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Abstrect

A Calculation of the Energy Bands of the
Graphite Crystal by means of the Tight-
Binding Method

\uthors: Fernando José Corbatd

Inezis Title:

oubmitted to the Department of rhysics on August 20.
1056, in partial fulfillment of the requirements for the
degree of Doctor of Fhilosophy.

The graphite crystal 1s aoproximated by a two-dlmen-
sional hexagonal lattice of carbon atoms. Cne-electron
wave functions of epprooriate translational symaetry are
forned by maklng Bloch waves from the ls, 2s, 2px, 227,
and 2pz Hartree-Fock atomic orbitals of carbon. The crys-
tal potential 1s taken to be a superposition of sphericall,
symmetric atomic potentials formed from the effective nu-
clear charge function of atomic carbon. From the usual
variational principle, the energy bands (energy values as
a function of the Bloch wave vector) are given by the so-
lution of an 8 by 8 secular equation formed from the a
states which are syametric in the plane of the graphlte
sneet and a 2 by 2 secular equatlon formed from the =
states which are entisymmetric in the plane of the graphite
sheet. The secular equation matrix elements, besides belng
dependent on the wave vector, requlre one-electron two-
end three-center integrals formed from the atomic orbitals
21d the atomic potential. The two-center integrals are
evaluated up to the ninth neighbor distances and tne three-
center integrals are evaluated up to the fourth neighbor
distances. The secular equations are solved for 25 repre-
sentative wave vectors.

The resultant one-electron energy bands show¢bands
which cross over parts of the TW bands. However, there ig
an energy gap in the ¢ bands which encloses the Fermi level
In the 1 bands. Thus there 1s support for the usual ap-
proximation of only considering the ® states ln calcula-
tions of the conduction properties of three-dimensional
graphite. In addition the width of the valence bands 1s
found to be in good agreement with the experimental measure-
nent bv Chelkin.

The energy bands are also examined with respect to
sinplifying approximations. The incluslon of three-center
integrals and of the ls Bloch waves is found to be necessary
The 7 bands are stable when higher than third neighbor dis-
tance two-center integrals are neglected and the 0° bands
are ecsentlally stable when higher then fifth neighbor dis-
tance two-center integrals are neglected.



Comparison 1s made with a graphlte energy band calcu-
lation by Lomer. It is concluded that hls energy bands,
which differ from the present result, can only be consia-
ered qualitatively since an insufficient number of higher
nelghbor distance integrals were used.

Thesls Bupervisor: John C Slater

Title: Institute Professor; Harry B. Higgins. Professor
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Chapter ]

Introduction

The present work describes a calculation of the energy

bands of a simplified graphite crystal by means of the tight

binding method. The structure of the real graphite crystal

is that of carbon atoms hexagonally arranged in layers,

(nearest-neighbor distance: 1.42 A° ) which are stacked with

e falrly large interlayer distance (%.3%5 £°) It is gerer-

ally assumed that the interlayer binding energy of graphite

ls much weaker than the intralayer binding energy, a result

supported by the ease of formation of stacking faults in

observed crystals. This qualitative behavior 1s associated

with tightly bound 1lntralayer electronic states and loosely

bound interlayer electronic states. One avproach to describ-

ing these states is to make up approx.mate electronic crystal

wave functions as linear combinations of atomic orbitals.

In analogy to the general theory of molecular binding

in organic molecules, the crystal wave functions (called T

states) whicn are made up of the 2p atomic orbitals with

nodal nlanes coincident with the graphite hexagonal sheets

are then assigned the major share of the interlayer binding.

Correspondingly, the crystal wave functions called ¢ states)

made up of the remelining two 2p orbitals and the ls and 2s

orbitals are sald to glve rise to major part of the intra-

layer binding of graphite. This description 1s the essence

of the well-known tight-binding method or Bloch method?



when 1° is further assumed that the crystal electronic states

can be considered as 1lndejgendently occunied such that the

crystal electronic eigenfunctions are one-electron funciicns

governed by an one-electron effective Hamiltonian onerator.

The first tight-binding calculation of trhres-dimensional

graphite energy bands was made by wallece” in 147. Ee

assuned that the energies of tne ¢ and ww states were suffici-

ently separated to allow neglect of the o states. Tris

essumotion, however, hzd only ea cualitative Justification

but has been tze basis of 10st of the subseguent calculations

of gr Mic ~ band ~ = + : recent work of Jornston?
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emoliriczl values and tre stzkility of the firzl solution witk



respect to the various posslble mszthematical approximations

has been established.



Chapter 2

Theory and Formulation

Section at! Energy Bands and the Tight-Binding Method

Tne theory of the tight-binding method was first Tocrmo

leted by Sloch', le comprehensively described in the text

by Seitz”, and has been recently reexamined by Slater and

Rosters. In this section, the essential theory of the

method given in these references wlll be briefly reviewed

in the interest of completeness.

The basi: princi 1.» of the tight-binding method 1s to

approach the problem ¢” . crystal by means of a one-

electron approximation wherein the one-electron crystal

wave functlons are taken to be linear combinations of

atomic orbitals (usually abbreviated: AO's) denoted by yr

These linear combinations of atomic orbitals are restricted

however, by virtue of the translational symmetry of a crys-

tal. In particular, such linear combinations must also be

elgenfuncilons of &amp; translation operator T, representing a
ACTIN SH takes the crystal lattice into itself.

This is because the translation operator commutes with the

1sual one-electron EHamlltonlan operator

Niry= -Lo*- Vix) (2-1)

where Un is an effective crystal potential function which

has the same symmetry as the crystal lattice. (Unless other-

wise stated, atomic units are used where the unit of length

is the first Bohr radius and the unit of energy 1s two

Rydbergzs; the sign of the potentlal term in eq. 2-1 1s assumed



for convenlence.) To consider in an orderly fachion a

crystal which is infinite in size, the customary periodic

boundary conditions are used; the Infinlte crystal 1s

taken to be made up of an infinite number of 1ldentical N-

anit cell sub-crystals. The formellsm of letting N ap-

proach infinity then systematically ylelds the properties

of the infinite crystal. Under these conditions, the

soprooriate linear combinations, called Bloch waves, are

. ib Re .

Vdm-L2&gt;e Vary
Ra

(2-2)

where the sum 1s over the lattice vectors to each of the N

unit cells of the crystal lattice and the elgenvalue of the
(kK

translation operator T is e, ¢

An immedizte but important result is that matrix ele-

ments taken between Bloch waves oT different wave vectors

are zero for ooerators such as the one-electron Hamiltonian

which ere invariant under the translations T whlch take the

crystal into itself. This follows quickly from the fact

that the matrix element integral is taken over all space,

nnd hence the value of the integral is invariant to any

translation of the integrand coordinates and in particular

“0 those transle’jons T. Thus the equation
* o :

Oy; = [Thm 0m Tide
w- " 5 T ry (RR). Ry

 FEERITOM THER: - © 0, (2-3)



 -— /21llows one to conclude thet 0; ls zero unless E-7.
wsdl

Consequently, Just as the wave vector k cheracterizec

the translational elgenvalues, it can be used to charact-

erize the Haniltonlan elgenvelues. For this nurmose 1t ic[4] - -

convenlent to define a reciprocal lattice. Thus if tre
die

vectors K, are linear combinations with integral coef-
tt

ficlents of the primitive translation vectors a4; which

define the crystal lattice unit cell, then the equations

2; 8; = §; (2-4)

where + and

dimensions, define the . which ar

tions of the reciprocal lat:

te seen, the reciprocal lattic

&gt; on es meny vel A rere gre crystal

+1 mnriml fedLv e t ransl2

;ounic 11. As will soon

 vectors are the natural
alls

oe.els witn which to exoress the wave vector A



In order to explore further the usefulness of the re-

clprocal lattice, the following definitions are made:

x, = &gt; Ru a; S i wlegral

Ky = ar &gt; Kul, Ky wlanal

% = ar &gt; kh . ad volina

(2-51)

(2-5¢)

Then 1t 1s clear that for any wave vector % sy One may choose

wie &gt; IY "i ov
a Kj such that f= 04 where |k’| 1s less than any of the non-

zero |K,| . However, because of the relation

ke (RK)RK, BR
e = e = C

which resulis from the definition of the reclproczl lattice

vectors I » 1t 1s clear that the Bloch waves for 2 end 7’

are ldentical so that the two values of the wave vector can

be used interchangeably. Thus the elgenvalues and eigenfunc-

tions of a spatial ooerator OR)are invariant in the recioro-
mili

cal lattice under transiations Kg.

It is just this translational proverty in the reclprocal

lattice which allows one to define volvhedral surfaces in the

reciprocal lattice which form concentric zones about Kg =0

such that each zone contains a set of wave vectors assoclated

ith one set of the wave vector dependent eigenvalues of a

spatial operator. These zones are called Brillouin zones.

When one restricts the wave vectors to values lying wlthlin the

first zone about K,=0 , the convention is to call this set
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of vectors the "reduced" wave vectors and all subsequent

references in this work will be to these reduced vectors.

This is 1n contrast to the other convention often used with

plane wave zpproximations to the elgenfunctions where as a

function of the wave vector the lowest eigenvalues are

essoclated with the first Brillouin zone, the next highest

eigenvalues with the second Brilloin zone, etc. A partlicu-

larly simple way of obtaining the polyhedral surface enclosing

the first Brillouin zone is to construct verpendicularly bi-

secting planes through the lines between Kp =o and all

the other K, points in the reciprocal lattice; the resul-

tant innermost envelope about K,=o0 then encloses the first

Brillouin zone.

Having established the form of the aoproximate one-

electron eigenfunctions, the usual varlational procedure can

be applied. Thus the best crystal elgenfunctions are taken

as &amp; linear combination of M Bloch waves with the same wave

vector
M

$ (k= 2. Cie (® ¥. (%,%) (2-7)

where the coefficients are determined by minimizing the

stationary exvectatlion value of the Hamiltonian operator

(2-8)Ye

n on _ ig, &amp;,») NEE, (&amp;,5)dv
Jy == ha

§ EER) BER) dv
—

with respect to the coefficlents C,q. Using the Hermitlan

sroperty of the Hamlltonlan, the variation leads to the

secular equation



M M

ZH; £ Cells = E,(B 2° 4. tk) G, (&gt;st gst (2-9)

will

Wij(F)= Iz (k,%) M3) Zin dy

4 (£) = [Fes Ek mdr
which for a fixed value of the wave vector has IM solutions

J = 1, 2,....M. Considered as continuous functions of

the wave vector K, these Hamlltonlan eigenvalues are celled

snergy bands. The secular equation 2-G, which 1s more

general than the usual type because of the nonorthogonality

of the Bloch waves, can be solved by matrix techniques which

are described in Appendix B.

« further proverty of the energy bands obtained by

the solution cf the secular equation results from additional

non-transiational symmetry of the Haalltonian operatcr. In

particular, the atomic orbitals used to form the various

Bloch waves can be grouped into sets of basis functions which

transform into each other under the application of the crystal

symmetry operators. It will now be shown that when the Bloch

waves used in the variational procedure are made up of all

the atomic orbitals in a glven set of basls functions, the

eigenvalues resulting from the variational procedure will be

invariant under the application of the crystal symmetry

operatorstothewave vector. Thus 1f the gymmetry operators

are designated by r , the Bloch waves of wave vector | &amp; are



LO

S es RnUy A = i eC L (M=-Ru)¥ (ok, %) TZ (2-10)

 ik Ng
 SS " 2

ww &lt;- eg, YW! (R-Ra)
RTE

re i nN -} ol wdwat re: (P=-NrRo
After relabeling the sum one obtalns

a RR “uh a (no

ALES DA 2 oY (FR -K.) 2 7k rd) 2 11)
where the YY are the unitary matrix elements de ~1bing the

transformation eff2cted on the atomic orbital by the symmetry

sperator. Now if O®) is an operator having the same symmelry

as the Hamiltonian operator or as the unit operator, then

because of the fact that

ow)=OC%) [2u12)

the matrix elements of ©O become

Oi (1) = [FTE Or) BPE, 3) ar (2-13)

¥

[le Qu) I
The last expression 1: recognized however as the transforma-

tion which describes a change of the variational basis states

ty means of the unltary matrix Ne. Thus the elgenvalues of

the secular equation 2-9 will be invariant with respect

to the crystal symmetry operators applied to the wave vector

In a two-dimensional graphite crystal thls allows one to

only consider 1/12 of the Tirst Brillouin zone.
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Chapter 2

Section b: Application to a Graphite Sheet

In the preceding section, the general theory of the tight.

binding method has been outlined. The present section will

treat the expllclt case of the graphite crystal in terms of

the preceding formulation. The graphite crystal structure

1s well-known and consists of hexagonal layers of closely

packed carbon atoms (nearest-neighbor distance: 1.42 4°

which are stacked with a fairly large interplane distance of

3, % 0 The stacking arrangement of the layers cen be of

two forms designated as ABAB... or ABCAEC... . Experimental

evidence indicates that the most perrect crystals are of the

AZAB... form whereas crystals which are grown from carbon

blacks usually are mixtures whicn approach the ABAB... form

28 the crystal size increases?. Thus 1t seems clear from this

evidence and the large interplane distance that the interlayer

binding 1s not strong. Cne would hope then that a two-dimen-

sional model for graphite would have considerable physical

significance, especlally for those one-electron wave functions

which describe the lntraplane binding. The usual designation

is to call the latter ¢ states, corresponding to the Eloch

waves constructed out of the 1s, 2s, and two 2p atomic orbltais

which are symmetric on reflection through the hexagonal plane.

To the same approximate separation of effects, the Bloch waves

constructed out of the 2p atomic orbitals which are anti-

symmetric on reflection through the hexagonal plane are called

IT states and are associated with the interplane binding. The
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oo and TW deslgnations are only rigorous symmetry designations

however in the single-plane approximation to graohite since

in a true three-dimensional graphite crystal the reflection

symnetries no longer hold. The present calculation is based

on the two-dimensional single-plane apovroximation to graphite

since the computational difficulties of the three-dimencional

crystal are considerably greater. Thus, falrly good signiif-

cance can be attached to the results arising from the a

states and only approximate validity can be given to the

results of the Ww states. For comparison the various

nelghbor distances are given in table 2-1 and figure 2-1

Table 2-1
[Lattice Nelghbor Distancesof Two-Dimensional Graphite

A-%| chbn» "tetevnn im Atomic Units

0

ail

2.6845206

4,64G72€1

5.3690412

T.1025739

5.0535017

9.2994521

9.6791766

10. 7380623

11.70155S

In fig. 2-2 is shown a diagram of two-dimensional graphite

where the vectors G. and a, are the primitive translation

vectors of tre lattice and deflne the lozenze-shaened unit cell
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3 5

”

i

NE/GHBOR-DISTANCE IN ATomiC UNITS

Fig. 2-1

Neighbors of Two-Dimensional Graphite

‘Dotted lines give distances of comparative number of

additional neighbors in three-dimensional graphite.)



Fig. 2-

I'wo-Dimensional Graphite Space Lattice Unit Cell

Fig. 2-3
I'wo-Dimensional Graphite Reciprocal Lattice Unit Cell
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whlch 1lncludes two carbon atom lattice sites. The auxiliary
i | th

vector + = 3 (-a, +3.) 1s Introduced for later convenience.

The corresponding two-dimensional reciprocal lattice is

shown in fig. 2-3, where the vectors I. and b, are the

primitive translations of the reciprocal lattice. The hexa-

gon outlines the first Brillouin zone and tne shaded triangle

represents thet smallest area of the zone from whicn the re-

maining zone energy elgenvelues may be determined by the

symmetry of the Brililouln zone.

The fact that there are two carbon atoms per unit cell

of the space lattice requires that tre definition of thre

Bloch waves of tne oreceding section be. extended. The obvious

PPOGEIUTE is to construct Bloch waves oul of atomic orbitals

Located on each of the two sites in the c~raoshlii. unit cell.

Thus each carbon atonic arbitel used wii. of

Bioch waves. It 1: of no particular advantage to attempnt

to use bonding an. anti-bonding pairs of atomic orbitals to

sonstruct each Bloch wave since thls concept of linear com-

binations of the atomic orbitals, based on maximum or minimum

electronic charge overlap, continually changes as the wave

vector is allowed to vary through the Brillouin zone.

Furthermore, it is clear that the variational secular ecua-

tion procedure used will in the end arrive at the same

result.

The precent calculation 1s based on the computation of

the energy bands arising from the Bloch waves formed fron

the real 1s, 2s, and 2p atomic orbitals of the free carbon

atom. This gives rise to eight o states and two NT states
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yielding an 8 by 3 and a 2 by 2 secular equation, respectively

for each value of the wave vector. Although these secular

equations are capable of further factorization along the

symmetry points and lines of the Brillouin zone, either by

intuition or by groun theoretical methods, no attemnt was

nade to incorporate these factorizations intn the computation

because of tne ccmputer prograaning convenlencr in heaving one

form of computation for all values of the wave vector.
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Chapter 2

Section c¢: Matrix Klement Formuletion

Having seen that the solution of the energy band problem

stems from a secular equation, tre next step is to examine

the matrix elements formed from the basis states of Bloch

functions. For numerical solutions, it is a great simoli-

fication to have real matrix elements, whereas the orevious

Bloch functions will, in general, yield complex elements.

However, it is clear that any unitary tra-sformation can be

nade on the original basis set of functions without alter-

ing the final solution. Consequently a judicious cholce of

unitary trensformations are epplled to nalrs of the Bloch

functions to yleld

% 0-45) = Tor
= a (i) “i k.Ra “ike, - ry
 (kp) ® (3- t= RaT y= By Ze | Pw r-5-R

foL14)

oF &gt; Y, Pi AR)
Nnere

¥° Ap oy —1|

fi= ¥; (-%,-y 2)
LACED!

 Ve(X,4,-2)
wv (0%, 9,1)

£

L =z plwm= 1S,25,2Pp%x, 2pY,2p%
- - —t

t = 1 (-e +a.)
Next computing the matr

one finds

- element of the Hazxlltcnian ovnerztor,
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¥*Kigsitg OF J Enid, (oer
4A =) Sa(¢) &lt;&lt; ik (RK) * a— J _ { |Y-%-R) NEY (-5-R,) dr

Kn \¢

+14 fhpi pe Yiaey-R)We) © (54% Rd

= _j% -K,Aeiv A) ¥(R.)3 -a te,fe .“1

Y(RX +Hz) ¥ 3-4 -X,): Hhec fi Pi+g
(2-15)

It 1.

This 1s done by renlacing in each integral the variable x

by the varlable XeR, . The vector R-% then can be relabeled

7. and the sum over x, changed to an equlvalent one over Ron

Then since Uwe) = Ui) 5 every one of the N terms in the cum

over 3 is the same, so that performing the sum Just cancels

the already present factor of WN . As a further step the

signs of the arguments of ¥ and ¥ in the second and fourth

integrals are reversed which gives new factors of Pipi

, first observed that the sum over X, can be removed.

Then because of the fact that
oa on oo oo 0 od

| | (fx ~y,~2) dxdydz -[ [ [Frog n) drdy dz (2-16)
— ol - 8D Jes ah ee Vics

and NR) =U) , the sign of -2 can be reversed in the

arguments of the second and fourth integrals. The result of

the above steps 1s
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44h -¢%) 5.2G (B= Re : “| ¥* =, = -Rpg ®= 200 { 2.€ TIGER)HDGr
 mn

. “y net [vie IRAK FES BN) on dy
, iE(lat?) ¥ a=1h pC ifVia +G-R) NEVE (5-7 dr

’ iE But) %. ., = i phiRCFi fe (EY+R) AR) YoR-Q)d
Fa | (2-17)

bo

Now hecause the sum over Kom ls over the entire periodic lettice.
— dy

Kom can be replaced by —Kae in the s=zcond and fourth sums of
ey

2g. 2-17,s0 that if we let a new vector Pr be elther Ma
&gt; oa

or K,+t the exoression can be written in the final form

o St 7. ’/ / 2.7Hi (B)= 2 %iiiy {548 4%) Cos (# ~)
Me

A1-56k tw) ge?4H in G0} i
vhere

Jig) = | i 4 f=Rmthi, 4 fre Rutt
Hoo (0 = [WF Ne Bor-3pr (2-18)

and S is the ordinary Kronecker delta function.

[+ 153 obvious that the metrix elements of AR) are real

when the basis states given by the set 2-14 are used. However

this 1s not the only set that will do the task. By examining

the derivation of eg. 2-18 it can be seen that the only

essential feature utilized was the centrosymmetric orooperty,
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Hr) AUR), so that in general one would follow the pattern

of the above derivation using undetermined coefficients for

the original unitary transformation applied to the Bloch

functions and then by inspection determine the anpronriate

basis functions; if this were not possible by inspection,

recourse to group-theoretical methods would be required.

In addition, the derivation of the formule for the

overlap matrix elements follows precisely the same form as

for the Hamiltonlen matrix elements where Sir (Br) only

differs from Hei) in that ¥#) 1s revlaced by unity in the

integral. This matrix element form allows relatively streizhtu

forward computer coding for automatic generation of the

matrix elements as a functionof2

final step in the analysis of the matrix elements

 integral values Hie and Si 0 will now be taken one

sten further so as to minimize the number of basic integral

values required. In oarticular, the indices 1 and 1’ refer

A 3

to orbitals which are quantized with respect to tre fixed

coordinates of the lattice whereas the more elementary

description 1s to quantize the orbitals with resvect to the
— - 0 s 1.2

two-center axis of Pp. - Thus if the two-dimensional gravphnite

sheet is taken to lie in the x-y plane, the 1s, 2s, and 2pz
oblate, will Be baveriant wwdon TieMunn olione wlorras the 2px aud 2py
orbitals willl form new lirear comblnations. Tis new cuenti-

zation of the orbitals about the axis of Pn. 1s labeled by «

T end T® as sown in fig. 2-4. The corresovonding integrals
oun

involving these new orbitals are given without a bar as Hii (Pr)

and NWR The transformation which is the same for the H

yr S integrals is given algebraically as
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(mr coming out of paper)

center of ¥ and Y
 —_—

center of ¥. and Y
—— ———— ——yr

Tm coming out of paper)

Fig. 2-4
Geometry of requantization from Mp) to M; (63) integrals, where the
arrows at the centers give minus-to-plus directions of the 2p orbitals

and the i, i' indices refer to 1s, 2s, 2px, 2py, 2pz orbitals and the j, j'
indices refer to lso, 2sg¢; 2po, 2pw, 2pm orbitals.
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Mi (I) - 22 Ui; Urs Mi (0)
1 3

where using the angles designated in fig. Dal the

(2-19)

transfor-

nation metrices ar-

U;; =

Ur=3

1s

I]
pT
oO

oO ®
- Coa On = Aum by

~ co (On) - dim (O4-T4)

pn
 D&gt;

2pm
o\
O

O#

20
|

2p: \C

i} O

 Oo O  oO

ape pn
@ ®

as © Oo O
2p%1 O oO Con Oa BnOa
#2 Oo Coa(B%) Am(O%) ©2:\O O o o | /

2p%
o\

Now in the computer program used to generate the Hiv (7 ana

Sv (PW from the Hiv (fa) and Su (fn) the following short-cuts
were used to erfect the above transformation. First because

of the basic factorizationofthesecular ecuation into

the so-called ¢ states and vr states and the equlveient trane-

formation oroperties of ls, 2s. ean. cz states under rotation

in the graphite sheet, the secular ecuatlions arising from the

2pz Bloch Waves were solve

input data to mascuerade a. 2s input data. Iloreover by

plcking special values cf &amp;; and é- for the non-directlonal

ls and 2s functions it was possible to effect the transforme-

“ion 1n a uniform way by means of tne formula
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Mitr)==femt0n-00)eo08)Mog,ae
4 cos (02-0.) den (02-61) Mg mtn (P

+ Ma (65-9) Un (04-61) Mugs, wie (Fo)

where

br Aon (85-9) Coy (02-6) Mata, win (pa) } (2-20)

Gi =o, §¢=2px
i=, f i= 2py
0= Our TT, i v=15,25,2p2

9; zo |, { (’= 2px
Oir=T4 yi=2py
B= GG, y (‘&gt; 1s,25,2p%

Iv should be cleer that the recuantizatlion transforma-

tion matrices would have become more compiicated if higher

quantum number orbitals had been used. In fact,ihemacnlnery

for systematically handling these rctatlons 1s given in

Chepter 5 where the genersel rotation of svherical harmonics

ls Gdlscuscsed. However, this machinery was only develooed

towards the conclusionofthiswork so thet in retrosnect it

1s felt that rather than the above short cuts the more

elaborate yet systematlc and general matrix tech:iigues should

nave been used.

The gpecification of input data for the secular ecua-

tions is thus resolved to the basic Hi‘GdandSi@)integrals.

The Hamiltonian integrals are next separated into kinetic

and potential energy terms. Thus

Hie Ga) = Tor (pr) — Viv (BO (2-41)



A ¥ = &gt; _ 2 -_3where | (ps)  [% (h- %-ml: 2V ] ¥ (X~%4) dv

Vit (f2) = S®-Y%- But fe) = JEG 2 - a | be tr
and the slgn conventlon of Vier is teken for convenience.

Fo discuss further the computation of these intezrsl

values, 1t is useful to replace the vector fr by the co-

ordinate indices Ay . The index \ will label the nelzhbor

jistance from the lattice point R=% which is Aur= ooo

Tne index labels the sequence of lattice points atM !

distance A which occur upon counter-clockwlse rotation in

the flrst 120°- sector from the x-axis. Finally tre index

labels the 120° - sector. These coordinates are illustrated

in fig. 2-5. It is first observed that the overian and

Kinetic energy integrals depend only on distance. Thus

Sir (Ap») = Sir (400)
Tir (Av) = Ti’ (A 00)

I'he computation of the latter integrals 1s described in

(2-22)
(2-23)

Chapter 4 so that there only remains to discuss tre more

complicated potential integrals.

Now beceuse of the trigonal symmetry of thre

lattice, 1t can be 1lmmediately observed that

Vie Our) = V. (Apo)

crapvhite

(2-24)
Ine remaining symmetry properties are not so obvious but are

obtained most easily by insoectlion of figs. L4-5 It is

found that up to A=9 , the following relations hold when

Vier (M10) exists:
/o(\10)= Vor (Moo) fev ei’ of Ba form oo, mE, TT

with the exception of the \=5 case.
7

(2-25)
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OO

§eco0

ora,

= 900

Xoo

-Gi2

Fig. 2-5
Two-dimensional graphite neighbors in terms of the indices Av,
where A is the neighbor distance index, Mis the triad index, and
V/ is the sector index.
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and Vir (Ao) = = Voir (Moo) fon Lit 7 Ue fom oT, nT (2-26)

vith the speclal case of

Vier(Aoo) =o, for The it” of Ha form or, 10"
amd Az 0,1,3,5,% (2-27)

Thus if the m=ztirix elements of the secular equation are to

be constructed from the \=o tc © components, the Viv integrals

arising from the following neighbor sltes must be specliileaq.

Mp¥=000, 100, 200, 300, 400, 500, 510, 600, 70v, HOO, SOO
Having minimized the number of basic Vi integrals it

remalns to decompose these into the final three-center

interrals. Thus

Vir (0) = Fir (Aol Xp)
Av’ (2-28)

rnhere

eZ (R=) Ue (7-7...) dv., &gt; id t [-2- =Fo lpelp)« [Hf Em
It is the Rv which are in generel called three-center integrals

and whose computation 1s discussed in Chapter 5. Finally we

note that the two-center approximation, (L.e. neglect of three-

center potential integrals), in thls foramulatlon, consists of

naking the assumption that

Yi Ope | Np") = 0
for M4 Novo, Win and vo.
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Chnaote ' »

ctolice and Fitting oJ Atomic Orbitals and Effective Potential

ire atomlc orbltals used to wnzke un tlie one-electron

3loch waves were the Eartree-Fock ztomic orbitals of “he

sround state neutral carbon 27 configuration calculated Ly

Jucys®. The 1s end 2n orbitals were each fitted by &amp; linmeer

comblnatlion of three corresponding ernalytic Slater atomic

orbitals, and the noded 2s orbital was fitted by a sua of

three ls and threr 2s Slater atoalc orbltals. Tre fits were

of high accuracy and were mede for esse in the calculation

of the many integrals. In the sence that the enerszy band

calculation made wan one ~ectron apnroximation, 1t was

necessary to chooos aii effective potentlel for the crystal

The crystel poteaticl was taken t- be a sunerncsition of

spherically symmetrier atoml:~ notens

tial in turn was assumed te

arising from tne effective nuclear cher

centered vn t'.. atomic nucleus

3.

ilale "+e atomic noten-

nn for thre

1C .
eman  - anc it. -Aaynfs 1 hes been celcu.

wa. D"Gla

i Coven or SE Louler configu-

reticii o ™ carbon choos. . We :  pg 3
|
» WF  la

= felt that

thie curren’, knowledge (° ¢ I
- We mTLt he he

FF tions gave any

other conclusive choice.

function was also fitted, a linear combination of four

exponentials belng used.

» computational convenience, the

The seml-automatic analytic fitting process deserves

further mention since it renresents a devarture from the
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usual graphical techniques of slatert! or tne algebraic

techniques of Lowdin. I2 The process developed was en itera-

Live one and 1s only suitable for use on a high-speed com-

puter.

In particular when the radial part of a numerically

tabulated Hartree-Fock atomic orbital is divided by eppro-

priate powers of r, (or in the case of a noded 2s function

by a node factor, r,,y, =- r), the resultant numerical

function 1s found to be exponential-like with the approxi-
&lt;br

mate form @ . Due to screening effects, these ex-

ponentlal-llke functions are found to start out near r = .

with a high value of b and to shift to lower values of Db

2s r approaches infinity, the shift belng empirically

observed as monotonic. Thus, as ls well-known, the possi-

blllity exists of approximating the numerical function by =a

linear ccmbination of exponentials all with positive coef-

ficients.

The graphical fitting method gave the motivation for

the computer method which was developed. Graphically, one

first plots the exponentisl-like function on a semi-log

paper. This yields a nearly straight line with negative

slope and positive second derivative. Next one approximates

the fitting exponential having the lowest value of b with a

stralght line fit through two nolnts of the tail region

(L.e. large r). From the difference between the exponential-

like function and the tall region exponential, one determines

a. second exponential describing the correction necessary for

the inner region. In most cases, however, the lnner region
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exponential mekes a substantial contribution to the tall

reglon so that the sum of the two fitting exponentials

ls too large in the tall. By using the first approximation

determined for the inner region exoonentisl, it 1c possible

though to make a second approximation to the tail region

exponential. For a two exponential fit, recycling of “his

process by graphical trial-and-error usuzlly gives satis-

factory consistency.

For more than two exponential fits the graohical pro-

cedure becomes somewhat complex because of the severel de-

zrees of freedom. However, becouse of the great iterative

capacity of a computer, extending the philosophy of the

graphical procedure is ag feasible method. The function to

be fitted 1s divided up into as many reglons as there are

to be fitting exponentials. With each of these regions e

fitting exponential 1s assigned and two representative

velues of r are chosen which will serve as fitting ooints.

The final fitting conditions will then te when each expnon-

entlal at 1ts two fitting »noints Just ecuals

between the exponential-like function and the sum cf 211 the

other exponentials. These conditions are not ¢ solution

though since they involve knowing ll the exponentials at

once, whereas each condition can only be solved for oreexoon-

ernntial.

\

An anoronriavz: nrocedure is to first determine the ex-

vonential for each of the various regions by neglecting the

2f'fect of 211 the other evyner-ntiels. Thus the initisl ep-
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proximation to the exponential of each region is determined

by two polnts of the exponentlial-like function. Next the

exponentlel of each reglon is recomputed taking slight

account of ell the other aporoximate exnonentisls. This

process of recomnutation is repeatedly recycled with gradu-

ally more and more account belng taken of all the other

approximate exponentials. Finally when esch exnonentlal ic

being computed with essentially full consideration being

given to all the other aoproximately correct exponentials,

continued iteration should yield the desired self-consistent

solution.

I'he computer process thus proceeds as follows. If the

exponentlel-like factor of the numericaelly-given orbital is

designated by ET) , then for en n-exvonential fit, n

pairs of r/ a.1d r, are chosen from the different recions

of the functlon suck thet r! &gt;

In audition a new function is defined to be the jth anoroxi
oQsation to EB (A) .

3

3 *Eim=2&gt; &amp;¢€
i=

Ine lteratlive orocess then consists of cyclically evaluating

the left-tand siues of the followinz vpelr of eguations for

velues of 1 successively assuming the values 7. 2, ,

l'tus using the definition ‘

4 00 = jt Bem, Lo Ln
Diny= E )-(1- é| 204 ce A e

kat $=

(3-2)
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the pair of equations are

pI" = ny) !PA da?)D &gt;]
at - D’ni’) el A

|]

(3-3)

(3-4,

where A is an arbitrary positive constant slightly less

than unity, and the initial ccnditions are

a’ “4° =0 (3-5)

Examination of these equations reveals that as Jj approaches

a large value J, the coupling factor, [— ) , approaches

unity and the cyclical equations approach the 2n conditions

vf
~~, J —OB ,

Ea) =k (2) 3-6)

and
J po "Er=Eu (2-7)

Thus if A is not too close to unity and J is large enough,

the set of a’ and i will smoothly approach the desired para-

metric values.

To show algebraically the validity of egse. 3-6 and 3-7,
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it is assumed that for large J, the approximate relations

hold
Ju J

a. = Q;

gr _ ©
Thus since \ is negligible

(3-8)

(3=9)

compared to unity, eq. 5-2 be-

somes

J — 09 J -5 A
D (n= = (»H- E (ry + a; €

Jr oo TJ fn
Dry: E a)-FE wd+6;C

(3-10)

(3-11)

so that

gr (rn, - A 7) | Lo (Din, ) — En) + Er)
Lt Dy —E ()+ EY) (3=12)

Je
Tei J _ T &amp; nya; = [D (A) = (r)+E ni) | Cc

(3-13)

Consequently the conditions

oo J
E xy- BE ()= o .-_ st sw

1 1t=¢ (3-14)

are self-consistent with eas. 3-3 and 3-4.

For convenience, after convergence of the iterative
—T LS

fitting process is attained, the error function. k (R)-F (1)

can be automatically plotted and photographed on the com=-
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puter oscilloscope camera. From the shane cf the error

curve, new cholces of the fitting points, r! and r!' , cen

te made and with a few re-runs, ovntimization of the fit car

be essentlally attained. Empirically it ansears that all

rartree-fock atonlc orbitals can be fitted in this manner.

The coupling factor, | — \ , of eq. 5-2 deserves

further comment. As a First attempt to develop the oreced-

ing lterative schemne, the coupling factor was omitted (i.e.

replaced by unity). This led to a numerical "catastrophe"

wherein during calculation tre argument of the logarithm

teken in eq. 3-5 became negative. In other words the more

stralgnt-forward cyclical equations were unstable in the

sense that during the early iterations the approximate

exponential fit "over bit" into the exponential-like func-

tion being fitted. Consequently, the coupling factor wes

introduced so as to have the effect of gradually changing

over from the comoutation of a well-defined solution to the

somewhat unstable solution of the coupled cyclical equations

In practice, for n = 3.a value of N from 75 to .©% wes

used and the total number of iterations, J, required varied

from 50 to 300. Figs. 3-1, 3-2 and 3-3 give plots of thre

Hartree-Fock radial protability functions, P(r), (r times

the normalized radial factor of the atomic orbitzl), of the

ls, 2s, and 2p atomic orbitals which were to be fltted.

(The function P (r) rather than Er) was used for minimizing

the fitting error because of 1ts more obvious physical sig-

nificance.) Figs. 3-4, 3-5 and 3-6 give plots of the 2(r)

error function arising from the roughly optimum 3-exvonentlal

fittin- functions. Tabl- fittin~ onarameters



which were found including the relative coefficients of

the exponentials, QQ; , and the analytlcally renormalized

coefficlents which give the correct llnear combination of

analytic slater atomle orbitals.
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Plot of Pp, (r)
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Fig 3-4
Plot of P,..(r) - P(r) for 1s Orbital
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Fig. 3-5
Plot of Py. (r) - P(r) for 2s Orbital
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Fig. 3-6
Plot of P(r) - p_(r) for 2p Orbital
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Table 3-1

Parameters of the Analytic Fits to tre -B Carbon Atomic Orbitsls

The $Y; designate normalized Slater AC's. Tre (a were de-

ternined by analytic renormalization.

ls orbltel: 4 “Ain
Vege (4m) &gt; e

TUYs61%)

my
-

3.967302

25.51¢20

,218756%

©.518314

5.459509

3,1228x6

06755376

LG217881

01e8207s

2a orbital:

Wr wy (45) (0.375 S 4s) = 4r 0.3750000-1) a; C doo
i=

- 2

co 4 Pls4; 1%) + &gt; C; Pas /4. 3)

a
4.682416

8.667200

2.356427

2

5

c porbital:

bé
5.46574

2.57952,

1.428921

ce
+.06871681

+.30232166

+. 2587076

Uk) (22pa (™) = (5) F (9) &gt; ae

 ee”?
05806877

7024676

— 5362388

“ee Plapz[4IR)

5. 061650
2.943143

 8774781

oH
4.459757

2.013452

1.110318

Ce
, 04252008

 A443 322C

B555%01¢
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The potential function, Zp (AN) which was also fitted

ls given in fig. 5-7. Careful inspection of the function

on a seml-log graph revealed a negative second derivative

ln one reglon so that in order to fit accurately, at least

one of the exponentials used for fitting had to have a

negative coefficient. Consequently, a slight modification

of the previous orbital fitting scheme was required;

namely, 1t was necessary to start the lterative process es

though several 1terations had already occured. This re-

quired a guess for the initial @; and Lb ; 1t was found

that a 4-exponential fit geve satisfactory accuracy. The

resultant error function is plotted in fig. 3-8. Table

3-2 glves the parameters of the fit, and Table 3-3 gives

the generated numerical values of the fitted Zp functlon.
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Teble 5-2

Parameters of the Analvtie Fit tn the Zp Function

- —b;A
2 (2) = . ’ a; e

. 078855

+ 8.842369

-14,32900

+153.56748

18. 46454

7.047181

3.240827

1.78584¢
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Table 3-3

Numerical values of the analytic fit to Zr) given on the mesh used
for the numerical quadratures described in chapter 5

I I J
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The negative second derivative of the function bu Zp

(or equivalently of Zp itself), requires further discus-

sion. Thls 1s because the second derivative of Z, must be

positive definite as indicated by the equation
2 2220 Py
dr Rn

Nioere

Py = : 4) P, (n)
Br

(3-15)

the Poe are thre

tals, and the

orbitals. This ir

was not realize

Investigation has shown that the negative

represents simple numerical error in Freeman's Zp, function.

In perticular, the Zp function was recomnsuted froma tre

Integral ecuatlion

using thu

Zen) = zo f [Praeal 222 nl (3-16)

- -

2 ana. viie fits tonal orbltels and the

generation and integration machinery described in Chapter

The latter Zp was compared with the analytic fit to Freeunzn®

Z P ; the magnitude of the maxlimuxr error was found to be

,006, a value about equal to the ori-inal fitting error 1in-

iicated in fig. 3-8. Thus 1t aooears that Freeman's data

had more numericsl error in it than expected. It 1s clear

though that thls error did not affect the nresent caicula-

tion excent in the sense of unnecescary flttinz difficulties,
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Chapter 4

Zvaluatlon of Two-Center Integrals

This chapter is orimerily cnacerned with tne conputea-

tion of the previously defined Sy end IY integrals of

Chapter 2. The reader therefore may convenlently cxlp itnis

chapter if he so desires. The basic evaluatlon technique

is that which has been developed for the computation of
. ] Ce , 13, 14

two-center integrals between analytic Slater AC's

ond consists of transforming the integrals into prolate

soheroidal coordinates. When this 1s done, it 1s found

chat all two-center, one-electron integrals are express-

ible as linear combinations of the au-illary functions

. cre readily computable

by relatively standard procedures which ere descrlbed in a

recent erticle by the writer, given as Apnendiw ..

To illustrate briefly the technicue, a two-center

overlaps integral between ls Slater AC's 1s derived. The

nornalized ls orbital 1s defined as
&lt; Kh me

Y (loo|klIR) = —% © 4-1)
so that the overlap intesral between a ls orbital on center

L and a 1s orbitzl on center 2 at a distance a apart ls

100] 106) - f9GoolalR) Yloo] i, 1R,) dr “-2)
Jeing prolate spheroidal coordinates ny where

R.= vHt~)/i | (4-2)

Rk, = 5-1) &gt;:

dr = &amp;2 (sn)dsdydy



lle

one easily obtains
ex ,y ,o0

2 2 ~3f noty ass
n © yy 7,

(4-4)

vnere p= (kK +1,)a/ amd = (K-K.) %,

By definition of the auxil)-ry functions

ond

Cee [eesp | € ds=pelAL

} eVyyB, 0) = IN

(4-5)

[4-6
one finds that

)7“nb ( |C.)(@&lt; B“fCp-)Ca-f 5.c5 es(k,
2o&gt; =| loloo&lt;

I'ne cholce of the C4, rather than the A, funcziion was be-

cause the Cn are not singular for P=o and therefore the two-

center integral is convenlently evaluated for any distance

without the spurious introduction of singularities from the

A, functions.

The above technique works equally well on the higher

quantum number Slater AQO's without any narticular complications

The kinetic energy integrals are also simple inasmuch as the

function Vln tm) is a linear combination of Y(wlm) , @(n-,¢m)

and P(w-2,8m). Finally the two-center potential integrals

where a function 1€ 1s viaced on center 1, one Slater AC

on center 2, and the other Slater AO on center 1 or 2, are

easily evaluated in the same way as the above overlsp integral.

The A, and B, functions are tabulated sparsely by

Kctanl, et 21.4? but, inasmuch as the labor of interpolation
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would have been severe without even considering the human

reliabllity problem, it was felt that a C, and B, subroutine

for tne Whirlwind computer would be desirable. Such a sub-

routine was written and tested against the Kotanl tables;

the subroutine used simple upward recursion to obtain the

Cyn and a rerormulation in terms of spherical Bessel function

of imaginary argument to compute the more difficult B,,

functions. The basis of thls subroutine is described in

Appendix A,

and B, generation subroutine available,

an integral combining program was then written. This program

computed the overlap, kinetic energy and potential integrals

between the carbon Hartree-Fock orbitals which had been

fitted with Siater AO's anda the similarly fitted potential

function. Thus the orbital input data was of the form

Yo Ze (xin)
i

and the potential of the form

vi. Lae
ya

With the C,

(4-8)

where the © are the analytic Siater AC's. It is pertinent to

remark that the combining program required as much eifort tc

create as the original C, and B, subroutine. Inasnuch as

the Hartree-Fock orbitals in general required three Slater

AC's for a fit, this meant that a single overlap or kinetic

energy integral between Hartree-Fock orbitals required 9 basic

integrals between Slater AO's. Similarly for the potential

integrals, because of the four exponential fit of tre »otentlal

there were 356 baslc ilantegrals per resultant integral between
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Hartree-Fock orbitals and potential. Each cf these basic

siater AQ Integrals required from one to two seconds of

machine time to compute and were obtainable with six to

seven I'lgure accuracy.

It should be ciear from tne preceding remarks, that

these explicit two-center methods beccme less etticient for

apdlicatlons 1lnvolving atomic orbitals expressed as linear

combinations of Slater AC's, in contrast to the multi-center

techniques given in the next chapter. In fact, as soon as

the general two-electron integrzl is concidered, the effici-

encv loss 1s orofound. However, for the oresent calculation

the advantaczes of easy operation and known accuracy behaviocr

nore than offset any computer time which might have been

saved. In addition, the comparisons possible between the

two methods were important internal checks on the computations.

[In suminary, ths; Toregoling method and ccmblnation pro-

cedures were used to-compute all the two-center integrals,

integrals which devend only upon the distence between the

two centers. To be explicit, these integrals are the follow-

ing, which were defined in Chanter 2.

* &gt;Sjjr (Ao) oy [7 (A= Prue) 2. (ZF Poss) d7 (4-10)

Tig (Apo) = + [Va VF (B= ino) dr (4-11)

Fi (Auv (000) = [Brie VIE = Poo) % (X=Pose) dy (4-12)

Bir (bool No) = [Ue l5-Prno) VIE= Ty) Vo(5 Fo dr 6-13)A
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.  /

where §,i"=1s,as, apo, apw, 2ap7W

and o,w,FF refer to the two-center axls as described by

fig. 2-4 of Chapter Zz
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Chapter 5

Evaluation of Thr-~-"~nter Integrals

In this chapter the evaluation of the previously defined

Bi Opol\u¥d integrals wlll be described. To eveluate the
threc-center integrals, the procedure used 1s a very general

one capable of being used on all multl-center integrals be-

tween atomic orbitalsl®. As might be expected, however, the

computation ranidly becomes complex for the more general

classes of integrals. The orocedure consists of taking all

atomic wave functions, described in spherical coordinates

around one center in space and expanding in spherical coordi-

nates avout another center, in particular, the center of the

atomic potential function, Y(R) ; in thls apollcation;

then the resultant single-center integrals are calculated by

numerical quadrature. Much of this procedure is not new,

having been examined previouslybyGoolidgel”, Barnett and
Goulsont®, Lowdinl® and others, but there are many detalled

conventions which must be consistently adhered to. Inasmuct

as the exact methods used do not follow any of the afore-

mentioned writers' conventions, but instead were develoved

independently, they will be given now.

In particular, the expansion of a normalized comolex

Slater AC 1s defined, the consideration of real Slater AQ's

being treated later. The definition is:

P(ntmli[t)=Mota ks Plone) Bop 7H
vhere 2+" « Bra MN (Amik) = |Z snGor L

-% my$= @r) te
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For convenience the unnormalized Slater AC is also defined

(5-2)UConn KIR) = [MOmIK)] Paton 15

Then ln terms of the coordinates of fis. 5-1, the 2Xpansions

zbout the center r=0 can be written

. 2 . . (m4 tml _

Pam |&lt;\R") = 2 (aj Xilbwlleln) p (20) P,, (¢) (5-3)
3m

V(nlmlKIR) = Sen Bs= 5+) B; (ndm( Kal KA) im!2. : N F; (00) $1)
(5-4)

so that

oL; (nhwlklaln) = Mntmlx) pi(nim lkalkr) (5.5)
The choice of the form of the “. functions was suggested by

. the final integrel formules.

ap

the resultant simplicity 1:

The absolute value signs cn m serve to max the &amp;, functlons

depend only on Iml, thereby reducing the functions requlred

=nd also eliminating the usual confusion over the conventlons

for spherical harmonics of negative m. Further, the stralight-

forward result

é; (Vm [Kal ka) = |p; (nw |kalKkn) —2n B; (n=1,tm| elk) + (MelXn-L-1) By (0-2,tmKal|(5-4)
1s given where the notation (vutmlkalkr) means the expansion

function corresvonding to the function 7 2 (ndmlik|A)

Thus it is clear that the expansion proldem depends entirely

on the Bs functions. In addition, the expansion functlons

of Hartree-Fock AO's which have been fitted by a linear con-

bination of Slater AO's can be obtained by the same linear

combination of the corresponding functions of the Slater

AC's.
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The computation of the By functions 1s next considered.
By rewriting an expression given by Watson 20 in terms of

spherical Bessel functions of imaginary argument, one finds

after using the coordinates deccribed by fig 5-1 that
“Kn OO

C = &gt; (2 +1) kg &amp;; T (0)
kn! 1303

where ij =i) , R,= = (p) y 0 and P
greater, respectively of Kke,xa . By differentiating wlth

being the lesser and

respect to Kk one obtalns the numer’ -~lly accurate form,

in’ 2 : b ol 4 (5-8)eC ” &gt; apa §-1 = Lies ACS
{2°

To abbrevia..: the

verlables ka &amp;:

Then from the two preceding relations and tne definition of

notation in tre following discussion, the

Kn are dropped from the Ps functions.

the f3(nlm) functions, one immedictely obtains

B; (000) = Kr by k;

Bs (100) = kn lf i k;., - Tis, A]

(5-9)

(5-10)

which clearly depend on only the spherical Bessel

imaginary argument.

The ; functions are the sare functions as those used

to generatetheB,auxiliaryfunctionsdiscussedinthre
preceding chapter. The generation of the. i and B, functions

1s described in a recently published paver by tne writer, given

in Apoendix A. A more extenclve discuscion of the generation

&gt;f both the I; and k: can be found in a recent progress reoortel
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Fig. 5-1
Relation of Coordinates

¢ = 0 half-plane includes + x axis and O"

$' = 0 half-plane includes + x axis and O"

$'"= w half-plane includes + z axis

Fig. 5-2
Three-Center Geometry

hb!=/

Fig. 5-3
Eulerian Angles
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of the S0lld-State and Molecular Theory Group with which

the writer has been associated. A comprehensive descrinstion

of the generation procedures for spherical Bessel functions

of both real and imaginary arguments is the subject of a

paper which ls being prepared for publication with co-author

J. Uretsky.

Returning to the B, functions, one could laboriously

oulld up higher quantum numbers by continued differentiation

of egs. 5-7 and 5-8. Instead a recursion scheme turns out

to be much simoler to apnly. From fig. 5-1 the followlng

seometric relations are observed.

(A= 62+ a"- 2an con®
’ g’Aen = —a +a C0

Aan=Lamb

(5-11)
(5-12)
(5-13)

By multiplying the defining equation 5-4 for the Pi function

by each of eas. 5-11, 5-12, and 5-13 and then using the

recursion formulas for Legendre polynomlals
imi tml te)

(2n+1) Cos© Pest) = (nmi) P(en®) + nem)P_(erg)(0-14)
wl) imi wt

(ant) AnD], (Lo0)=2 ( @»®) ~t_, (0) (5-15)

to reduce to a single summation, one obtains a set of recursion

relations for the B; (mim) . To describe these relations

succinctly, auxiliary operato»s are in’ loduced.

|

+d

Us Ps (Wm)= Pix (nlm)

Lj fp; (dm)= Bio (nw)

(5-16)

(5-17)
(5-18)

X,= Free LL Uj}



58

z ”= -— Ka. - (4525+ [6- J+!i+) |J
2 _ 2 + 2ka)kn 3K. = (Ka) +n) — Ea [gol it (j+(mir) Ul

(5-1¢)

(5-20)
then one obtalns the recursion relations

Bjla+2,be = )i )=K; pj (ede)

bp; (G+, Gti, br) = (28+)X, Bi (a LL)

(5-21)

(5-22)

2

E; (61,841, ¢)= (2 6; (adc)— (A peblud
where in tne last relation pet, 4-1.) is to be taken as zero.

The recursion scheme then proceeds as follows. Starting

witn the set 8; (000) if Mf is even or p; (te) if m-A

odd, for all the reculred J values »nlus n exira, we recurse

using eq. 5-21 until B (n-4,00) ig reached. Eq. 5-22 ic

then anonlied m times to Bs (n-2,00) to vield ; (n-tem am). The
latter result along with the relation fy (nt, wm, mar) = ©
is used to stert tre upward recursion ¢” eg. 5-23; after A-n

steps, the desired set o” Bi (nm) are obtained.

The numerical pronerties of tne above recursion schene

sre not completely known, although, inspectlon indicates no

obvious problems. However, before this recursion scheme

was fully worked out, a generatlon program was written for

the Whirlwind comnuter which used the RX, amd Zj operators
to construct the expansion functions of the atomlc orbitals

Wi

21.

  guantun numbers nfm ecual to: 000 100, 200. 300, 11C,

-10, 111, 211, 311. No noticeable numerical fallures

nave appeared with these expansion functions.
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tiaving seen how the B; functions and thus the &gt;; functions

are generated, 1t 1s now possible to derive certaln integral

formulas. Considering first the 2-center overlap and kinetic

energy integrals, and using the coordinates of tig. 5-1

it then follows that

nw,|9, may = [iptectmix, 1%) Yinow, [ko RD dr [5 =24)

1, ¥

- (at) Ly, (nm lkiol) Tr (en) 3 (9)

&gt; (25+) ol; (amy) 561) Pen 0) 3,1) dr dtat) dy
j=1my) |

Integrating over the ancular funtlons and using

normality relatlons

(8k© ¢ (0) dep =S (wWa)
 im mi
7 Ty, (RY Ap = Si) 2 4, + imi)!

28+1 (gm)

the ortno-

5-25)

(n=6)

ne obtelns
oc

 domPrd=Sm,224)EtPOL[ogy ntom I foln) ty (rutile)a,=m)! J, : (5-27)
Ihe last formula holds also for 4M, renlaced by vn m,

Thus the overlap and klnetic energy integrals can be done by

a single numerical quadrature of a rather-difficult-to-obtain

integrand. It was for the latter reason that tne overlap and

kinetic energy integrals used in the oresent calculatlon were

those obtained by the use of the more convenlent znd preclse

2-center integral techniques described in the previous chapter.
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However, values were spot-checked by means of the numerical

quadrature method ziven here ana were found to be in agree-

ment with the 4 to 6 decimal rigure accuracy of the numerical

qjuadratures.
£

Formally eq. »-27 also holds tor mbm, resiaced by Vinlim,

but practically is a very door form to use. The reason
2

for this 1s tnat the expanslon runctions of V #tm) are much

rore localized as a function of the variable r than are the

corresponding expansion functions of Yintm). In tact, thre
2

expansion tunctions of V {leo) actually rave a cusp-like

beravior (1.e. discontinuous first-derivative) at r=a

Consequently a numerical quadrature, whica 1s based on &amp;

finite number of user s0ints and assumed continuity of

integrand derivatives, must be done with particular care lf

accuracy is to be maintained.

In order to treat the 3-centcv polential integrals

involving -— atomlec wave functions and an atonic potential

by the presently discussed methods, 1t 1s clear that two of

the three functions must be expanded about another center.

wit , reference to fig. 5-2 it would be simplest to place one

' oowave function on center O, another on center O°, the potential

function on center 0", and then expand all the functions about

center 0. Before the angular integrations can te performed,

however, it 1s necessary to transform the spherlcal harmonics

arising from the potential expansion along the 00" axis to

thé spherical coordinates of the 00' axis. The usual addition

-heorem of spherical harmonics willl accomplish this for a



 |

potential whlch 1s symmetric about the 00" axis. A serious

drawback though will arise from the fact that the singular

nature of the potentlal requlres that the expansion functlons

nave cusps at r = b. Thus the saze difficulties in the

nunerical cuadrature which arose wlth certaln kinetic energy

integrals wlll also occur here. A further difficulty arises

from the fact that in order to generate the expansion func-

tions of the potential by the techniques which have been

described, it would be required to have the potential fitted

by a linear combination of Slater AC's. Hence, in general,

an arcitrary numerically-given potential could not be used,

although in the present work "a fitted potential was used.

The difficulties which arice from expanding the poten-

tial function are obviously avoided if instead both wave

functions are expanded about the center of the potential.

However, &amp; new complication arises in that the usual spheri-

cal harmonic addition theorem will no longer suffice in

general to transform the spherlcal harmonics from the coor-

dinates of one exoansion axis to those of the other. There-

fore the general rotation of spherical harmonics will next

be discussed.

The coefficients describing the rotation of spherical

hexrmonics are defined as
£ ’

mi, (e~1mi)! mm ma _-im¥ imi (5-28)P(e) $099=&gt;from Rec eT Fe $,0)
where oL,BY are in this ecuation the Eulerian angles of

rotation of the unprimed to the primed coordinate sxes. To

be unamblguous the exact orescriptlon for rotating the axes
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ls glven where all rotations are in a right-hand screw sense.

L - Rotate the Y=T line in the x-y plane about the +2

axils until it intercepts the x‘ -y v' plane. Call

this angle § .

Rotate the +2% axis about the new Y=T axis in the

x! = y' plane until it coincides with the +z’ axils.

Call this angle fp
Rotate the new Y=T axis in the x' - y' plane about

the +%’/ axis until it colncldes with the gm axis

in the x' - y' plane. Call this angle

Flg. 5

formula given by eg. 5-28 has been chosen because for a'= ©

there results the ordinary addition theorem of sphericel
om imi

harmonics where F, Pe) = T (en BD

The formula for the F functions can be deduced from a

formule of Wizner=&lt;. Wigner smbiguously states his normeliza-

tion and his Eulerian angles, besides using a left-handed

coordinate system. After elimination of all these confusing

factors, the following formula was obtalned.

, gut 204 m=-m-21 2¢+m-m’ (5-29)

Foe a (A+im)} Seif) (al) &gt;’ —  U-m-t)! (frm)! (#+m-m)! t!

% illustrates these angles. The particular rotaticn

where t takes on all velues glving non-negative fectorials.

The F functlon can also be expressed in terms of the hywner-
 Zz

geometric Funston’ which in turn is closely related to the

Jacobl polynomial. For the case of mam’

/ ’ ’ wm’ (5-30)
Wm i (w+ Imi ms jw) mim’

Fg) = (1) @+ mi)! Ban)! (C8) (amps) ] RT @ = ToS (am) ol Fr-2, Lome | w mip | (ain of)
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By studying egs. 5-28, 5-29 and 5-30 the following relations

cen .be found.

/ + / / / / (5-31)
—m —MM mtm —mwm +m mw’ Le mem ,

FF ® =F =" = ef Fo nes)
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Having established the preceding relationships, it is

now nossible to consider thie J-center potential integrals.

The following definition 1s made

 lym, [VM tamyd&gt;=|Plutonic,|) VOD) Plntam IRS dr
where VIX) is a numerically given spherically synnetric

potential having roughly the behavior of Le y and the

coordinates are those of fig. 5-2. When the wave functlons

are expanded about the C center, it then follows that the

rotation of tne spherical harmonics not expressed in terms

of 6, is given by eq. 5-28 where «=Yzo . This leads to

the expression
Int,] *

onl Dhulny= 5° (jr Det mbm lal {cs0) £ (") Vin) * ( 5-373 )
4 T&amp; (0)

n,5 (aheg (nlomiibh) 7 E20 Fob) chdient)
4

After the usual ini~zration over angles, one obtalns

2 mae dom Winton = 2 J GF Givi
4=0

(5-34)

Jhere

Glvly = | &lt;i (mLm,[1G]aln)Vo)ot;(mbm,|,(An)dr
[i ts rresent calculation the atomic orbitals of inter-

ast a » the ls, 2g, and 2» of ¢arbon. These real orbitals

san be readily expressed in terms of the above complex orbitals

of quantum numbers nlm by the transformations

(18)z (lod)=(100)
(28)= (2007) = (200)

(2p) z (2107) = (210)

(2pn’)= (21707)= x [i+ (21,-D)
(2pT)2(217)=oeLan)=(@s)

(5-35)
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where the o,/x’and nr refer to the usual symmetry with re-

spect to the translation axes of the real atomic orbitals

from tiie expansion center r= 0. The ¢’ and 7° orbitals

are even and the T' orbitals are odd with resoect to reflec-

tion in the plane CO'C" of fig. 5-2.(It is noted that for

descriptive convenlence the axes of fig. 5-2 are permuted

with respect to the axes of flg. 2-2, however because all

further descriptions are of the ¢,8 -type no confusion

will arise.) In terms of the real orbitals, one then ob-

tains for the non-zero three-center integrals,

ne VIkey = 2 2 Gir Fi &lt;vip
; = — ol .

VILry=202 aiF, (&lt;3
oo . i" a -38

=z ei o[F; (+1 @®]&lt;iIvip 5-28)
3 ai) F@-F kiN (5-39)1-0

where the (41v]|}) still are the same as in eq. 5-74

Several of the above sums were computed manually out to

J = 9 with the convergence varying from good to poor. During

computation an important point appeared, namely, that the &lt;4lv/i&gt;

are in general monotonically decreasing with an approximate

behavior of Ad yhere A and h are exnpirical constents de-

vendling on the integral involved. - (An exception to the mono-

tonicity occurs when one or both of the orbitals is a noded 2s

function which has been fitted bv a linear combination of ls

and 2s Slater AO0's:; however, the monotonicity 1s restored when

bhe lntegrals involving ls and 2s 3later AC componenis are



 AY

evaluated separately.) For the cases of poor convergexnce,

whicn corresoond to the expansion of highly localized

orbitals or large exsanclion dlstences, a correction proce-

dure has been develoned which will now be described.

Egs. 5-36 to 5-39 are summarized in the form

&lt;mtm Vin dm &gt; = SG @&lt;5iviiy
j=o

ond can be rewritten as

(5-40"

 NNdom [Vn gm = AH )+ GC ) &lt;; VIS — ARS (o&gt;) (5-41)
“here ¢ Z ie &gt; ) *2Z Golam .

oo .
&lt;&lt; pdHE =&gt; FG®
|

The correction procedure used is to adjust A and h so that

the last sum from NU +1 to oo 1s anoroximately zero and can

be neglected; simole trittirg from &lt;N|VIND&gt; and &lt;n-ilvin-Dwas

found to te adequate. Before this procedure could te made

useful however 1t was necessary to express the H functions

in closed analytic form.

It can be shown by tedious identification through the
mm

hypergeometric function relation of the Fi ® functions that

Fe TT, @
= ol . \i B= dap To, @

[Flenelp)= 2:8 Tie 65 To)
i rei —1

(5-42)

(5-43)

(5-44)

(5-45)
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wm
where the Tap) are Gegenbauer polynomialss?, The generating
function of the Gegenbauer volynomials is

bm-1)! &lt;&lt;
pth 2 ATyo 7 ©

(5-45)

where = I-2h erp +h”
and (2m=-1)!!=(2m-1)(2m-3)(2m-5) --- 1

After appropriate differentiation by h and p , formation of

linear combinations and considerable involved algebra, there

result the expressions

2, 21-28 _ =f(25+) 5° F(A) = D4 (5-47)

 je) Eto 34 (1-£%) dnp
jue D¥

(5-48)

3) 2 (5-49)&lt; (7; i=" =4! 1. (AG-4) 5A wl= GF Or El] ASR [ons- TEs]
3" if (20k (5-50) 7% } / —1,= Ll? aed [5 0-F)e ALD

Thede results were checked by the altrrnative »rocedure of

examining the Fle in terms of Jacobi polynomials and using
the corres»onding generating function; however, the compli-

cated algebra did not particularly simplify.

The above talil-summation correction procedure was

successful in giving the right order of magnitude for poorly

convergent potential integrals, integrals whose values in-

variably turned out to te comparable to the numerical guad-

rature and summation truncation errors in the more lmvortant

potential integrals. Thus it appears to be a good assumption

that in more general calculations the elaborate tall-sumnation

procedures are not necessary, provided the ma jor integrals



528

are obteined with sufflclent accuracy. In eny cese, in

the present calculation the tail-summation procedure served

to ensure the accuracy of the potential integrals.

Having discussed the basic procedures for obtaining

the three- center potential integrals, it remains to maze

the connection with the required Fj Ope | Mv) which were

jetined and discussed in Chanter 2. From tae definition

(5-51)
¥ = —Py Opel 3sv)= (5nd VOE- Bip) 6, (5) dy

yhere

j1j'=1s,25,2p7, 2p7,2p7
and from fig. 5-2. it °

vp le

pond to Pr py =O

ch" +t

 ~ienyr thet the center O must cocrres-

= 1

Pose =° , and the centercenter C' to

However the UY°

1bed by ea. 5-

not the atomic wave

funct ily -
3, thhey a Tr" engu 1 erly

quanti | respect to tne axis O'C" rather than to tre

axes 00' and CO". Wher J and J' are egual to the ls, Zs, or

2n® fi nections, walch are invariant under rotation about an

axils perpendicular to tne plane CC'o", there is no difference

between the two angular cuantizations. However for tne j or

i' equal to 2ps or 2p% , there 1s an additlonal trans-

Formation required. The transformations are

WL (B=Fao) = oY’ Woon (R=Poco) + dw § [oe (R= Poco)
(5-52)

Yr2px (R=Poor) = —don y'[A (Z-faPo) end;apn’ (A= Pood) (5-53 )

and

Cor Poed= oo Vitfi—in4Ys (3-0) (5754)
Wapr (A= Pro) = bin?" Yi! (Ripe)+Cn"Yor! (B~fie) (5753)
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Fig. 5-4
Diagram of the x-z plane of fig. 5-2 showing the requantization of the
2p9t and 2pn’' orbitals into the 2po- and 2pw orbitals.



710

where the angles are illustrated in fig. 5-4. Thus the

Integrals are in general a linear combination of four basic

integrals when J and }' are 2p atomic orbitals. If higher

symnetries of atomic orbitals had been used in this calcu-

lation, the above direct approach by insoection would have

become much more difficult; the solution to this problem

has already been established though in the Pye) functions
discussed earlier which allow one to make rotations of zll

spherical harmonics.

Having displayed all the details of evaluating the

integrals, a summary of the whole procedure will now be

glven with particular reference to the searc~: of the compu-

tations and to the mechesnizations whict, v carry out

the procedures. The first stage of calcule’ Lon 1nvolved

the computation of the exvansion functions- od , for the

carbon atomic orbitals Ls, 2s (consisting of two nodeless

sections: the le and 2s), 2pe’ , and 2on’ which had been

fitted with linear combinations of Slater AC's. This wes

done on the computer with an ol; generation program which

started from the fitting parameters of a glven atomic orbital

and ccmputed the combined Slater AC exvoansion functions for

the orbital. For each of the five nodeless atomic orbitals

expanded at a given distance there were ten expansion func-

tions, (or nine for the 2px’ function), corresponding to a

naxlimum-3j equal to 9, or a total of 49 functions. For con-

venience, the generated expansion functions were nunched out
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on paper tape by the computer in such &amp; fashion that the

functions could be automatically read back into the computer

without any transcription or proofreading requirements.

Thls generation and punchout process was done for expansion

distances equal to the first four graphite neighbor dis-

tances; in addition, for the trivial case of zero expansion

distance, tne single non-zero expansion function for eacn of

the four carbon atomic orbltals was generated and punched

out. Thus the results at this stage consisted of a total

of 200 functions each represented by a mesh of 82 voints,

ziving a total of 16,400 numerical values. Tre machine time

required to produce these expansion functions was about two

hours. ™: indicate the unwleldiness of this quantity of

numerical data, it has been estimated that it would take

about an hour of nachine time to merely automaticelly display

2ll the numbers, not to mention the 400 frames of microfilm

which the display would require.

The second stage of the potential integral computation

consisted of evaluating from the multitude of of; functions

and the potential function the &lt;Glvlsy numerical cuadratures

of eq. 5-34. This was accomplished on the computer by a

specially written numerical quadrature program which was

designed for easy operation. The &amp;2 point numerical quadra-

tures were done by Simpson's rule. The reason for using

such a low order integration rule was the fact that the

functions for the orbitals used at worst had discontinuous

third and higher derivatives at the exnenslon distance.

Consequently no extra integration error was lntroduced by not
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maklng the expansion dlstance a mesh voint since Simpson's

rule only assumes continuity up to and inciuding the second

derivative. The results of the numerical quadratures were

2lso punched out onto paper tape By the computer in a

fachlion such that they could be autecmatlically read beck intc

the computer. All told there were about 2500 non-zero

Integrals whicn nad to be compuvea in a felrly intricate

sequence. Tne totel machine time was about three tours for

this process. The resultant numerical quadratures were also

automatically displayed vie microfilm for insvection ard

checking.

The third and final stage of tne Ty computation

conslsted of forming the summations of the numerical quadra-
Ww, wm

tures modulated by the Fe functlone as indicated by
eg. 5-3€ to 5-39. For this nurnoss a snecial summation

program wes written which used ¢ © routine written for the

purpose of ~enerating the F functlons by straight-forward

application of eg. 5-29, In eddition, the tall-summation

correctlon procedure was incorporated in the programn. Further

features installed in the program were the transformation of

the Vor ana Yapr indicated by eq. 5-51 to 5-55 and the

consolidation, (after summation), of the two nodeless com-

ponents of the noded carbon 28 orbital.

This program after evaluating the Ps values also per-

formed the elementary summation recuilred to glve the ultimately

desired

3 y )s - # (5-56)
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ihe results of the summation program then consisted of the

individual Ry end the resultant Vii’ . As a check on tre

correction procedure, two sets of ginmultaneous results were

actually ottalned, corresoonding to the computation with

and without the tail-sumnmation correction procedure. The

results were automatically recorded on microfilm and the

total computer time for this lest stage was about one hour.

A finel comment should be made on the degenerate two-

center cases of the Pi’ , which are important terns in a

tight-tinding calculation. Because the atomic orbltals were

only expanded for the first four nelghbors, the sun of Fis’

involved in Vyi(000) were »rematurely truncated; however

because of the two-center degenerescy, and the fact that the

notential function was analyticelly fitted, it was possible

to compute, by the techniques of Chapter 4, the remaining

terms and thus obtain the correct Vjj(o00) values. These

sorrections were rather slight. 3imilarly in the general

Vi (Amo) summation, the important two-center terms were
necessarily omitted in the numerical quadrature process for

A zreater than four. These missing terms also were obtained

by the two-center integral procedures of the previous chapter

and used to correct the Vile) values for A greater than

four.



Chapter 6

Aonlication of the Whirlwind Computer

It is perhaps 1llumlnating to give some of the comnuta-

tlonal persnective involved in the over-2ll celculatlon.

Inasmuch eas the magnitude of numerical work involved was

such that accuracy would have been difficult to malntain in

any hand calculation, most of the computational work was

done on the high-speed electronic conputer Whirlwind I. The

nearly total mechanization of the problem, although elimina-

ting almost entirely any possible random mlstalres, had the

disadvantace of tending to obscure wossible systenatic mlstekes&amp;L £ x y

The later shift of emnhasis is one of the principal reasons

that meke the progremming of a computer a non-trivial affair.

4 consequence ls that logical sim-llcitv of the computational

procedure becomes a goal which 1

outational efficlency. There is salen &amp;¢ reat ceal of ailffi-

zulty in devisin= adequate test procedures for computer

orograas, since oo’ neressity they must be tallored to ire

program ltself. The ability of a drogranmer to cooe with

these problems deveLrons mostly with exoerience. A large

fraction of the time snent on the oresent calculation was

thus used learning how to obtain the full potentiality of

high-speed computer.

In carrying out tie calculation, the work fell into

3

stages for each of which speclal computer prosrans were

written. These were: a program for the senl-autonatic

fitting of the atomlc orbitals and the Zz, function
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program for generating the two-center integral auxiliary

functions and then automatically combining terms to give the

integrals between Hartree-Fock orbltels; a »rozrana for genera-

ting the atomlc orbital expansion functions necessary for thek

three-center potential integrals; a progran for perforaning

the basic numerical quadratures of the three center potential

integrals; and a requantization and summation prograan for

~~center integrals from the basic

foregoing computer »rogreas were

sufficient machinery to prepare the basic two-center

Heniltonlan and overlap integrals which served as 1inout for

the final master program which performed the energy band cal-

culation.

forming the avpropriate

numerical quadratures. mF

The comnutatlional st LE “wered by T : atove vrograms

have been indicated 1a “© block dlagrai siven in fig. 6-1.

Bach solid-lined bor

conputational program which on the average took a few months

to organize, write, trouble-choot znd test. In the case of

the final master program, several programs of cimiler complexity

were arranged to work automatically together as a single large

orograia as indicated by the dotted enclosure.

The operation of the preparaticn programs have been de=-

scribed in Chapters 3, 4 and 5. These programs served as the

basis of the two-center intecral input date of the final

na ster energy band calculation program whose operation will

now be summarized. Explicitly the basic input Integrals



1s, 2s, 2p, z,
numerical data

Analytic
fitting

Analytic evaluation of
2-center integrals

Generate « expansion
functions of orbitals

Generate numerical Z
y . 0

function from fit

Compute numerical
quadratures for
potential integrals

Sum quadratures and
requantize to form
3-center potential integrals

-

Manually form
Hamiltonian
integrals

Requantize S and H
integrals to S and H
integrals

Select wave vector
and generate
matrix elements

Solve secular
equation:

RC=cLC

Print and store results;
test if finished.

Graph and photograph
full results on
osciloscope

Microfilm
output

Fig. 6-1
Block Diagram of Computer Operaticns
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vere of the form
et— ¥ - oMi; (po) = (1 (=F) Mw) P(x) dr

vhere the Y~ are atomic orbitals,

(6-1)

IX 1s the neighbor vector
znd

Aday-1
M(x). &gt;- &gt; 2 A-WE) --1v= py Zep) og ir,

z [R= Pl
the sum 1n the potential term belng over sll neighbor vectors.

In the present calculation, the three-center potential terms
-— tm .

were neglected when oe! or | To- (el exceeded the fourth-nelghbor
distance in the sum over Ts

Tre operation of the master energy band program then

proceeded as follows. For a given value of the reduced wave

vector, 2 » the program ccmouted tie Hamiltonlan and overlap

¢ elements arising from the Bloch waves constructed from

the atcmlc orbitals. These matrix elements were made real

by taking Judiclous linear combinations of the Bloch waves as

sasls states, as was described in Chapter 2, and had the form

eS 2M, gy{ 2 EP)My 0) 2 SCI SG
(6-3)

where the terms in which fa exceeded the ninth-neighbor

distance were neglected. The program next solved the usual

variationally-derived secular ecuation of the form

M - a M .

SRBC = ED di 0 Ge (®
g=! g=1

(E=4)

and stored for later use the elgenvalues E®. A new value

5f the wave vector was then selected and the generation and

solution of the secular eguation reveated until the »nre-set
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values of the wave vector were exhausted. This cycle of

the wave vectors was done twice, once for the sequence of

8 by 8 secular equations arising from the o¢* states and

once for the 2 by 2 secular equations of the Tw states.

Finally for convenience, the progran displayed grapniczally

on a photozradhlc oscilloscope cross-sectional views of both
« - ohthe ¢ and TT energy bands, E®wl, for values of the wave

1 . i: o oo Oo
vector along the edges of a basic non-repeating 30 - €0 - SC

trianzle of the first Brillouin zone.

The solution of tae secular ecuation was done by utiliz-

ingaJacobl's method matrix diagonalization program in con-

junction with standard matrix multiplication techniques. This

solution process 1s described in detail in the memorandum,

civen as Appendix BE, aescribingtwogeneralpurdosesecular

equation utility programs which were ty-products of the present

calculation.

In view cf the intimate avnplicatlon of « high-speed

computer to the present celculetlon, 1t 1s worthwhile to dis-

cuss further some of the generel conclusions whlch arose out

of this experience. Perhaps the most difficult readjustment

of mental approach required for machine computation versus

the traditional desk calculator computation 1s taking prover

account of the shift in usefulness of a modern comouter.

Although in the sense of arithmetic operations, a comouter

{5 i. extrapolation of a desk calculator, because a computer

must be given in advance a complete cet of logical ilnstructlons

which anticivnete all continsencies, there is a sharo shift
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in the cholce of useful applications. Thus a desk computer

1s valuable for non-systematic computations where there is=a

high degree of logical complexity with very few repetitions.

Conversely the modern computer 1s at its best when doing very

repetitious eiementary logical steps on vast quantities of

late.

A modern comoduter also presents a further complication

which arises from the organization recqulred to counle-together

2 series of prograas which are equivalent to many steps of

hand computation; at tlmes invery comn'licated and large

cemputer vrogrems, this "Juggling act", which increases in

difficulty in a greater than linear way with the magnitude of

progrem, severely taxes the concentration and memory for

detalls of the programmer.

The great intensity of effort required by tn - programmer

als. aggravates a more versonel oroblem assoclated with com-

puter work. Thi.

program ana

tration

. 2roblem 1: the all-or-nothing nature of a

wwoompanying personal involvement and trus-

1me large orogra:n, thanks to the cajacity

sf modern computers, ls usually an anbitlious

typical computer program will involve many

and ver.

affair. Thu

hundreds« 0” instructions which at tre first writing invarlably

will contain mistakes, eometimes of a clerical nature or.

even worse, sometimes involving serious logical confusions.

(a mistake ver hundred instructions is low even with consller-

able programming exverience). Clearly these mistekes have

to be dlscovered and removed. a nrocecss often called trouble-

shooting.
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The »nrogsrenmer first nlens out a tcostling procedure for

the program wrich, 1f well-done, wlll test every contlngency

of the program operation. Thls often requires en orgenize-

tion and decomnosition into many smell test procedures which,

in the end, results ln anotxer computer »rograa rivallng the

original progran in difficulty and complexity. The troutle-

shooting process then begins and the comblned original program

516 test program are run on the computer sin

result in logical ab

test run usually fal”

then infers from any of

plus the knowledge of hn

aaong the hundreds of instruc

cipitaeted the fallure. 1

of study, fails to find the

nrozram So
JR,

3 Y, mistake

rons inv ave nre-

 2H TTA - several hours

mi, 23 bdLa, i WILE" course, raeck-uyp

and make a more detalled test run

information.forinference.Whenn

his mistake, he then make:

trouble-shootinc crocess unti. after many runs he lg finally

able to get the entire program tested.

1ecessful in finding

correction and reneats the

Besides the uncertainties of now many mlstakes a progran

will contain, (stoicismisanasset), the trouble-shooting

srocess ls aggravated by the necessarily cooperative-nature

of a machine computation center. Thus all comnuting mechines

in order to be efficiently overated, must not only be used by

several dozen programmers but also must have priorities and

scheduled running times. This invariably results in delays

ranzing from several hours to several days before a partially
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ested program can be corrected and rerun.

From the previous discussion of the trouble-shooting2

process and scheduled operation of commuters it is clear

that the use of a modern computer bears considerable re-

semblance to the use of nuclear reactors, cyclotrons and

other large experimental devices. At the present time there

1s no escaping the fact that it 1s very difficult to use a

digital computer casually, although, the current evolution

of programming techniques 1s improving this situation. An

indication of the current status of programning technicue is

the rule-of-thumb that comnutaitions which reculre less than

one to three months should stlll be done with a desk computer

Turning from general remarks, the magnitude of program-

ming ln the present calculation was culte large. Roughly

speaking thls programming wes split into two major parts: the

evaluation of the two- and three-center intezrals and the

generation and solution of the energy band secular equatlons.

At the start of the present calculaticn it was hoped thal two-

center integrals would suffice and that in the matrix element

generation not meny neighbor distances, (0, 1, 2, and 3),

would have to be considered. Thus the prograns for two-center

integrals, described in Chapter 3, and a secular equation

zeneration and solution program were written. Upon obtaining

energy band results from these programs, both programs were

found to be inadequate;, crude estimation of three-center

integrals indicated an lmportant effect being omitted and the

failure of the overlap matrix to be positive definite, (l.e.

rave positive definlte eigenvalues). at certaln wave vector
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values revealed that several more neighbor distsnces were

required for accurate overlap matrix elements.

I'hese failures forced the calculation from the initially

moderate amount of programming to the rather large and lengthy

final form. It was necessary to completely revise the secular

equation generation and solutlon progren so as to have the

additional neightor distance generality required. In addition

the rather elaborate energy band disolay orozgren was devised

for the convenience of ra»nid interoretation of the band

structures.

The three-center integral procedures also required new

programs since the method had rot been applied before on the

Whirlwind computer. Becszuse of the generality of the method

used for these integrals, two utility prograns, the expansion

function generation program and the numerical quadrature

vrogram, were written with speclal cere given to flexitlility

and ease of application; hindsight has shown that such care

we.s quite Justified since these prograns have been lnstrumen:

tal in lightening the labor of the integral evaluations re-

quired by several other members of the Solid-State and

Molecular Theory Grous

From the above remarks, ii can be seen that there were

two major difficulties in the present calculation. First

there was an underestimation of the scope of the computation

recuired for meaningful solutions. In a certaln sense this

difficulty represented a result in ltself since 1t gave

susntitative information concerning the application of the

tight-binding method to crystals. In any case there are

2lwavs some masznlitude uncertainties in research work
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involving numerical methods although careful preliminary

estimation can minimize one's efforts. The second difticulty

Involved the unavailabllity of the mechlnery for the two-

anid three-center Integrals and the subsequent programaming.

Beeause such programs have general lnterest in molecular

structure studless, 1t seems clear treat they ultimately can

be developed into relatively standard forms so that comnuta-

tlons similar to the present one will be greatly simplified

in the future.

The unlqueness of tre Whirlwind I computer also had an

effect on the present calculation. In particular, toc many

mathematical functions were not avallable in adequate

program form. Thus because of unreliebility, poor efficiency

or unavellarility, 1t was necessary to write and test progreans

for generating many functions, (e. g. 1,(x), kp(x),
~ ~, mw’ + .

Sn (x) Bg (x), Fp (@) ). The cuperience galned eo Feseasrcl

Lessistant in Numerical Analysis and lachlne Computation was

especlally valuabl:: for this purpose. Iu 1.

in the future as computing machines become mor

that a large stock of function generation rror~ran. wil. be-

. result of tre efforts of mar

ba honed that

andardized

come avellable as

Finally it is of 1nterest to note some of

in the final programs for this calculation. The secular ecua-

tion generation program could hav

ways. First, it would heave been desirable to have the possi-

cility of including more excited Bloch wave states, or perhaps

sven better, including excited plane wave states (1. e.

Jef iclencies
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essentlally developing a modified orthogonalized plane wave

method). These additional basis states would then allow one

to test the accuracy of the valence electron energy band

solutions, wnich in a methenatlcal sence only depend on thre

original cinoice cf the crystal potential. Second, 1t would

have been very desirable to have been able to treat the

thiree-dlimenslonal graphite band structure, with 1ts correspond

ing 20 by 20 secular equation, by simply including more in-

tegral values. The factorization which was made into 6 and

TM energy bands 1s no longer considered very useful in a

calculation of the nresent complexity since the rrogramming

was necessar!vmore comnlicated and the machine time saved

was negligible

To accomplish thes~ twn improvements iii tae secular

equation generation, 1. 1

natrix techniques should be introduced wherever possible and

that the geometry nre~t “ntizations and sign conventlon diffil-

culties should be x. ‘mized by use of the Fe) function

discussed ina Ch¢

program woul

he pos ~ibilitv of an er=er.

Iii 11 atteant ©. , summarize the remarks of this chepter

1t is felt that a considerable part of the computational

effort in the present work was spent on tne more general

problem of efficiently utilizing a modern digltel computer

ince the letter problem is of consldéersble complexity, most

computing centers heave a group of starfl members who prepare
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useful programs for general use. On the basis of the needs

of the present calculation, it would apnear that these »nro-

grams fall into turee categories: specialized nroblem o2ro-

srans, sucroutline programs, end utility programs.

Considering the speclallized problem programs, examnles

ore the generation of the atomic orbital expansion functions

znd tne two-center integral prograars. Thls tyne of »rogran

1s usually culte complex ard limited in anpolicatiosn to a

specific fleld of research. Consequently the develonment of

these progreas will probablv receive low orlority by computer

steff members and will have to be dene Ty comduter--

research workers cc’

Subroutines

comzuter work sir

problems. Thus 1

—~rienced

ee

- Inpul and output data of these progreaas

1:5 succinctly stated in nmetreaztical terms. Examnles of

thes programs are function generation, matrix diagonalize-

tion and numerlcsl integration. Because of the wide-goread

annlications of subroutines they are best developed by the

nore exwerlenced computer staff.

Utility programs are defined to be programs which ac-

complish one or more mathematical oceratlions with very sim-

ple directions and with virtually no programming required.

Excellent examples of this type of orogram are the secular

equation utility »rograms described in Aonendix B. Utility

orograms are made up usually of one or more basic subroutines

but heave the essential difference that no programming 1s re-
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quired to operate the subroutines nor to take the results

out of the machine. Present experience with the secular

equation and numerical quadrature prograns has indicated

that utility orogrems can greatly speed up the process of

using a computer, even for an experlerced programmer. AS

with the subroutines, these orograms cen be prepared br com-

puter steff members.

Thus it is clear that &amp; areal deal , ' standard nrogremn-

ming can be done in anticlpatlon of general computer use.

The gradual development of the ezse of comnuter apnlicabil-

ity is still growin that as vet there 1c no limit to the

itational problens which wlll be sclvedcomplexity of the comw

in the future, alirou  drastic improvements over nresent

somoutations would anpear unlikely.
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Chapter

Results ard Conclusions

~ Dhyslcally significart result in a two-dimensional

e.ergy band calculation of graphlte 1s the size of the gap

between the five lowest (occupied) and tre higher (excited)

g- bands, end in oarticular wrhether or not the two lower

© bands (valence and conduction), which ere degenerate

ot one velue of tre wave vector, have: thelr polnt of de-

ceneracy in the @ bend gap. TIT = &amp; J bend gap ls

large encugh tn include all ¢ ° bends, tren 1t follows

from perturbation th ~~v the

computing t"

graphite woul

sarlier. the

nations in 1

pbloch wgve

3 i wom 2
a7 Ci

ry A .

~Nere

Moa
’ three-dimensional

(22 pointed out

longer "good" symmetry desig-

. crystel since tre o- 2nd TTIF

Hhite layers lntereact, but ire

Lrerminolor

DEC,
¥ 5 »

interest

Bloch wave

a. t

5
~~ r
Cr Lk i

directlv comparabl.  wit.

os
nd

1

ih

¢ t+
i

bend "
ot watlilatlon which 1s of

a vied bands foraned from thre

orbitals. This width ics4 5

 ~~ ¢ry wldth of the soft X-ray

emisslon spectra of tre gravhite valence bend which has been
. 2 Cs . =obtained by Chalkin &gt;, As estimated by Coulson and Taylor~

the experimental width is about 15 e.v. altirouzh examination

&gt;f the data curve indicates a possible lstitude of a few

electron volts more or less.

[ne energy band solution of the present calculation is
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shown 1n flg. 7-1 where the horizontal dimenslons are the

edges of the basic triangle of the first Brillouin zone as

shown 1n fig. 2-3. Energy values of interior noints of the

triangle were also found and are included in Appendix D

which gives the complete numericsl results. These interior

energy bands vary smoothly from the edge band values so

that they are only included in the numericel tabulstion of

the results given in Appendix D. In addition, the two low-

est 0" tends, which arise almost entirely from the Bloch

waves of ls atomlc orbitals, are omitted from fiz. 7-1 =ince

the bands are nearly independent of the wsve vector and at

an average value of -15.75 Rydberss. Finally fig. 7-2,

which 1s the same as fig. 7-1 exceni for a partially cosrser

mesh of wave vector values, is tne ouinut of the master en-

ergy band celculation computer program.

from fig. 7-1 it is observed that th

point in the sigma bands occurs at pt. C (7 = 0), with a

value of + .230 Rydbergs. The lowesl excli. J band has

roughlv « constant minimum value foi» wev vector values

forming an evoroximet:circle abow

belng about + 1.75  Fydbergs. The ¢&amp;:

bands falls a! + 770 Rydbergs, a value representing the

Fermi level for zero temnerature. Thus 1t 1s clear that

these results support to some extent the usual epproxina-

j= the minimum value

zencracy pnolnt of the

tion of neglecting the 0 states in calculations of gravhite

corduction nroperties which depend on the nature of the

energy bands in the vicinity of the Ferml level. However,
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this calculation shows by virtue of the overlanning of thre J

end {bands that for a coheslve energy calculation, which

Cepends on energy values for sll wave vectors of the

Brillouin zone, the ¢ states must be included.

The bottom of the ¢ bend in fig. 7-1 occurs at pt

with a value of —.787 Rydbergs; thus the width of the

calculated valence bend is 1.357 Rydbergs. This value

corresponds to 18.5 e.v. which 1s in good agreement with

the eporoximate experimental width of 15 e.v.

Consideration can elso be made of the ootentizl func-

tion used in the »nresent calculation. The potential, which

wa.s formed by superpositions of the Zp function, clearly

omits exchange effects. Olater has glver a prccecure for

introducing an approxima’= exchange potential correction
» ¥ a I 9 - ° 28

within the I ~ 1he one-electron approximation©

Thice ¢© mar corivection, 1f aoplied, would be

DLO Ang thLs  cube root of the charge density of the

occusie

pect the occupled bands to» be lowered more in energy then the

unoccupled bands since tne unoccupied wave functions are

orthogonal to the occupied wave functions. Thus, 1t is

plausible that a more careful consideration of exchange ef-

fects in the present calculation would only broaden the

bend enersy gap and would leave the present results quali-

tatively unchanged.

One of the more striking features of te present re-

sults is the smoothness of the energy bands. In fact, these
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bands are similar to those obtained from the Slater and

Koster interpolation procedure wherein the tight-binding

method 1s used with neglect of all but a few nearest-

neighbor integralsS. An exanple of this interpolation is

given in fig. 7-3 where the overlap matrix was assumed to

be a unit matrix and the effective Hemiltonlan integral

values are those obtained by Slater and Koster with an em-

pirical fit at symmetry points of diamond energy bands.

The Hamlltonlan integral values used are glven in Apvendlx
~
J

Because of the rough simllarity between tre present

calculation and the intervolation example, it 1s of in~®

to examine the stabilitv of the present results in view of

the several possibla simplifying aporoximations.

Omission of the ls Bloch waves was found to have en

overall lowering end warping effect cn the ¢ bands in such

5, wav that the ¢ band gan was roughly reduced by half.

I'his modified solution 1s shown in fl.

Tha result indicates that tre 0 states formed from

25 Nn

the 1.

i atomic orbitals were seriously non-orthogonal to

. Bloch waves. The variation in the size of the gav

—

shows especially that meaningful results cennot be obtained

without inclusion of the ls Bloch waves.

4 second possible approximation made was the omission

of 211 tne three-center potential integrals. This left the

TT bands nearly the seme but made a very pronounced change

in tre ¢- bands, again closing the o¢ band gap down to
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~4 Rud.

Fig. 7-3
Graphite Energy Band Interpolation
Example with Diamond Integral Values
used (Code No. 133)
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Fig. 7-4
Energy Bands (Cbde No. 1199)
ls Bloch Wave States omitted
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about half but also lowering the gap so far that the

Fermi level no longer was included. Flg. 7-5 illustrates

bend

this solution. The altered Hamlltonlan integral values are

given 1n Appendix C. It should be noted trnat the integrals

used To give the results of fig. 7-5 were obtained by ttre

methods of chapter 4 before the machinery of chapter 5 had

been prepared. Thus the two-center potential integrals

differ slightly from those used for the results of fig. 7-1.

However, these discrepancles are not meaningful =ince they

affect the accuracy of the metrix elements less than tie ex-

clusion of the three-center potential integrals.

Finally the solutlons were exanined wlth res»ec

epnroximetion ¢ ” omitting the higher neighbor distance in-

tegrals in t» &lt;generatlon of tre seculzr eguation matrix

elements. The gctable solution (fig. 7-2). which included us

to ninth neighbor distance integrals. was cranhlcally un-

changed when only up tn eighth neighbor distanc&gt; integrels

wer:- included (fig. 7-¢) so = car that all the matrix

element series had converzed

only slightly warmed when onlv

integrals were included in the J

to third ne’lali

bards. T°

ag

ation including uz to fifth neighbor distance

gown in fig. 7-7 and the solution including urIintezral

to third neizhbor dlstance integrals is shown in fig. 7-&amp;.

As ic ceen in trese figures, truncation of fifth or less

neizhbor distance intesrsls in the oa bands caused large
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Fig. 7-5
Energy Bands (Code No. 399)

Three-Center Potential Integrals omitted
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-4 Ryd.
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Fig. 7-6
Energy Bands (Code No. 1088)

Ninth Neighbor-Distance Integrals omitted
in Hamiltonian and Overlap Matrix Elements
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Fig. 7-7
Energy Bands (Code No. 1055)

Sixth and Higher Neighbor-Distance Integrals omitted
in Hamiltonian and Overlap Matrix Elements
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Fig. 7-8
Energy Bands (Code No. 1033)

Fourth and Higher Neighbor-Distance Integrals omitted
in Hamiltonian and Overlap Matrix Elements
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changes. It 1s for this reason that the numericel calcu-

lation made by Lomer®, which included only zero and first

neighbor distance integrals, ls not believed to be valid.

[n addition the effects of truncating only Hamilton-

ian or only overlap nelghbor distance integrals were 1n-

vestigated. It was found that tne solution was sensitive tc

both Hemlilitonian and overlap neighbor distence truncation

to roughly th seme extent and that the two effects were

essentially additive. Flgures 7-9 and 7-10 indicate the

effects of truncating the Hamiltonian integrals after the

fifth and third neighbor distances, resnectively; flgures

7-11 and 7-12 indicate the effects of truncating tre overlap

intezrals after the fifth and third nelghbor distances,

recpectively.
Thus tre resultl

cate clearly thet the tight-binding method wren used in a

non-emnirical way must be carried out with considerable

mathematical rigor in order that a meaningful solution will

be obtained. Furthermore, winen the effect of a Slater

exchange correctlon potential 1s considered, 1t 1s seen

that the present convergence problem in the natrix element

ceneration would have been even worse since tinls correcticn

nrotential is more extensive as a functicn of A than the +2

function waleh was used. Thus the intezrsls required would

nave fallen off very slowly with increasing nelghbor dlstance.

There reiaains to consider the future prosoects of the

bresent calculation. Probebly the most interesting extension
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&gt; A sl

Fig. 7-9
Energy Bands (Code No. 1059)

Sixth and Higher Neighbor-Distance Integrals
omitted in Hamiltonian Matrix Elements
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Fig. 7-10
Energy Bands (Code No. 1039)

Fourth and Higher Neighbor-Distance Integrals
mitted in Hamiltonian Matrix Elements
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Fig. 7-11
Energy Bands (Code No. 1695)

Sixth and Higher Neighbor-Distance Integrals
omitted in Overlap Matrix Elements
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Ener ?y Bands (Code No. 1093)

Fourth and Higher Neighbor-Distance Integrals
omitted in Overlap Matrix Elements



105

of the work would be to solve the full 20 by 20 secular

equation arising from the saze wave functions in a three

dimensional grephlite crystal. It 1s felt thet the addl-

tional required integral values could be ottalned by 1in-

terpolation of the already known integrel values glven in

Aopenélix C. The najor Hart of such a calculation would be

the computation of the wave vector dejsendent matrix ele-

rents and, uafortunately, the present computer Hrograan for

this 1s not readily generalized. The procedures to write

5, new program were alreacy dlscussed ln chapter -

The most comparable calculation to the present one 1s
A

‘Mite calculaticn of Lomer , wkere

“raul ov equation Pr xroup-~theoretical

methods at th

7-1), and Uv

tegrals tL

nents. Foo

include the four occupnled valence bands, have been replotted

in figs. 7-13 and 7-14. The zero of energy tas been read-

justed in these figures =o that the lowest 0 band at colnt

C agrees with the corresponding value of fig. 7-1. The

bends of fig. 7-13 were based on the assumption that the

ras symmetry dolints

end £*~a3t neighbor distance in-

first neighbor integrals used to form the matrix elements

obeyed the relation Hi; (Bh) = (-16e.v.) Si (fad . The bends of

fig. 7-14 were based on the assumption that H., (AE MONTIAE

F Y= -3 evr . In both cases estimations were made for

she remaining unspecified Hamlltonlan integrals anid the over-
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———-—

Fig. 7-13
Replot of Lomer's "fig. 4a" with zero of energy

adjusted for comparison with fig. 7-1
~— = ¢ bands

—-—= w band

C

—r

Fig. 7-14
Replot of Lomer's "fig. 4b" with zero of energy

adjusted for comparison with fig. 7-1
—— = © bands

== = Ww band



107

lap integrals were obtained from nodeless Slater AQ's.

At first glance the bands of figures 7-13 and 7-14

ere sinllar to those of figure 7-1 with the ordering of the

bands belng nearly the same, the only exception being the

inversion of the lower Tr and the doubly degenerate

bands at point C, Closer inspection stows, however, that

with respect to the present work, the energy values differED ~&amp; oO

considerably anc thet the bands, which are of a total width

of 10 to 12 e.v., are flatter. Moreover, the present cal-

culation shows that many more nelghbor distance integrals

than Lomer used are required for meaningful convergence of

the secular equation matrix elements. Thus 1f Lomer had

included, for exemple, second neighbor distance overlap

integrals, his results would have been quite different.

Consequently Lomer's results must be viewed 2s an apvlica

tion of the Slater and Koster interpolation scheme where

:

cgLhe o “Tective integral parameters were obtalned by cuall-

tative arguments.

summary, th resen. two-dlmenslonal graohite cal

culation, by virtue of the o¢ Yand energy gas enclosing

the WT band degeneracy point. supvorts the usual approxi-

nation of usinm only the Ww states to study the vicinity of

the Fermi level in three-dimensional graphite. The present

results are also consistent with the experimental width

measured for the graphite valence band. Finally the calcu-

lation demonstrates that very few approximations are legitl-

nate in a tight-binding calculation of graphite and yet the

results resemble those obtainable from the 3later and Koster
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interpolation scheme, which requires tut a few parametric

of fective integral values.
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Reprinted from THE JourNAL oF CHEMICAL PHysics, Vol. 24, No. 2, 452-453, February, 1956
Printed in U. S. A.

On the Computation of Auxiliary Functions for Two-Center Integrals
by Means of a High-Speed Computer*

F. J. CorBATO
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received April 22, 1955)

With the view of computing simple two-center integrals by means of a high-speed computer, programs
for certain basic auxiliary functions, which are essentially the usual 4,.(y) and B,(x), have been prepared.
Computational procedures for generating these functions are given.

A two-center integrals between Slater AO’s,except the exchange integrals, can be expressed!
in terms of integrals of the type

© 1

yatBty+d+2etl | dg | dye v(t 7) a (¢— id

X (14+) (1—£n)’(2—1)«(1—2%, (1)

where (£7) are prolate spheroidal coordinates. The
integrals, Eq. (1), can be expressed in terms of the
auxiliary functions

Ca) =e | ire tvdt, (y&gt;0)

permit reducing the internuclear distance to zero with-
out numerical difficulties. Their computation presents
no problem since they contain only positive terms, and
if one needs the set #=0(1)N, the upward recursion
relation

Cay) =y"+nCn(y) (4)
is most convenient.

The traditional way of computing the B,(x), which
corresponds to Eq. (3) has the disadvantage of rapidly
losing significant figures unless x is large compared to #.
To avoid this drawback a reformulation has been made
using the expansion of ¢ in Legendre polynomials’ and
the integral representation of the spherical hyperbolic
Bessel functions of the first kind, i.e.,

rN2

=n! yl (all 4)
1—0

and

B= [ tre trdt=x""" eCou(—x)—e2Co(x)]. (3)

The functions C,(y) are preferable to the more
familiar functions,? 4,.(y)=v""'¥C,(y), since they

* This work was assisted in part by the Office of Naval Research
under Contract N5 ori 60.

! Ruedenberg, Roothaan, and Jaunzemis, “Laboratory of Mo-
lecular Structure and Spectra,” University of Chicago, Technical
Report 1952-1953, Part 2, p. 137. (To be published as a paper in
this journal.) In the case considered here a, 8, v, 8. € are positive
exponents.

2 E.g., see Kotani, Amemiya, and Simose, Proc. Phys.-Math.
Soc. Japan 20, Extra No. 1 (1938): Extra No. 2 (1940).

n= 3" a.;P;i(?)
7=0.1

with

@ni=n!(2j+1D (n—j) (n+j+1) 11]
&gt; ’=sum over: j even if # even; 7 odd if » odd (5)

nll=nn—2)(n—4)---(2or1)
and

in (0) = (1/20) apy (8) =H (— 1)" | P.(he-t=dt (6)

where [,,31(x) is the ordinary modified Bessel function.
3 E. T. Whitaker and G: N. Watson, Modern Analysis (Cam

bridge University Press, London, 1946), p. 310.
¢G. N. Watson, A Treatise on the Theory of Bessel Functions

{Cambridge University Press. London, 1952), p. 77.
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Substitution of Eq. (5) and Eq. (6) in Eq. (3) yields where the absolute value signs maintain a numerically-
accurate form. Hence using Eq. (11) to compute 4o(x),
all 4,(x) up to in(x) can be computed by successive
application of Eq. (8). A variation of the above pro-
cedure which avoids the cumulative round-off error of
the successive ratio multiplications is the following.
One puts formally

tn(%)=sa(0)in(x),(RM) (12)
and determines the s,(x) by the recursion relation

Sa—1(2) = 2n+ 1) 15, (2) + 5 p01 (x), (13)
starting with sa (x) =1, sarp1(x) =0. Then 4o(x) is found
from Eq. (11), and thereby 7 (x) is determined. The
final step consists of the independent normalization of
sach 4, (x) according to Eq. (12). The alternative pro-
cedure is not appropriate on a computer for very small x,
because of the excessive variation of the orders of
magnitude, and ~0 must be handled as a special case
of the program. It should be noted that the above
procedures for determining the 7,(x) are more efficient
han the usual method where iy_i1(x) and iy(x) are
determined from the power series form and then used
to start the downward recursion relation.

A completely automatic generation subroutine pro-
gram which computes the C,(y) and B,(x) functions by
the above schemes has been written for the Whirlwind
computer at M.I.T., and the results indicate six to
seven significant figure accuracy, a limitation due only
to the computer arithmetic. For N=6, the time re-
quired for the computationoftheC,(y)and the B,(x),
n=0(1)N, is about a second. In addition, by using
this basic subroutine, programs have been prepared for
all the one-electron integrals between the orbitals 1s, 2s,
and 2p. Each of these integrals requires between one
and two seconds.

After the completion of this work, it has been brought
to the author’s attention that C. C. J. Roothaan has
recently investigated the functions B,(x) along similar
lines.

Bal@)=2(=1)" 3 ansis(v) (7)
Because the sign of i,(x) is always the same as that of x7,
it follows that the B,(x) are expressed as a sum of
either all positive or all negative terms, and hence can
be computed accurately by the use of Eq. (7) if the
i.(x) are known.

The i,(x) are efficiently obtained by the following
technique. First a set of ratios

7a) =tny1(x) [in (x)

are computed using the recursion relation

ro_1(x) =a 2n+ 1427, (x) I? (9

in the numerically accurate downward direction starting
from n=M where 7, is made zero.’ It can be shown
that the choice® of M&gt;N+5+410|x| (N43)! gives
seven significant figure accuracy in the ratios for n &lt; N.
Having obtained the ratios, the function 7o(x) is found
by using a relation resulting from the Wronskian of
the spherical hyperbolic Bessel functions, i.e.,

22m (%) Bair (2) +intr (2) Rn (2) ]= 1, (10)
where

Fa (x) = (2/72) K ny (x).
For n=0, Eq. (10) becomes after inserting the explicit
forms of k¢(x) and k;(x)

to(x) =e =[14 |x| +aro(x) T, (11)
5 The procedure of using ratios is essentially due to J. C. P.

Miller, British Association for the Advancement of Science, Mathe-
matical Tables, Vol. X, Bessel Functions, Part II (University
Press, Cambridge, 1952), p. xvi.

8 A better but more elaborate expression for M can also be
found—in any case, unduly high values of M are avoided by
using the closed form, or, equivalently, the upward recursion
formula for the 7..(x) when x&gt;4N 42
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Memorandum DCL=-48 Page 1 of 12 pages

Digital Computer Laboratbry
Massachusetts Institute of Technology

Cambridge 39, Massachusetts

SUBJECT

To:

From:

PROGRAMS FOR SOLVING SECULAR EQUATIONS

Scientific and Engineering Computation Group

F.J. Corbatd

Introduction

Production programs for Whirlwind I are now available for

solving two types of secular equations by use of the techniques described
in a report by A. Meckler™ and are summarized briefly below. These are

the ordinary variety, (case I), &gt; Yi = Vig As and the general
variety, (case II), Hy Vip = &gt; Sy5 Wy As where k = 1, 2, «00 m,

j J
H and S are real symmetric matrices and S is positive definite. The two

programs, for case I and for case II, can handle matrices of order

14 n&lt; 32, The results are given ;photographically:.and consist of the
+ i]Input data and the AL and Vip where in case I, &gt; Vyy Vix § op

and in case II, 2 V, To Vi = $gy In addition the intermediate
9

results of case II, if desired may be displayed.

Methods of Solution

Matrix diagonalization is the elementary process used to solve

both cases. The diagonalization of a symmetric matrix My = M., is
accomplished by successive 2 by 2 "rotations" of all the matrix elements

associated with the indices i and j where Ms is the largest off-diagonal
element. It can be simply shown that such a process converges. The ex=-

plicit transformations applied ares

Log. Meckler, Quarterly Progress Report, Solid-State and Molecular Theory
Group, M.I.T.. Oct. 15, 1954, Pp. 15.
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cM, + SM

SM, + My

Page 2 of ]2 pages

4 i,]

i,3

* i]

La + Rec¥ys + SM,

CS b.2. : r
|

M..
1]

where
onl==

and

 +)2,2 92 + 4)CM«Noy, Ai ij CUAj(M5ii 537

2H, 4
: - - Z(Mp = M0) = \((Mpy = M0)" + 400,)° 5 (M,C H,,)

Similarly, the unitary transformation, U , (initially a diagonal
unit matrix), is modified after each 2 by 2 rotation by the corresponding

transformation affecting the ith and jth columns.

3,
0’

 kk

U
km

~ cli, + 5014

1 £ i,j

Tis =-sl,, + Uy

This process continues until Mis &lt; 2° s Where ¢ is the preset criterion

value, the result being that the diagonal of the final My (i.e. the eigen-
values, A) and the final U satisfy the conditions:

id
Y TU. = 0 XN or MU UH (where A does not .

multiply as a vector
hut as a scalar)
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In nearly all applications; the original matrix, M, was computed
from an operator, In s by means of a set of basis states. These states

can be represented as a set of unit vectors, ey in a Hilbert space, and

what is desired is the transformation which when applied to the original
basis states gives a new set of basis states that when applied to the
operator n y Yield a diagonal matrix. To obtain this transformation it

is noted that if

1, = &lt;Eynls,&gt;
and

then

$y.

d;

T ulm .U
1] 115 jk

+ “a —
= 0 nl Cy v jiXm

he

v x

W837]L- 0
elmle&gt;

f —Thus the desired transformation is ® = &gt; of 5® i Stated in another
3

manner, the kth eigenvalue of M is associated with an eigenvector consisting

of the kth column-vector of U ik where the components of the eigenvector
refer to the original basis states used to compute M.

For case II, the procedure of solution is the following. First
? 1 =

S is diagonalized so that SUq = Ug ,S 9 where S 1s diagonal. Then S 1/2

-= - !
is formed where S™/? = Ug, (S") 3/ 2, and the new matrix H is formed by

' ve -matrix multiplication where H = § 1/ HS 1/2 » Then a second diagonalization

is made such thst
!

HUg, = UgA
and finally VY = s=Y/ u, where it is seen that Ts V=1,

To verify that this A and YJ form desired solutions, it is
observed that
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HY = rs" 20, = [:(8" 208g, (sy Y/3, | is Zu, :

Y's, = su, \

iN (s’ AY[Zs 5" glug, sh) “1/2 Ug A

“uN
SY in

Specification of Input Data
Both programs have their input data, (also called parameter

sets), located in the same storage locations and moreover do not destroy

during operation any of the necessary input information. Thus a series
of secular equations each differing from the previous by the addition of

a row and column could be conveniently solved by supplying the complete

matrix (or pair of matrices in case II) in the first parameter tape and

then merely changing the matrix order; n, for each subsequent parameter.
Furthermore; a parameter tape for case II could be used with program I,

but would, of course, give solutions for case I. (Program I would also

disturb the storage of the unnecessary S matrix.)

In the listing of the input data, two types of number conventions
are used. These are the single-register (15,0) integer, (less than 32768
in magnitude), which may have a sign but no decimal point, and the double=-

register (24,6) generalized decimal number which must have both a sign
and a decimal point. The specific locations of the input data are:

matrix order, 1Ln&lt;32

diagonalization criterion of S, eg2=60

diagonalization criterion of H, cy»=60

i

Y (15,0)
integers

37! identification number

2048) +Hqq listingoftheH matrix
continued on next parce)
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+H. A

tH,
+H. .

+H.,

3

‘Hoo
+S 13104| 1
+515

listing of the S matrix
(24,6)
numbers

*S,5
*S13
*S5q
~

a]
m1

Both programs start at register 32 decimal and stop on an "si O"

instruction in register 33 decimal (41 octal). If many sets of parameters
are to be included in one big tape and are to be automatically run con-
secutively, all but the last set should contain an additional 33] sp26,

end the last set should contain a 33 810. Each set on a multiple-

parameter tape must be preceded by a "fc" and then a "{24,6)"3 the per-

formance request should have, under the heading of operation instructions,
a "Turn off si 1 switch" on the line preceding the multiple-parameter

tape operation instruction.

Criterion Values

The values of Cq and Cq are used to terminate the diagonalization
orocedures after sufficient accuracy has been obtained. For both the H

and the S diagonalization, each ¢ should be chosen such that

| maximum absolute error |Faximm absolute error’Cc2 &lt; in eigenvector components) o lin eigenvalues
X= Ng lnax | Ay| max
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The accuracy of the computations is such that the right-hand side of the
above relation can never be made less than about 1077, Empirical values

for this last figure are:

Eigenvalues:
Eigenvectors:

Case I (n= 5)
1x 1077
2 x 10°

Case II {n = 5)
4 x 1077

75 x 10

Case I (n = 18)
Eigenvalues: - 1077

Eigenvectors: g 1077
For an example of the determination of ¢, suppose that 6 figures were

designed in the eigenvectors and that |X, - A, max ~~ 3+ Then

3x 10” -9 ~9~ ,8.,-30 -242 3 x Eee = 150 x 107° 256x107922% = 2

and therefore c__2 -24. (A useful relation is that 2'° = 1024 ¥ 10*3),
In practice, one would probably use +c = =30 to be certain of the desired

accuracy. As is implied, the value of c can always be safely lowered

(except not below approximately =60) since the only effect will be to
raise the computation time somewhat (i.e. at worst up to 50 or 100% more
time). For case II when the eigenvalues of S and H are both of the same

order, Cq and CH should be about the same, since the overall accuracy
is determined by the least accurate diagonalization.

Form of Output

All of the program output is given photographically with each
secular equation solution beginning on a new frame. The various displays

may be divided into three classes: 1) the initial data, 2) the inter-

mediate results (case II only), and 3) the final results. Each display
of the first two classes will consist of a "heading" line followed by

either a "symmetric® or "square" pattern of the pertinent numbers. The

third class consists of a heading line followed by the "rectangular"

pattern of A, in the first column and then the Viz to Vin? each in a
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colum, starting from the third column. The first class is normally dis-
played but may be suppressed, the second class is normally suppressed but
may be displayed, and the third class is always displayed. The program
will use as many frames as are necessary to include all the displays,

starting on a new frame if a particular display will not entirely fit on

the remainder of a frame.

The "heading" line will have in the first column, the identifying
code number of the solution; k3 in the second column the criterion value,

Cy (except on the display of S); in the third column the criterion value
Cas (except on the display of H); and in the fourth column, an intermediate
result identification number, i, (only for class 2 displays). Case I

results may be distinguished from Case II results by the absence of Cq in
the result heading line.

The selection or suppression of the various displays. depends on

the contents of the associated suppressor registers: +0 for displays

=0 for suppression. These displays and their suppressor registers are:

Displ-v Contents Pattern

Class 1 1s sym.
Sym.

sym.

3Q.

sym.Class 2

- -

8Q.

rym.

Sq.
rect.

\v

Class 3 {a+V

Decimal Address of
Suppressor Register

1598

1599
1600
1601

1602
1603
1604

Symbolically, we have for the various forms of output:

"Heading"

1Symmetrict

 |x r Ch r cq | r-

i 1 4 | 7

CT
_ em FO

(continued on next page)
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[6 9
10

11

12

13

1
15

i.

2009

n

n+l]

2n

nL"

3n
3n- .

"Square"

"Rectangular"

4n+1|
Qo 0

5n

DOW

n

2n+l

in |

»

3n+l1

in

1
00 ;

n

n+l

2n

The total number of film frames required per solution depends

on the number of displays not suppressed but may be computed from the
schedules given below. If two or more displays are to fit on the same

frame, they will be separated by two additional spacing lines beyond that
given in the schedules. (For n&gt;8, no two displays will fit on the same
frame.) Each frame can contain a maximum of 36 lines.

matrix order head. + sym. ' head. + sq.
number of lines (or frames = f)

head. + rect.

(continued Ln next page)
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9-10
11-12

13=14
15-16

17

18

19
20

21-22
23=24
25-26
27-28

29-30
31-32

12

'3
14
15

2f

2f

2f

_f

2f

3f
Lf
Lf
of
~p

=

€

5

13
15
17
19

2f

2f

2f

3f
5f
5f
5f
6f
6f
7f

7f
oh

Page 9 of 12 pages

11

13
15
25
28

2f

_f

3f
3f
5f
6f
6f
6f
7f

7£
gf
Bf

of

For convenience the most common situations are summarized:

number of frames per solution

matrix order

1-4
5-6
7-8

9-10
11-12

13-14
15=17
18

19
20

normal | normal
case I case IT

y

J
10

12

"ull suppression of
cases I and II

[continued on next page)
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21=22

23-24,
25-26
27-28

29=30
31=32

10

11
12

13
14
15

ih
15
17
18

20
21
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Information for Filling Out Performance Requests

l. Time estimates: These are difficult to state in general but

roughly Tease 11 = 2 ase 1 and Tease = Kn where K~15 sec. Variations

from this formula depend on the difficulty of diagonalization (i.e. on the

size of the off-diagonal elements and the stringency of the criteria). *

2. Program stop: Stops automatically on s10 in register 41
octal.

3. Camera output: See film frame schedules above for the
number of frames per solution. Camera first used in O sec.

4. Magnetic drum: OQase I uses auxiliary drum groups 1, 2, 33
case II uses auxiliary drum groups 1, 2, 3, 4. Drum first used in 0 sec.

5. Operating instructions: These are for a single-parameter
tape

KE, fb A s RI,

fb 10172=20-B, RI,
fe C s» RI, RS.

where A = "dummy logging tape";
(tape room will prepare
this)

B - {22% (case I)
| 331, (case II)

C = parameter tape number

For multiple=-parameter tapes, the corresponding instructions are

E, fb A 9s RI,
iol72

fb 1672-20=B, RI,
Turn off si 1 switch

fe C s RI.

* An additional time of about 10 seconds must be added for each full
frame displaved.
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Program Alarms

Octal Identification

PC = 3764
AR = 3453

PC = 3764
AR = 3503

3, Check register (case II PC = 2601
only)

Type of Alarm
l. Check register

Lo Divide error (case II only) PC = 3612

Immediate Cause

GD no. unscale-
factored

GD no. in MRA too
large to store

An eigenvalue of a,b,c
S 1s&lt;0

An eigenvalue of a,b,c
S=0

Probable
Cause

Probable Causes

a. GD number of initial data out of phase, due to either a missing decimal

point, a missing seventh hole in the tape, an incorrect storage address,

or a faulty parameter tape read-in by the computer. Compare print of
data tape with display of input data.

b. Input data is very poorly scale-factored or, {case II only), one of
the eigenvalues of S is extremely small.

c. The matrix S is not positive definite.

Additional Remarks for Experienced Programmers
1. If matrix elements are to be generated, decimal registers

38 to 1563 inclusive are available for programs and will be restored after

each solution. Additional storsge is available on the auxiliary drum
starting at the decimal address 7630 (case I) and 10206 (case II). All
generation program tapes must have a NOT PA included; the PA already in
the program contains buffers b and 6b inclusive and a single cycle counter.

Thus all cycle instructions may be used, but no "isc" orders (except iscO).
Buffers b through 3b are used as temporary storage duringasolution and
Lb through 6b are unused.

2. The program also contains a DIB/DOB subroutines the decimal
entries are:
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for DIB

spl605
[om]
pa]

~~1CL

Page 12 of 12 pages

for DOB

spl610
[cx]
[Da]

core memory address

aux. drum address

no. of reg. to transfer

- return. point in wi mode-
 Ww

7ZLG
F.J. Corbato

March 15, 1955

/-
A

am +
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TABLE C 1

Energy band interpolation integral values obtained by Slater and
Koster for the diamond crystal, (private communication). These
integrals were used for the interpolation example of the graphite
crystal given in figure 7-3. For A values not listed, the
integrals were set equal to zero. The integrals are listed in
symmetric matrices of vectors where each vector is a list of the
integrals for the Ay values: 000, 100, 200, Energy units are in
Rydbergs.

d~milton*~n Int- ~rals: AA MY)
 Tr Dg

1. gerd
’

mt

n

“
-

J

7

 J)

2 2A

0 g

25
-,.03

op i

I

2  am
ry

)
\
~

'

&gt; Ir
2
NMS
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TABIE ¢-1 (cont,)

~ -rlap Integrals: S040)
ro PT

loo 4.

”

—

7 ~
49

J

A

-’

230
-

2 7

2 7

~ J
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TABIE C=2

Overlap and kinetic energy integrals used for figure 7-1 solution.
These integrals, which only depend onA, are listed in symmetric
matrices of vectors where each vector represents the integrals for
the A values: 0, 1, 2, 3, 4, 5, 6, 7, 8, ©. Non-significant zeros
are omitted for legibility. Energy units are two Rydbergs.

°sag

-

1

FY Tntegrals: Sy (uy)
1
 lhe 7 27

elalele +,0000¢
H4Q7

NUR
126

+1.0000C
+, #0055

902+

A

 rc J

+,00000
$308
1365

287
133

53
15
10

4
1

N0000
5082
085
3

ya

+ 00000

YOON

+.00000

+, 0000C

a

7
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TABIE C=-2

(cont. ): SAMY)
150 230

Overlap Integrals
’

7

£54 f -1 00000
Ih oT
"346
1n20

2

(cont.|

D~ T

+,00000

2 7

+, 0000"

J
5
4

20 1.000290
 © 10

)
1

h- YOON

~~

207 +1.,00000
+ "2710

00
51
0

ta

3
3
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{ retic Energy Integrals:
\

y 1s 7 ~ 7

1cA ‘626086
¢ oe

 -—or: ha

T'ABIE C-2

v)Lr(m
- r=

10

(cont.)

2- 7

, 00000

a

+,00000

7

r

P30 hh PN %

~  0000N + 000C™
3

4

3
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TABIE C-2 (cont.

“metic Energy Integrals (cont.): 7 (4m)
1s0” 2a” 7

y

D a

JO000
he

D wi ' DUNN

\

2 7
+.00000

1.00000

7

5

on +1,24020
+ 9250

171

Q
7

)

 J
-

3
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FABLE C-3

I'wo-center potential integrals obtained by the procedures of
chapter 4, These integrals, which depend only on J , are
listed in symmetric matrices of vectors where each vector rep-
resents the integral value for the necessary A =0, 1, 2, 3,
4, 5, 6, 7, 8, 9. Non-significant zeros are omitted for legi-
bility. Energy units are two Rydbergs,

2

Potential Integrals: 1 = [Z(000]A1V)
7X 1s0

1s” +23.82009
2064

-~

250

noTh
3

-~

200

+.00000

~
 il 7

+.00000

2-7

+.,00000

7

~

2sS0 +1,51502
+ 8277

o

~N

+. 00000

-—

-

al

d

+ .COCO0

.

+.00000

I

4

ir
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TABLE C=-3 (contd,
/ £ Zu lhy?

Potential Integrals (contd.): &lt;=15:(000 |X»), =o

20

y=
-

~ ho 2 7

6436
 0H

cin

~

.

+ 00000

7

-~

J

eT
+.00000

J

~
J

~

3

2

J

~

0436
ji

—-

-

 J

+, 00000

 i

)

)

/

g

~

w)

oT ¥- 6436
2328
2
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TABLE C-3 (contd.

Potential Integrals : (5:Om 000)

NN
1s@

2 7

187”

32009
23

2c 0

+3.84874
-, 38821

3815
1587
cr

-

\

ot

&gt;
Ta

~~

+1.51502
+.11411
Fo. A360

2pa—

+.00000
t+. 75232
+.12021
3 ( f=

2
“ 0

1

he

- 00000

- 1.0611

Teal
5

2.y/4

+.C0000

-~

+.00000

207

+.00000

~~

 &gt;

+.,00000
O

—~



13%

Potential Integrals (conta) : 2(Joop)
2g 207

#

2o -, 06436
F.15470
+, 3054
+, 1607

327
13.

Lo
£7
10

Hi

+, 00000

9)

~

2.AT - 96436

7022
724
oan

Cn

~,00000
0

I
 1-00C0

rr

J

™
J

’

)

J

0

207 +,96436
t+. 7022
= 724

324
I 5
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TABLE C-3 (contd,)

Potential Integrals: OA pp)
\
£N 1so 280°oA &lt;

1s0 23,82009
2

J

+3.84874
- 234

!
~

J

200

+ 00000
Lob

.

~~

25/2

+, 00000
mn

2077
+.00000

=

~~

 Ss J

7

+1.51502
+.121411
+. 1362

588

-

- 00000

2150
 ©1382
~N=

+,Cc000

 —~
a

—-—

nf 00000

—

"J

i
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—~—
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[ABLE C-3 (contd,)

Potential Integrals (contd.): 5 Gnu)

so

2. J

1 J 2
sd 7

~

ji J

643shos ison

20

+.00000
0

207
+.0C000

/
"

~

rt

ull - , 06436

- 7022

724
324
a

+.00000

—~

~

~

Nad
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TABLE C-4

Hamiltonian integrals computed from two-center integrals of tables
C-2 and C-3. These integrals, which were used (along with the overlar
integrals of table C-2) for the solution of fig. 7-5, depend only
on A and are listed in a symmetric matrix of vectors where each
vector represents the integrals for the values A = 0, 1, 2, 3, 4
5, 6, 7, 8, 9. Non-significant zeros are omitted for legibility.
Energy units are two Rydbergs.

Hamiltonian Integrals: Ai/(AAY)

xX 1s0~™

sf =-7.851067
24

2s

Ps

+.,32874
+.2908641
+, 4c

4 70

=

ad

-

- 24154

-. 17347
-, 3924

2182
4 &amp;n

el

- ,00000

-, 74932
- 12267

6269
1201
475
138

94
32
12

+.,00000
+.13916
F. 4488

23900
21

he

~ 77

+,00000

~
~

+ , 00000

2.77

+.00000
0

-
~

~

~

+.00000

}
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TABLE C-4 (cont.)

Hamlltonian Integrals .cont,) HAA)

orJ

2" ’ &gt; 0

-. 09060
6207
“002

‘3
823
508
26

1

v

2 7

+.00000
2
 MD

/

/

po

207
.00000

Pp

~

r

207

207

+.09060
+, 4195
to 1036

656
203
101

29
29
2

3

d=  O0000
¥

-/

FOLTT24
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1036

656



 ip Sd

TATIE C-5

Two= and three -center potential integrals computed by the tech-
nigues 57 chapter 5. Parentleses indicate corrections based on
the two-center integrals of table C-3. It is noted that

‘uly!Yr Om) = 25, (5 Apo in)
where the Wj’ values listed include the parenthetical cor-
rections. Energy units are 2x107° Rydbergs. The P integrals
given are rounded off from the precise values used in the com-
nuter to obtain the V integrals.

yyPotential Integrals: 2 (000) AY)

a0

&lt;"

-n

ev

xa’ i,3% 1s, lse 1s. 2s

000
100
101
102
200
210
201
211
202
212
300
201
302
100
+10
101
411
102 1
412 +1 v

(higher (+1) (0)

+2°+H2024
+3037
+3037
+5037

+75
2

/ (000) +2391665 +3448

r
“ll
 -— AZ

2+
4302

202.
Fie. C-1

1co, 20g 1a@ 200 2:80°,250° 230,200

J

35
 vs +151502

+3352
+4352
$32

0
+11740
-5870
-5&amp;70
+414
 0

304-i1h
| O

+444
+A

~ a

+2
5

+5

1
-

X

-

ia

(
Lo;ol

L

pie

1} o

we

t =~ ) -5
2

~

1
LZ wt

4
BF z

e

Lo

 —-

1

[0) 0) (+ 0

+1747



gd

TABLE C-5 (contd.)

Potential Integrals (contd.) : /5(0oo| Au’)
AMY! 1,35 sl, 20 2pe~,2p0~ 2p0 2p 207,2p2p, 2p7

000
1.00
101
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200
210
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211
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Potential Integrals:

TABIE C

. BIE ¢-5 (contd.
(7 (1001)40)

/
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“-

AY 3, 0= leg, dsr se 7Xe
de

200
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TABIE C-5 (contd.

ial Tntegrals: f7/ZOUAY)
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Potential Integrals: 2Goo|arv’)
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TARIE 0-5 (contd.|
Potential Integrals (ZI (F00104Y)
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TARIE 0-5 (contd

Potential Intecrals: 7 5ool hu’)
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TABLE C-5 (contd,

Potential Integrals: lf Gp | jay’)
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TABLE C-6

Hamiltonian integrals computed from the kinetic energy integrals of
table C-2 and the potential integrals of table C-5. These integrals
which were used (along with the overlap ‘integrals cf table C-2)
for the solution of figures 7-1 and 7-2, depend only on ) and are
listed in a square matrix of vectors where each vector represents
the integrals for the values hy. = 00, 10, 20, 30, 40, 50, 51, 60,
70, 80, 90, Non-significant zeros are omitted for legibility.
Energy units are two Rydbergs.

Hamiltonian I* Segrals: Hy (Aaw)
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TABLE C-6 (cont.)

{amiltonian Integrals (cont.) : A (Am)
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Aopendix D

Numericzal Results



5%

The following 100 microfilm prints give the numerical

results of the most accurate solutions indicated in part by

fig. 7-1. The first set of 25 prints gives the Mi; (k)

a.nd 4; (B) matrices of the J states. The second set

nrints glves the corresponding matrices of the o—

solutions. The third and fourth sets of 25 prints

*he E® and Cin &amp;) solutions of the w and oo states.

respectively, The matrix element Wi; 1s teken to be the

element of the ith row and the jth column. The basls states

for the matrices are:

nn states:

7 states

Bae.sls state Bloch wave subscript

2pz, + 1

20Z,

2S,

2S,

20X, +

2X,

2py y +

2DY
1

| 3

Tre wave vector points for which solutions are glven are

indicated by fig. D-1.

The numbered wave vector volnts of flg. D-1 are assocl-

ated with 1ldentifying code numbers indicating different

comouter runs; the unnrimed and nrimed point numbers refer

50 solutions with code numbers 1099 and 1299, respectively.



).

» &amp; 7

Q.

Fig D-1
Wave Vector Points of the Numerical Results



AOF

Every matrix and solution has an identifying heading block

of three rows which always has a code number (first row,

first column), a point number (second row, first column)

ond a blank space (first row, fourth column)

prints, +.109%0000/+04 means +. 1099 an?
headlng blocks are lllustrated where ¥

The various

end R, are the

wave vector components as defined in eq. 2-5c.

Hemlltonian matrix head:

Code no.

Point no.

C 7ot 568, 96%.
Overlep matrix heading:

Code no. J

Point no.

~5 ~ wt’ £ 06%,
Solution heading:

Code no. ’ ~ AY

Point no.

i] ’ wo Cc R,
All other forms of heading blocks (present only in Tr

&gt;rints) are for internal check results.

The af and Pp matrices, which are given in a symmetri-

matrix display form, are found at the top of the appropri-

ate print in all cases. The solutions are glven as consecu-

tive vectors left-to-right, row-after-row with the sequence

of: the eigenvalues as a vector, a blank vector, the first

eigenvector, the second eigenvector, etc. The o- state so-

lutions start from the tov of the anpropriate print and the



br

T state solutions are found at the bottom.

lo avold ambiguity, the following chart of frame

nunbers is given:

Point number

os

LJ

1

D

&gt;

Tel

1!

12!

% 4
 Tl etates

5415

5415

5417

5419

5421

54°

5

J

5

5

Se

54°

.

gh"

0!

G4"

S41

483

OL 85

S487

0491

C43

S45

24ST
~ LC

£,C
5414

547.8

5418

5420

542.

5424

5428

5428

5470

5472
5 ot

54
oi -

G/T.

Sr 7e

0480

o

0484

5486

0488

S4g2

o4ch

OLE

0498
26500

 gd states

24 E,C
54473

5449

5455

5461

S467
5473

5479

5485

5491

5497

5503

5500

c=07

S517

051y

C505

954

S537

05473

O54Y

9561

o5(7

O57

S57¢
o5 88

5496

5502

5506

5514

c5l2

c518

0524

¢530

C536

O54

0540

C554

0565
0572

©578
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