I + x))

'

= X ' + (xl)

W lX'f/X 0'
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So t is an isometry (and hence bounded).'

Now X'/X0 ' C f,(S)/X 0'. Let

i : X'/X0 ' -> CO(S)/X0 ' be the identity mapping. We

have the following situation.

P

t T

X/XO

(I ?.
X'/X0

I i

where Q denotes the quotient map from 1,(s) onto

Since P is injectively projective, there exists a

bounded linear transformation T: P -> LO(S) which

lifts i*T, that is) Q1T1 = i7PT. We claim that

T1 (P) C X'. For consider Tl(p), p c P. Now i*T(p) E XI/X ',

Actually X/X0 and X'/X ' are congruent under the

mapping *, but we won't use this fact.



say iVT(p) = X + x'. But Q1 (Tl(p)) = i*T(p). So

X' + T(p) = X0 ' + x'. So T1(p) -X X0' and hence

T(p) = x + x ' e X' where x ' denotes some element

in X0 '. So T1 (P) C X'. Let denote the restriction

of Iy to X'. So we have the following commutative

diagram, i.e. Q{Tl = *T.

P

1T

(5.2) X/XO

X' I > X'/X '

Let T = T: P -> X. We claim that T lifts T.

For let p c P. We want to show that QT(p) = T(p).

Let T(p) = X0 + xP, x e X. We must show that

X0 + T(p) = X0 + xp or in other words that T(p) -xp X.

But T(p) - E X0  if and only if (T(p) - xp) E X .

Now rT(p) - j(xp) T(p) - (xp)= T1 (p) -

So it suffices to show that T1 (p) - (x ) E Xot  or

equivalently that X0 ' + T1 (p) = X ' + (xp). But by
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diagram (5.2), X0 ' + Tl(p) = *T(p) = *(X. + x )
= X0' + (xp). So T lifts T. Q.E.D.

5.12 Remark. In the proof of the preceding theorem,

we did not make use of the fact that .(S) is injective,

that is to say, we did not have to extend any bounded

linear transformations. All we used 2.(S) for was to

arrange matters so that we could arrive at a diagram (5.1)

which enabled us to invoke the hypothesis that P was

injectively projective. We can define a Banach space P

to be 1,-projective if for every X.(S), every closed

subspace X0 of C*(S), and every bounded linear

transformation T from P into C(S)/Xo, there

exisiB a bounded linear transformation T from P to

2,,(S) such that QT = T where Q denotes the quotient

map from XC,(S) onto 29(S)/Xo. It is clear from the

proof of Theorem 5.11 that P is X.-projective if and

only if P is projective. Similarly we can define a

Banach space P to be C(S)-projective if for every

Banach space X which is congruent to a space C(S)

of all continuous scalar valued functions defined on a

non-empty compact Hausdorff space S, every closed

subspace X0 of X, and every bounded linear transformation

T from P into X/X , there exists a bounded linear

transformation T from P to X such that QT = T
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where Q denotes the quotient map from X onto X/X0.

If we observe as in Remark 5.9 that A(S) is congruent

to C(pS) where PS denotes the Stone-Cech compacti-

fication of S with the discrete topology, the proof

of Theorem 5.11 yields the result that P is projective

if and only if P is C(S)-projective.

5.13 Definition. A Banach space I is said to

be projectively injective if given any projective

Banach space P, any closed subspace Y of P, and any

bounded linear transformation T from Y into I,

there exists a bounded linear transformation T from

P into I which extends T.

It is clear that every injective Banach space is

projectively injective. The following theorem establishes

the converse.

5.14 Theorem. If a Banach space I is projectively

injective, then it is injective.

Proof. Let X be any Banach space, Y any closed

subspace of X, and T a bounded linear transformation

from Y into I. By Lemma 2.2 there exist a set S

and a bounded linear transformation g from Al(S)

onto X. Let M be the kernel of g and let

Y = g 1 (Y). M and Y are both closed subspaces of

Al(S) and M C Y, since g(M) = (0) C Y. Let g, be
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the restriction of g to Y and define a map f from

Y to I by = Tg1 . is bounded and linear.

Since I is projectively injective, there exists a

bounded linear transformation from 11(S) to I

which extends . We now want to define a map T from

X into I which extends T and we proceed as follows.

Let x e X. Choose any p e l(S) such that g(p) = x.

Define T(x) = (p). T is well defined. For suppose

g(p1 ) g(p(p2) = x. We must show that ((p ) - p2)'

Now g(pl) = g(p2 ) implies g(p1 - p2) = 0 which implies

that p1 - p2 e M. But M is a subset of the kernel of

since for m e M we have (m) = (m) = Tg(m)

=T(0) = 0. So (P - P2) = 0 or (p (p2)"

So T is well defined. T is linear. For let x and

x2 be in X. Let p1 , p2 ' 1 (S) be such that

g(pl) = x, and g(p2 ) = x2. Then g(p1 + p2 1 + x2

and so T(xl + x2 (p1 +p 2  1) +

= T(x + 2 ). Similarly if a is a scalar,

g(apl) = ag(p) a and so T(ax )= (ap1 )

= a(p) = aTo(x9). So T is linear. To show that

T is bounded, we observe the following:
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By Lemma 2.2, each x in X has at least one

pre-image p in 1(S) with I|x|| X = 11P11 (S)* We

have also shown that T(x) does not depend on which

pre-image of x we choose. Now we want to show that

there exists a constant K such that for all x E X,

we have lTIxI < KllxJl. So given an x e X, choose

p E Y1(S) such that g(p) = x and such that jp|l = l|x||.

Then I'(x)I1 = 1I (p) 1 1 11 Ilp|l = 1I 11 Jix|l. So we

may take K to be Ij. So T is bounded. Finally

it remains to be shown that T extends T. Let y E Y.

Then T(y) = (p) where g(p) = y. y e Y implies

that p E Y and so "(p) = (p) = Tgl(p) = Tg(p) = T(y).

So T extends T. Q.E.D.

5.15 Remark. We can define a Banach space I to

be 81 -injective if for every 1(S), every closed subspace

Y of 11(s), and every bounded linear transformation T

from Y to I, there exists a bounded linear transformation

T from 11(s) to I which extends T. It is clear from

the proof of Theorem 5.14 that I is injective if and

only if it is 1 -injective.

5.16 Remark. We can obtain the analogues of

Theorems 5.11 and 5.14 very easily. More explicitly,

we define a Banach space P to be projectively projective

if given any projective Banach space X, any closed
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subspace X of X, any bounded linear transformation

T from P into X/Xo, there exists a bounded linear

transformation T from P to X such that QT = T

where Q denotes the quotient map from X onto X/XO

Then clearly a projectively projective Banach space is

21 -projective and hence by Remark 5.9 is also projective.

Similarly we can define a Banach space I to be

injectively injective if given any injective Banach

space X, any closed subspace Y of X, and any bounded

linear transformation T from Y to I, there exists

a bounded linear transformation T from X to I

which extends T. Then clearly an injectively injective

Banach space is 2,-inectiveand hence is injective by Remark 5.9.

To summarize, in this chapter we have shown the

following:

(a) A Banach space is injective if and only if it

is dually injective if and only if it is J.-injective

if and only if it is C(S)-injective if and only if it

is projectively injective if and only if it is injectively

injective if and only if it is I1 -injective.

(b) A Banach space is projective if and only if it

is dually projective if and only if it 61 -projective

if and only if it is injectively projective if and only

if it is projectively projective if and only if it is

Zo-projective if and only if it is C(S)-projective.
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CHAPTER VI

Some Alternative Definitions of

Injective and Projective Banach Spaces

In this chapter we shall show that projectivity

and injectivity are each equivalent to certain alternative

conditions that one might impose on a Banach space.

Unlike the conditions in the preceding chapter, these

alternative conditions are not a weakening of the

conditions of Proposition 1.4. Using one of the

alternative conditions for projectivity, we shall obtain

a result on the lifting of linear functionals.

6.1 Proposition. The following three conditions

on a Banach space P are equivalent:

(1) P is projective

(2) For every Banach space X and every

bounded linear transformation T from X onto P,

there exists a bounded linear transformation T1  from

P to X such that TT1  is the identity map on P.

(3) For every Banach space X and every

bounded linear transformation T1  from X onto P and

for every Banach space Y and every bounded linear

transformation T from Y to P, there exists a bounded

linear transformation T from Y to X such that

T T = T.
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Proof. Let 1P denote the identity map on P.

(1) => (2) We have the following situation:

P

4t1P
X > P > 0 (exact),

T

Since P is projective, there exists a bounded linear

transformation l,: P -> X such that Tl = 1.

We can take T to be 1P.

(2) => (3) We have the following situation:

Y

I, T

X >P >0 (exact)
T

By (2) there exists a bounded linear transformation

T2 : P -> X such that T T2 = lP

Define T : Y -> X by T= T2T. T is bounded and

linear, and for y e Y, T 1T(y) = T 1T2T(y) = lT(y) = T(y).

(3) => (2) We have the following situation:

P

1

X-> P > 0 (exact)
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By (3) there exists a bounded linear transformation 1

from P to X such that T1P = l.. We can take T

to be 1P

(2) => (1) Let X and Y be arbitrary Banach

spaces, T1  a bounded linear transformation from X

onto Y, and T a bounded linear transformation from

P into Y. We want to lift T. By Lemma 2.2, there

exists a non-empty set S and a bounded linear

transformation T2 from .8(S) onto P. Since l(S)

is projective, there exists a bounded linear trans-

formation T 3)-> X such that T T3 = T2

By (2) there exists a bounded linear transformation

T 4: P -> 11 (S) such that T2T4 = 1P. Define

T : P -> X by T = T3T . 'T is bounded and linear

and lifts T since for p e P we have

T 1T(p) = T1T3T ( )= T 2T(p) = Tlp(P) = T(p). Q.E.D.

6.2 Corollary. If X and Y are arbitrary

Banach spaces, f a continuous linear functional on Y,

and g a non-zero continuous linear functional on X,

then there exists a bounded linear transformation

f : Y -> X such that gf = f.

Proof. Since g is non-zero, it is onto the
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scalar field. The field of scalars is projective (see

the proof of Theorem 1.7) and so by condition (3) of

the proposition, there exists a bounded linear

transformation 2 : Y -> X such that g = f. Q.E.D.

So in addition to knowing that we can always

extend continuous linear functionals (Hahn-Banach theorem),

the preceding corollary tells us that we can also lift

them.

6.3 Definition. A Banach space X is said to

have property P if for every Banach space Y which

contains X as a closed subspace, there exists a

bounded projection T from Y onto X.

6.4 Lemma. If a Banach space X has property Y ,

and X is congruent to a Banach space Y, then Y has

property 6.

Proof. Let : X -> Y be a mapping establishing

the congruence between X and Y. Let W be a Banach

space cont.ining Y as a closed subspace. If W = Y,

the identity mapping on W is a bounded projection from

W onto Y. So assume that W * Y. Let Y' denote

the set theoretic complement of Y with respect to W.

Let Y be a set with the same cardinality as Y' and
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disjoint from X. Let 7P be a one-one mapping from

Y 1onto Y'. Let Z = X Y1 . Define

Z -> W by (x)= (x) if x E X and

'(y) = ? if) i y1 E Y1 . is a one-one mapping

from Z onto W. We make Z into a vector space by

defining addition and scalar multiplication as follows.

If z and z2 are elements of Z, let

w = (z 1 ) + (z2) e W. There exists a unique z E Z

such that (z) = w. Define z + z2 to be that z.

If a is a scalar and z E Z, we define az to be

that unique element z' e Z such that Z') = a (z).

We observe that if x1  and x2 are in X, their sum

when they are considered as elements of Z is the same

as their sum when they are considered as elements of

our given Banach space X. For x1 + x2 (in Z) is

that element z e Z such that

(z) (xl) + = ((xl) + r(x2) 1(x + X2)

since is linear. (The last plus sign refers to

If X and Y' are disjoint, we can take Y' to be Y1 .
If X and Y' are not disjoint, we construct a
set Y as follows: If no element of X is an ordered

pair, we let Y = ((y,l) I y e Y'). If some elements

of X are ordered pairs, let a denote an element which
is not the second member of any of the ordered pairs in
X and let Y = [(y,a) I y e Y'}.
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our original addition in X.) So x + x2 (in Z)=

x1 + x2 (in X) since x + x2 (in X) has the property

that maps it into (xl) + ? (x2 ). Similarly for

x e X and a a scalar, our definition of ax in Z

agrees with scalar multiplication in X.

We proceed to verify that Z with addition and

scalar multiplication so defined is a vector space.

Addition in Z is commutative. For let z1 , z2 E Z.

Now z + z2 is that element z3 e Z such that

(z3) = (zl) + (z2) and + is that element

z E Z such that (z4) = (z2 ) + (zl). But

(zl) + (z2) ) + (z1 ) and so z = z4.

Addition in Z is associative. For let z , z2 , and z3

be elements of Z and consider (zl + z2 ) + z3 and

z + (z2 + z3). Now (z1 + z2 ) + z3 is that element z4

of Z such that (z4) = (z + z2 ) + ?(z3)

( (zl) + "(z2)) + - (z (by definition of addition in Z).

z + (z2 + z3) is that element z5 of Z such that

(z5) = (zl) + (z2 + z3) = (Zl) + ( (z2) + '(Z3)

Addition in W is associative and so
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+ ( (z2) + (z3) = ((z 1) + (z2)) + (Z

from which we conclude the associativity of addition

in Z. The zero element of

that 0X + z = z

that element

(z

zl

)

for every

X, oX,

z e Z.

has the property

For 0X + z

in Z such that

= (X

(since ( is linear) 07 + (z)

the zero element of Y) = (since Y is a subspace of

OW + (

().

z) (where OW denotes the zero element

So z = z or in other words, OX + z

So Z has a zero element

z + (-lz) = OX.

z' E Z such that

is that element z"

So z'

For each

) = ~(z)

Oz(= OX).

For z + (-lz)

(z') = ~(z)

e Z such that

- ~(z) = OW = 0

For each z e Z,

is that element

(-lz). But

(z")= - (z

y. So z' OX'

z e Z, lz = z since lz is that element

in Z such that )

each z e Z and each pair of

= l (z)

scalars

For

a and p, we

have (a + P)z= az + z. For (a + P)z

element z in Z such that (zl) = (a + P) (Z)

+ (pz) while az + Pz

'(zl)

is

(where
Oy denotes

W)

of

= z.

-lz

).

is that

is

+ (W)
"V

r(O 
x

= (z).z

a (z) + P (W) =(az)
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that element z2 in Z such that (z2 )
= ~o(az) + (pz).

If z and z2 are elements of

a(z

z 3

= az 1+ az 2. For
l+ z2)

of Z such that (z3) = a (zl

Z and a is a scalar,

a(z 1+ z2 )
is that element

+ z2 )

a( (zl) + (z2)) while azl + az 2 is that

Z). of Z such that (z4) = (az) + (az2)

+ a (z2) = a( (zl) + (z2).

a and p are scalars and z e Z,

For a(Pz) is that element z in Z

~(Zl.)

(ap)(z)

(z2)

= a( (Pz))

is that element

= (ap)( (z)).

z 2

Pz) = (ap)(z).

such that

while

in Z such that

So Z is a vector space.

is easily seen that X is a linear subspace of

Z -> W is a linear transformation by the

very definition of addition and scalar multiplication

in Z.

We define a norm on

We observe that if x e

1I (x)lW

Z as follows:

X, j|xIIz = I1xII

= 11 ?(x)IJW = 11 .(x)IIy= IjxIjX si

||z||Z = || (z)|| .

since |1x||Z =

nce is an

isometry. This "norm" on Z does indeed satisfy the

reqirements of a norm.

a (zl)

element

Finally if

that

It

Z and

a(

= a(P (z)) =(ap)( (z))

For each z e Z, |jz||Z > 0 and
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if IIZIIZ = 0,

(z)= OW

linear and

then |i (z)iw =1

which implies that

one-one. Clearly

0 which implies that

z = OZ since

||OZiiZ = 0.

iiaziiZ = 11 (az) il

ja| ||zj | Zi Z, Z2

iia (z)ii| = jai 1 (z)iW

EZ, liz 1 + z2 ['Z = | (z

+ (z 2) W 11 (zl 1 W + (z2) iW = lIZliiz + lZ iiZ*

So Z is a normed linear space and is an isometry

from Z onto W. Z is a Banach space. For suppose

tzn n=1,2,..

sequence (5

complete,

is a Cauchy sequence in

(z } , .

there exists a

z. Then the

is Cauchy and since

w E W

W is

such that lim (zn)
n -> o

= w.

be such that (z) = w. Then lim z
n -> con

since |Iz - Znii = ||

11w - )(z)|i -- > 0.

a closed subspace of

(z - z)|| = i| (z)

So Z is complete.

Z. For let Xn E

- (zn)

Finally X is

X, n = 1, 2,

and suppose lim xn = zn -> co
C Z. We want to show that

z e X. Now the sequence (xn n=l,2,...

it converges. Because X is complete,

element x e X such that Slim Xn = XOn -> co

is Cauchy since

there exists an

But lim xn = z.
n -> co

So X is closed in Z.

is

IIl

+ z2) iW

Let z e Z = z

So z = x C X.
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So we have managed to arrange matters so that our

hypothesis that X has property ? is applicable.

There exists a bounded projection T from Z onto X.

Define a mapping T : W -> Y by T' = T . T'

is bounded and linear and TT' = TI since

AO 1 A - -1.4-.1 IJ -1
T'T~e T =TT T T'.

Finally T' maps W onto Y since T'(y) = y for

each y e Y since T'(y) = (T( (y) =

1 (y)) (since 1 (y) e X and T restricted

to X is the identity mapping) = y. So we have

succeeded in showing that there exists a bounded

projection from W onto Y for any Banach space W

which contains Y as a closed subspace. So Y has

property 6 . Q.E.D.

6.5 Remark. If the projection T from Z onto X

in the proof of the preceding lemma is such that |T11|| <

where 1 < N < w, then it is seen easily from the

definition of the projection T' from W onto Y

that |T' 1| < N also.

6.6 Proposition. The following four conditions.

on a Banach space I are equivalent:

(1) I is injective

(2) For every Banach space X which contains I

as a closed subspace, for every Banach space Y and

for every bounded linear transformation T from I

into Y, there exists a bounded linear transformation T
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from X to Y which extends T.

(3) I has property (?.

(4) For every Banach space X and every isometry T

from I Onto a closed subspace of X, there exists a

bounded linear transformation T from X onto I

such that T1 T is the identity mapping on I.

Proof. Let i denote the identity mapping on I.

(2) => (3). Let X be any Banach space which

contains I as a closed subspace. We have the following

situation:

X

U

I >1I
i

If we let our space I be the space Y of (2) and i

be the map T of (2), there exists by (2) a bounded

linear transformation i from X to I which

extends i. Indeed i maps X onto I since i

does and hence is a bounded projection from X onto I.

(3) => (2) By (3) there exists a bounded projection,

say P, from X onto I. Define a map T from X

to Y by T = TP. T is bounded and linear and extends T.

(1) => (3) Let X be any Banach space which contains

I as a closed subspace. We have the following situation:
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X

I >1I

Because I is injective, there exists a bounded

linear transformation i from X to I which

extends i. Indeed i maps X onto I since

i does and hence is a bounded projection from X

onto I.

(3) => (1) Let X be a closed subspace of a

Banach space Y and let T : X -> I be a bounded

linear transformation. We want to extend T to Y.

By Lemma 2.6 I is congruent to a closed subspace,

say I,, of some c(S). Let T : X -> 100(S)

be defined by T, = T where : I -> J (S)

is the map establishing the congruence between I

and Il. Since 2,(S) is injective, T extends to

'. Y -> .,,(S). Now since I has property ,

so does I by Lemma 6.4 and so there exists a bounded

projection ?P from X,(S) onto Il. Define T : Y -> I

by T = TT. ' is bounded and linear and extends T.

(1) => (4). Let X= T(I). X is closed in X

and hence is a Banach space. So T : X -> I is

bounded. So there exists a bounded linear transformation
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T : X -> I which extends T-1 . T1  is onto I

since T is and T 1T is the identity mapping

on I since for y e I, T1 (T(y)) = T~T(y) = y

(4) => (3). Let X be any Banach space containing

I as a closed subspace. If we take the map T of (4)

to be i, there exists a bounded linear transformation

T 1from X onto I such that T 1 i = i. Take

i : X -> I to be T . Then i is a bounded projection

from X onto I since for

x e X, *(*(x)) = T1 (T1(x)) = T1(i(Tl(x))) = i(T(X)) =

T1 (X) = *(x). So I has property [ . Q.E.D.

6.7 Remark. If a Banach space I is a member

of the class In() (and hence injective), it is easy

to see from the proof of Proposition 6.6 that the bounded

projection of (3) has norm less than or equal to 2.

If we define the class as consisting of those

Banach spaces X that have property ? together with

the requirement that the bounded projections from the

superspaces Y containing X can always be chosen

with norms less than or equal to N, then the proof of

Proposition 6.6, together with the fact that

10(S) e In(l) and Remark 6.5, shows that if X E
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then X E In(). So the classes In(A) and are

identical and in particular Theorem 3.2 implies that if

a Banach space X has property 9 , then X is a

member of the class P for some finite 7.

Similarly I e In(-A) implies that T in (2) can

be chosen so that I11 <7||Th. Conversely if we

require that ' in (2) can be chosen so that

IT|| < 'IITII, it follows that I e In(?). Finally,

I e In(A) implies that the map T in (4) can always

be chosen so that ||T 1 1 , and conversely if we

require that the map T in (4) can be chosen such

that |T1 ||1 X, it follows that I t In(2%).
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Geometric Properties of Injective Banach Spaces

In this chapter we shall prove a necessary geometric

condition for a real Banach space to be injective. A

special case of this condition will be shown to be

sufficient. We then give a geometric proof that real

AC,(S) is injective and finally as an application of

our necessary condition, we prove a theorem about real

Banach spaces which are dual spaces and which belong to

a certain class of injectives.

We first note the following fact. In Proposition 6.6

we showed that injectivity for a Banach space is

equivalent to the Banach space's having property S.

In our formulation of property 6 , we required that the

superspaces containing our given Banach space be Banach

spaces also. Actually the superspaces need not be

complete. More precisely, let a Banach space X have

property 9 . Then X also has the property that for

each normed linear space Y containing X as a closed

subspace, there exists a bounded projection T from Y
A

onto X. For let Y DY be the completion of Y,

(If Y is already complete, there is nothing to prove.)
A

and let T be a bounded projection from Y onto X.

Let T1 be the restriction of T to Y. Then T1 is

bb.
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of course bounded, linear, and T 2 = T. T1 maps

Y onto X since T1 (X) = X. We shall need this fact

later in this chapter when we show that a certain

Banach space X is not injective by constructing a

normed linear space Y containing X as a closed

subspace onto which there exists no bounded projection

from Y.

If x0  is a point in a normed linear space X

and r is a non-negative real number, S(xo, r) will

denote the closed sphere in X with center x and

radius r, i.e. S(X0, r) = (x e X | lix - x 0 1 r).

Occasionally we may use the notation SX(xo, r) to

emphasize that the sphere we are dealing with is in X.

Whenever we use the word "sphere" in this chapter, we

shall mean closed sphere (possibly with radius zero)

unless we specify otherwise.

Our first lemma will be used throughout this section.

7.1 Lemma. Let X be a normed linear space and

let S(x1 , rl) and S(x2 , r2 ) be two spheres in X.

Then S(x1 , rl) r S(x2 , r 2 )/ if and only if

11x1 - x211 r1 + r2, i.e. the distance between their

centers does not exceed the sum of their radii.
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Proof. (=>). Assume that S(xl, rl) nS(x2, r2 )

Let y e S(xl, rl) P'iS(x2 , r2 ). Then ||x1 - x211

I|xl - yll + Ily - x2 11 rl + r2-

(<=). Now assume that |x 1 - x211 r + r2 1

If |x-x 2 |=0, then = l x2  S(x, r1) n S(x2, r2)

So we may assume that 11xi - x211 > 0. Now our hypothesis

that 11x 1 - x2 r1 + r 2  implies that 11x1 - x211 - rl r 2

which implies that

(-) 1xi - x211 - r1 r 2

xi - x2 1 2

Choose any real number A such that

(7.2) 11x<-x211 -r< <___2
Ixi - x 2 11 T 1 X 211

and such that 0 < < 1. It is clear that we can

always choose a A satisfying (7.2) but that we can

also choose it so that 0 < \ < 1 perhaps requires

some discussion. First of all, if r2 = 0, the right

hand side of (7.2) is zero and so we can choose ? = 0.

If r2 > 0, then the right hand side of (7.2) is

positive. We note that the left hand side of (7.2)
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is < 1, for if
ixi - x21

Il x 211
> 1, then

x1 - x211 - r1 > 11x1 - x211 which implies that r1 < 0

which is impossible. So we have in this case

11x1 ~ X 211 - rl

llxl - X211
< 1 and >

1i - 211
0 in addition to

(7.1) and clearly we can choose a \ satisfying (7.2)

and such that 0 < A < 1.

So we have
llxl - X211 - r

|Ixl - X211
< ? which implies

that (1 - ?)||x 1 - x2 11 r and A< 2 which
x - 211

implies that X||x - x211 < r2. Let z = ?x 1 + (1 - \)x2

Then ||x - z|| = |x1 - - (1 - ? )x2l =

which

means that z E S(xl, rl). Also we have lix2 - Z11

11x2 - ?~x1 - (1 - 2\)x2 lj 1- 7\x1 + ?x 2 11 = ?11x2 - x1 1< 2

which means that z E S(x2, 2)0

z C S(xl , rl) n~2 r2)

So

.E.D.

||(i - N)x1 - (1 - \)x21 = 11;)'x 2 11
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7.2 Definition. Let X be a normed linear space.

Let Y be a normed linear space containing X as a

normed linear subspace and having the property that

if Z is a linear subspace of Y containing X and

such that Z / X, then Z = Y. Then Y is called an

immediate extension of X.

Our next two lemmas will be needed for the first

theorem in this section.

7.3 Lemma. Let p be a real valued function on

a normed linear space X and assume that p satisfies

the following four conditions:

(I) p(x) + p(y) > l|x - yl for all x, y e X

(II) p(x) - p(y) :I jx - y|| for all x, y E X

(III) p(Ax + (1 - ?)y) < Ap(x) + (1 - X)p(y) for all

x, y E X and 0 < ? < 1.

(IV) p(x) > 0 for all x e X.

Then there exists an immediate extension Y of X and

a point ( in Y but not in X such that

p(x) = 1Ix - y for all x e X.

Proof. Let Y= ((x, a) x e X, a e scalars).

If we define addition of two elements (x1 , a,) and

(x2, a2 ) in Y1 by (x1 , a,) + (x2, a2)

(x1 + x2, a1 + a2) and multiplication of an element



(x, a) e Y, by a scalar p by (3(x, a) = (px, Pa),

it is easy to see that Y becomes a vector space.

The set X = x1  a) E Y j a = 0) is easily seen

to be a linear subspace of Y1 . Suppose X1 C z C Y ,

where Z is a linear subspace of Y and Xl / Z .

Then there exists an element (xo, a) e such that

a0 / 0. If (x, a) is an arbitrary element in Y ,

then (x, a) e Z. For if a = 0, then

(x, a) e X C Z1 and if a / 0, then

Ia

(x, a) = (( x - x , 0) + (x , a) E Z1 .

Let T : X -> X be defined by T(x) = (x, 0). It is

clear that T is a one-one linear transformation from

X onto X1. Let X ' denote the set theoretic

complement of X1 with respect to Y , i.e.

X 1  ={(x, a) e Y I a / 0). If X and X ' are

disjoint, let Y = X UX'. If X X ' , let A

be a set with the same cardinality as X1 ' and disjoint

from X and let Y = X U A. As in the proof of Lemma 6.4,

we define the operations of addition and multiplication
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by scalars on Y in such a way that X with its original

addition and scalar multiplication becomes a linear

subspace of Y and there a one-one linear transformation

T from Y onto Y such that the restriction of T

to X is T. Suppose X C Z C Y, where Z is a linear

subspace of Y and Z / X. Then we claim that Z = Y.

For choose an element z E Z, but not in X. Let

'(Z) = Z . Then X1 C z C Y, and X, Z, since

T(z) E Z and T(z) , X1  for if 'I(z) = (x, 0) c X1,

we also have (x, 0) =T(x) = T(x) and so z =x e X

(since '~ is one-one) which is impossible since

z / X. X C z1 C Y, and X 1 / Z, imply Z = Y

which implies that Z = Y. For let y e Y and consider

'(y) = z e Y1 . But z, = T(z') for some z' c Z. So

y = Z' e Z since T is one-one. So Z = Y.

So we have succeeded in showing that there exists

a linear space Y (not as yet normed) containing X as

a linear subspace with the property that if X C Z C Y,

where Z is a linear subspace of Y and X / Z, then

Z = Y. Choose an element E Y but not in X. Every

element y e Y can be represented as y = x + ?C for

some x e X and some scalar ?. For the elements of

the form x + ?C constitute a linear subspace Z of



Y and Z / X. Also the x and A are unique for if

x + ? = x2 + N2C, then x - x2 2 I

1 ?2, then (x1 - x2) = C But

'A (l x 2) e X and C X. So 1 = X2 from
2 1

which x = x2 follows immediately. We define a

function p on Y by

p(y) = I1xi|X if X = 0

(y) = | p(~) if X / 0.

We shall show that is a norm on Y. Certainly

p(y) > 0 for all y e Y and p(O) = 0. If

y =x + j 0, then either X / 0 in which case

(y) = IAp(x) > 0 by property (IV), or else ? = 0

and x / 0 in which case pL(y) = ||x||X > 0. So we have

shown for all y e Y that p(y) >0 and pL(y) = 0 if

and only if y = 0. To show that p(ay) = |aj p(y) for

all y e Y and all scalars a, we first note that if

a = 0, then p(ay) = t(0) = 0 = Op(y) = jaljp(y). If

a 0 and X = 0, then p(ay) =(ax) =||ax|x

|ai j|x||X = |aW(y). If a / 0 and A / 0, then

p(ay) = p(ax + aXC) = ahjp(") = tat I?\p(g) = Ja| (y).
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So for all scalars a and for all y e Y, we have

(ay) = jaj(y). There remains for us to prove that

p. satisfies the triangle inequality. Let y, w e Y.

We break this part of the proof into various cases.

Case (a). y and w both belong to X. Then

P(y + w) = Iy + w|iX X + IwIX = P(y) = P()

Case (b). One and only one of the vectors y and

w belongs to X, say w e X and y j X. Let

y = x + XC where X / 0, x e X. We want to show that

(7.3) |Ip(- x w) < II-) + I|w|II

If in property (II) we replace x and y by x + w

and - respectively, we obtain

P(- x +W) ( 1 x + w + X11 =1|- |fll

from which (7.3) follows immediately.

Case (c). y i X and w / X. Let y= x + C and

w = u + TC where x, u e X and / 0, T /0. We

break case (c) into the following subcases.

Case (c1 ). A and T have the same sign. If

A > 0 and T > 0, we have to prove that

(7.4)( + T)p(- + u) : ?Ap( .) + Tp(9)
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If in property (III) we replace x, y, and A by

-x -u __

- ~ and + - respectively, we obtain

p(X- + (1 (~-u )

< 'p( + (l - [)P(,),
+~ Tr

i?.. + T + \X + 'r

from which (7.4) follows immediately. If X < 0 and

T < 0, we have to prove

(7.5) - (x + T)P(- X++ U) < - xp(- ) ~pIN).

Again in property (III), we replace x, y, and X by

-x, -u
, r, and + ; respectively, and we obtain

(7.6) ( + U) <+ 1( P::2i )2

and multiplying both sides of (7.6) by - (X + T ) > 0,

we obtain (7.5).

Case (c2 ) X and T have different signs.

Without loss of generality we may assume ? > 0 and

T < 0. If \ + T ' 0, then either X + T > 0 or

X+T <0. If ?+T > 0, wemustprove that
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(N + r)p(- + U) -

which is equivalent to

(7.8) (\ + T)p( X + - ( + T)p(,) - Tp() - (

x + u
In property (II) we replace x and y by - x + and

-x respectively, thus) Obtaining

(-x +u -xx+ - \u + TxP( + r) - P(-X X | + U + X11 = |1-- .-

So (x + T)p(- + U) - (\+ T)p(.) l- u + xx, i.e.

the left hand side of (7.8) is less than or equal to

11- u + x|IX. On the other hand, if in property (I)

we replace x and y by = and -= respectively,

we obtain

(7.9) p(:X) + p(.-u) > || + -R|| = |-x + '\ujj

and multiplying both sides of (7.9) by - T > 0, we

obtain

- p(9) - tp(~u) > Z - I- + ulix = ||- u + '||f ,

i.e. the right hand side of (7.8) is greater than or

(7.7)
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equal to II- u + "I|X. Hence (7.8) is proved.

If N + T < 0 (N > 0, T < 0 still), we must prove

that

(7.10) - (A + T)p(- + i) <p( - )

which is equivalent to

(7.11) ( + T)p(- x + ( + T)p(~-U)
?+ or 'T

Np(~-) + xp(~-

If in property (II) we replace x and y by

- uand - respectively, we obtain

P(x + u P(- x + u _+ - TX + NullX

So - (N + T)p(- x + (N + 't)p(~g) I1- x + N u1,

i.e. the left hand side of (7.11) is less than or

equal to 11- x + N u|Iy. On the other hand, if in

property (I) we replace x and y by -x and -u

respectively, we obtain

(7.12) p(') + p(~U) >_ 1I| + uX - TX + NU

and multiplying both sides of (7.12) by N, we obtain
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Ap(-X) + AP( > 11- x + 2\liy, i.e.

the right hand side of (7.11) is greater than or equal

to |1- x + |X. Hence (7.11) is established.

Finally there remains under case (c2) the case

where ? + T = 0, i.e. = - T ( > 0, T < 0 still).

We have to prove that ||x + u||X - p(~ ) + xp().

If in property (I) we replace x and y by Z and
UI

U respectively, we obtain

p(ZX) + p(I) > |- x - |II = l||x + u|1X

from which the desired inequality follows immediately.

So we have shown that p is a nor on Y. Since

4(x) = l|xIIX if x e X, X is a normed linear subspace

of Y and by what we have already shown, it follows

that Y is an immediate extension of X. Finally if

x C X, 4(x - C)(= l|x - ly) = I- llp(~ ) = p(x). Q.E.D.

7.4 Lemma. Let r be a real valued function

defined on a normed linear space X such that

r(x) + r(y) > lix - yl| for all x, y e X. Then there

exists a real valued function p on X satisfying

conditions (I), (II), and (III) of Lemma 7.3 and such
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Proof. Let A be the set of all real valued

functions f defined on X, satisfying the inequality

f(x) + f(y) > lix - y| for all x, y E X, and such that

r(x) > f(x) for all x E X. A is not empty since

r e A. We define an order relation - on A by

f - g if and only if f(x) > g(x) for all x E X.

It is clear that under the relation < , A is a

partially ordered set. Let r = (f I be a non-empty

totally ordered subset of A. We shall show that P

has an upper bound in A. First we note that if

f E A, then f(x) > 0 for all x e X since

2f(x) = f(x) + f(x) > ||x - xl = 0. Now for each x E X,

define (x) = inf (fi(x)). We note that (x) is

finite since fi(x) > 0 for each i e I. To show that

E A, let x, y e X and let e > 0. There exists a

function fE P such that f (X) ?(x) + E and

also a function f2 e P such that f2(y) (y)+ E.

Since r is totally ordered, we have either

fi f2 or f2  f1 , that is fl(z) > f2 (z) or

f2 (z) > fl(z) respectively for all z e X. If

f,, f1 , then we have



-LUU.

lix - yl < f(x) + fl(y) < ?(x) + E + f2 (y)

< ~(x) + E + (y) + E = (x) + /o(y) + 2E.

If f 1 f2 , then we have lix - y|| < f2(x) + f2(y)

fl(x) + (y) + e < (x) + (y) + 2E. In either

case since e was arbitrary, we conclude that

l|x - yj| < (x) + (y). Also for each

z E X, <z fi(z) < r(z) for all i E I. So

j A and clearly f i< for each fi E r. So F has

an upper bound in A and hence by Zorn's lemma, A

has a maximal element p.

Now p of course satisfies condition (I) since

p e A. To show that p satisfies condition (II), let

x and y be fixed (but arbitrary) elements of X.

Now for any t e X, we have

pWt + p(y) >_ I|t - y11 = |(t -x) - -x + y)|

> lIt - xl| - lix - y1|.

So lx - yl| + p(y) .> lit - xli - p(t) from which we

conclude that

(7.13) ix - y1 + p(y) > sup lot - x - p(t)}.
teX
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In particular, sup flit - xli - p(t)} < oo. Let h
teX

be a non-negative real number such that

h > sup flit - xli - p(t)). Define a function t on X
tEX

by
h if t= x

*(t) =
p(t) if t x.

We claim that *(t) + *(z) > lit - zil for all t,

z E X, or equivalently *(t) > lit - zl - *(z). We

break the proof of this claim into various cases.

Case 1. t = x and z = x. We must show that

h > lix - xl| - h, i.e. that h > - h. But clearly

h > - h since h > 0.

Case 2. t = x and z / x. We must show that

h > lix - zll - p(z). But this inequality follows

immediately from the fact that h > sup flit - xl| - p(t)).
teX

Case 3. t # x and z = x. We must prove that

p(t) > lit - x|| - h or equivalently that h > lit - x|i - p(t).

But this last inequality follows again from the fact that

h > sup flit - x|l - p(t)).
teX

Case 4. t / x and z / x. We must show that

p(t) > lit - zl - p(z) or equivalently that
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p(t) + p(z) > lit - z|l.

true because p e A.

So ?P(t) + ?P(z) > lit

But this last inequality is

- zil for all t, z e X,

Moreover, h > p(x). For suppose h < p(x). Then for

z e X, we have * (z)

*(z) = p(z) p(z)

f(x) = h < p(x).

< p(z) since for z x,

and for z = x we have

Since p(z) < r(z) for all

we have then that V e A, p L P and p / p. But

is a maximal element in A and hence we cannot have

p < s. p / V. So we must conclude that h > p(x).

So we have shown that a non-negative real

number h satisfying h

satisfies the inequality

> sup
tEX

(ilt - xi| - p(t)}

h > p(x).

also

In particular if we

take h to be lix - y|| + p(y), then (7.13) tells

that h > sup [lit - xll
teX -

- p(t)} and since p(y) > 0

p e A), we also have

i.e. lix - y1| + p(y) > p(x),

h > 0. So h > p(x),

i.e. lix - y|1 > p(x) - p(y).

So p satisfies condition (II).

Finally to show that p satisfies condition

let 0 < \ < 1. Let z=?Ax+(l - ?)y. Now for any

t e X, we have

||t - Z11 = qX(t - x) + (l - ?\)(t - y)||

< ?t - xi| - A)|it - y|1

< (p(t) + p(x)) + (1

all

z E X,

p

(since

us

(III),

- ?%)(P(t) + P(Y))*



wo-j.

So lit - zil - p(t) < ?Ap(x) + (1 - ?\)p(y) and so

(7.14) sup tilt - zi1 - p(t)} < \p(x) + (1 - A)p(y).
teX

If we take h = Xp(x) + (1 - X)p(y), then (7.14)

together with the fact that h > 0 (since 0 < X < 1

and p(w) > 0 for all w E X) allows us to conclude

that h > p(z), i.e. Np(x) + (1 - ?\)p(y) > p(Ax + (1 -

So p satisfies (III). Q.E.D.

7.5 Definition. Let X be a normed linear space

and let 1 < X < co. A non-empty collection C of

closed spheres in X is said to have the X-intersection

property if for every non-empty subcollection

Co = [S(xi, ri))iei of C with the property that

every two spheres of ( have a non-empty intersection,

nS(xi, Xr.) '.
tEl

7.6 Theorem. Let the real Banach space X be a

member of In(A). Then the collection of all closed

spheres in X has the 7\-intersection property.

Proof. Suppose our theorem is false. Then there

exists a non-empty collection (o = {S(x , ri)}ieI of

closed spheres in X with the property that any two

spheres in C have a non-empty intersection, and



104.

such that ns(xr) = q. Note that xi = Xi, ri r

is a possibility for i, j e I, i J. In other words

two distinct spheres in e may have the same center.

Now let A = (x e X I x = x for at least one i E I).

For each x e A, let r(x) denote the greatest lower

bound of the radii of all the spheres in that have

x as their center. Then for all x, y E A, we have

r(x) + r(y) > l|x - yli. For suppose not. Then there

exist points x and y in A such that

r(x) + r(y) < lix - yi|. Let E = ||x - y|i - r(x) - r(y) > 0.

There exist a sphere S(x , ri), i e I with x = x

and radius rj < r(x) + and a sphere S(x3 , r 3 ), j e I

with x = y and radius r < r(y) + . Since

has the property that any two spheres in Co have a

non-empty intersection, we have S(xi, ri) n S(x , rj) .

So the distance between the centers of S(x, ri) and

S(y, r must be less than or equal to the sum of

their radii. So we have lix - yl| < r + rj < r(x) + r(y) +

So e = lix - y|| - r(x) - r(y) < which is impossible.

So for all x, y e A we have the inequality

r(x) + r(y) > lix - y|l.
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Let C = (S(x, r(x)) I x e A). By the inequality

just established, every two spheres in C1 have a

non-empty intersection. We claim that n S(x, Ar(x)) =
xEA

For suppose not. Let z E fQA S(x, ?r(x)). Then

l|z - xli < ?\r(x) for each x E A. But this implies

that z e n S(xi, ?\rj) since for an arbitrary sphere
i El

S(x , ri), iEI (x e A), we have

definition of r(xi)) and hence

Since S(x , ?ri) = , we must
E

r(x ri (by

liz - xi i < ?r(xi) < .

conclude that

A S(x, ?\r(x)) =
XEA

Now distinct members of 01 have distinct

centers. If A is a proper subset of X, choose a

point e A and define a set C 2 of closed spheres

in X by C2 = (S(x, lix - e|| + r( )) | x E A'),

where A' denotes the complement of A with respect

to X. Let C C U C 2 . Since for each x e A',

the sphere with center x and radius lx - 1| + r( )

contains the sphere with center ( and radius r(Q), it

follows that the collection C has the property that

a have a non-empty intersection,any two spheres in
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but the intersection

E = ( f S(x, Xr(x))) n ( n S(x, ?(Ix - fj + r( ))))
xeA . # I xeA'

is empty since n S(x, Xr(x)) = k. Every point x e X
xeA

is the center of one and only one member of C. We

extend the domain of definition of the function r to

all of X by defining r(x) for x e A' to be the

radius of the sphere in C with center at x,

i.e. r(x) = lix - |1 + r(Q). Since every two spheres

in 6 have a non-empty intersection the following

inequality holds for all points x, y e X : r(x) + r(y) > |ix - y

Moreover for any given w e X, the inequality

\r(x) > j|x - wit cannot hold for all x e X, for other-

wise we would have w e E.

By Lemma 7.4 there exists a real valued function p

defined on X satisfying conditions (I), (II), and

(III) of Lemma 7.3 and such that r(x) > p(x) for all

x e X. It is then clear that for any given w e X,

the inequality p(x) > lix - w|t cannot hold for all

x e X. For if it did, then we would have Ar(x) > r(x) >

p(x) > |ix - wi for all x e X which we have just

shown is impossible. It follows that p(x) > 0 for

all x e X. For suppose p(w) < 0 for some w E X.



iu(.

Then for all x e X we have p(x) > p(x) + p(w) > ix - wil

(since p satisfies condition(I)) and so p(x) > |ix - w|l

which we know is impossible. So p(x) > 0 for all

x e X, i.e. p satisfies condition (IV) of Lemma 7.3

also. By Lemma 7.3 there exists an immediate extension

Y of X and a point C in Y but not in X such

that p(x) = Ix - C1| for all x e X.

We claim that there exists no projection P from

Y onto X such that 1PJi < ?. For suppose there did

exist such a projection P. Let w = P(C) c X. Then

IlP(y) - wit = iiP(P(y) - ) |i 1 iPl iiP(y) - dl < \IIP(y) - di

for all y c Y. Since every x e X is equal to P(y)

for some y e Y, we would then have ix - wil 1 ?Aix - dI =

Ap(x) for all x e X and hence |ix - wit < Ap(x) : Ar(x)

which we know cannot hold for all x e X.

So there does not exist any projection P from Y

onto X such that ilP|| < A. So X is not a member of

In(A) (see Proposition 6.6 and Remark 6.7) and thus

we have arrived at a contradiction. Hence we must

conclude that the collection of all closed spheres in X

has the ? -intersection property. Q.E.D.

7.7 Remark. The preceding theorem is false if X

is a complex injective Banach space as the following

example illustrates. Let S be a set consisting of
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only one point, say a, and let X be complex

IC,(S) e In(l). Then the set of all closed spheres in

X does not have the 1-intersection property. To see

this we observe that X consists of all functions f

from (a) to the complexes such that

|1f|I, = sup (|f(s)j) = If(a)I < co. In other words X
ses II .

can be regarded as the set of all complex numbers with

the understanding that a complex number z represents

the complex valued function defined on S = (a)

whose value (at a) is z and the norm of this

function is Izi, the ordinary absolute value of z.

So the closed spheres in X are "round" and it is easy

to construct a family of closed spheres, any two of which

have a non-empty intersection, but such that the inter-

section of all the spheres in the family is empty. For

example, consider the family consisting of the following

three spheres: S1 = S(o, 1), S2 = S(2, 1), and

S3 = S(U - 143 , 1). Then 1 e S s2G3 El 2'4

l-iN E S S and .- i e 2S Indeed22, 3' 2 2 2 3

S 1 S = (1). For suppose a function f in X is in

S A 5 . Letting f(a) = x + iy, we have Ix + iyj < 1

and Ix + iy - 21 < 1. If lx| > 1, then Ix + iyj > 1
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which is impossible. If lxi < 1, then either 0 < x < 1,

or - < x < 0. If 0 < x < 1, then x - 2 <-1

which means that Ix - 21 > 1 which means that

Ix + iy - 21 > 1 which is impossible. If - 1 < x < 0,

then - 1 < - x and so 1 < 2 -x which again implies

that Ix + iy - 21 > 1. So x = 1. If y ' 0, then

|1 + iy| > 1 which is impossible. So f must be the

function whose value at a is 1. It is clear now

that S n 2 s = since 1 is not a member of S301, 2, .3 3

For ? = 1, we can prove the converse of Theorem 7.6,

namely,

7.8 Theorem. Let I be a Banach space such that

the collection of all closed spheres in I has the

1-intersection property. Then I e In(l).

Proof. Let X be a Banach space, Y a closed

subspace of X, and T a bounded linear transformation

from Y to I. Let 2 denote the set of all ordered

pairs (W, Tw) where W is a linear subspace (not

necessarily closed) of X which contains Y, Tw is a

bounded linear transformation from W to I such that

TW(y) = T(y) for all y e Y and such that l|TWil = 11Th.

is not empty since it contains the pair (Y, T). We

define an order relation ' on 2 by

(w1 , Tw) ( (W2, TW )if and only if W C W and
1W . 2W( 29 T 1 2 an
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T W(w) = T(w) for all w e Wl. It is easy to see
2 , . 1

that sl is a partially ordered set under the relation .

Let r = ((w3, TW }1 JcJ be a non-empty totally ordered

subset of il. We shall show that f2 contains an upper

bound for 1. Let Z= W . If z and z2 are
JEJ

in Z, then z C W for some j 1 e J and z2 EWJ 2

for some J2 E J. Since r is totally ordered, either

W 1 W or W J W 1. So z and z2 are both in

W or both in W 1 and so z + z2 e W or

z + z2 . Hence z + z2 E Z. Similarly if

z e Z and a is a scalar, z e W for some j e J

and so az e W and hence az e Z. So Z is a linear

subspace of X and clearly W C Z for each j e J.

Define a mapping Tz : Z -> I as follows. If z e Z,

then z e W for some j e J and we define Tz(z) to

be TW (z). T is well defined for if z is also

in W , i' e J, then either (W3, TW ) 1 
(w3, Tw

or (W i, TW ) (Wj, TW ). In either case we have
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T (z) = TW (z) and so TZ is well defined. TZ is

linear for if z 1, z2 e Z, z1 and z2 are both in

W for some j e J and TZ(z + z2 ) = TW (zi + z2 )

TW (z1 ) + Tw (z2 ) = TZ(zi) + TZ(z 2 ). Similarly if

z e Z and a is a scalar, z e W for some j e J and

so az E W and TZ(az) = Tw (az) = aTW (z) = aTZ(z).

TZ extends T for if y e Y, TZ(Y) = TW (y) for

every j e J and since each TW extends T, we have

TZ(Y) = T(y). TZ is bounded for if z e Z, z E W

for some E J and |ITz(z)|l = |ITW (z)II 1 IIT1 II ||zi =

|T11 ||z| and so |ITZlI 1< |T||. Since TZ extends T,

we also have IT|! < j'|TZ|l. So |IT!| = ITZ11. So (Z, TZ E

and clearly (W3, TW ) (Z, TZ) for each j e J. So
3,

r has an upper bound in SI. By Zorn's lemma, 1

contains a maximal element, say (WM, TWM'

We claim that WM = X. In order to establish this,

we shall show that an arbitrary (W, TW) e f2 such that

W is a proper subset of X cannot be a maximal member
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U = TW(W) C I. For each u e U define

p(u) = 11Th| inf {Ix - CI1). If u 1 , U2 e U and

xeT~ ({u}))

x1 E Tw'({u , x E TW1 ((u2 }), then

(7.15) |Iul - =1 TW (x1) - TW (x2) = W (x1 - X2)

<1 IITWIll 1~l X211 = 11h lX, - x 211.

Also by the triAngle inequality we have

(7.16) ||xl - x211 < h1 - Il + i1x2 - Cl

and so

(7.17) Iul - U211 C 11 Iixl - dl + |11 IX2 - CIl

from which we conclude that

(7.18) |u1 - u2 1 p(ul) + p(u2 )'

For each u e U, let Su = SI(u, p(u)) =

(t E I I lit - ull p(u)) and let S= u u E U).

Then (7.18) says that any two spheres in 3- have a

non-empty intersection. Since by hypothesis the set

of all closed spheres in I has the 1-intersection

property, we conclude that n S ' u . Choose a point
UEUU



E r S U. Then R - u|1 <p(u) for each u e U and
ueU T

so if x C TW l(fu)) we have

(7.19) Ift - TW(x)II < p(u) < 11T|| lix - C11 .

Since U = TW(W), (7.19) is true for each x e W. Let

W1 be the linear subspace of X generated by the set

W 9 (CI. W1 consists of all elements in X of the

form w + aC, where w e W and. a is a scalar and it

is easy to see that each element w1 e W1 has a unique

representation w + aC. Define a mapping T 1 . W1 -> I

by TW (w + ac) = Tw(w) + t. T
1 -1

is linear since

TW (w + aC + w' + a'f) = TW (w + w' + (a + a')C)
=1 1 '

-TW(w + w') + (a + al) = TW(w) + TW(w') + ae + ct'

= TW (w +

= TW 1(Pw

= PTW 1(w

aC) + TW (w' + a'C) and TW (p(w + aC))

+ PaC) =TW(Pw) + (Pa) = P(TW(w) + a )

+ aC). Also TW1 1l
extends Tw since for

w E W, TW (w) = TW (w + OC) = TW(w) + O( = T (w).
1 - 1

is bounded and indeed

I -L.D *

Finally 
T 1
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IITW JI 1< |1T|, i.e. |ITW(w) + a( <1 ||TI| 11w + a(1I for all
1

w e W and all scalars a. To see this, we note first

that if a = 0, we have hITW(w)hI < *ITWII Itwhl = 11Th llwli.

If a / 0, the inequality that we must establish is

equivalent to the inequality

(7.20) 11T(- w) - 11 < 11Th 11- a w - Cl1

which follows immediately from (7.19). Since Tw

extends TW, we also have ||Th = |ITWi < |ITW || and so

||Th| = |ITW 1|. Since TW extends Tw and Tw extends

T (since (W, TW) e n), TW extends T. So

(W1 , TW ) e 2 and we have (W, TW) (w1, TW ). But

(w, TW) / (W 1 , Tw ) since W / w1 . Hence (W, TW

cannot be a maximal element in fZ. So for our maximal

element (WM, TW ) in f2 we must have X = WM' In
N

other words there exists a bounded linear extension

Tw of T to all of X with |IT 11 = 1TIh. So

I e In(l). Q.E.D.

7.9 Remark. It may not be immediately clear to

the reader where the hypothesis that X = 1 was used
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in the proof of the preceding theorem. Suppose instead

that A > 1. Then (7.19) would be

(7.19)' ||t - TW(x)|l < Ap (u) < AuT11 lix - C1l

for each x e W and we would be unable to conclude

that |TW 11| = ||T|h. Nevertheless we may ask whether
.1

the converse of Theorem 7.6 is true for A > 1,

i.e. if the set of all closed spheres in a Banach

space has the A-intersection property, is the space a

member of In(A)? The following proposition shows that

the converse is false for A > 1.

7.10 Proposition. Let X be a Banach space.

Then the set of all closed spheres in X has the

(2 + E)-intersection property for every e > 0.

Proof. Let = {S(x , rj )}j be a non-empty

family cd closed spheres in X such that any two spheres

in j have a non-empty intersection. We want to show

that for any e > 0, we have n S(x , (2 + E)r ) ' q5.
JEJ

We have two cases to consider, the case where

infr) = 0 and the case where inf (r) =P > 0.
JEJ JEJ

If inf (r) = p0 > 0, then given any e > 0,
jEJ

p0 + Ep0 > p0 and so there exists j(e) e J such that
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rj <p0 + Ep0 . Then for every j e J, since

S(x , r and S(xj(,), rj(c)) have a non-empty

intersection, the distance between their centers

cannot exceed the sum of their radii, i.e.

lx - x lI < r + r +

r + p + ep r + r + er (c2+ r So

lix - x | 1< (2 + e)r which means that

Xj(E) e O S(xj, (e + E)rj). If inf (r } = 0, let
3EJ JEJ

J1, J2' J3, denote a sequence of elements in J

such that lim r4  = 0. The sequence (x n
n->o W n 3 n

is then a Cauchy sequence. For if 6 > 0 is given,

choose a positive integer N such that for all integers

n > N, we have r < . Then we have for all integers
n -

p, q > N, 11x. - x | r + r (since every two
p q - p q

spheres in . have a non-empty intersection)

< -+ = . So the sequence (x n = is a2 2 ~n nlp2.*

Cauchy sequence. Since X is complete, (x i n=1,2,....n

converges to an element x0 e X. We shall show that

x 0 E J) S(x , r and hence x0 e S(x , (2 + e)r ).
JEJ J.3e
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Indeed given any e > 0, let n be such that

r < e and |ixn -x 1< E, Then for any

in - n 0

J c J we have lix -xo| |i <|x - xn n 
1+ll i

n n

<r + r +- < r + l + r + . Since

C 1was arbitrary, we conclude that x0 E S(x3 , r )

for all j c J, i.e. x 0 S(x3 , r . Q.E.D.
JeJ

If we accept the fact that there exist non-injective

Banach spaces, the preceding proposition shows us that

for an arbitrary A > 1, we cannot conclude that a

Banach space X e In(?\) if the set of all closed

spheres in X has the ?\-intersection property. Of

course if 1 < ?\ < 2, the preceding proposition does not

provide us with a counterexample and we may again ask

whether the converse of Theorem 7.6 is true for 1 < ?\ < 2.

We consider briefly some possible modifications of the

proof of Theorem 7.8 to see what difficulties occur if

1 < A < 2. If we define i2 as in the proof of

Theorem 7.8, then as already pointed out in Remark 7.9

we cannot conclude that |TW 11 = 1Th1. We can conclude

however that |ITW 11 < \JJTJ|, but this inequality does not
1 -

imply that (W1 , Tw ) e 2 and hence we cannot conclude
1.
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that (w, Tw) is not maximal in f2. If we define 92

as in the proof of Theorem 7.8 with the exception that

we require the norms of the extensions Tw of T to

be such that l|TW| < AlIiTII, we are still able to deduce

that this new S2 has a maximal element (WM, TW )N

However we run into difficulty when we try to show that

Wm = X. First of all we are forced to define p(u) to

be AITIi inf [|Ox - C|1) (if we hope to make use of
xeT 1 ((u})

our hypothesis at all, i.e. if we hope to construct a

class of mutually intersecting spheres) and we still

deduce (7.18) i.e. f|u1 - u211 < p(ul) + p(u2). However

(7.19) becomes

(7.19)" R|( - TW(x)|1 < Ap(u) < A.A|IT|| lix - 11

and when we try to show that an element (W, TW) e S2

such that W ' X cannot be a maximal element of S2, we

are unable to show that the pair (W1, Tw ) e 2, i.e.
1.

all we are able to conclude is that ||TW 1 1< X 2 lT||. If

we try to define our transformation Tw1 in a manner

other than that which we used in the proof of Theorem 7.8,

we again run into difficulties.
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Finally if we define S1 as in the proof of

Theorem 7.8 with the exception that all we require of

the extensions TW is that they be bounded and linear,

we run into difficulty when we try to show that n has

a maximal element. More specifically we have difficulty

when we try to show that a non-empty totally ordered

subset r of 2 has an upper bound in Q, i.e. we

are unable to show that the linear transformation Tz

is bounded.

Perhaps it is asking too much to expect that a

Banach space X be a member of In(\) if the set of

all closed spheres in X has the ?\-intersection

property. Perhaps a more realistic "converse" to aim

for is the following: If the set of all closed spheres

in a Banach space X has the X-intersection property,

then X is a member of the class In(f(?\)) where f

is some well-behaved function (and f(l) = 1).

We proved Theorem 7.6 for any A > 1. It is

interesting to note that if we adcept the truth of

Theorem 7.6 for the case \ = 1, the proof of the

theorem for the case A > 1 follows quite readily as

we now demonstrate.
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7.11 Theorem. Let the real Banach space X be a

member of In(X), 7\ > 1. Then the set of all closed

spheres in X has the \-intersection property.

Proof. X e In(X) implies that there exists a

set S and closed subspaces Y and A of ,,(S)

such that A,(S) = Y + A, Y A = (0) and X is

congruent to Y. Let T i X ---> Y be the isometry

defining the congruence between X and Y. Let

= (S(xi, ri)}ieI be a non-empty family of closed

spheres in X such that every two spheres in 4 have

a non-empty intersection. We want to show that

S(xi, i) ' \. Let Sy(Txi, ri) = (y E Y I H|y - Txily < r.
el

Now since T is an isometry, the sphere S(x , ri) in

X maps onto the sphere Sy(Txi, ri). For let x E X

be a point in S(x , ri), i.e. lx - x iIX r.. Then

ITx - Tx iy = |IT(x - xi)|ly = li x IX ri and so

Tx e Sy(Txi, ri). Similarly if y e Y is such that

lY- Txii|y < ri, let x e X be such that y = Tx.

Then lix - x ||X = liT(x - xi)iy = IiTX - Txi||y = Ily - Txi S.r

and so x e S(X , ri), i.e. every point of the sphere
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Sy(Tx i, r.) in Y is the image of a point in the

sphere S(x , ri) in X. So consider the family of

spheres .Y = (Sy(Txi, ri)}ici in Y. Every two

spheres in 4Y have a non-empty intersection. For

consider any two spheres, say SY(Tx1 , ri) and

SY(Tx2 , r 2) in JY. Choose a point x0 E X such that

xE E S(x1 , r) S(x2 , r2 ). Then

Tx0 E Sy(Tx , r1 ) ( SY(Tx2, r2 ) since

fTxO - Txi IIx 0 - x Iix < r1  and

|ITxO - Tx2 IY =x 0 - 21X < r 2 . So the family of

spheres JY in Y has the property that every two

spheres in Jy have a non-empty intersection.

Now clearly (y e Y I IIy - Txilly < r i C

(z E ,(S) | |lz - Txi 2 (S) < ri}. For each

Txi, i e I, let S 1 (S)(Txi r) denote the closed

sphere in .(S) with center Txi and radius ri, iee.

SA(S)(Txiv ri) = tz e gc(S) 1 liz - Txi| l }
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and let zooe(S)= (S (S)(Tx r .i)3iI Then every

two spheres in 4 (S) have a non-empty intersection

since Sy(Txi, ri) C sI (s)(Txi, ri) and every two

spheres in < have a non-empty intersection. Since

L90,(S) c In(l), we have A (S)(Txi, ri) # by

Theorem 7.6 for the case A = 1. Now Y E In(\) by

Lemma 2.7 and so there exists a bounded projection P

from XO(S) onto Y with ||P| < (see Remark 6.7).

Let z e SI (s)(Ti' ri). Then Pz e S4 Txi, ?ri).
EI 00 1EI

For IlPz - Tx lly llPz - PTxiliy = |IP(z - Tx )lly <

l|P| liz - Tx1 |(S) ljz - Tx r for each

i e I. Finally T (PZ) e A S(xi, ?1ri) since
-tI

liT 1 Pz - XiIix - IIT 1 Pz - TXiix = 1T'(Pz - Tx-)llx

llPz - Tx illy < Ar, for each i e I. So

S(xi, ? r) . Q.E.D.

In chapter I we said that we were going to give in

a later chapter a geometric proof of the theorem that
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real AI,(S) e In(l). We are now in a position to do

this.

(7.1 Proof. We shall prove our theorem by showing that

the collection of all closed spheres in JO(S) has the

1-intersection property. Then by Theorem 7.8 we ca

conclude that 1,,(S) e In(l). So let

3 = (S(fr, ri))ieI be any non-empty collection of

closed spheres in real A.(S) such that every two

spheres in have a non-empty intersection. We

want to show that C S(f'i, ri) i.e. we want
cI

to define a bounded real valued function f on S

such that If - f | ri for all i e I. Let s e S

be fixed and consider the set ffi(s) + r i 1  and

the set (f (s) - ri)iE1 . We claim that

sup (f (s) - r ) inf (f (s) + rn}. Suppose not.
iCI II

Then inf (f (s) + r i < sup (f,(s) -r So there
iCI iE I3

exists an i1 c I such that inf (f (s) + r < <
icl

f (s) + r i11 1
< sup {f (s) - r,}. Also there exists

ieI
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an 12 e I such that inf (f i(s) + ri) < f (s) + r <

f (s) - r sup (fi(s) - r .. So
2 2 ieI

r + r < (s) - fi (s) I f i(s) - f (s)j <
1 2 2 1 2 1

||f - f . So the sum of the radii of the

spheres S(f , r ) and S(fi , r ) is less than
1 12 2

the distance between their centers. Hence

S(f, ri ) s(f , ri ) = which contradicts a
1 l. 2 2.

property of . So we must have

sup (fi(s) - ri < inf (f (s) + r.). Notice that both
iC IClI

sides of this last inequality are finite since for any

13 e I we have inf (f (s) + r ) f (s) + r < C
1I3 13

and similarly for any 14 I we have - co < f (s) - r 4<

sup (f (s) - r i} Let a be any real number such that
i EI

sup (fi(s) - r i < < inf (f (s) + ri and define
iEI iEI

f(s) = a8 . Since s E S was arbitrary, we have thus

defined a real valued function f on S. To show

that f e 1.(S) We proceed as follows. Let s E S.
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Then fi(s)

inf f (s)
ieI

- r1  sup (fr(s)
1 EI

+ r } fi(s)

- rJ i< f(s)

for any i E I. So

f1 (s) - ri < f(s)

f (s) - f(s) < r.

If(s) - f (s)| <

If(s) I - fi(s)t

<ri + 1 .

and hence

and f(s) - fi(s) < ri. So

r for any i e I. So

< r and hence |f(s)I ri + 1fi(s)|

Hence sup |f(s)| ri + ||f i1 0(s)
seS

(for any i e I) So f E 4C(s). Finally we show that

S(fi, r.).

If(s)

Let i e I. Then for any

- fi(s)| < r , i.e. I(f - f (s)

So sup I(f - f )(S)|
seS

so f e n
ieI

S(f i,

closed spheres in real

i.e. 11ff - f 111200(5) < r *

ri) and hence the collection of all

I (s) has the 1-intersection

property. So real e In(l).

As an application of Theorem 7.6,

following theorem.

7.13 Theorem.

which is a dual space

we prove the

Let X be a real Banach space

and which is in In(l + e) for

fe h a

we have

s e S

< r .

Q.E.D.

<f (s)
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every e > 0. Then X E In(l).

Proof. Since X e In(l + E), the set of all closed

spheres in X has the (1 + e)-intersection property

for every e > 0. Let 4 = (S(xi, ri))iI be a

non-empty collection of closed spheres in X such that

every two spheres in I have a non-empty intersection.

We want to show that r S(xi, ri) for this will
eI

imply by Theorem 7.8 that X e In(l). Now we know that

n~ S(x , (1 + e)ri)
iel

/ for every e > 0. Let

En = , n = 1, 2, 3, ... If m > n we have

n~ S(xi, (1 + em).ri)
iE I

C f S (xi, (1 + En )ri). For if
IteI

z is a member of the left hand side, we have

|lz - x i < (1 + em)ri = (1 + m)ri (1 + 1)r, = (1 + En)r

for all i e I which means that z is a member of the

right hand side. Let In n s(x, (1 + En)ri), n = 1, 2, 3, *..

tEI

Then we have

Il D 1 D D1 ..I 2 3

and each In is non-empty.

Let us now consider our space X endowed with the

weak-* topology. The (strongly) closed unit sphere
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S(o, 1) in X, i.e. tx e X I lIxil < 1} is closed and

compact in the weak-* topology. (X with the weak-*

topology is a Hausdorff topological linear space.

S(o, 1) is compact in the weak-* topology by Alaoglu's

theorem and so S(O, 1) is closed in the weak-* topology

since it is a compact subset of a Hausdorff space.)

Since X with the weak-* topology is a topological

linear space, for an arbitrary fixed vector x e X and

an arbitrary non-empty subset A of X, the mapping

Tx : A -> A + x defined by Tx(a) = a + x, a e A is

a homeomorphism between A and A + x. Similarly if

a is a fixed non-zero scalar, the mapping

Ta : A -> aA defined by Ta(a) = aa, a e A is a

homeomorphism between A and aA. Now given any

strongly closed sphere, say S(x0 , r ) of X with

positive radius r0 , we can obtain S(x0 , r ) from the

strongly closed unit sphere S(O, 1) of X by a

composition of mappings of the type just discussed.

More explicitly the mapping Tx Tr maps the unit

sphere S(0, 1) onto the sphere S(x0 , r0 ). For let

x E S(0, 1). Then IIT T (x) - x0lI = |Ir0x + x0 - x1 =
xo T 0 0 0

jjro X11 = r 0 IxII r r0 and s o Tx T (S(0,l)) C S(x0, ro).
0 1
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Also if y E S(x0 , r then the vector

1 (y - . E ) E S(o, 1) since (y - x

y - x .<. = 1 and T T( (y - xo))=

T (y - xo) =y - x0 + x0 = y and so T T maps
S.X 0 ro

S(o, 1) onto S(x , r0 ). So an arbitrary strongly

closed sphere S(x , r ) in X with positive radius

is compact and closed in the weak-* topology since

Tr (S(o, 1)) is compact and closed in the weak-*

topology (since T is a homeomorphism) and hence so
0

la Ty (Tu (S(o, 1))). Indeed even a strongly closed
0 0..

sphere in X with radius equal to zero is compact and

closed in the weak-* topology since the sphere consists

of only one point and a finite set is compact in any

topology and hence closed since the weak-* topology on

X is Hausdorff.

Now for any sphere S(xi, ri) e ,we have

S(xi, (1 + e )r i) D I Ii 2 D3 D D.

Each In is the intersection of weak-* closed sets and

hence is weak-* closed. So we have a descending sequence

of non-empty weak-* closed sets in a weak-* compact
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space, namely S(xi, (1 + el)r,). So
0=

) I n *

Let y A . n. We claim that y. E S(xi, ri).
n=1 iI

For suppose yO S(x , r ). Then
icI I ~

yo S(xi r. for some 1 0e I. So
0 0 -n

Ilyo -x~ I 0=1 6 > rj 0 Choose a Positive integer no

sufficiently large so that (1 + r
0 0

YO X S(xi , ( + e )ri
0 01 0'

So yo i In

< 6. Then

since Iy0 -x || = 6 > (1 + E )r.
0 0' 0o

CO

n S(x , (1 + En )ri). So y I 
A n

tEl 0 1 n=1l

and this contradicts the fact that y0 was chosen to

00

be a member of I n. So we must conclude that
n=ln

YO E S(xi, ri). So the eet of all closed spheres in

X has the 1-intersection property and hence

X E In(l). Q.E.D.

1 See for example Kelley [20, page 163, exercise H].
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CHAPTER VIII

The Class Pr(l)

In this chapter we shall answer the question

raised in Remark 1.8 by showing that the class Pr(l)

contains only the trivial space, i.e. the space

consisting of only the zero vector. This result

shows incidentally that the analogue of Theorem 7.13

is false for projective Banach spaces of positive

dimension.

Before we present the proof that Pr(l) contains

only the trivial space, we must take care of a

preliminary matter. In the course of the proof we

shall need the fact that there exists a Banach space Y

with a closed linear subspace X and a point y0 E Y

but not in X such that the distance from y0  to X

is not attained, that is to say, there exists no point

xe X such that jyo - x = inf (Ily - xi}. So we

first construct such an example.

8.1 Example. Let Y = L1 [0, 1]. Define a linear

functional T on L 1 [0, 1] by Tf = .1 tf(t)dt,
0

f e L1 (0, 1]. Now for 0 < e < l we have
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|Tf fl~E
0

tlf(t)Idt + fI tIf(t)Idt
l-E-

If(t)Idt + f
l-e

If(t)Idt.

Now if f differs

measure,

0

from zero

1
we have

If(t) |dt > 0

If(t) Idt

for some

an e. Then from (8.1)

ITfI f1~CIf(t)dt
0

on a set of positive

> 0 and indeed

0 < e < 1. Choose such

we have

- 1 l-E I f( t) I dt

tf(t)Idt = fl
0

If(t) Idt - Ef
0

If(t)Idt <

If(t)Idt = 1f|1L [0,1]*

Denoting by |1f 1| for simplicity,

shown that if f e L [0,0

of positive measure,

1] differs

then

from

ITfI < 1|fil.

0 on a set

Clearly if

is 0 almost everywhere, Tf = 0 =

ITfI 11f| 1 for all f e L [0, 1]. So |1T1| < 1.

For consider the functions

(8.1)

(8.2) fl
1-E

+

fl
0

we have

||f 11and so

1|f|11L [ 0,1]

Indeed ||TIJ = 1.
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fn , n = 1, 2, ... defined by f n(t) = tn, t e [0, 1].

Then each fn e L1 [0, 1] and we have

n 0 n+1dt

ln 11 f 1t ndt
0

-1
n +2 n + 1

1 n + 2
n + 1

So |TfnI = n + 1 11fn|f. But lim n= 1 which
n+2 n wh ic

implies that 11Th1 = 1.

Let X = T' ((0)). X is a closed subspace of Y

and clearly X # Y. Choose a function y0 e L [0, 1)

such that Ty0 = 1 (for example y0 (t) = 3t, t e [0, 1]).

We claim that there does not exist any function f 0 e X

such that ||y0 - f 11 = inf th|y0 - f11). Let
feX

6 = inf
feT~ (11))

(iffl.). Now f e T~1 (tl}) implies f

differs from zero on a set of positive measure (for

otherwise Tf would be zero) and so

1 = Tf = JTff < |lff|. So 6 > 1. On the other hand let

1e 1 > 0. Then 0 < 1 + 6 < 1 = 1T1| and since

||T|h sup (|Tf|), there exists a function f such
lif 11=1



that 11f 1 | = 1 and

Then Tf2 =1 and

1 1f(t)I
|if2 |= f I dt

0 ITfifI

ITf > 1 + . Let f2 = *

11= < 1 + E0.

ITifl ITf1I

So 6 < 1 + e Since c > 0 is arbitrary, we

conclude that 6 < 1. Hence 6 = 1.

Now it is easy to see that y0 - X = T 1 ()). So

inf [|ly - fl} =
f EX

. inf

-f T 1(11)

(11f1|} = 6 = 1. So in order

to show that there does not exist any function f0 e X

such that |ly0 - f011 = inf {|ly0 - f1|), it suffices to
fr;X

show that 11yo - fi| > 1 for all f e X. Now for any

f e X, T(yo - f) = 1, and so yo - f differs from zero

on a set of positive measure. Hence T(yo - f) < fyo - f I,

i.e. 1 < flyO - ifh.

8.2 Theorem. The class Pr(l) contains only the

Banach space cordsting of the zero vector alone.

Proof. First of all it is clear that (0) E Pr(l).

So now assume that a Banach space P e Pr(l) where the
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dimension of P is positive. Choose a vector x e P

such that Jxil = 1 and let V be the subspace (one

dimensional, hence closed) of P spanned by x. Take an

f e P* such that lfll = 1 and f(x) = 1 and define

U : P -> V by U(p) =f(p)x, p e P. Then U is

linear and bounded since |U(p)| = l|f(p)x|| = lf(p)llx|

< ||fil ||pi| lixI| < ||p||. HJUll < 1 and since IIU(x)II =

llf(x)x| = I|lx|| = l|xl, we conclude that |hUl = 1. Also

U maps P onto V since an arbitrary element of V

can be written as ax for some scalar a and

a = f(p) for some p e P (since f is onto the

scalar field because f is not the identically zero

linear functional). Finally U2 = U since

U(U(p)) = U(f(p)x) = f(f(p)x)x = f(p)f(x)x = f(p)x = U(p).

So U is a bounded projection from P onto V. Using

the same type of argument used in the proof of Theorem 3.1

(with our V as the subspace Y and l,(S) replaced

by our P e Pr(l)), we see that V E Pr(l). Now our

scalar field K is congruent to V via the map

a -> ax, a e K. Hence by Lemma 2.3, K is also a

member of Pr(l). We shall now deduce a contradiction.

Let Y be a Banach space, Z a closed subspace

of Y and y0 an element of Y but not of Z such



that inf (fly0 - z11) = 11yo - z0 11 for no vector z0 e Z.
zeZ

Let Y be the one dimensional subspace of Y spanned

by y0  and let Z = Z + Y0 . Z1  is a linear subspace

of Y and indeed Zi is closed. So Z is a Banach

space. Also Z is closed in Z since Z is closed

in Y. Let Q : Z -> Z 1/Z be the canonical quotient

map. Define f from K to Z1/Z by f(a) = Q(ay), a c K.

It is easy to see that f is bounded and linear. We

note that

(8-3) f(l) = Q(yo).

We have the following situation:

K

z > Z /Z

K e Pr(l) implies that there exists a bounded linear

transformation g : K -> Z such that Qg = f and

If Z is a closed linear subspace and Y a finite

dimensional subspace of a topological linear space
(in particular of our Banach space Y), then Z + Y
is closed.
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(8.4)

Also we have

Ill 1 = IIQ(y0) II

since If 1| = sup
|aI=1

(If(a) 1|)= sup
Ia|=1

{I|f (al) |l)

= sup
|ai=1

(Iaf(1) 11)

= |Mf(l)|l = IIQ(yo)ll

So fIg(l)| < Ilgili1 = I 1gl_ Ilf| 1

sup (Icz|If(l)l|}
|ac=1-

by (8.3).

(by (8.4)) = IIQ(yO)II.

Now Q(g(1)) = f(l) = Q(yo) by (8.3) and so Q(g(l) - yO)

So g()

say g(l)

- yO e Z and so g(l) e yo + Z = Q(y )

= yo - zo, z E Z.

So IQ(y0)|| = inf
weQ(yo)

already shown that

(lwif) < jg(l)|

||g(l)ll < IIQ(y 0)I|,

and since we have

we conclude that

IIQ(yo)|| = |fg(l)I| = 11yo

|IQ(y0 11 = inf (ly 0ZZ

by the way we chose

- zi} 1 ' / yo -zoi|

SY, Z, and y .

for any z E Z
0

So K cannot be a

Pr(l) and hence P X Pr(l).

(8.5)

= 0.

- z oi. But

||gl 1|fli.

= y 0 - Z.,

member of Q. E. D.
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CHAPTER IX

Dual Spaces of Injective and Projective Spaces

In this chapter we shall prove that the dual space

of a projective Banach space is injective. We present

two proofs of this theorem, the first of which is a

direct proof in the sense that it does not make use of

our previous results and the second of which does make

use of previous results and is simpler. In the first

proof we actually prove somewhat more than is claimed

in the statement of the theorem and we shall discuss

these implications at the end of this chapter. Also

we show that the corresponding question of whether the

dual space of an injective Banach space is projective

can be reduced to the question of whether the dual

spaces of a certain class of injective Banach spaces

are projective.

9.1 Theorem. If P is a projective Banach space,

then P* is injective.

Proof. Let X be a Banach space, Y a closed

subspace of X and g : Y -> P* a bounded linear

transformation. We want to construct a bounded linear

transformation G : X -> P* which extends g. Let

J : P -> P** and j : X -> X** be the canonical



injections (i.e. if

J(p)

j(x)

= ?(p)

= x).

mapping, i.e. if

that r is linear

linear functional

linear functional

r(X*) = Y*. Let

r~ ([O}). Since

of X*. Let Q

mapping. We have

X* r

and if e X*, x E X, then

Let r : X* -> Y* be the restriction

?k e X*, r(f) = *JY. It is clear

and l|r|| < 1. Since every continuous

on Y can be extended to a continuous

on X (Hahn-Banach theorem), we have

Y =( EX* I (y) = 0 for all y e Y=

r is bounded,

X* -> X*/Y

the situation

> Y* >

Y is a closed subspace

be the canonical quotient

0 (exact)

I
X*/r( ({o))

and so there exists

which maps X*/Y

and such that TQ =

a one-one linear transformation T

onto Y* in a bicontinuous manner

r.

Let

i.e. if

Define f

g* : P** -> Y*

p** e P** and

P ->X*/Y

be the

y e Y,

by

adj oint

g*(p**)

mapping of g,

(y) = p**(g(y)).

f(p) = T' (g*(J(p))), p e P.

SP*, p e P, then

(9.1)



i~.

We have the situation

X > X*/Y'

P

Since P is projective, f lifts to a bounded linear

transformation

(9.2)

F : P -> X*

QF(p) = f(p)

Now TQ = r, so Q = T~ r

such that

p E P.

and hence from (9.2)

f(p) = T- 1 (r(F(p))),

Since r(4) = OiY,

p e P, r(F(p))(y)

TQ(F(p)) = T(f(p))

E X*, we have for

= F(p)(y)

by (9.2).

y e Y,

while r(F(p))

So

F(p)(y) = T(f(p))(Y) p E P, y E Y.

T(f(p) ) (y) = T(T~ g*J(p))(y) by (9.1)

= (g*J(p))(y)

= J(p)(g(y))

= g(y)(p).

So

f

we have

p E P.

Now
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(9.3) F(p)(y) = g(y)(p), p e P, y E Y.

Let F* : X** -> P* be the adjoint mapping of F and

let G = F*J : X -> P*. G is bounded and linear and

we claim that G extends g. For let y e Y. Then we

have for any p e P

G(y)(p) = F*(j(y))(p)

= j(y)(F(p))

= F(p)(y)

= g(y)(p) by (9.3).

So G extends g and hence P* is injective. Q.E.D.

Now every projective Banach space is a member of

Pr(X) for some 1 < X < co and every injective Banach

space is a member of In(?') for some 1 < " ' < oo. So

for a given projective space P e Pr(?'), the preceding

theorem tells us that P* e In(\') for some 1 < N' < o*

Indeed we can take V to be ? as the following

corollary shows.

9.2 Corollary. If a Banach space P is a member

of Pr(\), then P* is a member of In(A).

Proof. We shall use the same notations as in the

proof of Theorem 9.1. We establish first that 1T~111 < 1.
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Let a e Y* and let a ce X* be such that r(&,) = a

and ljafJ =fllall. (Such an ' exists by the Hahn-Banach

theorem.) Since TQ = r, we have a = r(a) = TQ(a) =

T(a" + Y ).So T(c) = + Y' and so

JIT '1 (a)|1 = 11' + #11 inf {ii + ?Pl| | |1- + Oil = lIa|i = liail.

So 1T 111 < 1. Now because P e Pr(?) we can assume

that liFi <lfi. If x e X, we have

G(x) = F*J(x) = j(x)(F) and so |IG(x)il < ihi(x)lI |iFI =

ljxll i ||x < | lix|i = \ lix|| IuT~1 g*-JJ \Jlixil Jii-i' iJg*d i ili <

MIx1I |ugil. So IG1 < Allgl and so P* e In(A). Q.E.D.

Before we present the alternate proof of Theorem 9.1,

we require some lemmas.

9.3 Lemma. Let X be a Banach space with closed

subspaces V and W such that X = V + W and

V W = (0}. Then X* is equivalent to V*() W*.

Proof. For E X*, let V= JV and

?w = IW. Define T :X* -- > V* W* by

T( )a = W), E X*. It is clear that T is

linear. Also i|T(j )i = ii( Vj W) = V + 11 Wl

sup (I '(v)l} + sup (I (w)|} I 21 |1 and so T is
veV hwelW|V ||= |W||=
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bounded. Since for each x E X we have x = v + w,

v e V, w e W, v and w unique, it follows that T is

one-one. For suppose 0 = T( = (?v ') (0 0)

Then for x E X we have (X= (v + w) = (V) + (w) =

?V(v) + W(w). = 0 + 0 0 and hence = 0 on X.

Finally T is onto V* G W*. For let

(i, x) e V* G W*. Then for x = v + w e X, define

(x) = *(v) + X(w). is linear and j IV =

|W= X and so all that remains to be established to

show that T is onto is the continuity of on X.

Now (x) I = |*(v) + X(w) 1 1|1| Ik vII + lixil |iwl1 _

K(lJv|| + l|wlj) where K = max (1l'11 , liXil ). Hence if
V* W*

we can prove that there exists a constant K such that

Ilvil + ||w|| K 1Ix|| for all x = v + w e X, the continuity

of will have been established. Define a new norm

1 I on X by |x|il = I|vj| + liwil. Then since

|ixi = ||v + w11 < |lv|| + |iw|l = lixill, the identity mapping

from X with the norm 1 |II to X with its original

norm 11 11 is continuous. If X with the norm 11 ||

is complete, then the closed graph theorem tells us
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that the identity mapping from X with the norm

to X with the norm || Il is continuous, that is,

there exists a constant K such that for all

x = v + w e X, lxII1 = Ilvil + |lwil K1 Ixll. So we

proceed to show that X with the norm || || is

complete. Let {xn n=l,2,.. be a Cauchy sequence

in X with the norm I| Il and let xn =v n + wn, n = l, 2,jo.

Then each of the sequences (v =.n n=l,2,,.. and {wn

is Cauchy in V and W respectively with respect to

the norm 11 ||. For given E > 0, there exists a positive

integer N such that I|xn Xmll < e if n, m > N,

that is, l|vn V mll + Iwn - wmI < e if n, m > N from

which we conclude that (vnln=,2,... and (w )

are Cauchy. Since V and W are closed subspaces

of X, they are complete and so there exist v e V and

w e W such that lim
n -> o

I|v - v I1 = 0 and lim I|w - w n1 = 0.
n n->o n

But then lim IIv + w - xnII = 0 since ||v + w -xn ln -> co

|lv - vnI + 11w - wnll. So X with the norm || is

complete, and hence is continuous. So T is a

one-one continuous linear transformation from the Banach

space X* onto the Banach space V* W* and hence



by the closed graph theorem, T is continuous. So

X* and V* ( W* are equivalent. Q.E.D.

9.4 Lemma. Let A and B be Banach spaces and

suppose A ( B is injective. Then A is injective.

Proof. Let X be a Banach space, Y a closed

subspace of X, and g a bounded linear transformation

from Y into A. Define f : A -> A J B by

f(a) = (a, 0). Clearly f is linear and since

|lf(a)II = 11(a,0)1| = h|a|l, f is bounded. Let

f =fg: Y ->A B. f is bounded and linear and

since A ( B is injective, there exists a bounded

linear transformation if : X -> A a B which extends fl.

Define h : A( B -> A by h(a, b) = a. Clearly h

is linear and since 1|h(a, b)|| = flal < h1ail + Jib I =

11(a, b)jl, h is bounded. Define g : X -> A by

g = h . g is bounded and linear and 9 extends g.

For if y e Y, g(y) = hf'1 (y) = hfl(y) = hfg(y) =

h(g(y), 0) = g(y). So A is injective. Q.E.D.

9.5 Alternate Proof of Theorem Q.)_ Since P is

projective, there exist a set S and closed subspaces

A and B of Al(S) such that A B = (0), A 1(S) = A + B,

and A is equivalent to P. By Lemma 9.3, (A(S))* is
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equivalent to A* I B*. But (I (S))* is congruent

to 9.(S) and so 1 (s) is equivalent to A* 9 B*.

Since O(S) is injective, A* a B* is injective.

By Lemma 9.4, A* is injective. But A* is equivalent

to P* since A is equivalent to P and so P* is

injective. Q.E.D.

Before we prove our next theorem which was motivated

by considering the question answered by Theorem 9.1

with "projective" and "injective" interchanged, we

require the analogue for projective spaces of Lemma 9.4.

9.6 Lemma. Let A and B be Banach spaces and

suppose A B is projective. Then A is projective.

Proof. Let X be a Banach space, X a closed

subspace of X, Q the canonical quotient map from X

onto X/XO, and f a bounded linear transformation

from A to X/Xo. Define f1 : A B -> X/X0 by

f1 (a, b) = f(a). Clearly f1  is linear and since

11fl(a, b)Jj = Ijf(a)II < lf|l Ifall < If|l(I~a|| + I|bl) =

Ilf|l 11(a, b)II, f1  is bounded. S~nce A QJ B is

projective, there exists a bounded linear transformation

A a B -> X such that Q - f Define a map
1 - V
f:A -> X by f(a) = ?'1 (a. 0). f is linear and



since 1|I(a)| = 11ff(a, 0)11 < 1f,1 11(a, 0)11 = 1lil 11ail,

f is bounded. Finally ? lifts f since

Qlf(a) = Qfi(a, 0) = fl(a, 0) = f(a). So A is

projective. Q.E.D.

9.7 Theorem. The dual space of every injective

Banach space is projective if and only if (2A,(s))* is

projective for every non-empty set S.

Proof. (=>) If injective Banach spaces have

projective dual spaces, then clearly (kCO(S))* is

projective for every S since 1,0(S) is injective.

(<=) Now assume that (ZO(S))* is projective for

every S. Let I be any injective Banach space. Then

there exist a non-empty set S and closed subspaces

A and B of XO(S) such that 2,(S) = A + B,

A B = 10} and A is congruent to I. By Lemma 9.3

(1(s))*, is equivalent to A*( B*. Also by our

assumption (200(S))* is projective and hence so is

A* e B*. By Lemma 9.6 A* is projective and hence so

is I* since A* is equivalent to I*. Q.E.D.

9.8 Remark. In the first proof of Theorem 9.1

we did not make full use of the hypothesis that P is
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projective. More precisely the map f that we lifted

was not just a bounded linear transformation from P

into a quotient space A/B, A an arbitrary Banach

space and B an arbitrary closed subspace of A.

Our quotient space A/B was of a very special type,

namely A was a dual space (X*) and B was Y',

the space of all continuous linear functionals defined

on X which vanish on the closed subspace Y of X.

Now such a subspace Y of X* is closed in the

weak-* topology on X*. For let x e Y and let

F t e X* j (x) = 0. It is easy to see that

Y F . Now each F is weak-* closed. For
xe

consider the linear functional J on X* defined by

J ( (x), E X*. J is continuous with respect

to the weak-* topology on X* (by definition of the

weak-* topology) and Fx = J~ ((o}). So Fx is weak-*

closed and so Y , being the intersection of a fahily

of weak-* closed sets, is weak-* closed. Hence if the

only hypothesis imposed on our Banach space P were

that for any dual space A, any weak-* closed subspace B

of A, and any bounded linear trasnformation f from P

to A/B, there exists a bounded linear transformation f

from P to A such that Qf = f (where Q is the
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quotient map from A onto A/B), we would still be

able to conclude that P* is injective. A Banach

space satisfying the criteria imposed on P will be

said to be *-projective and Theorem 9.1 can be

reworded to read "The dual space of a *-projective

Banach space is injective". We can define the class

Pr*(\) 1 < ? < o, As consisting of those *-projective

Banach spaces for which the map f can be chosen so

that I|?|< ?11f I and Corollary 9.2 becomes "The dual

space of a member of Pr*() is a member of In(?\)."

Indeed the dual space of any *-projective Banach space

(whether a member of Pr*(A ) or not for some 1 < < 0)

is a member of In(\) for some 1 < ?\ < o since the

dual space is injective and hence is a member of In(A)

for some 1 < A < co.
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CHAPTER X

Separable Projective Banach Spaces

In this chapter we shall prove that if P is a

separable projective Banach space, then either P is

finite dimensional or else P is equivalent to 11(s)

where S is a countably infinite set. We shall

accomplish this by noting the following. If P is

separable and projective, there exist a countably

infinite set S and closed subspaces X and Y of

, (S) such that I1(S) = X + Y, XY = b}, and X

is equivalent to P. Hence it suffices to establish

that an infinite dimensional closed subspace of

21(S), S countably infinite, with a closed complement

is equivalent to 1(S). On the other hand if S is a

non-empty at most countably infinite set, 11 (s) is

a separable projective Banach space. Thus a non-zero

Banach space P is separable and projective if and

only if P is equivalent to 11(s) for some non-empty

at most countably infinite set S and hence we obtain

a characterization of separable projective Banach spaces.

We require several lemmas, some of which are

rather trivial, but we include them for completeness.



10.1 Notation. Let A and B be Banach spaces.

We write "A B" to denote that A is equivalent to B.

10.2 Lemma. Let A, B, and C be Banach spaces

and let A - B. Then A C ~B ) C.

Proof. Let T : A -> B be a map defining the

equivalence between A and B. Define

: A e C -> B C by o(a, c) = (Ta, c), (a, c) E A C.

is linear and if (a, c) = (a,, c1 ), then c =c

and Ta = Ta1 which implies that a = a1  since T is

one-one. So is one-one. If (b, c) E B ( C,

let a E A be such that Ta = b. Then (a, c) = (b, c)

and so * is onto. is bounded for

11?(a, c)JI = I(Ta, c)I| = IlTa|| + ||c|i < |T11| |all + ||cl| <

K(||al + |c|)= KI|(a, c)| where K = max fiT||, 1). So

is a one-one bounded linear transformation from the

Banach space AGB C onto the Banach space B j C.

By the closed graph theorem, is continuous. So

A ( C ~B ( C. Q.E.D.

10.3 Lemma. Let A, B, and C be Banach spaces.

Then (A (BB)B C- A J (B C).

Proof. Define T : (A B) C -> A ( (B 3 C)

by T((a, b), c) = (a, (b, c)), ((a, b), c) E (A a B) 9 C.
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It is easy to see that T

for if T(a 1 ) = Ta2),

which implies

which implies

that

that

then

a 1 a2

b = b2

is linear. T is one-one

(a,, (bl, cl))

and (b1 , c 1 )

(and so (al,

= (a2, (b 2 ' c2))

= (b2, c2 )

b1 )

(a2 , b 2 )) and c1 = c 2 and hence a 1 = a2 T is onto

for if (a, (b, c)) e A & (B @ C),

T((a, b), c).

JIT((a, b), c)I

(a, (b, c))

T is bounded for

= |1(a, (b, c))Ij = I|al + I|(b, c)|1

= |al + l|bl| + |iclI = 1|(a, b)l + |ic|l

ll((a, b), c)l.

So T is a one-one bounded linear transformation from

the Banach space (A & B) e C onto the Banach space

A (B C). By the closed graph theorem,

continuous. So (A B) C ; A ) (B () C).

10.4 Lemma.

and suppose

each s e S,

A ~ B.

let A

Let A and B be Banach spaces

Let S be a non-empty set.

and Bs = B.

For

Let

x = Z 0 1 A.
SES

and Y =

seS

01 Bs. Then X - Y.

Proof. Let T : A -> B

equivalence between

be a map defining the

A and B. We want to define a

one-one bounded linear transformation

is

Q.E.D.

T-1

s = A

from X
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onto Y. Let f e X. Define Tf

(Tf)(s) = T(f(s)), s E S. Tf e Y.

||(Tf)(s)|| = ||Tf(s)II < |||11| |f(s)

||f(s)||
SES

< 00 (since f E X),

For we have

I| for s E S and since

it follows that

T11| 1f(s) 1I < 00 and hence

So we have a mapping

T is linear.

'1 + f2 )(s)

For let

: X -> Y

f, f2 E X

given by

and

= T((f1 + f2 )(s)) = T(f1 (s)

f -> Tf.

s e S. Then

+ f2 (s))

= T(f1 (s)) = T(f2 (s)) = (Tf1 )(s) + (Tf (s)

= (Tf1 + Tf2 )(s).

So T(f + f2 ) + Tf2 .

- T((afl)(s)) = T(a(f (s)))

= c((Tf9)(s))

Also if a is a scalar,

= a(T(f (s)))

= (a(Tf1))(s).

So T(afl) = a(Tf ). So T is linear. one-one.

For suppose

s e S, we have

f1 (s) = f2 (s)

Tf = Tf2 l

T(f1 (s))

1' f2 e X.

= T(f2 (s))

(since T is one-one)

Then for all

which implies

and so f1 = f2 '

: S -> B by

s
$ ES ses

< o.

(T(afl))(S)

11( 'f)s)| 1



g eY. Define f: S->A

by f(s) = T~ (g(s)),

we have

s E S. f e X for if s e S

11f(s)|| = 1|T~ (g(s))Ii | 11111g(s)I and

since g e Y,
s

S ES

|IT' ii jig(s)JI

||g(s)I < oo which implies that

< CO and hence
s

S ES

11f(s) 11 < O.

Tf = g

TT 1 g(s)

bounded.

for if s e S we have

= g(s). So T

(Tf) (s) = T(f(s))

is onto Y. Finally

For if f e X, we have

|jT(f(s))|| |ITI ||f(s)JI for each

T

||(Tf)(s)I| =

s e S and since

11TH 11f(s)|| < o0

(Tf) (s)I| < o.

I(Tf)(s)|| I
S ES

Since ITf | =

seS

Tfl| 1 |ITl 11f|, i.e

(since f C X) it follows that

Indeed

|IT|! |1f( s) 11 = |iT|| X |f( s)I| = IT|! l1fli
SES

|(Tf) (s)|1,

.that T

we conclude that

is bounded. So T is

I
S ES

is

I
seS

seS

ses

Y. For letis onto
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a one-one bounded linear transformation from the Banach

space X onto the Banach space Y. By the closed

graph theorem, T

x ~ Y.

is continuous. Hence

Q. E.D.

10.5 Lemma. Let A and B be Banach spaces and

let S be a non-empty set. For each

B = B, and Ds = A B.

As , Y= ES
scs

and

s E S, let

Let

W = Z) E
ses

1D s

Then W - X Y.

We want to define a one-one bounded

transformation T from W

map g, : A B -> A

onto X Y.

by g (a, b) = a

Define a

and a map

by g2 (a,

clearly linear. Nowif feW and seS,

e A e B and f(s) = (gif(s), Define a

by fA(s) = glf(s) and a map

: S -> B by fB

I1g f(s)I|A + |g2f(s)|BI

Since f E W, we have ||f(s)|A
seS

Now ||fA(s)|IA

= 11 (s) 11A ()B

B < oo from which

A,

x =

S ES

Proof. linear

B b) = b. and

map fA : S -> A

are

= 2 f(s).

"gl (s)||A



it follows

Similarly

||fB(s)||B =g 2 f(s)|B <

and so

seS

I1g f(s)1 A

fB(s)6B< 0 So B

(fA' B) e X aY and we define a map T : W-> X(DY

Tf =(A' ( B'

T is linear.

f C W,

For let

s E S, Then T(f + g)

f and g be in W and

+ )A (f + g)B) and

Tf + Tg = (fA' B + (gA' gB = A + gA'

= g((f + g)(s))

= g f(s) + g g(s)

(fA + gA)(s).

Similarly

(f(s) + g(s))

+ gA(s)

(f + g) B =fB + gB

and hence T(f + g) = Tf + Tg. Also if a is a scalar,

T(af) = ((af)A (af )B) and a(Tf) = a(fAP

Now (af)A(s) = g1 (af(s))

a(g f(s)) = a(fA(s)). So (af)A * A(fA) and similarly

that
x
s ES

CO , So A EX*

1A

So

by

(f + g)A(s)

So (f + g)A = A + gA

fB

|IlfAs "A <

+ ||g2f ()1B

= ((W

fB + gB '

= f A(s)

(a(f A),
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and so T(af) = a(Tf). So T is linear.

T is one-one.

Then (fA' fB)

For suppose

= (A' B) and so

Tf Tg,

fA 9A

f, g e W.

and

fB = 9B. So for

(gA(s), gB(s))

s e S, f(s) = (A(s), fB

= g(s). Hence f = g. T is onto

e X Y. Define a map

f : S->AeB by f(s)

1f(s) |A ) B = 11( j(s), *(S)) A

+ |?P(s)IB.

and similarly

Since

7e Y implies

E X,

S-tS

seS

|kt(s)|"B <

+ |I(s)IIB) < oo and hence

So f e W. We claim that

For Tf = (fA' B) and if s E S,

(by definition

and fB(s) = V(s) for all

So T is onto X &Y.fA

= a(fB)

X Y. For let ( j*~I)

Now

(s)|"A <CO

Sol

SES

sES
f (s) |A () B < co.

f(s)

of f). So fA(s)

= ( (s), P(s)).

11(s)1|A

Tf = ,P).

= (f A s' fB(s)) = H s), ?P(s))

=?(s)

s C S, i.e. fB= .

(| (s)||A



T is bounded. For if f E W)

|lTf 1x G Y =1A fB 11 = 'fAX + fB Y

IA )"A

"A(s)

So ||Tf 11 x y = W and hence T is bounded.

T is a one-one bounded linear transformation from the

Banach space

closed graph the

W X Y.

10.6 Lemma

W onto the Banach space

orem,

x R Y.

is continuous.

By the

Hence

Q.E.D.

. Let A and B be Banach spaces.

Then A 3)B. ~B (BA.

+

s ES
RB~ B

+ B B

fB(s)) "A () B

ses

seS

s eS

SES

-Is s)|A (DB

= |f 1W'

So

F-Inal ly

T~-1



Proof. Define T : A( B -> B (@ A by

T(a, b) = (b, a), a E A, b E B. T is onto B a A

since an arbitrary (b, a) e B CD A is the image

under T of (a, b) E A B. It is clear that T is

one-one and linear. T is bounded since

|IT(a, b)|| = ||(b, a) I = ||bi + ||al = ||al + ||bil = |1(4, )J|.

So T is a one-one bounded linear transformation from

the Banach space A B onto the Banach space B G A
and hence by the closed graph theorem, T-1 is

continuous. So A B ~ B (a A. Q.E.D.

10.7 Lemma. Let A, B, and C be Banach spaces

and suppose A B. Then Ca A ~ C B.

Proof. By Lemma 10.2 we have AG C ~ B ( C.

ByLemma 10.6, C 3 A~ AaC and B (5C ~ C B.

So C ( A C ( B since is an equivalence

relation. Q.E.D.

10.8 Lemma. Let S and St be two non-empty

sets with the same cardinality. Let A be a Banach

space. For each s e S, let A = A and for each

s' e S', let As, = A. Let X = As and

SES

Y = A,. Then X- Y.
s'eS'
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Proof. Since S and S' have the same cardinality,

there exists a one-one mapping

Let f e X. Define a function Tf

from S onto S'.

S' -> A by

(Tf)(s')

|ITf
8' ES'

(

=f(

s')II =
s1 ES'

s' c S'. Tf e Y since

||f( ) l =1
s ES

lf(s) 1t

So we have a mapping

T is linear.

(T(f + g))(s')

T

For let

:X ->Y

If, g C X.

= (f + g)( ))

given by f -> Tf.

Then

= f( r.(s')) + g( )

= (Tf)(s') + (Tg)(s') = (Tf + Tg)(s').

So T(f + g)

(T(af))(s')

(a(Tf))(s').

=Tf + Tg. SimI

= (f)( )

So T(ctf) = a(TI

larly if

- cf( (s'))

f) and hence

a is a scalar,

) = a(Tf(s'))

T is linear.

T is one-one.

Then for all

f ()(S'))

For suppose

S' e S, we have

Tf1 = Tf 2

Tf (s')

- f 2( ( ))

for some

But every s e S is

s' e S' and so f (s) = f2 (s)

s e S. So f1 = f2.

hEY. Define w: S->A

since ZIw(s)I|=
3s CS

z
5 ES

T is onto Y. For let

by w(s) = h( (s)),

I|h(? (s))=
5 ES'

< Co.

1' 2 E X.

i.e.

for all

w e X

s e S.

||h(s')| 1 < cO.
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Also Tw = h since (Tw)(s')

= h(s') for all s' e S'. So T is onto Y. Finally

IITf || =
s eS'

ITf(s')| = I
s' eS'

If( ~(s'))l = I
5 ES

So T is bounded. So T is a one-one bounded

linear transformation from the Banach

Banach space

continuous.

Y.

space X

By the closed graph theorem,

Hence X ~ Y.

onto the

T~1 is

Q.E.D.

10.9 Lemma. Le

A be a Banach space.

t S be an infinite set and

For each SC S, let

let

= A.

Let X =
seS

Proof.

Then since

tAs

Let s~o

Then X A - X.

be a point which is not in

S is infinite,

the same cardinality as S.

the set S'

For each

S.

= S U (s 0I

s I S!, let

A and let

z = (f, a),

Y = XA.,
f ' eS'

f EX, a EA.

Let z e X ) A.

Define a map

Tz : S' -> A as follows:

(Tz)(s) = f(s)

(Tz) (s0)

if s E S

= a.

Tz e Y. We must show that

Ilf||

if (s)

As,

Then

has

We c laim that

=W( ~(s') h( () )
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Xz'
st CS

I(Tz)(s') 1

if(s)| 
seS

S such that

S such that

if

< co. Let e > 0. Since f e X,

So there exists a finite subset

is any finite non-empty subset of

SF is = we have X 1f(s)| 1
sESF

Let S' = U (s). If SF is any finite non-empty

subset of S' such that S I 1 SF, ,

and S I =nF, , and so X (Tz) (s') = ||f(s')I

s' eS s eS'F F

So

X QA

let z.

< o.

to Y given by

= (f, a ) and
le z ~ ..

So we have a map

z -> Tz. T

z2 (f2, a2 )

T from

is linear. For

be members of

X A. Then z1 + z2 =
(f1 + f2-1

s e S, T(z1 + z2)(s) = (f1 + f2 )(s)

= Tz1 (s)

while T(z1 + z2)(so) = a +

+ Tz2 (

1 + a2 ) and so for

= fl(s) + f2 (8)

s) = (Tz1 + Tz2)(SI'

a2 = Tz 1 (s0 ) + Tz 2 (s.)

(Tz1 + Tz2 )(so).

S of

< E.

then S5 C SF

< E.

< 00.

S F

*

So T(z1 + Z2) = Tz 1 + Tz2.0 If a is

11|(Tz) (t I) 1|1



az1 = (cfl, aal) and so for

(T(azl))(s) = (afl)(s) = a(fl(s)) = a(Tzl(s))

(c(Tz ))(s), while (T(az1 )) (s) = aa = a((Tz1 )(s0 ))

(a(Tz1 ))(s.).

T is one-one.

s E S,

So (az1 ) =

For suppoee

fl(s) = Tzl(s) = Tz

a(Tz1 ).

Tz = Tz

2 f2(

So T is linear.

2. Then for all

s). So f1 = f2 '

Also a1 = Tz1 (so) = Tz 2 (so)

hence T is one-one. T is onto Y. For let g

Define a map f

a = g-(so). The

S -> A by f(s)

n f e X since Z
seS

= g(s)

If(s)|| =

|1g(s)| _< I
3t ES'

jg(s' )| So (f, a) E X ( A

T(f, a) = g. So T is onto Y. Finally

For if z = (f, a) E X 0 A, IITz 11
st ES'

||f(s)|1 + Hal = If|| + ||ail = |1(f, a)|| = lIz|l.
5 ES

T is bounded.

IlTz(s')1

So T is

a one-one bounded linear transformation from the Banach

space X j A

graph theorem,

onto the Banach space

T-1 is continuous.

Y. By the closed

Hence X e A - Y.

Y b X. So X ( A ~ X.D

= a2 . So Z = Z 2
and

E Y.

and let

s5ES

and

a scalar, s C S,

< 00.

Now by Lermma 10.8, Q. E. D.
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10.10 Lemma. Let

s e S, let As = 21(S)

S be an infinite set.

and let X = Xj A .

Ses

For each

Then

X ~A1(s).

Proof. Since S is infinite,

SxS equals the cardinality

one-one mapping (f from

the cardinality of

of S. So there exists a

SxS onto S. We want to

define a one-one bounded linear transformation

X onto Al(S). Let f e X. We define a scalar valued

function Tf on S as follows.

let (x, y) = and define

For each s e S,

(Tf)(s) = (f(y))(x).

We claim that Tf E 11 (s). Now for each y e S, we have

If(y)(x) I

If(y)(x) i

< Co since f(y) E .91(s)

= I|f(y)|1. Also

yES

||f(y) 11

and indeed

< Co since

f c X. For each (x, y) e SxS, If(y)(x)I

it follows that X

(x,y) eSxS
If(y)(x) I< W.1 The summability

of the family {If(y)(X)IJ(xy)EsxS implies that

1 See for example Kelley [20, page 78,

T from

xeS

xES

> 0. Hence

exercise G(h)(ii) ].



a = z

(x, y) ESxS
If(y)(x) i

E > 0. Then there exists a non-empty finite subset

of SxS such that if (SxS) F is any finite

subeet of

(10.1)

SxS containing

r a

(SxS) ,, we have

(x,y) E(SXS)F

f(y)(x)

Let S = ((SxS) E). S E is a finite non-empty subset

of S. Let S be any finite subset of S containing

Let (SxS) F (SxS) F is finite and

contains

I
5es F

a

(SxS) E and so (10.1)

ITf(s)I =

(XvI( xS)F

I

SESF

holds.

If(y)(x) I

ITf(s)| < c.

But

and so

So the family (ITf(s)) }ses is

summable and indeed

(10.2)
I
5 ES

ITf(s) I If(y)(x) I
(x,y ICSxS

So Tf e 11(s) and so we have a mapping

s
s ES

ITf(s) I < 00. For let

( SxS) e

and let

< E.

S .

I.L. _) - 1 0

l( SF) .

:X - ST
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given by

f, g E X

T(f + g)(s

f -> Tf. T is linear. For suppose

and s e S. Let s

) = ((f + g)(y))(x)

y). Then

= (f(y) + g(y))(x)

= f(y)(x) + g(y)(x) = (Tf)(s) + (Tg)(s)

= (Tf + Tg)(s).

So T(f + g) # Tf + Tg. Similarly if a is a scalar,

T(af) = a(Tf)

For if f e X

and so T is linear.

, Tf |1 =
S ES

T is bou

ITf(s)| =
(xy) ESxS

nded.

If(y)(x)I

(by (10.2)) =

yeS

(
xeS

|f(y)(x)|) = If(y)II
yeS

So T is bounded and indeed an isometry,

Finally

each

T is onto I,(S). For let

= Ilfil.

hence one-one.

g e , (S).

S, define a scalar valued function f(y)

For

on

S by (f(y))(x)

the family (if(

= g( (x, y)),

y)(x)| '(xy)SxS

x e S. We claim that

is summable (with sum

I|W) For let C

non-empty subset

finite subset of

> 0.

Se1

Then there exists a finite

of S such that if

S containing S , we have

1 See for example Kelley [20.,

is any

= (xI

S F1

page 78, exercise G(h) (i)].
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(10.3)

Let (SxS)

I |ugh
- z

seSF
Ig(s)j

(SxS)E
1 /l

< E .

is a finite

non-empty subset of SxS. Let (SxS)F be any finite

subset of SxS containing

11 = ((SxS)F ). 1
is finite and contains

so (10.3) holds.

and so |jg|j -z
(x,y)

But

s ESF

Ig(s)j = Z If(y)(x)I

(x,y) E(SXS)F

f (y)(x) I
C (SxS) F.

I C,. So the

family {4f(y)(x) (xy)EsxS

each fixed y E S,

is summable and hence

the family

summable, i.e. f(y) C 11(s) for each y e S. Now

If(y)(x) I and the summability of

f(y)(x)I}(xy) csxS implies the summability of

( 1f(y) "1}yES, i.e.Y

yES

11f(y)1| < co which means that

(SxS)E and let

S

for

Ilf(y) 11

is

X
xcS

the

I{If(y)() | O E
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mapping f from S to 2i(S) given by y -> f(y), y e S,

is in X. Finally Tf = g. For let s e S and let

(x, y) = (s). Then (Tf)(s) = f(y)(x) = g( (x, y)) =

g(s). So T is a one-one bounded linear transformation

from the Banach space X onto the Banach space 11(s).

By the closed graph theorem T is continuous. So

X ~19 (s). Q.E.D.

10.11 Lemma. Let X be a Banach space and let

Y and W be closed subspaces of X such that

X= Y+W, Y)W = {0}. Then X~ Y W.

Proof. Define T : Y GW ->X by T(y, w) = y + w.

T. is clearly linear. Also if T(yl, wl) = T(y2 ' 12 )

then yl + w = y 2 + w2 which implies that

y 1 - y2 = w2 - wl. Since Y W = (0), we must conclude

that y - y2 =0 and w2 - w -0. So T is one-one.

T is onto X for by hypothesis each x E X can be

written as x = y + w, y e W, w e W and'so

T(y, w) = x. T is bounded since

JIT(y, w) 11 = Ily + wil < Ilyll + liwil = II(y, w) 11. So T is

a one-one bounded linear transformation from the Banach space

Y ( W onto the Banach space X. By the closed graph

theorem, T~A is continuous. So X - Y & W. Q.E. D.
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10.12 Lemma. Let S be an infinite set. Let X

and W be closed subspaces of A2(S) such that

11 (S) =X + W and X W = (0). Let Y and Y be

closed subspaces of X such that X = Y + Y ,

Y Y Y = (0}, and suppose Y ~1(S). Then X ~l(S).

Proof. For each s e S, let As 1(s), let

Bs = X W, let Xs = X, and let Ws = W.

A = ZlAS, let B=

seS
Bs, let

S es

Let

Z = z

seS

0 X ,

and let R =

seS

01 W,. Then we have

21 (S) = X + W X W by Lemma 10.11

~ (Y & Yl) e W by Lemmas 10.11 and 10.2

(Al(S) 6 Y1 ) ( W by hypothesis and

Lemma 10.2

~1 (s) () (Y G W) by Lemma 10.3

~ A ) (Y 9 W) by Lemmas 10.10 and 10.2

B ( (Y 1  W) by Lemmas 10.11, 10.4, and

10.2

~ (Z (R) R (Y1 G W) by Lemmas 10.5 and

10.2
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(Z R) G (W 0 Y) by Lemmas 10.6 and

10.7

~ Z ( (R 9 (WG@ Y1 )) by Lemma 10.3

Z ((R ( W) G Y1 ) by Lemmas 10.3 and

10.7

Z 9 (R ( Y1 ) by Lemmas 10.9, 10.2 and

10.7

~ (Z $ R) G Y 1 by Lemma 10.3

~ B & Y by Lemmas 10.5 and 10.2

A D Y  by Lemmas 10.11, 10.4, and 10.2

~, ( S ) e Y, by Lemmas 10.10 and 10.2

Y Y 1  by hypothesis and Lemma 10.2

X by Lemma 10.11.

So 1(s) ~X. Q.E.D.

10.13 Definition. Let X be a Banach space and

let (xj}j=12,3,... be a sequence of vectors in X.

We say that the sequence tx I is a Schauder

basis for X if for each x e X, there exists a unique

sequence (a

(x - a ix in=1,2,*.'..
i=1

of scalars such that the sequence

converges to 0 as n -> oo,



4 I-' .

i.e. a x converges

i=l
to x.

We assume the reader is familiar with the basic

properties of Schauder bases as contained for example

in Banach [ 5., chapter VII] or Day [7 , chapter IV].

In particular we assume the reader is familiar with the

following:

(a) No vector in a Schauder basis is zero.

(b) If X is a Banach space with a Schauder basis

i 1=1,2, ... , let X( =

sequences of scalars (a }i=1,2,...

denote the set of all

such that the series

a x1  converges. Under the usual definition of
i1

addition of two sequences and multiplication of a sequence

by a scalar, X =
is a vector space and if

we define Hal| for a = (a 1i=1,2,...

by ||al = sup
1 n < co

n
||a x ||}, then X (X

is a Banach space equivalent to X under the mapping

T : X(x=

o

-> X defined by T(a) = axi.

1=1

E X =, .



For each i = 1,2,... we define a scalar valued function

Co
** * *

x on X by x(x) = x,( anxn) = a,. Then x. is

n=1

a continuous linear functional on X and

lix. <| 1 . The sequence x } 1=2,.. in X

is called the sequence orthonormal to _x =l,2, o**

(c) If S = (81, s2, s3,.*.. is a countably

infinite set, let ei, i = 1,2,.., be that element in

1 (S) defined by e (s ) = 1 and e (s) = 0, s ' s .

Then the sequence (eil1= 1,2,... is a Schauder basis
00

for 81(s). If f E l(s), then f = 41 e where

i=l

a = f(s , i = 1,2,..., and

00

|fil = Z ai|.
i=l

10.14 Notation. Let X be a Banach space and let

(xynn=l,2,... be a sequence of elements in X. We

shall denote by [xn nl 2,... the smallest (in the sense

of set inclusion) closed subspace of X containing each
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of the vectors xn, n = 1,2,...

10.15 Lemma. Let X be a Banach space and let

( n n=1,2, . ..
be a sequence of elements in X. Suppose

there exists a constant M > 1 such that

n m

|a I z |i| < M| a iz ill
i=l 1=1

for all positive integers m and n with m > n and

all scalars a,, a2 , ... , am. Assume that no zn

equals 0. Then the sequence (z n is a

Schauder basis for [zI

Proof. Consider the set Z of all vectors z e X

for which there exists a sequence (not necessarily

unique) of scalars (an n=

n

(z - a iz in=l,2 ,... converge

i=l

such that the sequence

s to 0 as n -> co.

In other words Z consists of all those vectors z e X

which can be expressed as a convergent infinite series

of the form X a iz. It is clear that each zn
i=l

is in

'
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Z and that Z is a linear subspace of X. Also

Z C [z =1 2 . For if we let Z denote the

linear subspace (not necessarily closed) of X

generated by the vectors in the sequence (z n)=1,2,,.. '

every element z of Z is the limit of a sequence of

elements in ZV, namely the sequence of partial sums

of an infinite series converging to z, and hence z

is in the closure of ZV, i.e. in [znln=1,2,...

What we want to show is that Z = [zn n=l,2,...

and that the infinite series which converges to an

element z e Z is unique. We shall show uniqueness

00 00

first. Suppose z = a z= a zi. Then

i=l i=l

0 = (a. - ai')z and so it suffices to show that

i=l

the expansion of 0 into an infinite series (which s

of course always possible by taking all the coefficients

C*

to be zero) is unique. So let 0 = y zi, where

i=l

the yi's are scalars, and suppose some yi ' 0. Let

1 be a positive integer such that y 0, but
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'y = 0 for all 0< i < 10. Then for all integers

n > i, we have, by hypothesis,

0 n

ly z 1| < Ml y zi ||.

Now since 0= 'yz =

i=1

n

lim Z yizi and since
n -> w0

the norm is a continuous function it follows that

lim ii 'y z |I = ii lim
n -> o n ->

n

Z'y Ti 1| = |01| = 0. Hence
00

given e > 0, there exists a positive integer N such

that for all n > N, we have

n 'E1n

0- 'Yiz < , that is, y 1| <

i=l i=l

If in (lOJ.4) we choose our n > N (as well as n _>1)

we have

i=l
Yi z il < 6 But TYzi= yi z

0 0

and so yi zi< el.
0 0 -

we conclude that yi0zo

Since e 1 > 0 was arbitrary,

= 0. But we assumed that



I j 2)*

-y 0 0 and so we must conclude that z = 0. But

z = 0 contradicts our hypothesis that no zn = 0.
100

So we must conclude that if 0 = yz , then y = 0

i=l

for all i. So uniqueness is established.

There remains for us to prove that Z = [znn=1,2,...

It suffices to show that Z is closed since Z is a

linear subspace of X containing each zn'

z C [zn~n=1,2,..., and [znln=1,2,... is the smallest

(with respect to set inclusion) closed linear subspace

of X containing each zn. Let (xn n=l,2,...

sequence of elements in Z and suppose

n M xn = x e [ zn n=l,2,...n -> o
. We shall prove that

x e Z, thus establishing that Z is closed. Now since

tXn]n1,2,.. is a convergent sequence, it is Cauchy.

00

Let xn Z i(xn)zi, n = 1,2,..., where Pi(xn)
i=l

denotes the unique coefficient of z in the infinite

series expansion of xn. Let k be a non-negative

*

be a



integer. Define a map Uk from Z to Z as follows:

Co k

If k > 1 and x = a z i E Z, define Uk(x) = a iz i;
i=l i=l

if k = 0 define U O(x) = 0. It is clear that each

map Uk is linear. Also ||Uk|| < M2 for all k. To

see this last inequality we may assume that k > 1,

since |HU || = 0 < M2. We first note that for each

o

x= Z z e Z, we have

i=l

(10-5) 2a iz 1Y < M2 |Ix|I for all positive integers n.

i=l

For suppose that for some positive integer n0 we have

n0

11Z zi|| > M2||xj|. Then for al- n > no, we have

i=1

n n

_M|| a z 11 >1 jz || > M 2|11| and hence

n n

lx| = lim 11 a z 11 > 1|1 a z 11 > MI|x||~ > l|xi| which
n -> oo

is impossible. So (10.5) is established and hence

-L'j'b *



177.

k
I~u~x)I = II ~ ct~jii < 211X11. So 11
1k1)| =1| a z || < M2 kl< M2

i=l

Let 0 < k < J, J,k integers and let

Ukj = j -k. Then we have I|Ukj(x. - xn)

I(Uj - Uk m xn)|| = IUj(xm - xn) - Uk(xm - xn)I <

HU (xm - xn) + |Uk( x)|I 2M2  n '

particular |P i(x )z - P (xn)z. =p I(xm - xn)z 1=

HU Jl,(Xm - xn)1 < 2M2 1xm - xI1, and so the sequence

tP (xn)zJ n=1,2,... is Cauchy for each fixed positive

integer J. Hence the sequence tp (xn)z }n=1,2,,..

converges to an element a z E [ zn n=l,, ... for each

such j. We shall now show that the sequence

n

Z azi}n=l,2,... is Cauchy. Let e > 0 and let

i=l

M be a positive integer such that n > m > M, implies

I|xm xn| < 62 We have
.M

1 It is trivial to show that if a sequence of vectors
(a n=1,2,... (an scalars, x a fixed vector) in a
normed linear space converges to y, then y = ax for some
scalar a.
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Ukjxm - I
k<i<J

a iz ill = |lUkjxm

|IUkj(xm xn) + Ukjxn -

2M2 - xn| + IUkjxn -

k<i<J

k<i<j

- Ukj n + Ukjxn - I
k<i<:J

azi 1|

a z | = 2M2 IXm _ Xnl

+ |k+l n)zk+l + sk+2(xn)zk+2 + j.. + ( n) z -

< 2M2 _1 n1 + "lk+l (xn)zk+l - ak+zk+l + ... + lip n)z - azI z

In particular if we choose our integers m and

that n > m > M, we have

(10.6) (IUkjxm - I
k<i<!J

a iz 1 < 2o +

ak+lZk+l11 + ... + ii n )z - a z ||.

Since for each positive integer j the sequence

converges to a3 z3 , we can by

choosing n sufficiently large make the right hand

side of (10.6) less than 2e + 6 for any given 6 > 0

from which we conclude that

(10.7) IUkjXm - I
k<i<!J

ai z| 1 2E for all 0 < k < j

aiz ill

I
k<i<:J

a. zil

n such

Ik+1 ( n) zk+1

{p(xn)zj }n=1,2,,...

and all1 m > M.



Now let m > M be fixed.

lim Pi(xM)zi =xm,
k -> co

k

lim I (xM)Zi - xMII = 0.
k -> oo

k

p (xm)z = UkxIm and so we

i=l

Then since

we have

But for k > 1,

have

lirn
I-> 00

IUk(xm) - xmjj = 0. So there exists a positive

integer KE such that k > K E implies

IUk(xm) - x.11 . Hende for all integers j and k

such that J> k > K, we have

IUkjxII = II(tj - Uk)xmI = IIUJxM - UkxmI

(10.8) = IIUjxm - xm + xm- UkXmII < IIUJxM - x I

+ ||Ukxm ~ XmIl < 9E + i=e

Now ||Ukjm - I
k<i.:j

a zijj > | z
k<i j

a z |l - IIUkjxm|| and so



a z il| : Ukjxm - I
k<i<3

a iz ill + |Ukjxm
k<i:j

< 2c + E = 3E for all j > k > KE

by (10.7) and (10.8). (10.9) shows that the sequence

i a= z }n=1,2,... is Cauchy.

Since the terms of the sequence

n

a z }n=1,2,...
i=l

are all in [znlnl 2,... and since [zn n1,2,...

n
closed and hence complete, the sequence az i)n=1,2,...

i=l

converges to some element y e [z nn=1,2,... ,, ie.

y=lim aiz = az i. So y e Z by the definition
n -> co i= i

of Z. We shall prove that x = y and this will complete

the proof of our lemma. We shall establish that x = y

by showing that our original sequence {xn n=1,2,...

(10.9)

is



converges to y. Let e' > 0. Let M., be a positive

integer such that n > m > M., implies lxm - Xll <
M

Let m > M., be fixed. Then by

|Ukjxm - I
k<i<:J

(10.7) we have

a iz il<2 for all 0 < k < j.

In particular for k = 0 and j

integer, we have

(10.10)

an arbitrary positive

IIUoJxn - azil1 < 2'.

i=l

-U 0 = U and so

Uj - az il
i= z

i~l ix)zi - I
i 1 i=l

(10.10) becomes

< 2r'.

aizi

(p(x - a z

lim (P (xm) - a )z.

We are using "E'"1 instead of "e" in this part of the proof
because we already used "e". However e was arbitrary and
so the various inequalities that we deduced are valid with
the appropriate changes in notation.

= UBut U

(10.11)

Now xm

=
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So IIx - y11 = |I lim
= ->

= lim
j -> 00

00 i=J-

S(f3(x1) - ai)zilI

= lim IUjxm - aizill.
j -> ikl

But by (10.11) 1lUJxm - ai z | 1 20

i=1

for all positive

integers j and so lim
j -> Oo

So ||xm - yll < 20

IlUixM - a z 1 < 2'.

for m > M., which means that

lim xn = y. Since by our assumption lim
n -> co n -> co

we must conclude that x = y e Z. Q.E.D.

10.16 Lemma. Let S = (s1, s2, .. })

countably infinite set. Let (Nm m=01,2,...

sequence of integers such that N = 0 and

Nm < Nm+1 , m = 0,1,2,...- Let (z Im=l,2,...

be a

be a

he a

xn = '

(p x -ai)zil



sequence of vectors

z. / 0,

in

m = 1,2,.. .,

i=NM+

183.

11(s) such that

and such that

t e 1 , M 1,2, ..

Then the sequence

for [zmm=12,...

zmlm=12,...

, zmm=1,2, ...

is a Schauder basis

is congruent to

[zm Im=1,2, . .
is the image of a continuous

projection P with IPi = 1 from 1(S). (In particular

[zmlm=1,2,...

Proof.

is complemented in

Let k be a positive integer and

M, A2,

(10.12)

... , k arbitrary scalars.

\ zm 11
m=l

k

since 11 X Nnzm 
m=l

11t e +X tie2+

Nm

z

Then

\| I lzm t
k

M=l

:mtmei11 =

m=1 i=Nm-l+1

.. + 1 e +N2 e +... +1+lN, eN +\2tN 1+l N 1+l t2 e
22N2

+...+k 
NkN k

11

i= _+1

kl

Am i
m=1

and

k

M=1

N

z=+1
it1ml)

m=l

k

S\ml I 1Z m *1



Now clearly if p and q are positive integers with

p < q, and al, a2, ... , a, ... , a are arbitrary

scalars, we have la.1 liz_11 < lam| ||zmll

m=1 m=l

and hence by (10.12)

(10.13) i mtm : i az 1'M' azi< mm
m=1 m=l

By Lemma 10.15 it follows that the sequence (zm~m= 2,...

is a Schauder basis for [zMlm=1,2,...'

We want now to define an isometry T from 11(s)
00

onto [Zm m=l2,... . Let x = tiei E 1 (S) and
i=l

consider the infinite series lit z 11. This

i=l 1 |lZ ||

Z.
infinite series converges since 1ti 1 it 1 , i=1,2,...,

|lz ||

and

i=1
Itl |converges. The convergence of the series

x l1ti - I implies the convergence of the series

i=l 1



t z i
lizill

We define

00 00

T(x) = tx = e EI

I 1z: L=

Since [zM i=1,2,... is closed, T(x) E [z =

It is clear that T is linear and since

CO

||Tx11 = || t 1 1= 11 lim t

i=1 lzi 1 k -> coi= izi

k

= lit
k ->o i

1 11 = lim
1z 1 k -> oo

:1-.

02
=l

T is an isometry. Finally

For let y E [Zm m=1,2,....

is a Schauder

T is onto [ z Im=l,,2,...

Then y = yiZ since

i=l

basis for [z=

00

The series z 'yI11I e 1 defines an element in 11()

i=

LJ.

(zm = ,,. .

ti (by (11.12))

|t, I = 1 ,
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i.e. converges, since the series 11y, IziI eiI| converges

i=l

since ||yi lizill eu1 = |'y iIzi|| and

CO

i=l
izi| = lim

k -> oo i=l

= limn
k -> oo

(by (10.12))

k

=lim 1 = Ilyll, and
k -> =1

T( z
i=1

T is onto

zi
'yi I|z | e ) yi lz

i =1 ||z ||

[zm m=l,2,...

=-y. So

and hence li(s) and [zm m=1,2,...

are congruent..

Finally we want to define a projection of norm one

from l1(s) onto [zm~m=1,2,.... Let Em, m=1,2, . .

denote the normed linear subspace of 11(s) spanned by

the vectors eNM -+1' eNM-l+2'* '..' eNm. Each

zm, m=l,2,..., is by its very form a member of Em'

Iyi 11 ||

k

-y z I



-LL) I.

Hence there exists a continuous linear functional fm

defined on Em such that f m(z m) = 1 and

CO

||f1 = ,n=l,2,.... Again let x = t e i : (S)
|izme t

and consider the series

Z N

Z(f.( z
M=l i=N 1 +l

m = 1,2,..., we have

N

| Nm +
i=Nm-,l1

1-

h.llhh i-Nm_1 +l

If we let

N

A+
i=Nm-,l

ht |, m = 1,2,..., then the

norm of the general term (i.e. the mn- term) of the

series (10.14) is less than or equal to Am. Since the

series Am converges ( Am = |t ) = h|x||),
M=l M=l i=l

t ie))zM.

Now for

(10.15)

t ie l
i=Nm-l+1

itil .



it follows that the series (10.14) converges and indeed

to an element of [Zmm1,2,....since [z =

is closed. We define a map P : I (S) -> [zmIm=l,2,...

by 
N

P(x) = (fm
m=J i=Nm- +1

t iei))zm

0O

where x = t ei e (S). It is easy to see that

i=n

P is linear. P is bounded. For we have

I|Pxi| = | x
m=l

N

(fmi
1=NM-l +1

tiei) )z.I

k

=|llim
k -> oo

k

= lim |
k -> co m=l

M=1

N

(fm( t iei))zM1I
i=Nm-l+l

N

(fM( tie))zm1

1=m-l+1

N

Im( ti e i) |zm|| by (10.12).
1=Nm-l+1



Nm

Now |fm( Z
i=Nm-l+l

tiei)
inM1 i=Nini+l

It I by (10.15)

and hence for all positive

tie,)

k

M=1

integers k

I||zM 1 <

N +

i=Nm-,l1

N

i=Nm-,l

N

i=Nm-l

ti =

+1

lixi.

k

So |Pxl| = lim
k -> 0 =1

i.e. P is bounded and

N

fm(
i=NM-l+1

||Pil < 1.

N

Now z =
i=Nm-l+l

and so

k

M=1
( 1liz Ii1

N

i=Nm-,l

Iti)

til)

k

M=1

<I=1

i=1

tMei i

t )11z M
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P(zM) = f(zm)zm = zm, m = 1,2,.. .

Hence IIPII = 1. Also P2

t e e (S),

= P. For if

P(P(x))
i=1

P(
M=1

N

(fm(
iNmi+1

tiei))zM)

= P( lim
k -> com

= lim P(
k -> oo

k

= lim
k -> o M=l

00

=1
ni=1

Nm

(fm(
i=Nm.-

N

J(fm(

N

1 i=Ni +1

N

(fm t

i=Nm-l+1

t e1 ))z

tiei) ))

t e )z)M

ie ))zm by (10.16)

= P(x).

onto [zm] Fo1,2,...

(10.16)

P maps 11 (S) . For iFinally



y E [zim=1,2,..

00

y Z z and

i=l

P(y) = P( Tyz i) = P(z ) z = Y. So P

i=s i=a i=p

is a projection of nonn one from 21(3) onto

Q.E.D.

10.17 Lemma. Let X be a Banach space and let

txnln=1,2,... be a sequence of non-zero elements in X

n m

which satisfy the inequality 1| a x |1 < 11 a xil|
for i=w

for all positive integers in and n with n _> n and

all scalars al' a2, ... a m . (In particular by

Lemma 10.15, (XnIn=1,2,...
is a Schauder basis for

Xnn=l,2,...0.) Let

non-zero elements in X and suppose

be a sequence of

Ixn*11 Ilyn - XnII = 6 < 1

n=1

where xn *)n=1,2,...

orthonormal to (xn n=1,2,...

is the sequence in [xn*n=1,2,...

. Then (yn n=1,2,...is

[zm m=1_,2,...
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a Schauder basis for [yn n=1,2,.,..

Proof. By Lemma 10.15 it suffices to show that

there exists a constant M > 1 such that for all

positive integers p and q with p < q and all

scalars t 1, t2 , *.. t , we have

lit. .<yl + + tpy MIty1+..+pyp +... + tqY .

Now

+ t pyt y + ... + tyP = t x + ... + tpxp + t y + ...

- t x - t2x2 - .. - t pxP

and so

i=l 1=1

(10.17)

Now for 1 < j p, we have

ti xil + 11 ti(y1 - xj)I
i=l

t x |l + t y - X .
i=l

It j = Ix *(t 1x1 + .* + tpxp) )I I|xj*I it x1 + ... + t x P

and so from (10.17)

t iyiii

<



tiyl 1 ti xil
i=l i=l

+ |xi*i lti x1 + ... + tpxpl iiyj - xiii
i=i

i=l

+ t 1x1 + .0. + te x

i=l

Ilxi*|1 Ilyi - X

t xi + jit x

=(1 + S)l1
i=l

j-=l

00

+ ... + tpx p IlIx*i Iyi - xill

i=L

t ix le

We have thus established

(10.18) i til y (l + 6) i, x |l.

We shall now proceed to establish

(10.19) || tiy |l > (l - 6) || t x 0.
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Now

t y1 = | t x - L t (xi - y )
i=1 i=1 i=1

(10.20)

> t x || - t (x - y)|.
1=1 i=1

For 1 < < q we have

it| = ix *(t1 x1 + ... + t x )|l*
i=1

and so

ti(xi - yi)jI<
i=J.i=

1t21j lxi - Yil1

< 1tix + ... + tqxq ll i*ii Ilxi - yIl

1=1

lt x1 + ... + tqxqll
i=1

llxji*ll Ilxi - yi11

1=1

So - 112 t (x~ - y ) 1| > - 112: t x || and hence
j1=1 1=1



t x| - || ti(x - y )|H
i=1 i=l

> t x - 6 | x

( -6) t

i=li

= ( - 6) 11 i ll

(10.19) now follows from (10.20) and (10.21). Now

|| 2 t y || (1 + s)
i=l

t (1 + 6)

< ( ~

i=l

i=1

So we may take M to be .

t ix i by (10.18)

t iIx by hypothesis

tiyiI by (10.19).

Q.E.D.

10.18 Lemma. Let X be a Banach space and let

(xnn=1,2,...

that [xn n=1,2,..

be a sequence of elements in X such

is a Schauder basis for [x I

(10.21)



i.90.

Let (yn n=l,2,... be a sequence of elements in

that

n=1
lxnII II2n Yn|| = 5 < 1 where Cx = ,

is the sequence in

{xn)n=1,2,...

*
[xn]=,2..

. Let A be the set

orthonormal to

of all sequences

(tn n=1,2, ..

B be the set

such that

n=1

of all sequences

tnxn converges

of scalars

(t'}n n=1,2,...
such that

n=l

t'yn n converges.

A = B.

Proof. Let (t nI e A. We will show that

{tn n=1,2,... e B. Now (tnln=l,2,... E A means that

the sequence {sn n=1,2,... converges,

n = 1,2,...-

n
Let s = t y ,

n=l

We want to show that the sequence ts }n=2, converges.

Since X is a Banach space, it

X such

scalars

and let

of

Then

t ixi ,

where

n

s n = x
J=1

n = 1,2,...-

suffices to show that



[I) n sgn=1, 2, ...

. n n=1,2,...

is Cauchy. Let e > 0. Since

converges, it is Cauchy. Hence there

exists a positive integer N such that for p, q > N,

p and q integers, we have ls - s11 < . Let
p q 

p, q be integers such that p. q > N and assume p > q.

Then

s, - s' =

i=q+1

and s o

t y= 2
i=q+1

lst - s'11 < 11
p q i=q+

t ixi

t x + ti (yi - xi)

i=q+1

+ t i(y - xi)||
i=q+1

lisp - sq1 |+ |
i=q+1

sp - s 11+2

i=q+1

ti (yi - xi)

ti Iy - x 0 ,

Now for q + 1 <j < p we have

It i = ix *(tq+1 xq+1 +... + tpxp)i 1 |x*| lisp - sqi

and s o
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Is - s 1 1< Ils - s It + lix *11 lis - sit tIy - x 11p q - p q p q I
i=q+l

< Its - sqI + ||sP - sqlI I Ix*I| Ily1 - x||

i=1

= (1 + 6) Its -s1 < (1 + 6) E 5
p q

since p, q > N.

So ts }n=1,2,...

ys

is Cauchy and hence z t iyi converges.

So ACB.

Now let (t I1n n=l,2,9. .

(t }n=1, 2 ,...

E B. We shall show that

n

E A. Let Wn tx and

i=l

n

wA = 7 y, n = l,2,...tn=,
i=l

that ( }Wnn=1,2,...

E B. implies

converges and is therefore Cauchy.

We want to show that {wn , .

E > 0. Since tw} , is Cn n--1,2,.,. C

converges. Let

auchy, there exists

a positive integer M such that for k, m > M, k and m
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integers, we have llw - w'1| < E (1 - 6). Let k and m

he integers such that k, m > M and assume k > m. Now

wk -w = m+xm+1 + .. + t xk

Ox 1+ Ox 2 + ... + Ox + t+m+ + *Do.. + t xk

and so by (10.19) of Lemma 10.17 we have

+ n m0 ~ i~ +00 + tkyk
11wk - wm" 1 - 1 Oyl + ()2 + .. ym + tm+17m+1 + .. +ty

So w 1wE -- 5)
1-5 k -=E.

So {wn n=1,2,...

converges, i.e.

hence A = B.

is a Cauchy sequence and hence it

t xn
converges. So B C A and

Q.E.D.

10.19 Lemma. Let (x nn n--1,2,,,, and (xn n=1,2,...

be sequences of non-zero elements in a Banach space X

such that (xn n=1,2,...

Schauder bases for [xn]n=1,2,...

and 'xn}n=1,2,... are

and [x']

respectively. Let U be a bounded projection from X

onto [xn n=1,2,...

|Ull
n=l

such that

i|xn* 11 l1xn - x || = 5 < 1, where fxn* 1 ,2 ,.. i s



the sequence in

(n n=1,2,.,...

[xn]n=l,2,...

Then [x]n n=l,2,

orthonormal to

is complemented

in X.

Since {Xn)n=1,2,... is a sequence

non-zero vectors,

hence l|ull _> 1.

U is not the zero projection and

So

n=1
lixn*1 IIXn

follows by Lemma 10.18 that if

- xnI|

(tn n. .

< 1 and it

is a

sequence

then

n=1

of scalars such that

tnx1n n

n=1

also converges.

U(x) e [xn n=1,2,... and h

sequence of scalars, namely

tnxn converges,

Let x e X. Then

ence there exists a unique

fxn*(U(x)))n=1,2,...'

such that U(x) xn*(U(x))xn'
n=1

Son=

n=l
n ))xA

converges. We define a mapping A : X -> X

= x - U(x) +
n=1

xn*(U(x))xn,

Proof. of

A(x)

by

x E X.



It is easy to see that A is linear. We want to show

that A is bounded. In order to establish that A

is bounded, it suffices to show that the linear mapping

I - A is bounded where I is the identity mapping

X. For if B = I - A is bounded, then A = I - B is

the sum of two bounded linear transformations and is

therefore bounded. Now

III - All = sup
ixl<1

= sup
ix <1

{l(x -ux) s

(||x -(x -U(x) +

|lix - Axil

xn*(U(x))x1)

n=1

xn*(U(x))x ll

xn*(U(x))Xn 2=
n~l

xn*(U(x))x |l}

llxil n=l
xn*(U(x))(X - Xn)ll).

Now for any such that |lxil < 1 and for any

positive integer k we have

on

= sup
ix1<

t||U(x)
n=1

sup n=l
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xn*(U(x))(xn -xA)I11 < lxn*(U(x))

k

n=1

k

n=1

k

Hulln
ri=l

< Hull 2
n=1J

lIxn *ljXn

llxn*11 llXn

= 6 < 1.

Since 12
n=1

xn*(U(x))(xn - xA)| 1 = ||lim
k ->

k

CO n=l
xn*(U(x) ) (xn

k

= lim ||
k -> COn=1

xn*(U(x))(xn

it follows from (10.22)

(10.23) 12
n=1

x*(U(x))(xn - xA)hl < 6 < 1,

and hence

k

n=1
lixn -xtl

x'11
ni

(10.22) - xAt

- xhll

- X')11

that

if lix|l < 1

lxn*" ll ll x l|xn



xn*(U(x)) (xn

So I - A is bounded and hence so is A. Indeed from

the inequality |II - All

one-one, maps

continuous.

< 1 it follows that A is

X onto X, and A-1 - X -> X

1

Now A([xn~n=l,2,...)

let y E [xn n=l,2,....

C n=l,2,...

hen y = U(y) and

A(y) = y -U(y) +
-n=1

since [xA n=is2 closed.
,n~ *,,,,

For let x' = z
n=1

xn*( U(Y))xA

CO

n--

Indeed A([Xn

A xA e [x']=,a'n'E n'n=l, 2,...

xn*(U(y))xA E xn ]n=1,2,..

n=1,2, n

By Lemma 10.18,

n=l,2, . .

converges to an element,

y E Xn]n 2,... since [xn] is closed, and

we have

See for example Taylor

III - Al| = sup
Ix Il

tii2
n=J-

- xA)nI} <5 < 1.

is

. For

n=l

a 'xnnn call it y, and

[40 , page 164, Theorem 4.1-D].



A(y) = A( lim 2 ox) =-
f -> 0

lim
n -> co

n

A( a cx)

n n
=lim aA(x ) = lim axf = x'.

n -> co n - o

So A([xn n=1,2,...) = [x'n=l,2,... . Consider the

mapping P : X -> X defined by P = AUA . P is

bounded and linear and P2 = A U A A U A~ = A U2 A

A U A-1 = P. It is clear that P(X) C [x]=n n=1,2, ..

and indeed P(X) = [x]n=i,2,... For if x E [x']n=1,2,

let y E [xnn=1,2,... be such that A(y) = x'. Then

P(x') = A U A 1 (x') = A U (y) = A(y) = x'. So P is a

bounded projection from X onto [x']
n n=1,2,..

is complemented in X.

, i.e.

Q.E.D.

10.20 Lemma. Let S = (sl S2, ... ) be a

countably infinite set and let X be an infinite

dimensional closed subspace of 11(S). Then X contains

a subspace Y such that Y is closed in 11(S), Y is

equivalent to 1(S), and Y has a closed complement

in l(S).

[xn1]n=l,2,,...



Proof. If f e l1(S) and f(si) = ct, i = 1,2,...,

we shall occasionally, for simplicity of notation,

write f = (a,, a2, ... ). Let N be a positive integer.

Because X is infinite dimensional, there exists a

linearly independent set fx , x2, ''' XN+1  of

N + 1 vectors in X. Let x = (Pi, p, ... ),

i = 1,2,..., N + 1, and consider the system of N linear

homogeneous equations in the N + 1 unknowns

71>^(2 -f 'N+l

N+l

Z p = 0, n = 1,2,..., N.

i=l

Since the number of unknowns exceeds the number of

equations, there exists a non-trivial solution

yj = a,, T2 = a2, ' YN+l = aN+l of this, system, i.e.

N+l

some a ' /. Let x= aixi e X. x ' 0 since the

i=l

set (x 1 , x2, .. '' XN+l} is linearly independent. Let

x =( 1 , f2 , ...). Then for 1 <i < N we have

a 1= 0 by the way the a 's were chosen. So

J=1
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we have established for any given positive integer N,

the existence of a non-zero element x E X whose first

N entries (i.e. whose values at the points

S , s2, .0. . sN) are 0 and indeed we can choose x

such that ixil = 1.

We shall now define by induction a sequence of

vectors (yi}i=1,2,... 1***Y 3i= 1,2,...

in X. For y1 pick any element in X whose norm is 1.

Now y 1e A(S) implies that iyl <o which

n=1

implies that there exists a positive integer N such

CO

that 2
n=N

y < = . Let N be the smallest

such N. We note that N 1 > 1 since ||y,|I = 1. For

y2 pick an element in X whose first N1 entries are 0

and such that |Iy211 = 1. Let N2 be the smallest

positive integer such that

m=N
2

| | 1 For y3

pick an element in X whose first N2 entries are 0
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and such that 1|y3 1| = 1 and in general for

y , i = 2,3,4,..., pick an element in X with norm

equal to one and whose first Ni 1 entries are 0 where

N i 1 is the smallest positive integer such that

(10.24)

n-Ni-i

ilI <yn 1- 3

We claim that Ni < Ni+l for i = 1,2,.... For suppose

Ni+ 1 < N1
for some such 1. Then

1y1 +11 = x
n=l

1I =

N+1

n=1
I1I +

n=Ni~l +1

= 0 + 2I+1I

n=Ni+1 + -1

which is

(since the first N. entries

of yi+l are 0 and we are assuming that

Ni+1  N1 )

<_ I i+~1I < 1 < Iy1+ 21+1+3
n=Nim +le s

impossible since ||yi+,1| = 1. so we have a

strictly increasing sequence of positive integers

i+i
1 I
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1 < N1 < N2 < N3 <

If we let N0 = 0, we can write

y = +
1=N 0+1

0o

y ,y 2 =
i=N +1

Co

Y ei, V 3 I yei, and

i=N2 +1

in general,

CO

(10.25) ym =z
1 .+1

,e1 Im = 1, n = 1,2,...-

Also for each m = 1,2,..., and for each positive integer

k > Nm +

k

1we have

k

1 Nm+1

< 1n3 by (10.224).

Since CO

i=Nm+1

y e 11 = i
k

lim x
k -> Co i=Nm+1

k

lim e8
k -> co J=N +1

we conclude

k

i=Nm+1

ilyei 1i

i=Nm+1

y O

1=Nm

?~ e1i il



(10.26) I
I =Nm+1

N

zmi
i=Nm-l1+1

209.

, ee+i3 < 3, = ,,.

.,e m = 1,2,....

CO

Then YM - zM z
i=Nm-l+1

N

i=Nm-l+1 i=N +1

and so by (10.26)

(10.27) iIym - zM, m = 1,2,...

So z M' 0, m = 1,2,...- For if z = 0, then

Ilym - zmII = IIYMJI = 1 by (10.25) and 1 2m+3

So the sequence (zMlm=1, 2,.. satisfies the

hypothesis of Lemma 10.16 and hence there exists a

projection P with IIP11 = 1 from 11(S) onto

[z Mm=1,2,... , and the sequence (z = , is a

Schauder basis for [zm m=1,2,. Let tzml m=1,2,...

be the sequence in [z 1*
in m=1,2, .. orthonormal to

( zi=1,2,.... We claim that

(10.28) IJz *| < 2 ,m = 1,2,...
.-- | z il

Let

?~e
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In order to establish (10.28) we first note that the

Z
sequence m

lzM 1 rn=1, 2, ...
is also a Schauder basis

for [z m-m=2,... For if z [Zmim=l,2,..., then

CO C

z = t z = t1Iz il and if we also have

i=1 i=1 lzill

CO

z = a , then because (z Im-1,2.
i=1 lizil '9 

2
is a

Schauder basis for [z =We must conclude that

that is, ai = t ||zi 1. So= t
||zi|l

llizmni m--l,2,..
satisfies the definition of a Schauder

basis for [zm]m 1 2,...

space A

space [zmlm=l,2,... an

Let W denote the Banach

where A denotes the Banach

d let T be the canonical

mapping from W onto A (see (b) after Definition 10.13).

We claim that T is an isometry. For if w = (w i 1=, 2 ,...
EW'$



we have IIT(w)I] = w
i lizill,

im ||
n -> o

w zi
ilzill

=Jim
n -> co

n ->oo n

nl-co

Izzwjl
lzil || lz l

iwil

(by (10.12))

Iw I001

while I|wIW

nu,2
$12

w z
I lz ll

|wl)
i=1

00
(by (10.12))=Z

So T : W -> A is an isometry and hence so is

T ^ : A -> W.

sequence in A

If we let lz
||zml|

* orthonormal to

) *}
- i=1, 2, .. .

z

|lzmI M=1,2, *..

(see (b) after Definition 10.13)

211.

|: and

=K
w zi lim

n ->

n

00z
w liz il

sup
1<n<oo

= sup
1<n<co

|w l.

be the

, then

we hav e
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(10.29) ( m 2lIT'lI = 2,i m = 1,2,....

| czman c

From (10.29) we can easily deduce (10.28). We first

note that (- m )* = |lzmlzm*, m = 1,2,..., for if
lzMill

z = t1z E [zimnm~i,2,...
1=1

, then z *(z) = t whilein nI

___ z) */) = ( z2 zi ) t liz m I.
Ilzm|i izm i=1 lizill i

So (1 = * liz liz * 1I = lzm| ii|zm*i|
llzl in III

and so Ilz M*ll < 2
lizmll

< 2 by (10.29),

i.e. (10.28).

Now |lzm M - ZM -- nm - M -ZMI| > 0

(since |lym|| = 1 and ym - zm 1< +3 by (10.25) and

(10.27)) and so

(10.30) 2 2 , =.
||zml Ilml Im - Z,,I

Now yml "m - 1m Il2 +3 > 0
2rn32+

and s o
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2<

IIYMII - IIYM - ZM1Jj 2 +1 ~ , rr = 1,2, ...

(10.32) I|z *II IYM - zI1 < 2 , m = 1,2,...,

by (10.28), (10.30), (10.31), and (10.27).

Now it is

(10.33)

easily established by induction that

_ 3 +2 , M = 1,2,...

(For m = 1, (10.33) is clear. Assume (10.33) is true

for m = k, i.e. assume 2k+3 - 1 > 2 k+2

2k+4 - 2 > 2 k+3. But 2 k+4 I > 2k+4 - 2 and s o

2k+4 - 1 > 2k+3 which is equivalent to (10.33) for

m = k + 1. Hence (10.33) is true for m = 1,2,...)

by (10.32) and (10.33) we have

(10.34) I|zm* j m - zml 2 m = 12,

Since +2 = ( =2( the series

M=1 2
xn= 11 * |ym - Z.

m=l

converges and indeed

(10.31)

So

. Hence

So
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(10.35) IIZ3*iI iYin - Z.1 = 6 < 1.
m=l

Now as we already showed, the sequence (z =

satisfies the hypothesis of Lemma 10.16 and hence the

inequality (10.13). Hence by Lemma 10.17, the

sequence (ym m=l,2,... is a Schauder basis for

n M]=lj,?,...

Since IIPII = 1, we have from (10.35)

(10.36) IIPII |yzM*I - zmI 5 < 1.
M=1

Hence by Lemma 10.19, ['ym m=1,2,... is complemented

in Xl(S). We take Y to be [y = ,1 in inl2,... . Clearly

Y C x since each ym E X and X is closed. The only

thing that remains to be shown is that Y is equivalent

to Xl(S). Now by Lemma 10.16, [z Iim=1,2,. s

congruent to 91 (s). Hence it suffices to show that Y

is equivalent to [z Now Y is equivalent

and [z = = A is equivalent

(see (b) after Definition 10.13).

to

to Atz
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Let (( ) =12, &

Lemma 10.18,

be a sequence

the series

i=1

only if the series

Yizi

of scalars. By

converges if and

converges. Hence the

i=l

underlying sets in the Banach spaces

and A(z are identical. Let

A (Z =l,2, .. -> t~ymin=l,2,...
be the identity

is one-one, linear, and onto.

then

sup { - y }.
l<n<oo

(10.18) of Lemma 10.17, we have

n

Siy |1 < (1 +

integers

n

for all positive

n and hence

iyi'13 <
n

(1 + 6) sup
1<n<o

map. If

E A(zm m=1,2,...

"p Now by

sup
1<n<wo i||l

Ym m=1,2,...

(n) n=1,2,...,

YM m=l,2., .. .
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In other words

( | = ..

So is bounded and henc

Y(~m=1, 2,...
are equivalent.

1(S) [zmm=1,2,..

Ytym m=1,2,..

< (l + I)I|(||A )m=1,2,...

A(z M= and

So we have

~( Azm m=l,2,...

~ m m=1,2,... =-Y.

So Y ~ x1(S).

Let S be a countably infinite

Let X and W be closed subspaces

(0)., and let

of

set.

such that

X be infinite

dimensional. Then X is equivalent to

Proof. By Lemma 10.20 there exist a subspace

of X 'such that Y is closed in

closed in X) and a closed subspace z

(and hence

of 1 (S)

such that A(S) = Y + Z, Yn

equivalent to 291(5)o Let Y = Z CX. Y 
1

X and clearly

is a closed

X = Y + Y1

Q.E.D.

10.21 Lemma.

11(s)

.81(s).

Y

(o}, and Y is

y Y =y 0,subspace of



i j,

for if x e X, then x = y + z, y e Y, z e Z, (since

(S) = Y + Z) and since Y C X, z = x - y e X and

hence z e Z X = Y1 . Hence by Lemma 10.12, X is

equivalent to 11(s). Q.E.D.

We are now ready to establish formally as a theorem

the result we announced at the beginning of this chapter.

10.22 Theorem. A non-zero Banach space P is

separable and projective if and only if P is

equivalent to 11 (S) for some at most countably infinite

set S.

Proof. (<=) If P is equivalent to 11(s) where

S is at most countably infinite, then P is separable

since 91(s) is separable for such S and of course

P is projective since 11(s) is.

(=>) If P is projective, then P is equivalent

to a closed subspace X with a closed complement of

some 21(S) (Theorem 2.4). If P is infinite dimensional,

then so is X and clearly S must be an infinite set.

If, in addition, P is separable, then by examining the

proof (part (a)) of Theorem 2.4, we see that we can

assume that S is countably infinite. (For by Lemma 2.2,

a separable Banach space is the image under a bounded
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linear transformation of 21(S) for some countably

infinite set S.) By Lemma 10.21, X is equivalent to

9 1 (S). So if P is separable and projective and

infinite dimensional, P is equivalent to 1(S) where

S is countably infinite. If P is of finite dimension

n > 0, then P is equivalent to 2i(Sn) where

Sn = (1, 2, ... , n}. Q.E.D.

10.23 Remark. Thus we have determined all the

separable projective Banach spaces. What can we say

about the non-separable ones? Now if S is an

uncountably infinite set, 1(S) is an example of a

non-separable projective Banach space. The problem of

determining all non-separable projective Banach spaces

reduces to the problem of determining what the

non-separable closed subspaces with closed complements

of 81(S), S uncountably infinite, look like. In

general if S is an infinite set and X is an infinite

dimensional closed subspace with closed complement of

11(s), we cannot conclude that X is equivalent to

21(S) for the same S. The countability of S in

Lemma 10.21 is crucial. For example, let S be an

uncountable set and let Sl be a countably infinite

subset of S. Let X be the set of all functions in

21(S) which vanish on S - Sl, the complement of Sl
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with respect to S.

subspace of 21(5).

It is easy to see that X

X is closed. For if

fn E X, n = 1,2,...,

follows that

To see this,

and lim fn
n -> o

f c X, i.e. that f vanishes

let E > 0. Then there exists a positive

11fn - f| 1

f f(S)
sES

SES-S1

SES

sES-S

for n > N(E),

fn(s) - (s)

n(s) - f(s)|

fn(s) - f(s)|

if n > N(s).

for if

s ES-S

But this implies that

|f(s)I = a > 0,

s
S ES-S1

then for

lf(s)i = 0,

E < a, we could

n fn - f < E no matter how large we

is a

= f E 1 (S), it

off

integer

s
5 ES

S .

I fn s)

i.e.N(W puch'tkbt

not have choose N.
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So |f(s)| = 0 and this of course implies that

seS-S

f(s) = 0 if s E S - S . So f E X, i.e. X is closed.

By the same argument, the subset Y of 21(S) consisting

of those functions which vanish on S is a closed

linear subspace of 11(s) and it is easy to see that

Li(S) = X + Y, X Y = (0). Consider now the space

L (s1 ). If g e Xl(S,), define Tg e Jl(S) to be that

function which vanishes on S - S and which agrees with

g on S . It is easy to see that the map

T : Xl(Sl) -> 1(S) is linear, maps 1(1) onto X,

and is an isometry, i.e. X and 1(1) are congruent.

But X is not equivalent to 1(S) because X is

separable while 1(S) is not. What this example shows

is that the most we can aim for is to try to show that

a closed subspace with closed complement of an 11(s)

for an arbitrary set S is equivalent to 1(1) for

some set S1 . Such a result would of course show us

that the only non-zero projective Banach spaces are those

which are equivalent to Xl(S) for some non-empty set S.



221.

CHAPTER XI

Open Questions and Concluding Remarks

In this chapter we shall discuss briefly some

open questions in the area of projective and injective

spaces together with some known results from the

literature and direct the reader to further items in

the literature.

The class In(l) has been completely characterized

as a result of the work of Goodner, Nachbin, Kelley,

and Hasuni. Goodner [11] and Nachbin [29] proved the

following theorem:

Theorem Iet X be a real Banach space such that

the closed sphere in X with center at 0 and radius

equal to one has an extreme point. Then X E In(l) if

and only if X is congruent to a space C(S) where S

is a compact Hausdorff topological space with the

property that the closure of every open set in S is

1
open.

Kelley [19] removed the hypothesis that the closed

sphere of radius one and with center at 0 contains an

extreme point and Hasumi [17] extended the result of

1 A topological space with the property that the closure
of every open set is open is often called an extremally
disconnected space.



Kelley to complex Banach spaces. The analogous problem

of characterizing the classes In(?\) for 7\ > 1 is

unsolved. Indeed no example of a Banach space which is

in In(7\) for 7 > 1 and which is not equivalent to a

space in In(l) is known. Some partial results on the

classes In(\), 7 > 1 have been obtained by Amir [3]

who proved that (1) if C(S) (S compact Hausdorff) is a

member of the class In(X), then every convergent sequence

in S is eventually constant; (2) a C(S) space is a

member of the class In(?N), with 1 < ? < 2, if and only

if it is a member of the class In(l); and (3) if C(S) e In(A),

then S contains a maximal open and dense extremally

disconnected subset. (See also Isbell and Semadeni [18].)

We mentioned in the Introduction that an early example

of a non-injective space was provided by Fichtenholz and

Kantorovitch [9]. They proved that there does not exist

a bounded projection from 2,(S) onto C(S) where S

is the closed interval [0, 1], i.e. C([o, 1]) is not

injective. Other examples of non-injective spaces were

provided by Murray [28] who established the existence

1 If we accept the result of Amir that if a C(S) space
is a member of In(? ), then every convergent sequence
in S is eventually constant, then we obtain a quick
proof that C([O, 1]) is not injective.



of closed subspaces of p(S), S countably infinite,

1 < p ' 2, without closed complements. Another example

was provided by Sobczyk [36] who proved that there does

not exist a bounded projection from X.(S) onto c (S),

S countably infinite. Some recent results on the

non-existence of bounded projections can be found in

Thorp [41] and Arterburn and Whitley [4].

Definitions of the type found in Chapter V can

probably be formed indefinitely although whether one can

show that they are equivalent (if indeed they are) to the

original definitions of injectivity and projectivity is

another matter. Indeed all sorts of variations are

possible. For example we can consider those Banach

spaces which have in addition a lattice structure (see

Dunford and Schwartz [8, page 394]) and consider bounded

linear transformations which preserve one or both of the

lattice operations V and A or the partial order

relation (or various combinations of these) and define

for example the notion of a projective Banach lattice

1 c0 (S), S countably infinite, has the property (proved

by Sobczyk [36, 38]) that if X is a separable Banach
space containing c6(S) as a closed subspace, there

exists a bounded projection T from X onto cO(S)
with 11Th| < 2. (See also McWilliams [24].)



and try to characterize the various such spaces that we

define. Along the same lines and perhaps more interesting

is the following type of problem: Pick a particular

category of Banach spaces (for example the C(S) spaces

or the A P(S) spaces) and decide what category of Banach

spaces (and maps) we must restrict the remaining spaces

in the definition of injective (or projective) in order

that the members of our chosen category will turn out

to be injective (projective). Even better still is the

problem of what categories to choose so that our

originally chosen category turns out to consist of all

the injectives (projectives).

Theorem 7.13 was announced without proof and without

the hypothesis that X is a dual space in Lindenstrauss [21].

A proof of Lindenstrauss' theorem appears- in Lindenstrauss [22]

and is quite involved. It seems plausible that there

should exist an elementary proof of Lindenstrauss' theorem,

elementary in the sense that it involves purely geometric

arguments about the set of all closed spheres in X.

It seems intuitively very clear that the (1+c)-intersection

property (for every E > 0) should imply the 1-intersection

property. Of course we cannot trust our intuition when

it comes to infinite dimensional spaces (or even spaces

of dimension greater than 3), but we do know that the

(1+E)-intersection property (for every E > 0) does indeed
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imply the 1-intersection property (by the theorem of

Lindenstrauss) and so it seems worth trying to seek an

elementary proof of Lindenstrauss' theorem.

Chapter VII certainly made clear that the requirement

of injectivity on a Banach space has a strong influence

on the geometry of the space. It seems worthwhile to

investigate whether we can say anything about the

geometrical properties of a projective Banach space and

whether there exists a geometrical characterization of

certain classes of projective Banach spaces.

In Chapter IX we defined the notion of a *-projective

Banach space, but didn't make any statement as to whether

there exist any Banach spaces (other than the projective

ones) which are *-projective. That there do exist

*-projective spaces which are not projective follows

from Grothendieck [13, Proposition 1]. More precisely,

Grothendieck is concerned with what we have called the

class Pr*(l) and he proves (among other things) that a

real Banach space X E Pr*(l) if and only if the dual

space of X is a member of In(l). Now we know from our

work in Chapter IV, that real L1 [0, 7] is not projective.

Now the dual space of L 1 [0, 7] is congruent to LJ[O, w],

the space of real valued bounded measurable functions1 on

1 More precisely, equivalence classes of such functions.



[0, ], and L,[O, 7] E In(l) (see Nachbin [29]) and

hence so is the dual space of L [0, ]. So

L [O, T] e Pr*(l). That real L [0, 7 E Pr*(l) also

follows from Theorem 1 of Grothendieck [13]. We can

similarly define the notion of a *-injective space and

ask about the nature of its dual space and whether there

exist *-injective spaces which are not injective. It is

known that there exist injective Banach spaces which are

not congruent to any dual space (see Isbell and Semadeni [18]

and the references there). The question arises: Of those

injective spaces which are duals, which are duals of a

projective (*-projective) space? Do analogues of the

theorems in Chapters II and III hold for *-projective

spaces and *-injective spaces?

The problem of determining all the projective Banach

spaces is open as we pointed out in the discussion at the

end of Chapter X. We might try to abstract as much as

possible from the lemmas leading up to the theorem of

Pelczynski and perhaps try to define a generalized

type (uncountable) of Schauder basis and try to show

that closed subspaces (with closed complements) of

11(s), S uncountably infinite, possessing such a

generalized type of Schauder basis are equivalent to

21(S1) for some set Sl. This type of approach might



be a first step in attacking the problem of obtaining

the non-separable projective Banach spaces. Of course

the validity of the converse of Theorem 4.5 is worth

investigating, i.e. whether a Banach space with the

property that weak and strong convergence of sequences

coincide must be projective. It would be very helpful

if we had an example of a Banach space which is not

equivalent to a space 1 (S) and which has the property

that weak and strong convergence of sequences coincide.

If there are no such spaces, then we've determined all

projective Banach spaces.

There seems to be no end to the questions that one

can raise in this field whichare worth investigating.

For example, it is clear that if a closed subspace X

of an injective Banach space Y is injective, then X

is complemented in Y. Can we replace the word "injective"

by the word "projective" and draw the same conclusion?

We trust that the references in the Bibliography will

raise even more questions.



BIBLIOGRAPHY

[1] G. P. Akilov, On the extension of linear operations,
Doklady Akad. Nauk SSSR, 57, 643-646 (1947
(in Russian).

[2] G. P. Akilov, Necessary conditions for the extension
of linear operations, Doklady Akad. Nauk SSSR, 59,
'417-4 (T1948) (in Russian).

[3] D. Amir, Continuous functions' spaces with the bounded
extension propert Bull. Res. Council of Israel,
10F, 133-13 195).

[4] D. Arterburn and R. Whitley, Projections in the space
of bounded linear operators, Pacific J. Math., 15,
73-9-74 9).

[5] S. Banach, Theorie des operations lineaires, Monografje
Matematyczne, Warsaw, 1932. Reprinted by Chelsea
Publishing Co., New York, 1955.

[6] C. Bessaga and A. Pelczynski, On bases and unconditional
convergence of series in Banach spaces, Studia Math.,
17, 151-164 (T958) .

[7] M. M. Day, Normed linear spaces, revised edition,
Academic Press, New York, 1962.

[8] N. Dunford and J. T. Schwartz, Linear operators,
Part I, Interscience, New York, 1958.

[9] G. Fichtenholz and L. Kantorovitch, Sur les ope tions
lineaires dans l' espace des fonctions borries, Studia
Math., 5, 69-98 (1934).

[10] A. M. Gleason Projective topological spaces, Illinois
J. Math., 2, 4  9(1958).

[11] D. B. Goodner, Projections in normed linear spaces,
Trans. Amer. Math. Soc., 69~~89-108 (1950).

[12] D. B. Goodner, Separable spaces with the extension
property, J. London Math. Soc., 35, 2392TT19T.

[13] A. Grothendieck, Une caracterisation vectorielle-
metrique des espaces. , Canadian J. Math., 7,
552-561 (1955.

4- - .) .



229.

[14)] B. Grunbaum, Some applications of expansion constants,
Pacific J. Math., 10, 193-201, {1960).J

[15] B. Grunbaun, Projection constants, Trans. Amer. Math.
Soc., 95, 451-465 (1960).

[16] P. R. Halmos, Introduction to Hilbert space and the
theory of spectral multiplicity, second edition,
Chelsea Pub. Co., New York, 1957.

[17] M. Hasumi, The extension property of complex Banach
spaces, Tohoku Math. J., 10, 135-142 (1958).

[18] J. R. Isbell and Z. Semadeni, Projection constants
and spaces of continuous functions, Trans. Amer.
Math. Soc., 107, 35-45 (1963).

[19] J. L. Kelley, Banach spaces with the extension
property, Trans. Amer. Math. Soc., 72, 323-326 (1952).

[20] J. L. Kelley, General topology, D. Van Nostrand,
New York, 1955.

[21] J. Lindenstrauss, On the extension property for
cmact o-perators, Bull. Amer. Math. Soc., 687
44-457 (1962).

[22] J. Lindenstrauss, Extension of compact operators,
Memoirs Amer. Math. Soc., 48T(1964).

[23] E. J. McShane, Integration, Princeton University
Press, Princeton, 1944.

[24] R. D. McWilliams, On proJections of separable
subspaces of (in) onto c), Proc. Amer. Math. Soc.,
10, 72-7~(1959).

[25] N. Metas, An analogue for projective spaces of a
theorem of Sobczyk, Notices Amer. Math. Soc.,
11, 455 (T964).

[26] N. Metas, Some results on investigations of injective
and projective spaces suggested by Nachbin, Notices
Amer. Math. Soc., 11, 4-53 -(1964).

[27] B. Mitchell, Theory of categories, Academic Press,
New York, 1965.



[28] F. J. Murray, On complementary manifolds and
projections in spaces L and , Trans. Amer.

Math. Soc., T1, 138-152J197T.

[29] L. Nachbin, A theorem of the Hahn-Banach type for
linear transformations, Trans. Amer. Math. oc.
68, 28-46 (1950).

[30] L. Nachbin, Some problems in extending and lifting
continuous linear transformations, Proc. of the
International Symposium on Linear Spaces (340-350),
Jerusalem Academic Press, Jerusalem, 1961.

[31] D. G. Northcott, An introduction to homological
algebra, Cambridge University Press, Cambridge,
1960.

[32] A. Pelczynski, Projections in certain Banach spaces,
Studia Math. , ,209-228 (~960.

[33] R. S. Phillips, On linear transformations, Trans.
Amer. Math. Soc.~48, 516-541 (1940).

[34] Z. Semadeni, Isomorphic properties of Banach spaces
of continuous functions, Studia Math., Seria
Specjalna, Zeszyt I (1963), 93-108.

[35] G. F. Simmons, Introduction to topology and modern
analysis, McGraw-Hill, New York, 1963.

[36] A. Sobczyk Projection of the space (m) on its

subpc (c 0), Bull. Amer. Math, Soc.,47~938~947(1941).

[37] A. Sobczyk, Extension properties of Banach spaces,
Notices Amer. Math. Soc., 9, 139 (962).

[38] A. Sobczyk, Extension properties of Banach spaces,
Bull. Amer. Math. Soc., bb, 217-227 (1962).

[39] M. H. Stone, Boundedness properties in function-
lattices, Canadian J. Math., 1, 176-T86 (1949).

[40] A. E. Taylor, Introduction to functional analysis,
Wiley, New York, 195b.

[41] E. 0. Thorp, Projections onto the subspace of
compact operators, Pacific J. Math., 10, 693-696
(1960).



231.

[42] N. Wiener, The Fourier integral and certain of its
application~, Cambridge University~Press, Cambridge,
1933. Reprinted by Dover Publications, New York,



232.

BIOGRAPHY

The author was born on May 12, 1936 in Flushing,

New York and received his early education in the

public elementary, junior, and senior high schools of

New York City. He received the degree of Bachelor of

Science, cum laude, from The City College (New York) in

June,1957 and the degree of Master of Science in

Mathematics from the Massachusetts Institute of

Technology in June, 1959. He was a half-time teaching

assistant in the Department of Mathematics at M.I.T.

during the academic years from September, 1957 to June, 1963

and a half-time instructor during the summer of 1963.

During the summer of 1962, he held a National Science

Foundation Summer Fellowship for Teaching Assistants.

During the summers of 1959 and 1960 he was employed as

an Assistant Engineer and as an Associate Engineer

respectively at the Sperry Gyroscope Company in Great Neck,

New York and since September 1963 he has been employed

as a Research Staff Member at the Thomas J. Watson Research

Center, IBM Corporation in Yorktown Heights, New York,

He is an associate member of Sigma Xi and a member of the

American Mathematical Society.




