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of Doctor of Philosophy.

ABSTRACT

The author defines projective and injective Banach
spaces and the classes Pr(hg and In(A), 1 < A < », of

such spaces respectively. Necessary and sufficient
conditions for a space to be projective (injective) are
established and it is shown that eve rojective
(injective) space is a member of Pr(§§ %Inik)) for some A.
It is shown that a necessary condition that a space be
projective 1s that weak and strong convergence of sequences
coincide. Various alternative definitions and reductions
in the original definitions of projectivity (injectivity)
are shown to be equivalent to the original definitions.

A necessary geometric condition for a real Banach space

to be injective is established and this condition is used
to prove that 1if X 1s a real Banach space which is a

dual space and which is a member of In(l+e) for every

€ > 0, then X is a member of In(1l). It is shown that the
class Pr(1l) consists of only the zero space. It is shown
that the dual space of a projective space 1s injective

and that the dual space of every injective space is
projective if the dual spaces of a certalin class of
Injective spaces are projective. The notion of a
*»=projective Banach space 1s defined and it is shown that
the dual space of a *~-projective space is injective.
Finally the author proves that a non-zero Banach space

is separable and projective if and only if it 1is equivalent
to £ S) for some at most countably infinite set S. Open

questions are discussed.

Thesis Supervisor: Gian-Carlo Rota
Title: Professor of Mathematics



3.

ACKNOWLEDGMENT

The author wishes to express his sincere
gratitude to his thesis supervisor, Professor Gian-Carlo
Rota, for his generous help, guidance, and encouragement;
to the Department of Mathematics of the Massachusetts
Institute of Technology for the many tuition scholarships
and teaching assistantships which gave him the opportunity
to study mathematics; to the National Science Foundation
for awarding him a summer fellowship; and to

Miss Phyllis Ruby for her expert typing.



4,

TABLE OF CONTENTS

Abstract

Acknowledgment

Notation and Terminology

Introduction

Chapter I Definitionsand Examples

Chapter II Necessary and Sufflcient Conditions
for InjJectivity and Projectivity

Chapter III Projectivity Implies Pr(A);
Injectivity Implies In(A)-

Chapter IV Some Non-projectlve Banach Spaces

<

Some Further Reductlons in the
Definitions of Projective and
Injective

Chapter

Chapter VI Some Alternative Definitions of
Injective and Projective Banach
Spaces

Chapter VII Geometric Properties of Injective
Banach Spaces

Chapter VIII The Class Pr(1l)

Chapter IX Dual Spaces of Injective and
Projective Spaces

Chapter X Separable Projective Banach Spaces

Chapter XI Open Questions and Concluding
Remarks

Bibliography

Biography

Page

13
20

33

48

51
57

T2

86

130
187

149
221

228
232



5.

Notation and Terminology

In this section we define explicitly the various
notations and terminologies which we shall be using.
Additional notation and terminology will be introduced
in particular chapters as needed.

If A and B are sets, ACB will mean that A
is a subset of B, with the possibility that A = B
not excluded. The empty set will be denoted by ¢. If
A and B are non-empty sets, AxB will denote the
cartesian product of A and B, 1i.e.

AxB = {(a,b)| a ¢ A, b € B}.

If A 'and B are Banach spaces over the same
field of scalars, A (D B denotes AxB equipped with
the following Banach space structure: Addition of two

elements (al, bl) and (ae, bE) of AxB is defined
by (al, bl) + (a2, ba) = (al +ay, by + b2), multiplication

of (a, b) € AxXB by a scalar o is defined by
a(a, b) = (aa, ab), and the norm of (a, b) is defined

to ve li(a, )il g 5 = llally + llblly wnere I [l ana
I “B denote the norms in A and B respectively.

If A and B are non-empty subsets of the same

vector space, A + B denotes the set

{a+b| aeA, b eB}). If B consists of only one
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vector, say X, we write A +B=A +x = {a +x | a € A}.
If o is a scalar, aA denotes the set f{aa | a € A}.
If X and Y are normed linear spaces, we say

that X 1is equivalent to Y if there exists a one-one

bounded linear transformation T from X onto Y with
bounded inverse. We say that the normed linear spaces

X and Y are congruent if there exists a linear
transformation T from X onto Y such that

lltx|l = x|l for all x € X. A linear transformation T
from a normed linear space X 1nto a normed linear
space Y with the property that ||Tx|| = [[xll for all

x € X will be called an isometry. We shall also refer
to congruent normed linear spaces as belng isometric

spaces and isometrically lsomorphic spaces.

If X 1is a vector space, a linear transformation

T from X into X 1s called a projection if T2 = T

i.e. T(T(x)) = T(x) for each x € X.

When we say that a subset Y of a normed linear
space X 1is closed, we mean that Y is closed with
respect to the topology induced by the metric p on
XxX defined by p(xq, xe) = |lxl - lel, Xy X5 € X

Occasionally we shall refer to such a closed set as

being strongly closed.

When we say that a subset Y of a normed linear

space is a subspace, we mean that Y 1is a linear
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subspace and 1f we speak of the norm of an element
vy € Y, we mean unless we specify otherwise the norm of
y when considered as an element of X.

If X 1is a Banach space and Y 1s a closed

subspace of X, we say that Y has a closed complement

in X if there exists a closed subspace W of X
such that X =Y +W and Y/ 'Ww=(0}. If Y has a

closed complement in X, we say that Y 1is complemented

in X.

If A, B, and C are non-empty sets and
f :tA-—>B and g : B—> C are functions, we shall
denote the composition mapping h : A —> C defined by
h(a) = g{f(a)), a e A, by gf. If £ : A—> B ias a
funétion and<‘D is a non-empty subset of A, we denote
the restriction of f to D by f|D.

If X 1is a normed linear space, X, € X, gnd 1 18

a non-negative real number, the closed sphere of radius r

with center x_ 1s the set (x eX | lIx = on < r}. The

open sphere of radius r with center X, is the set

(x ex | llx-x]l <r}.

If X 1s a normed linear space, the dual space of
X, i.e. the space of continuous linear functionals on X,

is denoted by X¥*,
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We say that a family of vectors [Xs}seS’ indexed

by a non-empty set S, in a normed linear space X 1is

summable and use the notation E: xs o if there
S€S '

exists a vector x € X such that if € > 0, there

exists a finite subset S€ off S sueh that 1f SF is

any finite non-empty subset of S containing Se’ we

have |lx - E; XS“ < €. If such a vector x exists,
S€S '

F
it is unique and we may write z: Xy =X and call x
S€S
the sum of the family {xs]seS' For the basic properties

of this type of summability, the reader is referred to
Kelley [20, pages 77-79, exercise G and page 214,
exercise S]l, Halmos [16, pages 17-19], or Day

[ 7, Chapter IV]. We assume the reader is familiar

with these properties. For example, if X 1is complete,

then E: Xy K w if and only if for each € > 0, there
SeS

4 The numbers in brackets refer to the Bibliography at

the end.
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exists a finite subset Se of S suech that for every
non-empty finite subset SF of S such that

M _
Se’ Sp = ®, we have I E: XS“ < €,
seSF

Let {xn}n=l,2,... be a sequence of vectors in

n

a normed linear space X and let Py = E: X35 D = baln s
i=1

If the sequence [yn}nrl'2 converges to x € X,
e gl g @ o0

0
we write 2: X, =X and we say that the infinite series
n=1

is

©0
ijn converges to x. Clearly if [Xn}n=1,2,..-
n=1

fee]
summable with sum X, the series E: X, converges to x
n=1

(e]

(but not conversely). The notation E: Xn < o will

1=l

mean that {x_} i1s summable. The notation

R T2 PSRN

(2]
}: K= X without any comment should be understood by
n=1
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o0
the reader to mean that the series E: X, converges
n=1

to x, without any implication of the summability of

{x_} (although it will often by the case that

X
a n=l,2,...

{xn]n=l,2,... is indeed summable?.

If S 1is a non-empty set and 1 £ p < =, we denote

by zp(s) the Banach space of all scalar valued

functions o defined on S such that E: la(s)|P < «.
S€S

) 1s defined to be ( EZ la(s)|P)P. we denote

B SES

by Em(S) the Banach space of all scalar valued

functions a defined on S such that

sup {|a(s)|} < . “Gng (s) 18 defined to be
8 €3S et

sup {|a(s)|}. Addition and multiplication by scalars
s € S :

of elements of Ep(S) (£,(S)) are defined pointwise.
If S = [sl, Spy «es) 18 a countably infinite set, we

shall often for conveninece, denote the elements a of

EP(S) (ﬁm(s)? by a = (o, a,, ...? where

a, = a(si), i=1,2,... We denote by co(S) the closed
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subspace of £ (8) consisting of those functions o

such that for each € > 0, the set {s € S | |a(s)| > €}
is finite. Although we may neglect to say so in each
specific instance, whenever we refer to a set S in

connection with ﬂp(S), Ew(S), etc., S will always be

a non-empty set.
If S 1is a non-empty topological space, we denote
by C(S) the closed subspace of continuous functions in

£m(S). Usually S will be compact and Hausdorff.

Let S be a non-empty set and let {A_} be a

s seS

family of Banach spaces indexed by S. We denote by

E: GEHAS the El direct sum of the spaces AS, 1.e,
S €S '

E; GBlAS 1s the Banach space of all functions o from

S€S

S into A, such that a(s) € A, for each s €S
SeS :

and such that EZ Ha(s)”A < © where Ha(s)llA denotes
seS B N

the norm of the element a(s) ¢ A . Addition and

multiplication by scalars of elements of 2 @ 1AS are
seS
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defined pointwise and the norm of o € E: @DIAS is
s€S

defined to be E: l]oc(s)llA .
seS itk

Let - o< a<b < o, Ll[a, b] denotes the Banach

space of all equivalence classes of Lebesgue integrable
scalar valued functions defined on the closed interval
[a, D], two such functions being equivalent if their
difference is zero except on a set of Lebesgue measure
zero. As is ordinarily the case, we shall refer to the
members of Ll[a, b] as if they were functions, rather
than equivalence classes of functions. Addition and
multiplication by scalars of "functions" in Ll[a, b]

are defined pointwise and the norm of f € Ll[a, ] 1is

fblf(x)]dx where the integral 1s of course the Lebesgue
a A

integral.
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INTRODUCTION

Although the adjective "injective" is borrowed
from homological algebra and 1is consequently relatively
recent in origin, the study of injective spaces can be
said to have originated in the late 1920's and early
1930's with the Hahn-Banach theorem. This theorem asserts,
in one of its several forms, that a continuous linear
functional defined on a subspace of a normed linear
space can be extended to a continuous linear functional
defined on the whole space with the same norm as the
original functional. One is immediately led to consider
the following problem: Given a normed linear space I of
dimension greater than one, and a bounded linear trans-
formation T defined on a subspace Y of a normed linear
space X and having values in I, does there exist a

bounded linear transformation % : X —=—> T | sueh that

I

ITll = il and such that T(y) = T(y) for all y e ¥?
The answer to this question ié in geﬁeral no even if we
relax the requirement that ||IT|| = |ITll. An early example
to show that the answer is no can be found in Fichtenholz
and Kantoroviteh [ 9]. Since the answer is no in general,
one 1is led to consider those spaces I for which the

answer is affirmative and to formulate the notion of an

injectlve space and in particular the notion of an
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In(7) space, 1 £ A < ©,T One of the earliest examples
ot sﬁch a space-was_giVen by Phillips [33] which we
present in Chapter I (Theorem 1.9). Our proof is
similar to that of Phillips althoﬁgh he obtained the
theorem as a corollary to his theorem giving the general
form of a bounded linear transformation from a Banach

space to £ (S).

Sobezyk announced in an abstract (Sobezyk [37]) a
result which is equivalent to the statement e a |
Banach space is injective, then it is a member of the
class In(A) for some finite A." He proved this result
in SObCZij[38], but by rather complicated methods. We
present in Chapter III an elementary proof of Sobeczyk's
theorem, based on a necessary (and sufficient) condition
for injectivity which we establish in Chapter II.

Nachbin [30] suggested far investigation the study
of "injective spaces" if we restrict some of the spaces
in the definition of injective space to certain categories
of spaces. In Chapter V we present some results of our

investigation of thils topic. Our results are of the

1 Precise definitions of these terms wilill of course be
given in Chapter I.
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type where it appears that we define a "weaker" sort of
injective space, but in reality the "weaker" type of
injective turns out to be injective in our original
sense. Some of the results in Chapter V were announced
without proof by the author in Metas [26].

For some time it has been known that if a Banach
space X has the property (which we shall call
property'G% that for all Banach spaces Y which contain
X as a noﬁmed linear subspace, there exists a bounded
projection from Y onto X, then X 1s injective and
conversely.1 We have avolded using this definition of
injective as long as possible (Chapter VI) for the simple
reason that 1t is cumbersome to show that'property & is
preserved under congruence. Since we need this definition
for our later work, we present a complete treatment of
the equivalence of the two definitions of injectivity as
well as thelr equivalence to two other definitions. In
order to establish the equivalence of these various
definitions of injectivity we requlre the lemma that

property ¥ i1s preserved under congruence and we present

& Indeed most of the examples of non-injective spaces were

established by showing that there does not exist a
bounded projection from some superspace onto the space.
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a complete proof of this fact (Lemma 6.4). It may be
pointed out that most writers in this fiéld have used
this fact without explicitly stating it. Goodner [11]
states it as a lemma, but overlooks a logical difficulty
in his proof.l We trust that we have not overlooked
anything in our proof of it. The equivalence between
some of the definitions of injectivity considered in
Chapter VI were observed by Akilov [2] and Phillips [33].
Nachbin [29] proved that a real Banach space X 1is
a member of the class In(1l) if and only if the set of
all closed spheres in X ﬁas the binary intersection
property. We generalize the binary intersection property
to the A-intersection property, 1 < A € o, (so that our
l-intersection property 1s the binary intersection
property) and we generalize the necessity part of
Nachbin's theorem so that 1t reads "If a real Banach
space X 1is a member of the class In(A), then the set

of all closed spheres in X has the A-intersection

property." We present two proofs of this result, the

In hiquemma 2.3 Goodner [11, page 90] constructs a set
Z = X W' and proceeds to define a one-one mapping U
from Z onto a space W. Implicit in his definition
of U is the condition that X and W' are disjoint
and it just 1s not necessarily the case that they are
disjoint.
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first of which 1mitates Nachbin's proof for the case
A =1, and the second of which assumes Nachbin's result
and deduces the result for A > 1 with the aid of our
necessary and sufficient condition for injectivity of
Chapter II. We use our generalization of Nachbin's
result to prove a speclal case of a theorem on injective
spaces announced without proof by Lindenstrauss [21].

We introduce the notion of a projective Banach space
by going directly to the definition of "projective" as
it appears in homological algebra (see for example
Northcott [31]) with Banach spaces as our objects and
bounded 11nearltransformations as our maps. This definition
1s obtained by merely reversing the arrows in the diagram
which describes the definition of "injective". We then
proceed to prove (Proposition 1.4) that projectivity is
equivalent to the exlstence of a 5ounded linear transformation
which 1ifts (with respect to the canonical quotient map)
a given bounded linear transformation from a Banach spaée
into a quotient space. This alternate definition of
projectivity enables us to define the classes
Pr(A), 1 < A < @ of projective spaces.

‘In Chaptér II, we establish a necessary and sufficient
condition for a Banach space to be projective and in

Chapter III we use this result to prove the analogue for



18

projective spaces of the theorem of Sobczyk, namely that
every projective Banach space is a member of Pr(\) for
some A, This result, in slightly different notafion,
was announced by the author in Metas [25]. In
Chapter IV we establish a necessary condition for
projectivity which allows us to construct examples of
non-projective spaces. In Chapter V we introduce some
apparently weaker definitions of projectivity and proceed
to show that these definitlons are actually equivalent
to projectivity. Some of these results were announced
by the author in Metas [26]. In Chapter VIII we show
that the analogue for projective spaces of the theorem
of Lindenstrauss on injective spaces (which we referred
to earlier) is false by showing that the class Pr(1)
consists of only the zero space. In Chapter IX we |
consider dual spaces of projective and injective spaces.
In Chapter X we give a complete proof of a difficult
theorem of Pelczynski which states that 1f S is a
countably Infinite set and X 1is an infinite dimensional
closed subspace of El(S) with a closed complement, then
X 1is equivalent to 'El(S). The proof we give differs
in several respects ffom ﬁhe one given by Pelczynski [32].
We avoid Pelczynski's use of previous results of

Bessaga and Pelczynski [6] and of Nikolskii and replace

them by direct arguments, thereby making the proof
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completely self-contained. We have also corrected a
number of incorrect statements that appear in Pelczynski's
proof.

Finally using the theorem of Pelczynski together
with our necessary and sufficilent condition for projectivity
of Chapter II and the well known result that a separable
Banach space 1s the image under a continuous linear
transformation of Bl(S) for some countably infinite
set S (of which we giﬁe a proof in Chapter II), we

obtain a characterization of all separable projective

Banach spaces.
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CHAPTER I
Definitions and Examples

In this chapter we shall deflne the notion of an
injective Banach space and the notion of a projective
Banach space. The classes In(A) and Pr(A), 1 < A\ < o,
of such spaces respectively willlbe introducéd and examples

of injective and projective spaces will be given.

1.1 Definition. A Banach space B 1is said to be

injective if for all Banach spaces X and Y and all
bounded linear transformations 1 and g where 1 maps
Y onto a closed subspace of X 1in a one-one manner and
g maps Y 1into B, there exists a bounded linear map
g : X—> B such that g = gi.

Using the diagrammatic notation of exact sequences
we can express the siltuation of the preceding definition

as follows

0 —> ¥ —> X (exact)

//
{1e1) /
W l,
B

and we can say roughly that every bounded linear map
from Y into B "extends" to a map from X into B
such that the diagram is commutative. If we reverse all

the arrows in (1.1), we obtain the following diagram:
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0 <—--Y<—-~ﬂx (exact)
(1.2) 1 s |
- 7
B
We are thus led to the following definition which is in a
sense dual to Definition 1.1.

1.2 Definition. A Banach space B 1is said to be

projective if for all Banach spaces X and Y and all
bounded linear transformations g and f where g maps

X onto Y and f maps B 1into Y there exists a
bounded linear transformation f : B = X such that £ = gr.
Roughly we can say that every bounded linear map f from

B into Y "lifts" to a map T into X and we call f

a "1ift" for f or we may say that "f 1ifts f".

1.3 Remark. The preceding two definitions are
meaningful in the case where all our Banach spaces are
complex as well as In the case where all our Banach spaces
are real. From this point on, when no mention is made of
the scalar field associated with the Banach space (or spaces)
under discussion, it is to be understood that the statements'
made are valid both for the real and the complex cases.

The purpose of our first proposition is to show that
we can narrow down somewhat the classes of Banach spaces
and bounded linear maps that one must examine in order to
establish that a gilven Banach space is projective or

injective.
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1.4 Proposition.

(a) Let P Dbe a Banach space. Then P 1is
projective 1f and only if for every Banach space X,
every closed subspace Xo of X and every bounded linear
transformation T : P = x/Xo, there exists a bounded linear
transformation T : P= X such that T = QF where Q is
the canonical quotient map from X onto X/XO.

(b) Let I be a Banach space. Then I 1is
injective if'and only if for every Banach space X,
every closed subspace Y of X, and every bounded linear
transformation g : Y™ I, there exists a bounded linear
transformation é t X== I such that the restriction of
é te ¥ 13 g,

Proof. (=>) If P 1is projective, it is clear that
the map % with'the properties asserted in (a) exists. If
I 1s injective we can let 1 : Y= X be the identity
mapping and then the map é : X I with the property that
gl =g has g as its restriction to Y.

(¢=) (a) Assume that every bounded linear transformation
from P .inté a quotient space 1lifts and suppose that g 1is
a bounded linear transformation from X onto Y, X and Y
arbltrary Banach spaces, and f 1is a bounded linear
transformation from P into Y. Let X = g~ 1({0}).

Then X  1s closed in X and so X/Xo is a Banach space.
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Let Q : X —> x/xo be the canonical quotient map.
Then there exists a one-one linear transformation ¥
from X/Xo onto Y such that ¥Q = g. Indeed ¢ 1is
continuous. For let Yl be an open set in Y. _Then
w'l(Yl) o= Q(g"l(Yi)) and since g 1s continuous,
g_l(Yl) is open in L, ‘Since Q is an open map,
Q(g‘l(fl)) is open in X/X_ . So ¥ is continuous.
AR S X/X, 1s continuous. We have the
following situation:

P

L £
(1.3) Y

Ly

X ——> X/X,
Q

By hypothesis, there exists a bounded linear transformation
f:P—>X such that QF = y~'f. Hence yQf = r,
that is, gf = f, So P 1s projective.
(b) Assume that every bounded linear trans-
formation frém a closed subspace extends. Suppose that
i1 1is a one-one bounded linear transformation from a
Banach space Y onto a closed subspace i[Y] of a
Banach space X and let g : Y —> I be a bounded
linear transformation. Let j : if¥Y] —> Y be defined
by J(i(y)) = y. J is well defined, linear, and bounded.
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So gj : t[Y] —> I maps a closed subspace of X into
I. By hypothesis, there exists a bounded linear
transformation g : X —> I such that the restriction
of g %o 1[Y] 18 g). So for y e ¥,
g(1(y)) = 8(3(1(y))) = &(y). So & =g. Hence I 1is
inJecﬁive. Q.E;b. |

Thus for the projective case we need merely
consider spaces Y = X/Xo with g (in Definition 1.2)
the canonical quotient map, and for the injective case.
we need merely consider closed subspaces Y of X.
Indeed we shall use Proposition 1.4 as our definition of
projective and injective Banach spaces almost exclusively
from now on. Later we shall show how the class of
spaces X and Y 1in our original definitlion can be
narrowed down even further.

1.5 Definition. Let 1 A < ». An injective

Banach space I 1s sald to be a member of the class
In(A) if the map é in Proposition 1.4(b) can be
chosén such that |lgl| < AMegll. a projectivé Banach
space P 1is said to be a member of the class Pr()
if the map 5 of Proposition 1l.4(a) can be chosen such
that [ < Alzil. |

The famllilar Halm-Banach theorem states that the real
field and the complex field are both in In(1l). Indeed
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one can view the study of injective Banach spaces as a
study of those Banach spaces for which a generalized
Hahn-Banach theorem holds.

We shall now proceed to construct examples of
projective and Injective Banach spaces. We requlre a
lemma first.

1.6 Lemma. Let S be a non-empty set and let
{Ps]ses be a family of projective Banach spaces indexed
by the set S. Assume that each P ¢ Pr(xs) and

that sup (A} < =. Let L= }: @ ,P, be the 4, direct

seS S8

sum of the spaces PS. Then L 1s projective and 1s a

member of Pr(A) where A = sup {A_l}.
: seS -

Proof. For each 8 € S let is be the natural
injection of PS into L. In other words, if y € Ps’
then is(y) 1s that function in L whose value is

0 , for s # s (where O denotes the zero element

Sl
in PS,) and whose value at s is y. It is easy to

see that 1_ 1s linear and that Jl1_(9)l. = Nyl .+
s s L Py

Let X be a Banach space and XO a closed subspace

5 When there is no danger of confusion, we shall in the

future usually omlt the name of the space as a subscript
and merely write || |.
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of X. Let f : L —> x/xo be a bounded linear
transformation. Let fs = fis. Then fs is a bounded
linear transformation from P, into X/XO and since

PS € Pr(%s), there exists a bounded linear transformation

£ : P. —> X such that Qf's = f. (where Q 1is the

] S S

quotient map from X onto X/Xo) and “Ea“ 4 KSHfSI

~

We want to define a map f : L —> X. It seems

reasonable to define T as follows:

(1.4) #(a) =z F (a(s)), aeL

| seS
However we must first show that the right hand side of
(1.4) does indeed define an element of X, 1.e. that
E: ?s(a(s)) < ©», Now for every non-empty finite
sesS ey

subset SF of S we have

), WEgGats)ll < ) I (o)l £ ) Al lla(s)]

seSF ' seSF seSF
(1.5) < ) Mesgll las)l € ) izl fla(s) )
|  seSy ‘ seSp '

A

Alell ) lla(s)ll = el lloll < .

s€eS

is summable which implies

So the family {Ilf‘s(a(S))Hlses
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the summability of the family [Es(a(s))]ses. So the

right hand side of (1.4) does indeed &fine an element
of X and so if we define f(a) by (1.4), we have
a mapping from L into X. It‘is easy tb see that
is linear.

Now to prove that f 1ifts f, i.e. that Qf = f.
Let o € L. First we show that the family of vectors
[1S(a(s))}ses in L is summable to «. Let € > O.

Now since HaHL = EZ Ha(s)HP , there exists a finite
seS e H

subset S_ of S such that if s€CsFC <

finite and non-empty, then |HaHL = E; Ha(s)HP < e.
seSF &

Now a - }; is(a(s)) is that function in I whose
seSy "

value is as) if s f£ SF and whose value 1is 0S € PS

if s € SF' So
la - ), (el = ) lala)ly
seSF SES—SF
= llally - ), late)llp < [l < ). lato)llp | < <.
seSF seSF'
(We have used here the fact that if {x_} is a

"'8"8€S

summable family of vectors and if
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families (xs]
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=aYs, AOB=¢, A#¢, B#op, then the

and [xs} are both summable and

sel seB

indeed E: X, = E: xg + E: xs.) So we have shown

seS sel sSeB

that a = E: is(a(s))° Now

seS
a#a) = ) Fla(s))) = ) oF(als)) !
' seS o seS i
(1.6)
i z fs(a(s)) = z f(is(a(s))) = f<2 is(a(s))>1=
seS . ses s seS -

So Qf = £f. Pinally we have to show that [|If]l < Allell.

Now |I£(a)ll = | E: fs(a(S))H which equals (since the

S€eS

norm on a normed linear space is a continuous function)

1

The pulling of Q inside the summation sign and the
pulling of f outside the summation sign is justifiled
by the fact that Q and f are continuous and that our
definition of the sum x of a summable family of vectors
xs}ses in a normed linear space X coincides precisely

with the definition of limit of a generalized sequence
if we take as our generallzed sequence the set of all

finite sums Ez:xs, d a finite non-empty subset of S.

sed
More precisely, let D denote the set of all finite
non-empty subsets of S and let ? t: D—> X be defined

by ?(d) = E: x,, d € D. If we make D into a directed
' sed
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1im || E: fS(G(S))” where D 1s the directed set of all
sed o

non-empty finite subsets of S (see Footnote 1, page 28).
But by (1.5)

1), FlaleNll < ) I Cals))l < Allel llal

sed & " sed
which implies that 1im || 'f‘s,(oc(s))ll < Alell el
D geaa s
So HE(a)H < Allell llell. so NIE < Allfll. Q.E.D.

Using Lemma 1.6 we can now prove a theorem which

provides us with examples of projective Banach spaces.

1.7 Theorem. Let S be a non-empty set. Then
ﬂl(S) is projective and belongs to Pr(l+e) for every
e > 0.

Proof. Let K denote the scalar field. For each

s €S, let K, =K. Then El(S)== }Z ®.K, end
SES

so by Lemma 1.6 it suffices to show that K e Pr(l+e)

for every € > 0. Let X be a Banach space, XO a

- set by taking as our relation ordinary set inclusion

for the finite subsets of S, then "the generalized
sequence ¢ . : D —> X converges to x ?symbolically
lim ?(d = )” means precisely that "{xs seg 18
summable to x.” (See Dunford and Schwartz [ 8, page 26,
Definition 1 and page 27, Lemma 4]).
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closed subspace of X, Q the canonical quotient map
from X onto X/Xo and f a bounded linear trans-
formation from K to X/Xo. Let € > 0 be given.

Now since

KE%?{){MXHX} = Iy y < ligliia] = Nell,

there exists an x_ € £(1) such that ern < (1 + e)ligll.

H

Define f : K —> X by f(a) = ox_. Then f 1s linear

and ||| < (1 + e)llfll. Also Qf(a) = aQ(x.) = af(1)

= #(ul) = £{o). S0 af = ¢. Q.E.D.

1.8 Remark. A natural question to ask at this
point is whether zl(S) € Pr(1). It will be shown in
a later chapter whén a.more geﬁeral guestion is answered
that the answer 1is no.

Our rext theorem provides us with examples of
injective Banach spaces.

1.9 Theorem. Let S be a non-empty set. Then
2(S) € m(1).
| ’ggggg. lFor each s € S define a linear functional

£, on £m(S) by fs(a) = a(s?. Then since |fs(a)|

= la(s)| < e Ua(t) 3 = naugw(s), we have [I£ |l < 1.

Let X be a Banach space, Y a closed subspace of X,

and g a bounded linear transformation from Y to £_(S).
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We want to extend g to é : X —> 4 (8) with

Hé“ < llgll. Let g, = £,8. Then g, 1s a linear

e gl < lgll llgl
. By the Hahn-Banach theorem each 8y extends

L

Define g : X —> 4. (8) as follows., For x € X,

1l

functional on Y and indeed ”88"

< llgl
to a linear functional gs on X with ”és" = ”gs

define (%(X))(S) = és(x). Now sug {|(é(x))(x)|}
i ‘ ’ S E = o B .
= sup {|g (x)|} < sup llg Il xll} < ligl llxll (since
s€S ' : . mes -

e ll = llgll < llgll for all s € S) < » and so g(x)

€ £ (X). That g is linear is clear and since

lg(=x)ll, sy < lgll lixll, 1t follows that llgll < llgll. A11

that remains to be shown is that g restricted to Y
is g. lLet y € Y. Then for each. 8 € S, we have

(B(3))(s) = E4(¥) = g,(v) = £,(&(¥)) = (&(x))(s).
So é exféndé g | Q.E.D.' b L

In a later chapter we shall give a geometrical
proof of Theorem 1.9 for the case where our scalar
system is the real field.

1.10 Remark. The reader will have noticed that
our examples of projective and injective Banach spaces
were in fact members of the classes Pr(A) and In())

respectively. That this was not accidental will be
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shown In a later chapter when the following striking
results will be established: If a Banach space 1s
injective, then it is a member of In(A) for some
finite A. If a Banach space is projecﬁive, then it
is a member of Pr(A) for some finite A.

l.11 Remark. in the next chapter we shall show
that if a Banach space X 1is injective (projective) and
X 1is equivalent to a Banach space Y, then Y is |
injective (projective). If we assume this fact, it is
easy to see that a fiﬁite dimensional Banach space B
is injective and projective. For let B have dimension
n > 0. (If the dimension of B 1s zero, the result is
immediate.) Then B is equivalent to the space gl(sn)

and to the space zm(sn) where S = {1 2, ..ns 2)s

In later chapters we shall give examples of
non-projective Banach spaces as well as examples of

non-injective Banach spaces.
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CHAPTER II

Necessary and Sufficient Conditions

for Injectivity and Projectivity

In this chapter we shall prove a theorem (2.4)
which establishes necessary and sufficient conditiéns
for a Banach space to be projective and an analogous
theorem (2.8) which establishes necessary and sufficient
conditions fér a Banach space to be injective. ©nfortunately
these conditions are not very helpful for constructing
concrete examples of such spaces. They will be used
however in subsequent chapters for establlishing various
theoretical results.
2.1 Lemma. Let T be a bounded linear transformation
from a Banach space X onto a projective Banach space P.
Then there exist closed subspaces A and Y of X such
that X =Y +A, A()Y = (0} and Y is equivalent to P.
Proof. Put A = T™1({0}). Then A is a closed
subspace of X. Iet @Q be the quotient map from X
onto X/A. As in the proof of Proposition 1.4, part (a),
it follows that there exists a one~-one bicontinuous |
linear transformation T from P onto X/A such that

TT = Q. So we have the following situation:
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Pt

X ————9 X/A

Since P 1s projective, there exists a bounded linear
transformation S : P —> X such that QS = T. Since
T is invertible and T = QS = TTS, it follows that
TS = 1P = the ldentity map on P. Let Y = S(P). First
we shall establish that X =Y + A4, Aly-= fo}.  let
x €X and let y = S(T(x)). Then y € ¥ and
T(x~y) = Bx - Ty = Tx - T(ST(x)) = Tx = Tx (since TS = 1)
=G, .So X -y € A and so X‘¥ Y+A since x=y +x - y.
Now suppose z € Afﬂ]Y. Then z = S(p) for some p e P
and Tz = 0, So p = 1P(p) = T8(p) = Tz = 0, BSo
= Bl6f =0, 85 ATI¥ = {8},
To.show Y 13 closed in X, let ¥ & T N =138:80504

and let 1lim ¥, =X ¢ X. We want to show that x ¢ Y.

n —» o

Let y, = S(pn?, p, € P. Then S(pn? —> x and so
QS(pn) = T(pn) - Q(x). But Tl 15 continuous and hence

= T_l(T(Pn)) —> T 3(q(x)). Since S 1is continuous
and p_ —> T1(Q(x)), 1t follows that Sp, —> sT1lo(x).

But Sp, —> x and so x = s(“lQ(x))e s(p) = So

Y 1s closed and in particular Y is a Banach space.
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Finally to show that Y 1s equivalent to P, let
S(p) = 0. Then p = lP(p) = P8(p) = 0. S0 8 is a
one;one continuous linéar'transfofmation from the Banach
space P onto the Banach space Y. By the closed graph
theorem, gt —> P 1s continuous. So Y 1is

equivalent to P. Q.E.D.

2.2 Lemma. Let B be a Banach space. Then
(1) there exist a set S and a bounded
limeas transfomation T with ITll < 1 from zl(s) onto
B; and |
(2) each y € B has at least one
pre-image in ﬁl(é) with the same norm as 7y.

If B 1is separable, there exists a countably infinite
set S satisfying (1) above.

Proof. Let U - {x eB [lixll < 1} and let s = w.
Let a € ﬂ (S) and let Sp denote any finite non-empty
subset of S. Then

), latxxl = ) Ja@lll < ) et < ) le(x)] = llell < o.

x€Sp ' xeSF xeSF xeS

So the family (Ha(x)x”}xes is summable which implies

the summability of the family (a(x)x]xes. So E: a(x)x
' xeS '
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i

defines a vector in B and indeed || E: a(x)xll < lla
X€S '
Define T : £1(S) —> B by T(a) = 2: a(x)x. Then
) ' ' xeS '
T 1s bounded, linear, and |IT|| < 1. Now for each x € S,
define e, on S by ex(s) = 1 EE 8 =% ahd ex(s) = 0

1f s # x. It is clear that ¢ ¢ zl(s). If 3 e¢3B

and y # 0, then fir e S and T(llylle ) = ligliz(e )

H%W.

L

= |lyll “%W =y. So T maps 4,(S) onto B and an

element y # 0 in B 1s the image under T of the

element |lylle and || llylle H£1(5)= HyHHe

LEil T

So (1) and (2) are proved.

"zl(s) = liyllx = llyll.
3 |

If B is separable, then so 1s the closed unit
sphere U= {x ¢ B | |lxll <1} of B. Let

S = {yy5 ¥ps ++.} De a countably infinite subset of U

which is dense in U.l

We construct our map T from
21(8) to B as before. Indeed in this case we can

for convenience denote our elements o e 31(8) by

4 If B consists of only one element, namely O, then

there does not exist such an infinite set, but in this
case the lemma 1s trivial since we can take S to be
any countably infinite set and T to be the zero map
from El(S) onto B.
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a = (al, Qs ...? where o, = a(yi?, i T TR
[+]

and write T(a) ==§: a,y;. T 1s as before bounded and
S T

linear and ||T|| < 1. We want to show that T maps
ﬂl(S) onto B. Tt suffices to show that UC T(4,(8)),

for if z € B, z £ 0, then w = ngn € U and hence

w = T(a) for some a € El(S) and therefore
z = |lzllw = T(llzlla).
Let u €U, u#O, be fixed, Let w =2-u, n=1,2,...,
: 2
n 2n 1
S« | [u
open sphere in B of radius g (= ol ) and center
I 2 :
at <= u,. It is easy to see that G, consists of all
1

vectors In B of the form %——-(ul + a) where
IE .

llall < ﬂ%ﬂ . Gl(: ¥ since

= (o + @)l < gyl Clhagll + el < gy (gl Ll

< ey gl - 2.

Since S 1s dense In U, there exists a point (indeed

infinitely many points) of 8§ in G;. Let n, be the

:

smallest positive 1nteger such that Vi € G Then

n, 1
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= < =
ynl = e (ul + al) for some a.l(a1 =¥ ul) with

b
Halﬂ < ﬂ%ﬂ . Let Dby =wu; +a;. Then ynl = E% « | Let

G denote the open sphere in B of radius %—

2

and center at %—-(u2 - al). G, consists of all vectors

2
1 3 Jull
in B of the form cz(u2 a; + a? where |la]l < . v

¢, C U stnce I=(up - & +a)ll < ggplhugh + llayll + lal)

{ gnén(u%ﬂ +.ﬂ%ﬂ + ﬂgﬂ? < §ﬁﬁﬂ'§ﬂ%ﬂ = 1., 8ince 8 1is

dense in U, there exist infinitely many points of S

in GE' Let N, be the smallest positive integer
greater than nq such that y € G,. Then
Ny 2
y. = éw{u -a, +a,) for some a,(a, =c y. =-u, + a,)
n, ¢y 2 4 2 2 a 2°n, 2 1
u = -
with [lagll < ggﬂ . Let b, =wu, -a; +a, Then
R

yn2 = EE . If we let a, = 0, then by induction there
exist sequences {an]n=o,l,2,... and {bn}nml,e,...

in B such that Han” < E%%T P AN

bn =R 2 e a,, n= 1,2,..., and an increasing

sequence of positive integers {ni}i—l o and a
_’ ,'.'
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sequence [yn }i—l 5 of distinct vectors in S
1 o | 3 s s 0
Py
such that ¥ =l i=1,2,... For suppose m 1s a
1 1

positive integer and By By ey B and bl’ b2’ ey

and y._ ,

and Ny, Npy eeey N n, nz, . vid s yn have been

m

chosen and satisfy the aforementioned conditions. We

want to choose am+1’ bm+1’ nm+l’ and ynm+1. Let Gm+l
denote the open sphere in B of radilus sl _ﬂgﬂ
c m+2
m+l 2
and center at (um+l - m). G, consists of all
®m+1 -
vectors in B of the form e (um+1 =B a) where

lall < 2m+2 . Gm+1(: U since
ucl+1 (u,g -2, +a)ll < (o I + Hlagll + N2l

2’“

2‘“ u
<G e+ B
2’“

m+l L

There exist infinitely many points of S in Gm+1'

Let n be the smallest positive integer greater than

m+1

n_  such that ¥y € G ... Then ¥y = ——(u
n T+l el ] ®m+1 m+l

=8 U e,
m

b
m

m+1)
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for some a ., with Ham+1" { 2%45' We let

u and hence

wil T P 7B

B el

our induction 1s completed.

(o]
Now it 1s clear that E:uh =i 1%

n=I
1im a_ = 0. Also since
n
n— o

o0
it follows that E: bn =N
n=1

Define a scalar valued function f:

() =0 1r s s,
?’(yni) = ci, i =1, 2,
Since ¢, = iT“u”’ 8w, B e §

b

y, =22 ang

m-+1 m-+1

and that
aq + an + e + u, -a, g + a
+ un + an
©,

ey il g s
ik n, Ny n3’

on S by

t is clear that

n



1=1 e | 4
o0
E: b, = u. So v C T(ﬂl(S)) and hence T maps ﬂl(S)
i=1 .
onto B. Q.E.D.

2.3 Lemma. Let P be a projective Banach space
and let X be a Banach space equivalent to P under
the mapping %:: P—>X. Then X 1s projective. If
P e Pr(A), then X € Pr(A') where A' = Allgl || ?a‘lll
(and in ﬁarticular if X 1s congruent to P, X € Pr(hr)).

Proof. Let Y be a Banach space, Y  a closed A
subspace of Y, @& the quotient map from Y onto
Y/YO, and f a bounded linear transformation from X
to Y/Y . Then fp : P —> Y/Y lifts to g § P E

But then é? L . X35 v 1sa 11ft for £ sinee

Q(é?'l) =1 %" (since g 1ifts €% § =8, 8ol X
1s projective. Finally if P e Pr(A), the map g can

be chosen so that |lgll < hﬂf?vﬂ and hence

lg o ™Ml < llgll g™l < Migg Il g™ < Mgl g ™ liell.
So X € Pr(A'). S O

2.4 Theérem. A Banach space P is projective if
and only if P 1is equivalent to a closed subspace with

a closed complement of some 31(8).
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Proof. (a) Assume first that P is projective.
By Lemma 2.2 thére exists a set S and a bounded linear
transformation T from 21(8) onto P. By Lemma 2.1
there exist closed subspaces 'A and Y of zl(s)
such that £,(S) =Y +4A, AN Y={0}, and Y 1is
equivalent to ?. 2

(b) Now assume that there exists a set S,

closed subspaces Y and A of zl(s) with YmA = {0}
and 4 (S) =Y + A and such that Y is equivalent to P.
We want to show that P 1s projective. By Lemma 2.3
it suffices to prove that Y 1is projective. Now
because zl(s) =Y +A, and A and Y are closed
subspaces with AfNYy = {0}, there exists a bounded
projection T from ﬂl(S) onto Y (see Dunford and
Schwartz [8 , page 480]).‘ Let X be a Banach space,
Xo a closed subspace of X, f a bounded linear
transformation from Y to X/XO and Q the quotient
map from X onto X/X . Let 1 : Y ﬂl(S) be the
identity map and let = fT. We have Ehe following

situation:
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31(5)

J T
l £

5 & > X/Xo

Since £1(S) is projective (Theorem 1.7) there exists

a bounded linear transformation ? : 31(8) —> X

such that Q¢ = ¢ = fT. Define f : Y —> X by

$1. Then f 1ifts f since for y € Y we have
:y) Qﬁoi(y) Qf:(y ff(y) = fT(y) = f(y) since

the restriction of a projection to 1its image (1n our

case T restricted to Y) 1s the identity map on that

image. So Y 1s projective and hence so is P. R:E.D;

2.5 Lemma. Let T be a one-one bounded linear
transformation from an injJective Banach space I onto
a closed subspace of a Banach space X. Then there
exlst closed subspaces A and Y of X such that
X=Y+A, AfVY=1{(0} and Y is equivalent to I.

If T 1s an 1sometry, Y 1s congruent to I.

Proof. Let Y = T(I). Then Y is closed in X

and hence 1is a Banach space. By the closed graph

theorem, 7™l . ¥y —> I 1s bounded. Since I 1is
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injective, le extends to a bounded linear trans-
formation S : X —> I. Let A = 87X(0}). A 1is
closed in X and if z € A()Y, then T“l(z) = 8(z) = 0

"1 15 one-one). So ANy = {0}.

and so 2 = 0 (since T
If x e X, then x=y +x -y where y = TS(x).
™ (Ts(x)) = S(x)

so that x -y ¢ S"l(fO]) = A, Hence X =Y + A, The

Il

Certainly y € Y while S(y) = s(Ts(x))

equivalence between I and Y 1s clear and so is the

congruence between them 1f T 1s an isometry. Q.E.D.

2.6 Lemma. Let B be a Banach space. Then there
exists an isometry T from B onto a closed subspace

of 4 _(S) for some set S.
Proof. ILet K denote the scalar field and let
*
S={freB | |llfll €1}. Por x € B, define Tx : S —> K

by (Tx)(f) = £(x). Then [(Tx)(£)| = |£(x)]| < liell lIx]l
< lIxll and so Tx € £, (S). The mapping T from B into
Zm(s) defined by x —> Tx 1is clearly linear and bounded

since ||Tx||Jg (s) = Swp {|x(£)]|} = sup {|£(x)]|}
00 . fes : feS - ‘

< sup (el IIxl1} < lxll. Indeed T 1s an isometry since
- feS i

. { = { } = :
x|l ?ﬁg _|f(x}|] ggg |Tx(f?l ”Tx"zm(s)

It remains for us to show that T(B) is closed in ﬂm(S).
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Let y, e ™MB), n=1, 2, ..., and assume

im 3y =7 ¢€ 4.(S). We want to show that y e T(B).
n-—> o - :

Now since the sequence {yn]n—l 2' converges, 1t is
. S ,tl.

Cauchy. Let I = Txn, X, € Bs n=1; 2; «.sv Then

it follows that the sequence {xn]n—l ,2,... 1isalso

Cauchy.and so there exists an element x € B such that

1im x_ = x. So T(xn) —> T(x). But T(xn) =

T
n —> « = B

So y=T(x) e T(B). So T(B) 1is closed in £_(S). a. 8.1

2.7 Lemma. Let I be an Injectlve Banach space
and let X be a Banach space equivalent to I under
the mapping ?» : I —> X. Then X 1s injective. If
Ie In(h), then X € In(k') where M!' = h”?]]|l?‘lﬂ
(and in partlcular 1f X is congruent to I, X e In(7A)).

Proof'. Let A Dbe a Banach space, Y a closed
subspace of A, and f a bounded linear transformation
from Y into X. Let g = ?-lf. Then g 1s a bounded
linear transformatlon from Y into I. Since I 1is
injective, g extends to a bounded llnear transformation
g" from A into I. Define f‘:A——>X by §= ?é

Then f extends f since for y £ Y,

) = pEW) - pely) - e - £l3). So X s
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injective. Finally 1f I € In(A), the map E can be
chosen so that “é” £ 7\Ilg” = l”?Jnlf“ and so

I = Nl & < gl IEN < Al =22l gl < Al ™20 W el

So X € In(?x’). QB D

2.8 Theorem. A Banach space I 1s injective if
and only if I 1s congruent to a closed subspace with

a closed complement of some £ (S).

Proof. (a) Assume first that I is injective.
By Lemma 2.6 thére exists an isometry T from I onto
a closed subspace of £ (S) for some set S. By
Lemma 2.5 there exilst closéd subspaces A and Y of
£ (S) such that £_(S) = Y + A, AMNY =({0} and Y
is cbngruent to I; |

(b) Now assume that there exists a set S,

closed subspaceé Y and A of 4(S) with yMa= {0}
and £_(S) = Y + A and such that Y 1s congruént to I.
We want té show that I 1is injective. By Lemma 2.7 it
suffices to show that Y 1s iInjective. Now because
zw(S) =Y +A and Y and A are closed subspaces
with ¥Na = {0}, there exlsts a bounded projection T
from £_(S) onto Y. Let X be a Banach space, B a
closedrsubépace of X, and f a bounded linear trans-
formation from B into Y. Let 1 : Y —> £ (S) be
the identity map and let g = if. Since £_(S) s
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injective (Theorem 1.9), there exists a bounded linear
transformation § : X —> £_(S) which extends g.
Defirie T 1 £ —>% by © =18, Ghen P extedds &
since for b € B, we have ?(bj = Tg(b) - Teg(b) = T™£({Db)
= Tf(b) = f(b). So Y 1is injéctive aﬁd hence‘so is I;
Tﬁe two fheorems in this chapter reduce the study of
projective Banach spaces to the study of closed subspaces
with closed complements of the spaces £1(S) and the
study of injective Banach spaces to the study of closed
subspaces with closed complements of the spaces £m(S).

We shall use this reduction in some subsequent chapters

to deduce various theoretical results.

Q.E.D.
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CHAPTER III

Projectivity Impllies Pr(A); Injectivity Implies In(A)

In this chapter we sﬁall establlish the results |
mentioned in Remark 1.10.

3.1 Theorem. If a Banach space P 1s projective,
then P 1s a member of the class Pr(2) for some
finite A, '

Proof. Since P 1s projectlive, there exlst by
Theorem 2.4 a set S and closed subspaces Y and A
of £,(S) with YfﬁTA = {0} and £4(8) =Y +A and
such.thaf P 1s equivalent to Y. _We éhall show that
Y 1is a member of Pr(%l) for some hl from which it
will follow by Lemma 2.3lthat P € Pr(\). Because
£,(3)
f‘ﬁ‘ﬁ = {0}, there exists a bounded projection T from

Y+A, Y and A closed subspaces with

£1(S) onto Y. Let X be any Banach space, X  a

closed subspace of X, Q the quotient map from X

onto X/XO and f a bounded linear transformation from
Y into X/Xo° Let g : il(S) —> X/XO be defined by

g = PT. Because El(S) e Pr(l + €) for every € > O
(Theorem 1.7), there exists (for a fixed € > 0) a
bounded linear transformation g : ﬂl(S) —> X such

that Q¢ = g = £T and such that
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lell < (1 + e)llell = (1 + e)lleTll. Zet 1 : ¥ —> £, (5)

be the identity map. Then gi 1ifts f since for

v € Y, we have Qéi(y) = Qg(y) = f(y) = £(y). Also

llgill < !Iéll 1]l = II;II < (1 + e)llgll = (1 + e)l|leT]l

< (1 + ezl ligll. So ¥ € Pr(A;) with A} = (1 + e)iTll

and so P € Pr(A) for some finite A. Q.E.D.

The next théorem is the analogue of Theorem 3.1 for
injective Banach spaces.

3.2 Theorem. If a Banach space I 1is injective,
then I is a member of the class In(A) for some
finite A. '

Proof. Since I 1s injective, there exist by
Theorem 2.8 a set S and closed subspaces Y and A
of £,(8) with YA = {0} and £ (S) =Y +A and
such thaf I 1s congruent to Y. We sﬁall show that
Y € In(A) from which it will follow by Lemma 2.7 that
I e In(2) also. Because £(S) =Y +A, Y and A
closed sﬁbspaces with Yfﬁ}ﬁ = tO}, there exists a
bounded projection T ffom Em(S) onto Y. Let X
be any Banach space, B a closed'subspace of X and

i B —> ¥ a bounded linear transformation. Let

i

Y —> zm(s) be the identity map and let

g : B—> £ _(S) be defined by g = if. Because £ (S)
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€ In(l) (Theorem 1. 9), there exists a bounded linear

transformation g : X —> 4 (S) which extends g and

such that llgll = llgll. Define 7+ X —> ¥ by T = Tg.

Then T extends f since for b e B, we have

(b) —'Tg(b) = Tg(p) = Tae(b) = T2(b) = £(b). Also
“?H' HTgH Izl HgH Il flgll = el il < < il el
sé Y e In(A) with A = ||T]l and hence I e In(}7).

Il

1l

Thus we see that although in our concepts of

projective and injJectlve as expressed by Proposition 1.

we did not require any restricting relation between the

norm of the extension map and the norm of the map
being extended, or between the norm of the 1lifting map

and the norm of the map being lifted, we do in fact

Q.E.D.

A,

have a pleasant and surprising relation between the two.
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CHAPTER IV

Some Non-projective Banach Spaces

The purpose of this chapter 1is to give some
examples of Banach spaces which are not projective.
Our method for accomplishing this is to prove that a
necessary condition for projectivity is that weak and
strong convergence of sequences coinecide. Thus any
example of a Banach space in which weak and strong
convergence of sequences do not colincide 1s auto-
matically an example of a non-projective Banach space.

4,1 Definition. Let X be a normed linear

space. We say that a sequence of elements (x )} _
i - =5 IS R

In X converges weakly to an element x € X if

1lim

*
s f(xn) = f(x? for every f € X . We say that

{Xn}n=1,2,... converges strongly to x 1f

1im “xn - x|l = 0. (Thus strong convergence & ordinary
n—> o

convergence with respect to the norm which we have
already had occasion to use although we have not called
it by any special name.) We say that weak and strong
convergence of sequenceé in X coincide if "{xn]
converges to x weakly" implies "{xn} converges to x
strongly." B

4.2 Remark. It 1s easy to see that 1f ({x ]

converges weakly to x and to y, then x = y. Also
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if [xn} converges strongly to x, then [xn} converges weakly

to x. Thus the term "coincide" in the preceding
definition 1s Justifiled.

4.3 Lemma. Let X be a Banach space with the
property that weak and strong convergence of sequences
coincide. Let Y be a Banach space equlvalent to X.
Then weak and strong convergence of sequences in Y
coineide.

Proof. Let the sequence {yn]n—l 5 in Y
—-’ ,.l.

converge weakly to y € Y. We want to show that

ly, - vly —> 0 as n—> =, Let T : X—> Y be the

mapping defining the equivalence between X and Y,
let T = Txn, i &= L2003 804 let ¥ = Tx., 86

Ty, = %X, and T_ly = x. Let fy be any continuous

linear functional on X. Define a functional fY

-1
Y by fY(z) = X(’I‘ (z)), 2 ¢ ¥. fy 1s linear and

on

B -1 -1
since IfY(z)I - |fX(T z?l < HfX” ™zl
< el ety lzll, fv. is continuous. Since y_ —> ¥y
- X N n
weakly, fY(yh) —> fY(y). In other words
-1 -1 .
£ (T yn? —> fX(T y), that is fx(xn) — fX(x). So

x. —> x weakly and hence |lx

- - X”X —x% 0, So

n
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ly, - ylly = liT= - TXUY < UTH Iz, - xlly — 0. S0
5 —> y strongly. Q.E.D.

4,4 Lemma. Let Y be a subspace of a normed

linear space X. Let [yh} and y be elements

N=l,2,ee0
of Y. Then {yn} converges weakly to y when consldered
as elements of‘the normed linear space Y if and only
i {yn] converges weakly to y when considered as
elements of the normed linear space X.
Proof. (a) Assume {yn] converges weakly to ¥y
when considered‘as elements of ¥. Let T e X*. We want
to show that f(yh) —> f(y) as n—> ». Let g be
the restriction of< f to f. Then g € Y% and so
g(y,) — ely). But &ly,) = £f(y,) and &(y) = £(y).
So f(:fn) —> f(y).
(b) Assume (y_ )} converges weakly to ¥
when considered'as elements of X. Let £ € Yf. We
must show that f(yn) —> f(y). By the Hahn-Banach
theorem, there existé an f e<Xf such that the
restriction of f to Y is f. _%(yn) —> f(y). But
Flyy) = £lv,) and ) - £(y). So f(yy) —> £(y). Q.E.D.
4.5 Theorem. If P 1s a projective Banach space,
then weak and strong convergence of sequences in P

colncide.
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Proof. Because P 1is projective, P is equivalent
to a closed subspace, say Y, of some £l(S). Now weak
and strong convergence of sequences in ﬂl(S) coincide
(see Day [ 7, page 33, Corollary 2]). By Leﬁma 4 u
weak and strong convergence of sequénces in Y (when
considered as elements of the Banach space Y) coincide.
For 1f y, —> y weakly (yn vyeY, n-= 1,2,;..) with
respect to Y, then Foy —> ¥ weakly with respeét to
gl(s) which implies that Ilyn - vl £,(s) —> 0 which

i1s of course the same as saylng Hyh = Y"Y =3 O, By

Lemma 4.3 weak and strong convergence of sequences

in P coincide. @ E.Ds
4,6 Corollary. If 1<p<w and S = [81’32’°“}

is a countably infinite set, the Banach space ﬁp(S) is

not projective. |
Proof. Since S 1s countably infinite, we shall

use the convenient standard notation. For n = 1,2,...,

let f_ = (ﬁnl, 5n2’ 5n3’ ...) where &, = 0 for

1 £#n and &, =1. Each £ e gp(s}. The sequence

(fn} converges weakly to O. For let ?: be any
continuous linear functional on zp(s). Then there

. | Bl
exists g = (gl, os ...? € ﬂq(S? where = b ge 1
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such that for all y = (yl, Voo ves) € £p(S)g%(y) is

given by E: 84y - In particular ?,(fn) - glﬁnl + g26n2 L SR

1=1
= g, But lim le,1? = 0 since (g, &5 -+.) ¢ 24(5)
n—> ‘ :
and so 1lim g = 0. So lim (f = 0 which means
e Hoo .|

that the sequence [fn] converges weakly to O. But

{fn} does not converge strongly to O since |If “z (S) i

for each n. So ﬂp(S) for 1 {p <« 1is not projective. Q.E.D.

4,7 Corollary. The complex Banach space Ll[O,l]
1s not projective.
Proof. For n=1, 2,..., and for x ¢ [0,1]

inx

define f (x) = e £ €Ly [0,1]. Let 79 be a

continuous linear functional on L, [0,1]. Then there
exists a bounded measurable (and hence integrable)

function g on [0,1] such that for all

f e Ll[O,l], %>(f) = él f(x)g(x)dx. In particular,

?(fn) = fl einxg(x)dx —> 0 (by the Riemann-Lebesgue
S .

lemmal) = fl og(x)ax = ?9(0). So the sequence [fn}
. o) ; ‘ ‘

1 See Wiener [42, page 14] or McShane [23, pages 231-232].
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converges weakly to O. However {fn} does not converge

_ ol o dnMyp.. o oploa.
strongly to O since ”fn”Ll[O,l] = é |e™™*|ax = é ldx = 1

for each n. So Ll[O,l] is not projective. Q.E.D.

4.8 Remark. There 1s nothing special about
complex Ll[O,l] that it fails to be projective, nor
about the finite interval [0,1]. For example, the

real Banach space Ll[O,W] is not projective. For
1et fn(}{) = Sin nX., X € [O,W], n = l, 2, 3, s 0 0 *

Then {fn} converges weakly to 0O, again by the

Riemann~-Lebesgue lemma, but {fn] does not converge
5 _ T I,
strongly to O since ”fn”Ll[O,T] = é |sin nx| dx = 2

for each n.
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CHAPTER V

Some Further Reductlons 1in the

Definitions of Projective and Injective

In this chapter we shall show that we can narrow
down even further the class of Banach spaces X one
must consider in Proposition 1.4 in order to establish
that a particular Banach space is injective or projective.

5.1 Definition. A Banach space I 1s sald to be

dually injectlve if for every Banach space X which is
congruent to the dual space of some Banach space, every
closed subspace Y of X, and every bounded linear
transformation T from Y into I, there exists a
bounded linear transformation T from X into I
which extends T. Clearly every injective Banach space
is dually injective.

5.2 Lemma. ILet X Dbe a Banach space which is
congruent to the dual space of some Banach space and
let I Dbe a dually injective Banach space. Let T be
a one-one bounded linear transformation from I onto
a closed subspace of X. Then there exist closed
subspaces A and Y of X such that X =Y + A,
AN Y = {0} and Y 4is equivalent to I. If T is
an isomeﬁry, Y is congruent to I.

Proof. Let Y = T(I). Then Y is closed in X

and hence is a Banach space. By the closed graph
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theorem, 71 s ¥y —> I 1s bounded. Since I 1is
dually injective, 7"  extends to a bounded linear
transformation S : X —> I. Let A = S'l({O}). The
rest of the proof proceeds exactly as the proof of
Lemma 2.5 starting at the point where A 1is defined.
5.3 Lemma. If I 1s a dually injective Banach

space, then there exist a set S and closed subspaces

Y and A of £ (S) with £ (S) =Y +4A, Y/ a= {0}

and such that I 1s congruent to Y.

Proof. By Lemma 2.6 there exists an isometry T
from I onto a closed subspace of £_(S) for some
set S. Now £_(S) 1is congruent £b the dual space of
ﬂl(S) (see Déy [;7, pages 29-30]). By Lemma 5.2

there exist closed subspaces Y and A of ﬂm(S)
such that £_(S) = ¥ + A, v A = {0} and such that
Y 1is congrﬁentvto i Q.E.D. |

So we have shown that a dually injective Banach
space is congruent to a closed subspace with a closed
complement of some £ _(S). But by Theorem 2.8 we know
that if a Banach spaée i is congruent to a closed
subspace with a closed complement of some £ _(S), then

I 18 injective. Hence we conclude

Q.E.D.
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5.4 Theorem. A Banach space I 1s injective if
and only if I 1s dually injective.
5.5 Definition. A Banach space P 1s said to be

dually projective if for every Banach space X which
is congruent to the dual space of some Banach space,
every closed subspace Xo of X, and every bounded
linear transformation T from P to X/XO, there
exists a bounded linear transformation T from P
to X such that QT = T where Q@ 1s the quotient map
from X onto X/XO. Clearly every projective Banach
space is dually projective.

5.6 Lemma. Let X be a Banach space which is
congruent to the duval space of some Banach space and
let P be a dually projective Banach space. Let T
be a bounded linear transformation from X onto P.
Then there exist closed subspaces A and Y of X
such that X =Y +4, Y(1A =(0} and Y is equivalent
to P.

Proof. Let A = T 7({0}). A 1s a closed subspace
of X. Let Q be the quotieﬁt map from X onto X/A.
There exlsts a one-one bicontinuous linear transformation
T from P onto X/A such that TT = Q. So we have the

following situation:
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/1

X ————9 X/A

Since P 1is dually projective, there exists a bounded
linear transformation S : P —> X such that @S =
Since T is invertible and T = QS = (TT)S, it follows
that TS = 1, = the identity map on P. let Y = (P},
The rest of the proof proceeds exactly as the proof of
Lemma 2.1 starting at the point where Y 1is defined.

| 5.7 Lemma. If P 1s a dually projective Banach
space, then there exist a set S and closed subspaces

Y and A of f;(S) with £,(S) =Y + A, YA = {0)
and such that P 1s equivalent to Y.

Proof. By Lemma 2.2 there exist a set S and a

bounded linear transformation T from ﬂl(S) onto P.
Now zl(s) 1s congruent to the dual space of ¢ (S)

(see Day [ 7, pages 29-30]). By Lemma 5.6 there exist
closed subspaces A and Y of ﬂl(S) such that

El(S) =Y +A, YOA=1(0) and Y is equivalent
e B Q. FKaD.

So we have shown that a dually projective Banach

space 1s equlvalent to a closed subspace wlith a closed

Q.E.D.,
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complement of some EI(S). But by Theorem 2.4 we know
that if a Banach space P 1s equlvalent to a closed
subspace with a closed complement of some El(S), then

P 1is projective. Hence we conclude

5.8 Theorem. A Banach space P 1is projective if

and only if P 1s dually projective.

5.9 Remark. We can define a Banach space P to
be zl-projective 1f for every El(S), every closed

subépace X, of El(S) and every bounded linear
transformation T from P to ﬁl(S)/XO, there exists
a bounded linear transformation T from P to El(S)

such that QE = T where @Q 1is the quotient map from
ﬂl(S) onto Bl(S)/XO. It is clear that the argument
Ehatlwas used to éstablish Theorem 5.8 also proves that
P im zl-projective if and only if P 1s projective.
Similarly we can define a Banach space I to be

L -Injective if for every Ew(S), every closed subspace
Y of ﬂm(S), and every bouﬁded‘linear transformation T
from Y info I, there exlists a bounded linear trans-
formation T from £.(8) into I which extends T.
It is clear again thét the argument that was used to
establish Theorem 5.4 also proves that I is injective

if and only if I 1is [ _-injective. Finally we can
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define a Banach space I to be C(8)-injective if for
every Banach space X which 1is congruent to a space
¢(S) of all continuous scalar valued functions defined

on a non-empty compact Hausdorff space S, every closed

subspace Y of X, and every bounded linear transformation
T from Y, into I, there exists a bounded linear
transformation T from X into I which extends T.
Again the argument that we used to establish Theorem 5.4
can be used to prove that I 1is injective 1f and only
if I 1is ¢C(S)-injective although in this case the
following details ought to be mentioned. Lemma 5.2

goes through as before with the hypothesis that X is

a Banach space congruent to a C(S) space and I 1is

a C(S)-injective Banach space. Néw if we put the
discreﬁe topology on an arbitrary set S, then S
becomes a completely regular topological space and

£.(8) 1is nothing but the set of all bounded continuous
sealﬁr valued functions on S. So £_(S) 1is congruent
to C(BS) where PBS denotes the Stdne—éech compactifi-
cation of S.l Then Lemma 5.3 goes through with the
hypothesis that I is a C(S)-injective Banach space

and so we obtain the conclusion that a C(S)-injective

+ See Day [ 7 ], Kelley [20], or Simmons [35].
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Banach space 1s congruent to a closed subspace with a
closed complement of some £ _(S) and is therefore
injective.

5.10 Definition. A Banach space P is said to be

injectively projective if given any injectlve Banach
space I, any closed subspace IO of I, and any bounded
linear transformation T from P to I/Io, there exists
a bounded linear transformation T from P to I such
that QT = T where Q denotes the quotient map from I
onto I/IO.

It is clear that a projective Banach space is
injectively projective. The following theorem establishes
the converse.

5.11 Theorem. If a Banach space P 1s injectively
projective, then it is projective.

Proof. Let X Dbe any Banach space, XO any
closed subspace of X, T a bounded linear trans-
formation from P to X/Xo, and Q the quotient map
fran X onto X/XO. By Lemma 2.6 there exists an
isometry ?> from X onto a closed subspace, say X',
of some £ (8). In particular, X is congruent to a

closed subspace of an Injective Banach space. Let

I = |
X' = ?:(XO). X' is also a closed subspace of 2 (S).

Indeed X ' 1s closed in X' since X' =X'()X '.
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Let X, +x € X/XO (x € X). Define
o s 1 1 o 1
v oe x/xO X /xO by w(xO +~x? I %:(x). To
show that ¢ 1is well defined, suppose Xo + X = XO + Xy
- - %
Then x - x; € X . So ? (= Xl). € X',
Heaa (r(x) - ?(xl) € X ' which means that

0T ?a(x? = X ot io(xl). So ¥ 1is well defined.

¥ 1s linear. For consider two elements XO + X

and X +x, of x/xo. Then w(xO +x) + X+ xg)

1l

z//(XO + x5 +x2) =X !+ ?(xl + xa) =X !+ %(xl? + ?(xg?

i

XO' = ?(Xl? +on 3 ?(XE) = 7]/(}(0 +X1) +§D(XO +X2)-

Also if a 1is a scalar, w(a(xo + xl)) = g(/(xo + a.xl)

I

R %(axl? = X' +O‘.ja(xl) = a.(xo' + ?(xl))

= czzp(}(o +x;). So ¢ is linear. ¥ is bounded. For
”ZU(XO i X? “Xt/xo| = “}Col o+ ?(X?HXT/XO'

= inf {[lx_' + Hps )

xo'eXO' ¥ f(X) IX

;ng {l %(xo? i T(x) "X'] (because f 2 E. = XY 18 onto)

gm0l + 2l

= inf [llxo o+ xllx] (because ?:r is an isometry) = HXO + x|

x €X X/Xo .
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So ¢ 1s an isometry (and hence bounded).t
Now X'/X ' Cigw(s)/xo'. Let

i x'/xo' —> zm(s)/xo' be the identity mapping. We
have the following situation.
P

| =
X/X
¥
(5.1) X}XO!
5

1(8) ———— } (8)/Z '
. ; QI : .

where Q; denotes the quotient map from £ (S) onto
zm(s)/xof.
Since P 1is injectively projective, there exists a

bounded linear transformation T; : P —> 4_(S) which

1lifts 1iyT, that is, QI’I'1 = 1¥T. We claim that

Tl(P)(: X'. For consider Tl(p), p € P. Now iyT(p) ¢ X'/XO‘,

. Actually X/Xo and X‘/XO' are congruent under the

mapping ¥, but we won't use this fact.
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say 1yT(p)

X,' +x'. But QI(Tl(p)) &= wT(p). So

1 1 e 1 1
L Tl(p) X,' +x'. So Tl(p) x' € X' and hence

Tl(p) =x' +x_ ' € X' where x_ ' denotes some element

in X '. So Tl(P)(: X'. Let Qi denote the restriction

of QI to X'. So we have the following commutative
diagram, i.e. QiTl = W,

P
l T
(5.2) As X/X,
L
X X'/X_!
T
Let T = ;a'ltrl : P—> X. We claim that T 1ifts T.

For let p € P. We want to show that QT(p) = T(p).

Let T(p) = X, + X, Xy € X. We must show that

P
Xy + T(p? = X, +x, or in other words that T(p) - X, € X
e - o _ '
But T(p) x, € X, 1if and only if ?(T(p) xp) €X',

Now pEE) - plg) = pETTO) - plm) = M) - plx).
So 1t suffices to show that 'I‘l(p? - %(xp) g X1 er

equivalently that X' +-T1(p? =X, ' + ?(xp). But by
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)

diagram (5.2), XO' + Tl(p) = WT(p? = w(XO + X5

- 1 m
= X, +5p(xp). So T 1lifts T. QB D.

5.12 Remark. In the proof of the preceding theorem,
we did not make use of the fact that Ew(S) 1s injective,
that is to say, we did not have to exténd ény bounded
linear transformations. All we used zm(s) for was to
arrange matters so that we could arrivé at'a diagram (5.1)
which enabled us to invoke the hypothesis that P was |
injectively projective. We can define a Banach space P
to be [ _-projective 1f for every ﬂw(s), every closed

subspacé X, of 4 (S), and every bounded linear

transformation T from P into zw(s)/xo, there

exists a bounded linear transformation T from P to
£,(S) such that QT = T where Q denotes the quotient
map from £ _(S) onto £m(S)/XO. It is clear from the

proof of Theorem 5.11 that P 1is [ -projective if and

only if P is projective. Similariy we can define a
Banach space P to be C(S)-projective if for every

Banach space X which is céngruent to a space C(3)

of all continuous scalar valued functions defined oﬁ a
non-empty compact Hausdorff space S, every closed

subspace XO of X, and every bounded linear transformation
T from P into X/XO, there exists a bounded linear

transformation E from P to X such that QE =T
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where Q denotes the quotient map from X onto X/XO.

If we observe as in Remark 5.9 that £_(S) 1is congruent
to C(BS) where BS denotes the Stone—ééch compacti-
fication‘of S with the discrete topology, the proof

of Theorem 5.11 yields the result that P 1s projective
if and only if P is C(S)-projective.

5.13 Definition. A Banach space I 1s sald to

be projectively injective 1f glven any projective
Banach space P, any closed subspace Y of P, and any
bounded linear transformation T from Y into I
there exists a bounded linear transformation T from

P into I which extends T.

It is clear that every injective Banach space 1s
projectively injective. The following theorem establishes
the converse.

5.14% Theorem. If a Banach space I 1is projectively
injective, then it 1s injectilve.

Proof. Let X be any Banach space, Y any closed
subspace of X, and T a bounded linear transformation
from Y into I. By Lemma 2.2 there exist a set S
and a bounded linear transformation g from ﬂl(S)

onto X. Let M bDe the kernel of g and 1etr

Y, = g_l(Y). M and Y, are both closed subspaces of

£,(8) and M C Y, since g(M) = (0] € ¥. Let g, be
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the restriction of g to Yl and define a map ? from
Y1 to I by ? =Tgl. 50 is bounded and linear.

Since I 1is projectively injective, there exists a
bounded linear transformation 5; from zl(s) te I
which extends )’o . We now want to define Aa mép ’-I" from
X into I which extends T and we proceed as follows.

Let x € X. Choose any D € ﬁl(S) such that g(p) = x.

Define T(x) = f(p). T 1s well defined. For suppose
S : : ) b

g(p;) = &(p,) = x. We must show that cr(pl) = T(pe)'

Now g(p,) = g(p,) implies g(p; - p,) = O which implies

that Py - Py € M. But M 1s a subset of the kernel of

Il
&
=]
—

55 since for m € M we have ?:(m) = ?(m)
= 7(0) = 0. So c;é(p1 - pp) = 0 or %(pl) :.

|
w
—
ke
no
~

So T is well defined. "‘I'l is linear, For let x
X, be in X. Let py, D, € gl(s? be such that

g(p;) = x; and g(p,) = x,. Then g(p; +p,) = x; + %,
and so '_I~‘(xl + xz? - %(pl + pa? = %(pl? + F(PQ)

= ﬁ‘(xl) + i(xg). Similarly if « is a scalar,

g(apl? = ag(pl)l = ax; and so ‘E(axl)l = ?(apl)

= a?(pl) = o;"_f(xl). So ﬁ is linear. To show that

T 1is bounded, we observe the followilng:
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By Lemma 2.2, each x in X has at least one

pre-image p in BI(S) with Hx”x = Hp”zl(s). We

have also shown that %(x) does not depend on which
pre-image of x we choose. Now we want to show that
there exists a constant K such that for all x € X,

we have [|ITx|l < Kllx|]l. So given an x e X, choose

P € &y (S) such that g(p) = x and such that |lpll = |
Then llT(x I = l[f(p)ll Hf;ll lloll = ll?ll llxll. So we
may take K to be |I?]] So T 1is bounded. Finally
it remains to be shown that E extends T. Let ¥y € Y.
Then T(y) = %(rﬂ where g(p) =y. v € ¥ implies

that p € ¥; and so f;(p) = r(p? = Tgl(p) = Tg(p) = T(y?.

So E extends T. Q.E.D,

5.15 Remark. We can deflne a Banach space I to
be 4,-injective if for every El(S), every closed subspace
Y of 4q (S), and every bounded linear transformation T
from Y to I, there exists a bounded linear transformation
T from £,(S) to I which extends T. It 1s clear from
the proof‘of Theorem 5«14 that I 1s injectlve if and

only if it 1s 4,

-injective.

5.16 Remark. We can obtaln the analogues of
Theorems 5.11 and 5.14 wery easily. More explicitly,
we define a Banach space P to be projectively projective

if given any projective Banach space X, any closed
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subspace XO of X, any bounded linear transformation
T from P into X/XO, there exists a bounded linear
transformation ? from P to X such that Qﬁ =T
where Q denotes the quotient map from X onto X/XO.
Then clearly a projectively projective Banach space is
El-projective and hence by Remark 5.9 is also projective.
Similarly we can define a Banach space I to be
injectlvely injective if given any injective Banach
space X, any closed subspace Y of X, and any bounded
linear transformation T from Y to I, there exists

a bounded linear transformation f from X to I

which extends T. Then clearly an injectively injective
Banach space 1s Jf -injectiveand hence is injective by Remark 5.9.

To summarize; In this chapter we have shown the
following:

(a) A Banach space 1s injective if and only if it
is dualiy injective if and only if it 1s £m-injective
if and only if 1t is C(S)=-injective if and only if it
is projectively injective'if and only if 1t is injectively
injectlve if and only if 1t is zl-injective.

(b) A Banach space is projéctive 1f and only if it
18 dualiy projective if and only if it ﬂl-projective
if and only if it 1s injectively projective if and only
if it 1s projectively projective if and only if it is
L -projective 1if and only if it 1s C(S)-projective.
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CHAPTER VI

Some Alternative Definitlons of

Injective and Projective Banach Spaces

In this chapter we shall show that projectivity
and injectivity are each equivalent to certain alternative
conditions that one might impose on a Banach space.
Unlike the conditions in the preceding chapter, these
alternative conditions are not a weakening of the
conditions of Proposition 1l.4. Using one of the
alternative conditions for projectivity, we shall obtain
a result on the lifting of linear functionals.

6.1 Proposition. The followlng three conditions

en a Banach space P are equivalent:

(1) P 1is projective

(Ej For every Banach space X and every
bounded 1ineér transformation T from X onto P,
there exists a bounded linear transformation T1 from
P to X such that TTl 1s the identity map on P.

(3) For every Banach space X and every
bounded 1ineér transformation 'I‘1 from X onto P and
for every Banach space Y and every bounded linear
transformation T from Y to P, there exlsts a bounded
linear transformation 5 from Y to X such that
i

1'.I‘=To
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Proof. Let lP denote the identity map on P.
(1) => (2) We have the following situation:
P

l lp

X . P > 0 (exact)

Since P 1is projective, there exists a bounded linear

transformation I, : P —> X such that B =

i P

to be 1.

We can take Tl lp

(2) => (3) We have the following situation:
Y

e

X > P > 0 (exact)
Tl ~

By (2) there exists a bounded linear transformation

T~ ¢+ P —> X such that TlT = I

2 2 P’

~

Define T : Y—> X by T = T,T. T 1is bounded and

linear, and for y € Y, Tli(y) = TngT(y) - lPT(y) = T(y).

(3) => (2) We have the following situation:
12

|

X > P > 0 (exact)
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By (3) there exists a bounded linear transformation iP

from P to X such that Ti'P= lp. We can take T

1

to be lP'

(2) => (1) Let X and Y be arbitrary Banach

spaces, T1 a bounded linear transformation from X

onto ¥, and T a bounded linear transformation from
P 1Into Y. We want to 1lift T. By Lemma 2.2, there
exists a non-empty set S and a bounded linear

transformation T, from £l(S) onto P. Since ﬂl(S)

is projective, there exists a bounded linear trans-

formation T zl(s) —> X such that T.T, = TT,.

3 ° iy 2

By (2) there exists a bounded linear transformation

T4 : P —> El(S? such that T2T4 = 1P' Define

f:P—>X by T = T,Ty. T 1s bounded and linear

and lifts T since for p € P we have

qu.‘(p:) = T1T3'I‘4(p‘? = T‘I‘eTu(m = TlP('p) = T(p). Q.E.D.
6.2 Corollary. If X and Y are arbitrary

Banach spaces, f a continuous linear functional on Y,

and g a non-zero continuous linear functional on X,

then there exists a bounded linear transformation

f : Y—> X such that g% = f.

Proof., Since g 1s non-zero, it is onto the
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scalar field. The field of scalars is projective (see
the proof of Theorem 1.7) and so by condition (3) of
the proposition, there exists a bounded linear

transformation f : ¥ —> X such that gf = f. Q8. D

So in addition to knowing that we can always
extend continuous linear functionals (Hahn-Banach theorem),
the preceding corollary tells us that we can also 1lift |
them.

6.3 Definition. A Banach space X is said to

have property (¥ if for every Banach space Y which
contains X as a closed subspace, there exists a
bounded projection T from Y onto X.

6.4 Lemma. If a Banach space X has property § ,
and X 1s congruent to a Banach space Y, then Y has
property § .

Proof. Let ?': X —> Y be a mapping establishing
the congruence between X and Y. Let W be a Banach
space containing Y as a closed subspace. If W =Y,
the ldentity mapping on W is a bounded projection from
W onto Y. So assume that W ¥ Y. Let Y' denote
the set theoretic complement of Y with respect to W.
Let Yl be a set with the same cardinality as Y' and
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disjoint from X.l Let ¥ be a one-one mapping from

Y. onto Y'. Let zZ=3xVy Define

1 A3

~

~
?:z——>w by ?(x)= }b(x) if x e X and
~
?(Yl) = ¢(Yl) 5 v, € Yl. 70 is a one-one mapping
from Z onto W. We make Z 1into a vector space by
defining addition and scalar multiplication as follows.

iy zq and Zz, are elements of Z, let

w= G(z,) + 'v(z ) € W. There exists a unique z ¢ Z
1/ 2y

sSuc a. VA = W. e = 0 e a Ze
h that (z) Defi to be that

&y 2
If o 1s a scalar and 2z € Z, we define az to be
that unique element z' € Z such that ?(z') = a}:(z).

We observe that if Xy and X, are in X, their sum

when they are considered as elements of Z 1s the same
as thelr sum when they are considered as elements of
our given Banach space X. For x; + X, (in Z) 1=
that element 2z € Z such that

~ ~ ~

Pl = Pl + Flmg) = ) + i) = Pl +xp)

since is linear. (The last plus sign refers to
r

1 If X and Y' are disjoint, we can take Y' to be Y

If X and Y' are not disjoint, we construct a £
set Yl as follows: If no element of X 1is an ordered

pair, we let ¥, = {(y,1) | y € ¥'}. If some elements

of X are ordered pairs, let o denote an element which
is not the second member of any of the ordered pairs in

X and let ¥, = {(y,0) | v € Y'}.
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our original addition in X.) So Xq

+ %, (in Z) =
X, + Xp (in X) since X, + X (in X) has the property
that ’f;' maps it into /e(xl) . ?(xz). Similarly for

x € X and o a scalar, our definition of ax in 2
agrees with scalar multiplication in X.

We proceed to verify that Z with addition and
scalar multiplication so defined 1s a vector space.

Addition in Z is commutative. For let Z1s 25 € e
Now Z + Zg is that element z3 € Z such that

5 (z3) = G(z,) + &

?(23- = ? Zl. + ?5(22? and z, + z; 1s that element
zy € Z such that %(Zq). = f,(zg? + fa(zl). But
pla) + fzo)

Addition in Z 1is associative. For let Z1s Zps and z

I

fa(zg) - f;(zl? and so z3 = Z).

3

be elements of Z and consider (Zl + z,) + 2z, and

3

z, + (z2 + 23?. Now (zl + 22) + 2z, 1s that element z),

3
of Z such that %(ZA) = F(Zl a 22) e f:(z?)) =
(;(zl) & ?(22)) - ?; (23) (by definition of addition in Z).

Z. + (22 + z is that element z_. of Z such that

3) 5
G(z5) = Gl21) + ¢ (2p +25) = g(zl) * (%(ze) + F(ZB)).

Addition in W 1is associative and so

4
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?(z1)+(<;(zg)+yo 3))—(5:(z1)+§o ) + (2
from which we conclude the associlativity of addition

in Z. The zero element of X, OX’ has the property

that OX+z=z for every 2z € Z. For OX+Z 1s

that element =z in. 2 sSuch that

‘

§(z) = ?l'(ox) + 5‘; (2) = (o) + f";(z) -
(since e linear) Oy + ;(z) (where Oy denotes

the zero element of Y) = (since Y is a subspace of W)
i : .
Oy + ?(Z) (where 0, denotes the zero element of W) =

5:(2). So z2; =z or in other words, OX + Z = B,

So 2Z has a zero element OZ(= OX)‘ For each 2z € Z,

z + (-1z) = For 2z + (-1z) is that element

OX'
z' € Z such that S;(z') = ?:(z) + ?(-lz). But -1z
is that element 2z" € Z such that ?(z”) = - ;(z).
So ?(z') = ;(z) - ;(z) = Oy = Oy So z' = O4.
For each z € 2, 1z = z since 1z 1s that element

z; 1in Z such that F(zl) = lf;(z) = ;(z). For

each 2 € Z and each pair of scalars a and B, we
have (a + ﬁ) = az + pz. For (a - B)z is that

element z; in Z such that %(Zl) = (a + [3)?:

a?( +Bf,(z) (az ?,(fi-}z) while az + Bz 1is
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that element 2z, in Z such that f(ZE)_ = é(az) + 5’; (Bz?.

L Zq and z, are elements of Z and o is a scalar,

c:L(zl - 22) = az, + az,. For o&(zl + 22) is that element

1 2

z, of Z such that ?(23) = af;(zl + 2,) =

ojf};(zl) 5 5"5 (z5)) while oz) +az, 1s that element
z, of Z such that ?(zu) a f,! (az;) + fa’(azg) "
af(zl) * aFy(zg? = a(fi (zl) + ?“; (zg)). Finally if
@ and P are scalars and z e Z, a(pz) = (ap)(z).

For a(pz) is that element zy in Z such that

G (21) = af (B2)) = a(Bf(2)) = (B)(§ (2)) wnile
(aB)(z) is that element 2z, in Z such that
‘;’("7‘2).. i (as)(%(z)). So Z 1is a vector space. It

is easily seen that X 1s a linear subspace of Z and
that 5': : 2 ~—> W 1is a linear transformation by the

very definition of addition and scalar multiplication

all A
We define a norm on Z as follows: llzllZ = H? (Z)”W’
We observe that if x € X, ||x||z - ||3s:||X since lellZ =

I ‘;»'(X)Ilw = I ()l = Il?«(X)_IIY = [Ixlly since # A=sn
isometry. This "norm" on Z does indeed satisfy the

reqirements of a norm. For each z € Z, llz]lZ > 0 and
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1 Hz"z = 0, then Hfb(z)ﬂw = 0 which implies that

~ ~
9:(2) = Oy which Implies that z = O, since )- is

linear and one-one. Clearly “OZ”Z = 0.
lozll, = 16 (ez)lly = lluB ()l = lal 1§ (=),
la| llzll,. If =z, z, € 2, llz; + z,ll,.= I|§o(zl + zg)llw =

Ho(zy) + B (zp)lly <l @zl + 11§ (zp)lly = llzyll, + lizyll,.
SO0 Z 1s a normed linear space and ﬁ 1s an isometry

from Z onto W. Z 1s a Banach space. For suppose

{z )

Zn n=1,9, .+ i1s a Cauchy sequence in Z. Then the

sequence {lﬁ(zn)]n_l 5 is Cauchy and since W is
. — ’ ,..'

complete, there exists a w € W such that 1im §.(zn) = W.
i == o

Let 2z € Z be such that ; (z) = w. Then 1im Z, = zZ
: n —>

since Iz - zll = 15 (z - 2)ll = I¢(2) - $(z)ll =
lw - ;’Z(zn)ll —> 0. So 7 is complete. Finally X 1is

a closed subspace of Z. For let X, € et VR

and suppose lim X, =2 € Z. We want to show that
n— o«

z € X. Now the sequence [xn]n=l,2,.--

is Cauchy since
it converges. DBecause X 1is complete, there exists an

element x € X such that 1lim xn = %, But lim xn =zl
n-—> o n—> o

S0 Z2=x € X. So X 18 closed In 2Z.
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So we have managed to arrange matters so that our
hypothesis that X has property G) is applicable.
There exists a bounded projection T from Z onto X.

M"l

Define a mapping T'!' : W —> Y by T' = ?Tf e

is bounded and linear and T'T!' = T' since

i = }fo;“l; Tj‘;"l . fTT?’;“l = fo‘;‘l =,

Finally T' maps W onto Y since T'(y) =y for
each y € Y since T!(y) = f;l('l‘(i";"l(y))) =

f;(f; 'l(y)) (since ﬁ'l(y? €e X and T restricted
to X 1is the identity mapping) = y. So we have
succeeded 1n showing that theré exlsts a bounded
projection from W onto Y for any Banach space W
which contains Y as a closed subspace. So Y has
property @. Q.E.D.

6.5 Remark. If the projection T from Z onto X
in the proof of the preceding lemma is such that [|T]| < A
where 1 < A £ o, then it 1s seen easily from the
definition of.the projection T' from W onto Y
that |[IT'll < A also.

6.6 Proposition. The following four conditions

on a Banach space I are equivalent:

(1) I is injective

(2) For every Banach space X which contains I
as a clésed subspace, for every Banach space Y and
for every bounded linear transformation T from I

into Y, there exists a bounded linear transformation 5
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from X to Y which extends T.

(3) I has property & .

(4j For every Banach space X and every isometry T
from I. onto a closed subspace of X, there exists a
bounded linear transformation T1 from X onto I

such that TlT is the identity mapping on I.

Proof. Let 1 denote the lidentity mapping on 1I.
(2) =3 (3) Let X Dbe any Banach space which
contains I as a closed subspace. We have the following

situvation:

>

i

If we let our space I be the space Y of (2) and 1

be the map T of (2), there exists by (2) a bounded

linear transformation i from X to I which

extends i. Indeed i maps X onto I since 1

does and hence i1s a bounded projection from X onto I.
(3) =5 (2) By (3) there exists a bounded projection,

say P, from X onto I. Define a map E from X

to ¥ by T = TP, T is bounded and linear and extends T.
(1) => (3) Let X be any Banach space which contains

I as a closed subspace. We have the following situation:
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P

s
Because I 1s injective, there exists a bounded
linear transformation i from X to I which
extends 1. Indeed 1 maps X onto I since
1 does and hence is a bounded projection from X
onto I.

(3) => (1) Let X be a closed subspace of a
Banach épace é and let T : X —> I be a bounded
linear transformation. We want to extend T to Y.
By Lemma 2.6 I is congruent to a closed subspace,

say I,, of some £.(s). Let ¢k £.(3)

be defined by T, = f.T where f‘ : I —> £.(8)

is the map establishing the congruence between I

and I,. Since £.(8) 1is injective, T, extends to

Tl Y — EN(S).‘ Now stnce I has property (P,

so does Il by'Lemma 6.4 and so there exists a bounded
projection ¢ from £ _(S) onto I,. Define T s Y 5T

by ‘f‘ w 7‘,_1'5051. T is bounded and linear and extends T.

(1) => (4). Iet X, = B(T). X, is closed in X

and hence is a Banach space. So P X, —> I 1is

bounded. So there exists a bounded linear transformation
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T, : X —> I which extends T"l. T, 1is onto I

since T-l is and TlT 1s the identity mapping

1

on I since for y € I, Tl(T(y)) & T 9ly) = 3.

(%) => (3). Let X be any Banach space containing
I as a closed subspace. If we take the map T of (4)
to be 1, there exlsts a bounded linear transformation

i from X onte I sueh that T.t = 1., Talke

-k g

¥ : £-==> 1 %o be Tl' Then % 1s a bounded projection

from X onto I since for

x ¢ X, ¥(y(x) = (15 (%)) = Ty (3(1y(x))) = 1(1y(x)) =

Tl(x) = ¢(x). So I has property ¥ . Q.E.D.
6.7 Remark. If a Banach space I is a member

of the class In(2) (and hence injective), it is easy

to see from the préof of Proposition 6.6 ﬁhat the bounded

projection of (3) has norm less than or equal to A.

If we deflne therclass G)A as consisting of those

Banach spaces X that have property (¢ together with

the requirement that the bounded projections from the

superspaces Y containing X can always be chosen

with norms less than or equal to A, then the proof of

Proposition 6.6, together with the fact that

£,(S) € In(1) and Remark 6.5, shows that if X e (¥

il
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then X e In(A). So the classes In(\) and §, are

identical and in particular Theorem 3.2 implies that if
a Banach space X has property 6), then X 1s a

member of the class 6>A for some finite A,

Similarly I € In(A) dimplies that T in (2) can
be chosen so that [Tl SJKHTH. Converselﬁ 1f we
require that T in (2)'can be chosen so that
B < allzll, it.follows‘that I € In(\). Finally,

I € In(A) 1implies that the map T, in (4) can always

be chosen so that [T ll < A, and conversely if we
require that the map T, in (4) can be chosen such

that HTlH < A, it follows that I € In(:A).
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CHAPTER VII

Geometric Properties of Injective Banach Spaces

In this chapter we shall prove a necessary geometric
condition for a real Banach space to be injective. A
special case of this condition will be shown to be
sufficient. We then give a geometric proof that real
ﬂw(S) is injective and finally as an application of
6ur ﬁecessarw'condition, we prove a theorem about real
Banach spaces which are dual spaces and which belong to
a certain class of injectives.

We first note the followlng fact. In Proposition 6.6
we showed that injectivlity for a Banach space 1s
equivalent to the Banach space's having property @ .

In our formulation of property 6’, we required that the
superspaces containing our given Banach space be Banach
spaces also. Actually the superspaces need not be
complete., More precisely, let a Banach space X have
property G’. Then X also has the property that for
each normed linear space Y containing X as a closed
subspace, there exists a bounded projection T from Y
onto X. For let ; JY be the completion of Y,

(If Y 1is already complete, there is nothing to prove.)
and let T be a bounded projection from % onto X. |
Let Tl be the restriction of T to Y. Then T

1 is
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of course bounded, linear, and Tl2 = Tl’ 'I‘1 maps

Y onto X since Tl(X) = X. We shall need this fact
later in this chapter when we show that a certain
Banach space X 1is not injective by constructing a
normed linear space Y containing X as a closed
subspace onto which there exists no bounded projection
from Y.

1L X is a point in a normed linear space X
and r is a non-negative real number, S(xo, r) will
denote the closed sphere in X with center xo. and

radius r, i.e. S(XO, r) = {x eXx | |Ix - xOH < rl.
Occasionally we may use the notation Sx(xo, r) to

emphasize that the sphere we are dealing with is in X.
Whenever we use the word "sphere" in this chapter, we
shall mean closed sphere (possibly with radius zero)
unless we specilfy otherwise. .
Our first lemma will be used throughout this section.
T.1 Lemma. Let X be a normed linear space and

let S(x,, r;) and S(xg, r,) be two spheres in X.
Then 8(x,, r;) /) S(x,, v,) # ¢ Aif and only if
Hxl - x2H < r; +1r,, l.e. the distance between their

centers does not exceed the sum of their radii.
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Proof. (=>). Assume that S(x,, rl)fﬁls(xz, re) £ ¢,
let ¥y e S(xl, rl)fﬁTS(xe, rz). Then Hxl - XEH £
ey = vl +lly =l < v) + 2y

(<=?. Now assume that Hxl - x2" s P+ P
If Hxl - x2H = 0, then x; = x, ¢ S(xl, rl?f"‘s(xz, ra).
So we may assume that lel - x2H > 0. Now our hypothesis
that Hxl - x2H ; r, + r, implies that Hxl - x2H - s r,

which implies that

Hxl e K2“ S rl r2

T.1
( ) “xl - X2” = ”xl o xe“

Choose any real number A such that

ey - =l ~ 2 r
1= Loy g—2
llx, = x,l iy = x5l

(7.2)

and such that 0 < A { 1. It is clear that we can
always choose a % sétisfying (7.2) but that we can
also choose it so that 0 < A <1 ﬁerhaps requires
some discussion. First of all; if ry = 0, the right
hand side of (7.2) is zero and so we can choose A = O,
If r, > 0, then éhe right hand side of (7.2) is
positive. We note that the left hand side of (T<2)
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<, - zll - ¢

1
ey - x|

i

iz £ 1, for 1f > 1, then

Hxl - x2H = Hxl - x2n which implies that r; < O

which is impossible. So we have in this case

I, - x,ll - » *
12 1¢1 and ——2-—— 5 0 1in addition to
“xl = xa“

e, - x|

(7.1) and clearly we can choose a A satisfying (7.2)

and such that 0 < A £ 1.

lx; = xpll - g

So we have £ A which implies
T2
that (1 - A)llx; - x5/l < »; and A ¢ —=—— which
: llx; - =,
implies that k”xl - x2H g ry. Let z = M + f1 A)xg.
Then ”xl - z|| = le1 = Ax, - (1 = x)xgﬂ -
(r - l)xl - (1 - K?xaﬂ = (1 - k?“xl = x2H < r; which
means that 3z € S(xl, rl). Also we have er -z|| =
llx, - A%, - (1 - %)xgﬂ = II- N + W0l = Mixy = x40l € 2y

which means that 2z € S(x2, r2). So

zZ € S(xl, rl?fh?s(xe, re?. Q. E.D,



90,

7.2 Definition. Let X be a normed linear space.

Let Y be a normed linear space containing X as a
normed linear subspaée and having the property that
1f Z 1s a linear subspace of Y containing X and
such that Z # X, then Z =Y. Then Y 1s called an
immediate extension of X.
Our next two lemmas will be needed for the first
theorem in this section.
7.3 Lemma. Let p be a real valued function on
a normed linear space X and assume that p satisfies
the following four conditions:
(I) p(x) +p(y) 2 llx - yll for all x, y e X
(II) p(x) - p(¥) < llx - yll for all x, y ¢ X
(III) p(ax + (1 - A)y) < Mp(x) + (1 - Mp(y) for all
X, ¥ € X and 0 < A S_i.. l ' |
(IV) plx) > 0 for all x e X.
Then thére exists an lmmediate extension Y of X and
apoint £ in Y but not in X such that
p(x) = |lx - gHY for all x e X.

Proof. Let Y, = {(x, a) | x € X, @ € scalars].
If we define addition of two elements (xl, al) and
(xz, ag) in Y, by (xl, al) + (XE’ ag? o

(xl + X5, @y + ae) and multiplication of an element
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(x, a) € Y, by a scalar B by B(x, a) = (px, Ba),
it is easy to see that Yl becomes a vector space.

The set X, = {(xl, a) € Y, | @ = 0} 1s easily seen

1

to be a linear subspace of Yl. Suppose Xl C:Zl(: Yl’

where Z; 1s a linear subspace of Y, and X, # Zq
Then there exists an element (xo, ao) € Z, such that

a, # 0., If (x, a) 1is an arbitrary element in Y.,

then (x, a) e Z For if o = 0, then

l.
(x, @) eX, C Z, and if a # 0, then

{x, a) %—-((%f—x =X O) + (xo, ao?) € Zq.

Let T

X —> X; be defined by T(x) = (x, 0). It is

clear that T 1is a one-one linear transformation from

X onto Xl‘ Let Xl‘ denote the set theoretic

complement of Xl with respect to Yl, p {2

X' = i{x, a) ¢ ¥ | @ # 0}, If X and X' are

disjoint, let ¥ =xMx '. 1f xﬂxl' £ ¢, let A

be a set with the same cardinality as Xl‘ and disjoint
from X and let ¥ = X“YA. As in the proof of Lemma 6.4,

we define the operations of addition and multiplication
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by scalars on Y in such a way that X wilth its original
addition and scalar multiplication becomes a linear
subspace of Y and there a one-one linear transformation

~ ~

? from Y onto Yl such that the restriction of T
to X is T. Suppose XC zC ¥, where Z is a linear
subspace of Y and Z # X. Then we claim that Z = Y.
For choose an element 2z € Z, but not in X. Let

T(2) = 2

1+ Then X C:Zl C:Yi and X, # Z, since

T(z) € Z, and T(z) £ X, for if T(z) = (x, 0) ¢ Xy
we also have (x, 0) = T(x) = %(x) and s0 z =x € X
(since T is one-one) which is impossible since

z £ X. xl<Z 21<: Y, and X, # 2, imply 2, =Y,

which implies that Z = Y. PFor let y € Y and consider
T(y) = zy € ¥;. But z; = T(z') for some z' € Z. So

¥y =2' € Z since T 1is one-one. So Z =Y,

So we have succeeded in showing that there exists
a linear space Y (not as yet normed) containing X as
a linear subspace with the property that 1f x C Z N
where Z 1s a linear subspace of Y and X # Z, then
Z =Y. Choose an element ( € Y but not in X. Every
element y € ¥ can be represented as y = x + A\{ for
some X € X and some scalar A. For the elements of

the form x + AN{ constitute a linear subspace Z of
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Y and Z # X. Also the x and A are unique for if

Xy + NE=x, F RQC, then x; - x5 = (12 - hl)C. If
A # Ay, then TE_%_TI (xl - XE) = {. But

TE“%—XI (x; - xg) €X and { £X. So A =\, from
which X, = X, follows immediately. We define a

function p on Y by

u(y) lixlly 1f A =0

u(y) = I\ p() 12 Ao

We shall show that p 1s a norm on Y. Certainly

w(y) >0 forall y e¥Y and u(0) = 0. If

y=x+ N # 0, then either A # O in which case

w(y) = |Alp(:%) > O by property (IV), or else A =0
and x # 0 1in which case u(y) = lellX > 0. So we have
shown for all y € Y that p(y) > 0 and u(y) = 0 1if
and only if y = O. To show that p(ay) = |a|u(y) for
all y € Y and all scalars o, we first note that if

a = 0, then u(ey) = 1(0) = 0 = ouly) = leln(y). If
a#0 and A= 0, then u(ay) = u(ax) = lloxlly =

1 Hx"x = |laju(y). If a #0 and A # 0, then

u(ay) = wlax + ahﬁ? = |a%|p(:%§) = |al |K|p(:§‘ = |a|u(y).



ok,

So for all scalars o and for all y € ¥, we have

w(ay) = |a|w(y). There remains for us to prove that
IL satisfies the triangle inequality. Let y, w € Y.
We break this part of the proof into various cases.

Case (a). y and w both belong to X. Then
iy +w) = iy +wlly < liylly + lwlly = w(y) = ww).
Case (b). One and only one of the vectors y and

W belongs to X, say w e X and y £ X. Let
¥y =X+ AN where A # 0, x € X. We want to show that

+
(7.3) INlp(= 2579 < IMp(R) + lwlly
If in property (II) we replace x and y by - = I LS
and - %- respectively, we obtain

EEN L E - 8

p(- —) < |-

p(- 21) -

from which (7.3) follows immediately.

Case (c). Yy £ X and w£X. Let y=x+ AN and
w=mu+ 7t ﬁhere X, U e€X and N#£ 0, v#0. Ve
break case (c¢) into the following subcases.

Case (cl). A and T have the same sign. If

A > 0 and T > 0, we have to prove that

(7.4) (O # 5lpfe 22 j};) < w(F) + ()
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If in property (III) we replace x, y, and A by

=X -u

= and respectively, we obtain

o
AN+ T
plrla) + (1 = 2R

< aeel® + - 9D,

X +u A -X T -u
Lee, pl-3757) S x37 p(R) + 577 0()

from which (7.4) follows immediately. If A < O and

T < 0, we have to prove

(7.5) - (0 wpl= ) € - W(F) - ().

Again in property (III), we replace x, y, and A by

:§, :%3 and 77%515 respectively, and we obtaln
X +u A -X T -1
(7.6)  gl-F3=) L7 o) a7 el

and multiplying both sides of (7.6) by - (A + 1) > O,
we obtain (7.5). .

Case (c,) A and T have different signs.
Without loss of generality we may assume A > O and
T<0. If A+171T#O0, then either A+ 7T > 0 or

A+T1T <0, If A+ 7T > 0, we must prove that
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(7.7) (A il T30 € W) = wE,

which is equivalent to

In property (II) we replace x and y by - § i 2 and
:§ respectively, thus obtaining

X + u
pl- =—= 4 B XH o oAy AR

A ) - o) < - B0+ By - SRR,

so (A +7)p(= T30 - (A + Dp(R) < - u + T xlly, e

the left hand side of (7.8) is less than or equal to

- u + - xH On the other hand, if in property (I)
we replace x and y by :% and :% respectively,
we obtain

-U -X u - TX + Au
(7-9)  p(E) + p() 3 IF + Bl - Tty

and multiplying both sides of (7.9) by -7 > 0, we

obtain

el a3

~ Tp(eR) =« Tpl=0) 3 +ully = ll-u+

i.e. the right hand side of (7.8) is greater than or

(7.8) (A + 7)p(- = j};) - (A + —c)p('—;f) 2 - Tp(%)_ - Tp(:%)
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=

equal to |- u + Hence (7.8) is proved.

If A+71T<0(A>0, T <0 still), we must prove

that

(7.10) = (a + Rpl==f22) < M) ~ T,
which is equivalent to

(7.11) = (x + T)p(= 35 + (n + 1)p(D)

£ ?\p(—) + M (= )

If in property (II) we replace X and y by

- § I 2 and :% respectively, we obtain

p(- 50 - o) < - + B - | f%‘.{%n
+

8o = (X + T)p(— — = 3) + (A + T)P(-'-*) Il- X += ull

i.e. the left hand side of (7.11) is less than or

equal to [l- x + 2 ull,. On the other hand, if in
property (I) we replace x and ¥y by -"—}7% and :-%

respectively, we obtain

(7.12) () + o) 2 5 + 2l = S22

and multiplying both sides of (7.12) by A, we obtain
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WER) () 2 - x + X, 1.e.

the right hand side of (7.11) 1s greater than or equal

to |- x + A%"X' Hence (7.11) is established.

Finally there remains under case (02) the case
where A+ 7T =0, i.e. A=-7 (A>0, T <0 still).
We have to prove that |lx + uIIX S.Rp(:§) + hp(%).

If in property (I) we replace x and y by :% and

% respectively, we obtain
=% u X _yu; _ 1
P(-x) 2 P(j) > - = T“ = h”X + u”X
from which the desired inequality follows immediately.

So we have shown that p© 1s a norm on Y. Since

n(x) = ||x||X if x e X, X 1s a normed linear subspace
of Y and by what we have already shown, it follows

that ¥ is an immediate extension of X. Finally if
xeX, wlx-28)(=llx=-¢lly) = |- 11p(F) = p(x). Q.E.D.

7.4 Lemma. Let r be a real valued function

defined on a normed linear space X such that

r(x) + r(y) 2 llx - yll for all x, y € X. Then there

exists a real valued function p on X satisfying

conditions (I), (II), and (III) of Lemma 7.3 and such
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that r(x) > p(x) for all x € X.

Proof. Let A be the set of all real valued
functions f defined on X, satisfying the inequalilty
f(x) + £(y) > llx - yll for all x, y € X, and such that
r(xj > f(x) for all x € X. A 1is not empty since
r €A, We define an order relstion < on A by
f < g 1if and only if f(x) > g(x) for all x € X.

It is clear that under the felatioﬁ £ 5 A Ixw

partially ordered set. Let I = {fi}ieI be a non-empty

totally ordered subset of A. We shall show that I’
has an upper bound ?; in A, First we note that if
f €A, then f(x) > 0 for all x € X since

2f(x) = £(x) + £(x) > llx - x|l = 0. Now for each x ¢ X,

define f..(i:) = 1n§ {f;(x)}. We note that /G(x) is
: ie | ‘

finite since fi(x) > 0 for each i e€ I. To show that
f=e A, let x, y € X and let € > 0. There exists a

funetion £

1 € I' such that fl(x?.s }B(X) + € and

also a function f, € I' such that fy(y) < ?(y) ¥ &,
Since I' 1is totally ordered, we have either

I, £ £, op I, ~ £y, that is fl(z) 3 fe(z) or
fe(z) X fl(z) respectively for all z € X. If

f2 -{ fl, then we have
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- yll < £ (x) +£,(y) < ?(X) + e + £5(y)

< plx) tetply) +e= plx) + p(y) +2e.

If £, <4 f,, then we have [x - yll < fe(x) + fe(y) <

fl(x) + ?o(y) + € £ }a(x) + )'p(y) + 2e¢., In either

case since € was arbitrary, we conclude that

Ix - vl %(x) + %(y). Also for each

z € X, )’p(z) < fi(z) < r(z) for all 1 e I. So

?oe A and clearly I, < <‘afor each f; € I'. So I has
an upper bound in A and hence by Zorn's lemma, A
has a maximal element p.

Now p of course satisfies conditlon (I) since

p € A, To show that p satisfies condition (II), let

x and y be fixed (but arbitrary) elements of %

Now for any t € X, we have

p(t) +p(y) 2 Mt - yll = lIi(t - x) - (- x + )l

>t - xll - lIx - yll.

So |lx -yl +p(y) > lIt - x|l - p(t) from which we

conclude that

(7.13) x - vl + p(y) > sup (it - xlt - p(t)].
: - teX - :
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In particular, sup (|t - x|| - p(t)} { ». Let h
teX

be a non-negative real number such that

h > sup {||t - x| - p(t)] Define a function % on X
teX

by
(t) h ot g =
e o(t) 1if t # x.
We claim that y(t) + ¢(z) > llt - z|l for all ¢,

z € X, or equivalently w(t) > llt - zll - y(z). We

break the proof of this claim into various cases.

Case 1. t =x and 2 = x. We must show that
h > |lx -x|]| =h, i.e. that h > - h. But clearly
h>~-h since h > 0.

Case 2. t = x and z # X. We must show that

h > lx - z]| - p(z) But this inequality follows

immediately from the fact that h > sup {llt - x| - p(t)
teX

Case 3. t#x and z = x. We must prove that
p(t) > lIt - xll = h or equivalently that h > |lt - x|l - p(t).
But this last inequality follows again from the fact that

h > sup {flt - x|]| - p(t)
teX

Case 4. t #x and z # x. We must show that

p(t) > llt - zll - p(z) or equivalently that
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p(t) + p(z) > llt - zll. But this last inequality is
true because p € A,

So y(t) +y(z) > llt - zll for all t, z eX,

Moreover, h > p(x) For suppose h < p(x) Then for
all z € X, we have w(z) £ p(z) since for z #£ x,

y(z)
()
we have Gthen that gbeA,p< v and p#v%. But p

Il

p(z) €< p(z) and for z = x we have

h <’p(x) Since p(z) < r(z) for all =z ¢ X,

1

is a maximal element in A and hence we cannot have
p X ¥. p # ¥. So we must conclude that h > p(x).
So we have shown that a non-negative real

number h satisfying h > sup (||t - x| - p(t)] also
teX

satisfies the inequality h > p(x). In particular if we
take h to be |[lx - yl| + p(y), then (7.13) tells us

that h > sup {llt - x| - p(t)} and since p(y) > 0
teX - :

(since p € A), we also have h > 0. So h > p(x),

1.e. llx = yll +p(y) 2 p(x), 1.e. lx - yll > p(x) - p(y).
So p satisfies condition (II).

Finally to show that p satisfies condition (III),
let 0K AN<1l. Let z =&+ (1 - A)y. Now for any
t € X, ﬁe have

It - =l

I

(e - x) + (1 - (¢ - 9l
g Alie ==l + (2 - Mlie -l
< Mp(e) + p(x)) + (1 = A)(p(t) + p(¥)).
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So it - zll - p(t) £ Ap(x) + (1 - N)p(y) and so

(7.14) zu& ;Ht - z| - p(t)] [+ Ap(x) + (1 - h)p(y).

If we take h = Kp(x) + (1 - h)p(y), then (7. 14)

together with the fact that h >0 (since 0 < A <1
and p(w) >0 forall we X) allows us to conclude
that h > p(z ), il.e. 7\p(x) + (1 = 7\) (¥v) > p(xx + (1 - Ny).
So p satisfies (III) Q.E.D. | g

T.5 Definition. Let X Dbe a normed linear space

and let 1 < A < ». A non-empty collection C of
closed spheres in X 1is said to have the A-intersection
property if for every non-empty subcollection

CZ = (s(xy, Pi)}iel of (¢ with the property that

every two spheres of Go have a non-empty intersection,

M s(x,, Ar,) # ¢.
rer 1 1

7.6 Theorem. Let the real Banach space X be a
member of In(A). Then the collection of all closed

spheres in X has the A-intersection property.
Proof. ©Suppose our theorem is false. Then there

exists a non-empty collection ec,= {S(xi, ri))ieI of

closed spheres in X with the property that any two

spheres in C;) have a non-empty intersection, and
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such that ilf:j: (x5 ?\ri? = ¢. Note that x; = xy, ry # ry
is a possibility for i, J e I, 1 # j. In other words

two distincet spheres in (90 may have the same center.

Now let A=f{x eX | x =x, for at least one 1 € I}.

it
For each x € A, let r(x) denote the greatest lower

bound of the radil of all the spheres in Cio that have

x as their center. Then for all x, y € A, we have
r(x) + r(y) > llx - yll. For suppose not. Then there

exist points x and y in A such that
r(x) +r(y) < llx - yll. Let e=lx -yl - »(x) - 2(y) > 0.
There exist a sphere S(xi, ri), 1 €I with x; =x

and radius r; < r(x) +-E and a sphere S(xj, rj), e -
with x, =y and radius r, < r(y) + . Since C

J 3 SR 0
has the property that any two spheres in Co have a
non-empty intersection, we have S(xi, ri)fﬁ‘S(xJ, rj) £ 0.

So the distance between the centers of S(x, r and

1)
8ly, rJ) must be less than or equal to the sum of
their radii. So we have |[lx - yll < ry + 7y < r(x) + r(y) +—%.
So €= |x -yl - r(x) - r(y) <-§ which 1s impossible.

So for all x, y € A we have the inequality

r(X) + r(y) > = - yll.
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Let (G, = (S(x, r(x)) | x € A}. By the inequality
Just established, every two spheres in 61 have a

non-empty intersection. We claim that [ S(x, Aar(x)) = é.
xel o

For suppose not. Let z € KQA S(x, Ar(x)). Then

lz - x|l < Ar(x) for each x ¢ A. But this implies

that z e [) S(xi, 7\1*1) since for an arbitrary sphere
iel »

S(xy , ri), 1el (xi € A), we have r(xi? _<__r1 (by

definition of r(x;)) and hence |z - xill < Ar(xy) < S

Since /) S(x,, Ar,) = ¢, we must conclude that
lel e i

M1 s(x, wa(x)) = 9.
XeA o

Now distinct members of el have distinct
centers. If A 1is a proper subset of X, choose a

point £ € A and define a set 62 of closed spheres
in X by (?2 = {S(x, lIx - €Il +r(¢)) | x € A"},

where A' denotes the complement of A with respect
to X. ILet C = Clu ca. Slnce for each x € A',

the sphere with center x and radius |lx - £] + r(€)

contains the sphere with center £ and radius r(¢), it
follows that the collection C has the property that

any two spheres in C have a non-empty intersection,
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but the intersection

E= (M s(x, ae(x))) MM s(x, AMllx - €l + r(€))))
xXeA bt XEA? R

is empty since (! S(x, Ar(x)) = ¢. Every point x € X
xX€A .

is the center of one and only one member of (2. We
extend the domain of definition of the function r to
all of X by defining r(x) for x € A' to be the

radius of the sphere in (2 with center at x,

i.e. v(x) = llx - ¢l + r(€). Since every two spheres
in e hé.ve a non-empty iﬁtersection the following
inequality holds for all points x, y € X : r(x) + r(y) > llx - yll.
Moreover for any given w € X, the inequality . |
Aar(x) > llx - wll cannot hold for all x € X, for other-
wise.we would have w € E.

By Lemma 7.4 there exists a real valued function p
defined on X satisfying conditions (I), (II), and
(III) of Lemma 7.3 and such that r(x) Z p(x). for all
X € X. It is then clear that for anylgiven 'w € X,
the inequality p(x) > llx - wll cannot hold for all
x € X. For if it did, then we would have Ar(x) > r(x) >
6(x) > llx - wll for all x € X which we have just |
shown 1s impossible. It follows that p(x) > O for

all x € X. For suppose p(w) < O for some w € X.
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Then for all x € X we have p(x) > p(x) + p(w) > llx - wll
(since p satisfies condition(I)j and 80 p(x)’z llx = wil
which we know is impossible. Sol'p(x) > 0 for all
x € X, i.e. p satisfies condition (iV) of Lemma 7.3
also. By Lemma 7.3 there exists an immédiate extension
Y of X and apoint £ in Y Dbut not in X such
that p(x) = llx - ¢l for all x e X.

We ciaim that there exists no projection P from
Y onto X such that ||P] < A. For suppose there did
exlst such a projection P. Let w = P({) € X. Then

IB(y) - wll = IB(P(3) - )l < Ul lle(y) - ¢l < lp(y) - ¢l

I

for all y € Y. Since every x € X 1is equal to P(y)
for some y € Y, we would then have |Ix - wll < Allx - é“ =
a(x) for all x € X and hence |lx - w|| < Mp(x) < Ar(x)
which we know cannot hold for all x € X. | |
So there does not exist any projection P from Y
onto X such that [[Pll < A\. So X is not a member of
In(A\) (see Proposition 6.6 and Remark 6.7) and thus
we héve arrived at a contradiction. Hence.we must
conclude that the collection of all closed spheres in X
has the A-intersection property. Q.E.D.
T.7 Remark. The precedlng theorem is false if X
is a complex injective Banach space as the following

example i1llustrates. Let S De a set consisting of
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only one point, say a, and let X bhe complex

£,(8) € In(1l). Then the set of all closed spheres in
X dées not ﬁave the l-intersection property. To see
this we observe that X consists of all functions £

from f{a} to the complexes such that

el = sug {|f(s)|} = |f(a)] ¢ ©». In other words X
se - :

can be regarded as the set of all complex numbers with
the understanding that a complex number 2z represents
the complex valued function defined on S = {a}

whose value (at a) is 2z and the norm of this
function is |z|, the ordinary absolute value of z.

So the closed spheres in X are "round" and it is easy
to construct a family of closed spheres, any two of which
have a non-empty intersection, but such that the inter-
section of all the spheres in the family is empty. For
example, consider the family consisting of the following
three spheres: S, = s(o, 1), S, = S(2, 1), and

s3=:ﬂ1-1J$ 1). Then 1 eS. (18

1 V3 N 3 V3 3
g-i=med g, ap 232 szf'.s3. Indeed

& 27
Slms2 = {1}. For suppose a function f in X is in
S; (V8,. Letting f(a) = x + 1y, we have |x + 1y| < 1

and |x +1y - 2| € 1. If |x| > 1, then |x +1y] > 1
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which is impossible. If |x| < 1, then either 0 < x < 1,
or =1 <X <€0. If O LxXx <1, théen X « 2 £ -« 1

which means that |x - 2| > 1 which means that

|x + 1y = 2] > 1 which is impossible. If -1 < x < O,
then - 1< =x and so 1 < 2 - x which again implies
that |x + 1y - 2] 1. So x=1. If y # 0, then

|1 + 1y] > 1 which is impossible. So f must be the
function whose value at a 1s 1. It 1s clear now

that SlmSemS3 = ¢ since 1 1is not a member of S3.

For AN = 1, we can prove the converse of Theorem 7.6,
namely,

7.8 Theorem. Let I be a Banach space such that
the collection of all closed spheres in I has the
1-intersection property. Then I € In(1l).

Proof. Let X be a Banach space, ‘Y a closed
subspace of X, and T a bounded linear transformation
from Y to I. Let § denote the set of all ordered
pairs (W, TW) where W 1is a linear subspace (not
necessarily ciosed) of X which contains Y, Tw is a
bounded linear traﬁsformation from W to I such that

Ty(y) = T(y) for all y e Y and such that [T/l = [iTll.

f 1is not empty since it contains the pair (¥, T). We

define an order relation | on Q by

(s T ) S O, ng) if and only if W, Cw2 and

s
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T (w) =T, (w) for all w e W,. It 1s easy to see
s L 1

that 2 1s a partially ordered set under the relation -

Let I = [(wj, TWJ?}JEJ be a non-empty totally ordered

subset of . We shall show that { contains an upper

bound for I'. Let Zz= & W,. If z, and z. are
e 3 4 2

in Z, then z for some jl € J and Z € W

L € Wy i

for some 32 € J. Since TI' is totally ordered, either

w., Cw or W, CW,. So z, and 2z, are both in
Jip o Jo 3 1 2
W or both in W and so z. + 2, € W or
Jo Jq 172" "9,
Z) + 2, € wjl. Hence z2, + 2z, € Z., Similarly if

z € Z and o is a scalar, =z € WJ for some J € J

and so Az € W and hence oz € Z., So Z 1is a linear

J

subspace of X and clearly W C z for each J € J.

J

Define a mapping TZ : 2~—> 1 as follows. If 2z e Z,

then 2z € WJ for some Jj € J and we define Tz(z) to

be T, (z). T, is well defined for if z 1s also

J

in wj, , J' € J, then either (wJ, ij) < (w il

3 )
J WJ:,
or (W,,, T, ) < (W,, T, ). In either case we have

J g0 J Wy
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ij(z) = ijt(z? and so T, is well defined. T, is

linear for if Z1s Zp € Z 5 Zq and z, are both in

W, for some J € J and Tz(zl + 22) = T, (z + 22) =

J . ; |
ij(zl) + ij(ze) = Tz(zl) + Tz(ze). Similarly if
z € Z and o 1is a scalar, z € WJ for some J € J and

S0 az € wJ and Tz(az? = ij(az? = aTwJ(z) = aTZ(z).

T, extends T for if ¥y e Y, Tz(y) = T, (y) for

J

every J € J and since each Tw extends T, we have

J
Tz(y) = T{y). T, 1s bounded for if z € 2, z e W

Z

J
for some ¢ 3 and liny(2)ll = Ity () < Ity I fel =

ITll llzll and so [T Il < liTll. Since T, extends T,

we also have [Tl < HTZH. So 7]l = HTZH. 8o (z, TZ) e 0

and clearly (wj, Ty Yy = 42, Tz) for each J ¢ 3. 8o
J . ;

I' has an upper bound in Q. By Zorn's lemma,

contains a maximal element, say (W,, Ty ).
M .

We claim that W, = X. In order to establish this,

M

we shall show that an arbitrary (W, Tw)

€ £ such that

W 1s a proper subset of X cannot be a maximal member
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of Q. Choose a € € X such that ¢ £ W. Let
U = Tw(w) (C I. For each u € U define

p(u) = lITll inf {x - ¢ll}. 1If U, u, € U and
© xergMlu))
X, € Tﬁl([ull), Xy € Tﬁl({ugl), then

(7.15) Ty = wpll = lmy(x;) = Ty(xp)ll = ITy(xy - )

< Myl lhey = xpll = N2l lixy = =l
Also by the triangle inequallty we have

(7.16) Iz, - oIl < lixy = gl + llxy - £l

and so

(1.07) My - ugll < liell Uy = ¢l + lizll iy - ¢l
from which we conclude that

(7.18) lhu; = upll € plug) + pluy).

For each u € U, let S = SI(u, plu)) =

(t eI | llt -ull <p(u)) and let & = (5, | ue vl

Then (7.18) says that any two spheres in 4 have a
non-empty intersection. Since by hypothesis the set
of all closed spheres in I has the l-intersection

property, we conclude that M Su # ¢. Choose a point
uel
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£ e () S,- Then l6 = ull < p(u) for each u € U and
uelU -

so if =x ¢ Tﬁl({u}) we have

(7.19)  llg - T (=)l

< p(u) < izl = - clf.

Since U = TW(W), (7.19) is true for each x ¢ W. Let

W, be the linear subspace of X generated by the set

1

wl (e}, W, consists of all elements in X of the

form w + al, where w e W and o is a scalar and it

is easy to see that each element w, € wl has a unique

representation w + af. Define a mapping TW - wl —> I
1

by Twl(w + at)

T.(w) +at. T is linear since
Wi/ Wy

1 oo
T (w + af +w' +a &? = T,

(w +w' + (o +a')t)
1 o

1

= Tw(w +w') + (a + a')& = Tw(w? - Tw(w') + af + a'f

= Tylw +at) + By ' telt) ama Ty (Blw + af))
L wl(aw +pag) = Ty(pw) + (Ba)e = B(Ty(w) + at)

= BTwl(w +at). Also T extends T., since for

Wl w
wewW, Twl(w? = Twl(w + Oc? = Tw(w? + Of = Tw(w).

Finally TW is bounded and indeed

i
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Iy < Nzl see. T (w) + atll < N7l llw + otll for a11

I ;

w € W and all scalars a. To see this, we note first

that if o = 0, we have [IT (w)ll < liT Il llwll = NIl fiw]

If o # 0, the inequality that we must establish is

equivalent to the lnequality

i 1t
(7.20) Mgl Ew) - ¢l < liml 0- B - e
which follows immediately from (7.19). Since Ty

~ 1
extends T,,, we also have |7l = |lI.ll < lIT.. || and so
W ! S Wy

Il = HTWIH. Since Twl extends T, and T, extends
T (since (W, T..,) ¢ Q), T extends T. So

W o X

(w

ys Ty ) € & and we have (W, Tw? < (wl, Twl). But

5

(w, TW? # (Wl, Twl? since W # W,. Hence (W, TW?

cannot be a maximal element in . So for our maximal

M In

element (W,, T., ) in © we must have X = W
M WM-
other words there exists a bounded linear extension

T, ©of T toall of X with llfrW Il = liTll. sSo

M M
I e In(1). Q. E.D,

7.9 Remark. It may not be immediately clear to

the reader where the hypothesis that A = 1 was used
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in the proof of the preceding theorem. Suppose instead
that A > 1. Then (7.19) would be

(7.19)" le - T (x)l & 2p(u) < AllTll flx - ¢l

for each x € W and we would be unable to conclude

that ”TW [| = llrll. Nevertheless we may ask whether
1

the converse of Theorem 7.6 is true for A > 1,

l.e. 1f the set of all closed spheres in a Banach
space has the A-intersection property, 1s the space a
member of In(A)? The following proposition shows that

the converse is false for A > 1.

T.10 Proposition. Let X be a Banach space.

Then the set of all closed spheres in X has the

(2 + ¢)=-intersection property for every € > O.
Proof. Let Agz = {S(xj, rj?}jeJ be a non-empty

family o closed spheres in X such that any two spheres
in ﬁi have a non-empty intersection. We want to show

that for any € > 0, we have (| S(x,, (2 + €)r,) # ¢.
jeJ J o

We have two cases to consider, the case where

inf [rj} = 0 and the case where inf {r.,} =p_> O.
jeJ jes - J %

If inf [rJ] = p, > O, then given any ¢ > O,
Jed

Po T €P, > P, and so there exists j(e) € J such that
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rj(e) $ Po + €Pye Then for every J € J, since

S(xj, rJ) and S(xj(e), rj(e)) have a non-empty

intersection, the distance between theilr centers

cannot exceed the sum of thelr radii, i.e.

ey = 2yl £75 + 75000 BUE Ty T rye) S
vy + py + epo_s Py ok ey toery = (2 + e)rd. So
ij - xj(e)” $ (2 + e?rJ which means that

} =0, let

e N s(x., (2 + €)r,). If inf (r
%3(e) € 4 S )7y) Pl

jl, 32, JS’ .+s» denote a sequence of elements in J

such that 1im r, = 0. The sequence [xjn}n=1,2,...

n—> o n

is then a Cauchy sequence. For if © > O 1s given,
choose a positive integer N such that for all integers

n > N, we have rJ < g-. Then we have for all integers
¥ =

p, a4 >N, ij - % Il S_rj + ry (since every two
p q P q

spheres in _‘X. have a non-empty intersection)

6 0 ( }

CExtm~ 6. So the sequence is a

X
Jn 1’1=l,2,...

Cauchy sequence. Since X 1s complete, {x, }
Jn o £ [~ R
converges to an element Xy € X. We shall show that

M 6
X_ € S(x,, r,) and hence x_ € S(x,, (2 + 4
g Tadolh T A g L T 0 Sy
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Indeed given any €, > O, 1let n be such that

1

1 |
rJn { 5 € and “XJn - xOH < 5 €;, Then for any

- - =
j € J we have HxJ x|l < ||xJ I+ llx

T 1, " %

1 1 B
{r f rJ + Efl RS §€l = r'j -+ el. Since

_J-I-I‘

1
1. =25

€, was arbitrary, we conclude that x_ e S(xj, rJ)

1

for all J € J, l.e. x € M S(xJ, 2. ) Q.E.D.
Jed J

If we accept the fact that there exist non-injective
Banach spaces, the preceding proposition shows us that
for an arbitrary A > 1, we cannot conclude that a
Banach space X € In(A) if the set of all closed
spheres in X has thelh-intersection property. Of
course if 1 < A £ 2, the preceding proposition does not
provide us with a’counterexample and we may again ask
whether the converse of Theorem 7.6 1s true for 1 < A £ 2.
We consider briefly some possible modifications of the |
proof of Theorem 7.8 to see what difficulties occur if
1 <AL 2, If wedefine £ as in the proof of
Theorem 7.8, then as already pointed out in Remark 7.9
we cannot conclude that HTWlH = [I7ll. We can conclude

however that HTW Il < AllTll, but this inequality does not

1

imply that (Wl, T, ) € & and hence we cannot conclude
L
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that (W, T,;) 1s not maximal in Q. If we define

as in the proof of Theorem 7.8 with the exception that
we require the norms of the extensions Tw of T 1o
be such that [Tl < AITll, we are still able to deduce

that this new § has a maximal element (W, Ty 15
M .

However we run into difficulty when we try to show that

Wy = X. First of all we are forced to define p(u) to

be AllT|| inf {llx - ¢ll} (if we hope to make use of
xeTt({u})

our hypothesis at all, i.e. if we hope to construct a

class of mutually intersecting spheres) and we still

deduce (7.18) i.e. [lu, - u,ll < p(u,) + p(u,). However
(7.19) becomes

(7.19)" g = Tp(x)ll < Ap(u) < ATl lIx - ¢l

and when we try to show that an element (W, Tw) €

such that W # X cannot be a maximal element of 2, we

are unable to show that the pair (wl, Ty ) e 8, 1.e.

il
all we are able to conclude is that iz, [l < AZ|lz)l. 1r

1
we try to define our transformation Tw in a manner

i,
other than that which we used in the proof of Theorem 7.8,
we again run into difficulties.
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Finally if we define § as in the proof of
Theorem 7.8 with the exception that all we require of
the extensions Tw is that they be bounded and linear,
we run into difficulty when we try to show that  has
a maximal element. More specifically we have difficulty
when we try to show that a non-empty totally ordered
subset I’ of  has an upper bound in £, 1i.e. we
are unable to show that the linear transformation TZ
is bounded.

Perhaps it is asking too much to expect that a
Banach space X be a member of In(A) if the set of
all closed spheres in X has the K—iﬁtersection
property. Perhaps a more realistic "converse" to aim
for is.the foliowing: If the set of all closed spheres
in a Banach space X has the A-intersection property,
then X 1is a member of the class In(f(2)) where ¢
is some well-behaved function (and £(1) %.1).

We proved Theorem 7.6 for any A Z'l. it is
interesting to note that if we acécept the truth of
Theorem 7.6 for the cagse A = 1, the proof of the
theorem for the case A > 1 follows quite readily as

we now demonstrate.
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T.1l1 Theorem. Let the real Banach space X be a
member of In(A), A » 1. Then the set of all closed

spheres in X has the A-intersection property.

Proof. X € In(A) implies that there exists a

set S and closed subspaces Y and A of 4 (S)

such that 4 _(S) = Y + A, YMa=1{0} and X 1is

congruent to Y., Let T { X —> Y be the isometry
defining the congruence between X and Y. Let

A= {S(xi, ri)]ieI be a non-empty family of closed

spheres in X such that every two spheres in é have

a non-empty intersection. We want to show that

M - =
A (=, ?\ri) # 6. Let Sy(Tx,, ri) =lye¥| lly - m,lly < ol

Now since T 1is an isometry, the sphere S(xi, ri) in

X maps onto the sphere SY(Txi’ ri). For let x € X

be a point in S(xi, ri), 1,8, Jx = xi”X < r;. Then

and so

I - 7=y lly = I2(x = xg)lly = lx = xylly < vy

T € SY(Txi, ri). Similarly if y € Y is such that

ly - TxiHY £y, let x € X be such that y

Tx.

Il

and s0o Xx € S(xi, ri), i.e. every point of the sphere
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SY(Txi’ ri) in Y i1s the image of a point in the

sphere S(xi, ri) in X. So consider the family of

spheres '43Y = [SY(Txi, ri)}ieI in Y. Every two

spheres in ‘éiY have a non-empty intersection. For

conslider any two spheres, say SY(Txl, rl) and

SY(Txg, ra) in ,égY. Choose a point x_ € X such that

X, € S(xl, rl)fm?S(xa, re). Then
Tx, € SY(Txl, rl?fATSY(Txg, rz) since

"TXO e TK1||Y = ”Xo - xlnx £r, and

Tz, - Txlly = llx - =5l < rp. So the family of
spheres ‘3LY in Y has the property that every two

spheres in éiY’ have a non-empty intersectlon.

Now clearly (y e Y | lly - ™lly < ri}(:
iz € zm(s) | llz - Txi”gm(s) & r;}. For each
Txi, ie I, let Szm(S)(Txi’ ri) denote the closed

sphere in £_(S) with center Tx; and radius r;, i.e.

ng(s)(Txi, ri) = {z . g@(s) | llz - Txiﬂgm(s) e
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and let diﬂm(S) = FS£®(S)(Txi, ri?}iel' Then every

two spheres in giﬂ (s) have a non-empty intersection
0]

since SY(Txi, ri) C:S£w(s)(Txi, ri? and every two
spheres in éiy have a non-empty intersection. Since

gm(s) € In(l?, we have ;;} Sﬂm(s)(Txi’ ri) # ¢ by

Theorem 7.6 for the case A = 1., Now Y & In(7A) by
Lemma 2.7 and so there exists a bounded projection P

from £ _(S) onto Y with [[Pll < A (see Remark 6.7).

et z efllg (rx,, r,). Then Pz ¢ () 3(Tx., Ar,).
e zm(s) g2 o (x5 1)

For ||pz - TxillY = |[|Pz - PTxilIY = |lp(z - Txi)H <

X

el llz - Txiugw(s) % Mz - Txiuzm(s) $ Rri for each

1 ¢ I. Finally T *(pg) ¢ /) S(x;, Ar;) since

el :

| e <1 e -
7™ pz - xi“X = |lP™"pPz - 1T Txi“X = {IT™(pz - Txi?Hx =

for each i € I. So

Pz - Txi”Y $_Ari

M S(xy5 Ary) # 9. Q.E.D.
1eT .

In chapter I we said that we were going to give in

a later chapter a geometric proof of the theorem that
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real 4 _(S) € In(l). We are now in a position to do
this.

(7.1 Proof. We shall prove our theorem by showing that
the collection of all closed spheres in ﬂw(S) has the

l-intersection property. Then by Theorem 7.8 we can

conclude that 4 (S) € In(1l). So let
13=={S(f1, ri?}iel be any non-empty collection of
closed spheres in real 4_(S) such that every two

spheres in x& have a non-empty intersection. We

want to show that () S(f,, r.) # ¢, 1.e. we want
el &5

to define a bounded real valued function £ on S

such that lIf - £,]l < r, for all 1 e I. Let s e8

be fixed and consider the set {fi(s) +ry}, ; and

r,}

1 We claim that

the set {fi(s) - 1eT*

sup (f (s) ~ 2y } € inf {f (s) + r;}. Suppose not.
iel ieIl

Then inf {f,(s ) + B, } < sup (¢ (s) r.}. So there

1eI S iel "1
exists an 1, € I such that inf {fi(s) + 2, } ¢
iel

7 (s) +r, < sup (f (s) - r,}. Also there exists
1 1em - =
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an 1, € I such that inf {f (s) b2y } ¢ = (s) +r, <
2 i i
lel 1
£, (s) - r, < sup [f (s) - D So
o i2 - el i

re w4 (8) 2 () £ |8 () =%, (8)] ¢

£ HE (s)° So the sum of the radii of the
]

Lo
spheres S(fi » Ty ) and S(fi s By ) 1is less than
3 i 2 2,

the distance between their centers. Hence

S(f, , v, )VS(f, , v, ) = ¢ which contradicts a
R s e

property of XJJ. So we must have

sup [f (s) =% } € inf {f (s) 4 ri]. Notice that both
ilel . 1el

sldes of thils last inequality are finite since for any

i3 € I we have inf [fi(s) + r,} g &, (4) + 2

£ ©
el - > 4Rl g

and similarly for any 1) € I we have - = < fiu(S) -r, <

Ty

sup {f (s) -

}. Let a_ be any real number such that
1eI i 8

sup [fi(s) -~ By } < as < inf {f (s) * Ry } and define
iel iel

£(s) = o . Since s € S was arbitrary, we have thus

defined a real valued function f on S. To show

that f e 4 _(S) we proceed as follows. Let s e S.
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Then fi(s) - vy < sup {r (s) - ri] < f(s) <
- - 1el - : -
inf {f (s) + ri}-ﬁ fi(s) +r, forany 1 eI. So

lel
fi(s) =0 $ f(s) s_fi(s? + r, and hence

and f(s) - fi(s) £ 8. So

1 5 2

fi(s) - f(s) & r
|£(s) - fi(s)l <r; forany 1eI. So
|£(s)| - |fi(s)| < v, and hence |£(s)] < . Ifi(s)l

< r. + |If, |l . Hence sup |f(s)]| < r, + lI£,]l
=7y 1 zm(s) e Rl i zm(s)

(for any 1 € I). So f e 4 (S). Flnally we show that

£ e N S(fi, ri). et 1 € I. Then for any s € S

1el
we have |f(s) - fi(s)l £y, dee. (£ - fi)(s)l_g
So sup |[(f - F )(s)l , 1o, e - 21 £ n..,
seS i i i ﬁm(S) 1

So f£fe [ (£, ri) and hence the collection of all
el

closed spheres in real £_(S) has the l-intersection
property. So real £_(S) e In(1). .80,

As an application of Theorem 7.6, we prove the

following theorem.

T.13 Theorem. Let X be a real Banach space

which is a dual space and which is in In(l + €) for
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every € > O. Then X € In(1l).

Proof. Since X € In(l + €), the set of all closed
spheres in X has the (1 + €)-intersection property

for every € > 0. Let 4 = {s(xy5 7y))yr Pea

non-empty collection of closed spheres In X such that
every two spheres in A& have a non-empty intersection.

We want to show that () S(x;, ;) #¢ for this will
Iel :

imply by Theorem 7.8 that X € In(l1). Now we know that

M S(xi, (1 + €)r,) # ¢ for every € > 0. Let
Zel e

€s = %, n=1,2, 3, ... If m>n we have

) S(xi, (1 + gm)ri)(:

(v s(x,, (1 + € )r.). For if
b ] .
1€l - # ks

el

z 1is a member of the left hand side, we have
fz - 2,0l € (2 +ede, = (1 3% 2%2 +2)r, = (1 + )p
P = m’~1 mL . i 3 G &

for all 1 € I which means that 2z 1s a member of the

right hand side. Let I_= /) S(x,, (L +e)r,), n=1, 2, 3, ...
N et = s i B

Then we have
Iy DI2 DI3 1L
and each In 1s non-empty.

Let us now consider our space X endowed with the

weak-% topology. The (strongly) closed unit sphere
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s{o, 1) 1m X, f.e. [z e X | lxll € 11 1s closed and
compacf in the weak-x tbpology. o with the weak-x
topology 1s a Hausdofff topological linear space. 7
S(0, 1) 4is compact in the weak-* topology by Alaoglu's
theorem and so S(0, 1) 1s closed in the weak-* topology
since it is a compact subset of a Hausdorff space.)
Since X with the weak-* topology is a topologicai
linear space, for an arbitrary fixed vector x € X and
an arbitrary non-empty subset A of X, the mapping

T, : A —> A +x defined by Tx(a) =a+x,a €A is
a homeomorphism between A and AI+-x. Similarly if

a 1is a fixed non-zero scalar, the mapping

T, : A —> aA defined by Ta(a) =oa, a €A is a

homeomorphism between A and oA. Now given any

strongly closed sphere, say S(xo, 2 of X wilth

o)

positive radius r_, we can obtain S(xo, ro) from the

strongly closed unit sphere S(0, 1) of X by a
composition of mappings of the type just dilscussed.
More explicitly the mapping '1‘x Tf maps the unit

© "0
sphere S(0, 1) onto the sphere S(xo, ro). For let

x e 8(0, 1?. Then HTxoTrb(x) - xo“ w “rox L xo” z
legll = zollell < 2y and so T, T, (5(0,1)) €8x, x).

% o O
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Also if ¥ € S(xo, ro) then the vector

5= (v - %p) €5(0, 1) sinee = (v - %)l -

O +

r
i I [+ T 1 ¥
Lify-xlle2=1 and T, T (3 (v-x,)) =
r 9" = B > W Soh e

T. (y - xo) =¥y -X,+X,=y and so T T, maps
o : oo
S(0, 1) onto S(xo, ro). So an arbitrary strongly

closed sphere S(xo, ro) in X wilth positive radius

is compact and closed in the weak-% topology since

i (s(0, 1)) is compact and closed in the weak-x
o v

topology (since Tr is a homeomorphism) and hence so
o] .

is Txo(ng(S(O, 1)??. Indeed even a strongly closed
sphere in X with radius equal to zero 1s compact and
closed in the weak-x topology since the sphere consists
of only one point and a finlte set is compact in any
topology and hence closed since the weak-% topology on
X is Hausdorff. '

Now for any sphere S(x;, ry) e J, we have
S(xys (1 4 el?-ri) DIl 2 Ky 313 L
Each In 18 the intersection of weak~-% closed sets and

hence 1is weak-x closed. So we have a descending sequence

of non-empty wéak-* closed sets in a weak-* compact
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fos]
space, namely S(x., (1 + e.)r,). So (11 # ¢.1
1 1473 L

[¢2]
Let y e () I. We claimthat y_e (! 3(x,, r,).
© " pep B 9 mer & %

For suppose ¥ £ 0 S(xi, ri). Then

el -

Y, £ S(xio, rio? for some i € I. So

fly . = x, Il = 8> r, . Choose a positive integer n

o] io io (o}
sufficiently large so that (1 + %—)ri ¢ 6. Then

o "o -

v £ S(x (L +e )r, ) since ly.-x, =8> (1 +e )r. .

0 i’ n o1 0 i, n ttig

o0
So vy £I =1 S(x,, (L+e )r,). So y £ M 1
o] n, feT o | n,’ i’ o] =i 9

and this contradicts the fact that v, Wwas chosen to

(4]

be a member of fﬁ‘In. So we mus t conclude that
B=

¥, € ;ﬁ} S(xi, ri). So the set of all closed spheres in
S _
X has the l-intersection property and hence

X ¢ In(1). Q.E.D.

1 see rfor example Kelley [20, page 163, exercise H].



130.

CHAPTER VIII
The Class Pr(1)

In this chapter we shall answér the question
raised in Remark 1.8 by showing that the class Pr(1)
contains only the trivial space, i.e. the space |
consisting of only the zero vector. This result
shows incidentally that the analogue of Theorem 7.13
is false for projective Banach spaces of positive
dimension.

Before we present the proof that Pr(l) contains
only the trivial space, we must take care 5f a
preliminary matter. In the course of the proof we

shall need the fact that there exists a Banach space Y

with a closed linear subspace X and a polnt Y, € Y
but not in X such that the distance from Yo to X

is not attained, that 1s to say, there exlists no point

x, € X such that “yo - xOH = iﬁi i”yo - x/|}. So we

first construct such an example.

8.1 Example. Let Y = Ll[O, 1l]. Define a linear

functional T on L,[0, 1] by Tf = él tr(t)dt,

ol Ll[O, 1]. Now for O < € < 1 we have
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lTe] < él'e t|e(t)|at + {1 t]£(t) |at

€

(8.1)

1A

(1 - ) él"e |£(t) |at + {i |£(¢) |at.

€

Now 1if f differs from zero on a set of positive

measure, we have él |£(t)|dt > 0 and indeed

fl~€ |£(t)|dt > O for some O < € < 1. Choose such
o) ; g2

an €. Then from (8.1) we have

ITe] < fF¢le(t)at - ¢ él‘e |£(t)|at +
(0] : .

(B.QI{ie |f(t)ldt b él |f(t)|dt o él-e lf(t)ldt <

él |f(t)|dt = Hf“Ll[O,l]'

Denoting |||l by |Ifll for simplicity, we have
Ll[O,l]

shown that 1f f € Ll[O, 1] differs from O on a set

of positive measure, then |Tf| < lIfll. Clearliy if r

is O almost everywhere, Tf = 0 = |||l and so
l£] < liell for a2l £ ¢ Lylo, 1}. 5o Izl < 1.

Indeed ||T|| = 1. For consider the functions



132,

f,n=1,2, ... defined by £ (%) =t", ¢ ¢ [0, 1].

Then each fn € Ll[o, 1] and we have

I 5 X
ITnt _ fo g at L BUEE SR
e o i " n+2°
hepll Lgnge I
0
B I A o+ L
So ITfnl ol anH- Butn E;mw ~—> = 1 which

implies that |[ITf] = 1.

Let X = Tnl({O]). X is a closed subspace of Y
and clearly X # Y. Choose a function - P Ll[O, E]
such that Ty, =1 (for example yo(t) = 88, t e e, 1]},
We claim that there does not exist any function fo € X

such tha Hyo - foH = %ni {Hyo - fll}. Let
€

&= inf (e}, Now £ e TH({1)}) implies r
rer™t((1}) |

differs from zero on a set of poslitive measure (for

otherwise Tf would be zero) and so

1=1f=|7f| < lI£ll. So & > 1. On the other hand let

15
€ > 0. Then O { 57177;{ { 1 = |ITll and since
such

Tl = "Sﬁp {|Tf]|}, there exists a function £,
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H

o 1 ol
that fl£yll =1 and |7fy| > 7= = Let £, = T -
Then Tf2 = 1 and

3 e 4] e Il
e = [P =2t = =L ¢1 4 e,
|22, | lres]  eeyl -

g0, 8 £ 1 + € Since € > 0 1is arbitrary, we
conclude that ©& < 1. Hence ©§ = 1.

Now it is easy to see that y_ - X = T™((1)). So

inf {Hyo - £} = o inf {llell} = 8 = 1. So in order
TeX rer™1({1})

to show that there does not exist any function fo € X

such that Hyo - foH = inf {"yo - fl|}, it suffices to
feX

show that ly, - £ll > 1 for all £ e X. Now for any

f e X, T(yO - f) =1, and so Y, - £ differs from zero
on a set of positive measure. Hence T(y, - f) < “yo - i,
tee. 1< ly, - £l

8.2 Theorem. The class Pr(l) contains only the
Banach space conisting of the zero vector alone.
Proof. First of all it is clear that {0} e Pr(1).

So now assume that a Banach space P ¢ Pr(l) where the
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dimension of P 1s positive. Choose a vector x € P
such that |[x|l = 1 and let V be the subspace (one
dimensional, hence closed) of P spanned by x. Take an
f € P* such that ||If]] = 1 amd £(x) = 1 and define
U:P—>V by ®(p) = f(p)x, p € P; Then U 1is
le(p)xll = |£(p) |l

< lell lioll flll < Miplle il < 1 and since [u(x)ll =

Hf(x)x“ = |lixll = lIx]l, we conclude that |lU|l = 3. Alug

linear and bounded since [[U(p)]|

i

U méps P onto V since an arbitrary element of V
can be written as ax for some scalar o and

= f(p) for some p € P (since f 1is onto the
scalar field because f 1s not the identically zero

linear functional). Finally ¥ =y since

U(U(p)) U(f(p)X) f(f(p)X)x = f(p)f(X)x = f(p)x = U(p).
S0 B 18 a bounded projection from P onto V.. Using l
the same type of argument used in the proof of Theorem 3.1
(with our V as the subspace Y and £y (S) replaced
by our P ¢ Pr(l)), we see that V e Pr(l) Now our
scalar field K is congruent to V via the map
a —> ax, o € K. Hence by Lenma 2.3, K is also a
member of Pr(l). We shall now deduce a contradiction.

Let Y bé a Banach space, Z a closed subspace

of Y and Y, an element of Y but not of Z such
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that ig; [”Yo - z||} = ”YO - zo” for no vector z_ € Z.

Let YO be the one dimensional subspace of Y spanned

by ¥ and let Zl = 2Z + Yo. Zl is a linear subspace

of Y and indeed 2, is closed.t So 7, 1s a Banach

space. Also Z 1is closed in Zl since Z 1s closed

in Y. Let Q: 2, —> Zl/Z be the canonical quotient

map. Define f from K to Zl/Z by f(a) = Q(ayo), a € K.

It is easy to see that f 1s bounded and linear. We

note that
(8.3) f(l? = Q(yo).

We have the following situation:

K

lf
—_— 2./2
X Q 1
K € Pr(l) implies that there exists a bounded linear

transformation g : K —> Z such that Qg = f and

!

e If Z 1is a closed llnear subspace and Yo a finite
dimensional subspace of a topological linear space

(in particular of our Banach space Y), then 2Z + Y
is closed. : e
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(8.4) gl < Izl

Also we have
(8.5) el = llaly )i

since (Il = sup (ll£(a)ll} = sup {l£(e2)ll}
|a|=1 : lef=1 - :

= sup (llec(1)I} = sup (|a|lle(2)
la|=1 - = |

eI = lla(y )l vy (8.3).

1l

So llg(1) < llellixl = fell < ligll (by (8.4)) = HQ(VO)H.

Il

Now Q(g(1)) = £(1) = aly,) by (8.3) and so Q(e(1) - y,) = 0.

So g(1) -y, €2 and so g(1) ey, +2=0(y,) =y, - 2,
say g(1) = Yo = Zgs B, € L

So ”Q(yo)” = inf {lwll} < lg(1)ll and since we have
- weQ(y,) '

already shown that |lg(1)ll < lla(y,)ll, we conclude that

I

le(y ) = llg()ll = lly, - z l. But

Ny )l = inf {iy, - zll} # lly, - z /I for any z_ e Z

Z€Z _ e
by the way we chose Y, Z, and Voo So K cannot be a

member of Pr(l) and hence P £ Pr(1). Q.E.D.
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CHAPTER IX
Dual Spaces of Injective and Projective Spaces

In this chapter we shall prove that the dual space
of a projective Banach space is injective. We present
two proofs of this theorem, the first of which is a
direct proof in the sense that it does not make use of
our previous results and the second of which does make
use of previous results and is simpler. In the first
proof we actually prove somewhat more than is claimed
in the statement of the theorem and we shall discuss
these implications at the end of this chapter. Also
we show that the corresponding question of whether the
dual space of an injective Banach space is projective
can be reduced to the question of whether the dual
spaces of a certain class of injective Banach spaces

are projective.

9.1 Theorem. If P 1is a projective Banach space,
then P* 1is injective.

Proof., Let X Dbe a Banach space, Y a closed
subspace of X and g : Y —> P*¥ a bounded linear
transformation. We want to consfruct a bounded linear
transformation G : X —> P* which extends g. Let
J:P—>P* and J : X —> X** be the canonical
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injections (i.e. if 50 € P¥, p € P, then

J(p)(?) = P(p) and if ¥ € X*, x € X, then

J(Xj(W).= W(X)); Let r : X* —;9 Y* be the restriction
mapbiné, i.e..if Y € X*, rtw) = in. It is clear

that r 1is linear and [zl £ 1. Since every continuous
linear functional on Y can be extended to a continuous

linear functional on X (Hahn-Banach theorem), we have

r(X*) = Y*., Let Y+ {v eX* | v(y) =0 forally e ¥} =

r1({0}). Since r is bounded, Y=+

is a closed subspace
of X*, Let Q 3 X* —> X*/Y"‘ be the canonical quotient
mapping. We have the situation

y o O I, ", J—— T S 7T

l q
% /=1
X*/» —({0})
and so there exists a one-one linear transformation T

which maps X*/Y onto Y* in a bicontinuous manner

and such that TQ = r.

Let g* : P*¥*¥ — Y* be the adjoint mapping of g,
T.e. XL p*™ ¢« P** and ¥ e ¥, p*(p**)(y) = p**(gly]).

Define f : P —> X*/¥Y1t by

(9-1} f(p) = T'l(gf(J(p))), 1 -

T
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We have the situation

P

[ &

Q5 xx/yt

X%
Since P is projective, f 1ifts to a bounded linear

transformation F : P —> X* such that

(9-2) QF(p) = f(p), p € P.

1

Now TQ =r, so Q=T r and hence from (9.2) we have

7(p) = " (r(F(p))), b € P

Since r(¥) = ¥|¥Y, ¥ € X*, we have for y € Y,

p € P, r(F(p))(y) = F(p)(y) while r(F(p)) -
TQ(F(p)) = T(f(p)) by (9.2). So
F(p)(y) = T(f(p))(y), peP, yeVY.

Now

I

(£(p))(y) = HT g (p))(¥) by (9.1)

= (ng(p))(y)

J(p)(g(y})

I

1

g(v}(p)-
So
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(9.3) F(p)(y) = e(y)(p), DpeP, yelV.

Let F* : X¥*¥*¥ —> P*¥ bDe the adjoint mapping of F and
let G-= F*j‘: X ——& P*¥, G 1is bounded and linear and
we claim tﬁat G exteﬁds g. For let y € Y. Then we

have for any p € P

G(y)(p) = Ff(J(Y)?(p)
= J(y)(F(p})
= F(p)(y)
= g(y)(p) by (9.3).

So G extends g and hence P* 1is injective. Q.E.D.

Now every projective Banach space is a member of
Pr(A\) for some 1 < A < » and every injective Banach
spacé 1s a member of In(A') for some 1 < A' < o, So
for a given projective spacé P ¢ Pr()\), the preceding
theorem tells us that P* ¢ In(A') for some 1 € A & w
Indeed we can take A fo be A .as the following —

corollary shows.

9.2 Corollary. If a Banach space P 1is a member
of Pr(A), then P* is a member of In(}).

Proof. We shall use the same notations as in the

proof of Theorem 9.1. We establish first that [IT71] < 1.
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Let o € Y*¥ and let a € X* be such that r(a) = a
and Jl&]l = lla]l. (Such an & exists by the Hahn-Banach
theorem.) Since TQ = r, we have o = r(d) = TQ(&) =

T(a + Y*‘) So _l(a) -3 +YY and so

]IT'l(a) Il = lla + Yl = 1nr (& + 9} < @ + oll = &l = llall.
S R

so |IT™ < 1. Now because P e Pr(A) we can assume
snat Il < Alell. If x € X, we nave

G(X) = F*J( J(X)(F) and so ||G(X)|| IIJ(X)” IFll =
=l lIFll < ?\||x|l £l

Mixll llgll. so ligll € Mlgll and so P* e In(2). Q.E.D.

Allxll I~ tg*all < Al ||T'1n le*ll Il <

Before we present the altermate proof of Theorem 9.1,

we require some lemmas.

9.3 Lemma. Let X be a Banach space with closed
subspaces V and W such that X =V + W and
Vvilw = {0}. Then X* is equivalent to v*@w*.

Proof. For ?, € x* let )bv )alv and
?w ?|w. Define T : Xf — v* @ W* by
T(?) = (?v’ ?w)’ fae X*, It 1s clear that T is
linean. Mso B(EIl ~ I fy gl = WPyl + gl =

zgg [lf(v )} + sup {I?(W)|} < QH?II and so T ;s
lvil=1 ||w|l =1
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bounded. Since for each x € X we have X =v + W,

vevV, weW, v and w wunique, it follows that T 1is
one-one. For suppose O = ’I‘(ja) = (?V’ %W) = (0, 0).

Then for x € X we have §(x) = ?(v tw) = o) + f(w) =
?V(V) + ?W(W)' - 0+0=0 and hence ?‘= 0 on X. |

Finally T 1is onto V¥ @ W*, TFor let

(¥, X) e V¥ (@ W*., Then for x =v +w € X, define
fo(x) = ¥(v) + x(w). /G is linear and § v =y,

falw = X and so all that remains to be sstablished to

show that T 1is onto is the continulty of fs on X.

Now If»(X)[ = |p(v) + x(w)| < Wil Il + lixll Iwll <
. . A v* W¥
K(llvll + |lwll]) where K = max {Ilz//IIV*, [I}{IIW*]. Hence if

we can prove that there exists a constant K such that

aL
vl + lwll < K1“X|| for all x =V +w € X, the continuity
of fg will have been established. Define a new norm

il on X by lxll; = livll + lwll. Then since

lixll = llv + wll < llvll + llwll = llxll;, the identity mapping
from X with the norm || II1 to X with its original
norm || || is continuous. If X with the norm || "1

1s complete, then the closed graph theorem tells us
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that the identity mapping from X with the norm | ||
to X with the norm || ”l is continuous, that is,
there exists a constant Kl such that for all

X=v+welX, Hx“l = |lvll + [lwl| S_Kl"X”- So we
proceed to show that X with the norm || "1 is

complete. Let {x ]

n'n=1,2,... be a Cauchy sequence

in X with the norm || ”1 and let x =v +w,n=1,2,...

Then each of the sequences gvn]n=l,2,... and {wn]n=1’2,._.

is Cauchy in V and W respectively with respect to
the norm || ||l. For given € > 0, there exists a positive

integer N such that Hxn - xm“l f € if n, m > N,

that is, |lv

. vmﬂ + "Wn - wm" { € if n, m > N from

}

and {w_}

which we conclude that { B2, s Y

Vn
are Cauchy. ©Since V and W are closed subspaces
of X, they are complete and so there exist v € V and

W € W such that 1im |lv - vnH =0 and 1lim |lw - wnﬂ = 0.
n—> o n—> o

But thenn iimw v + w - x lly = 0 since v +w - xnﬂl =

v = v Il +llw - w ll. So X with the norm || I, 1is

1
complete, and hence F 1s continuous. So T is a
one-one continuous linear transformation from the Banach

space X* onto the Banach space V* () W* and hence
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by the closed graph theorem, T_l 1s continuous. So

X* and V*@ W¥* are equivalent. Q.E.D.

9.4 Lemma. Let A and B be Banach spaces and

suppose A P B is injective. Then A is injective.

Proof. ILet X Dbe a Banach space, Y a closed
subspace of X, and g a bounded linear transformation
from Y into A. Define f : A —> A@® B by
f(a) = (a, 0). Clearly f is linear and since
l£(a) ]l = H(a;o)“ = llall, £ 1s bounded. Let

f.=fg : ¥Y—> A@ B. £, is bounded and linear and

il
since A@® B 1is injective, there exists a bounded

linear transformation fl : X —> A @D B which extends
Define h : A@P B—> A by h(a, b) = a. Clearly h
is linear and since [n(a, b))l = llall < llall + Ibll =
I(a, b)lI, h is bounded. Define & : X —> A by

g = hi‘l. g 1is bounded and linear and g extends g.

For if y e ¥, &(y) = hf,(y) = hf,(y) = nfe(y) =
h(g(y), 0) = g(y). So A 1is injective. G.E. D,

9.5 Altermate Proof of Theorem 9.l. Since P 1is

projective, there exist a set S and closed subspaces

A and B of f,(S) such that AOB = (0}, £,(8) = & + B,

and A is equivalent to P. By Lemma 9.3, (.ﬂl(S))* is
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equivalent to A¥* B¥, But (£,(S))* 1is congruent
- - l '

¥

to .Gm(S) and so ﬂw(S) is equivalent to A*@ BX.
Since £ _(S) is injective, A* (P B* is injective.

By Lemma 9.4, A* 1s injective. But A* is equivalent
to P* since A‘ is equivalent to P aﬁd so P* 1is
injecfive. Q.E.D. 7

Before we prove our next theorem which was motivated
by considering the question answered by Theorem 9.1
with "projective" and "injective" interchanged, we

require the analogue for projective spaces of Lemma 9.4.

9.6 Lemma, Let A and B be Banach spaces and

suppose A (B 1s projective. Then A is projective.

Proof. Let X be a Banach space, XO a closed
subspace of X, @Q the canonical quotient map from X
onto X/Xo, and f a bounded linear transformation

from A to X/X . Define f,: AP B—> X/XO by
fl(a, b) = £{a). Clesriy £, 1is linear and since
lle (a, ) = lieCa)ll < llell lall < NeliCllall + lioll) =

Hell lita, o), £, 1is bounded. Since A® B 1is
projective, there exists a bounded linear transformation

f) : A@®B —> X such that Qf; = f;. Define a map

1.

f : A —>X by f£(a) = fl(a, 0). f 4s linear and
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since Hf(a)ﬂ = Hfl(a, o)l 5_H?1H li{a, 0)I = Hflﬂ flall s
f 1is bounded. Finally P 1ifts f since
Qf(a) = Qfl(a, 0) = fl(a, 0) = £(a). So A 1is

projective. Q.E.D.

9.7 Theorem. The dual space of every injective

Banach space is projective if and only if (4_(S))* 1is
projective for every non-empty set S.

Proof. (=>) If injective Banach spaces have

projective dual spaces, then clearly (£_(S))* is
projective for every S since 4_(S) is injective.
(¢=) Now assume that (£_(S))* 1is projective for

every S., Let I be any injective Banach space. Then
there exist a non-empty set S and closed subspaces

A and B of £ (S) such that £ _(S) = A + B,

AMB =1{0} and A is congruent to I. By Lemma 9.3
(£,(8))* is equivalent to A* (D B*. Also by our

assumption (4 _(S))* is projective and hence so is
A* (P B*. By Lemma 9.6 A* is projective and hence so

is I* since A* 1is equivalent to I*. Q.E.D.

9.8 Remark. In the first proof of Theorem 9.1

we did not make full use of the hypothesis that P 1is



147,

projective. More precisely the map f that we lifted
was not just a bounded linear transformation from P
into a quotient space A/B, A an arbitrary Banach
space and B an arbitrary closed subspace of A.

Our quotlent space A/B was of a very special type,
namely A was a dual space (X*) and B was Y™*,
the space of all continuous linéér functionals defined
on X which vanish on the closed subspace Y of X.
Now such a subspace Y'L' of X* 1is closed in the
weak-* topology on X*, For leﬁ X € Y and let

F, = { ? e X* | F(xﬂ1= 0}. It is easy to see that

Y“L =y F&. Now each Fx is weak-% closed. For

xeY

consider the linear functional JX on X* defined by

= *
Jx(?) = ?,(x?, ? € X_. J. 1s continuous with respect

to the weak-* topology on X¥* (by definition of the

weak-* topology) and F = J;l({O]). So F, 1s weak-x

closed and so Y"L, being the intersection of a family
of weak-+* closed sets, 1s weak-* closed. Hence 1f the
only hypéthesis imposed on our Banach space P were

that for any dual space A, any weak-x closed subspace

of A, and any bounded linear trasnformation f from P

to A/B, there exists a bounded linear transformation f

from P to A such that Qf = f (where Q is the

B
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quotient map from A onto A/B), we would still be
able to conclude that P* 1is iﬁjective. A Banach
space satlsfying the criferia imposed on P will be
said to be *-projective and Theorem 9.1 can be
reworded to read "The dual space of a x-projective
Banach space is injective". We can define the class
Pr*(A) 1 < A < =, as consisting of those *-projective
Banach spaces for which the map © can be chosen so
that ||fll < Allfll and Corollary 9.2 becomes "The dual
space of a member of Pr*(A) is a member of In(A)."
Indeed the dual space of-anﬁ x*=projective Banach Space

(whether a member of Pr*(kl) or not for some 1 £ < )

is a member of In(A) for some 1 < A < » since the
dual space 1s injective and hence 1s a member of In(A)

for some 1 < A & =,
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CHAPTER X

Separable Projective Banach Spaces

In this chapter we shall prove that if P is a
separable projective Banach space, then either P 1is
finite dimensional or else P 1s equlivalent to 21(8)
where S 1s a countably infinite set. We shall .
accomplish this by noting the following. If P is
separable and projective, there exist a countably
infinite set S and closed subspaces X and Y of

£,(S) such that 4,(S) = X + ¥, xlﬁY = {0}, and X

is equivalent to P. Hence it suffices to establish
that an infinite dimensional closed subspace of

El(S), S countably infinite, with a closed complement

is equivalent to ﬂl(S). On the other hand if S 1is a

non-empty at most countably infinite set, zl(s) is

a separable projective Banach space. Thus a non-zero
Banach space P 1is separable and projective if and

only if P 1is equivalent to £l(S) for some non-empty
at most countably infinite set S land hence we obtain

a characterization of separable projective Banach spaces.

We require several lemmas, some of which are

rather trivial, but we include them for completeness.



1500

10.1 Notation. Let A and B be Banach spaces.

We write "A ~ B" to denote that A is equivalent to B.

10.2 Lemma. Let A, B, and C be Banach spaces
and let A~B. Then A @ C~B® C.

Proof. Let T : A—> B be a map defining the
equivalence between A and B. Define
§o=AEBC—>B@C by @(a, ¢) = (Ta, ¢), (a, c) e A P C.

59 is linear and if fa (a, ¢) = ?(al, cl), then ¢ = ¢,

and Ta = Ta which implies that a = a since T is

1 i
one-one. So ? is one-one. If (b, c) e B®PC,
let a € A be such that Ta = b. Then G (a, ¢) = (b, e)

and so f: is onto. fa is bounded for

Ilf(a, e)ll = li(Ta, e)ll = lltall + llell < ol llall + llell <
K(llall + llell) = Kll(a, ¢)ll where K = max {|l7ll, 1}. So
(]'p is a one-one bounded linear transformation from the
Banach space A@ C onto the Banach space B @ C.

By the closed graph theorem, =t is continuous. So

A c~Boc. Q.E.D.

10.3 Lemma. Let A, B, and C be Banach spaces.

Then (ADB)BDCc~AE (B@C).

Proof. Define T : (A@ B)@Pc—>a@ (3P o)
by T((a, b), ¢) = (a, (b, ¢)), ((a, b), c) ¢ (AP B)D c.
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It is easy to see that T 1s linear. T 1s one-one

for 1T T(dl) = T(ae)s then (al’ (b1: cl)) = (a2’ (bg: 02))

which implies that a; = a, and (bl, cl) = (b2, 02)

which implies that b; = b, (and so (a,, bl) =
(ae, be)) and c¢; = ¢, and hence a, =a,. T is onto

for if (a, (b, ¢)) € A@ (B® ¢}y (8, (B, 6)) =

T((a, b), ¢). T is bounded for

I(a, (o, eDll = llall + (o, e)ll

I

flr((a, ), )l

Il

llall + Iloll + llell = li(a, ©)II + llell

I((a, ©), e)ll.

So T is a one-one bounded linear transformation from

It

the Banach space (A @ B) @ C onto the Banach space
A®D (B®c). By the closed graph theorem, 1 s

continuous. So (A@ B)® Cc~a® (B 0). Q.E.D.

10.4 Lemma. Let A and B be Banach spaces
and suppose A ~ B. Let S be a non-empty set. For

each s € S, let A, =A and By = B. Let

X = z@lAS and Y = z ®B;- Then X ~ Y,

s€eS SeS

Proof. Let T : A—> B be a map defining the
equivalence between A and B. We want to define a

one-one bounded linear transformation T from X
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onto Y. Let f € X. Define Tf : S —> B by

(Tr)(s) = T(£(s)), s € S. Tf ¢ Y. For we have

I(Te) ()l = llTe(s)ll < NiTll li£(s)ll for s e S and since

;;I&xs)ﬂ < » (since f € X), it follows that
seS ‘ ' ‘

). Il lig(s)ll < o and hence ) I(E(s)II < .

SES ‘ S€ES
So we have a mapplng T :X—>Y given by f —> Ef.

E is linear. For let f f2 € X and s € S. Then

1)

By + £)(8) = 2((£y + £,)(s)) = (£,(s) + £,(s))

1(£(s)) = T(£y(s)) = (%fl)(s) + (Efégs)
= (T£, + Tr,)(s).

So T(fl + fe) = TE, + ﬁfe. Also if o 1s a scalar,

(F(ar)))(s) = T((ar))(s)) = Halry(s))) = a(2(£y(s)))

= a((Br,)(s)) = (a(F2,))(s).

So T(afl) = a(%fl). So T is linear. T is one-one.

For suppose Tf., = ﬁfg, £, £, € X. Then for all

1
s € S, we have T(fl(s)) = T(fz(s)) which implies

fl(s) = fe(s) (since T is one—one? and so f, = f,.
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T 4s onto Y. For let g € Y. Define f : S —> A
by f£(s) = T-l(g(s)), 8 €8 feX forif s €8
we have [l£(s)ll = 2™ (g(s )N < ™) llg(s)ll and

since g € Y, }: leg(s)|] ¢ » which implies that
ses A

) M lle(s)ll < @ and nence ) liz(s)l < =

s€S S€S
Tf = g for if s € S we have (%f)(s) = T™(r(s)) =

TT"lg(s) = g(s). So 5 15 onto Y. Finally T is
bounded. For if f € X, we have [[(Tf)(s)]l =

le(£(s))l € lill lle(s)ll for each s € S and since

E: el He(s)ll € » (since £ e X), it follows that
s€S ' '

) IE) (s)l < w. Indeed

S€ES

) MG < ) linl el = liell ) He(s)l = el lil.

S€S - seS . S€ES
Since Hif“ = E: I{(T£)(s)ll, we conclude that
ses A

iF2ll < IlTll llgll, 1.e. that T is bounded. So T is
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a one=-one bounded linear transformation from the Banach

space X onto the Banach space Y. By the closed

~

graph theorem, T":L is continuous. Hence

b R Q.E.D.

10,5 Lemma. Let A and B be Banach spaces and
let S Dbe a non-empty set. For each 8 € S, let

A, = A, B, = B, and DS=A@B. Let

X = Z@lAs, ¥ = Z@lBS, and W = z®1Ds'
seS SeS s€S
Then W ~X(P ¥

Proof. We want to define a one-one bounded linear
transformation T from W onto X @ Y. Define a
map g, : A@B—> A by g,(a, b) = a and a map
g8 : APB—>B by gz(a, B) = Bs g, and g, are
clearly linear. Now if f e W and s € S,

f(s) € A@B and f(s? = (glf(s?, gef(s?). Define a
map £, : S —>A by fA(s) = glf(s) and a map

fp : 8—> B by fB(S? = ng(s?. Now |IfA(S“]A -

ley£(s)lly < llgy ()l + llept(s)llp = lle(s) i, @ B°

Since f € W, we have Z llf(s)HA ® B < © from which
seS '
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it follows that }Z Ili‘A(s)IlA <o So f, €X.
s€eS '

Similarly

len(s) ly = llept(s)lly < ey (), + llgpe(s)l = Hie(a)ll, @

and so E: HfB(s)HB < w. BSo fpeY. So
seS ' '

It fB) e X@Y andwedefineamap T : W——>X@DY

by Tf = (£, f f e W.

8,
T is linear. For let f and g be in W and

s €S. Then T(f +g) = ((£ + g)A, (f + g)B) and

T + Tg = (fA, fB? 4 (gA, gB) - (fA + 845 T + gB).

(£ +8)y(s) = gy ((£ +8)(s)) = g, ((s) +e(s))

il

glf(s) + glg(s) = fA(s) + gA(s)

Il

(fA + gA?(s).

So (f + g)A = £, +8,. Similarly (r + g)B = fo + 8y

and hence T(f +g) = Tf + Tg. Also if o 1s a scalar,

T(af? = ((af)A, (af?B? and a(Tf) = a(fA, fB)

(a(fA), a(fB)). Now (af?A(s) = gl(af(s)) =

a(glf(s)) = a(fA(s)). So (af)A = a(fA) and similarly



156,

(af)B = ca(f‘B) and so T(af) = a(Tf). So T is linear.

T 1s one-one. For suppose Tf =Tg, £, g € W.

Then (f‘A, fB) = (gA, gB) and so f, =g, and

fy = 8g. S0 fl‘or S € s,. £(s) = (fA(s), fB(s)) =
(gA(s), gB(s)) (s). Hence‘ f = g. "I‘ is éﬁto

X @Y. For let (p,¥) ¢ X DY. Define a map
f:83—> A@PB by f(s) (?(s w(s Now
Hf(S)IlA@ 5 = Il ¢(s), zb(lf‘a))llA @B -

1§ (@)l + I()lly. Sinee o ex, ) Hp(s)ll, <=

SES

and similarly ¢ € Y implies Z llzp(s)lIB < o,
S€S '

So Z ("T(S)”A + IIz/x(s)IlB) < » and hence

sSeS

>: l£(s)lly gy p € = So £ eW. We claim that

Tf = (‘f’ ¥). For Tf = (fA, fB) and 1f s € S,
£(s) = (£5(s), £5(s)) = (¢ (s), ¥(s)) (by derinition
of f). Seo f‘A(s) = ?(s) and fB(s) = ¥(s) for all

8€8,1e f)=0, fy=9. So T 18 onto. XD Y.
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Finally T 1s bounded. For if f € W,

Inelly @y 3 = I(egs 211 = lieglly + leglly

) leg()ly + ) lieg(e)llg

s8€S s€eS

= ). Ulieg(a)ly + leg(s)lp)

SeES

= z ”(fA(S)’ fB(S)?“A@B

seS

=) et 5

SeS
= llell,.

So HTI‘HX @Y " ||fl|w and hence T is bounded. So

T 1s a one-one bounded linear transformation from the
Banach space W onto the Banach space X @Y. By the
closed graph theorem, 4 continuous. Hence

Ww~Xx®vy. Q.E.D.

10.6 Lemma. Let A and B be Banach spaces.
Then A @ B~ B @ A.
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Proof. Define T : AP B—> B@ A by
T(a, b) = (b, a), a €A, beB. T i1sonto B® A
since an arbitrary (b, a) e B@ A 1is the image

under T of (a, b) ¢ A @ B. It is clear that T is

one-one and linear. T 1s bounded since

IT(a, v)II = (b, a)ll

il + llall = llall + lipll = [I(a, b)li.

So T 1is a one=-one bounded linear transformation from
the Banach space A(Y B onto the Banach space B @ A
and hence by the closed graph theorem, 1 is

continuous. So A OB~ B @ A. Q.E.D.

10.7 Lemma. Let A, B, and C be Banach spaces
and suppose A ~ B. Then C @ A~ C@ B.

Proof. By Lemma 10.2 we have A@® ¢ ~ B@ C.
By Lemma 10.6, C@A~A@PC and B®C~c® B.
So CEA~C@ B since ~ 1is an equivalence

relation. &, 8D,

10.8 Lemma. Let S and S' be two non-empty
sets with the same cardinality. Let A be a Banach
space. For each s € S, let AS = A and for each

s' €S', let A, =A. Let X-= Z@lAS and
S€S

Y = Z @A . Then X ~ ¥,
gtes!
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Proof. Since S and S' have the same cardinality,
there exists a one-one mapping ?a from 8 onto 8.
Let f € X. Define a function Tf : S' —> A by
(T£)(s?) = f(?o_l(s')), s! € 8'. TPf € Y since

). llme(snli= ) e eHe D = ) el < =

5'eS! gleS! seS

So we have a mapping T : X —> ¥ given by f —> Tf.
T 1s linear. PFor let f, g € X. Then

(22 +8))(s') = (£ +e)( g7 () = 20 p7H(s")) +&( ¢ (")

() (s') + (Tg)(s') = (Tf + Tg)(s').
So T(f +g) = Tf + Tg. Similarly if o 1is a scalar,

(P(ar))(s') = (ar)( frl(sq) = a(£( 5;1(3:))) = a(Ts(s!)) =
(a(Tf))(s8'). So T(af) = a(Tf) and hence T is linear.

T 1s one-one. For suppose T, =TI i Yo € X

i e2? 1" 2

Then for all s'!' € S, we have Tfl(s') = sz(s'), i.e.
-1 -1

fl(?’ ?(S'?).:fa(? (s'??. But every s € S is

?_l(s') for some s' € S!' and so fl(s) = fe(s)

for a1l 8 e b, 56 . = £« T iUs ento Y. For let

is 2
h €Y. Define w : S —> A by w(s) = h( ?(s)), s € 8.

wex since ) sl = ) (g ()l = ) lia(s!)ll < =,

seS seS stel!
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Also Tw = h since (Tw)(s') = w( ?-l(s’?? :h(?(?—l(S')))

= h(s') for all s!' ¢ 8', So T is onto Y. Finally

el = ) dlee(s)ll = )l ¢ eI = ) le(s)l -
steS!? ' g'eS! - seS '
I£ll. So T is bounded. So T is a one-one bounded
linear transformation from the Banach space X onto the
Banach space Y. By the closed graph theorem, T + 1is

continuous. Hence X ~ Y. Q.E.D.

10.9 Lemma. Let S be an infinite set and let

A be a Banach space. For each s € S, let AS = A,

Let X = Z®1As‘ Then X&@ A ~ X.
SeS :

Proof. Let 84 be a point whiech is not in S.
Then since S 1s infinite, the set 8' = sV {so] has

the same cardinality as S. For each s' ¢ S!, let

A, = A and let Y= Z ®1AS,. Let z ¢ X @ A.
s'eS!

Then z = (f, a), f € X, a € A. Define a map

Pz ¢+ 8! —> A és follows:
(Tz)(s) = £(s8) if s € S
(T2)(s,) = a.

We claim that Tz € Y. We must show that
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(Tz)(s')|l < ©». Let € > 0. Since £ € X,
steS! ' '

z l£(s)|l € ». So there exists a finilte subset S, of
ses '

S such that if SF is any finite non-empty subset of

S such that SFO S.E = ¢, we have Z He(s)ll < e.

s eSF

Let S!=8_“Y{s }. If S} 1is any finite non-empty

subset of S' such that Sﬁf’HSé = ¢, then s§<: s

and SE",(“]‘Sequ and so Z Il(Tz)(s’)|l= Z ||f(s')l| £ €,

s‘eSﬁ s'eSﬁ

So z l(Tz)(s')]l < »« So we have a map T from
s'eS! ' M

X@®A to Y given by z —> Tz. T is linear. For

let z, = (fl, al) and z, = (fE’ ae? be members of

X @A, Then 2z, +z, = (f; +1L,, a

1+ aa) and so for

s € S, 'I‘(z:L + 22?(8) (f‘l 4 fg)(s? = fl(s) + fg(s)

Tzl(s) + ng(s) = (Tz; + Tzz)(s),
while 'I‘(zl + 22)(30) =a; +a, = Tzl(so) + Tze(so) =

(Tz1 - Tza)(so). So T(zl + zz) = Tz; + Tz,. If a is
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a scalar, az. = (afl, aal) and so for s € S,

(T(azl?)(s) = (afl?(s? = a(fl(s)) = o(Tz,(s)) =

&

(a(TZl)?(s), while (T(azl)?(so) = aa; = a((Tzl?(so)? -

(a(Tzl))(so). So T(azl) = a(Tzl). So T is linear.

T 1s one-one. For suppose Tzl = Tze. Then for all
8 €S, fl(s? = Tzl(s? = Tzz(s) = fe(s). So fy = f,.
Also a; = Tzl(so? = Tzz(so) = a,. So z; =2z, and

hence T 1s one-one. T 1is onto Y. For let g € Y.
Define amap £ : S —> A by f(s) = g(s) and let

a = g(so). Then f € X since E: ie(s) =
' ses '

) el ¢ ) lis(s)ll <o So (£, 2) ex @A ana

seS gt eS!

™Mf, a) =g. So T 1i1s onto Y. PFinally T 1is bounded.

For if z = (£, a) e X @ 4, |zl = Z ITz(s*)ll =

' stes! '
lef(S)H + llall = liell + llall = (£, a)ll = llzll. So T 1s
ses ' '
a one-one bounded linear transformation from the Banach
space X (® A onto the Banach space Y. By the closed
graph theorem, T - 1is continuous. Hence X GO A ~ Y.

Now by Lemma 10.8, Y ~ X. So X (DA ~ X. Q.E.D.
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10.10 Lemma. Let S be an infinite set. For each

s €5, let A= 31(8) and let X = E:EblAs' Then
' ses

X ~ zl(s).

Proof. Since S is infinite, the cardinality of
SXS equals the cardinality of S. So there exists a
one-one mapping ?o from SxS onto S. We want to
define a one-one bounded linear transformation T from
X onto ﬂl(S). Let f € X. We define a scalar valued
function Tf .on S as follows. For each s ¢ S,
let (x, y) = <f l(s) and define (Tf)(s) (f(y))(x)
We claim that Tf ¢ 31(3). Now for each vy € S, we have

2; |£(y)(x)| € » since f(y) ¢ 4,(8) and indeed
xeS : ‘

E: lf(Y)(X)| Hf(y Il. Also 2; I£(y)ll < » since
X€S yeS '

f € X. For each (x, y) e 8xS, |f(y)(x)| > 0. Hence

1

it follows that E: |£(y)(x)] < ©.” The summability

(x,y) esxs

of the family {If(y)(x7|](x,y)e3xs implies that

1 see for example Kelley [20, page 78, exercise G(h)(ii)]
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EE |T£(s)| € ». For let o = E: |£(y)(x)] and 1let
seS ' (x,y)eSxS Sl

€ > O, Then there exists a non-empty finite subset

(SxS)e of 8xS such that if (SxS). 1s any finite

B

subset of SxS containing (SxS)G, we have

a - EZ lf(y)(x)[ € e

(x,y)e(SxS)F

(10.1)

Let S, = ?((SXS)‘;' S, 1s a finite non-empty subset

of 5.  Let SF be any finite subset of S containing
_ -1 1

Sce Let (SXS)F = ?, (SF). (SxS?F is finite and

contains (SXS)G and so (10.1) holds. But

) Ire(s)| =

2 |£(3)(x)| and so
seSg (x.¥ e(SxS)F '

is

o - E: |T£(s)[}< €. So the family {ITf(S)]]SGS

SeSF

summable and indeed

(20.2) ) lrs(s)] = o - Z |2(y) (x) |
: ' (x,y)eSxS |

seS ‘

So TP e 21(8) and so we have a mapping T : X — zl(s)
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given by £f —> Tf, T 1s linear. For suppose

I

f,zg €eX and s € S, Let s f3(x, v). Then
(£ + D)) = () + () (x)

= £(v)(x) +&(¥)(x) = (2£)(s) + (Te)(s)

Il
I

™f + g)(s?

(Tt + Tg)(s).

So T(f +g) = Tf + Tg. Similarly if a is a scalar,
T(af) = a(Tf) and so T is linear. T 1s bounded.

lf(y)(X)l

For if f e X, |lrell = E: |T£(s) |
s€S ' (x,y)esSxs

i

by (10.2) = ) () [2HEDY = ) el = Nzl
: ' yeS xeS Cow yes ‘

So T is bounded and indeed an isometry, hence one-one.

Finally T 1s onto £1(S). For let g € ﬂl(S). For

each y € S, define a scalar valued function f(y) on
S by (£(y))(x) = g(?b(x, y)), x € S. We claim that

the family {|f(y)(x)l}(x,y)68xs is summable (with sum

llgll). For let €, > O. Then there exists a finite

1

non-empty subset Se of S such that if SF is any
1 3

finite subset of S containing S€ » We have
A

1 see for example Kelley [20, page T8, exercise G(h)(i)].
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(10.3) [IEIRECT RS
' seSFl ' '

4
Iet (8x8). = (8. J. (5x5) is a finite
L o 1
non-empty subset of SxS. Let (SxS)F be any finite
i1

subset of SxS containing (st)e and let
1

S. = Gt(8x8)s Y 8 is finite and contains S
s Ry €

so (10.3) holds. But Z leg(s)]| = Z If(y)_(X)l

seSy (x,y?e(SxS)F

0 L

and so

elis ) e
(X,y?e(SxS)F =

< el. So the

14

family {If(y)(x)|](x’y)65xs is summable and hence for

each fixed y € S, the family {|f(y)(x)|]} 1is

X€S

summable, i.e. f(y) ¢ Bl(S) for each y ¢ S. Now

el = Z | £(y)(x)]| and the summability of
' xeS L

[If(y)(x)l}(X y)esxg mplies the summability of

["f(y)“}yeS’ 1.8, zz fI£(y)]l € » which means that the
4 -
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mapping f from S to El(S) given by y —> f(y), v € S,

is in X. Pinally Tf = g. For let s € S and let

-1
(x, y) = % (s). Then (T£)(s) = £(y)(x) = g(? (%, ¥)) =
g(s). So T is a one-one bounded linear transformation

from the Banach space X onto the Banach space El(S).

By the closed graph theorem T-l 1s continuocus. So
X~ £,(8). §.E.D,

10,11 Lemma. Let X be a Banach space and let
Y and W be closed subspaces of X such that
X=Y+W, Y('Ww=1{0}). Then X ~ Y @ W.

Proof. Define T : Y@P W—>X by T(y, w) =y + w.

T is clearly linear. Also if T(yl, wl) = T(VE’ WE)’

then 1y, + Wy =V, t W which implies that

2

¥, - ¥p = W, - W;. Since Y w = {0}, we must conclude
that ¥y = 3 = 0 and Wp = Wy = 0. So T 41is one-one.

T 1is onto X for by hypothesis each x € X can be

written as X =y +w, y e W, w e W and so

T(y, w) = x. T 1s bounded since

Iy, w)ll = lly +wll < iyl + Iwll = Gz, w)ll. So T is

a onenoﬁe bounded linear transformation-from-the Banach space
b 4 () W onto the Banach space X. By the closed graph
theorem, T % 1s continuous. So X ~ ¥ AR Q.E.D.
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10.12 Lemma.,. Let S be an infinite set. Let X

and W be closed subspaces of ﬂl(S) such that

£,(8) =X +W and xf‘%w:io}. Let Y and Y, be
closed subspaces of X such that X =Y + Yl’
Yfﬁ‘Yl = {0}, and suppose Y ~ Bl(S). Then X ~ £,(8).

Il

Proof. For each s € S, let A ﬂl(S), let

W. Let

Il

BS=X®W, let X, = X, and let W,

A = Z@_iAS, let B = Z @1135, let 2Z = z C+)1xs,

S€S S€S sesS

and let R

I

Z (® ,W,. Then we have
S€S

&

.el(s) =X +W~X@E W by Leima 10.11

2

(Y G‘)Yl) @ W by Lemmas 10.11 and 10.2

'

(zl(s) ® Yl? @ W by hypothesis and
Lemma 10.2

2,(3) ® (v @ W) by Lemma 10.3

2

4

A @® (v; @ W) by Lemmas 10.10 and 10.2

2

B ® (v, @® W) by Lemmas 10.11, 10.4, and
| 10.2
(z ®R) @ (¥; ® W) by Lemmas 10.5 and
| | 1042

H
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¢

(z ®R) @ w® Yl) by Lemmas 10.6 and
LG

ACEGEC VLS ¥,)) by Lemma 10.3

>

z P(R@D W) @ Y,) by Lemmas 10.3 and
10.7
~ 7 @(RrRDP Y;) by Lemmas 10.9, 10.2 and
10.7
~(Z®@PR) @ Y, by Lemma 10.3

~B@® Y, by Lemmas 10.5 and 10.2

~ A @Yl by Lemmas 10.11, 10.4, and 10.2

4

.61(3) ® Y; by Lemmas 10.10 and 10.2
~Y @ Y, by hypothesis and Lemma 10.2
~ X by Lemma 10.11.

So £,(8) ~ X. Q. E. D,

10.13 Definition. Let X be a Banach space and

let be a sequence of vectors in X.

[Xi}i=1,2,3,...

We say that the sequence {x.}. .. is a Schauder
1 3=028 ¢ s
basis for X if for each x € X, there exists a unique

sequence {ai] of scalars such that the sequence

izl,e,-ot
n

{x - Z aixi}nz1,2,;.. converges to 0 as n —> o,
i=1
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s3]
i.e. §: ayX; converges to =x.
i=1

We assume the reader is familiar with the basic
properties of Schauder bases as contained for example
in Banach [ 5, chapter VII] or Day\[? s chapter IV].

In particular we assume the reader is famililiar with the
following:

(a) No vector in a Schauder basis is zero.

(b) If X 4is a Banach space with a Schauder basis

{x.} , let X{x } denote the set of all

Xi i'——"'l,a,oo. 1=1’2"..

3

sequences of scalars {ai}i—l o such that the series
e E L

[+ ]

E: a;Xy converges. Under the usual definition of

le=ifi

additlon of two sequences and multiplication of a sequence

by a scalar, X£ } is a vector space and if
E S5 Ty I

we define [lafl for o = tosligg, ... @ X{xi}i=1,2,...

n
by llall = sup {ll E:aixi”}’ then Xy )
l .S.n < o0 ) 1'.:‘:1 i i=1’2,uoq

i1s a Banach space equivalent to X wunder the mapping

0

—> X defined by T(a) = E: a,x

i=1

i}i=l,2,ooo
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For each 1 = 1,2,... we define a scalar valued function

[&]
* # ¥ E: 3 - * 5
x;, on X by xi(x? = xi( anxn? = 0. en x; 1is
n=1

a continuous linear functional on X and

-1
* 2| * #
”xi” s_ﬂizn_ﬂ .« The Bequence {Xi}i=l,2,... in X

is called the sequence orthonormal to {x.},_ .

(e) 1If 8= {sl, Sns 33,...} is a countably

infinite set, let e i=1,2,.., be that element in

i’

zl(s) defined by ei(s =1 and ei(s) =0, 8 # Sy-

1

Then the sequence f{e.}._ is a Schauder basis

00
for zl(s). If f ¢ ﬁl(S), then f = E: a,e; where
' L 1=1

a; = f(si), S O - RS

o

hell = ) eyl

i=1

10.14 Notation. Let X be a Banach space and let

{xn}n=1,2,... be a sequence of elements in X. We

shall denote by [x_]

nln=1,2,... the smallest (in the sense

of set inclusion) closed subspace of X containing each
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of the vectors X R Ly@ye e

n’

10.15 Lemma. Let X be a Banach space and let

[Zn]nzl,z,... be a sequence of elements in X. Suppose

there exists a constant M > 1 such that

ni 2, <an N
1=1

for all positive integers m and n with m > n and

all scalars Cys Qps eesy Qe Assume that no z,

equals O. Then the sequence {z_]} is a

BnEl B

Schauder basis for [Zn]nzl,e,...

Proof. Consider the set Z of all vectors z € X

for which there exlsts a sequence (not necessarily

unique) of scalars f{o_} such that the sequence
: NOMEE 2y v

n
§: %% n—l pB. . o DERNREESS 0 © as m =S o,

In other words Z consists of all those vectors z € X

which can be expressed as a convergent infinite series

of the form 2: aizi. It is clear that each Z dg In
J=1
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Z and that Z 1is a linear subspace of X. Also
z0 [g.]

R For if we let 7Z

v denote the

linear subspace (not necessarily closed) of X

generated by the vectors in the sequence {z ). ’
N h=l,2,e0

every element 2z of Z 1is the limit of a sequence of
elements in ZV’ namely the sequence of partial sums
of an Infinite series converging to 2z, and hence 2

is in the closure of ZV, 2. In [Zn]n=1,2,---'

What we want to show is that 2 = [z ] _; B

and that the infinite series which converges to an
element z € Z 1s unique. We shall show uniqueness
¢.Z.+ Then

feed
1
first. OSuppose =z }Z 121

p

(+2]

(ai - ai')zi and so it suffices to show that
i=1 '

the expansion of O into an infinite series (which B

of course always possible by taking all the coefficients

to be zero) is unique. So let O = E: Y424, Where
' 1=1

the v;'s are scalars, and suppose some Y, # 0. Let

1, be a positive integer such that v, # 0, but
o
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Ty = 0 forall O0<1<1,. Then for all integers

n > io, we have, by hypothesis,

o o
(10.4) 1) vzl < Hl) vzl
i=l i:l

® n
Now since O = zd Y:2, = 1lim ZJ Yi2 and since
= s s | e i s N

the norm 1is a continuous function it follows that
n n
1im || E: Tizin = || 1im E: wiziH = ||o]] = 0. Hence
SAedals Sl

glven € > 0, there exists a positive integer N such

that for all n > N, we have

n & n €
o - 1) wpzll| < gt s that 1, 1) vzl <
i=1 ' i=1

If in (10.4) we choose our n > N (as well as n 2010),

1o i
we have || E: Tizi“ < €. But E: YeZy = Yy 24
1=1 | 1=1 2R

and so "Ti Zy i« €;. Since €, > O was arbitrary,
o

we conclude that Yy Z 0. But we assumed that
o

1o
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x

Wy # 0 and so we must conclude that z, = 0. But
o o

z2; = 0 contradicts our hypothesis that no B ™ 0.
o

o0
So we must conclude that if O = E: Y4240 then Vi = 0
i=1

for all 1i. So uniqueness 1s established.

There remains for us to prove that 2Z = [Zn]n=l,2,...'

It suffices to show that Z 1s closed since Z 1is a

linear subspace of X containing each Zy s

, and [z ] is the smallest

n=l,2,..- l’lntl,e,..-

z C [zn]

(with respect to set inclusion) closed linear subspace

of X containing each z . Let {xn} be a

n=l,2,.c.

sequence of elements in Z and suppose

1im =% € [z.1... . We shall prove that
n —> m xrl n n—l’2,.no

X € Z, thus establishing that Z 1is closed. Now since

{xn]n=l,2,... is a convergent sequence, 1t 1s Cauchy.

0
1-1 ' |

denotes the unique coefficient of =z in the infinite

|

series expansion of X Let k be a non-negative
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integer. Define a map Uk from Z to Z as follows:

o0
If k>1 and x = Zaizi € Z, define Uk(x) = Zaizi;
i=1 i=1

if k = 0 define Uo(x) = 0, It is clear that each
map U, is linear. Also |lu_ll < ¥° for all k. To

see this last inequality we may assume that k > 1,

2

since HUOH = 0 < M., We first note that for each

o0
E: Qy2Zy € Z, we have

(10.5) [I;; aiziﬂlg MeﬂxH for all positive integers n.
' I=1

For suppose that for some positive integer n, we have

Ili; aizin > MEHX“. Then for all n > n_, Wwe have

n

n
Ml ) gzl > 1) wyzll > Wikl and hence
i=1

Il = 11m uZ ayz,ll > -I%-qu ayz, 0l > Mlxll > llxll which

1s impossible. So (10.5) is established and hence
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k
Gl = 1), ayzyll € wBlxll. so Iyl < 2.
i=1 ' '

Let 0<k <J, J,k Integers and let

UkJ e Uj - U,. Then we have “Ukj(xm - xn)H =
1wy = 0 (g = )= WUy Gy = %) = Gl = =) <

1o, (xy = 3 )+ 10 Gy = x) 1 < 20°0x, = %l In
particular [Ipy(xy)zy - By(x )zl = liBy(x, - =)zl =
”Uj-l,j(xm - xn?" $ 2M2me - x_|l, and so tne sequence
{Bj(xn?zj}n=l,2,... is Cauchy for each fixed positive
integer j. Hence the sequence {Sj(xn)zj}nzl,a,...

converges to an element anJ € [z.] for each

9 g ¢ 3 %

such j.l We shall now show that the sequence

n
i }: aizi]n=l,2,... is Cauchy. Let € > O and let

i=1

ME be a positive integer such that n > m > ME implies

€
me - an < ﬁg . We have

E It is trivial to show that if a sequence of vectors

{anX}n=1,2,... (an scalars, x a fixed vector) in a

normed linear space converges to y, then y = ax for some
scalar a.
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10, - Z ayzgll = M0 %y - Uegmy + Uy, - Z 2,2l
k<1< k<1<

<2l - xll + I x, - ) agzll = 2l - xl
' k<1<

+ lBya (xg) 20 + Pryp(Bp)ziep + oo + Bylxy)zy - EZ 2,2l
k<i<]

‘s 2M2llx~m - xn” + llﬁk""l(xn)zk"i‘l e ak+1zk+1“ S Y IIBJ(XD)ZJ i aJZJ“

In particular if we choose our integers m and n such

thats 1 > m > Me’ we have
(10.6? “Uijm - E: aizin < 2¢ +
k<1<
IByess (Xg)Zieqy = Bzl + oo+ IBy(xp)zy - ayzyl.
Since for each positive integer Jj the sequence
[5J(Xn?zj}n=l,2,... converges to 8425, We can by

choosing n sufficiently large make the right hand
side of (10.6) less than 2€¢ + & for any given © > O

from which we conclude that

(10.7) uuijm - }Z a;z;ll € 2 for all 0 <k < J
k<igJ

and all m > Me'
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Now let m > Me be fixed. Then since

1im j? Bi(xm?zi = X, we have

k=>4

k
1im IIZ By(xy)zy - x ll = 0. But for k > 1,
K=y @37 ’

k
E:Bi(xm)zi = U x, and so we have
d=1

klig 5 HUk(xm? - me = 0. So there exists a positive
integer K€ such that k > Ke implies

”Uk(xm) - xmu £ % . Hence for all integers J and k
guch that J > k > Ke’ we have

o gzl = G - wdx Il = lugx, - vex |

(10.8? "ijm b T kxm" $-”ijm = me

o, - xll <3+ 5= e

Now Mugxy = ) agzgll 2 ll) ayzll - liuxl and so
k<idj k<i<J
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1) ezl g um, - ) ayzl + g xl
k<1i<J ' k<idJ
(10.9) 3

£ 2e + €e=3¢ forall J >k > Ke
by (10.7) and (10.8). (10.9) shows that the sequence

{ aizi}n=l,2,... is Cauchy.
i=1

n
Since the terms of the sequence { E: aizi]n=1,2,...
i=1

are all in [z._] and since [z_]

NB=l,25 40 B h=l.2;465 =8

n
closed and hence complete, the sequence { E: aizi}nzl,2,...
1=1

converges to some element y € [z ]

1,65
gk L R

o0

y = 1im 5i a.z, = E: a.:2,. S0 ¥y € Z by the definition

. s qe=d
S A 4=

of Z. We shall prove that x =y and this will complete

the proof of our lemma. We shall establish that x =y

by showing that our original sequence {x_ } _
nn—l,g’io.
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converges to y. Let €' > O. Let Me‘ be a positive

1
integer such that n >m > MM_, implies [x_ - x || < S
€ m n" M2

Let m > M_, be fixed. Then by (10.7)1 we have

- 1
Huijm ;Z a,z4ll < 2¢' for all 0 <k < J.
k<ig]

In particular for k=0 and J an arbitrary positive

integer, we have

J

(10.10) I, 2 - ). 242ll < 2€.
L _,

iy = % =8, =N, and so (10.10) becomes

(10.11) Hijm - i: aizin < 2¢t,
' i=1 )

Now x, - ¥ = Z By (xy)zy - Z ayZy
{21 11

) (Bylxy) - ay)zy
i=1 i '

1im EE (ai(xm) - ai)zi.
J ™0 | |

1

We are using "e'" instead of "€" in this part of the proof

because we already used "€". However € was arbitrary and
so the various inequalities that we deduced are valid with
the appropriate changes in notatilon.
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so lix, - vl = "Jli’; i (By (x) = ay)zll

= 1m || i (By (xg) = ag)zyll

j=> = i

3
- 1m lupg - ) a2l
F7e @ 1=1

But by (10.11) llUJxm - i aizill < 2¢!' for all positive
i=1

- 1
integers J and so _lip “ijm ﬁ: aiziH < 2¢'.
d == 41

so lx, - yll < 2¢' for m > M_, which means that

1im Xy = ¥ Since by our assumption 1lim X, = X
n—> o n—> o
we must conclude that x =y € Z. Q.E.D.

10-16 Lemao Let S s [Sl, SE’ e 0 0 } be a
countably infinite set. Let {Nh]m-o 1,2,... pea
sequence of integers such that N0 = 0 and
Np € Npgpo m = 0,1,2,0..0 Let {z )10, Dea
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sequence of vectors in ﬂl(S) such that

Z £0, m=1,2,.e44, and such that

i=N

m_1+l

Then the sequence {z_} is a Schauder basis

"mm=1,2,...

for [Zm]m=1,2,...’ I ,2,... 1s congruent to

21(8)3 and [z_]

e D, 8 ShE Tuaes of a continuous

projection P with [[Pll = 1 from £1(S). (In particular

(2, J

m is complemented in ﬂl(S).)

m=l,2’...

Proof. Let k ©be a positive integer and

hl, Kz, 59 3 Kk arbitrary scalars. Then

k
(10.12) II}Z A2 H }; |h | Hz i

m=1
k
since IlE:k % = |l E: Ay i“ =
m=l 1=N__,+1
0 1 2 o Kk
JIn A boests s o FA B € AT e Fooothobs €4 Feooth tr e |l
2®o 1%, o, Hh2N 0N 4 2NN, Mg N, °N,

N

3 k
Z Ptll = ), Dyl Zm €8 = ) Dyl lizgl.
-

1+ m=1 1=N -+ m=1

1=
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Now clearly if p and q are positive integers with

p ﬁ_ q, and Ogs s eees ap, St aq are arbitrary

scalars, we have i Iccml HzmH < i Ior.ml ”Zm”
m=1 m=1

and hence by (10.12)

(10.13) ui ozl < ui oz |l.
' m=1 L=l

By Lemma 10.15 it follows that the sequence ({z_ }
m m—l,2,...

is a Schauder basis for [zm]m=l,2,...‘

We want now to define an 1sometry T from El( )

onto [z ]m—l el et x = }: tiey € ﬂl(S) and

m
il
o0,
consider the infinite series 24 Iltl ” i”H. This
Z
1= i

infinite series converges since |lt, —i| = ltil, s £ 0 SN

izl

o0

and Z: Itil converges. The convergence of the series
=1

H implies the convergence of the series
‘1 llz ll
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el A
Z £y 1 . We define

o0 z 0
T(x) = E: ty Hz?“ , X = ;z; tyey € 31(8).

Since [zm]mzl,e,... is closed, T(x) e [z 1 4 Bl

It is clear that T 1is linear and since

k A
o)l = I Ly - 1 S
o) z Tl T ED . i; "1 Tz, I
k k
= 1im || L) - . .12
S 121 T m 1; Ity 1 (by (11.12))
= ) eyl = I,
i=1

T is an isometry. Finally T is onto m[zm]mzl,Q,...‘

For let y € [Zm]m—l Beist Then y = }Z Y42, Since
Pl

is a Schauder basis for [z

m]m=1,2,... m]m=l,2,...

{z

o)

The series E: viﬂziuei defines an element in ﬂl(S),
J=1 '
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co

i.e. converges, since the series E: ”Ti “Zi“ eiH converges

1=1
since vy llzyll eyll = |v;|llz;ll and
o k
) Irylllegll = aim )l ey
i=1 i=1
K
= lim llZ Y42 (by (10.12))
k —> o ;
I
=l m ) vzl = iyl ana

T(Z vy lzgll ey i "Z Theka

T is onto [z and hence ﬂl(S) and [z_]

m]m=l,2,.-l m m=1,2’..-

are congruent..

Finally we want to define a projection of norm one

from £l(S) onto [z_]

o=, B, ...t 200 B Rl 85000

denote the normed linear subspace of 21(8) spanned by

the vectors e 11’ ©N o2t By . Each

N m-1 m

m=1

Zy m=1,2,...; 18 by 1ts very form a member of Em'
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Hence there exists a continuous linear functional fm

defined on E_  such that fm(zm) =1 and

ok - .
Hme - ,m=1,2,... Again let x = E: tye, € zl(s)
m

and consider the series

N
(10.1%) }; (fm( Ef] tiei‘)zm.

m=1 1=N +

Now for m= 1,2,..., Wwe have

N N
| £ Efl tyey) | < llggl ll;i? tyel
i=Nm 1+1 1me_1+1
(10.15)
‘ N
T f gk
" i o

N
If we let A = }fl |ti[, m=1,2,..., then the

1=N__,+1

th

norm of the general term (i.e. the m— term) of the

series (10.14) is less than or equal to Am‘ Since the

co co ©0

series Z Am converges (z Am = z lti' = llx“),

m=1 m=1 i=1
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it follows that the series (10.14) converges and indeed

to an element of [z 1, , = since [zl .,

is closed. We define a map P : El(S) —> [z_]

mmzl,g,..-
N
m
l Z tiey))e,

3

by

P(x) =

|1[\/j8

00

where x = E: t,ey € ﬁl(s). It is easy to see that
i=1 ‘

P 1is linear. P 1s bounded. For we have

I
]
8
M=

llex|l tye; )zl
m=1 i=Nm_1+1
Kk N
-l 3m ) (g 5 Nz,
m=1 1=N_ .+l
Kk N
- ) (g ) Dzl
m=1 i=Nm_1+l
K, %
= 1m £ (f )| llzgl by (10.12)
i m i
m=1 i=N -
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N, gm
Now Ifm(z t.e,)] < ”l ” Z Itil by (10.15)
=N _,+1 m' 1=N__;+1

and hence for all positive integers k

k

N
), 12 f s llizgll € ) (2 f 16, Dz
1 i=N__;+1 ' = '

m=

N

k ﬁ@
- ) ¢, 1)
m=1 1=N _,+1

A
=
T8
P~
1=
&
sl

12N+
E]
= ) Iyl = Il
haec!
& N
So lexll = kli’é‘ ) Z £, ¢ i‘ tiei)_lllzmll < lIxll,
m=1 i=Nh_1+l
N
- "
i.e. P is bounded and |IPll < 1. Now z = ZA ey
=N _ +1

and so
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(10.16) P(zm) = fm(zm)zm =z M= 1,8, vas

m’

Hence ||P|l = 1. Also P° - P. For if

X = E: tie; € ﬁl(S), P(P(x))
i=1

m=1 +1

N
o) el ke
& ds

N
= P( 1im ji (fm( Efl tiei))zm)
k > = il ol .

1=N__ +1
I N
- atm B Z (¢ ( Zm 5;0,))7,)
m=1 1=N__,+l
i N
- 1w ) (e (f t,e,))z_ by (10.16)
R e T N |
S TTm-1
A
= ;; (fm( 24 tiel?)zm = P(x).
m=1 1=N__,+1

Finally P maps zl(s) onto [z_] . For if

W M=1,2,...



& lzplyn s Lo F= Z v,2z; and

0 o0 o0
P(y) = B( Z Y1%1) = z 1, 8(zy) = 2 v,2y = ¥. So P
‘ 1=1 - A=l Cod=1

is a projection of norm one from El(S) onto

[Zm]m=l,2,.... Q.E.D.

10.17 Lemma. Let X be a Banach space and let
{x_}

be a sequence of non-zero elements in X
N Nn=l,2,.00

n m
which satisfy the inequality || z: aixiH < | E: aixiﬂ
1=1 1=

for all positive integers m and n with m > n and

all scalars Q,, Op, eee; GO . (In particular by

Lerma 10.15, {xn}nzl,E,... is a Schauder basis for

[Xn]n=1,2,...'? Let {yn}n=l,2,... be a sequence of
non-zero elements in X and suppose

o0

* - =
), Uil lly, - xgll = 8 <2
= '

}

is the sequence in [x

*
where {x n_]n=l,2,...

*
1’1_ n=1,2,.-.

orthonormal to {xn}n—l o . Then ({y._} is
Flycse e

n n=l,2,...
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a Schauder basis for [yn]n_l 5 .
=Ll gy e o0

Proof. By Lemma 10.15 1t suffices to show that
there exists a constant M > 1 such that for all
positive integers p and q with p £ g and all

scalars t t2, S tq, we have

1:

IItlzyl + ... + t-pypll 5 Mlltlyl + ees + tpyp + ees + tqull.

Now
= tlxl - t2X2 = e s . tpxp
and so
lli tyyll < Ili tyxll + Hi £y (g - %)l
i=1 =1 i=1
(10.17)
g ) sl + 1ty 1 llyy - x40l
- i=1 =il
Now for 1 £ Jj £ p, we have
= * LI ] + * + ® 8
]tjl |xjr(tlx1 + tpxp)| < ”XJ‘“ Htlxl + tppo

and so from (10.17)



I i £,3,
1=1

193.
< i ty %, |l
- i=1

v i loeg 1 Nogmy + +oe + 6l llyy = ]
i=1

llji ty%y |l
1=1

# Woyxy + wus tpxpni ey * 1 lly, - =,
i=1 '

o0
*
< ii tyxgll + llegxy + oo + e x I E:Hxiﬂﬂ lly,
1= 1=1

Il

(1 + ﬁﬂlji t,% .
|

We have thus established

(10.18)

IIitiyill £ (1 + B) lli by%
i=1 R R |

We shall now proceed to establish

(10.19)

||i £, > (1 - ) ui £, .
% R

= Xi"
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Now

qa,
lli oyl =11 ) tx, - Z ty(xy -yl
i=1 i=1

1=1
(10.20)

v

ui £,x, 0 - ui £, (x, - ).
i=1 i=1 '

For 1 £ J £ a wWe have

| £

,jl Ixjf(tlxl + ees + thq?l < ijfll H'il tixill
J=

and so

1=1 o

i=1

A

Htlxl SFO 00 E thq“ i ”xi*” ”xi = yi”
1=1
o]
* -
P T R B R |
i=1
= ﬁllijtixiﬂ.
i=1

So - | i;ti(xi -~y 2 -5 i ﬁ: t,x;1l  and hence
i=1 | 1=1
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||i byl - uiti(xi -yl
i=1 i=1 :

v

”;t-xn-ﬁ“;t.x"
e T e
(10.21) iz Py

- (1 - ©) ||i 6%, 1.
C e

(10.19) now follows from (10.20) and (10.21). Now

Ili t,7;l £ (1 + 05) lli %0l by (10.18)
1=1 | ' e

< (1 * 5)||§E tixiﬂ by hypothesis
: 4=

5
5_(%—%—5)|!ji t,y, 0l by (10.19).
C 1=1 '
1 + 6
So we may take M to be T Q.E.D.

10,18 Lemma. Let X ©be a Banach space and let

{Xn]n=l,2,... be a sequence of elements in X such

that {x_} is a Schauder basis for

n n=1,2,... [xn]n=1,2,--o
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Let {y. }

be a sequence of elements in X such
301 n=1,2,...

0

* . o »*

that E: "Xn_“ Hxn ynH 5 ¢ 1 where {xn_}nzl,z,...
n=1

is the sequence in [x i orthonormal to

B R=1 2604

(x ) 15 . Let A Dbe the set of all sequences of
T , ,.'.

scalars {t_}

<
n’n=1,2,... such that E: tnxn converges

n=1

and let B be the set of all sequences of scalars

(o]
such that 24 téyh converges. Then

{t'])

I
n

n=1’2,ooc
n=1
A = B-
Proof. Let {t .}, , o, €A. Wewill show that
{tn]n=l,2,... € B. Now {tn}n=l,2,... € A means that

the sequence {sn] converges, where

: n=l,2’...
n, n
Sn = tixi’ n = 1,2,-.-' Let SI!]. = Xtiyi, n = l,2,...'
=1l =g
We want to show that the sequence {s!} . converges.
n n—"l,a,'oo

Since X 1s a Banach space, it suffices to show that
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{s!}
{s_}

e e

n=1,2,... is Cauchy. ILet € > 0. Silnce

1

n

converges, 1t 1is Cauchy. Hence there

exlsts a positive integer N such that for p, g > N,
€

p and q integers, we have Hsp - qu {T—75 « et

P, @ be integers such that p, q > N and assume P > .

S:;) - Sé = i ti‘yi = i tixi e i ti(yi - xi)
1=q+l 1=q+1 1=q-+l
and so
sy - syll < ui tyx, 0l + ||i 630y = %)l
- i=q+l i=q+l

= |Isp - sqll + ]li t,(y; - xi)ll
i1=qg-+l

< llsy = s ll + i 1t ] llyy - x40,
' i=q+l1

Now for q +1 £ j £ p Wwe have
= * -
|t3| = Ixjf(tq_l_lxq_l_1 + wvu F tpxp)l s_HxJ_H Hsp qu

and so
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sy - syll < llsy, - sl + ji ey *ll lsy = sqll llyy - =,
1=g+l

o
< lisy = sgll + lisy - Sq“iiluxiﬂi ly, - x,

€
(1 + a) Hsp - qu < (1 + 5) e—r = €

1l

since p, g > N.

©0

So {s!'} is Cauchy and hence t,y, converges.

i=1

1
n n=1,2,...

gs & C B

Now let {t!'} € B. We shall show that

n n=1,2’-o-

n

1 — 1
{tn]n=l,2,... € A, Let w = tix, and
I=1

Tl
— 1 - 1 1
w! = }; tly;, n = 1’2""‘{tn}n=l,2,... € B implies
i=1

that {wﬁ] converges and is therefore Cauchy.

n=1,2’-o.

We want to show that {w_}

n’n=1,2,... converges. Let

1
€, > 0. Since [Wn}nzl,z,... is Cauchy, there exists

a positive integer M such that for k, m > M, k and m
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integers, we have Hwﬁ - wﬁﬂ < el -58). Let k and m

be integers such that k, m > M and assume k > m. Now

o o ! 1
We =Wy = tpFpa Toeee T oA

+.'. +tix

1
Oxl -+ 0x2 S e A Oxm + tm+lxm+l T

and so by (10.19) of Lemma 10.17 we have
___.,.._____l 1
lw, - w ll < =5 lloy; + 0y, + ... + OFp + b1 Vpay T+ ooe + B

e.(1 - ®)
sk Bes I Sl i A
il -l € =g = 5

So {w_}

n’n=1,2,... is a Cauchy sequence and hence it

o
converges, il.e. E: t!x ~ converges. So BC A and
n=1

hence A = B. QL. H.Dy

!
10"19 .I_{..@_mia_'.. Let [:XI']I}]‘]I=1.,2’..° and {xn}n=l,2,--o

be sequences of non-zero elements in a Banach space X

1
such that {xn}n=1,2, se an {xn}n=l:2: ERRS i

Schauder bases for [x_ ] _ and [x']__
*nin=1,2,... nin=1,2,...

respectively. Let U be a bounded projection from X
onto [xn]nzl,e,... such that

(s o]

* i  § _—
|| Ul Hxn_ﬂ lix, - xtll = 8 <1, where (x_*]
=1 ' i

n=1,2,o¢o is
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*
the sequence in [xn]n=l,2,... orthonormal to

{x_} . Then [x!']

n'n=1,2,... n'n=1,2,... is complemented

IR XK.

Proof. Since {x.} _; » is a sequence of
=4 9 e e

non-zero vectors, U is not the zero projection and

o]

* - 1
hence (U]l > 1. So >L “xn.H Hxn an <1 and it
n=1

follows by Lemma 10.18 that if {t_} is a

B =12 404

0
sequence of scalars such that E: tng converges,

n
n=1

|8

then tnxﬂ also converges. Let x € X. Then

n=1

and hence there exists a unique

u(x) e [xn]n=1,2,...

sequence of scalars, namely {Xn*(U(X))]n=l,2 P

FRLACIE

[=+]

such that U(x) = ) x *(U(x))x,. So ) x *(U(x))x,

n=1 n=1 LY
converges. We define a mapping A : X —> X by

o0

A(x) = x - U(x) + §: xn*(U(x))xﬁ, % 6 X,
. . )
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It 1is easy to see that A 1is linear. We want to show

that A 1is bounded. 1In order to establish that A

is bounded, it suffices to show that the linear mapping
I - A is bounded where I 1s the identity mapping on

X. PFPor if B=I - A 1is bounded, then A =I - B 1is

the sum of two bounded linear transformations and is

therefore bounded. Now

It - all = sup (I(T - A)xl}= sup {llx - axll}
Iix||<l - llxll<1
- o, U - G ) ¢ ; X (U(x) )x2) 1]

o0

o) = ), g *(tx))xgll)

i llillllil —1
- 2, Z RCENENEEDT IR

Now for any x € X such that |[lx|l < 1 and for any

positive integer Lk we have
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k
ui L0 Gy = =) < Z I, * (WG| Ty = 3

=1

< lle *I N0l Hxll M, = =)l

T T

k
(10.22) <ol ) ey #ll ly - gl

n=1

ol )l *ll By - %3

<
' n=1
= 06 <1
0 k
since nZ K (Ux)) Gty = 5l = 2am nzl 2, *(00)) (3 = 53
k
-1m ) x MU))(x, - =),

it follows from (10.22) that

(10.23) | Z HOG g - xll €0 <1, 15 Il €3

and hence
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00

Iz - all = swo (1) = *(U(x))(x, - x)I} < 6 < 1.
llx]i<2 o ¥ :

So I - A is bounded and hence so 1s A. Indeed from

the inequality ||[I - All < 1 1t follows that A is

one-one, maps X onto X, and A5 % 48

continuous.1

Now A([Xn]n=1,2,. ) C:[Xn]n~1 o For
let ¥y e [x 1. 4 0 o Then y = U(y) and
‘_09‘1 o0
M) =y - U + ), xH(U()xg Z *(U(y))x, € [x)]
) " & nle,".
=1
- 1
since [ _&s ?%??ed. Indeed A([xn - 2,.’.) = [Xn]n=1,2,...‘
o0
For let x! = z; alx! € [xn]n—l o By Lemma 10,18,

0
E: aﬁxn converges to an element, call 1t y, and
n=1

¥ € [xn]n—l ,2,... Since [Xn]n=1,2,... is closed, and
we have
T

See for example Taylor [40, page 164, Theorem 4.1-D].
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n
A( 1im i ajxy 1im A(Z o:ixi)'

A(y) = =
' s | B S,
n n
= 1im z alA(x,) = 1im Z alx! = x',
i i 2 A I
R s G B T
So A([xn]n=l,2"..? = [xp)p1,2,.. .+ Consider the
mapping P : X —> X defined by P = A UA™L. P is
bounded and linear and P° = A U AL a wa~l-a [IEA—l =
-] . ! o i
AUA ™ =P, It is clear that P(X? L'[xn]n=1,2,...
— i 2 1 !
and indeed P(X? = [Xh]n=l,2,...' For if x' € [xn]n=1,2,,..’

e such that A(y) = x'. Then

let 'y ¢ [Xn]nxl,e,...

P(x') = AT A Nx') =AY (y) = Aly) =x'. S P 18 a

]

bounded projection from X onto [x ¢ e,

1
21 n:l,2,olo

fxt]

et B is complemented in X. Q.E.D.
SR B LT
10.20 Lemma. Let S = (sl, Sps vaa) BEe B

countably infinite set and let X be an infinite

dimensional closed subspace of ﬁl(S). Then X contains
a subspace Y such that Y is closed in Bl(S), Y is
equivalent to 31(8), and Y has a closed complement

in El(S).
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Proof. If f € zl(s) and f(si) =0y, 1 =1,2,...,

we shall occasionally, for simplicity of notation,

write f = (al, Qs s ees). Let N be a positive integer.

Because X 1s infinite dimensional, there exists a

linearly independent set {xl, Xps sees Xyg,q) OF

N+1
N +1 vectors in X. Let x; = (Bi, 5%, vk s

1=1,2,ee4, N+ 1, and consider the system of N linear

homogeneous equations in the N + 1 unknowns
Y1sYps. se0s 7N+1

N+1
5
inﬁn= O’ n = 1,2,..., No
$=1
Since the number of unknowns exceeds the number of

equations, there exists a non-trivial solution

Y1 = %95 Yp = Ops eees Yy = aN+1. of this.system, 1l.e.

N-+1
some Q. £ 0. Let x = E: aixi € X. x # 0 since the
i=1

set [xl, Xgs eoes XN+1} is linearly independent. Let

X = (ﬁl, Bos ees). Then for 1 < i < N we have

=
Bi = %E: aJBi = 0 by the way the ai's were chosen. So
J=1
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we have established for any given positive integer N,
the existence of a non-zero element x € X whose first
N entries (i.e. whose values at the points

S1» 52, N SN) are 0O and indeed we can choose X
such that |lxll = 1.

We shall now define by induction a sequence of

& i u
vectors {yi}i=1,2,.., = {(y7, 5, v3s ...)3121’2,...

in X Yor ¥y pick any element in X whose norm is 1.

o0
Now 1y, € 4,(s) implies that 2 lyi' < @ which
: =

implies that there exists a positive integer N such

0

that z Ivil < 3 = —:7; . Let N, be the smallest
n=N '

such N. We note that N1 > 1 since Hyln = 1. Fopr
Yo pick an element in X whose first N1 entries are O

and such that lly,ll = 1. Let N, be the smallest

o]

positive integer such that }: |y§| < lgu For y3
B

n=N,

pick an element in X whose first N2 entries are O
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and such that ”y3” = 1 and in general for
¥io i=2,3,4%,..., Dpilck an element in X with norm

equal to one and whose first Ni—l entries are O where

N is the smallest positive integer such that

i-1

<0

(10.24) }; ]yi-l| < "I:%xg .
- 2
n=Ni-l

We claim that N for 1 =1,2,...+ For suppose

i

< Bigi

N <N for some such 1. Then

a7 T

N
o0 0

+1
141 14l 1+
lyy ol = ;Z ly, ™1 = ji lo ™1 + }; el

n=1 =1 =Ni+1+1

=0 + }2 |yi+1| (since the first N, entries

of Vi4q @are 0 and we are assuming that

which 1s Impossible since ”Yi+1” = 1. So we have a

strictly increasing sequence of positive integers
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1< Nl < N2 < N3 < oo
If we let N0 = 0, we can write
0 0 o
#q = z Y}_ei: Jo = Z yfei’ FB = Z ygei, and
1zNo+1 1=N1+1 izN2+l
in general,
o0
(10.85) 3, = >: vieqs My ll =1, m=1,2,....
| 1=N_ _+l

Also for each m = 1,2,..., and for each positive integer

k k
k > N+ 1, we have HE; yTeiﬂ_g E: Hyﬁeiﬂ

isz+l i=Nm+l

= Z |y‘£| < Z 7l < z |yI;l <"2%1Ts' by (10.24).
+1 1=N_

vieyl

N =
L>Ts
sy
0]
I_’.—---.

il
’;f.‘:
=
vE

8
]

k
in ) gl

k —> o =
i—Nm+l

we conclude



and so by (10.26)

il
(10.27) Hy =2 | ¢ == 2m+3 R

So z #0, m=1,2,...+ For if z, = 0, then
lyy = Zgll = llypll = 1 by (20.25) and 1> -5 2m+3 .

So the sequence {z_} satisfies the

m m=1’2,|.o
hypothesis of Lemma 10.16 and hence there exists a
projection P with |[|P]l = 1 from 4,(8) onto

[z ] 1,2 , and the sequence [z } is a
’.-.

m-m= M=l 8,00

Schauder basis for et 1z

[Zm]m=1,2,...‘ m }m g e !

be the sequence in [z orthonormal to

{z_}

mm=1,2;,.4.

]*
mm=1,2,...

. We clalm that

(10.28) Iz *H M= 18

Hz I
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In order to establish (10.28) we first note that the

is also a Schauder basils

sequence |
9 llz_ I ;i -
m

for [Zm]mzl,z,...‘ For if =z € [zm]m=l,2,...’ then
o0 [+9]
o
z = E: tyzy = E: ti“Zi“ and if we also have
2 1=1 4
(o]
D = {2
Z = ay Izl s then because 2 m=1,2,... is a
=1k =k
Schauder basis for [z ] , we must conclude that
m m‘—'l,a,...
&y
=ty, 1=1,2,..., that is, a, = tini . So
Iz, |
z
m

satisfies the definition of a Schauder

Iz, |l m=1,2, ...
basis for [zm]m=1,2,...‘ Let W denote the Banach

space A ? where A denotes the Banach

v _ng SRR
TElFr=riatis.

m

space " [z_] and let T Dbe the canonical

m m=l,2,.'-
mapping from W onto A (see (b) after Definition 10.13).

We claim that T is an isometry. For if w = [wi} e W,

i=l,2,-on



2l1

(o]
z

we have |[IT(w)]l = || E: | and

‘ i=1 llzy

n n
z, zZ
uz "y ~lam ) w A= 1w ) w, —L
1|z T PR N Iz, I
= lim i |—| llzyll (by (20.12))
n-—> e llz,
n 0
- L e
a1l =z
nl

while |lwll, = sup (| E; Wy =)

1ance oyt gyl

i1} 00
= sup {EZ |wil] (by (10.12)) = Ej |wil.

A e EOE
So T : W—> A 1is an isometry and hence so is
-1 zm *
T : A —> W. If we let {( ) ) be the

Ilz ” i m=1,2,...
m
Zm

sequence in A* orthonormal to { » then

Iz, I m=1,2,...

we have (see (b) after Definition 10.13)
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(10.29)  I=2y*) <227l _ 5 n-1,2,....

el 2y
From (10.29) we can easily deduce (10.28). We first
note that ( “m )f = HzmHzm*, o= AP aees; Lor 1f

iz, Il :

= 2 ty2y € [zl 0, ,.,» then z *(z) =t while
= g
)tz =) = t_llz_|I.
(nz -] - (uz i (z dal 2 ™l
ll( m)*) = ) llz, llz * = lizgll llz ¥l < 2 by (10.29),

lz Il

and so Hz *H <

e. (10.28).
”z Th :

Now lzpll = llyy, - (3 = Z)ll 2 llyll = iy = zll > 0

(since HymH =1 and "Ym = B Il < by (10.25) and

m+3

(10.27)) and so

(10.30) 2 < = R -
P e [
Now iyl = lly, - 2,0l 2 lly, |l - -é-jn-g =1 @l-%- >0

and so
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2 < =
”yﬁ” = ”Ym = ZmH v s

{10.,31)

S0

(10.32)  llz*ll lly, - 2.0l < 5 = Dieiaibes

2‘“*3 ’
by (10. 28) {18, 30), (10. 31), and (10. 27)
Now it is easily establlshed by inductlon that

1 ¢ I:
L
2m+3 -1 2m+2

(10.33) f =112 s

(For m

(10.33) is clear. Assume (10.33) is true

K+3 k+2

for m=%k, 1i.e. assume 2 S I . Hence

oK oy oK1 gy ok gy ok

gt 1 5 o3 nicn 48 equivalent o (10.33) fer

- 2 and so

=k + 1. Hence (10.33) is true for m = 1,2,...) So
by (10.32) and (10.33) we have

(10.38) izl llyy, = 2ll < 25

00

Since 2: 2m+2 2( 8'1) = , the series E:Hz *H Hy < g H
T a m=1

converges and indeed
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o

(10.35) Y Mzl Ny, - 2l = 6 < 1.
' m=1 ) '

Now as we already showed, the sequence {Zm}m=1,2,---

satisfies the hypothesis of Lemma 10.16 and hence the
inequality (10.13). Hence by Lemma 10.17, the

sequence (y. _} is a Schauder basis for

W=l 2.0.,

[ym]m=1,2, ) ‘
Since ||P|| = 1, we have from (10.35)

o0

(10.36) Il ) llz*l llyy = zll = 6 < 1.
' m=1 '

Hence by Lemma 10,19, Eyh]m—l o is complemented
gy e e

in £l(S). We take Y to be [y ] Clearly

mmzl,g,i...

vy C X since each Yy € X and X 1s closed. The only

thing that remains to be shown is that Y is equivalent

to ﬂl(S). Now by Lemma 10,16, [z ]

is
mm=1,2,...

congruent to zl(s). Hence it suffices to show that Y

is equivalent to [z_] . Now Y is equivalent

m mﬁl,g,...

o ¥ and [z ] = A is equivalent
Odmer.z, ... wln=1,2,...

to A[Z }

(see (b) after Definition 10.13).
Wim=1.2 s : .
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Let {gi]i:l,z,... be a sequence of scalars. By

o
Lemma 10.18, the series E: iizi converges if and
i=1

co
only if the series ;; ﬁiyi converges. Hence the
1=01

underlying sets in the Banach spaces Y
{ym}m=l,2,...

and A[z } are identical. ILet
m m=1,2,.-0

: A =% ¥ be the ldentity
F {zm}m=l,2,... [ym]m=l,2,...

map. F 1s one-one, linear, and onto. If

£ ={£.1 € A , then
n n—l’z,-.‘ {Zm}m=l,2,--‘

@ (&)l = Eup [llji £,v;11}.  Now by
fﬁ (Fpdpet,2,... 0o 33 7

(10.18) of Lemma 10.17, we have

n n
ilE: giyiﬂ < (1 + 6) Il giziﬂ for all positive
izl =i
integers n and hence
n
sup HIi e, vy} < (1 +8) sup () &z,
lgads - 401 e o |
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In other words

ey < (1 + o)l :

m=l,2’.li Zm m=l,2,.'.

So is bounded and hence A{z ) and
i 11 = > SRR

Y[ } are equivalent. So we have
yl’l’l mtl,e,... '

£.(8) = [z 0. ~ A
1207 Mmim=1,2,... [Zm}mzl,E,...

Yuluei,e,,., T Dwhnelz,... T ¥

=~ ¥
A [ m

SO Y L ﬂl(s)’ QIE.D‘

10.21 Lemma. Let S Dbe a countably infinite set.
Let X and W be closed subspaces of 31(8) such that
£,(8) = X + W, XMW = {0}, and let X Dbe infinite
dimensional. Then X is equivalent to ﬁl(S).

Proof. By Lemma 10.20 there exlist a subspace Y

of X such that Y is closed in 21(8) (and hence

closed in X) and a closed subspace Z of ﬂl(S)
such that £,(S) =Y +2, Y12 = {0}, and Y is
equivalent to ﬁl(S). Let Y, = AR & Y, 1s a closed

subspace of X and clearly YmY:L = {0}, X=Y + Y,
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for 1f x e X, then x =y +2, y €%, 2z € Z, (sinece

2,(8) = Y +2) and since Yyl %X, z=x -y e€X and
hence z € 2/ X = Yl‘ Hence by Lemma 10.12, X 1is
equivalent to ﬂl(S). Q.E.D.

We are now ready to establish formally as a theorem

the result we announced at the beginning of this chapter.

10.22 Theorem. A non-zero Banach space P is
separable and projective if and only if P 1is
equivalent to zl(s) for some at most countably infinite

get  S.
Proof. (<=) If P is equivalent to gl(s) where

S 1s at most countably infinite, then P 1is separable
since £l(S) is separable for such S and of course

P is projective since £1(S) o U 28

(=>) If P is projective, then P is equivalent
to a closed subspace X with a closed complement of

some ﬂl(S) (Theorem 2.4). If P is infinite dimensional,

then so is X and clearly S must be an infinite set.
If, in addition, P 1is separable, then by examining the
proof (part (a)) of Theorem 2.4, we see that we can
assume that S.'is countably infinite. (For by Lemma 2.2,

a separable Banach space 1s the image under a bounded
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linear transformation of El(S) for some countably
infinite set S.) By Lemma 10;21, X is equivalent to
El(S). 20 1f P. is separable and projective and
infinite dimensional, P is equivalent to El(S) where
S 1s countably infinite. If P 4is of finite dimension
n > 0, then P is equivalent to ﬂl(Sn) where

S, = £1, 2, wawg Bl Q.E.D.

10.23 Remark. Thus we have determined all the
separable projective Banach spaces. What can we say
about the non-separable ones? Now if S 1s an
uncountably infinite set, BI(S) is an example of a
non-separable projective Banachlspace. The problem of
determining all non-separable projective Banach spaces
reduces to the problem of determining what the
non-separable closed subspaces with closed complements
of El(S), S uncountably infinite, look like. In
general if S 1s an infinite set and X is an infinite
dimensional closed subspace wlth closed complement of
Bl(S), we cannot conclude that X 1s equivalent to
ﬂl(S) for the same S. The countability of S in
Lemmé 10.21 is cruclal. For example, let S be an
uncountable set and let S1 be a countably infinite
subset of S. Let X be the set of all functions in

4,(8) which vanish on S - S;, the complement of S,
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with respect to S. It is easy to see that X 1s a

subspace of zl(s). X 1is closed. For if

£ €X, n=1,2,,.., and nli? . £y =T ¢ 21(8), 1t

follows that f € X, i.e. that f vanishes off Sl'

To see this, let € > O. Then there exists a positive
integer N(¢) such tiat an - fll €€ for n > N(e), 1.e.

}: Ifh(s) - f(s?l = E: [fn(s? - f(s)l

S€ES seS1

b ) leg(e) - (o)

seS-Sl

=), lg(8) - £(s)]

seSl
+ E: it{a)] ¢ e
seS-—S:L
if n > N(e). But this implies that E: |£(s)| = 0,
seS-S1
for if E: |£(s)] = @ > 0, then for ¢ < a, we could

seS-S1

not have an - f|l < € no matter how large we choose N.
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So E: |£(s)| = 0 and this of course implies that
seS-S, '

f(s) =0 if s € S - S;.- So f eX, i.e. X 18 closed.

By the same argument, the subset Y of El(S) consisting

of those functions which vanish on Sl is a closed

linear subspace of El(S) and 1t is easy to see that

£1(S) =X +Y, X(1y={0}. Consider now the space

zl(sl). If g e ﬂl(sl), define Tg ¢ gl(s) to be that

function which vanishes on S = Sl and which agrees with
g on Sl' It is easy to see that the map

T 3 £1(Sl) — El(S? is linear, maps £,(S;) onto X,
and is an isometry, i.e. X and 31(81) are congruent.
But X 1is not equivalent to £l(S) because X is
separable while ﬂl(S) is not. What this example shows

is that the most we can aim for is to try to show that

a closed subspace with closed complement of an 21(8)

for an arbitrary set S 1is equivalent to [ Sl) for

1

some set Sl' Such a result would of course show us

that the only non-zero projective Banach spaces are those

which are equivalent to 31(5) for some non-empty set S.
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CHAPTER XI

Open Questions and Concluding Remarks

In this chapter we shall discuss briefly some
open questions in the area of projective and injective
spaces together with some known results from the
literature and direct the reader to further items in
the literature.

The class In(1l) has been completely characterized
as a result of the ﬁork of Goodner, Nachbin, Kelley,
and Hasumi. Goodner [11] and Nachbin [29] proved the
following theorem:

Theorem Iet X Dbe a real Banach space such that
the closed sphere in X with center at O and radius
equal to one has an extreme point. Then X ¢ In(l) irf
and only if X is congruent to a space C(S) whefe S
is a compact Hausdorff topologilcal space with the
property that the closure of every open set In S is

open.1

Kelley [19] removed the hypothesis that the closed

sphere of radius one and with center at O contains an

extreme point and Hasumi [17] extended the result of

= A topological space with the property that the closure
of every open set is open is often called an extremally
disconnected space.
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Kelley to complex Banach spaces. The analogous problem
of characterizing the classes In(X) for A > 1 is
unsolved. Indeed no example of a ﬁanach space which is
in In(A) for A > 1 and which is not equivalent to a
space in‘ In(1l) is known. Some partial results on the
classes In(l); A > 1 have been obtained by Amir [3]
who proved that (1) if c¢(8) (S compact Hausdorff) is a
member of the clasé In(%); then every convergenﬁ sequence
in S is eventually consﬁant; (2) a €¢(S) space is a
member of the class In(A), with '1 <A <'2, if and only
1€ It 18 & mesbey of the class In(1); and (3) 41f ©€(S) e Im(nr),
then S contains a maximal open and.dense exfremally | |
disconnected subset. (See also Isbell and Semadeni [18].)
We mentioned in the Introduction that an early exampie
of a2 non-injective space was provided by Fichtenholz and
Kantoroviteh [9]. They proved that there does not exist
a bounded projection from £ _(S) onto C(S) where S
is the closed interval [O, l],.i.e. C([O,.l]) is not
in,jective.l Other examples of non=-injective sﬁaces were

provided by Murray [28] who established the existence

L 1r we accept the result of Amir that if a C(S) space

is a member of In(A), then every convergent sequence
in S is eventually constant, then we obtain a quick
proof that C([O, l?) is not injective.
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of closed subspaces of ﬂp(S), S countably infinite,

1 < p# 2, without closed coﬁplements. Another example
was provided by Sobezyk [36] who proved that there does
not exist a bounded projection from ﬂm(S) onto cO(S),
S countably infinite.l Some recent fesuits on the I
non-existence of bounded projections can be found in
Thorp [41] and Arterburn and Whitley [4].

Definitions of the type found in Chapter V can
probably be formed indefinitely although whether one can
show that they are equivalent (if indeed they are) to the
original definitions of injectivity and projectivity is
another matter. Indeed all sorts of variations are
possible. For example we can consider those Banach
spaces which have in addition a lattice structure (see
Dunford and Schwartz [8, page 394]) and consider bounded
linear transformatlons which presefve one or both of the
lattice operations V¥ and A or the partial order
relation (or various combinations of these) and define

for example the notion of a projective Banach lattilce

+ cO(S), S countably infinite, has the property (proved

by Sobezyk [36, 38]) that 1f X is a separable Banach
space containing cb(S) as a closed subspace, there

exists a bounded projection T from X onto co(S)
with [Tl < 2. (See also McWilliams [24].) :
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and try to characterize the various such spaces that we
define. Along the same lines and perhaps more interesting
is the following type of problem: Pick a particular
category of Banach spaces (for example the ¢C(S) spaces
or the £p(S) spaces) and decide what categofy of Banach
spaces (and ﬁaps) we ﬁust restrict the remaining spaces
in the definitioﬁ of injective (or projective) in order
that the members of our chosen category will furn out
to be injective (projective). Even better still is the
problem of what categories fo choose so that our
originally chosen category turns out to consist of all
the injectives (projectives).

Theorem 7.13 was annouhced without proof and without
the hypothesis that X 1is a dual space in Lindenstrauss [21].
A proof of Lindenstrauss' theorem appears in Lindenstrauss [22]
and 1s quite involved. It seems plausible that there
should exist an elementary proof of Lindenstrauss' theorem,
elementary in the sense that i1t involves purely geometric
arguments about the set of all closed spheres in X.
It seems intuitively very clear that the (l+¢)-intersection
property (for every € > 0) should imply the lmintersection
property. Of course we cénnot trust our intuition when
it comes to infinite dimensional spaces (or even spaces
of dimension greater than 3), but we do know that the

(1+€) -intersection property (for every € > 0) does indeed
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imply the l-intersection property (by the theorem of
Lindenstrauss) and so it seems worth trylng to seek an
elementary préof of Lindenstrauss' theorem.

Chapter VII certainly made clear that the requirement
of injectivity on a Banach space has a strong influence
on the geometry of the space. It seems worthwhile to
investigate whether we can say anything about the
geometrical propertles of a projective Banach space and
whether there exists a geometrical characterization of
certaln classes of projective Banach spaces.

In Chapter IX we defined the notion of a x-projective
Banach space, but didn't make any statement as to whether
there exist any Banach spaces (other than the projective
ones) which are *-projective. That there do exist
*—préjective spaées which are not projective follows
from Grothendieck [13, Proposition 1]. More precisely,
Grothendieck 1s concerned with what we have called the
class Pr*(1l) and he proves (among other things) that a
real Banach épace X € Pe#(1) 1f and only if the dual
space of X is a member of in(l)a Now we know from our
work in Chapter IV, that real Li[O, m] is not projective.
Now the dual space of Ll[O, T] 1is congruent to L_[0, 7],

the space of real valued bounded measurable functionsl on

. More precisely, equivalence classes of such functions.
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[0, 7], and L_[O, 7] € In(1l) (see Nachbin [29]) and
hence so is the dual space of Ll[o, Tls SO .

Ll[O, m] € Pr*(1). That real Ll[O, m] € Pr*(1) also
follows from Theérem 1 of Grothendieck [13]._ Wé can
similarly define the notion of a x-injective space and

ask about the nature of its dual épace and whether there
exist x-injective spaces which are not injective., It is
known that there exist injective Banach spaces which are

not congruent to any dual space (see Isbell and Semadeni [18]
and the references there). The question arises: Of those
injective spaces which afe duals, which are duals of a
projective (*-projective) space? Do analogues of the
theorems in Chapters II énd III hold for x-projective

spaces and x-injective spaces? ‘

The préblem of determining all the projective Banach
spaces 1s open as we pointed out in the discussion at the
end of Chapter X. We might try to abstract as much as
possible from the lemmas leading up to the theorem of
Pelczynskl and perhaps try to define a generalized
type (uncountable) of Schauder basis and try to show
that closed subspéces (with closed complements) of
ﬁl(S), S uncountably infinite, possessing such a
genefalized type of Schauder basis are equilvalent to

£l(Sl) for some set S,. This type of approach might
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be a first step in attacking the problem of obtalning
the non-separable projective Banach spaces. Of course
the validity of the converse of Theorem 4.5 is worth
investigating, i.e. whether a Banach space with the
property that weak and strong convergence of sequences
coincide must be projective. It would be very helpful
if we had an example of a Banach space which is not
equivalent to a space 31(8) and which has the property
that weak and strong converéence of sequences coinclde.
I there are no such spaces, then we've determined all
projective Banach spaces.

There seems to be no end to the questions that one
can ralse 1in this field which are worth investigating.
For example, it is clear that 1f a closed subspace X
of an injective Banach space Y 1s8 injective, then X
is complemented in Y. Can we replace the word "injective"
by the word "projective" and draw the same conclusion?
We trust that the references in the Bibliography will

raise even more questions.
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