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Abstract

A method is presented for analysis and robust control synthesis for linear time-
invariant systems with parametric uncertainty structures. The method is based >n
analysis of the quadratic (Hz) cost averzged over a set of system: whose system matui-
ces are continuous functions of bounded real par: - -lers. A methed of describing such
a sct of systems is presented and related to existing uncertainty modeling paradigms.

Bounded avernge cost is shown to imply stability over the set of systems. Sufficient
conditions for the existence of the average cost and set stability are developed using
time domain operator decomposition techniques. Since the average cost cannot be
exactly caiculated for systems with many uncertainties, the operator decomposition
techniques were used to develop computable approximations and bounds for the exact
average cost. These computzable expressions take the form of coupled systems of
modified Lyapunov equations. Their solution is discussed along with conditions for
existence of positive definite solutions.

The exact average cost and its approximations and bounds are proposed as cost
functionals used to incorporate the effects of the model uncertainties in the controller
design process. These cost functionals are used to derive expressions for component
and uncertain parameter cosis which are applied to the problern of model order re-
duction an‘l uncertain parameter truncation. Explicit formulae for modal component
and parameter costs are derived and compared for the various cost functionals.

The synthesis of rcbust fixed-order static and dynamic output feedback control
is addressed. Necessary conditions are derived for minimization of the proposed cost
functionals. Techniques are presented for incorporating these couditions into a nu-
merical solution technique based on homotopic continuation methods. This terhnique
is used to determine the relative robustness properties of the average-based r.. signs.
These properties are demonstrated on two simple structural examples; the fourth-
order Robust Control Benchmark Problem, and the eight-order Cannon-Rosenthal
Problem. The concept of controller efficiency is used to rank the designs based on
the trade between nominal performance and achieved robustness.
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Chapter 1

Introduction and Review of

Previous Work

1.1 Motivation

One difficulty in feedback control algorithm development is that design and analysis
are based on models that do not necessarily accurately reflect the actual system to
be analyzed. The difference between a model and the actual system is typically
referred to as model error. Model error can arise from errors in the values of system
parameters used in the model, unmodeled dynamics, and neglected nonlinearities or
disturbances. They can be expressed in the time [1,2] or frequency domain [3] and
the form of their expression influences the techniques used to accommodate them.
Once it is recognized that a particular model may not accurately represent an
actual system or plant, a natural goal would be to increase the amount of error
between tue model and the actual plant that a particular control design can tolerate.
The property of a controller to tolerate model errors is known as robustness. The
ability to maintain closed-loop stability in the presence of model errors is known as
stability robustness [4], while the ability to maiatain closed-loop performance in the

presence of model errors is known as performance robustness [5].
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Robust control system design and robust medel reduction techniques are useful
tools throughout the range of control system applications from chemical process con-
trol to control of flight vehicles. This report will concentrate on applications in the
field of control of flexible structures. References [6-11] provide a good overviiw of
the flexible structure control problem. Structural plants are characterized by a high
density of lightly damped resonant modes.

Future space structures pose a particularly difficult problem for the control de-
signer. Besides the problems of controlling large order systems, the dynamics of the
structure on orbit can rarely be tested in full on the ground. This results in some-
times critical uncertainty in the model. Even if components are thoroughly identified,
the complete system model will reflect the effects neglected in the assembly proce-
dure such as nonlinearities. References [12-14] concentrate on error modeling for

structures.

1.2 Objective

This report will focus on the problem of designing robust controllers for active struc-
tural control applications. In particular, it will deal with the problem of developing
control algorithms that can simultaneously stabilize a set of linear time invariant
plants described in terms of variable real parameters; for instance, a structural sys-
tem with uncertain natural frequency or damping. This is the robust stability problem
which will be stated more explicitly in a later section. The approach taken in this
thesis is to examine the quadratic (H, ) cost averaged over a parameterized set of pos-
sible systems. The real parameter control problem is one of intense current interest.
Some of the efforts in the field will be highlighted in the next section.

This work focusses on stability robustness in the face of parametric model errors
and does not attempt to address stebility robustness isrues relating to unstructured

modelling errors in high frequency dynamics. The work presented is intended to
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be complimentaty to work in the area of unstructured uncertainty. Both types of
uncertainty should be considered in practical control design and care must be taken
in parameteric uncertainty robust control design to ensure that the system is not

made more sensitive to unmodelled dynamics.

1.3 Background

Numerous techniques have been developed fo: performing robust controller synthesis.
The following sections will focus on the dominant paradigms that have emerged for
robust control. The various paradigms are distinguished on the basis of how they
represent and measure system uncertainty (real parametric or norm bounded), and
how they represent, measure, and test for system performance (H2z or Heo norms) [15].
First, the main fraineworks for representing and measuring systems and uncertainties
will be presented in the following analysis sections. Then the application of these

frameworks to the dominant methods for robust control synthesis will be reviewed.

1.3.1 Frequency Domain Modeling and Control Synthesis

In recent years much attention has been focussed on frequency domain models of
systems and uncertainty [16]. In the frequency domain, two possible system norms
are the H, and Ho, norms, denoted ||-||, and ||-||, respectively. These can be defined

in the frequency domain for stable transfer functions as
1 oo . . 3
16l = (5 [ w{6Gw)ctw)} ) (11)
IGl.., = sup&[G(jw)] (& = maximum singular value) (1.2)

These are function space norms and must be considered distinct from the matrix
and vector norms that have the same symbols. To avoid confusion in the rest of

the work, the symbol, "-||2, will always represent the H;-norm of a system while the
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symbol, || - ||, will denote the induced matrix norm. For more detail on frequency

domain modeling consult Refs. [16,17).

Unstructured Uncertainty

Within the frequency domain framework, plant uncertainty is typically modeled by an
unknown but bounded transfer function which modifies the plant. There are several
forms of uncertainty for MIMO systems depending on where the uncertainty is re-
flected relative to the model. These are called additive uncertainties or multiplicative
uncertainties reflected at the plant input or output. In the following discussions only
output multiplicative uncertainty will be considered. In this case the set of models is
described

G(jw) = Ajw)Ga(jw) = [ + L(jw)} Go(jw) (13)

where A(jw) is the multiplicative error matrix and L(jw) is the equivalent additive

error. The additive model error is bounded for all frequencies
7 [ L(jw)] < lpaz(w) Yw >0 (1.4)

These uncertainties are labeled unstructured because the perturbation is characterized
only by a constraint on the maximum singular value of the multiplicative or additive
error matrix and no constraints are put on its internal structure.

The dominant analysis tool for determining closed-loop stability of a stable mul-
tivariable open-loop plant specified in the frequency domain is the small gain the-
orem [17] which can be interpreted in terms of the multivariable Nyquist criteria.
Consider the system represented in Figure 1.1 with negative feeedback around the
system transfer funciion.

A condition which guarantees stability of the closed-loop system can be obtained

by limiting the gain of the loop.

Theorem 1.3.1 (Small Gain Theorem) Assume that G(jw) is stable. Then the
closed-loop system described in Figure 1.1 is stable if |G(jw)|,, < 1,Vw.

18
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Figure 1.1: System Feedback Configuration

This theorem is important for determining conditions of robust stability for un-

certain systems described by Equation (1.3).

Theorem 1.3.2 (Robust Frequency Domain Stability) Assume that Go(jw) is
stable and that the perturbation matriz A in Equation (1.8) is a stable transfer func-

tion. Then the closed-loop system is stable for all perturbations ||Al|, < 1 if and only

Theorem 1.3.2 is often used to derive conditions for robust stability of plants with
additive or multiplicative frequency domain uncertainty.

The theory behind the design of compensators such that the closed-loop transfer
function has bounded H., norm has received attention recently because of state space
techniques for deriving such compensation using Riccati Equations [18-21]. This
theory can be used for design of robust compensators for parameterized systems by
virtue of the small gain theorem and the representation of parameterized uncertainties
as a block structured uncertainty matrix using a linear fractional transformation on
the original system, Ref. [130,22]. As will be explained in detail in Chapter 2, when

real parameter errors are considered the perturbation matrix, A, has the form
6 0
A= eR 1=1,---,7 (1.5)
0 b,
Hoo theory can thus be used to design compensators that are robust to uncertainty

matrices of this form as long as ||A||_ is bounded. In the case of real parameter
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variations, however, the uncertainty matrix is highly structured. The set of arbitrary
error matrices with the property ||Alj_, < 7 is much larger than the set of structured
error matrices with this property. Since Ho, robust control design only specifies the
uncertainty matrix in terms of the norm bound, its design accommodates a much
larger set of possible uncertainty matrices than the actual parameterized set. By
accommodating more geueral uncertainty structure, the H,, design stabilizes the
system in the face of uncertainties which do not exist. This pronerty of dealing with
a larger set of uncertainties than actually exist is known as conservatism. For a given
performance level, a conservative robust control design procedure can thus lead to

higher control cost and actuator gains than a less conservative one.

Structured Uncertainty

The additive or multiplicative frequency domain perturbations can be very conserva-
tive if the structure of the perturbations is known. This structure can sometimes be
represented in the frequency domain as a matrix possessing block structure [15,23-25].
This type of uncertainty representation will be called structured frequency domain
uncertainty, and is much different from the time domain uncertainty structures pre-
sented in the next section. The structured frequency don.ain uncertainty c«n be
viewed as a logical restriction of the unstructured norm bounded uncertainty matrix

to the set of matrices satisfying
A ={A : A =diag(A1, 8y, 4,): A; € Chivkil (1.6)

A is thus the set of complex matrices with diagonal block structure. It is also useful

to define its bounded subset
BA={AecA:5A]<1} (1.7)

The goal of considering a more structured uncertainty matrix is to allow less con-
servative guarantees for stability robustness. The block structure can also be used to

guarantee both robust stability and performance when the performance is measured
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by singular value bourds [17]. The performance specification can be reinterpreted as
a stability robustness problem, and simultaneous robust stability and robust perfor-
mance can be interpreted as a block structured stability robustness problera. In order
to make use of the structure of the uncertainty, it is necessary to define a function
that “measures” the distance from a structurally perturbed system to instability at

a given frequency. This measure ic called p in [23] and is defined

1  L5(A) - det(] — GA) =
;(—G-)-zggg{a(A).d t(I — GA) = 0} (1.8)

With this definition it is possible to generalize Thecrem 1.3.2 to account for the

structured perturbations.

Theorem 1.3.3 (Robust Structured Frequency Domain Stability) Assume the
G, is stable and that the perturbation A € BA. Then the actual closed system is sta-
ble for all A € BA if and only if ||Go||, < 1. where

1G]l = sup 1 [G(jw)]

The formalism of p analysis and the resulting p synthesis come part of the way
to dealing with the nonconservative stability of a set of systems described by real
parameter variations. It falls short for two reasons. The first is that since it cannot
be calculated exactly for more than 3 blocks, a calculable bound must be employed.
The second is that it deals with complex blocks adn is a necessary and sufficient
condition for stability if the uncertainties are of that form. When the errors are real
parameters, Thecrem 1.3.3 amounts to a conservative sufficient condition for stability.
To understand the difference between real and complex valued uncertainties, consider
the input and output signals of the error transfer function. If the uncertainties are
real the inputs and outputs either have the same phase or are 180 degrees out of
phase. If the uncertainties are complex, the phase r:lati _nship between the input
and output signals can be arbitrary. The complex block structure is thus a broader

uncertainty description than a real block structure. The calculation of the p -norm
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entails the use of an bound. When the uncertainties are real scalars this bound can
be shewn to be very conservative [24]. The problem of restricting the uncertainties
to be real parameters is sometimes called the real mu problem.

Control system design using the analysis tools designed for plants with structured
frequency domain uncertainty is known as p-synthesis, Refs. [15,24],. First a com-
pensator is designed which is stable in the face of H,, norm bounded perturbations
(the K loop) and then a frequency-dependent scaling is found which minimizes the
conservatism in this design (the D loop). This process is repeated in what is known as
D-K iteration. It has been shown that the D-K iteration is a nonconvex minimization
process which may not converge to a global minimum. The H, norm bound and its
less conservative scaled version have nevertheless been shown to be very conserva-
tive for constant real parameter variations. This conservatism will take the form of

requiring higher control gains and costs to achieve system stability and performance.

1.3.2 Time Domain Modeling and Control Synthesis

In this section the method of representing system uncertainties in terms of real pa-
rameter variations of elements of the system will be briefly discussed. Much work has
been done in the field so the overview will be cursory. A good overview of parametric
systems stability analysis and control design is given by Siljak, [26]. When dealing
with parameterized systems the methods for analysis and design fall loosely into the
two categories of algebraic methods and bounding methods. The bounding methods
have tended to contribute more to the synthesis literature. Real parameter error mod-
els are normally (but by no means always) associated with time domain robustness
specifications and will be dealt with in this manner in the following sections. The
stability analysis of parametrically perturbed systems is linked with the issues of the
robust or simultaneous stabilization problem [27-41]. Some stabilizability conditions
for parameterized plants have however been discussed in the frequency domain con-

text, [27-31], and considered in parallel with unstructured perturbations [32,33,42].
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Restricting attention now to the time domain representation of parameter un-
certainty, the system matrices are allowed to be nonlinearly dependent on a finite
number of perhaps time-varying parameters, a. These parameters define a set of

systems which can be simply expressed in the state space as

z(t) = A(a)z(t)+ B(a)u(t)
i) = Cla)a(t) + D)) (19)

or in the notation presented in Chapter 2 and used for state space systems in the

remainder of this report

A(a) | B(a)
C(a) | D()

G(a) = C(a)sI — A(a))"*B(a) + D(a) & (1.10)

Note that parameter dependent disturbances and measurements can also be included
into the model. The parameters themselves are usually considered to be members
of some bounded set in IR". They have also been modeled as random processes
such as jump processes or white noise, or random variables with specified continuous
or discrete distributions. The random process description of parameterized systems
will be discussed in a later section. First the methods which treat the parameters

deterministically will be reviewed.

Algebraic and Lyapunov Based Parameter Space Methods

As defined in [26], algebraic approaches to parameterized systems stability analysis
establish stability by examining the roots of the characteristic equation and in some
sense bounding them. For completeness the well known Reuth-Hurwitz stability test
[43] will also be placed in this group. The work on interval polynomials and plants [44],
most notably the results of Kharitonov’s theorem [45] and its generalizations to the
stability of matrices through the Edge Theorem [46] and the work on polytope analysis

[47], are of particular interest. In general these stability analysis procedures are used
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for control synthesis by developing conditions on the characteristic polynomial and
maximizing the size of the stability region by choice of control parameters.

The other approach which has received much attention both in analysis and syn-
thesis is based upon Lyapunov stability theory [48-74] and its refinements through
Vector (75,76] and majorant (77, 78] Lyapunov analysis. The method of Lyapunov
is appealing because it is general enough for non-linear systems and doesn’t require
calculation of the characteristic polynomial. The general approach is to find a func-
tion which bounds the energy of all the possible plants and show that this function
is always decreasing. Thus for any of the plants, the energy is decreasing and the
system must be stable. A good overview of bounds for uncertain state space systems
derived from Lyapunov’s method can be found in Bernstein [73,74] or Yedavalli [61].

Lyapunov stability theory can be used to design controllers which guarantee sta-
bility and bound worst case performance over the set of plants. This is done by
bounding the portion of the Lyapunov equation that is parameter dependent with a
parameter independent bounding function. The soiution of the modified Lyapunov
equation bounds the possible solutions of the parameter dependent Lyapunov equa-
tion. Existence of a positive definite solution to the modified Lyapunov equation
will guarantee stability and performance robustness. One such bounding function
is called the quadratic bound or Petersen-Hollot bounds. When this bound is used,
the resulting modified Lyapunov equation takes the form of a Riccati equation. This
bound has been applied to the case of full state feedback design [63], static output
feedback [69], and dynamic output feedback [69,71,72] control design.

Another Lyapunov bound takes the form of a linear function of the solution to
the Lyapunov equation [74]. It is closely related to the Maximum Entropy design
approach since the resulting equation for the closed-loop cost can be equated to
the solution to a multiplicative white noise model with exponential weighting [69].
The linear bound has been extensively studied and the conditions for existence and

uniqueness are known. Necessary conditions for static and dynamic feedback have
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been derived [69] and solution procedures for the coupled modified Lyapunov and
Riccati equations have been formulated, Ref. [95]. This linear bound will be of interest
in a later section of this report.

The algebraic and bounding techniques for determining stability robustness of
parametrically uncertain plants tend to produce control design techniques which guar-
antee controlled system stability « priori. While this guarantee is sometimes useful, it
is sometimes commensurate with loss of performance, that is, higher state and control
cost. In the following sections, robust design techniques will be presented which do

not necessarily guarantee stability but do increase the system robustness.

Random Process Techniques

Much work has been done on designing controllers when the uncertain parameters
are interpreted as random processes, either jump processes [79-81] or multiplicative
white noise [82-97]. The use of multiplicative white noise models, called maximum
entropy design [93-97], have been applied successfully to the flexible structure control
problem [91] and coupled to the optimal projection {97, 98] reduced-order controller
design philosophy to provide fixed order controllers which are robust to the unmod-
eled uncertainty. The only drawbacks of this design technique are the lack of a known
correlation between the amount of robustness achieved by the design and the amount
of uncertainty modeled and the restrictive form of the uncertainty considered. Only
frequency uncertainties have been modeled with this technique. Nevertheless the
method has been successfully applied to the structural control problem with good re-
sults. It has also been further developed into a structured covariance design approach
using the linear bound discussed previously [99]. With slight modification, the maxi-
mum entropy design equations, systems of modified Riccati and Lyapunov equations,
yield solutions which guarantee a priori stability and performance robustness.

The philosophy behing multiplicative white noise uuncertainty modelling and the

“robustifying” techniques which will be presented in the following sections is to dis-
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pense with methods which bound the system performance over the parameter space
(and thereby guezrantee a priori stability) in favor of a more hueristic approach to
increasing the design stability robustness. By abandoning guaranteet, it is sometimes
possible to find lower cost controllers which achieve the same level of stability robust-
ness as a bound-based design. This idea of moving away from bound-based designs
toward a more hueristic “robustifying” methodology is similar in spirit with the tech-
niques presented in this work. Another class of controller design techniques which
increase robustness but do not guarantee a priori stability are those which minimize

the sensitivity of the cost to parameter variations.

Sensitivity Minimization

Another approach to robust controi is that of cost or trajectory sensitivity minimiza-
tion. Many methods have been used to desensitize the cost or trajectory to parameter
variation. One such method is to recover the robustness properties of the LQR design
in a dynamic compensator using Loop Transfer Recovery Techniques [100]. Another
%s to modify the conventional quadratic cost to include terms which penalize sensi-
tivity. This section will focus on the work done using the latter technique [101-103].
The sensitized cost is computed using an augmented system called the sensitivity
system. The sensitivity system is computed by augmenting the nominal trajectory
states by the trajectory sensitivity states and thereby forming a large order system
which reflects the parameter sensitivities of the trajectories and the cost. Several cost
and trajeciory sensitivity cost functions as well as the properties of the sensitivity
system are discussed in Ref. [101]. Ref. [101] also presents a full state controller design
methodology.

Controller design can be difficult because the sensitivi'gy system order is so large.
This issue was addressed in Ref. [102] and [103]. In the former a controller reduction
scheme was employed using Q-cover theory and in the later a fixed-form compensator

was used. The robustness properties of the fixed-form compensator are well illustrated
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and compared to Ref. [97] in Ref. [103]. Controllers based on sensitivity system
methods have the advantage of dealing with uncertainties in the disturbance and
design weighting penalty matrices explicitly. Because only first order sensitivities are
used, however, they are unable to reflect the fact that the cost can be a complicated
function of the uncertainties. As a result they guarantee no a priori bounds and

provide only an ad hoc approach to robust control.

Multi-Model Techniques

Another technique used for robust control synthesis is the multi-model design concept.
In this concept the controller is designed based on multiple models which represent
possible plants. A possibly finite set of design models is used to add robustness over
a continuous set of possible plants, represented perhaps by parametric uncertainty or
change in operating regimes [104-107]. The cost is averaged in some sense over the
design plants in order to detect the contribution of the parameter variation to the
cost. Such schemes have been shown to provide robustness to parameter variations
in Ref. [104].

Multi-model techniques have been applied to full state feedback of a continuous
distribution of plants as given in Ref. [108]. In this case the cost is ayeraged over an
infinite distribution of planis. This methodology of using a continuous distribution
of plants is most similar to the one adopted in this work. This will be discussed in

more detail in the following section.

1.4 Contributions of this Thesis

The fundamental idea of cost averaging techniques for robust control design is to
consider as a performance metric the average of the standard quadratic cost or H;
system norm over a continuously parameterized model set. The cost averaging tech-

niques are intimately related to the multi-model design methods and the simuitaneous
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stabilization problein discussed above. It will be shown that if the average cost of a
parameterized set of systems is bounded, the system must be stable for all values of
the parameters. This important property of the average motivates its use as a cost
functional for control design.

| The difficulty in using the averaged cost for controller design comes in its compu-
tation. It is impractical to calculate exactly when there is a large number of uncer-
tain parameters. To solve this problem two techniques were developed. The first is
to use computable approximations to the exact average as the performance metric.
Two methods for computing the approximate average cost are presented. These are

called the perturbation ezpansion approzimation (PEA) and the Bourret approzima-

‘tion. Since they are only approximations, they will not share the properties of the

exact average cost minimization but will provide 2 method of adding robustness to
controllers for parametrically uncertain systems.

The Bourret approximation is widely used as an approximation to the average
solution in random wave propagation [118-121] and turbulence modeling [122-124]
where its properties make it a better approximation than first or second order per-

turbation methods. These properties will be discussed in Chapter 3. It is hoped

‘that the quality of the Bourret approximation and the fact that it can represent the

destabilizing effect of uncertainties on the cost will make the robustness achieved by
this design technique more closely match the desired ~obustness properties, i.e., the
set of stable closed;loop systems is near to the total design set.

The second technique is to bound the average cost and minimize this to locate
simultaneously stabilizing controllers. Most current robust design techniques based
on Lyapunov bounding (quadratic bound, linear bound, etc.) bound the worst case
performance over the set rather than the average performance. They thus guarantee
performance as well as stability robustness. This performance guarantee may not
be desirable when weighed against its commensurate increase in control cost. As an

alternative, bounding the average can guarantee stability without necessarily guar-
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anteeing performance and thus lead to lower cost designs. The bounding however
leads to conservatism and thus less efficient designs than those using the exact av-
erage. The two techniques of approximation and bounding the exact average are
seen as complementary to each other since any real control design will necessarily be

iterative.

1.5 Thesis OQutline

In the following chapters the tools needed for the analysis of parameterized model
set average cost will be developed and applied *o the problem of synthesizing robust.
Chapter 2 will deal with the issues of modeling systems with parametric uncertainty.
Chapter 3 will deal with the analysis of parametrically uncertain systems using the
average Hj-norm and its approximations and bounds. Chapter 4 applies these anal-
ysis techniques to the problem of static and dynamic output feedback fixed-form
compensation. The necessary conditions for minimization of the exact average cost
or its approximations and bounds are presented along with the numerical computa-
tion of the control. Two structural control examples are presented in Chapter 5 to
investigate the properties of the controller derived using the average-related costs.
Chapter 6 will address the problem of reducing the order and number of uncertainties

of a parametrically uncertain system using average cost decomposition techniques.
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Chapter 2

Modeling of Uncertain Systems

2.1 System Notation

This chapter deals with the issues of modeling systems with parametric uncertain-
ties for later analysis and control synthesis. In this section a compact notation for
representing a dynamic system will be presented and related to other methods of rep-
resenting systems. A system is a collection of components which interact over time.
This report will deal exclusively with linear systems with time-invariant coefficients.

Using standard state space notation, such a system can be represented as
§(t) = Cz(t)+ Du(t) (2.1)

where the vector z(t) € IR”, is the system state, 2 € IR™ is the system input vector,
and § € IR is the system output vector. The transfer function from input to output

is found by taking the Laplace transform of the system in (2.1):
G(s)=C(sI-A)'B+D (2.2)

A given transfes function can have any number of state space realizations. A simplified

notation for a transfer function which incorporates state space realization information
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in the description can be justified by placing (2.1) into vector notation:

B

The information isherent in a given state space model is given by its coefficients so

A|B
C|D

i} (2.3)

(]

we can simply say without loss of information that

iLB.

G(s) =
CID

(2.4)

This is the notation which will be used to specify the state space realization of - given
system.

This report will deal with quadratic performance metrics for the above systems
such as (2.4). When 4(t) is a unity intensity Gaussian white noise process this

quadratic cost takes the form:

J=FE { lim G; / " i) dt)} (2.5)

The quadratic cost is numerically equal to the square of the H;-norm of the system

transfer matrix. In this case:

T =16 (26)
where the H;-norm is defined as in Eq. (1.1).
1612 = 5z [ tr{Gw)*Gliw)} du (27)
2 27 J-oo

The above form is inconvenient for calculation of the cost associated with a given

system. The cost can be more conveniently calculated as
J =t {QcTc} (2.8)
where @ is the solution of a Lyapunov equation
AQ+ QAT+ BBT =0 (2.9)
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In this report the matrix H,-norm will be frequently used as a basis for defining other
cost functionals, in particular the average cost function which will be described in the
next chapter. Because of the equivalence shown above, the terms “quadratic cost” or
“system H,-normn” will be used interchangeably.

In the nexi section, the modeling conventions presented above will be expanded

to represent systems with inputs and outputs associated with a control »ystem.

2.1.1 Modeling of Controlled Systems

A more specialized form of system notation is sometimes used to specify a given
control design problem. This specialized form is derived by dividing the system’s

inputs and outputs into two groups, respectively

“la=|" (2.10)

Yy u

U~4)
I

where z is the vector of system outputs which contribute to some performance metric,
and y is the vector of system outputs which are sensed and are available to the
feedback controller. The z and y vectors can be identical, have individual elements
in common, or be completely distinct depending on the problem. The inputs w are
due to uncontrolled disturbances while the inputs u are due to control inputs. This
partitioning of the input and output vectors can be used to partition the coeflicient
matrices into:
i| [4]B B ||s
2l=|¢|Du Dul||w (2.11)
y Cy [ Dn1 D u

Using the compact notation, the system can therefore be described:

4l B B
G(s)=| C1|Dn D1 (2.12)
Ca| D2y Da
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Typically some of these matrices are assumed to be zero for a given problem. For
structural vibration control problems the D,; and D,; matrices can typic-ly be set
to zero since the disturbances are 1arely explicitly included in the performance metric
(D11 = 0) and the transfer function from u to y about which the loop is closed is
typically strictly proper (D,; = 0) since real systems invariably roll off. In command
following appicaticns the D;; term becomes inportant but can be incorporated into
the model by adding states corresponding to the command input. If there is a Dy,
term due to some modeling assumption such as truncated stiffness matrices, it can be
incorporated into the system A matiix by adding high frequency rolloff. The systems
dealt with in this report will therefor ignore the D;; and D,; matrices.

The two inputs and two outputs can be used as a basis for partitioning the system

transfer function as

Guls) | Gra(s)
Gn(s) | Gaals)

where, for instance, Gy1(s) is the transfer function from w to z.

G(s) = (2.13)

—w |z

G.

Figure 2.1: The Standard Control Problem

In the standard control problem shown in Figure 2.1, a compensator with arbitrary
transfer function, G.(s), closes the loop between the system outputs, y, and the system
inputs, u. Closing the loop between y and u changes the transfer function from w
to z. This new transfer function is called the closed-loop transfer function, denoted
G.w. It is obtained from a function called the lower linear fractional transformation,

which is defined by

F(G,G.) = Gi1 + G12G(I — Gp3G.) Gy (2.14)
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The closed-loop transfer function is then given by
G.w = F(G,G:) (2.15)

To determine the state space representatic . of G.u, the state space representation of
the compensator, G, must be specified. Two control types will be considered in the
coming chapters. These are static and dynamic output feedback. For static output
feedback, the compensator is a simple constant gain between y and u which can be
written as

'

0|0

G.= (2.16)
0| D.

Using the system notation presented previously in (2.12) and neglecting the D, Dy,

and D,, terms, the closed-loop system can be written as

A+mm@|&

sz =
C: + D1, D.C; | 0

(2.17)

The D, matrix being zero is essentially the statement that there is no noise on
the measurements used for control and is a standard assumption for static output
feedback.

For dynamic output feedback, the compensator is a strictly proper dynamic system

of order n. which can be expressed by

A. | B:
c = (218)
C.|10
The closed-loop system can then be written as
A ByC.| B
sz = BCCQ Ac Bch (219)
Ci DpC. 0

The order of the system is increased by augmenting the open-loop system dynam-

ics with the controller dynamics. The analysis of parametrically uncertain systems
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presented in the next chapter is independent of whether the control loop is closed or
open. These closed-loop models are presented to provide a needed reference for use
when performing control synthesis and to specify the structure of the uncertainty in

the closed-loop.

2.1.2 Example: LQG Problem Statement

It is helptul to place the standard LQG problem statement into the matrix norm
formalism tc help solidify the modeling conventions used in this report. Before doing
this, however, the distinction between the evaluation plant and design plant must be
made clear. The evaluation plant is the system upon which a given control design is
evaluated for performance and robustness. It represents the actual physical system as )
closely as possible and is sometimes called the truth model. The design plant is the
system which is used in the design of the control system. It is typically the evaluation
plant modified by weighting the inputs and outputs to achieve a certain design goal.
For instance, a certain output can be heavily weighted in the design process if it is
desirable for the coatrol to minimize this output. The weightings on the inputs and
outputs do noi have to be static gains but can themselves be stable transfer functions
which have frequency dependence. When this occurs, the dynamics of the weighting
transfer functions is absorbed into the design plant A matrix. The design plant can
thus have open-loop dynamics which bear little resemblance to the evaluation plant.

To begin the comparison between the LQG problem statement and the system

norm formalism, the system dynamics can be defined by
&(t) = Az(t)+ Bu(t) + Lé(t) (2.20)
y(t) = Cz(t)+6(t) (2.21)

where z(t) € R", u(t) € R™, y(t) € IR". The two noise input vectors, £(t) € R?, the
process noise, and #(t) € IRP, the sensor noise, are independent, zero mean, Gaussian

white noise processes with constant intensity matrices, = and © respectively. In
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addition the cost functional which is to be minimized is defined by

Jige = E { Jlim (% /o " 2T (2)Qa(t) + uT () Ru(t) dt)} (2.22)

which involves a positive semi-definite state weighting, @ € IR"™", and a positive
definite control weighting, R € IR™*™.
The evaluation model can be expressed in the standard system notation by first

defining the output vector, z and the disturbance vector, w used in (2.12). Let

£ | (1)
w(t) = z(t) = (2.23)
0-| 91 -]

The evaluation system can now be written

A [LO- B

Geval = [I} [00 lOJ (2.24)
0 00| (I

C[o[ 0

To derive the design model, the relative magnitudes of the input disturbances and
output variables are explicitly weighted using the noise intensities, = and ©, and the
output weights, @ and R used in the quadratic cost, (2.22). The design plant has the

form:
A [ L=1/2 o] B W

1/2 00 0

Gd¢n= Q
0 0 0 R/?
C [o @1/2] 0

Given this definition of the design plant, the H3z-norm of the design system is equiv-

(2.25)

alent to the quadratic cost, that is

1Gaesllz = Jzae (2.26)

and thus the problems of finding the compensator, G., to minimize either the Hz-norm

of the design plant or the quadratic cost defined in (2.22) are equivalent.
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Some of the system notations and concepts which will be used in the rest of the
report have now been presented. The next section will deal with modeling systems
with parameter uncertainties. The parameterization of the systems describes a set of

systems, called the model set, over which the system ?;-norm can be averaged.

2.2 The Model Set

In this section the modeling of parametrically uncertain systems will be approached
using the concept of a set of systems called the model set. The model set is a set
of plants whose elements are characterized in terms of variable real parameters. The
standard system notation set ferth in Ref. [19] and in the previous section will be
used for the elements of the model set. Two types of sets will be introduced, one with
general parametric dependence and one with a more structured parameter dependence

which simplifies cost computation.

2.2.1 The General Set of Systems

The behavior of a system is determined by the coefficients of its system matrices.
The values of these coefficients can depend on the values of certain parameters of
the system such as the stiffness of a structural element or the mass at a particular
location. The uncertain systems dealt with in this work arise when the exact values
of the model parameters are not known. Instead, only the range over which the
parameters can vary is known. If there are r uncertain parameters, each with a

specified upper and lower bound then the set of possible parameter vectors can be

defined

Definition 2.2.1 (General Parameter Set) The set, Q,, is a compact connected
subset of R".

Each vector of parameter values generates a different system. The set of all of

the possible systems is called the model set. The general set of systems is generated

38



if the fuactional form of the parameter dependence of the coefficients of the system
matrices is unspecified. It will be assumed that the coefficients of the matrices are

continuous functions of «, however.

Definition 2.2.2 (General Sct of Systems) The set G, of systems is parameter-

1zed as follows:

G, = {Gy(a)Va € Q} (2.27)

where )y C IR is defined in Def. 2.2.1 and each element of the set is described in the
state space as
A@) | Bi(@) Bi(o)
Gy(a) = Cl(a) 0 D1s(a) (2.28)
Ci(a) | D) 0
where A(a) € R™", By(a) € R™™, Cy(a) € R™*, Bi(a) € R™?, Cy(a) €

R¥"™ Vo € ), and teh elements of the matrices are continuous functions of the

parameters over ).

In addition to the assumptions implicit in the set definition the following assump-

tions will be made:

(i) For each a € ©, (A(a), By(a)) is stabilizable, (Cy(a), A(a)) is detectable.
(if) For cach a € 2, (A(a), Ba(a)) is stabilizable, (Ca(a), A(a)) is detectable.
(iii) Dfy(a) [ Ci(a) Dia(a) ] = [o R() ] ,R(@)>0 Va € Q
(1v) Du(a) | BI(e) DE(a) |=[0 V(@) ], V(@)>0Va e n

(v) The set of systems, G,, must be simultaneously stabilizable. The conditions for

simultaneously stabilizable sets of systems has been considered in Ref. [27,28,

38-41].
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Assumptions (i) and (ii) are made to ensure the observability and controllability
of unstable modes from the controller and the disturbability ard measureability of
the unstable modes in the performance. Assumption (iii) means that Cyz and D,,u
are orthogonal so that there is no cross weighting between the output and control.
This simplifies the form of the necessaary conditions for future use in control design.
R is positive definite so that the penalty on = includes a2 nonsingular penalty on the
control. Assumption (iv) is dual to (iii) and ensures the noncorrelation of the process
and sensor noise. It is equivalent to the standard conditions assumed for the Kalman
filte: and is again instated for clarity. Assumption (v) is made to guarantee existence
of the controllers derived in the coming chapters.

In association with the set of parameter vectors and the model set, it is convenient
to define a distribution function, () which is always positive and which is normalized
such that

/n (a) do=1 (2.29)
This distribution function can be considered a probability distribution function used
to establish the relative importance of certain elements of the model set. If, for ex-
ample, the nominal is highly likely, the distribution function can have a maximum
at the value of the parameter vector which corresponds to the nominal system. The
distribution function can also be very useful in weighting the average of the costs asso-
ciated with the elements of the model set. Unless otherwise specified, the distribution
function will be assumed uniform in the rest of the report.

It is useful at this point to consider the set of closed-loop systems. For clarity of
presentation, only the dynamic output feedback case will be considered here. The
closed-loop model set associated with static output feedback will be presented in
Chapter 4. Given the set G, of open loop systems and the fixed form dynamic

compensator of order n.

A. | B.
G. = (2.30)
c.lo
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with input y and output u, the set of closed-loop transfer functions from w to z, G:u,
can be defined. Each element of G,,, can be expressed in state space form for dynamic

output feedback as:

A(a) Bg(a)Cc Bl(a)
Bcc'z(a) A Bch(a)
i C'l(a) Dn(a)Cc 0
[ Ala) |1§(a)
| O(e) | 0

Gruw(a)

(2.31)

The B and C matrices of the closed-loop systems are parameter dependent. It can
be instructive to consider a more restrictive set of open-loop systems such that the
resulting closed loop set only has uncertainty in the A matrix since only uncertainty

in the closed-loop A matrix affects the stability of the system.

2.2.2 The Structured Set of Systems

It will prove useful to define a different set of systems with more restrictive assump-
tions on the functional form of the parameter dependence of the system matrices. The
first assumption is that only parameter uncertainties entering into the closed-loop A
matrix will be considered. This amounts to restricting the B and € matrices to
being parameter independent. This assumption is not overly restrictive for stability
robustness considerations since only uncertainties in the closed-loop A matrix affect
stability. The uncertainties in the B and C matrices would however efect average
performance. This uncertainty restriction is made primarily to enable application of
the operator decomposition techniques which will be used to derive approximations
and bounds to the average cost. The general uncertain set of systems in (2.28) can be
specialized to a more structured set which allows less general parameter dependence.

First the structure of the parameter set will be defined.
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Definition 2.2.3 (Structured Parameter Set) The set, 1,, of parameter vectors,
a, is defined
Q:{a:aEIR.',&f‘Sa;S:S?i:l,---,r} (2.32)

where §F and 87 are the lower and upper bounds for the ith uncertain parameter.

In addition, the parameter dependence of the elements of the remaining matrices
will be assumed to be linear functions of the parameters. This is a very restrictive
~assumption but necessary if computable approximations for the average are to be
derived. If they are in fact not linear functions, then the matrices can be linearized
about the nominal values of the parameters. It is also sometimes possible to define a
new uncertain parameter which is a nonlinear function of the first but which makes
the parameter dependence of the elements of the system matrices near. This would
be the case if, for instance, one used z = 1/m as a variable parameter rather than m
itself in a ters: of the form 1 + 1/m. Once the parameter dependence has been made

linear a more structured set of systems can be defined.

Definition 2.2.4 (Structured Set of Systems) The set G, of systems is parame-

terized as follows

G, = {Gi(a) : a €D} | (2.33)

where §2, is the structured set of parameter vectors defined in Def. 2.2.8 and each

element of G, is described in the state space as

Ao + Za,-A; B, By + ZaiBzg
=1 =1
G‘(a) = Cl 0 Dlg (2.34)
Ca + D _ciCy; | Dy 0 J
L =1

where fori = 0,...,r; A; € R™™, B, € R™™,C,, € R™", and B, € R™?C, €
R,
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Just as for the general set of systems, a set of closed-loop transfer functions,
denoted G,u, can be generated using the structured set of systems. This closed-loop

set can be expressed is state space form for dynamic output feedback as

Ao + Za.-A; Bzo C.+ ZaiBch B,
ifl =1
G"”(a) = BcCZO + Zach62|- Ac BcD21

1=1

_ c, DiaC. 0 |

- Ag + Y i l B

- ; (2.35)
¢ o

Because of the form assumed for the uncertainty, only the resulting closed-loop A
matrix, A(a) € R***, is parameter dependent and the closed-loop system is strictly

proper.

2.2.3 Connections to Internal Feedback Locp Modeling

Another way to represent parametric dependency in a state space model is through
the use of internal feedback loops. This representation of parametric uncertainty has
been used for Ho, design for structural systems in Refs. {100,12,130,131]. In this
section, the structured sct of systems presented in Der. 2.2.4 will be transformed into
the internal feedback loop representation to highlight the connection between these
modeling techniques.

The internal feedback ioop modeling of uncertain parameters involves factoring
the parameters out of the model into a fictitious feedback path by augmenting the
model with fictitious inputs and outputs. The parameters then represent uncertain

feedback gains which the system must tolerate for stability. To see how this is done,
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we start with the structured set of systems.
j ]

Ag + Za;A,- B, B2o + ZaiB2.'
_3=1 i=1
Gi(a) = C: 0 Dy (2.36)
C,, + Zaioz.- Dy 0
- 1=1

The critical assumption of internal feedback loop modeling is that that the uncertainty

term associated with o

A 0 B |
ali=ai| 0 0 0 (2.37)
C; 0 0

s

can be decomposed as the outer product of two vectors of the form

M.,
;=] 0 |a [ N, C N, } (2.38)
MVI'

This assumption is equivalent to the statement that T} is of rank one. If it is not of
rank one but say of rank two, then the uncertainty term associated with o; takes the

form

M., 0
o
aTi=1 o [ N, 0 N, ] (2.39)
0 o
My,
The single ¢; is split into two dependent uncertain parameters. In the internal feed-
back loop model the parameters must be assumed independert and thus the cconser-
vatism of the design is increased. Assuming for now that each T is indeed of rank

one, then the column and row vectors for the respective parameters can be stacked

to give
) Ai 0 By, M,
2| 0 0 0 |=]|0 A[Nz 0 N,.] (2.40)
=l 0 o M,
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where A has the form
an 0

0 a,

To factor the A matrix into an internal feedback loop, fictitious inputs and outputs

are defined
_ . -
Wa
Zy = [N, 00 Nu] (2.42)
w
[ v |
Wwe = ANz, (2.43)

and the system inputs 2ad outputs are avgmented by the fictitious channels to give

a modified system description

(o) [ 4 |M. Bi By, || =
-~ Za Nz O 0 Nu wa
@, — = (2.44)
z Ci| 0 0 Dy w
i Yy ] ] Cgo My Dgl 0 1L U ]

The feedback structure of this system is shown in Fig. 2.2. This is also the form
of the uncertainty structure when the uncertainty is represented in the frequency
domain by norm-bounded uncertain matrices. In this case A € IR™" is an arbitrary
complex matrix such that ||A||; < 7. The use of a diagonal matrix of real parameters
increases the structure of the uncertainty representation and can thus decrease the
conservatism of control design for systems with real parameter uncertainties.

It should be noted that unstructured frequency domain norm-bounded u:xcer-
tainty is probably more appropriate than parametric error models for representing
high frequency errors in the model dynamics when the structure of the high frequency

dynamic system errors is unknown. The parametric error modeling can thus be con-
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Figure 2.2: Internal Feedback Loop Modeling of Parametric Uncertainties

sidered complementary to the well developed {requency domain uncertainty modeling
and should be used when structural information is available about the uncertainty.
The internal feedback loop representation of uncertain parameters is convenient
for use with input-output analysis tools, but clouds the effects that the uncertain
parameters have on the system dynamics. The parameter dependence of the A matrix
is no longer explicitly given but must be inferred from the dvnamics of the system with
the A loop closed. The notation chosen for this report is more suited to calculating
;md approximating the average over the structured set of systems because it explicitly

reflects the parametric dependence of the system rnatrices.

2.3 Formulation of Parameterized Models

In the previous section, the notation and forms for expressing the parameter depen-
dence of linear time invariant systems have been presented. In addition, the structure
of sets of systems described by the parameterization has been defined. In this sec-
tion, some comments will be made on the process of formulating models of uncertain
systems. In ess; ace, this process is one of finding the values and parametric depen-
dence of the system matrices used in the uncertain model. This section will touch on

two general areas concerned with model formulation. These are parameterized model
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generation and model uncertainty representation. The treatments of these topics will

be brief since the primary topic of this work is robust control.

2.3.1 Parameterized Model Generation

State space models can be generally categorized according to the source of the infor-
mation contained in them. Models can be classified as being analysis or measurement
based. The analysis based model is developed using assumptions on the system prop-
erties and nature of the component interactions. The measurement based model is
generated based on an identification of measured data. There can of course be hybrid
models of which certain components are analysis based and others are measurement
based. Such models wili exhibit characteristics in common with both types of mod-
els. These two model types are in some sense complementary since measurement
based models provide the accuracy which analysis based models lack while analysis
based models provide more insight into the structure of the system. The generation
of a parameterized mcdel depends on whether the model is measurement or analysis
based.

It is appropriate at this point to discuss the nature of parametric uncertainty. In
general, uncertainty can arise from four sources: errors in the values of system param-
eters used in the model, unmodeled dynamics, neglected nonlincarities, or neglected
disturbances [1]. The boundaries between these different types of uncertainties are
vague. For instance, neglected dynamics can be modeled as system dynamics with
very uncertain coefficients. Take for example a SISO unstructured uncertainty which
is described as a complex parameter with bounded magnitude but arbitrary phase.
Although this uncertainty can represent a SISO plant with arbitrary order dynamics,
the net effect is simply a complex parameter with uncertain magnitude and phase.
This complex parameter can be represented by a second order dynamic system with
highly uncertain natural frequency and damping. Neglected nonlinearities such as

nonlinear joint stiffness in a structure can be accommodated by modeling the non-
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linear joint as having uncertain stiffness and damping by using describing functions.
The important characteristic »f parametric error is that the structure of the interac-
tions is prespecified and only the properties of the interacticn are variable. In other
words, parametric errors are specified within a given interaction structure. This char-
acteristic has strong implications for the utility of parametric error modeliug. It is
only really useful when the structure of the uncertain model is known. This is more
typically true for analysis based models rather than measurement based models.
When a model is measurement based, model errors can be caused by either iden-
tification errors or test inaccuracies. Identification errors involve mistakes made in
generating the state space system from the given noisy data, be it measured trans-
fer functions or time histories. Such mistakes can entail misrepresenting the system
dynamics by not giving the correct pole or zero locations, missing some poles and
zeros altogether, or including too many. Parametric error models are better suited
to modeling uncertain pole and zero .ocations than changing the number of poles or
zeros. For this case, the uncertain parameters such as modal naturz! frequency aad
damping can be identified by comparing the actual data to the identified model data.

Test inaccuracies arise when the conditions under which the system measurement

Jis taken are different from the actual system operating conditions. This is a particu-

larly important class of errors for space structures which can rarely be tested in full
scale and which must be tested in the presence of gravity. The differences between
the test and the operating euvironments can arise from several sources. They can
be caused by measurements taken on a mis-scaled model, interaction with support
structures and their dynamics, or (if the structure is nonlinear) change in vibration
amplitude. These types of errors are particularly difficult to model with uncertain
parameters since the structure of the error is not known. Parametric error modeling
will be of little use unless an analysis model can be compared to the measurement
model to test bypotheses on the causes and structures of the errors.

For analysis based models, the errors arise in the assumptions made on either
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the properties of or the structure of the interactions between the components. The
errors in interaction properties are natural candidates for uncertain parameters. If, for
instance, the stiffness of a given component is not known exactly, that stiffness can be
used as an uncertain parameter in the model. Things are rarely that simple since the
dependence of the system matrices on a given parameter is not known a priori. For
example, a given element of the system matrices, say the second natural frequency of
an uncertain structure, can he a complex function of the stiffness assumptions made
in a particular finite element of the structure. Since the analytical model is available,
however, the stiffness assumption can be varied and the changing values of the natural
frequency can be ascertained. This type of modeling will be called perturbation based
uncertainty modeling. The ability to test hypothesis about the influence of a given
parameter is one of the biggest advantages of analysis based modeling.

Modeling errors in the structure of the interactions among the componeuts is
more subtle than modeling errors in the properties of already modeled interactions.
Included in the category of uncertain interaction structure are neglected dynamics
and incorrect boundary conditions and connectivity. The way to approach modeling
this type of error with uncertain parameters is to first assume a general form for the
structure and then parameterize the properties of the interactions. As an example,
boundary condition ~ssumptions can be replaced by uncertain boundary elements
which, for instance, reflect the fact that a fixed boundary condition may in fact have
some compliance. The difficulty is to recognize the need for modeling additional
interactions rather than modify the coefficients of existing ones. This is an open

problem in error model formulation.

2.3.2 Model Uncertainty Representation

In this section, the representation of parametric errors will be discussed. A given
transfer function can be represented by any number of state space realizations de-

pending on the coordinate system or choice of states used in the model. Likewise, a
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given uncertainty can be reflected in the model in many ways depending on the choice
of coordinates. For instance, an uncertain stiffness could also be represented as un-
certain natural frequencies if the system is transformed into modal coordinates. It
will be assumed in the comirg section that the system contains some inherent source
of uncertainty which must be in some manner represented and accounted for in the
model interactions.

A key concept for evaluating the merits of a given uncertainty representation is the
idea of conservatism. Put loosely, a given uncertainty realization is more conservative
than another if the set of represented systems is larger. If G; and G, are the model
sets described by two different representations of the same uncertainty, then G, is said
to be more conservative than G, if G, C G2. To see how this concept can be applied,
consider a system with a single uncertain coefficient in its A matrix, for instance, an
uncertain stiffness. This single uncertain coefficient can add uncertainty into many
different modes of the system. The uncertainty in these modes is correllated because
all modal deferences stem from the single uncertain coefficient. If that correlation
is not retained in the model and instead each uncertain mode is modeled as an
independent uncertainty, the number of uncertain parameters used in the model is
increased as is the size of the set of possible systems. The representation of the
incertainty through uncorrelated modes is thus more conservative than representing
it through the single uncertain coefficient.

The conservatism of a representation carn be reduced by tracking the correlations
of the uncertainties in the model rather than modeling correlated uncertainties as
independent. This is difficult to do when the core uncertainty is unknown as is the
case for measurement based models. With measurement based models, the structure
of the system is not well known and thus the core uncertainties are hard to identify.
This is another advantage to analysis based models where the correlations of the
uncertainties can be determined. For instance an uncertain stiffness can be varied

to determine the resulting uncertainty in the modes. Since the source of the modal
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uncertainties is known, these can be represented as correlated in the model set and
the conservatism will not be increased.

In light of the above discussion, the general rule of thumb for uncertainty represen-
tation is to reflect the uncertainties in the most basic model parameters and determine

the correlations of the higher level parameters through perturbation analysis.

2.4 Summary

In this chapter, the basic notation for representing parametrically uncertain systems
has been presented. The central concept presented was the idea of the model set to
describe a set of systems. Two sets where presented, one in which the parametric
dependence of the coefficients of the system matrices were allowed to be arbitrary
functions, and one in which the coefficients were assumed to be linear functions of
the vncertain parameters. The more structured set was compared to the internal
feedbaci: loop model of parameter uncertainties typically used in H., design. Some
thoughts on generating parameterized models and the parametric representation of

uncertainties were also presented.
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Chapter 3

Analysis of Parameterized

Systems

In this chapter the average cost of a parametrically uncertain ;ystem will be exam-
ined. This is motivated by some useful properties that the average cost has as a cost
functional. Averaging the cost over the model set allows it to reflect the effects of
parametric uncertainty on the system performance. As will be shown in the next
section, the average cost has the property of being finite only if the set of systems is
everywhere stable. therefore if the average cost is minimized by a certain controller,
the closed-loop system will be guaranteed stable. This method of guaranteeing sta-
bility can be compared to the bounding techniques discussed in the introduction.
| These techniques guarantee stability by minimizing a function which bounds any of
the possible costs over the set. This bounding function is called a worst-case bound.
The main point made in this chapter is that stability can be guaranteed by bounding
the average cost rather than the worst case cost. This fact motivates a new class
of controllers which minimize quantities related to the average cost in the hopes of
achieving design stability with lower nominal system cost than can be achieved using
bounding techniques.

In the coming sections, the tools used for the average cost analysis of parameter-
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ized systems will be developed and applied to the problem of computing the average
Ha-norm of a model set. These tools are to a large extent based on operator decom.-
position techniques which have been widely used in wave propagation and turbulence
modeling and are here applied for the first time, to the best of the author’s knowledge,
to analysis of parameterized systems. The exact average cost, while possessing useful
properties, is difficult to compute. These operator techniques will be used to develop
some of the properties of the average cost as well as some computable approxima-
tions and bounds to it. The properties of these approximations and bounds will be
investigated.

The following sections deal with analysis of parameterized sets of systems. While
the analysis .techniques are applicable to open-loop sets, they are largely motivated
by the control design problem. For development purposes, the sets considered will
be closed-loop model sets which are generated when some fixed-form compensator is
assumed to close the control loop. The first section introduces the average cost of

such a system.

3.1 The Average Cost

In this section the average cost will be defined and discussed as a possible performance
metric for parametrically uncertain systems. It is defined as the quadratic (H,)
performance averaged over a parameterized set of linear time-invariant systems. The
properties which make the average cost useful for later use in control design will
be presented. This section is divided into three parts. First, the definitions, and
properties of the average cost are presented. Difficulty in the computation of the
average cost motivates the introduction of operator decomposition techniques in the
second part. In the third part, these techniques are applied to the analysis of the
average cost. The general set definitions and assumptions presented in Section 2.2.1

will be used throughout the development. We will start by considering the definition
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and properties of the exact average cost.

Definition 3.1.1 (Exact Average Cost) The ezact average cost is defined as the

closed-loop Ha-norm averaged over the model set G,..

J(Ge) = [ 1m0l du(e) (3.1)
where Gy(a) € G, for eachVa € Q and p(a) is the distribution function.

The average cost is thus the average of the H;-norm of the systems in the modei
set. As stated in Section 2.2.1, the distribution integrates to unity over the set.
As long as it is normalized in this manner it can be an arbitrary function. In later
sections, it will be assumed to be a uniform probability distribution. The distribution
function can be thought of as a relative weighting of the systems in the model set or
the relative probability of a given system. From the point of view of control design,
it gives the designer the flexibility to make certain systems more prominent in the

average.

The average cost possesses several properties which make it useful as a perfor-
mance metric for control design. The first property of interest is the relationship
between simultaneous stability and bounded average H;-norm. Before this can be
presented, however, it is important to define a subset of §2 called a set of zero mea-

sure. A set & C  has zero measure if

J, dute) =0 (3.2)

Which can also be denoted, u(®) = 0. Since u(a) is a positive function on I C R,
sets of zero measure consist of a finite number of isolated single points in 2. With
this concept in hand, the properties associated with bounded average cost can be

presented.

Theorem 3.1.1 (Bounded Average Cost) If the ezact averaged cost, Eq. (8.1),
of Gz 13 bounded

J(Ge) = [ 1Guu(@)l3 du(er) < oo (33)
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then the parameterized closed-loop systems, G.u(a), are stable Va € § ezcept pos-
sibly on a set of zero measure. Furthermore, no system in G, can have eigenvalues

with positive real parts.

Proof: First we will show that if the exact averaged cost, Eq. (3.1) is bounded
then the closed-loop system is stable Va € (2 except possibly on a set of zero mea-
sure. To do this assume that 3B C Q, u(B) > 0 such that « € B implies G,

unstable. Since the norm of an unstable system is infinite, in this case:

[, ICau(@)l3du(a) = oo (3.4)
and thus J(G.) = oo. Finite average cost therefore implies that there can be no
measurable subsets of G,,, with unstable elements.

Next assume that there exists a system, G,,,(a ), with an eigenvalue with positive
real part. Denote the open right half plane by C*. Because C*t is open, there exists a
ball, B,, about the unstable pole within which poles are also unstable. Now since the
coefficients of G,,, are continuous functions of & and the eigenvalues are continuous
functions of the coefficients, there is a continuous mapping, called ¢(a), from € to
the unstable eigenvalue in C*. Because ¢(a) is continuous at o, a ball about a; € Q
can be found whose image is within B;. If B, is this ball in 2, and ¢(B,) is its image,
then ¢(B;) C B;. Since B; has finite measure, the subset of elements of G_,, which
have unstable poles has finite measure, and thus the average cost is infinite. The
proof is shown in schematic in Fig. 3.1. ]

Theorem 3.1.1 states that if the average cost of a set of systems is finite, then
almost all of the zlements of the set are asymrtotically stable. Furthermore, the
select few systems that are not asymptotically stable cannot have poles thut lie in
the right half plane. They can at worst have poles on the imaginary axis. This
key theorem provides the motivation for examining the average cost since controllers
designed by minimizing the average cost will be guaranteed stable over the model set.

The proof relies heavily on continuity of the map form ) to the s-plane. Continuity

of this map is similar to but not identical to continuity in Vidyasagar’s graph opology
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Figure 8.1: Schematic of Mappings from a; € € to the Closed-Loop Eigen-
value in the S-plane
[5]. The difference is that Vidyasagar relates robustness to continuity in the map from
the parameter domain to the space of systems, while the present development uses a
less restrictive map to the space of eigenvalues.

Since at each value of « the cost is given by the solution of a Lyapunov equation,
the next step in the development is to relate the averaged H;-norm to the averaged
solution of a parameterized Lyapunov equation. This gives a possible method of
calculating the average cost by calculating the average solution to a linear Lyapunov
equation. This is an important step since the approximations and bounds for the

average cost will relay on this characterization of the average cost.

Proposition 3.1.1 (Averaged Lyapunov Solution) Given a specified compensator,

G., if the ezact average cost ezists, then it is given by

762) =t { (06" ()0(=)) } (3.5)
where the notation
(1) = [ 1] du(e) (36)

has been adopted, and for each a € Q, Q(a) is the unique positive definite solution

to

0= A(e)) () +Q () A" () + B(a)B" (o) (3.7)
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Proof: The proof is straightforward since finite average cost guarantees stability
for almost all & €  and for stable systems, the cost is given by the solution of the
Lyapunov equation, Ref. [19]. O

There is a problem with calculating the exact averaged cost because of the diffi-
culty of averaging the solution to the parameterized Lyapunov equation, Eq. (3.7).
In some instances for low order systems, the solution to Eq. (3.7) can be obtained
explicitly as a function of a, and then averaged either numerically of symbolically.
There are also numerous numerical techniques for approximating the average solu-
tion such as Monte-Carlo or direct numeric2l integration. These techniques tend to
become computationally intensive and impractical a3 the dimension of 2 is increased.

In an effort to push the problem further analytically before resorting to numerical
methods, operator decomposition techniques will be introduced in the next secticns
and applied to the problem of calculating the exact average cost. They will also be
used in later sections to derive explicit bounds and approximations to the averaged
solution of the parameterized Lyapunov equation. By turning ‘o the operator de-
composition methods of analysis, bounds and approximations to the exact average
cost can be derived that are computable even if the number of parameters is large.
The next section applies these operator decomposition techniques to the problem of

computing the solution of parameterized lincar operztor equations.

3.1.1 Parameterized Linear Operator

In this section, general results for parameterized linear operators will be derived for
analysis of the average cost of a parameterized set of systems. The operator which
will be of primary interest is the parameterized Lyapunov equation in (3.7). Using
the mathematics presented in this and the following section, the tools needed in the
analysis of the properties of this equation and its average solution will be presented.

The following analysis is kased in part on the work of Bharucha-Reid, Ref, [114],

on the theory of random equations. While the work presented in the following pages

58




is not stochastic in nature it draws heavily on work in the field of linear stochastic
operators. First, let’s consider a parameter vector, , taking values on a closed and
bounded set, € IR” with distribution function p(a). Some useful functions of this

parameter vector are presented next.

Definition 3.1.2 (General Parameterized Variable) A general parameterized
variable, y(c), is defined as a mapping from Q to a Banach space, H, y(a) : @ — H.

The space of general parameterized variables will be denoied H.

Definition 3.1.3 (Parameterized Linear Operator) A mapping, L(a), from the
cartesian product space, Q x H, to H which is linear in H Va € Q is called a

parameterized linear operator.

The parameterized variable which will be examined most closely is the solution
of (3.7), @ (a). This parameterized variable takes values in IR"*", the space of n x n
matrices. The parameterized linear operator is the Lyapunov equation (3.7). We are

interested in characterizing the solution of the parameterized operator equation,

L(a)y(a)l == (3-8)

where z is a parameter independent element of H ,L () is the parameterized linear
operator, and y(a) is a general parameterized variable taking values in 'H and defined
for ihose a where L™!(a) exists. To find a solution for y(a) we will introduce the
operator decomposition technique. This technique involves decomposing L {a) into the
sum of two linear operators, Ly and L, (a), such that Lo is invertible and parameter

independent and L; (a) is a parameterized linear operator.
L (a) = Lo + Ll (a) (3.9)

then the solution for y(a) can be expressed in terms of the nominal solution, i.e. the
solution of (3.8) using only the nominal operator, Lo. This technique of operator

decomposition has been used extensively in the computation of solutions to linear
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stochastic equations, Ref. [116]. Another excellent paper ou solution techniques for
stochastic equations including operator decomposition is Frisch, Ref. [118].

The general re-1lts shown above can he applied to the parameterized Lyapunov
equation used to compute the exact average cost in Thm. 3.1.1. Eq. (3.7) will be shown
to be a parameterized linear operator which can be decomposed into a nominal and

parameter dependent part.

Proposition 3.1.2 (Parameterized Lyapunov Equation) The parameterized Lya-

punov equation preseried in Eq. (8.7) and reprinted here for clarity
0= A(e)Q (o) + @ (a) 4 (@) + B(a)B" (o) (3.10)

is ¢ parameterized linear operator equation in the sense of Def. 8.1.8 frem Q x R**® —
IR***. If A{c:) can be decomposed A(a) = Ao+ Ay(a) with Ao pararieter independent,
then Egq. (8.10) has the following decomposition, L (a) = Lo + L, (a) and ,

Lo [Q] + L1 () [Q] = ~B(a)B" () (3.11)
Lo [Q] . Q — J‘ioé + Q il (312)
L(@)[@] : §-A()Q+Q4la) (3.13)

This is a handy operator notation for dealing with cumbersome Lyapunov 2qua-

tions. For example, consider the nominal Lyapunov equation and its nominal solution,

Q°.

AsQ° + Q%43 + BB" =0 (3.14)
This equation can be written as
Lo [Q°] = -BB" (3.15)

which has the solution:

& =15*|-B5"] (3.16)




When the operator is decompcsed into two parts, the operator equation (3.8) can be

written az
Lo [y(e)] + Ly (o) [y(a)] = = (3.17)

which can be manipulated to give

y(a) = Lg" [z] - Lg L1 (o) [y(e)] (3.18)

Successive substitution for y(a) gives an infinite series for y(a) called the perturbation

expansion. This is expressed precisely in the following proposition.

Proposition 3.1.3 (Perturbation Expansion) Consider the parameterized linear
operator, L () = Lo + L, (a), with Lo invertible and ||L51L1 (a)ll <1 Va e Q.
Then L(a) is invertible in the sense that the mapping from z to y(a) is one to one
and has continuous inverse V o € Qthe inverse is given by

L)=3Y (~L3'Ly () Lg" (3.19)

1=0

Corollary 3.1.1 The solution to (3.8), y(a) € H, is a general parameterized variable

and can be written as

y(a) = yo—Lg 'Ly (@)yo+Lg Ly (@) Ly Ly (a)yo—- -~ = i (-L5'Ly (a))iyo (3.20)

1=0

where the numinal solution yo = L;'z.

Proof: The resuit is a direct consequence of the von Neumann Lemma, Propo-
sition 22.10 in Ref. [112]. o
Theorem 3.1.3 is the fundamental method used to compute soiutions of parame-
terized linear operator equations. It is not a simple expansion in terms of powers of
the parameters as would be obtained from a Taylor expansion on a. Instead it is an
expansion in terms of powers of the L; (@) operator which could be a complicated

function of the parameters.
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Two conditions are necessary for the application of the perturbation expansion
solution. They are that (i) Lo must be invertible and that (i) ||L;; 1Ll(cx)" <
1 Ve« € Q. If these conditions are satisfied, then the solution of the parameter-
ized operator equation exists for all a. In the case of the parameterized Lyapunov
equation, existence of a solution at every a guarantees system stability at every a.
therefore the two necessary conditions for the perturbation expansion solution amount
to sufficient conditions for simultaneous stability over the set. In the next proposi-
tion, these two conditions will be interpreted in terms of conditions on the system

coefficient matrices.

Proposition 3.1.4 (Sufficient Condition for Simultaneous Stability) Let A(a)
be decomposed into A(a) = Ay + Ai(a), with Ay asymptotically stable and the norm
constraint

ﬁ(&o@,&o)" (/il(a)ﬂalil(a))u <1 Vae (3.21)

then A(a) is asymptotically stable Vo € Q.

Proof: The parameterized Lyapunov equation, Eq. (3.7), is a parameterized
linear operator with decomposition as given in Proposition 3.1.2. The two conditions
for the upplicability of Prop. 3.1.3 and therefore existence of a solution V « are that
Lo is invertible and

"LE,‘ILl (a)" <lVa e @ (3.22)

The first condition is satisfied by the condition that A, is asymptotically stable since
stability of Ay guarantees existence of a positive definite solution of the nominal
Lyapunov equation by Lyapunov stability theory. Existence of a soluticn to the
ncminal Lyapunov equation implies that Lo is invertible.

The second condition is equivalent to the statement that the solution, Y € IR**%,

to the equation

AY + YA = Ai(a)X + X AL (a) (3.23)



has norm less than 1 (||| < 1V a € Q) when || X|| < 1. This condition can also be

expressed using Kronecher notation, Ref. [113]. Equation (3.23) can be rewritten as
-~ - -1 - - P
vec{Y} = (Ao 2> Ao) (Al(a) ® Al(a)) vec{X} {(3.24)

with || X|| < 1, then ||[Y|| < 1V @ € Q. For this to be true the induced matrix norm

must be less then one.
~ - -1 - -
" (Ao ® o)™ (Ar(0) @ Au(e)) " <1 Vae @ (3.25)

Thus Eq. (3.25) is a sufficient condition for existence of a solution to Eq. (3.7) Ve
From Lyapunov stability theory, existence of the solution to Eq. (3.7) at each «
guarantees stability at each a. m]

This condition for simultaneous stability really represents a condition on the size
of ./-1.'(&) which can be tolerated for stability. The development is a natural resrlt
of the application of the operator decompositions techniques on the parameterized
Lyapunov equation. The derivation doesn’t rely on the use of the average but it
will be shown in the next section that the two conditions for simultaneous stability
guarantee existence cof the average of the parameterized Lyapunov equation. The

average solution will be examined in more detail in the next section.

3.1.2 Expressions for the Average

Nowv that an expression for the solution of a linear operator equation and conditions
for its existence have been presented, the problem. of determining the average solution
can be addressed. In this section, two series expansions for the average are presented.
The first to be presented is based on the perturbation expansion derived in Prop. 3.1.3.
The series for the average will be derived by averaging the perturbation expansion
term by term. The second expression for the average solution of a parameterized
Lyapunov equation is calied the Dyson equation which has its roots in stochastiv

operator theory. Both expressions for the average involve infinite series and so their
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use for computation of the average is limited. Instead, in a later section these two
methods will both be used to derive approximations for the average by truncating
their respective series. In this section the complete scries are presented for later

truncation. The first step is to examine the averaging process as an operator.

Definition 3.1.4 (Averaging Operator) The averaging operation, A: H — H is
given by the Bochner integral

All= () = [ Hdp(a) (3.26)

provided the integral ezists. The average, §, of a general parameterized variable,

y(a) € H, is a parameter jindependent element of H, defined by
7=Al() = [y(@)du(e) (3.2)

At this point it is useful to introduce some properties and assumptions related to
the averaging operator as given in Ref. [118]. These properties and assumptions will

used in the remainder of the section.

(i) A and I — A are projectors
A=A (3.28)

(ii) A commutes with L' since L;?! is parameter independent.
AL;' =L;'A (3.29)
(iii) It is assumed that L, (a) is centered ( has zero average)

AL, (2)A =0 (3.30)

(iv) Assume that z is parameter independent.

Az =z (3.31)
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The centering assumption is not limiting since Lo can be chosen arbitrarily as
long as it is invertible. In the case of tue parameterized Lyapunov equation, one
can choose A(a) = Ao + Ai(a), where Ao = </i(a)> and 4;(a) = A(a) — A;. The
assumption that  is parameter independent is equivalent to saying the BB has no
parameter dependence. To enforce this assumption we will restrict our investigation
to this class of systems. Note that the structured set of systems, G,, has this property
that the closed-loop B matrix is parameter independent. The restriction to param-
eter independent closed-loop B matrices doesn’t preclude uncertainties in the input
and output matrices used for control. The uncertainties in the B, and C; matrices
contribute to the closed-loop A matrix and therefore are allowed.

Using the assumptions stated above, A can be applied to the series in Eq. (3.20)
to obtain the first general expression for the average solution to a parameterized

operator equation, called the perturbation expansion for the average.

Proposition 3.1.5 (Perturbation Expansion for Average) Consider the param-
eterized operator equation, L (a)y = z, L (a) = Lo+Ly (a), with Lo invertible, L (a)
centered and uniformly continuous in o € 2, and "La' L, (a)" <1Va € Q. Then
the average of y (a) ezists and is given by the series
7= yo + Ly'AL, (a)L3'L; (a)yo + - ZA( LLy (e) ) (3.32)
1=0
Proof: The crux of the proof is to show that y(a) is a continuous function over
a compact set, 2, and therefore integrable. To show that y (a) is continuous we note

that each term in Eq. (3.20) is a uniformly continuous function over {2 and bounded

Va € Qby

(512 (@) 30| < Bllsoll v € @
B = max {|L5 L (o)} <1 (3.33)
Since ZB‘”yoH converges, the sequence of partial sums of Eq. (3.20) converges uni-
1=0

formly to y(a) by the Weierstrass M-test. Since each term of y(a) is uniformly
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continuous and the series converges uniformly to y (a), ¥ (@) is uniformly continuous
on a compact set 2 and therefore integrable. o
The convergence properties of Eq. (3.32) are not ve:y good because of the norm
constraint on Ly'L, (a). If "L{,‘ 'L, (a)" is close to cne (some elements of the set are
close to instability), it will take many terms for the series to converge. Also note that
since higher order terms involve the average of (Lg ', (a))‘ the number of terms at
each power of ¢ can increase geometrically and so therefore can the computational
complexity. For example, consider the case of the computation of the 5% term in
the series when there are 5 uncertainties. Each uncertainty has associated with it an
uncertainty template matrix, A;. Since matrix multiplications do not commute there
are 5° terms which must be individually accounted for. These two problems, the slow
convergence and the large number of terms, make calculation of the exact average
cost using the perturbation expansion for the average computationally impractical.
These problems with the perturbation expansion for the average have been en-
countered in other fields that need to calculate the average solutions of parameterized
or stochastic linear equations. To get around these problems, a different sort of equa-
tion for the average solution known as the Dyson Equation, Ref. [1 18] which has been
widely used in the fields of wave propagation in random media, Refs. [118,119,121],
and turbulence modeling, Refs. [122,123]. First the Dyson equation will be presented

and then it will be discussed in the context of the problems mentioned above.

Proposition 3.1.6 (Dyson Equation for the Average) Given the assumptions

of Proposition 8.1.5, then § € H ezists and s the solution. of the linear equation
7=y +Lg' Mg (3-34)
where M is a parameter independent operator defined

M = -3 AL (a) [-L5' (1- A) L ()] A (3.35)

1=1
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Proof: By applying A and (I — A) to Eq. (3.18) respectively, two equations are
obtained
7 = yo — L' ALy (@)j () (3.36)
3(2) = —Lg! (I A)Lx (@) (7 +§()) (3.31)
where § (@) = (I — A) y (@) is called the reverberant solution and 7 is called the mean
solution. Now solv.ug for § () in terms of § one obtains

§(@) =3 [La' (- AL (a)] 7 (3.38)

i=1
The solution of Eq. (3.38) exists because y (a) is a bounded function on a compact
set © and 7 exists by Proposition 3.1.5. therefore §(a) = y (a) — § exists. Equations
(3.34) and (3.35) follow by substitution of Eq. (3.38) into Eq. (3.36). o

Remark 3.1.1 The Dyson Equation is linear and its solution is given by the param-

eter independent equation

-1
§=(I-Lg'M) % (3.39)
which is equivalent to the infinite series
g=3 (L'M) 5 (3.40)
1=0

Some comparison of the two equations for the average is certainly in order. The
perturbation expansion for the average is basically an expansion about the nominal
solution, yo, in powers of the parameter dependent part of the solution Lg 'L, ().
The solution takes long to converge when the mean solution is far removed from
the nominal. The fundamental difference between the perturbation expansion and
the Dyson equation is that the Dyson equation uses an expansion about the mean
solution to obtain the mean soiution.

To see how this property manifests itself in the mathematics consider Egs. (3.36)
and (3.38). Eq. (3.36) expresses the average solution in terms of an average of the
reverberant solution, 7 (a). This equation can be thought of as a coordinate transfor-

mation from averaging over y(c) to averaging over j (). Equation (3.38) amounts to
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an expansion for § (a) about the mean in powers of a transformed version of L5 'L, ()
which is written ~Lg'L; (@) + Ly* AL, (). So in essence, instead of representing the
parameter dependence of y(a) relative to the nominal solution and then averaging as
is done in the perturbation expansion, the Dyson equation represents the parameter
dependence of § () about the mean and then transforms back and averages.

The Dyson equation really incorporates two infinite series. These are the infinite
series for the deterministic M operator given in Eq. 3.35 and the infinite series for
the mean solution, Eq. (3.40). The series for M is the result of expanding about the
mean solution, and it contains all of the parameter dependent terms and averages.
The series for the mean solution essentially represents the process of untangling the
mean solution from the M operator since this operator is derived using an expansion
about the mean which is not yet known. By expanding about the mean solution rather
than the nominal the series solution for the Dyson equation tends to converge much
more quickly than the perturbation expansion for the average. This will manifest itself
in the accuracy of the approximations derived by truncating the two expressions for
the average. As will be discussed in the following section, truncation of the Dyson
equation entails truncating the number of terms in the infinite series for M and not
the infinite series for the solution.

Both expressions for the exact average involve infinite series of terms which involve
L;'. Each appearance of L;! signifies an additional Lyapunov equation. Calculating
the exact average solution for the parameterized Lyapunov equation will therefore
entail an infinite number of Lyapunov equations. In addition, if there are large number
of uncertainties (the dimension of  is large), then each higher term of the series
involves the average over a geometrically increasing number of terms. It is therefore
important to derive approximate expressions for the average since the exact average

is rarely calculable. These approximations will be discussed in the next section.
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3.2 Approximations to the Average Cost

In this section, approximate solutions for the exact average cost will be presented.
Explicit equations for the calculation of approximate average costs will be derived.
Two types of approximations will be discussed. The first is derived from a truncation
of the perturbation expansion for the average solution of the parameterized Lyanunov
equation, Eq. (3.7) presented in Prop. 3.1.5. The second is based on a truncation of
the Dyson equation, Prop. 3.1.6. As explained in the previous section, the Dyson
equation has been widely used in the fields of wave propagation in random media
Refs. [118,119,121)], and turbulence modeling, Refs. {122,123] as an expression for the
average solution of parameterized linear operator equations.

The two approximations for the average solution of the parameterized operator
equations will be applied to the problem of approximating the average solution of
the parameterized Lyapunov equations presented in. Eq. (3.7). These computable
approximations will be developed for use as performance metrics for robust control
design for systems with a large number of uncertain parameters. The approximations
will be used in place of the uncomputable exact average cost in hopes of recovering
some of the robustness properties of average cost design.

In the derivations that follow, the structured set of systems, G,, will be used
to model the parameter dependence of the coefficient matrices for the derivation of
computable approximations for the average. The set of systems is restricted to the
structured set for two reasons. First, the operator equations for the average presented
in the previous section only address parameter dependence of the linear operator
part of the equation. This translates to a restriction that only the closed-loop A
matrix can be parameter dependent. This is satisfied by the structured set of system.
Secondly, in order to derive deterministic equations which explicitly deal with the
averages of the parameters, the form of the functional dependence of the coeflicients
of the system matrices must be specified. For simplicity the parameter dependence

of the coefficients of the system matrices in the structured set are assumed to be
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linear. Restricting our attention to the structured set of systems, the parameterized
Lyapunov equation to be approximated becomes
r r T
< =\ = x P ~ = T
=1 =1
The first approximation to be derived is based on the perturbation expansion for the

average.

3.2.1 Perturbation }aExpansion Approximation

The first method of deriving“x‘a computable approximation for the average solution
of the parameterized Lyapunov equation is to truncate the infinite series given by
the perturbation expansion fozk the average. The truncation retains only the first two
terms of the series which a.rei‘basica.lly the nominal sclution and a solution which
depends on the square of the ut;ncertain terms. This truncation can be thought of as

an approximation to the exact “; average.

Definition 3.2.1 (Perturbation Series Truncation) The perturbation series trun-
cation is derived by retaining %mly the first two terms of the perturbation ezpansion

for the average given in Prop. ;3.1 ..
| _ 2
7" =yo+ A(L5'L1 () Ago (3.42)
where yo = Ly'z is the nominal solution.

The perturbation series truncation can be used to derive an approximate average
solution to the parameterized Lyapunov equation, Eq. (3.41). This is done by substi-
tuting the operator definitions given in Prop. 3.1.2 into Eq. (3.42). This manipulation

gives the perturbation expansion approximation.

Proposition 3.2.1 (Perturbation Expansion Approximation) Given a speci-
fied compensator, G., if the parameterized closed-loop systems, G.,(a), are stable
for almost all a € Q then:

J(G.) = tr {QPC‘TG"} (3.43)
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where QF is the unique positive definite solution to the following system of Lyapunov

equations:
0 = AoQP+QPA + BB + im‘ (Aié‘ + Q‘f‘f) (3.44)
i=1
0 = Al + QA5 +o; (A.-Q°+ QOA,-T) i=1,...,r (3.45)
and Q° is the solution of the nominal Lyapunov equation
0= A,0° + Q°4; + BB" (3.46)
and o; 18 defined from the relation:
(a?) = o? (3.47)

Proof: The result is a direct consequence of the application of the decomposition
of the parameterized Lyapunov equation presented in Prop. 3.1.2 (actually applied
to (3.41)) and the definition of the perturbation expansion truncation defined in

Def. 3.2.1. a

Remark 3.2.1 (Soiution) The system of Lyapunov equations presented in Eqs. (3.44)
and (9.45) are coupled hierarchically. The nominal solution, Q°, can first be solved
using Eq. (8.46) and the solution substituted into each of the i equations represented
by Bq. (8.45). The solutions for these equations, Q*, can then be used to solve for QP

using Eq. (8.44).

Remark 3.2.2 The sysiem of equations presented in Egs. (8.44) and (3.45) are sim-
tlar to those inherent in the sensitivity system design methodology presented in Ap-
pendiz A of Ref. [109]. This can be seen clearly by putting the equations for the

component cost analysis in the notation used here:

0 = AGP+QPAT + BB +Y o (A.-Q‘ + Q‘Tfif) (3.48)
1=1
0 = Aoli+O'Ar + 0 (QOA,.T) i=1,...,r (3.49)
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There is only a single term omitted from ($.49) which is in (8.45). The omission of
this term essentially cuts in half the contribution of the parameter dependent part o,
the solution. The nominal solution will be the same but the perturbation ezpansion
approzimatior. will be twice as sensitive to parameter variations as the equivalent

sensitivity system model of component cost analysis.

Although the hierarchical cature of the system of Lyapunov equations represented
by Egs. (3.44) and (3.45) makes them simple to solve (just 1+r Lyapunov equations).
The structure of the equations can be revealed by representing them by a single linear

equation for the approximate average solution using Kronecher notation.

vec{§) = (1 +3 (o (Ao o) (dio A.-))’) we{@®)  (350)
=1

Equation (3.50) reveals that no finite amount of uncertainty will lead to infinite
solutions of the perturbation expansion approximation. It never “blows up.” therefore
the cost remains finite even when the uncertain set is very large and contains unstable
members. From the control design viewpoint this property is a severe drawback. It
indicates that not only will minimizing the perturbation approximate average not
guarantee stability for the design set but in addition it will not guarantee stability
for any subset of the design set. The designer cannot just increase the amount of
uncertainty used in the design to obtain a stability guarantee on a less unceriain
system. The next approximation for the average solution based on truncation of the

Dyson equation will partially address these weaknesses.

3.2.2 Bourret Approximation

In this section, an approximation for the averaged solution of the parameterized
Lyapunov equation (3.41) that is based on the Dyson equation for the average will
be presented. This approximation is developed for comparison to the perturbation
expansion approximation. As explained in Section 3.1.2, the Dyson equation has some

interesting characteristics that should make the approximation based on it better
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suited for control design. In this section, these characteristics will be examined in
the context of a computable approximeation to the average known as the Bourret
approximation. This approximation will be derived by truncating the infinite series

associated with the M operator in the Dyson equation.

Definition 3.2.2 (Bourret Equation) The equation formed by truncating the M
operator in the Dyson equation, Egs. (3.84) and (8.85), to include only its first term

is called the Bourret equation, given by
78 = yo + L3'AL, (@)L3'L, (a)§® (3.51)

Remark 3.2.3 The Bourret equation has the solution, 2, appearing on both the

right and left sides. To remove the right side dependency, it can be rewritien
-1
72 = (I- AL;'Ly ()L5' L () %o (3.52)
which is a shorthand for the series expansion
[ ] .
13
5% = Y (AL; 'Ly (o)L L (@) vo (3.53)
=0
The Bourret equation thus represents an infinite series expansion for the approx-
imate average solution even though it is a truncation of the Dyson equation. This
series expansion solution to the Bourret equation contains terms similar to those in the

infinite series for the perturbation expansion for the average. Comparing equivalent

terms in these two infinite series

(A(Lg L, (a))’A)‘ — Bourret Approximation

A (Lg 'L, (a)) " A — Perturbation Expansion for the Average

One can see that the Bourret terms depend only on the averages of (Lg'Ly («))?.
If L; () is a linear function of the parameters this is equivalent to saying that the
Bourret equation only depends on the second moments of the parameters. The per-
turbation expansion for the exact average depends on higher moments since the av-

eraging operator is outside the product of the terms. In addition, retaining only the
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first two terms of the Bourret equation is equivalent to retaining the first two terms
of the perturbation expansion for the exact average. These two terms correspond to
those used iu the perturbation expansion approximation. Since the Bourret equation
includes additional terms, one would expect it to be a better approximation of the
exact average than the perturbation expansion approximation.

At this point, we can apply the Bourret equation to the problem of approximating

the average solution of the parameterize« Lyapunov equation, (3.41).

Proposition 3.2.2 {Bourret Approximation) Given a specified compensator, G.,

if the parameterized closed-loop systems, G,,,(a) are stable for almost all a € Q then
J(G.) = tr {QBC'T(}} (3.54)

where QF is the unique positive definite solutions to the following system of Lyapunov

equations:
- g =T =-=T r - 2.  =.=T
0 = AQ° +Q°A, + B +Zo’. AiQ+ Q¢ ) (3.55)
0 = AoQi+QiAs +0: (4GP + QBA?‘) i=1,...r (3.56)

where o; is defined from Eq. (3.47).

Proof: The result is a direct consequence of the application of the decomposition
of the parameterized Lyapunov equation presented i Prop. 3.1.2 and the definition
of Bourret approximation defined in Def. 3.2.2. An intermediate variable, Q*, has
been introduced as the solution to Lj'L; ()72 in (3.51). o

The system of Lyapunov equations presented in Egs. (3.55-3.56) is very similar
to the system generated in Prop. 3.2.1. There is additional coupling occurring in
Eq. (3.56). Instead of depending only on the nominal solution, Q°, these equations
depend on the total Bourret approximate average solution, Q8. This coupling com-
plicates the solution procedure but leads to a more accurate approximation. The

solution is discussed in the next remark.
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Remark 3.2.4 {Solution) Tke system of Lyapunov equations represented by Egs. (3.55-
8.56) can be solved in two different ways. The first is to represent them by a single
linear equation for the approzimate average solution using Kronecker notation, as

below:
vec {QB} = (I - ; (a.- (fio ® /io)_l (A.‘ ® fi,-))z) B vec {Q°} (3.57)

The second method to solve Egs. (3.55-8.56) is by iterative solution for the Bourret
approzimate average, QB, using the nominal solution, Q°, as the initial guess. In
this method, a solution is assumed jor QB in (8.56) which is then solved for Q*. @
is then used to solve for a new QB using (9.55) and the process is repeated until the

solution for QP converges.

For large order systems, the iterative solution procedure is usually superior to the
Kronecher notation method because of the size of the matrices in (3.57). If the system
is n*h order, the matrices have dimension n? x n?. The Kronecher notation form of the
Bourret approximation does provide some insight into the conditions under which the

Bourret approximation has positive definite solution. This condition is given below.

Proposition 3.2.3 A sufficient condition for the ezistence of the inverse in Eq. (3.57)

and resulting uniqueness and positive definiteness of the solution is that

> (o: (Ao A) " (A0 &)’

=1

<1 (3.58)

Proof: This is a direct consequence of the application of the von Neumann Lemma,
Prop. (22.10) in Ref. {112] to Eq. (3.57). o

Proposition 3.2.3 represents the condition under which the Bourret equation gives
meaningful answers and also gives the amount of uncertainty that the system can
tolerate before the Bourret approximation “blows up.” This can be thought of as
defining the stability region from the Bourret approximations point of view. Notice

that Eq. (3.58) doesn’t imply that Eq. (3.21), the sufficient condition for simultaneous
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stability given by:

> (e (do® Ao) ™ (i 4

=1

<1 Va € (3.59)

is satisfied. A finite solution to the Bourret approximation will therefore not nec-
essarily guarantee stability over the model set. It is useful to investigate a set of
systems that is guaranteed stable if the Bourret Approximation is finite. This set has

the following characterization.

Corollary 3.2.1 Ifthe sufficient condition for ezistence of a positive definite solution
to the Bourret equatior. is satisfied, Eq. (3.58) then stability is guaranteed or. the set,
0 c Q, defined

S ot A2

1=1

0= {a s Dladl il < | (3.60)

1=1

where

A= (/io@fio)_l (/ii@fi.') 1=1,-..,r (3.61)

Proof: Using the sufficient condition for positive definiteness of the Bourret

equation and the set definition, we have

Y o242 < 1 (3.62)

1=1

< Y leslll Al <

=1

ia;A.-

1=1

By Proposition 3.1.4 a positive definite solution of the parameterized Lyapunov equa-
tion, Eq. (3.41), exists and hence stability is guarantees for any a which satisfies this
condition. O

The general shape of this set of systems in the o plane can be drawn for two
uncertainties and is shown in Figure 3.2. The fact that the existence of a solution
to the Bourret equation guarantees stability over a definable set is very useful in
control design. The values for the o; can be set large enough in the controller design
process to guarantee stability over the actual set of interest. The designer thus has
the flexibility of achieving guaranteed robustness if it is desired by increasing the o;.

In addition a first cut at the controller can be obiained by by using the o; which
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Figure 8.2: The shape of §) for two uncertain parameters where 7; = ||.A]|
and 7% = [0} A + o3 A7l
result from the actual set of systems. Because in this case, the Bourret equation is
only an approximation to the average over the set, these first cut controllers will not
necessarily guarantee stability over the design set. The o; can then be increased in
the design process if the stability margins are insufficient.

The structure of the Bourret equation suggests possible solution through the use
of higher-order Lyapunov equations. In fact, in certain cases the Bourret equation
can be solved using a 27 order Lyapunov equation and it can always be represented
by a @(1 + r) order modified Lyapunov equation. These situation will be discussed

in the following remarks.

Remark 3.2.5 If the orthogonality condition,
AA; =0 Vi#j (3.63)

with A; defined in (8.61) is satisfied, then the solution of the Bourret equation is given

by the solution to
AQ+QAT+B=0 (3.64)
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where

, Ao -Ted| s g BE™ 0
A= r =1 Q = . B = T (365)
ok Ao o G® 0 BB

i=1

The orthogonality condition essentially imposes the constraint that the uncertain-
tie: enter into dynamically decoupled subsystems. This constraint is very restrictive.

A more general form can be developed using a modified Lyapunov equation.

Remark 3.2.6 The solution of the Bourret equation can always be given by the so-

lution to the modified 7i(1 + r) order Lyapunov equation

AcQ + QAT + A,QI + IQAT +B =0 (3.66)
where
[ Ao ] 0 A --- A,
\ Ao \ A 0
Ao = . A= . (3.67)
i A | | A, 0
K& ” | B5” 1 for 1]
. ) ) 0 A I0
4 = (a3 | B | P=|" . (3.68)
L Q- | ! 0 R 0|

The al:!yove result illustrates the structure of the Bourret equation and may present
opport‘;unities for more efficient calculation of the solution.
|
This concludes the exposition on approximations to the exact average cost. Two

bounds on the exact average will be investigated in the next section.

\
L

3.3 Bounds on the Average Cost

In this section functions which bound the solution to the parameterized Lyapunov

equation, (3.41), will be investigated. The motivation for looking at functions that
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bound the exact average is the desire for guaranteed stability. If a function which
bounds the average has a finite solution, then the average is finite, and thus the set
of systems is stable. As discussed in the Introduction, most functions which bound
the solution to the parameterized Lyapunov equation do so by bounding all of the
solutions to the equation. In Section 3.1, it was shown that it is sufficient to only
bound the average solution to guarantee stability. This insight has motivated the
search for functions which bound the average and not all of the solutions. It is
hypothesized that a function that bounds only the average solution can be used in
control design to generate stabilizing controllers which require less control effort and
lower control gains than those designed based on functions which bound all of the
solutions.

Two bounds to the exact average cost are developed in this section which will be
used for control system design in a later section. The first, called the “worst-case”
bound, bounds all of the solutions of the parameterized Lyapunov equation. The
second, called the average bound, bounds the average solution but not necessarily all
of the possible solutions. The prelirninary mathematics will first be presented and
applied to computing the bounds for average costs associated with the structured set
of systems.

To begin it is assumed that a partial ordering of the elements of H can be defined.
That is, the expression z; < z;, £ € H has meaning. Such an ordering can for
instance be the ordering of positive definite matrices in IR***. Several properties of
functions can be defined based on this ordering. The first is a new type of function

called a bounding function.

Definition 3.3.1 (Bounding Functions) A function N : H — H is said to be an

parameter independent bound on a parameterized linear operator, L(a), if
L(ajy<Ny Va € Q VyeH (3.69)

The bounding function will prove very useful for deriving bounds on the average.
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It is also necessary in the following derivations to assume three new properties for the

nominal operator, L, and the averaging operator, A.
(i) Lg! must be negative semidefinite.

Lyly <0 V>0 (3.70)

(ii) Ly! must preserve orderings.

T <y= Ly'z <Ljly (3.71)

(iii) A must must be regular with respect to the ordering.

y(a)<z Va € Q= Ay(a)<=z (3.72)

These three assumptions are not restrictive for our problem since they are satisfied
when L is a Lyapunov equation with A, asymptotically stable and H is the space of
IR*** matrices with parameterized elements.

Having made these assumptions, we can address the problems of finding bounds
for the average solution of Eq. (3.41). The worst-case bound will be investigated first

for later comparison to the average bound.

3.3.1 Worst Case Bound

The first bound discussed is simply an bound on all of the solutions of the parame-
terized operator equation, called the “worst-case” bound. It has typically been used
to derive bounds on the solutions of parameterized Lyapunov equations discussed in
depth in Ref. [73]. The bound presented in this section has been widely investigated
and applied to control design problems. It is developed here for later comparison with
the average bound. The development will be used to present some of the concepts as-
sociated with bounding functions when viewed from the perspective of parameterized
operators. The first step is to present the bounding operator equation from which

the worst-case bound will be derived.
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Proposition 3.3.1 (Worst-Case Equation) Given a parameter independent bound
N of Ly (a) and a nominal fuaction, Lg?, that is negative definite and preserves or-

derings, then the solution to
7% = yo — Lg'Ng" (3.73)

bounds all solutions to the parameterized linear operator equation, Eq. (3.8), decom-
posed as in Eq. (8.9),
y(a)<§¥ Va e Q (3.74)

and as a consequence bounds the ezact average solution, .
g<g¥ (3.75)

Proof: The proof can be found in Ref. [74]. The crux of it is that the series for
" implicit in Eq. (3.73)
7% = yo — Lg'Nyo + L3'NL;'Nyo — - = 3 (-L3'N)'y30  (3.76)
t=0
term by term bounds the parameterized solution, y (a), of (3.20). Comparing the i**

terms in the series we have

(-Ls'Li(0)) 0 < (-L3*N) o (3.77)

since —Ly'N is a bound to —Lg'L; () because —Lg! is positive definite and pre-
serves orderings. .

Prop. 3.3.1 will be applied to the problem of bounding the exact average cost
by using the decomposition of the parameterized Lyapunov equation presented in
Prop. 3.1.2. The first step in accomplishing this is to deiermine a bounding function,
N, for L, («) as described in Definitioa 3.3.1. For this bounding function, we will use

the linear bound presented as an bounding function for control analysis and design

in Refs. [69,71,73,74).
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Proposition 3.3.2 (Linear Bound) Let § be a arbitrary scalar, and choose §; €
IR>0,2=1...7r such that

X3

Lol N

<1 V{a,...,0,} €Q (3.78)

.<=.3| R

and define the functions

L@@ - (Sud)ere(Sed)  om

1=1 i=1
- 6% . - .1
N[Q] : @-e&Q+ Zf‘ QA (3.80)
=1
Then N 1is a linear operator which satisfies
Li(a) [Q] <N[Q] Y@20eR™, ac@ (3.81)

Proof: The proof is identical to that done in Remark 5.4 Ref. [74] and [69].
Note that

o= 2|(5)n-(5)4fo[(F)n-(3)4] e
< £y (i;_j_) .-;1 (_"2 AQA] - Y (fi; +c}/i,.T) (3.83)
(3.84)

a

The conditions on the §; decribe an ellipse in the a-plane. For the linear bound to
guarantee that L; (a) < N for all the values of @ € , this elipse must circumscribe
Q. The new set of a given by the elipse will be defined as ). When dealing with
the linear bounding function, this set will be used to describe the possible parameter
values instead of €2,. Another bounding functions which could have been used is the
Petersen-Hollot or quadratic bound found in [63,69, 71, 72]. The linear bound was
chosen primarily for its linearity and the extensive analysis associated with its use in

robust control design.
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Using the above linear bound and the worst-case operator equation presenied in
Prop. 3.3.1, the equations which constitute an bound to the exact average cost for

the structured set of systems can be written.

Theorem 3.3.1 (Worst Case Bound) (Given a specified compensator, G. and set

of systems, G,, the ezact average cost, J(G.) is hounded by the worst case cost
J(G.) < J¥(G.) = tr {QWC'TG} (3.85)
where QW is the unique positive definite solution to the following Lyapunov equation.
0= Ao0% + 0% AL + 520w + BE™S" (%) Agw AT 3.86
= AQ" + Q" A, +6°Q" + z_;z-; Q7 A; (3.86)
where &; is defined from Equation (3.78) and § € IR.

Proof: The result can be obtained by substituting into Prop. 3.3.1 the definitions
for the Lo and L, (c) operators given in Prop. 3.1.2, and substituting for N the
definition for the linear bound given in Prop. 3.3.2. (]

The addition of the bounding term in effect produces a modified Lyapunov equa-
tion, (3.86) whose solution bounds the average cost. The solution ot Eq. (3.86) also
bounds all of the solutions of the parameterized Lyapunov equation, (3.41), and is
therefore called the worst-case bound. The modification to the Lyapunov equation

makes it more difficult to solve. Two possible solution methods are presented next.

Remark 3.3.1 (Solution) The Lyapunov equation represented by Eq. (9.86) can be

solved by representing it as a single linear equation using Kronecher notation [118].

vee (@) = [14 (oo o) (514 3K (Ao 4) ) @) (387

where “vec” is the column stacking operation defined in [118]. It can also bz solved

by iterative solution for Q¥ using Q° as an initial guess.
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For large crder systerms the size of the matrices involved ‘n the Kronecher notation
solution become prohibitively large and so the iterative solution technique becomes
more attractive. The Kronecher notaticn solution does give some insight into the
conditions under which the modified Lyapunov equation has unique positive definite

solutions.

Proposition 3.3.3 A sufficient condition for the ezistence of the inverse in Eq. (3.87)

and resulting uniqueness ard positive definiteness of the solution is that

(foo i)™ (#1+ 35 (Ao a))

=1

‘ <1 (3.88)

Proof: This is a direct consequence of Proposition (22.10) in Ref. [112] and is
given in Ref. [74]. ]
Existence of a solution to the worst case bound thus guarantees simultaneous
stability over the model set. This also indicates that the worst case bound is more
conservative than the condition given in Prop. 3.1.4 for simultaneous stability. In the
next section, a bound will be developed which bounds the average but not all of the

solutions of (3.41).

3.3.2 Average Bound

In this section a function which bounds the average cost will be presented. This
function, called the average bound, yields solutions which bound the average cost
but not necessari!; all of the possible costs on the set. In this manner it is distinct
from the worst-case bound presented in the previous section. This new bound is
derived in an attempt to take advantage of the property that finite average cost
guarantees stability on the model set. By bounding only the average and not all
possible solutions of the parameterized Lyapunov equation, it is hypothesized that
compensators can be derived which guarantee stability without the high gains and
control effort characteristic of worst-case bound synthesis. This hypothesis will be

tested in Chapter 5. The analytical underpinnings for this average bound will be
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presented in this section for later use in control synthesis. To start, the operator

equation associated with the bound will be presented.

Theorem 3.3.2 (Average Bound Equation) Given a parameter independent bound
N of L, (a) and a nominal function, Ly', which is negative definite and preserves

orderings, the solution to

74 = yo + Lg'NL;'Ng4 (3.89)

bounds the ezact average solution, ¥, and in addition is itself bounded by the worst

case bound given by Eq. (3.78):

g4 <g” (3.90)

1/

y

Proof: First it will be shown that the solution to Eq. (3.89) bounds the exact
average. It is shown that the series for the exact average, Eq. (3.32) is bounded term

by term by the series for the average bound implicit in Eq. (3.89).

74 = yo + Lg'NL;'Nyo + - = 3 (Lg'NL;'N) g (3.91)
=0

Considering the equivalent terms of the two series:
. 2 2
A (L5'Ly (@) Ao < (L5'N) " w0 (3.92)

This is true because L; (@) < N Va € 12 and Lj' preserves orderings and the
regulanity assumption on the averaging operator.

To prove that the solution to Eq. (3.89) is itself bounded by the solution to Eq.
(3.73), it must first be noted that all of the terms of the series for the average bound,
Eq. (3.89,) are contained in the series for the worst-case bound Eq. (3.73)

7% =y —L5'Nyo + L'NL;'Nyo — -+ = Y (-L5'N) 3o (3.93)
1=0

g4 =y, +Lg'NLg'Nyo + -+ = (L5'NL5'N) 'y (3.64)
1=0
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so what remains is to examine the other terms of the worst-case bound, Eq. (3.73).

Since Lz’ < 0 Va € § each odd term is positive definite and have the form
- (L3'N) >0 i=1,3,5,... (3.95)

Since all of the extra terms in Eq. (3.73) are nonnegative, the assertion holds. O
An interesting comparison is possible between the average and the worst case
bounds. As shown in the proof in Eqs. (3.93) and (3.94), the series for the aver-
age bound essentially skips every other term in the series for the worst-case bound.
The skipped terms are those with odd powers of the parameter dependent operator,
L;'Ly (@). These odd power terms do not contribute to the average since L, (a) is
assumed centered (zero mean). The ave-age bound can therefore be thought of as the
worst-case bound with all of the terms which would have been averaged out neglected.
By neglecting these terms, it is evident that the value of the solution of the average
bound equation will therefore be itself bounded by the worst-case beund solution.
The operator equation presented above can be applied to the problem of comput-
ing a hound for the average cost of the structured set of systems. The linear bounding

function which was used in the worst case bound will be used for N in the average

bound.

Theorem 3.3.3 (Average Bound) Given a specified compensator, G., and the lin-
ear bound presented in Prop. 8.8.2, if the nominal Lyapunov function is negative

definite and preserves orderings then

J(G.) < tr {QAC'TC'} < tr{QWC'Té} (3.96)
where Q4is the unique positive definite solution to the following system of Lyapunov
Fquations

s 24 A4l L 53T, aA {8\ ; < T
0 = AQ4+Q4A, + BB +8Q,+). 55 | QA (3.97)
=1
0 = AoQi+ @A, +68°Q4+) 52 AiQA; (3.98)
=1

and &; is defined from Eq. (8.78) and QW is tke solution to Eq. (3.86).
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Proof: Theresult can be obtained by substituting into Prop. 3.3.2 the definitions
for the Lo and L, () operators given in Prop. 3.1.2, and substituting for N the

definition for the linear bound given in Prop. 3.3.2. a

Remark 3.3.2 (Solution) The system of Lyapunov equations represented by Egs. (3.97-
8.98) can be represented by a single linear equation for the bound using Kronecher

notation [113].

-1

< S r 52 O\ -
vec {QO} = [I —_ ((AO D AQ) (621 + 252 ( A‘))) ] VCC{QO} (399)
where “vec” is the column stacking operation Jefined in [118].

The form of this Kronecher notation equation for the average bound is quite
similar to the equation for the Bourret approximation to the average cost as given in
Eq. (3.99). The equations have similar structure since both can be generally put in

the form

y=(1-2")"y (3.100)

with the difference between the two appears in the form of the z term which involves

the A; matrices:

(/io ) /io) [621 + ig: ( /i.)] :  Average Bound (3.101)

1=1

(/io ® ;10)— [ZU" (fi. ® /i,)] : Bourret Approximation (3.102)
=1

Since (3.101) is larger than (3.102), the average bound will “blow up” for smaller
values of the uncertainty than the Bourret equation. This property is precisely what
gives the average bound its guaranteed stability property, but it also contributes to
the conservatism of the bound. The Kronecher notation solution can be reinterpreted
to give conditions for the existence of positive definite solutions for the average bound

equation.
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Proposition 3.3.4 A sufficient condition for the ezistence of the inverse in Eq. (3.99)

and resulting uniqueness and positive definiteness of the solution is that

((Ao o A;)” (m Y8 (Ao /i.-)))z

=1

<1 (3.103)

Proof: This is a direct consequence of Proposition (22.10) in Ref. [112] which
states that the inverse in (3.100) exists if ||z?|| < 1. ]

Comparison of Eq. (3.103) to the equivalent condition for the worst case bound
given in Eq. (3.88) reveals that the conditions are identical since the condition || X|| <
1 is equivalent to || X?|| < 1. This means that the average bound asymptopes to in-
finity at the same value of uncertainty as the worst case bound. Although the worst
case bound is always larger than the average bound, the bounds are equally conser-
vative in the sense that the sufficient conditions for solution existence are identical.
The bounds asymptopc to There are therefore two issues associated with bounding
functions. One is the size of the set over which the bound will have finite value and
the other is the value over this set. While the average bound and the worst-case
bound have the same size set, the average bonnd has lower value. This may lead to
less control effort to achieve stability. These issues will be explored more in examples

in the next section.

3.4 Second Order System Example

In this section the exact average cost and its approximations and bounds will be com-
pared on a secord order systemn with resonant poles with uncertain natural frequency
or damping ratio. The purpose is to gain insight into the structure of the equations
for exact averge cost and its approximations and bounds presented in the previous
sections. The open-loop costs for the system will be derived as a function of the
natural frequencies and damping ratios. To start consider the second order system

represented by Figure 3.3
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f(t)

—

x(t)
Figure 3.3: Second Order System
which has dynamics
3(t) + 2w (t) + w?z(t) = bf(t) - (3.104)

where z(t) is the mass displacement, f(t) is the input force, w is the system natural
frequency, ( is the system damping ratio, and b is the forcing coefficient. The natural

frequency, damping ratio can bhe defined by
Ww=kfm 2Aw=c/m b=1/m (3.105)

Tke system can be represented in state space form as:

ols) - AlB
IR

(3.106)

where
0 1

—w? —2(w

J
0 VB

v is the position penalty and 8 is the velocity penalty. In this problem the natural

B= C = (3.107)

b

frequency and damping ratios of the the system will be assumed uncertain and of the
form
w? = wl +@?, -6 <@? <6 (3.108)

(3.109)
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and the values are distributed uniformly.
The first case to be considered is the H;cost associated with the nominal plant with
no parametric uncertainty. Some algebraic manipulation gives the nominal system

cost as
(v + wo?p)o?
4{owo?

JO = (3.110)

where o = bbT.
The exact average cost is computed by averaging over the costs in the parameter

domain. It can be expressed as

P A R
where
@? = 5,,2/0)02, Z: 5(/(0 (3.112)

The exact average cost is essentially the same as the nominal cost with the exception
of the two terms involving @ and { which take the form, tanh~ z/z. It should be

noted that in the limiting case of no uncertainty these terms assume unity value.

-1
lim {t—a’i—f} =1 (3.113)

I—00 T

The nominal cost, Eq. (3.110), is recovered in the limit. Infinite exact average cost
indicates instability somewhere in the model set by Prop. 3.1.1. One can see in (3.111)
that infinite cost is associated with the uncertain terms going to infinity. This occurs
when either @ = 1 or { = 1. For this system these conditions indicate that either the
range of possible damping ratios is larger than the nominal value and therefore there
can be unstable systems in the model set or that the natural frequency can vary to
zero and the system can thus exhibit rigid body behavior.

These asymptotes for the exact average cost can be seen in Figure 3.4 for damping
ratio uncertainty, and Figure 3.5 for natural frequency uncertainty. These curves

where generated assuming that
Wwi=1 (=01 (3.114)
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and taking only a single uncertainty at a time. Note especially that the frequency
must vary to zero before it starts to radically effect the cost. This is a very large
frequency variation. The exact average cost’s insensitivity to frequency uncertainty
is a reflection of the fact that frequency uncertainties for nominally stable systems
will not lead to unstable elements of the model set and therefore will not tend to
drive the average cost.

When considering the uncertainties simultaneously, an important property of
Eq. (3.111) is the uncertainty independence property. This property states that the
amount of parameter uncertainty which will give infinite costs is independently ef-
fected by each uncertain parameter. By this, it is meant that the value of { for which
the ¢ term goes to infinity is independent of the value of @? and similarly for the
uncertain frequency. This property, while generally found in the approximations to
the exact average, does not hold with the bounding costs in this example.

The perturbation expansion approximate average cost is given by:

((V + ﬂwoz) + %3. (u + ﬁwoz) + %411) (3.115)

The relationship between the exact average and the perturbation expansion approx-

o?

JP =
4(owo?

imate average can be seen by examining the expansion of the uncertainty terms in

Eq. (3.111)
tanh~ !z 2

=1+%+Hom. (3.116)

T

The perturbation expansion approximate average cost can be obtained from the exact
average by substituting the series expansions in Eqgs. (3.116) into Eq. (3.111) and
retaining only the first order terms. In contrast to the exact average, the perturbation
approximation retains only a quadratic dependence on the uncertain parameters and
therefore a finite cost is associated with all finite values of the parameter bounds,
i.e., the cost never asymptopes to infinity. This property is reflected in the quadratic
form of the curves for the perturbation expansion approximation shown in Figures
3.4 and 3.5. This characteristic limits the perturbation expansion’s effectiveness as

an approximation to the average cost for systems with large uncertainties.
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The Bourret approximate cost has a form very similar to the exact average cost:

LI ! L) Bue? (3.117)
= oo l—g- v _%,. 0 .

The only difference between Eq. (3.111) and Eq. (3.117) is the substitution of a new

function for the tanh™ z/z terms:

-1
tanh™' . 1,: (3.118)
z -3

The Bourret cost is a better approximation to the exact average cost than is the

perturbation expansion approximate cost because

tanh~ !z 1 tanh™! z
(——) = (

z 1 -z

< |( )—(1+?§2-) vz e R (3.119)

The Bourret approximate average cost also shares the uncertainty independence prop-
erty of the exact average. As shown in Figures 3.4 and 3.5 the Bourret approximate
cost does indeed asymptote to infinity but at a larger value of the uncertainty bound
than the exact average. Examination of Eqgs. (3.715) and (3.117) indicate that these
two approximations for the exact average cost are always less then the exact average
cost. This property is illustrated in Figures 3.4 and 3.5.

- We turn now to the bounding functions. The worst case bound cost is given by

2/, 2
v = 2t P . (3.120)
Aown 1- (p+f,,3+i'r)
4r(0
where
2
= beR 3.121
P 2Co‘l-’o ( )

is the free parameter used in the bound in Eq. (6.20) and it has been assumed that
62 =2(8,2) 63 =2(6.)* (3.122)

Eq. (3.120) is essentially the nominal cost modified by a term which is dependent

on the parameter uncertainty bounds and p. Eq. (3.120) reveals several important
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properties of the bounding functions for the average cost. The first is that JY 5

when
o ot
+ =+
P T apg?
The characteristics of this bound can be obtained by examining Eq. (3.123). The

=1 (3.123)

worst case cost does not have the uncertainty independence property since both un-
certainties ((* and @*) contribute to (3.123) and their effects are additive. That is,
increasing uncertainty in the damping ratio will decrease the allowable uncertainty
in the natural frequency.

The value of the left hand side of Eq. (3.123) is a function of the parameter, p, as
well as the uncertainty bounds. The bounding function can be made less conservative
by finding the value of p which minimizes the left hand side of Eq. (3.123). For this
system, this value of p is given by

ot
4’

If the bound is not chosen to be the optimal but is instead arbitrary, then even with

Popt = /(2 + (3.124)

no uncertainty ({2 = 0 and @* = 0) the cost does not reduce to the nominal. The
bound contains a term which shifts the apparent system eigenvalues to the right and
thereby increases the cost. To see this more clearly, we can examine Eq. (6.20) with
no uncertainty

0= A% + Q% A + BB + 6% (3.125)
The last term of Eq. (3.86) can be factored and included in the Ao terms to give

0=AsQ% + Q% A5 + BB" (3.126)

where

< - &

As = Ap + ?I (3127)
This apparent right shift of the worst-case linear bound and the lack of uncertain

parameter independence increases the linear bounds conservatism. Another factor

contributing to this bound’s conservatism is the structure of the frequency uncertainty
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term. The frequency uncertainty bound, @*, is scaled by a term containing {o*. This
scaling greatly increases the bounds sensitivity to frequency variation when the system
has light damping. This effect is evident in Figure 3.5 where the small amount of
frequency uncertainty which can be tolerated is evident. The maximum frequency
uncertainty that the bound allows is relatively smaller than the amount of damping
uncertainty, Fig. 3.4. The actual dimensional amount of the frequency uncertainty
is on the order of the system nominal damping ratio, around 0.1. The bound doesn’t
reflect the fact that frequency uncertainties will not lead to unstable elements of the
set when the nominal system is itself stable.

The average bound cost is given by

a? (v + Pwe? 1
JA = (4<w3°) 5 (3.128)
oo 1“(P+£+L‘r)
P 4p(o

This cost function is always less than the worst case bound since the parameter
dependent modifier term has the form 1/(1 — z?) which is always less than 1/(1 — z),
the form of the parameter dependent term of the worst case bound. Because of the
form of this term, however, the conditions for infinite cost are identical for the two
bounds and they are thus equally conservative. This property is illustrated in Figures

3.4 and 3.5 by the identical asymptotes of the worst-case and the average bound.
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3.5 Summary

In this chapter, the fundamentals of the average cost analysis of linear time-invariant
systems with real parameterized uncertainties has been presented. This was motivated
by showing that bounded average H,-norm implies stability throughout the model
set. therefore minimization of the average cost will guarantee stability without having
to resort to bounding the worst case over the set as is typically done.

Insight and conditions for the existence of the average (and therefore stability
over the model set) were gained by examining the problem in terms of parameterized
linear operators. The equation for the average cost involves the average solution
of a parameterized Lyapunov equation which is shown to be a parameterized linear
operator. Two techniques for finding the average solution of a parameterized operator
equation were presented. The first has to simply average the perturbation expansion
term by term. This could lead to series with poor convergence. The second method
for finding the average was a technique borrowed from the random wave propagation
literature, known as the Dyson Equation. The primary utility of these methods was
in the area of approximate solutions to the exact average. The exact average is
calculable only in the simplest of cases. There is therefore a strong motivation to
produce good approximations and bounds to the average.

The two techniques for finding the average solution were applied to the problem
of deriving approximate average costs for a parameterized set of systems. The first,
called the perturbation expansion approximation, was based on a truncation of the
infinite series comprising the formal perturbation expansion. The second, called the
Bourret approximation, was based on a truncation of the Dyson equation. Two
bounds were also derived. One, based on the perturbation expansion was shown to
bound the worst case cost over the set; while another based on the Bourret equation
was shown to bound the average but not necessarily the worst case. The properties
of these approximations and bounds were discussed in the context of a simple second

order system example.
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Chapter 4

Synthesis of Controllers for

Parameterized Systems

In this chapter the formulation of controllers based on the average cost and its approx-
imations and bounds will be presented. A minimization problem can be formulated
around the exact average H; norm as well as each of its approximations and bounds.
For each, necessary conditions can be derived for the respective cost minimization.
In this section we will deal with two problems. The first is static output feedback
compensation and its simplification to full state feedback. This will be compared to
standard LQR theory. The other is dynamic output feedback compensation which
will be compared to the standard LQG theory.

In the sections that follow fixed-form compensation, either static or dynamic, will
be assumed and used to derive the necessary conditions based on that form. This
type of compensator design has been used in Refs. (66, 69, 71, 72,93, 94, 96] in the
area of robust control and in Refs. [97,98] in the area of reduced order controller
design. The general steps in the derivation of the necessary conditions are as follows.
First the cost is augmented with the appropriate set of equations appended with
symmetric matrices of Lagrange multipliers. The appropriate equations are given by

the problem. The minimization problems yields necessary conditions for the controller
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matrices. In the cases of exact average and bound minimization, a solution of these
necessary conditions can be shown to be sufficient conditions for stability over the
model] set.

The chapter concludes with a discussion of the computational aspect of controller
synthesis. The controllers are derived using the method of homotopic continuation
for solving systems of coupled matrix equations. In this method the controllers are
derived with successively larger values of uncertainty starting with the standard LQR
or LQG controllers. In addition, the minimization algorithms and solution procedures
for the various systems of .upled Lyapunov equations are presented. First, however,
the necessary conditions for the problems must be derived. The discussion starts with

the static output feedback proklem.

4.1 Static Output Feedback Problems

In this section we will investigate five static output feedback problems. These are:
(i) Exact average cost minimization

_ (ii) Perturbation expansion approximate average cost minimization

(iii) Bourret approximate average cost minimization

(iv) Worst-case bound minimization
(v) Average bound minimization

The problems and assumptions will be stated, followed by the necessary conditions
and properties of the resulting compensators.

Before proceeding further, the class of systems considered in all the static output
feedback problems will be defined. The systems are essentially the same as the general
model sei defined in Definition 2.2.2 and the structured model set defined in Definition

2.2.4 with the addition of a few additional assumptions. For the static output feedback
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problem we will also assume the Dy; = 0, i.e. there is no direct feedthrough from the
disturbance to the output. In addition we will assume in the case of the structured set
for any given i, Cy; = 0. While this assumption is unnecessary for the exact average
cost minimization problem, it is necessary for the approximations and bounds for
the exact average to be calculable and will therefore be assumed for purposes of
comparison. All other assumptions for the model sets, such as complete observability
and controllability over the set, are as described in Chapter 2. These new assumptions
modify the general and structured sets of systems used for all static output feedback

problems.

Definition 4.1.1 (General Set of Systems) The set G, of systems used in static

output feedback is parameterized as follows
Gy = {Gy(a) Va € Q} (4.1)

where 0 C IR™ is defined in Def. 2.2.1 and each element of the set is described in the
state space as
A() | Bi(o) Ba(a)
Gy(a) = Cl(a) 0 D12(a) (4-2)
Ca(c) 0 0
where A(a) € R™™, By(a) € R™™, Cy(a) € R*", Bj(a) € R™®, Ci(a) €
R¥>"™ VYo € Q.

Definition 4.1.2 (Structured Set of Systems) The set G, of systems is parame-

terized as follows

Gy = {G.(a) 1€} (4.3)

where §, 13 the structured set of parameter vectors defined

Q={a:acR,-6<a<s i=1,--,r} (4.4)
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and where each element of G, is described in the state space as

Ao+ oA; | By By + ) By
1=1 1=1
.G,(a) = 01 0 D12
Ci, 0 0

(4.5)

where fori =0,...,r; A; € R™", B,, € R™™ (,, ¢ R*", and B, € R™?,(C, €

qun’czc € IR.bm.

It is useful at this point to consider the set of closed-loop systems. The general

arrangement of the control loop is shown in Figure 4.1.

G

Ge

Figure 4.1: The Standard Control Problem

A fixed-form static output feedback compensator can be represented by

0

D.

(4.6)

with input y and output u. The compensator is thus just a static direct feedthrough

gain from y to u. Using this static compensator adn the set of open-loop transfer

furrtions, the set of closed-loop transfer functions from w to 2, G,.,, can be defined.

Each element of G,,, can be expressed is state space form for static output feedback

as:

Guw(a)

[ A(a) + Ba(e)D.Ca(a)

Bl(a)

i C’l(a) + Dlz(a)Dcag(a)
A(a) | B(a)

| C(o) |

0

100

0

(4.7)



Using the structured set of systems

[ A + By, D.C>, + ; ai( A; + B2,G:Cy,) | By
Gule) = | = gl ‘ ° (4.8)
i C1 + D12 D.Cy, | 0
Ao+ Y wid: | B
_ 2 (4.9)
¢ o

Because of the form assumed for the uncertainty in the structured set of systems,
only the resulting closed-loop A matrix is parameter dependent; and the closed-loop
system is strictly proper.

With the sets of systems established, a general performance problem can be stated.
The general model set average performance problem is the basis of the other auxiliary

minimization problems used to derive controllers in Sections 4.1.2, and 4.1.3.

Problem 4.1.1 (Average Performance Problem) Given the set Gy or G, of sys-

tems, determine the static feedback compensator,

0| o0
G. = (4.10)
0|D.

with D, € R™!, which minimizes the the closed-loop Hp-norm. averaged over the

model set.
J(Ge) = [ 1Gum(@} du(e) (4.11)

In the next sections, we will take a closer look at the minimization of both the

average Hz-norm and its approximations and bounds.

4.1.1 Average Cost Minimization

In this section the formulation for the necessary conditions for the minimization
of the exact average cost will be presented. The first step is to use the result of
Proposition 3.1.1 to define the auxiliary minimiza.ion problem for the exact average

cost.
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Problem 4.1.2 (Auxiliary Minimization Problem) Given the general set of sys-
tems in G,y described in Eq. (4.2), determine the static compensator G, Eq. (4.10),
which minimizes

TE(G.) = tr {(Q (@) éT(a)é(a)>} (4.12)

subject to the parameterized Lyapunov equation.
- - - ~T ., =
0= A(a)Q () + O (a)A (a)+ B(a)B (a) (4.13)
for each a € S).

The relation between the Auxiliary Minimization Problem and the Average Per-

formance Problem is based on the stability of the plant.

Proposition 4.1.1 if(G., Q (a)) satisfies Eq. (4.13), A(a) is decomposed into A(a) =
Ao + Ay(a), with Ay asymptotically stable, and the norm constraint

“ (Ao @ 4o) - (Ai(e) ® Ai(a)) “ <1 Va e Q (4.14)
is satisfied, then A(a) is asymptotically stable Vo € Q and
J(G.) = TB(G.) (4.15)

Proof: From Prop. 3.1.4, Eq. (4.14) implies stability over the set of systems.
From Prop. 3.1.1, stability over the set of systems allows the average cost to be given
by the average solution to a parameterized Lyapunov equation. 0O

We proceed now to the problem of deriving necessary conditions for the Auxil-
iary Minimization Problem. The general method is to use the Lagrange multipliers
technique. Rigorous application of the Lagrange multiplier techniques requires that
G. be restricted to the set of always stabilizing controls. The conditions for simul-
taneous stability have been discussed in Refs. [27-41]. In pratice this condition is
enforced using the sufficient condition for simultaneous stability associated with the
given robust design problem. This condition is difficult to use for the exact average

cost rninimization problem and so exhaustive stbility testing must be preformed.
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The first step is to append Eq. (4.13) to the cost using a parameter dependent,
symmetric matrix of Lagrange multipliers, P(c) € IR™™. The matrix of Lagrange
multipliers must be parameter dependent because the appended equations are pa-

rameter dependent. The appended cost becomes

JE(G.) =
e { [ @(e) 0" (@)C(=) dule)}
+ ] [ [A)@ (@) + Q@) A(@) + B(@)B"(@)] P (@) du(e)} (416)

where A(a), B(a), and C(a) are defined in Def. (4.1.1). The necessary conditions
for minimization of the exact average cost can now be stated by taking the derivatives

with respect to G, P(a), and Q (). A table of matrix derivatives can be found in

Ref. [125].

%‘(}3 = Aa)0(a)+Q(a)AT(@)+BB =0 Va e @ (417)
-7 ~ ~ - ~T =~
35 (@) = A(@)P(a)+P(a)A(a)+C C=0 Va € 0 (4.18)
ggc = (D%(a)Dis(e)DcCsr(a)Q () CF (o))

+ (Bf(a)P ()@ (a)Cf(a)) =0 (4.19)

The necessary conditions for local minimization of the exact average cost can now

be stated using Eqgs. (4.17)-(4.19)

Theorem 4.1.1 (Necessary Conditions) Suppose G., Eq. (4.10; solves the aver-
age cost minimization problem (4.1.2), then there ezist moirices, Q(a),P(a)>0 €

IR™*™ such that
0 = (D%y(e) D1a(@)DeCa(@)Q (@) CF (@) + (BI(2)P (@) @ (@) CF (a))  (4:20)
where Q () satisfies the parameterized Lyapunov zquation
0= A(@)Q () + @ (@) A" () + B(e) B () (4.21)
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and P () satisfies the Adjoint Lyapunov equation
~ -~ - - ~T ~
0=A"(a)B () + P(a) A(a) + C (a)C(a) (4.22)
Proof: The proof is a direct consequence of the differentiation of the cost with
respect to D., @ (a), and P(a) in Eq. (4.19). o

Remark 4.1.1 Equation (4.20) was derived previously in Ref. [108] under more re-
strictive uncertainty assumptions of parameter independence of Dy,. In this case, D,

can be solved for ezplicitly

D. = — (D%,Du) " (BE(@)P () @ (o) OF () (Cx()@ (@) CF (@) (4.23)

Remark 4.1.2 Equations (4.20)-(4.22) have a form very similar to the necessary
conditions derived for the output feedback problem in Refs. [126-128]. This is espe-

cially evident in the case of parameter independent By, C;, and D+, matrices,
-1 - ~ ~
D.=—(D§Di)” Bf (P(2)Q() Ca(C2(Q(a)) O (424)

Remark 4.1.3 In the case of parameter independent B, and D,; matrices, and full

state feedback, C; = I, equation simplifies to

-1 - - - -1
D. = - (D%,Du) "~ Bf (B(2) () (Q() (4.25)
and it is evident that the averaging operator couples the solutions of the two parame-

terized Lyapunov equations for Q (a) and P (a).

Remark 4.1.4 For the case of a parameter independent systems with full state feed-
back, A, B, and C are not functions of alpha and therefore neither are Q or P.
In this case, Q cancels in (4.20) and the equations simplify to the traditional LQR
results.

G.=—-R'BTP (4.26)
where R = DI,Di;. Upon substitution of (4.26) into (4.21) we obtain a Riccati
equation for P.

AJP + PAy+CTCy, — PByR'BIP =0 (4.27)
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The difficulty inherent in Eq. (4.20) for the optimal gain is that it involves the
average of the product of the solution of two Lyapunov equations for Q(a) and
P (c). These matrices are only given as implicit functions of « in Equations (4.21)
and (4.22) respectively. Only in the simplest of cases can the average of the product
be solved for exactly. The options available for the solution of such equations are
presented in Section 4.3. The approximate solution can be obtained by Monte-Carlo
techniques or the explicit & dependence can be found by symkbolic manipulations and
the expressions averaged numerically or symbolically. All of these techniques are
computationally intensive. In the next sections, the approximations and bounds to
the cost will be minimized in an attempt to reach the optimal average minimization

solution by using computable expressions for the cost.

4.1.2 Approximate Average Cost Minimization
Perturbation Expansion Approximate Cost Minimization

In this section the formulation of the necessary conditions for the minimiza. n of the
perturbation expansion approximate cost will be presented. The first step is to use

the result of Proposition 3.2.1 to define the auxiliary minimization problem.

Problem 4.1.3 (Auxiliary Minimization Problem) Given the set G, of systems
described in Def. 4.1.2 determine the static compensator G., Eq. (4.10), which mini-

J?(G.) = tr{(Q°+QP) C'Tc'i'} (4.28)

where the nominal cost, Q°, and the parameter dependent cost, QP, are the unique

positive definite solutions to the following system of Lyapunov equations

0 = AQ°+Q°4, + BB (4.29)
0 =A@+ @A + Yo (A + QL) (430)
0 = Aol + Gids + o (A.-QO + Q%T) i=1,...,r (4.31)
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where o; is defined from Equation (8.47).

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.2 establishing the solution of
the perturbation expansion equation as an approximation for the exact average so-
lution. The first step in deriving necessary conditions to the auxiliary minimization
problem is to append Eqgs. (4.29)-(4.31) to the cost using parameter independent,
symmetric matrices of Lagrange multipliers, P° PP and Pf,i=1...r € R

The appended cost is given by

J(G.) = tr{(@,° +Q7) C'TC"}
- « =T =~ ~T] =~
+ u{[Aogo+ GoA; + BE"| B0}
b {4007+ QAT+ S (A7 + 0T | )
1=1
+ tr {Z [AOQ*‘ +QidAg + o (A;Q° + Q"/f)] P } (4.32)
i=1

where A, B, and C are defined in Def. (4.1.2). Taking the derivatives with respect
to D, P°, PP, Piand Q° QF, (' gives the necessary conditions for minimization

of the perturbation expansion approximation to the exact average cost.

Theorem 4.1.2 (Necessary Conditions) Suppose G. the static compensator from

Eq. (4.10)
0f 0

0| D.

G.= (4.33)

solves the perturbation ezpansion approzimate cost minimization problem (4.1.8), then

there ezist matrices, P°, PP, P' and §° QF, ' > 0 € IR™™ such that
D. = - (D%,Dy)” [BL FoQ0 + BE PPGF

> (BL, PG + 0BT, (PG + P*Q°))] of (Cx(Q° + GP)CT) " (4.34)

1=1
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where Q°, QP , and Q‘ satisfy the Lyapunov equations

0 = AQ°+Qo4; + BB
~ = U r . . ~. T
0 = AQP+QPdy + Yo (AQi+ QA )
=1
0 = Ali+ Q'A% +o; (;1..@0 +§oAT ) i=1,...,r (4.35)
and P°, PP, and P* satisfy the adjoint Lyapunov equations

0 = A PP +PPA+C C
0 = AP0t PrAo+ 070+ Yo (A1 P+ BA)
=1
0 = AZP‘+P‘Ao+ai(AfPP+PPA;) i=1,...,r (4.36)

Proof: The proof is a direct ccnsequence of the differentiation of the cost,

Eq. (4.32), with respect to D, P°, PP, P* and Q°,Q%, @". =

Remark 4.1.5 For full state feedback, the condition for local minima, Eq. (4.84)

becomes
D.=—(D%,Dy,)" [BE P°Q° + BL PGP
"~ (RT Bifi T (PPH 4 Piyo A0 4 AP}
+ 3 (BLPQ +a:B, (PPQ + PQ ))] (@+Q7)  (437)
1=1
Remark 4.1.6 The traditional LQR results are recovered in the case of no uncer-

tainty and full state feedback.

Bourret Approximate Cost Minimization

In this section the formuiation for the necessary conditions for the minimization of
the Bourret approximate cost will be presented. The first step is to use the result of

Proposition 3.2.2 to define the auxiliary minimization problem.
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Problem 4.1.4 (Auxiliary Minimization Problem) Given the set G, of systems
defined in Def. 4.1.2, determine the static compensator G., Eq. (4.10), which mini-

JB(G.) = tr {QBC'TC'} (4.38)

where QB is the unique positive definite solutions to the following system of coupled

Lyapunov equations:

0 = AP +0%Ar + BB + Yo (A.-Q‘+Q‘,&,-T) (4.39)
=1
0 = A0+ Q'A% +o; (A:QB +QB,«LT) i=1,..r (4.40)

and o; is defined from Equation (3.47).

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.2 relating the solution of the

Bourret equation to the Exact Average solution. It will be restated here for clarity.

Proposition 4.1.2 If (G., QB) satisfies Egs. (4.89) and (4.40) and the norm con-

straint given in Proposition $.2.8

i (U'i (/io @ x‘io)_1 (fi; @ /ii))z

=1

<1 (4.41)
is satisfied, then A(c) is almost always stable ¥V o € Q where Q) is defined

={a S o (oo i)™ (R0 )|

(4.42)

Ao d)” (Ao &)

In addition, the unique positive definite solution to (4.89)-(4.40), QB, gives
G = 7%(G., Q) (443)

Proof: From Proposition 3.2.3, Eq. (4.41) guarantees uniqueness and positive
definiteness of the solution of (4.39)-(4.40). Eq. (4.41) also guarantees closed-loop
stability V & € Q by Prop. 3.2.1. 0
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We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Egs. (4.39)-(4.40) to the cost
using parameter independent, symmetric matrices of Lagrange multipliers, P2 and

Pi,i=1...r € R™™. The appended cost becomes.

JEG.) = tr {Qo”é}
" tr{ [ 1007 + G745 + B+ Yo (4G + AT )] ps}
1=1
bt {Z (40 + 047 +0: (A7 + @247 ps} (4.44)

where A, B, and C are defined in Def. (4.1.2). Taking the derivatives with respect

to D., PB, P and QB, Q° gives the necessary conditions for minimization of the

Bourret approximate cost.

Theorem 4.1.3 (Necessary Conditions) Suppose G. solves the Bourret approzi-
mate cost minimization problem (4.1.4), then there exzist matrices, Qand P>0 €

IR™*™ such that
D. = - (D%Dy)” [BLPEGE

+ Z (BL PG + 0BT, (PBQF + P‘QB))] of (C.QCF)™"  (4.45)
1=1

where QB satisfies the Bourret equation

0 = AQ"+QRA; + BB + Yo (A + QA ) (4.46)
1=1
0 = AOQ'+QA0+0.(AQB+QA) (4.47)
and PB satisfies the Adjoint Bourret equation
0 = ATBB4PBA+ 70+ 0 (A B+ i) (4.48)
=1
0 = AP+ Bido+ o (,a?ps + pBA..) i=1,...,r (4.49)



Proof: The proof is a direct consequence of the differentiation of the cost,

Eq. (4.44), with respect to D, PB, Pi and QB, Q‘_ 0

Remark 4.1.7 In the case of full state feedback, C; = I, the condition for local
minima, Eq. (4.45), is given by

G. = - (D5,Dy) ™" [BZ;PBQB +3° (BL Qi + oiBL, (PG + P‘QB))} Q=™
1=1
(4.50)

Remark 4.1.8 The traditional LQR results presented in Fgs. (4.26) and (4.27) are

recovered in the case of no uncertainty and full state feedback.

4.1.3 Bound Minimization
Worst-Case Bound Minimization

In this section the formulation for the necessary conditions for the minimization of the
worst-case bound will be presented. The first step is to use the result of Theorem 3.3.1

to define the auxiliary minimization problem.

Problem 4.1.5 (Auxiliary Minimization Problem) Given a set G, of systems
described in Def. 4.1.2, determine the static feedback compensator G., Eq. (4.10),
which minimizes

TY(Gc) = tr {QWC'TG"} (4.51)
where QW is the unique positive definite solution to the following system of Lyapunov

Fquations

r 2
0=AQ% + QW A, + BE" +82Q% + % (§-‘-) AQW AT (4.52)

— \ 62
where §; 1s defined from Equation (3.78) and § € IR.
The relation between the Auxiliary Minimization Problem and the Average Per-

formance Problem is based on the results of Section 3.3.1 relating the solution of the

worst-case bound to the exact average solution. It will be restated here for clarity.
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Proposition 4.1.3 If the norm constraint given in Proposition 3.8.3
“((ﬁo ® Zlo) (5’I+Z—i— A ® A ))H <1 (4.53)
=1
is satisfied and Ao is asymptotically stable, then A(a) is asymptotically stableV o € Q;
and QW , the unique positive definite solution to ({.52), gives

J(G.) < T¥(G., Q™) (4.54)

Proof: From Proposition 3.3.3, Eq. (4.53) and stability of Ap gucrantees unique-
ness and positive definiteness of the solution of (4.52). Eq. (4.53) also guarantees
existence of the average cost Va €  since (4.53) implies (3.21). By Prop. 3.1.1
bounded average cost implies that the closed-loop systems, G.w(a) , are stable in
the sense of LyapunovVa € . o

We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Eq. (4.52) to the cost using a
parameter independent, symmetric matrix of Lagrange multipliers, PY € IR**". The

appended cost becomes

IJY(G.) = tr{QW@TC'}

(4.55)

where A, B, and C are defined in Def. (4.1.2). Taking the derivatives with respect

to D., PY and QW gives the necessary conditions for optimization.

Theorem 4.1.4 (Necessary Conditions) Suppose G solves the average bound min-
imization problem (4.1.5), then there ezist matrices, Q" and PW >0 € R™™ such
that

52 -1 .

=1

+ E (52) (B 4; QW)] cy (02(2“'027')_1 (4.56)

i=1
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where QW satisfies the worst-case bound equation
52

0=A:Q% + Q¥ A, + BB + 820" + Z (g'-) AQUA; (4.57)

=1

and PW satisfies the adjoint worst-case bound equation

iFpw o pw 2pw K AT pw A

0= A, P + PW Ao+ CTC + 62D +E( A; P A; (4.58)

1=1
Proof: The proof is a direct consequence of the differentiation of the cost,

Eq. (4.55), with respect to D., P¥ and Q¥. a

Remark 4.1.9 In the case of full state feedback, C, = I. In this case, Eq. (4.56) is
given by

-1
D.=— (DmDu + Z ( ) BTPWB,,) [B;";PW

=1

+ Z( )(B{I"WA.-)] (4.59)

=1

The gain is thus only and function of PY and not QW .

Remark 4.1.10 The traditional LQR results presented in Fgs. {.26 and 4.27 are

recovered in the case of no uncertainty and full state feedback.

Average Bound Minimization

In this section the formulation for the necessary conditions for the minimization of the
average bound w:ll be presented. The first step is to use the result of Proposition 3.3.3

to define the auxiliary minimization problem.

Problem 4.1.6 (Auxiliary Minimization Problem) Given a set G, of systems
described above in Def. 4.1.2, determine the static feedback compensator G, Eq. (4.10),
which minimizes

T4(G., Q%) = tr {QAC"TC"'} (4.60)
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where Q41s the unique positive definite solutions to the following system of Lyapunov

equelions
= =4 24T ~ ~T 2 5 T 6;2 ~ = =T
0 = AQ4+Q44, ++BB +8Q1+) (5| A4 (4.61)
=1
0 = AQi+Qudy +8Q4+3 | 5 | AQ*A; (4.62)
i=1

and 6; is defined from Eq. (8.78) and § € R.

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.3 relating the solution of the

bound equation to the exact average solution. It will be restated here fer clarity.

Proposition 4.1.4 If the norm constraint given in Proposition 3.3.4

(oo d)” o1+ 55 (0 4)))

=1

<1 (4.63)

is satisfied and Ao is asymptotically stable, then A(c) is asymptotically stableV o € Q;
and G4, the unique positive definite solution to (4.61) and (4.62), gives

J(Ge) < T4(Ge, Q) (4.64)

Proof: From Proposition 3.3.4, Eq. (4.63) and stability of Ao guarantees unique-
ness and positive definiteness of the solution of (4.61) and (4.62). Eq. (4.63) also
guarantees existence of the average cost Va € ( since (4.63) implies (3.21). By
Prop. 3.1.1 bounded average cost implies that the closed-loop systems, G..(a) are
stable in the sense of LyapunovVa € (. a

We proceed now to the problem .f deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Egs. (4.61) and (4.62) to the cost
using parameter independent, symmetric matrices of Lagrange multipliers, P4 and

P, € R™". The appended cost becomes.
T4G.) = u{@rc"c)
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+ {[AOQA +OAAr + BE" + 680, + Z (;) A; Qliif] PA}

1=1

vou{|id i s X (F) 40| A o)

=1
where A, B, and C are defined in Def. (4.1.2). Taking the derivatives with respect

to D., P4, P, and Q4, Q, give the necessary conditions for optimization.

Theorem 4.1.5 (Necessary Conditions) Suppose G solves the average bound min-
imization problem (4.1.6), then there ezist matrices, 04,0, and PA P, >0 € R™"
such that

D= (PEDa+ 3 (£) 85 (P44 ) B,)  [83 (P24 + P0)

+ Z ( 52) Bf, (P44:Q1 + P A; Q")] cf (c:4cf)™ (466
i=1

where Q4 satisfies the bound equation

2 ~ ~
0 = AoQ4+ QA4 + BB +82Q, + Z (5—‘) AQ.A; (4.67)
=1
0 = Aoi+Quds +50 + 3 (F) A04AT (1.68)
and P4 satisfies the adjoint bound equation
62 oo
0 = A4, T p4 + P44y + ' + 6%P, + Z ( ) TPIA,- (4.69)
1=1
2
0 = Ao P+ P A+ 8P4 + z (6 ) A; P“‘A (4.70)
=1

Proof: The proof is a direct consequence of the differentiation of the cost,

Eq. (4.65), with respect to D,, P4, P, and Q4, Q;. |
Remark 4.1.11 In the case of full state feedback, C; = I. In this case, Eq. (4.66)

1s given by

r -1
o (s £ (8) 51200 s 0
/

=1

+y ( ) B}, (PAAQ: + P A Q“)] (@)™ (4.71)

=1
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Remark 4.1.12 The traditional LQR results presented in Egs. {.26 and 4.27 are

recovered in the case of no uncertainty and full state feedback.

4.2 Dynamic Output Feedback Problems

In this section five dynamic output feedback problems will be investigated. They are:
(i) Exact average cost minimization
(ii) Perturbation expansion approximate average cost minimization
(iii) Bourret approximate average cost minimization
(iv) Worst-case bound minimization
(v) Average bound minimization

The problem and assumptions will be stated, followed by the necessary conditions
and properties of the resulting compensators.

The sets of systems used for dynamic output feedback are presented in Chapter 2
as either G, for the exact average cost minimization or G, for the approximate average

cost minimizations. For clarity these definitions are restated here.

Definition 4.2.1 (General Set of Systems) The set G, of systems is parameter-

ized as follows:

G, = {Gy(a)Va € 0} (4.72)

where Qy C IR" is defined in Def. 2.2.1 and each element of the set is described in the

state space as
A(e) | Bi(e) Bu(o)
Go(a)=| Cy(a)| 0  Dia(e) (4.73)
Cia) | Du(a) 0
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where A(ex) € R™", By(a) € R™™, Cy(a) € IR*" Bj(a) € R™?, Ci(a) €
IR¥", Va € §; and teh elements of the matrices are continuous funciions of the

parameters over §)g.

Definition 4.2.2 (Structured Set of Systems) The set G, of systems is parame-
terized as follows

G, ={Gs(a) : € Q,} (4.74)
where Q, is the structured set of parameter vectors defined in Def. 2.2.8 and each

element of G, 1s described in the state space as

Ao+ A; | By By + Y aiBy
i=1 1=1
Gi(a) = C 0 Di2 (4.75)
Cs, + Zaioz.- Dy, 0
L =1 §

where fori = 0,...,m; A; € R™™, B,, € R™™,C,, € R™", and B, € R™?C; €
R,
The general model set average performance problem is the basis of the other

auxiliary minimization problems used to derive controllers in Sections 4.2.1 and 4.2.2.

Problem 4.2.1 (Model Set Average Performance Problem) Given a set G4 or

G, of systems, determine the dynamic compensator or order, n.,

A | B.
G. = (4.76)
C.|0
which minimizes the the closed-loop H,-norm averaged over the model set.
JG) = [ [1Gu(@)ll} du(e) (8.77)

The structures of the closed-loop systems for the various model sets, general or
structured are presented in Egs. (2.31) and (2.35). In the following sections, we will
take a closer look &% the calculation of the average Hz-norm using the equations for
the exact average cost and its approximations presented in Section 3.2 and bounds

presented in Section 3.3.
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4.2.1 Average Cost Minimization

In this section the formulation for the necessary conditions for the minimization
of the exact average cost will be presented. The first step is to use the result of
Proposition 3.1.1 to define the auxiliary minimization problem for the exact average

cost.

Problem 4.2.2 (Auxiliary Minimization Problem) Given the general set of sys-

tems described in Def. (2.2.2), determine the dynamic compensator of ordern., given

by
A, | B,
} (4.78)

c —

C.|0

which minimizes
75(6.) = 2 {{2(e) " (@)0() | (479)
subject to
0= A(a) () + O (o) AT (a) + B(a)B" (o) (4.80)

for each a € Q.

The relation between the Auxiliary Minimization Problem and the Average Per-

formance Problem is based on the stability of the plant.

Proposition 4.2.1 If(G., Q ()) satisfy Eq. (4.80), A(c) is decomposed into Ala) =
Ao + Ay(a), and the norm constraint given by

|| (oo fio)_l (Ai(e) ® Ai(e)) “ <1 Va e @ (4.81)
is satisfied, then A(c) is asymptotically stable Vo € Q and
J(G.) = TB(G.) (4.82)

Proof: From Prop. 3.1.4, Eq. (4.81) implies stability over the set of systems.
From Prop. 3.1.1, stability over the set of systems allows the average cost to be given

by the average solution to a parameterized Lyapunov equation. a
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We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Eq. (4.80) to the cost using a
parameter dependent, symmetric matrix of Lagrange multipliers, P(a) € R**. The
matrix of Lagrange multipliers must be parameter dependent because the appended

equations are parameter dependent. The appended cost becomes

JE(Ge) =
tr{ [ 3(e) C"(2)0(a) du(e)}
+ e { [ [A@)@ (@) + §() A" (@) + Be)B(e)] P(a) du(@)} (489)
where A(a), B(c), and C(a) are defined in Def. (2.2.2). The necessary conditions
for minimization of the exact average cost can now be stated by taking the derivatives

with respect to G., P(a), and Q (a). A table of matrix derivatives can be found in

Ref. [125].

Theorem 4.2.1 (Necessary Conditions) Suppose G. the dynamic ccmpensator of
ordern., Eq. (4.78) solves the ezact average cost minimization problem (4.2.2), then

there exzist matrices, Q (@) and P(a) >0 € R**® such that

0 = (Pn(e)@ia(e) + Pra(@)Qn(a)) (484)
0 = (Pp(a)B.Dan(a)Dj(a))
+ (Pn(e)@11(2)CF (@) + Pa(e)Qu(a)CF (<)) (4.85)
0 = (DIy(a)Dia(a)CcQur())
+ (B](@)Pu(e)Qua(a) + B] (@) Pra(@)Qn(a)) (4.86)
where Q () satisfies the parameterized Lyapunov equation
0= A(a)Q(a) + Q(a) A" (o) + B(e)B (<) (4.87)
P () satisfies the Adjoint Lyapunov equation
0=A"(a)P(a) + P(a) A(a) + O (2)C(a) (4.88)
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and Q () and P (a) are partitioned

Pu(a) }312(01)

] i (4.89)
Pn(d) Pzz(a)

Q) = {‘?“("‘) 2ul)
Qu(a) Q2(a)

with Qu1, Py € R™", and Q,, Ppy € RM*™.

], P(a)=

Proof: The proof is a direct consequence of the differentiation of the cost,
Eq. (4.83), with respect to A, B, C.,P(a), and @(c). Note that the necessary
conditions that result from differentiation of the cost with respect to Q (@) and P (),
(4.88) and (4.87) respectively, are parameter dependent because Q (a) and P (a) are

parameter dependent. a

Remark 4.2.1 The traditional LQG results are recovered in the case of no uncer-

tainty and n. = n.

The difficulty inherent in Eqs. (4.84)-(4.86) for the optimal gains is that that they
involve the average of the product of the solution of two Lyapunov equations, Q (o)
and P (). These matrices are only given as implicit functions of a in Equations (4.87)
and (4.88). Only in the simplest of cases can the average of the product be solved
for exactly. In the next sections, the approximations and bounds to the average cost
will be minimized in an attempt to approach the optimal solution by minimizing

computable expressions for the cost.

4.2.2 Approximate Average Cost Minimization
Perturbation Expansion Approximate Cost Minimization

In this section the formulation of the necessary conditions for the minimization of the
perturbation expansion approximate cost will be presented. The first step is to use

the result of Proposition 3.2.1 to define the auxiliary minimization problem.
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Problem 4.2.3 (Auxiliary Minimization Problem) Given the set G, of systems

described in Def. 2.2.4 determine the dynamic compensator of order n.

C BC
|4 (4.90)
C.|l 0
which minimizes
JP(G.) = tr { (Q° + (2”) ('JTC"} (4.91)

where the nominal cost, Q°, and the parameter defendant cost, QF, are the unique

positive definite solutions to the following system of Lyapunov equations:

0 = AQ°+Q°A; +BBT (4.92)

0 = &GP+ QRAy + Yo (4G + AT (4.93)
=1

0 = AQi+ Qi + 0 (A.-Q°+Q°Af), i=1,...,r (4.94)

where o; is defined from Equation (8.47).

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.2.1 where the perturbation
expansion equation is derived as an approximate solution for the exact average cost.

We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Egs. (4.92)-(4.94) to the cost
using parameter independent, symmetric matrices of Lagrange multipliers, P° , PP,

and P', i=1...r € R**
TG = u{(@°+@r) "¢
+ tr +

{ B
b u{|ar + 07 A + Do (40 + 0AT) | 27



where A, B, and € are defined in Def. (2.2.4). Taking the derivatives with respect
to G., P°. PP, Piand Q° QF, §° gives the necessary conditions for minimization

of the perturbation expansion approximation to the exact average cost.

Thecrem 4.2.2 (Necessary Conditions) Suppose G. the dynamic compensator
or order n., Eq. (4.78), solves the perturbation ezpansion approzimate cost mini-
mization problem (4.2.8), then there exist matrices, P°, PP, Pi and Q°, QF, Q' >
0 € R™" such that

0 = P§QY, + PHQ%, + PRQY, + PRQL

+ ZPﬁQiz + 1352@22 (4'96)
=1
- -1 -~ = - = - = - =
B. = —Py " [(B8Q% + P@% + PRQEL + PEQE) CF,
+ 3 ((Phdi + Qi) O
=1
PP i pi A0 & PP pi_A0 T T\
+ (PnQn + P5hQ%h + PpQan + Pzan) "\'02.-)] (D21D21) (4.97)
-1 -~ - - -~ -~ -~ -~ -
C. = —(DhDu)” [BE, (PRdS: + PaQ% + PEQL + P5QR)

+ 3 (BL (BLQiy + BiyOha)

) i x. o=l oa s o o ~ -\ -1
+ 0B (PRQ, + Bi1Q% + PEQL: + PiQ%))] (0% + PE) ™ (4.98)
where Q°, QF, and @ satisfy the coupled Lyapunov equations
iAo A0 AT L pRT
0 = AiQ°+Q°A;, + BB
- o =T r - . -
0 = AQ"+@P A + 30 (40 + G
=1
0 = AQi+QiAr + oy (A.-Q° +goAT ) i=1,...,r (4.99)
and P°, PP, and P* satisfy the coupled adjoint Lyapunov equations
0 = ALPP 4 PPA,+C7C
0 = AP0t PPAo+ 00+ Yo (A B+ PiAL)
=1

0 = Afﬁe+pf,ao+a.-(z,.@ +QPA) i=1,...,r  (4.100)
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and the Q and P matrices have been partitioned according to Eq. (4.89).

Proof:  The proof is a direct consequence of the differentiation of the cost,

Eq. (4.95), with respect to A., B, C., P°, PP, P' and Q°, Q®, Q". 0
Remark 4.2.2 The traditional LQG results are recovered in the case of no uncer-
tainty.

Bourret Approximate Cost Minimization

In this section the formulation for the necessary conditions for the minimization of
the Bourret approximate cost will be presented. The first step is to use the result of

Proposition 3.2.2 to define the auxiliary minimization problem.

Problem 4.2.4 (Auxiliary Minimization Problem) Given the set G, of systems

defined in Def. 2.2.4, determine the dynamic compensator or order, n.,

A, | B.
G. = (4.101)
C.| 0
which minimizes
JB(G.) = tr{QBéTc"} (4.102)

where QB is the unique positive definite solutions to the following system of coupled

Lyapunov equations:

0

oGP + @Ay + BB + Yo (A + G')) (4.103)
=1

0 = Aol + O AT + o (408 + OB AT ) i=1,...r  (4.104)

and o; is defined from Equation (8.47).

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.2.2 relating the solution of the

Bourret equation to the Exact Average solution. It will be restated here for clarity.
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Proposition 4.2.2 if (G., OF) satisfies Egs. (4.103) and (4.104) and the norm con-
straint given in Proposition 3.2.9 as

r 2

> (o (A0 &)™ (40 &)

=1

<1 (4.105)

is satisfied, then A(a) is almost always stable Va € Q) where Q is defined

. T - - - . . r - - -1 . - 2
= {a Ylesl| (Ao @ o) (A:0 &) < |37 (A0 o) (A0 &) }
i=1 =1
(4.106)
In addition, the unique positive definite solution o (4.108)-(4.104), QB, gives
J(G.) = T5(G., Q) (4.107)

Proof: From Proposition 3.2.3, Eq. (4.105) guarantees uniqueness and positive
definiteness of the solution of (4.103)-(4.104). Eq. (4.105) also guarantees closed-loop
stability V a € Q by Prop. 3.2.1. a

We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Egs. (4.103) and (4.104) to the
cost using parameter independent, symmetric matrices of Lagrange multipliers, pB

and P¥, i=1...r € RMxtlden,

where A, B, and C are defined in Def. (2.2.4). Taking the derivatives with respect
to G., PB, Pt and QB, QF gives the necessary conditions for minimization of the

Bourret approximation to the exact average.

Theorem 4.2.3 (Necessary Conditions) Suppose G. the dynamic compensator

of order n., Eq. (4.78) solves the Bourret approzimate cost minimization problem
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(4.2.4), then there ezist matrices, BB, B¢ and QF, Q° >0 € R*™ such that

0 = PROB+BROL+ gﬁgléiz + Piy0%, (4.109)
B. = —B57 [(BRQE + PEQR) C,
+ 3 ((Ph0h + Pii) O
+ (PBQL, + Bi0B + PAQS, + PQR) oiCT)] (DuDE) ™ (4.110)
0. = - (D%LDy,)" [BE (PBGE + P3QL)
+ 3 (8L (PQia + Phlh)
+ o:BY (PEQi, + PGB + PEQL, + P;,05))| 087 (4.111)

where QB and QF satisfy the Bourret equation
< = R S s ox. =T
0 = AQP+Q7A; + BB + Y 0i (40 + Q')
=1
0 = A+ QA +o; (A.-QB + QBA?') i=1,...,r (4.112)

and PB and P* satisfy the adjoint Bourret equation

0 = KPP+ PP+ 070+ Yo (A B+ PA)
=1
0 = AP+ Pidy+oy (A,TPB+PBA;) i=1,...,r (4.113)

and the Q and P matrices have been partitioned according to Eq. (4.89).

Proof: The proof is a direct consequence of the differentiation of the cost,

Eq. (4.108), with respect to A, B.,C., PB, Pi and Q5, J'. 0

Remark 4.2.3 The traditional LQG results are recovered in the case of no uncer-

tainty and n, = n.

Now that the conditions for existence of local minima to the exact average and
approximate average cost have been presented, the necessary conditions for bound-

based cost minimization will be presented.
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4.2.3 Bound Minimization
Worst-Case Bound Minimization

In this section the formulation for the necessary conditions for the minimization of the
worst-case bound will be presented. The first step is to use the result of Theorem 3.3.1

to define the auxiliary minimization problem.

Problem 4.2.5 (Auxiliary Minimization Problem) Given a set G, of systems
described in Def. 2.2.4, determine the dynamic feedback compensator G., Eq. (4.78),

which minimizes

TV(G.) = tr {QWC“'TC'} (4.114)
where QW is the unique positive definite solution to the following system of Lyapunov
equations

= e = . - r 82\ - -, -
0= A% + QW A, + BB +62Q% + ‘z:% (5) AQ7A; (4.115)

where §; is defined from Equation (8.78) and § € IR.

The relation between the Auxiliary Minimizziion Problem and the Average Per-
formance Problem is based on the results of Section 3.3.1 relating the solution of the

worst-case bound to the Exact Average solution. It will be restated here for clarity.

Proposition 4.2.3 If the norm constraint given in Proposition 3.8.8

“((,aoe,ao)-‘ (1438 (40 2)))

i=1

<1 (4.116)

is satisfied and Ao is asymptotically stable, then A(a) is asymptotically stableV o € Q;
and QW, the unique positive definite solution to (4.115), gives

J(G) £ TY(Ge, Q) (4.117)
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Proof:  From Proposition 3.3.3, Eq. (4.116) and stability of Ag guarantees
uniqueness and positive definiteness of the solution of (4.115). Eq. (4.116) also guaran-
tees existence of the average cost Vo € (2 since (4.116) implies (3.21). By Prop. 3.1.1
bounded average cost implies that the closed-loop systems, G,.(a) are stable in the
sense of LyapunovVa € (. ]

We prouceed now to the problern of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Eq. (4.115) to the cost using a
parameter independent, symmetric matrix of Lagrange multipliers, PW ¢ IR**" The

appended cost becomes.

JY(G) = tr {QW(Z'TC'
- ol

where A, B, and C are defned in Def. (2.2.4). Taking the derivatives with respect

-~ 2 -~ -~ - -~
+QW Ay + BB + 607 + Z (‘;) .-QWA,?'] PW}
=1
(4.118)

to D., P and QW gives the necessary conditions for optimization.

Theorem 4.2.4 (Necessary Conditions) Suppose G. solves the average bound min-

imization problem (4.2.5), then there exist matrices, Q" and P¥ >0 € R™" such

that
0 = PYQY +PHQY (4.119)
R P 8\ /- . . x
B. = —PY” [(P:! [+ B QK) CL +3° ( ) (Pl AQY + PYY B..CQY) OT]
i=1
-1
(DnDn + Z ( ) Cz.Qﬁ'Cz.) (4.120)
1=1
2\ crawn )\ W AW L BW A
C. = — (szou + 2: (ﬁ) szffBz.-) (B, (PH QY + PXQY)
1=1
Y -1
+ ; (52) B, (P A:Q% + P B.C,,Q} )] M (4.121)
where QW satisfies the worst-case bound equation
0= 40" + Q¥ A, + BB +52Q"’+Z( )A,Q i7 (4.122)
=1
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and PW satisfies the adjoint worst-case bound equation

r (8 7
0=AsPW + PW A, + TG +682P% + 3 (%;) AT PW A (4.123)

1=1

and P¥ and QW are partitioned as in Eq. (4.89)

Proof: The proof is a direct conseqnence of the differentiation of the cost,

Eq. (4.118), with respect to A, B, Cc, PY and QV. 0

Remark 4.2.4 The traditional LQG results are recovered in the case of no uncer-

tainty and full siate feedback.

Average Bound Minimization

In this section the formulaiion for the necessary conditions for th~ minimization of the
average bound will be presented. The first step is to use the result of Proposition 3.3.3

to define the auxiliary minimization problem.

Problem 4.2.6 (Auxiliary Minimization Problem) Given a set G, of systems
described above in Def. 2.2.4, determine the static feedback compensator G;, Eq. (4 .78),
which minimizes

G, Q*) =tr {Q‘C’TC'} (4.124)
where Q4 is the unique positive definite solutions to the following system of Lyapunov

equations

o .. R A
0 = AOQA+QAA§++BBT+62Q1+Z(3‘;) A0 AT (4.125)

i=1

A 2 2T ana 82\ 15457
0 = AQi+Gud; +804+) (&) A0AA (4.126)

=1

and &; is defined from Eq. (8.78) and 6 € IR.

The relation between the Auxiliary Minimization Problem and the Average Per-
formance Problem is based on the results of Section 3.3 relating the solution of the

bound equation to the exact average solution. It will be restated here for clarity.
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Proposition 4.2.4 If the norm constraint given in Proposition 3.9.4

(oo 20)” (#1435 (Ao A)))

=1

<1 (4.127)

is satisfied ond Ao is asymptotically stable, then A(c) is asymptotically stableV a € Q;
and Q4, the unique positive definite solution to (4.125) and ({.126), gives

Proof: From Proposition 3.3.4, Eq. (4.127) and stability of Ao guarantees
uniqueness and positive definiteness of the solution of (4.125) and {4.126). Eq. (4.127)
also guarantees existence of the average cost ¥ a € (2 since (4.127) implies (2.21).
By Prop. 3.1.1 bounded average cost implies that the closed-loop systems, G..(a)
are stable in the sense of LyapunovVa € (1. ]

We proceed now to the problem of deriving necessary conditions for the Auxiliary
Minimization Problem. The first step is to append Egs. (4.125) and (4.126) to the
cost using parameter independent, symmetric matrices of Lagrange multipliers, P4

and P, € R***, The appended cost becomes.
THG.) = u{@ic”e}

= 24 AA:T 5ol = T 6,-2 s = =T| =,
+ trq|4oQ4+Q4A, + BB +8Q1+ ). + | A4 | P

1=1

bt { [Aoc}l F QAT 4604+ (?) A,QAA}F} 131} (4.129)

=1
where A, B, and C are defined in Def. (2.2.4). Taking the derivatives with respect

to D., PA, P, and @4, @, give the necessary conditions for optimization.

Theorem 4.2.5 (Necessary Conditions) Suppose G. solves the average bound min-
imvization problem (4.2.6), then there ezist matrices, Q4,Q, and PA,P, > 0 €

IR™tnexntne gy ch that

0 = ﬁ'ﬁQ-i‘z + PZ%Q#Z + pln Qlu + Pl:zQ.In (4130)
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P’AchDleg; + (P,‘} -ﬁ + Pg‘ngAl + Pln Qlu + Pl:: an) C;’:,

+ E (g:) [(PAB:C2:Qs,, + PryyBe C2, Q)
+ (P,1 (4G, + BaCeQu,) + Pu,, (A:Q4 + BaCeQ4))] €3 (4131)
= DT,DyC.Gf + BE (PAOHK + PAQH + PuiOrs + PriuQuan)
+ 2_; (?-) BT, [(P4B2C:@ua, + 21, BiCQh)
+ ((PAA:+ PAB.Cy) G, + (PruAi + Pry, B.Cy;) %)) (4.132)
(4.133)
where Q4 satisfies the bound equation
0 = AgDA+ Q44 + BB" +6Q, + y (%‘i) A0 AT (4.134)
=
0 = Ao+ 014; +6Q4+ Z; ( ) AQAAT (4.135)
and P4 satisfies the adjoint bound equation
0 = ATPA4PAk+CTCHER+Y (?) A (4136)
1=1
0 = AP+ PAo+6P4+ 2_‘; ( 5) A pAA; (4.137)

and the PA and Q4 matrices are partitioned as in Eq. (4.89).

Proof: The proof is a direct consequence of the differentiation of the cost,

Eq. (4.129), with respect to A, B, D., P4, P and Q4, Q.

m]

Remark 4.2.5 The traditional LQG results are recovered in the case of no uncer-

tainty.

4.3 Solution of the Necessary Conditions

In the previous sections five different cost functionals were considered for static and

dynamic output feedback compensation. Necessary conditions were derived for each

129



of the associated minimization problems. In this section the techniques used to com-
pute controllers based on the five cost functionals will be presented. The general
technique used for computiug ihe minimum cost controllers is parameter optimiza-
tion. Since the controllers are fixed-form, the optimal controller can be found by
minimizing the cost with respect to each of the parameters in the controller matrices.
[t should be noted that the parameter minimization is non-convex and the resulting
minima can only be considered local minima. With this caveat, the discussion of the
numerical minimization technique can be begun. The first step of deriving the neces-
sary conditions has been accomplished. In general, finding analytical expressicns fer
the controller matrices which satisfy the necessary conditions is impossible due to the
complexity of the necessary conditions. In the following sections numerical methods
for obtaining the optimal controller parameters will be presented.

The problem of obtaining the controller parameters can be divided into two dis-
tinct computational processes. The first process, common to all of the problems
considered, is the general minimization scheme which uses the necessary conditions
to guide its search for the optimal parameters. In this work, this minimization scheme
is embedded within another process which gradually increases the amount of uncer-
tainty considered in the minimization problem. The details of this homotopic con-
tinuation method will be discussed in more detail in the next section. The second
computational process is the procedure for computing the gradient of the respec-
tive costs using the necessary conditions. Typically in control design this process is
trivial once the necessary conditions have been derived. It usually involves solving
uncoupled Lyapunov equations. For the average-related costs, however, the problem
of computing the costs and gradients is non-trivial since even the cost computation

“involves solving systems of coupled Lyapunov equations. The details of the solution
procedures for the gradients of the respective problems will be presented in Section

- 4.3.2.
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4.3.1 General Algorithm

The general algorithm used to compute the controller matrices is parameter opti-
mization. The closed-lcop cost is a function of the controller parameters and can be
minimized by appropriate choice of these. The cost can be any of the five considered:
the exact average, the approximations, or the bounds. The gradient of the cost with
respect to the controller parameters is given by the necessary conditions derived in the
previous sections. These gradients can be used in standard numerical optimization
routines, such as a quasi-Newton minimization, to find the optimal controllers. In
general the conditions for optimality for each of the problems considered previously
can be expressed as

?"Jai,_q) =g(g) =0 (4.138)

where g is the vector of controller parameters and g is the vector function which gives
the gradients of the cost with respect to the controller parameters. The quasi-Newton
minimization scheme seeks the solution of Eq. (4.138).

The numerical minimization is complicated by the fact that it may be non-convex,
i.e., there can be many local minima and correspondingly many possible solutions, z;,
such that g(z;) = 0. The solution will therefore be a function of the initial guess used
in the optimization. This initial guess must also be a stabilizing compensator. This
can be difficult to find for large values of uncertainty. These problems are overcome by
first assuming little or no uncertainty and using the resulting controller as a starting
point for calculating controllers at successively larger values of uncertainty, i.e, larger
parameter sets. Standard LQR or LQG techniques can be used to find stabilizing
compensators for systems with no uncertainty. The amount of uncertainty used in
the design is gradually increased until the desired amount is reached.

This solution technique is known as homotopic continuation and has been applied

to the solution of coupled systems of Riccati and Lyapunov equations in Ref. [95]. If
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the set of parameters used in the design is described
Q.,:{a :aell{','yb'{‘ga;Sq&? i=1,---,r} (4.139)

where §F and 67 are the lower and upper bounds for the i** uncertain parameter and
7 is a positive real scaling parameter, then the optimal solution is a function of the
value of v used in the design. The scaling parameter, v is known as the homotopic
parameter. The locus of optimal solutions as a function of 7 is called the solution

manifold, denoted by
M = {q*(7) : glg*(7)} = 0} (4.140)

The homotopy essentially finds elements of this solution manifold progressively as the

uncertairty bounds are increased.

Definition 4.3.1 (Controller Solution Algorithm) The general algorithm used

to compute the controllers can be written.

(i) Initialize the homotopy with a stabilizing compensator (with parameters de-

noted go) for the system with v =0, i.e., no uncertainty.

(ii) Increment the value of % = i1 + &y and thereby increase the size of the

uncertainty used in the design.

(iii) (Optional)Reduce the number of uncertain parameters to be retained in the

minimization process using the algorithm discussed in Section 6.3.

" (iv) Minimize the cost at the new value of v to derive a new compensator, ()

using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton scheme [144].

(v) Evaluate the resulting cornpensator to 1) check the set of retained parameters

and 2) check the homotopy termination conditions.

(vi) Iterate
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The homotopy is discrete because discrete steps are taken in the value of the homo-
topic parameter. Li the following paragraphs these steps will be discussed in more
detail.

The homotopy is begun by assuming no uncertainty in the plant (y = 0) and
assuming an initial stabilizing compensator. In the case of full state static compensa-
tion, the standard LQR gain can be used. For static output feedback, the homotopy
can be started with the feedback compensator gains described in {126, 127]. For
dynamic full order compensation, the LQG compensator can be used. If the com-
pensator is of reduced order, optimal projection or a heuristic compensator reduction
procedure can be used to find stabilizing compensators. If the compensator initially
doesn‘t minimize the H,-norm of the closed-loop system, then an initial minimiza-
tion step can be performed (with 7 = 0) to find the optimal compensator for the
parameter independent plant.

Once the initial guess at the compensator has been made, a small amount of un-
certainty is introduced into the problem and a new controller is found by minimization
of the appropriate cost functional starting from the initial guess. The problem consid-
ered here is how to determine the step size. If the amount of uncertainty is increased
too much in the step the initial guess will not be near the n:w optimal solution and
may be difficult to locate. Since at each step a new cost minimization is performed,
taking too small of a step is computationally wasteful. One useful measure of de-
gree to which a given compensator is nonoptimal is the norm of the gradient vector,
llg(z,7)||- If the ccmpensator is optimal for a given value of the homotopic pa.rarhe-
ter, 7y, then the gradient is exactly zero. As the uncertainty is increased, the previous
optimal solution no longer satisfies the necessary conditions for the new problem and
thus the magnitude of the gradient increases. A tolerance can be placed on how large
the gradient is allowed to grow before the cost is reminimized. For a given step 1, this

bound can be expressed

lg(zi-1, %)l < € (4.141)
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When the norm of the gradient exceeds the tolerance, the cost is reminimized to find
a new compensator which satisfies the necessary conditions. If € is chosen sufficiently
small then small steps are taken and the minimization is begun near the optimal. If
however, the bound is chosen too small, then many uniecessary minimizations will
be performed.

Before the minimization, techniques for reducing the number of uncertain param-
eters which will be developed in Chapter 6 can be applied. The ciosed-loop cost
at the current level of uncertainty can be decomposed into its respective parameter
contributions. The parameters which do not influence the cos* can be discard ia the
minimization to follow. This is a tricky step, however, because the designer doesn’t
know if the minimization will yield a compensator #hich changes the relative im-
portance of a parameter, perhaps emphasizing one which was discarded. To avoid
this problem, the ranking of the parameters must be again performed after the min-
imization to check to see that the truncated parameters were indeed unimportant.
If the set of important parameters has changed, then the set must be modified and
the minimization repeated until the correct set for the current level of uncertainty is
reached.

The minimization step is relatively straightforward. The appropriate cost is min-
imized with respect to the controller parameters using the necessary conditions for
gradient information. The minimization technique used to derive the controllers pre-
sented in the next chapter was the popular BFGS quasi-Newton method with a modifi-
ca.tidn to constrain the parameter minimization to the set of stabilizing compensators.
In addition, to jump start the minimization, the second derivatives (Hessian) matrix
at the initial controller parameters are calculated numerically by finite differences.
This Hessian matrix is used in the minimization to calculate the initial step size. If
the minimization starts in the vicinity of a minimum because the norm of the gra-
dient was held small, then the fist step based on the Hessian will give near optimal

controller parameter values. If the cost function’s parameter dependence is in fact
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not quadratic at this point then further minimization must be performed.

After the minimization, the resulting compensator must be evaluated to determine
if the appropriate conditions for termination are met. For instance, the designer can
choose to terminate when the design has reached a given level of uncertainty. Another
possible termination condition would be a stability test using the controder on the
evaluation plant. As stated above, the set of retained uncertain parameters must also
be checked to be sure that the dominant parameters where included in the design.
If the set of dominant parameters has changed due to the neglected coupling then
the minimization must be performed using a more complete set of parameters. If the
termination conditions on the homotopy are not met then the homotopy parameter
is increased and the process is restarted using the newly derived compensator as an
initial guess for further minimization at the incremented value of 7.

This y-homotopy is useful for determining both the family of controllers as a
function of the uncertainty bound as well as for deriving the final controller. In the

next section, the details of the calculation of the function gradient will be presented.

4.3.2 Cost and Gradient Calculation

Central to the numerical minimization set of the homotopy is the computation of
the cost and associated gradient for a particular value of the controller parameters.
The computation of the cost and gradient is problem dependent. In this section,
the details of these calculations will be presented for each of the five cost functionals
considered in the static and dynamic compensation problems.

It is appropriate to first discuss the general form of the problem for the various
cost functionals. The minimization scheme requires the cost and gradient information
at a particular value of the controller parameters. The cost is usually given by either
the average value of a parameterized Lyapunov equation in the exact average case or
by the solution of a set of coupled Lyapunov equations as for the approximation and

bounding cost functionals. The function for each of the cases can be denoted Q(7, Ge),
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which is a function of the size of the uncertain parameter set and the controller
parameters. The gradient of the cost with respect to the compensator parameters is
usually a function of the compensator parameters as well as the solution to Q and its

adjoint, P. The necessary conditiuns for optimality can therefore be written.

Q[Gc,'Y, Q(GC)'Y),’P(GC)'Y)] =0 (4142)

The problem of calculating the cost is essentially the problem of calculating Q while
the problem of calculating the gradient can be decomposed into first solving for the
solutions of Q and P and then solving for g. Since the calculation of g is usually trivial
(except in the exact average case) and the computational difficulties are usually the
same for @ and P, the following paragraphs will concentrate on the solution to Q for
the various average-related cost functionals.

The exact average cost is calculated by numerical integration over the param-
eter domain using a 32 point Gaussian quadrature. If more than three uncertain
parameters must be retained in the design, then Monte-Carlo integration is the only
feasible method of computing the averages needed for the cost and gradient calcula-
tions. In addition to averages of the solution to a parameterized Lyapunov equation,
the gradient functions also require averages of the product of the solutions of the
parameterized Lyapunov equation and its adjoint. For speed, these averages can be
computed at the same time as the average cost. The number of points needed in
the integration is dictated by the rate at which the cost changes as a function of the
uncertain parameters and should be chosen so that the gradient is accurate to the
level of the tolerance used in the minimization procedure.

The solution of the approximations and the bounding functions are discussed in
Chapter 3. The perturbation expansion approximate average is computed by utilizing
a standard Lyapunov solver and solving the equations hierarchically as mentioned in
Remark 3.2.1. The other three equations: the Bourret approximation, the worst-case
bound and the average bound are either solved iteratively or by Kronecker math, [113].

In the examples presented in the next chapter they were solved using a modified
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version of the Kronecker math which takes advantage of the symmetry of the solutions.
This greatly reduces the computational burden associated with the size of the matrices
involved.

The reduced-order Kronecker math will be demonstrated on the standard Lya-

punov equation for simplicity. Consider the equation
0=AQ+QAT+BBT ' (4.143)
which can be written using standard Kronecker math as

0 = (Ad A)vec{Q} + vec {BBT} (4.144)
0 = Ag+b (4.145)

which can be solved to yield
g=-—-A"1b (4.146)

where A = (fi ® fi), q = vec{Q}, and b = vec {BBT}. The size of A makes the
inversion and solution expensive. The size of A can be reduced by taking advantage
of the symmetry in the problem. The vec{-} operation stacks the columns of the
argument so that a n X n matrix becomes a n? x 1 column vector. Because Q is
symmetric, however, many of the elements of g are identical. If we consider only the
elements above or on the diagonal as independent, a new vector containing only this

portion of the matrix can be defined
g=Ug (4.147)

The matrix U picks off the appropriate ndependent elements of g and therefore is a
matrix of ones and zeros. It is also useful to define another matrix which reconstitutes
the reduced vector

Tj=gq (4.148)
These two matrices can be applied to Eq. (4.144) to obtain a reduced order version

of the equation.

0=Aj+b (4.149)
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where

A=U(AQA)T (4.150)

Since A has dimension (!‘2i +n)x ("T’ +n), it is almost half the size of A. The inversion
for the solution is thus almost eight time faster since inversion is a ©(n3) process.
This general technique can be applied to the solution of the Kronecker math equations
for the Bourret approximation and the worst-case and average bounds. Since the U
and T matrices in Eq. (4.150) are only full of ones and zeros it can be faster to
o lveliminate t} £ A and add t} 1 ling |

the redundant elements of g.

4.4 Summary

In this chapter the average performance problem has been formulated for two general
cases; static and dynamic output feedback. For each of these cases, the cost mini-
mized was represented by either the exact average, the approximations to the average,
or the bounds to the average presented in Chapter 3. Each cost, minimization yields
different necessary conditions and different properties for the resulting controllers.
When the exact average or its bounds are minimized they yield controllers which
guarantee stability throughout the model set. When the approximations to the aver-
age is minimized, robustness is increased over tke non-augmented cost minimization,
(LQG or LQR), but stability is not necessarily guaranteed throughout the design
model set. For the case of Bourret approximate average cost minimiza.tioﬁ, however,
stability is guaranteed over a smaller model set.

The necessary conditions for the case of fixed order compensation where derived
using Lagrange multiplier techniques. The neressary conditions for the exact average
minimization problems requires averages of the product of the solutions of two param-
eterized Lyapunov functions. The necessary conditions for the Bourret approximate

average cost minimizatior gave fixed order compensator gains which depended on
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the product of the solutions of two Bourret equations. The parameter independent
Bourret equations take the place of the parameterized Lyapunov equations found in
the exact average minimization. This is a general trend found when using tke modi-
fied Lyapunov equations for the various costs. The uncertainty couples the modified

Lyapunov equation and its adjoint in the solution process for the compensator geins.
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Chapter 5

Examples of Controllers for

Parameterized Systems

5.1 Controller Design Philosophy

The goal of this section is to present some general thoughts on robust controller
design. This discussion is intended to unify the various techniques developed in the
previous chapters and help focus them on the examples presented in this chapter.
The discussion will center around the tasks involved in the robust controller design
process and how these tasks are influenced by tke choice of analytical framework.

The robust control process can be divided into four distinct tasks
i) Model generation: realize the uncertainties in a parameterized evaluation model
g

(ii) Model reduction (optional): reduce the evaluation model order or number of

uncertainties for design purposes

(iii) Controller synthesis: generate a controller based on the design model

(iv) Controller evaluation: ckeck the controller on theevaluation model for stability —————

and performance robustness.
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with the process being iterative if necessary.

All four steps in" the robust control design process are influenced by the analytical
techniques used to ’derive them. In the case of this report this analytical framework
is centered about real parametric uncertainty and average cost related measures of it.

The choice of analytical framework influences how errors are represented in the
model. Real parametric uncertainties represent a limited cless of the possible plant
uncertainties and do not well represent unmodeled dynamics. If a model of the system
dynamics does exist but the values of the interactions are uncertain then parametric
error modeling is appropriate. The choice of how errors are to be considered affects
how they are most easily represented. For instance, unmodeled dynamics are most
commonly represented in an input-output frequency-domain specification while para-
metric uncertainties are usually represented in the time demain as errors in the matrix
components. Real parametric error can be represented in the frequency domain as
input output error and unmodeled dynamics can be represented by parametric error
but in both cases the error models would be inappropriate.

To begin the robust control design process for real parametric uncertainties, the
structure of the component interactions and the range of possible values must be
obtained through experimentation, analytical modeling, or a combination of the two.
The structure can be obtained using analytical assumptions, and the error ranges can
be obtained through comparison between the analytical prediction and the experimen-
tal data. The output of this step in the process is a complete (and hopefully accurate)
error model which can be used for evaluating the robustness of the controllers.

The model reduction step is presented in Chapter 6. The complete model must
* sometimes be reduced before control design is computationally feasible. There are
two types of reduction presented in this report, model order reduction and model
uncertainty reduction. For the simple systems presented in this chapter, model re-
duction for control design is unnecessary. For more complex system however it will

be a necessity due to the large computational costs associated with large numbers of
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uncertainties. The output of this step is a reduced error model which is suitable for
control design.

The control design step centers around the algorithm presented in Section 4.3.2.
Before the controller can be designed the reduced order model must be modified with
input-output weights to produce a suitable design model. An example of this weight-
ing procedure is presented for LQG design in Section 2.1.2. The weights represent
the design variables and how they are chosen is problem dependent. In the following
examples, emphasis will not be placed on weight selection since the intent is to present
the relative merits and ramifications of using the cost functionals for control synthe-
sis. The control design step consists of minimizing one of the five average-related cost
funcfiona.ls as applied to the design plant. The mechanisms of controller design are
presented in Chapter 4. The output of the controller design step is a set of static or
dynamic compensator matrices which minimize the closed-loop cost when applied to
the design plant.

The final step in the robust control design process is controller evaluation on
the complete error model. The controller should be evaluated on the the basis of
nominal performance and performance robustness, as well as stability robustness in
the presence of modeled parametric error and unmodeled dynamics. The performance
specification can be different than the one used for controller design. For instance,
transient response can be used to evaluate controllers derived by minimizing system
H, -norm. In addition, the control design methodology needn’t be based on the
stability robustness analysis technique used for evaluation. For instance, majorant-
Lyapunov stability analysis [77)] can be used for stability analysis of the closed-loop
evaluation model even though the controller was derived using the worst-case bound.
An analysis tool can be used for stability evaluation which was too complex to be
used for control design. I{ the design doesn’t meet the stability and performance
criteria of a given speciﬁcatiqn set, then the design process must be iterated with a

different set of retained uncertain parameters and design weights.
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In the following sections, some examples of control design and evaluation will be
presented that use the average-cost related analysis tools developed in the previous
chapters. Particular emphasis will be placed on the tradeoff between nominal per-
formance and stability and performance robustness. It is also recognized that higher
stability adn performance robustness is usually associated with higher control effort
so that careful attention will be directed at the cost of the robustness of the various

designs.
The five average-relaied cost functionals will be compared on some simple exam-
ples. To streamline discussion in these sections it is convenient to define a series of

acronyms for the various designs.

PEACM Perturbation Expansion Approximate Cost Minimization
BACM Bourret Approximate Cost Minimization

EACM Exact Average Cost Minimization

ABM Average Bound Minimization

WBM Worst-Case Bound Minimization

these acronyms will be used extensively in subsequent sections.

It should be noted that the PEACM design is essentially equivalent the the sen-
sitivity system cost minimization presented in [103] and discussed in Remark 3.2.2.
The WBM design has been previously presented in [69] and is here presented for

comparison purposes.

5.2 Example 1: The Robust-Control Benchmark
Problem

In this section, static and dynamic output feedback compensators based on the

five techniques presented in Chapter 4 will be designed for the robust-control
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benchmark problem presented in Ref. [129].

The problem considered is a two-

mass/spring/damper system shown in Figure 5.1, which is a generic model of an

uncertain dynamic system with noncolocated sensor and actuator. The uncertainty

stems from either an uncertain spring connecting the two masses or an uncertain

damper. First the system represented in Figure 5.1 will be presented. From Ref. [129]

the system matrices can be represented in state space form as

u

w

- [ h [ ml ]
T 0 0 1 00 0 0
T2
% 0 0 0 1o o of|"
T
Ty —k/my  k/my —c/my ¢/m |0 0|1/m, .1 (5.1)
= T .
Zq k/ms —k/m2 c¢/ma —c/my |0 1/mq 0 2
v
2 0 1 0 00 0 0
w
v 0 1 0 01 0 0
St Tl

x, = position of body 1

T, = position of body 2

u = control force input

w == plant force disturbance
y = sensor measurement

v = sensor noise

z = performance variable
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Within the system described in Egs. (5.1), the uncertain spring, k, and damper,

¢, are decomposed into a nominal value and a bounded variable parameter

(4]

i‘-
I

ko+k, ko=125 [kl <8 (5.2)

[S4]

¢ = até =0, [fLé (5-3)

With this factorization the set of systems can be defined in the notation from Defini-

tion 2.2.4. In particular, only the A matrix is uncertain. It can be factored as

A(k,&) = Ao + kA + EA. (5.4)
[ o 01 0]
0 001
Ao =

~125 125 0 0
125 —1.25 0 0

r - - -

6 00O 00 0 O
0 000 00 0 O
Ak= Ac=
-1 1 00 0 0 -1 1
| 1 -10 0] (00 1 -1

With this factorization, the robust control design methodologies presented in the
previous sections can be applied. To design the controller, the controls engineer would
like more flexibility in weighing the outputs and controls in the cost and specifying
the disturbance and sensor noise intensities. First the evaluation plant outputs, z,
are augmented to include all the states and the control, z7 = [ T u ]T. Next, the
relative magnitudes of the input disturbances and output variables can be explicitly
weighted. The method of weighting the system that was presented in Section 2.1.2
which is based on the standard LQG design weights will be adopted in the next
two sections. In this method the designer selects the state weighting matrix, @, the
control weighting matrix, R, and the sensor and plant noise intensity matrices, © and

= respectively. The evaluation plant is modified as in Eq. (2.25) to give the design
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plant. The control is designed on the design plant and implemented on the evaluation

plant.

5.2.1 Full State Feedback: Uncertain Damping

In this section, the five control design methodologies will be applied to the problem of
determining full state feedback gains for the benchmark problem. For this section only
the damper is uncertain and the spring is assumed known with a value of & = 1.25.

The uncertain parameter c has the form:
c=c+é c=0 [E<L05 (5.5)

Thus the parameter design bound, . = 0.5, is large enough to allow unstable elements
in the open-loop model set. For the case of full state feedback there is no sensor noise
and the plant noise intensity was assumed equal to unity. In addition, only the
nosition of the second mass was penalized. The weighting values used in the design

are

(000 0]
0100
Q= , R=1 (5.6)

500 0

000 0|

The five designs and the corresponding LQR design are presented in Figures 5.2 - 5.8.

The stability and performance robustness of the designs can be seen compared in
Fig. 5.2. In Fig. 5.2 the system closed loop Hz-norm given by the various designs
using &, = 0.5 is plotted as a function of the actual value of & The curves show the
variation in system nominal performance as well as the performance robustness for
each design. Infinite cost is associated with unstable systems so the asymptotes of
the cost curves give the achieved stability bounds for the given value of the design
bound, &, = 0.5. The lack of an asymptote for positive values of the damper parameter

reinforces the physical intuition that additional system damping isn’t destabilizing.
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The relative amount of stability robustness gained by the designs is consistent with
the relative ordering of the approximations established in Fig. 3.4. The LQR design is
shown to be the least robust in part because of the relatively high control weight as-
sumption. The high control penalty keeps the undamped pole from being pushed far
enough into the left hand plane to guarantee stability over the parameter range. The
PEACM design gives the smallest stability range followed by the BACM and EACM
designs. Both the BACM and EACM designs achieve stability throughout the de-
sign set. As expected the ABM and WBM designs, being bounds, achieved stability
throughout the design set. It is interesting to note that both bounds lead to identical
rlosed-loop system H;-norms as a function of the parameter. The bound-based de-
signs are essentially identical. The similarity between the bound-based designs arises
from the fact that both bounds give the same parameter stability regions when they
are used for analysis. In control synthesis, they therefore behave similarly when the
design is stability driven (as is this one).

Figure 5.3 shows the achieved design C bound, as a function of the bound used
in the design, §.. The ordering of the approximations and the bounds relative to the
average is again visible. In all the designs, increasing the design bound increases the
achieved bound. For this problem, only the PEACM design doesn’t always achieve
stability throughout the design set. As the design bound is increased the ABM and
WBM designs quickly respoud by dramatically increasing the achieved bound over
and above what is needed for stability. This is an indication of the conservatism of
the designs. The increased stability range is associated with increased control effort
and higher nominal costs for a given design bound.

It is perhaps more important to examine the system closed-loop cost as a function
of the achieved stability bound rather than the parameter bound used in the control
design. Figure 5.4 shows the closed-loop H; cost for the nominal system as a function
of the limits of the range of damping parameter over which the closed-loop systems are

stable, called the achieved stability bounds. The stability range is characterized by
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Figure 5.2: System Closed-Loop H,-norm as the Damping Parameter, ¢, is
varied from -1 to 1 for . = 0.5.

an upper and lower limit. Since the lower limit was closer to the nominal parameter
value (the parameter was limited in its variation below nominal), this limit was chosen
as a characterization of the amount of parameter uncertainty a given robust design
can accomodate. This type of plot will be called the design efficiency plot since it
is an indicator of how much the nominal cost must be increased to achieve a given
level of robustness. The design which achieves the most robustness with the least
increase in nominal cost is the most efficient robust control design. This type of plot
easily captures the relevent characteristics of the performance-robustness trade for
the various designs. It does not however capture teh off-nominal performance adn
performanc robustness issues.

Expressing the cost in terms of achieved stabilty range rather that parameter

range used in the design reveals connections between the designs that are difficult
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Figure 5.8: Achieved Closed-Loop Stability Bounds as the Design Bound, 6.,
is increased from 0 — 0.5.
to recognize otherwise. The lower limit of the achieved stability range will be called
the achieved bound and the bound on the parameter variation considered in a given
design will be called the design bound. All of the designs converge to the inherent
LQR robustness properties when the design bound is zero (no parameter uncertainty
used in the design). There is marked similarity in the relative design efficiencies
for this problem. This is due to the fact that there is only a single uncertainty
and the problem is low order with full state feedback. In this case, the stability
range guarantee associated with the bounds, the exact average, and the Bourret
approximation can be made equal by only varying the design bounds. This is not
true for the PEACM design which doesn’t “blow up” for any design bounds. The
PEACM design is therefore the least efficient. As expected from the analysis in
Chapter 3, the EACM design is most efficient and is closely matched by the Bourret
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approximation design and the average bound design.

The decomposition of the total cost into the cost associated with the output and
the cost associated with the control is shown in the two smaller plots of Fig. 5.4.
These plots reveal that higher state cost is associated with lower contrc® cost in all
of the designs. Thus, the PEACM design Lias the highest state cost and the lowest
control cost of the desfgns. In, general the efficiency ranking given by the total cost
is also that given by examining only the state cost.

The designs were generated by slowly increasing the uncertainty in the design
process as described in Definition 4.3.1. This homotopy can be examined by plotting
the closed-loop poles as a function of the uncertainty bound used in the design. This
is done in Fig. 5.5 for the five design procedures. The curves in all of the graphs
start at the LQR pole locations. The LQR poles are denoted by X. Because of
the high control penalty, the LQR poles at 1.6 rad/sec are relatively lightly damped.
The designs add robustness by shifting the poles to the left, i.e., making them more
damped. All of the designs shift the poles left. This left-shift of the poles is associated
with higher control gains and can thus degrade robustness to high frequency dynamics.
“The approximation based designs, PEACM and BACM designs, shift them less than
the exact average based design. The EACM design in turn shifts them less than the
bound-based designs which critically damp the poles.

Figure 5.6 shows the closed-loop pole locations for designs with 6. = 0.5 as a
function of the actual damper parameter value as the damper is varied from -0.5 to
0.5. The curves represent the locus of closed loop poles. If the line intersects the
imaginary axis then some of the elements of the set of systems are unstable. The
locus of the high frequency resonant poles has been placed on the real axis by the
bound designs. This gives good performance robustness for the bound based designs.

The bound based designs also lead to higher loop gains and correspondingly higher
bandwidth solutions. Figure 5.7 shows that the loop gains progressively increase

as one progresses from the PEACM design to the WBM design, i.e., as the design
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conservatism and stability radius increases. The higher gain is tolerable for this full

state feedback design because the phase remains between -180 and +180. The loop
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gain for this system can thus be increased indefinitely without instability. All of the
designs tend to have at least 90 degrees of phase margin.

The impulse response transients for the various designs are shown in Figure 5.8.
As expected the PEACM and BACM deigns show less performance robustness to vari-
ations of the damper value than the bound-based designs. The nominal performance
of the designs are actually quite similar however. The peak position and control am-
plitudes are higher for the bound-based designs, but not by much. In general the
slow, highly damped pole at 0.5 Hertz dominates the response for all of the designs.

The design results for this problem agreed well with the analytical expectations.
The bound-based designs used higher gains to drive the uncertain system pole further
left than the exact average-based design while the approximations used lower gains
and moved the poles less. The design efficiency chart revealed that the perturbation
based compensator was the least efficient of those examined while the exact average-

based design was the most efficient.
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5.2.2 Dynamic Compensation: Uncertain Spring

In this section, the five contro! design methodologies will be applied to the problem
of determining full-order SISO dynamic output feedback compensators for the bench-
mark problem. In this section only the spring is uncertain and the damper is set to

zero. The uncertain parameter k has the form
k=ko+k, ko=125 |k <68 =0.75 (5.7)

Thus the parameter design bound, éx = 0.75, allows the stiffness to vary in the range
from 0.5 to 2. The LQG problem statement presented in Section 2.1.2 was adopted
to specify the design weights. Only the position of the second mass was penalized.

The weighting values used in the design are

(00 0 0]
0100
Q= R = 0.0005 (5.8)
0000

(000 0]

The control weighting was chosen to be low to.examine high performance designs
which meet a settling time requirement of 15 seconds as specified in Ref. [129]. Al-
though each design is not optimized to meet this specification, the weight was chosen
so that the closed-loop performance of the EACM design met this specificaticn. The
other designs will have performance in the area of 15 second settling time. This con-
sideration was not treated as a hard design constraint. In addition to the state and

control penalties, the plant noise and the plant noise intensity were assumed to be
=Z==1, ©=.0005 (5.9)

The signal ncise intensity was chosen low to give a high gain Kalman filter in the
LQG design.
The robustness properties of the five control designs are compared to those of

the standard LQG design in Figures 5.9-5.16. Figure 5.9 compares the closed-loop
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‘H,-norm resulting from the various designs using & = 0.4 as a function of the de-
viation from the nominal spring constant, k. Thus the controllers were designed to
accomodate a stiffness variation, 0.85 < k < 1.65. Instability regions are indicated by
unbounded closed-loop Hz-norm. The LQG results clearly indicate the well-known
loss of robustness associated with high-gain LQG solutions. The LQG cost curve
achieves a minimum at the nominal spring constant, k = 1.25, but tolerates almost
no lower values of k. The stability region is increased by the PEACM and BACM
designs at the cost of increasing nominal system closed-loop Hz-norm. Although both
the PEACM and the BACM designs increase robustness they do not achieve stability
throughout the whole design set, —0.4 < kE < 0.4. Of the approximate methods, the
Bourret approximation more nearly achieves stability throughout the set. The EACM
design does achieve stability throughout the set as was indicated by the analysis. The
cost of this stability guarantee is loss of nominal system performance.

This performance-stability trade is especially evident for the bound-based designs.
The nominal costs for these designs are two orders of magnitude higher than for the
averagc-based design and its approximations. The bound-based designs extend the
upper stability bound for the stiffness much more than the lower stability bound.
It is also interesting to note that although the stability bounds for the ABM and
WBM designs are identical the ABM design achieves this with 30 % lower nominal
performance. The relative flatness of the bottoms of the performance “buckets”
indicates that the performance of the various designs are also relatively robust to
changes in the spring constant.

As for the static compensation case, the range over which a given design is stable
can be ploted as a function of the parameter range used in the design. The parameter
range over which a particualar design maintains stability is characterized by the
achieved bound which is chosen to be the lower limit of teh stability range. The
paramter range actually considered in the design is characterized by the design bound,

denoted &, which specifies the upper and lower limit of k. Figure 5.10 shows the
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about the Nominal Spring Constant, k, for Controllers Designed
Using 6 = 0.4.
achieved lower k stability bounds as a function of the design bound, 8. With no
design uncertainty all five techniques converge to the stability range achieved by the
standard LQG design (|| < 0.06). As the uncertainty used in the design process is
increased the achieved robustness is also increased. Again, the EACM design always
increases robustness enough to guarantee stability throughout the design set, while
the approximate cost minimization techniques don’t provide this guarantee. The
BACM design does come closer to guaranteeing stability than the PEACM design
which does particularly poorly in decreasing the lower stability bound. The bound.
based designs achieve much larger stability bounds for a given design bound. The
interesting point is that the robustness is incrementally increased much more for small

values of uncertainty than for larger values. The curve starts very steep and then level
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off to the same slope as the EACM design. The ABM and WBM designs’ achieved
bounds also converge for the higher design values. The spacing maintained between
the exact average and the bound-based designs is indicative of the conservatism of

the bounds.

1.2 T T T T T T T

»——=x Exact Average
+----+ Pert. Exp. Approx.
1 s Bourret Approx. -
e----o Average Bound
x.x Worst-Case Bound

Achieved Bound

Design Bound

Figure 5.10: Achieved Closed-Loop Stability Bounds as a Function of the
Design Bound, éx

In Figure 5.11, the closed-loop Hjz-norm of the nominal plant (k = 1.25) is ex-
amined as a function of the achieved stability bound. This is the design efliciency
plot mentioned in the previous section. The closed-loop cost (Hz-norm) is also shown
decomposed into the component associated with the output weighting, called the
output cost, and the component associated with the control weighting, called the
control cost. Both cutput and control costs clearly increase as the achieved robust-
ness increases. The EACM design achieves a given level of robustness with the least

increase in the nominal cost and is therefore considered the most efficient design. The

BACM design also has good efficiency, almost matching that of the EACM design.
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The PEACM design is clearly the least efficient of the five. It cannot achieve a design
bound of more than 0.2. The bound-based designs also asymptote to infinite cost but
at a higher value of the achieved stability bound. For low levels of achieved stabil-
ity, the bound-based designs are actually as efficient as the average and the Bourret
approximation based designs.

The compensator and closed-loop poles and zeros as a function of the design
uncertainty bound are plotted in Figures 5.12 and 5.13. All of the compensator
designs (including LQG) use non-minimum phase compensation. The compensators
thus introduce a nonminimum phase zero into the closed loop plant. The differences
in the compensators arise in how the uncertainty affects the poles. In the EACM
and the approximation based designs one pair of poles actually move in toward the
imaginary axis. The other pair of poles is critically damped. The EACM designs and
the approximations based designs also have similar closed-lcop pole loci as seen in
Fig. 5.6. The general trends frorn the PEACM design to the BACM design and finally
the EACM design is to move the higher frequency poles more toward the imaginary
axis while damping the lower frequency poles at 1.4 rad/sec. The nonminimum phase
zeros resulting from the compensator are unaffected by uncertainty in the PEACM
design. They are moved closer to the imaginary axis in the EACM decsign.

The general trend for the bound-based designs is to push the poles away from the
imaginary axis. The LQG poles at 1.4 rad/sec are almost critically damped while
the LQG poles at —1 + 3: follow Butterworth patterns away from the imaginary axis.
Pushing the poles in this manner causes the bound based designs to have higher gain
and bandwidth than the approximation and average based designs.

The loci of closed-loop poles as a function of the uncertain parameter are shinwn
in Figure 5.14. The stiffness deviation, k, is shown varying in the range from -0.75
to 0.75 which results in open-loop pole locations varying in the range from 0.5 to 2
rad/sec. Only the lower frequency poles are shown since these are the poles and zeros

most influenced by the variable stiffness. If any of the loci intersect the imaginary
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axis then an element of the closed-loop set of systems is unstable for that design.

Clearly the PEACM and BACM designs allow instabilities in the design set. The
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EACM design poles move primarily along the imaginary axis instead of crossing it.
Since control effort is expended to move poles further from the axis this design is the
least expensive for the achieved stability bound. This pole locus is another indicator
of the EACM design’s efficiency. The zeros of all of the designs are unaffected by the
variable stiffness.

From Fig. 5.14 the bound-based designs are shown to have nearly identical closed-
loop pole loci. Even though the designs were computed using a bound of 0.4 the
designs still maintain stability over a parameter range of +0.75. The numinal pole
locations (indicated by the z‘s) are nearly coalesced in the bound-based designs. They
are also further left than in the average and approximation-based designs.

The loop transfer functions of the various designs are compared to the LQG loop
transfer function in Figure 5.15. The robust desigus are shown by the dashed lines
while the LQG design is shown with a solid line. The general characteristics of all of
the design transfer functions are similar to the LQG design’s. The curves start with a
-40 db/decade slope caused by the two rigid-body poles. The magnitude dips at about
1.1 rad/sec at the location of the two damped nonminimum-phase compensator zeros.
;I‘he nonminimum phase zeros cause the magnitude to dip below 1 and the phase to
increase (not decrease as for normal zeros) past 180 degrees. The transfer function
dips under 1 just as it roles past the 180 degree mark. The gain and phase margins
for the LQG design are thus very poor. This is iz part why the LQG design is so
sensitive to parameter errors. The LQG curve continues with the resonant pole at 1.4
rad/sec. The resonant is followed by a frequency range of -10 db/decade slope until
the LQG compensator starts to rolloff at about & rad/sec.

The approximation and bound-based designs are distinguished on the basis of how
they handle the nonminimum phase zero and how they roll off. The PEACM design
gains little robustness over the LQG as seen by the similarity in the transfer functions.
The BACM and EACM designs increase the robustness by lowering the frequency and

damping of the nonminimum phase zeros. This has the effect of decreasing the low

166



C: Bourret Approximation

K Bound » 0,75

K Bound » 0.75

Imaginary (Rad/Sec)

Imaginary (Rad/Scc)

35 3 25 2 a5 1 oS

35 3 25 2 5 1 05 o0 oS
Real (Red/Sec)

K Bound = 0.75

Imaginary (Rad/Sec)

2t

3t

D: Average Bound

4 35 3

=)

KBound =04

Imaginary (Rad/Sec)

<
<

1s 1 s
Real (Rad/Sec)

B: Worst-Caso Bound
K Bound =04 )

L]

< i

’ \

L]

as 1 23 0

Real (Rad/Sec) .

Figure 5.14: Closed-Loop Pole Locations as the Parameter, k, is Varied from

-0.75 (*) to 0 (x) to 0.75 (+)



frequency magnitude of the loop transfer function and thereby increasing the range
over which the magnitude drops below one. These designs also decrease the damping
in the high frequency rolloff pole at 8 rad/sec. The magnitude of the transfer function
is kept below one, however, to avoid instability.

The bound-based designs lower the frequency of the nonminimum phase zero to
about .8 rad/sec but tend to damp it more heavily than the exact average design.
This broadens the range of frequency over which the loop transfer function has phase
less than one and thereby greatly increases the design robustness. The bound-based
designs also increase the bandwidth of the dynamic compensator which would make
the system more susceptible to high frequency unmodeled dynamics.

The response transients of the closed-loop system to an impulse disturbance at w
are shown in Figure 5.16. The performance robustness of the design can be shown
by the dotted and dashed curves corresponding to off nominal parameter values.
The PEACM design was not stable at & = —0.5 and this curve is omitted. The
general trend as one progresses from the approximate to the average to the bound-
based designs is for better performance (settling time) and performance robustness
at the cost of higher maximum control signals. The EACM and approximation-based
designs tend to have more oscillatory behavior than the bound-based designs. The
bound based designs show time histories quite similar to those for H,, designs for this
benchmark problem [131]. The highly damped low frequency dynamics dominate for
these designs. All of the designs except the PEACM meet the 15 second settling time
specification stated in [129].

The two-mass benchmark problem demonstrates the relative characteristics of
the five designs. The bound-based designs yield nearly identical compensators for
the cases considered. This reduces the motivation for using the computa‘ionally
more intensive average bound. The exact average minimization has predictably good
characteristics but can really only be applied to simple systems or systems that can

be decomposed into simple systems. The Bourret approximate average is clearly
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superior for design since it has much better efficiency than the perturbation expansion
approximation design and nearly recovers the guaranteed stability properties of the
exact average without the associated computational burden. The relative times for

the computation of the respective costs will be presented in a later section.
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5.3 Example 2: The Cannon-Rosenthal Problem

Figure 5.17: The Cannon-Rosenthal Problem

In this section, a four mass/spring/damper problem will be examined which was
presented first in [140] and examined as a typical uncertain flexible structure in [141],
[100], and in the context of passive damping in [143]. The layout of the system is
shown in Fig. 5.17. The system consists of four masses connected by springs and
viscous dampers. The uncertainty enters into the problem through a variable body-1

mass. The system can be represented in state space as

T . A | .81 Bg T
z | =|C 0 0 w (5.10)
Y Cz Dn 0 l u

where the matrices are defined

r -

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

A 0 0 0 0 0 0 0 1

—k/my k/m, 0 0 —¢/m c/m, 0 0

k/ma —2k/m, k/m, 0 c¢/mz —2c/mq c/my 0

0 k/fm3z -2k/ms3 k/m3 0 ¢/mz —2c/mz c/m3

] 0 0 k/mg —k/m4 0 0 c/my —c/my ]

(5.11)
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0 o 0
0 0 0
0 0 0
B,=|® °| B=| ° (5.12)
0 o0 0
0 0 1/m,
0 0 0
0 1/mq 0

Cl=[0001oooo], C= 00010000], D21=[10]
(5.13)

where

plant states (positions and velocities of the four masses)
control input

- plant disturbance

sensor measurement

sensor noise

performance variable

Nnewges
e

For this problem the nominal values of the springs, dampers and masses were
chosen to be k =1, ¢ = .01, m; = m3 = mq = 1, and m; = 0.5. With these choices
the nominal system has poles and zeros as given in Table 5.3

The uncertain mass enters into the problem in an interesting way. Within the
system described in Egs. (5.10), the uncertain mass, m,, enters into the equations
through its inverse. The inverse of the mass will therefore be used as the uncertain
parameter called 7. If the nominal value of m, is 0.5, then the uncertainty can be
represented as

1/my =1/my, +m, my, =05, |Mm|<én (5.14)
Thus m, varies from 1 to 0.25 as 7 varies from -1 to 2. With this factorization the
set of systems can be defined in the notation from Definition 2.2.4. In particular,

only the A matrix is uncertain. It can be decomposed as
A(mm) = Ao+ MmAn
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Poles | w, ¢ Wn ¢
1 0 0
2 |0.86(0.43% | 0.93 | 0.43%
3 1.56 | 0.78% | 1.67 | 0.79%

4 1.9510.97% | 2.31 | 0.77%

Zeros

1 1.41 [ 0.71% | 2.00 | 0.50%

Tatle 5.1: Poles and Zeros for the Cannon-Rosenthal Problem

in a manner analogous to the factorization for the uncertain spring and damper in the
robust-control benchmark problem. This problem was considered because of a pole-
zero flip caused by the uncertain mass. In addition to changing the natural frequencies
of all of the modes, as the mass is decreased from its nominal value of 0.5 to 0.25, an
undamped zero between the first and second modes moves to between the second and
third modes as shown in Table 5.3. The second pole and zero flip relative positions
along the imaginary axis. This effect is illustrated by the two open-loop transfer
functions shown in Figure 5.18. This type of uncertainty is especially difficult to
deal with since in effect the phase of the second mode can vary by +180 degrees
between elements of the model set. A control which adds damping to the second
mode for one element of the set wili destabilize another. This pole-zero flip makes
the robust control design problem difficult. In addition if there is little damping, then
the system effectively becomes uncontrollable or unobservable when the pole and zero
cancel. This can cause problems with the solution algorithm.

The robust control design methodologies presented in the previous sections can
be applied to this problem. Just as in the Robust Control Benchmark Problem, the

evaluation plant outputs, z, are augmented to include all the states and the control,
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Figure 5.18: The Open-Loop u-y Transfer Functions for the Cannon-
Rosenthal Problem for m; = 0.5 (solid) and m; = 0.25
(dashed).

T
2T = [ z u ] . The method of weighting the system that was presented in Section

2.1.2 which is based on the standard LQG design weights will be used for the control
design. The evaluation plant given in Eq. (5.10) is modified as in Eq. (2.25) to give
the design plant. The control is designed on the design plant and implemented on

the evaluation plant.

5.3.1 Dynamic Compensation

In this section, the five control design methodologies will be applied to the problem of
determining full-order SISO dynamic output feedback compensators for the Cannon-

Rosenthal Problem with noncolocated sensor and actuator and uncertain mass, m,
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which varies in the range

0.25<m,; <10 (5.15)

Only the position of the fourth mass was penalized. The weighting values used in the
design are )

Q(4,4)=1, R=0.05 (5.16)

In addition to tle state and control penalties, the plant noise and the plant noise

intensity were assumed to be
==1, ©=0.05 (5.17)

The signal noise intensity was chosen low to give a relatively high gain Kalman filter
in the LQG design. This choice of penalties makes the LQG controller very sensitive
to my varaition and thus presents a challenging robustness problem for the average-
based methods.

The robustness properties of the control designs are compared to those of the
standard LQG design in folowing discussions. Figure 5.19 cornpares the closed-loop
‘Ha-norm resulting from the various designs using §,, = 0.1 as a function of the
deviation. m, from the nominal system mass. Thus as 7 varies in the range, —0.1 <
m < 0.1, m, varies in the range, 2.5 > m, > 1.6. Instability regions are indicated by
unbounded closed-loop Hi-norm. The designs can thus be considered stable inside
the region descibed by the upper and lower asymptopes. These asymptopes will be
called the upper and lower achieved stability bounds for the particular problem.

The LQG results clearly indicate the well-known loss of robustness associated with
high-gain LQG solutions. The LQG cost curve achieves a minimum at the nominal
mass value, ™ = 0, but tolerates almost no variation in /. The stability region
is increased by the PEACM and BACM designs at the cost of increasing nominal
system closed-loop H;-norm. The PEACM design increases robustness, but it does
not achieve stability throughout the whole design set. The Bouiret approximation
does achieve stability throughout the set. The EACM design also achieves stabil-
ity throughout the set as was indicated by the analysis. The cost of this stability
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guarantee is loss of nominal system performance, although for this small amount of
uncertainty the performance loss is negligible. The stability robustness-performance
trade will be discussed in more detail with Figure 5.22.

This performance-stability trade is especially evident for the bound-based designs.
The nominal costs for these designs are much higher than for the average-based design
and its approximations. The bound-based designs extend the upper stability bound
for 7» much more than the lower stability bound. It is also interesting to note that
although the stability bounds for the ABM and WBM designs are identical the ABM
design achieves this with lower nominal performance. As for the Robust-Control
Benchmark Problem, the relative flatness of the bottoms of the performance “buckets”

indicates that the performance of the various designs are also relatively robust to

changes in the mass.
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Figure 5.19: System Closed-Loop Hj-norm as a Function of 7, the Deviation
about 1/m,, for Controllers Designed Using ém = 0.1.

Figure 5.20 shows the upper and lower values of /. beyond which the respective
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designs are unstable as a function of the bound on the parameter variation used in
the design, §,,. Figure 5.20 is thus a plot of the actual stability range achieved as a
function of the the parameter bound used in the design. The system is thus stable in
the range

—bp <m < by

where 4y, is the lower sability bound and 4y is the upper stability bound. For the
designs considered, the lower 7n bound was always smaller than the upper indicat-
ing that the design proceedures had more difficulty extending the stability range for
negative 7i (large mass) than for positive /i (smaller mass). The difficulty in increas-
ing the lower bound is also illustrated by the fact that the lower bound usuallly is
monotonic with the design bound while the upper bound is generally nen-rnonotonic.
This is especially true of the bound-based designs which decrease the upper bound
to achieve greater lower bound. For the exact average and approximation-based de-
signs the upper bound increases rapidly with increasing design bound in the region
of 6 = 0.5 while the rate of lower bound growth remains constant. The lower bound
in the limiting factor in estabilishing a stable range about the nominal and will thus
be used for comparison in the performance-robustness trade.

With ro design uncertainty all five techniques converge to the stability bounds
achieved by the standard LQG design (|| < 0.06). Just as for the Robust-Control
Benchmark Problem, as the uncertainty used in the design process is increased the
achieved robustness is also increased. Again, the EACM design always increases
robustness enough to guarantee stability throughout the design set, while the ap-
proximate cost minimization techniques don’t provide this guarantee. Their curves
lie below the EACM design’s. The EACM design curve has unity slope indicating
that the ZACM design achieves nonconservative stability over the parameter set used
in the design as was predicted by the analysis. The EACM design only achieves sta-
bility over parameter range used in the design. The BACM design does come closer

to guaranteeing stability than the PEACM design which has difficulty extending the
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stability range. In particular, for the PEACM design, inci'ea.sing the design bound
above §,, = 0.5 yields no increase iz the achieved stability bound. The bound-based
designs achieve a much larger stability range for a given design bound. The ABM
and WBM designs were again shown to be nearly identical.

The design costs associated with the nominal system (i = 0) are ploted as a func-
tion of the achieved lower stability bound in Figure 5.21. The total cost curves shown
in Fig. 5.21 exhibit the same general trend as for the Robust Control Benchmark
Problem. Figure 5.21 is an indicator of the efficiency of the robust design proceedure.
The EACM design is most efficient followed by the BACM design. In this problem the
PEACM design exhibited much better relative efficiency than in the previous section.
It cannot however yield controllers with stability bounds larger than 0.2. Increasing
the design bound has no effect on the achieved bound. In essence the EACM design
“stalls” out. This is possible because there are no stability guarantees associated with
a given design bound. The bound based designs fared particularly poorly in relative
efficiency in this problem.

The output costs are the chief contributors to the total cost as shown in Fig. 5.22.
The control cost shown in Fig. 5.23 are lowered in all of the designs methods so as to
increase the achieved stability robustness. Lowering the control cost is indicative of
lower gain controllers. This is the opposite trend as the one observed in the benchmark
problem where the control cost increased with greater achieved stability range. The
Benchmark Protlem has only a single open-loop resonant pole which can be easily
phase stabilized. For the Cannon-Rosenthal there are modes which cannot be phase
stabilized due to the large phase uncertainty caused by the pole-zero flip. The only
alternative left to the robust design proceedure is gain stabilization. The lowering of
the control cost is contrary to the traditional expectation that bourd-based designs
are associated with high loop gain. In all of the designs, the loop gain and control
cost must be lowered to achieve larger stability ranges.

The level of inherent system damping played a critical role in enabling robust

179




Lower Bound

0.8
»—————« Exact Average
07k x RO « Pert. Exp. Apptox. i
R , o o+ e Bourret Approx.
@ommmmmnne « Average Bound
x ~--x Worst-Case B

Achieved Lower Bound

0 ' : ‘ ' ' '
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8
Design Bound
Upper Bound
25 , y ¥ " i
»—————= Exact Average .
........... Pert. Exp. Approx.
e e o BoOUITEL APPIOX. £y
2t [ o Average Bound ’
2 & Worst-Case Bound

Achieved Upper Bound

0 0.1 0.2 0.3 0.4 0.5

Design Bound

Figure 5.20:

0.6

Achieved Upper and Lower Closed-Loop St

0.7 0.8

ability Bounds as a

Function of the Bound Used in the Design, ém

control for this problem as was indicated in (143)]. If there was no system damping,

no design was found which could extend the stability range to include the pole-zero

flip. This numerical result is verifiable by simple Nyquist arguments. Figure 5.22
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shows how increasing damping helped the Bourret control designs. The nominal
system costs are normalized by the LQG costs associated with that level of damping.

Thus the effect that damping has on nominal performance has been removed from the
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curves and what remains is the effect that damping has on the robust design process.
With no damping the cost curve asyrnptotes- to infinity at the bound value which
corresponds to the onset of pole-zero flipping. By adding only a small amount of
damping (C = 0.01,{ = 0.01) the design procedure can stabilize the system past the
flip, although there were some numerical difficulties as discussed in the next section.
Adding yet more damping (C = 0.1,{ = 0.10) rot only extends the nominal bounds
to include the flip but also aides the robust design process. Adding damping also
reduces the relative cost associated with & given stability bound since higher damper

values give lower nondimensional cost.
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Figure 5.22: Nondimensional Nominal System Cost (J/Jroe) vs. the
Achieved Stability Bounds Given by the Bourret Designs for
Various Damper Values.

The characteristics of some of the controllers derived for the Cannon-Rosenthal
Problem will be presented in the following paragraphs. For the design bound values

considered the PEACM and ABM design have characteristics very similar to the
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BACM and WBM designs, respectively. The PEACM and ABM designs will therefore
not be shown for clarity of presentation.

Figures 5.23 and 5.24 show the compensator and closed loop poles as a func'ion
of the bound on = used in the design, §n,. The general trend is for the robust
compensator poles and zeros to be detuned from the uncertain plant poles and zeros.
Asin the benchmark problem, the LQG design gives nonminimal phase compensation.
The LQG compensator places zeros very near to the second and third flexible modes
of the system and a pole very near the plant zero at 1.41 rad/sec. To some extent
all of the designs move these “plant inversion” poles and zeros away from the actual
plant poles and zeros, therby detuning the inversion. For instance the undamped
nonminimum phase zero at 1.6 rad/sec (which is near the second plant resonance)
is moved away from the imaginary axis. The LQG design uses almost perfect pole-
zero cancellation at the third mode. In the average and Bourret-based designs the
pole-zero cancellation at the third mode is replace by a closely spaced pole-zero-pole
configuration. For the WBM based design the pole-zero cancellation is removed by
making the compensator pole and zero shift away from the imaginary axis. The zero
is made nonminimum phase.

The closed-loop pole and zero loci shown in Figure 5.24 demonstrate the same
general detuning trends as for the compensator poles and zeros. The poles and zeros
in the range from 1 to 2.5 rad/sec corresponding to the open-loop second and third
modes are the ones which effect stability. The LQG design effectively cancels the
open-loop plant zero with a compensator pole at 1.45 rad/sec. The robust designs
detune this zero-pole cancellation either by lowering the pole frequency as for the
Bourret and exact average-based designs or by damping the offending pole as for the
WBM design. This detuning has the effect of allowing greater zero location variation
without having a pole-zero flip. If the pole and zero were very closely spaced, a slight
zero variation would radically change the lightly damped zero’s phase contributicn

at the pole and therby drive the pole unstable. The detuning avoids this problem by
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Figure 5.25 shows the movement of the closed-loop poles and zeros of the robust

compensator designs as the uncertain parameter, mn, is varied over the range from -0.5
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to 0.5. It shows that the pole which the LQG design placed near the open-loop plant
zero at 1.41 rad/sec and which was “detuned” by the robust designs is the pole which
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limits the achieved stability range. This pole will be called the “offending pole”. The
parameter m cannot be decreased beyond the point where this pole goes unstable.
Thus it is not the pole-zero flip associated with the higher frequency second mode
which limits stability robustness but rather a pole-zero flip between the open-loop
zero an a lower frequency compensator mode. The path which the offending pole
takes toward the right-half plane is dependent on the design technique used. The
BACM and ACM designs increase the stability range by causing the offending mode
to interact with the second system open-loop resonance. The WBM design increases
the stability range by increasing the damping of the offending mode and thus moving
it further from instabiliity.

Figure 5.26 shows the loop transfer functions associated with teh various designs
compared to the LQG loop. The WBM design generally lowers loop gain. In the
exact average and Bourret approximation-based designs, the unusual interaction at
the third mode is evident. The pole-zero structure is required to maintain stability
in the third mode as the mass is varied. The dynamics in the vicinity of the second
mode are especially important because Figure 5.25 showed that these dynamics are
critical for stability considerations. In all of the robust designs the zero between the
first and second modes is made more visible. The LQG design cancels this zero with a
pole. Because the zero location is uncertain, the robust designs detune this offending
pole. By removing the pole-zero cancelation the zero is made more visible. This in
turn lowers the loop gain in the vicinity of the second mode.

Figures 5.27 and 5.28 show the Nyquist diagrams for the designs at two different
values of the parameter, m. Figure 5.27 shown the Nyquist diagram at m = 0
while Figure 5.28 shows it at 7 = —0.43 (near instability). Instability is indicated
by encirclement of the -1 point. One dominant feature of the plots is the initial
swing by the -1 point when the magnitude of the loop gain drops below one before
tke first mode. The phase can wrap around at this point. This trait was common

to the Benchmark Problem as well as all of the cases considered for the Cannon-
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Rosenthal Problem. For the nominal case (n = 0), after the first mode the curve

goes toward its first zero with an intervening highly damped mode. The “offending

mode” causes the curve to loop around an extra 180 degrees. For the perturbed case
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(m = —0.43) the zero occurs before the offending mode and thus the curve is shifted

toward encirclement of the -1 point. For the BACM design the -1 point is encircled
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by the loop associated with the offending pole when 7 is decreased to —0.43. The

EACM and WBM designs are robust to this amount of parameter variation.
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Figure 5.27: Nyquist Diagram for the Various Designs for 7. = 0

Figure 5.29 shows the system transient responses for the various designs. The
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Figure 5.28: Nyquist Diagram for the Various Designs for m = —0.43

control magnitudes are much lower than in the Robust-Control Benchmark Problem

because of the higher control weighting in this problem. In general the designs exhibit
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Design Mflops
EACM 25.8
PEACM 2.5
BACM: Kronecker | 45.2
BACM: lteration 12.3
BACM: Lyapunov 6.1
ABM: Kronecker 43.2

ABM: Iteration 12.3
WBM: Kronecker 34.8
WBM: Lteration 6.3

Table 5.2: Number of Floating Point Operations required for a Single Cost
and Gradient Calulation for the Respective Techniques and Solu-
tion Methods.

5.3.2 Computational Issues

In this section the computational issues associated with the robust con’groller design
techniques will be discussed. One issue is the computational burden assbciated with
each design method. One measure of this computational burden is the number of
floating point operations reguired for a single cost and gradient calculation for each
of the five design techniques. These results are presented in Table 5.3.2.

The EACM design cost equation was selved using 32 point Gaussian quadrature
to integrate the cost and gradients over the single uncertain parameter. Even with
only a single ucertain parameter the computational burden is high ard will increase
geometrically for multiple parameters. The PEACM design was the least computa-
tionally intensive requiring less then a tenth of the CPU power of the EACM design.
The solution technique adopted for the PEACM design was the direct heirarchical

solution described in Remark 3.2.1. There were three methods presented for com-
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putation of the Bourret equation, and the computational cost is dependent on the
method adopted. The most computationally intensive was the use of Kronecker no-
tation and associated high dimensional matrix manipulation. This was foliowed by
the computational cost associated with computing the Bourret equations by iteration
on the equation as is discussed in Remark 3.2.4. The operation count is given for 5
iterations of the equations. The least computationally intensive method which can
only be applied for the case of decoupled uncertainties was the double-order Lya-
punov solution proceedure presented in Remark 3.2.5. The bound-based designs can
be solved using either the Kronecker notation or repetitive iteration. In general for
this problem, the iteration techniques were several times faster than the Kronecker
techniques.

The number of cperations for a cost and gradient calculation is only one method to
measure the computational burden of the design techniques. Some designs are better
behaved and therefore require fewer cost calulations. In practice, the solution times
for the PEACM and BACM (Lyapunov method) approximation-based techniques
were similar aud ran in the range of 10 hours of Sun Sparcstation CPU time for
high-uncertainty problems with little damping. A small amount of problem damping
reduced the computation time 80%. It is believed that this can again be decreased an
order of magnitude by more efficient coding. The EACM, WBM (Kronecker method)
and ABM (Kronecker method) designs presented in this section required on the order
of 100 CPU hours to compute compensators for large levels of uncertainty. To achieve
stability in the range of —0.2 < 7 < 0.2 required only about 10 CPU hours. Adding
more robustness past this level was progressively more numerically difficult.

It is also usefull to examine the na’ure of the homotopy path for the various de-
signs. Figure 5.30 shows the Hz-norm of the robust compensators as a funcion of
the parameter bound used in the design, §,». The curves associated with the exact
average and bound-based designs are smooth functions of the design bound while

the curves associated with the approximation based designs have a discontinuity in

193



the region of 6, = 0.43. This discontinutiy represents a radical change in the ac-
tual compensator matrices associated with the PEACM nad BACM designs. They
represent a discontinuity in the solution manifold associated with the homotopy and
illustrate a shortcoming of the hootopy solution method since a small change in the
design bound is supposed to keep the sclution near the optimal. The discontinuity
represents a change in the naiure of sclution used to add robutness for these de-
sign techniques. It also interesting to note that the compensator H;-norm generally
decreases (lower gain solutions) as the design bound is increased. The notable ex-
ceptions are the infinite gain asymptopes of the bound-based designs associated with

these designs reaching the limit of their capability to stabilize the system.
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5.4 Summary

In this chapter, examples of control synthesis for parametrically uncertain systems
have been presented. The control design methodology presented in Chapter 5 was
applied to two systems representing flexible structural plants. These systems were
the fourth-order Robust Control Benchmark Problem and the eighth-order Cannon-
Rosenthal Problem. The exact average and bound based designs were shown to
provide stability over the design model set. The Bourret approximation-based design,
while not guaranteeing stability over the design set, did posess some useful properties.
Among these are low nominal cost increase for a given achieved uncertainty bound.
This property is called design efficiency. In all the examples, the exact average-
based design was most efficient with the Bourret approximation based design a close
second. The perturbation expansion-based design was shown to have particularly poor
efficiency in these examples and in many cases couldn’t yield controllers to stabilize a
system which the other design methods could. The bound based designs were shown
to be essentially equivalent in the three cases considered. Both bound-based designs
guaranteed stability over the design sei and in general over a much larger set than the
design set. This conservatism resulted in lower design efficiency for large uncertainty

levels.
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Chapter 6

Reduction of Parameterized

Systems

6.1 Introduction

This section addresses the problem of reducing the size of the uncertain model for the
purposes of control design. As demonstrated in the simple examples in the previous
chapter, the robust control design techniques examined in this thesis are computa-
tionally intensive. A necessary step to applying these techniques on more realistic
high order systems with multiple uncertain parameters is the process of model re-
duction. In this chapter, techniques for reducing the model order and number of
uncertain parameters are presented to enable the application of the robust control
design techniques to higher order systems. The discussion is intended to address the
important issues in. uncertain model reduction and present some usefull tools for the
reduction process.

In the preceding chapters, the exact average cost and related approximations and
bounds were presented as possible performance metrics for systems with parameter-
ized uncertainty structures. These performance metrics were applied to the problem

of robust control synthesis in previous chapters. The cost functionals presented can
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also provide a framework for comparing parameterized sets of systems for the pur-
poses of model reduction. Each cost functional defines a measure which can be used
to determine the relative importance of elements of the uncertain system. The cost
functionals can thus be used to help decide which elements must be included for
effective control design.

The fundamental problem in model reduction is to determine which system el-
ements contribute most to the chosen performance metric and should therefore be
included in the model used for control design. The elements which do not contribute
significantly to the chosen performance metric can be ignored for the purposes of con-
trol, i.e., the model can be reduced for control design purposes. This uncertain model
reduction can greatly alleviate the computational burden associated with determining
the optimal cempensator.

There are two type of elements to be considered for parameterized systems. The
first are the system components or states. Reduction of the number of components
in a system effects the order of the system. The word ”components” is more appro-
priate than states because several states can be associated with a single component
(subsystem) of a given system. When the system is uncertain, the uncertainties must
.be considered in criteria by which model order is reduced. A component which is
unimportant at one set of parameter values may be critical at another. A perfor-
mance metric which reflects the effects of model uncertainty is therefore essential in
the process of model order reduction.

The second type of elements considered are the uncertain parameters. The num-
ber of uncertain parameters is independent of order of the uncertain system. Each
uncertain parameter retzined in the control design greatly complicates the process of
finding the optimum controller. The problem of reducing the number of uncertain
parameters is to find the minimum set of parameters which must be included in the
control design to achieve the desired level of stability robustness. This is done by

determining which parameters contribute most to the performance metric and must
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therefore be retained. In the following section, the problems of component and uncer-
tain parameter truncation will be addressed using the methods of cost decomposition.
In both cases, the cost can be decomposed into a sum over either the components or

the uncertain parameters. This decomposition will then be used to rank the impor-

tance of the elements for truncation of the least important. The first model reduction

problem considered is model order reduction.

6.2 TUncertain Model Order Reduction

6.2.1 Introduction and Problem Definition

The problem considered in this section is the reduction of the order of a system with
parameter uncertainty. A system can be described as a collection of interacting com-
ponents. if the system is represented in state space, each component has associated
with it some subset of the states of the system. Model reduction can then be con-
sidered the process of removing the states associated with a given component. The
problem is to decide which states should be removed. One method which has been
prc;posed is Component Cost Analysis, Refs. [134,135], and its application in modal
coordinates, Refs. [132,133,136]. In this method the overall system performance is
given by some function J, called the cost or performance metric. The problem then is
to determine what fraction of the overall system performance metric can be attributed
to each system component.

Component Cost Analysis (CCA) has been previously applied to the problem of
certain system reduction in both open-loop for model reduction, Ref. [134,135], and
closed-loop for controller reduction, Ref. {133,137]. It has also been used to determine
critical parameters [101], (addressed in Section 6.3). In this section it will be extended
to the problem of uncertain system model order reduction. The uncertain system cost
functionals presented in the previous chapter will be used to explicitly measure the

importance of a component in the presence of uncertainties. Before developing this
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further CCA for unparameterized systems will be examined.
Component Cost Analysis relies on the idea of cost decomposition. Consider a

dynamic system:

Al|B
G(s) = (6.1)
clo

with y € R!, w € IR™, and the states, z € IR*. The system above can represent
either an open-loop or closed loop system for the purposes of model reduction. Define

the performance metric as the squared Hj-norm of the system.
J = 1G(s)ll; (6.2)

The cost decomposition property asserts that this performance metric can be decom-

posed into a sum of contributions, J;, associated with each component.

n

J= Z Ji (6.3)

i=1
These components can be associated with physical coordinates of the model such
as sensing, actuation, or structural subsystems or with mathematical components
such as modal coordinates as in modal cost analysis, Ref. [132,133,136] or balance
coordinates, Ref. [138,139]. For the unparameterized system problem, the component
costs for the components associated with the states, z;, can be defined as

Ji= %{%)-Em;} (6.4)

This function has the properties that, if any modes are simultanenusly controllable,

observable, and unstable: J; = 00, and if the component cost is finite,
J; =t {QCTC}. (6.5)
where @ is the solution to the Lyapunov equation:

0=AQ+ QAT + BBT (6.6)
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The components can now be ranked on the basis of the magnitude of their component

costs.

|6 < o] < - < [T (6.7)

Those components with the largest component costs are the most critical while those
with smallest component cost are the least critical. The sign of the component cost
indicates the effect of interaction with that component. If the component cost is
negative, the component is labeled beneficial; while if the component cost is positive,
it is labeled costly.

With this introduction to unparameterized system model reduction, we can now
address the problem of uncertain system model reduction. The key to generalizing
component cost analysis to uncertain model reduction is to include the effects of
the uncertainty in the performance metric. The focus of the next section will be to
consider the average cost and its bounds and approximations as possible performance

metrics with which to rank component costs.

6.2.2 Parameterized System Component Cost Decomposi-
tion

The need to consider the effects of uncertain parameters in the performance metric
used to decompose the cost and reduce the system order can be clearly illustrated in

a simple example. Consider a two mode system
i 4+ 267 + win = w(t) i=1,2 (6.8)

where 7; is the modal coordinate and 7; is the modal Gaussian white noise forcing
with intensity E[y?(t)] = o?. In addition consider a standard quadratic cost for the
system defined

2
7= i B[S o + 611 (69

1=1
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Modal cest analysis gives the cost attributable to each mode as

_ (v +2p)o?

% 4w}

(6.10)

If we assume for simplicity that each mode has identical natural frequency and forcing
but that (; = .1 and {; = .2 then clearly J; > J;. If we now assume that the damping
ratio of mode 2 is uncertain and can vary in the range 0.4 < {; < 0.0 then for some
values of (3, J; > J; and in fact J, can be unbounded. Therefore removing mode
2 based on the nominal values of the parameters alone ignores the possibly critical
importance of the second mode at parameter values away from the nominal.

A natural solution to this problem is to include the system’s parameter dependence
in the performance metric to be decomposed. In this report, that dependence is
included by considering the average cost and similarly its approximations and bounds.
Decomposing the average cost explicitly incorporates into the reduction process the
system’s performance away form the nominal.

We are primarily interested in model reduction for the purposes of control design
and will therefore consider closed-loop model reduction. closed-loop model reduction
is essential because the reduction of the model must be performed based on the
performance in the regime of operation. This point is clearly presented in Ref. [1].
Through the remainder of this section, it will be assumed that the loop from y to
u has been closed by some fixed-form static or dynamic compensator, G., which is
subsequently incorporated into the system transfer function from w to z. The set
of closed-loop systems, G.,,, will therefore be the model upon which order reduction
is performed. It will also be assumed that only the open-loop system states are
candidates for truncation since the assumption of fixed-form compensation essentially
circumvents the need for controller reduction. To begin consider a decomposition of

the exact average cost.

Proposition 6.2.1 (Exact Average Cost Decomposition) Given a

compensator, G, the ezact average cost of a general parameterized set of systems,
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G.w, which is stable for almost all o € Q, presented in Eq. (3.5) as

JE = tr { ( [ @(@)2(2)C() d,u(a))} =t {(Q(a)é"(a)é(a)>} (6.11)
can be decomposed

JE = ZﬂjJF(GC) (6.12)

1=1

with the properties that JE = oo if there are any unstable, observable and controllable

modes in ) and

JE = t.r{<Q(a)C’T(a)é(a)> } (6.13)

It

otherwise, and where Q(c) is the unique positive definite solution to
0= A(c)d(a)+ O(a) AT () + B(a)B"(a) a€Q (6.14)

The exact average cost decomposition possesses all of the properties necessary
to be an effective indicator of component importance in the presence of parameter
uncertainty. By averaging over the set instead of decomposing the cost at a particular
parameter value, a composite indicator of component importance is developec ust as
in the previous chapter, However, there are many important situation where the exact
average cost decomposition is hard to calculate due to the difficulties in averaging the
solution to (6.14) over the parameter set. Again we must turn to the approximations
and bounds for the exact average cost to derive computable expressions for cost
decomposition. For the approximations and bounds, the set of systems is restricted
to be the structured set of systems, G2, . Once this restriction is made, the respective

costs can be decomposed

11®

- =T =
Ji = tr{QC C} (6.15)
where Q is given by the particular approximation or bound used. For the perturba-
tion expansion approximate average cost, given in Prop. (3.2.1), the state covariance

matrix, O, can be set equal to QF, where QF is given by the solution to

0 = AOP+0PA + BB +3 0 (A0 + GA) (6.16)
1=1
0 = Al + O A +o; (A,-@o+c}o,a§’) i=1,...,r (6.17)
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Q° is the nominal Lyapunov equation solution, and o; is defined in (3.47).
For the Bourret approximate average cost decomposition, Prop. (3.2.2), the state

covariance matrix, ), can be set equal to QB, where QP is given by the solution to
- ~T -~ ~. =. =T

+ BB +Y o (A,- i OA] ) (6.18)

i=1,...,r (6.19)

and o; is defined in (3.47).
For the worst case cost bound decomposition, Proposition (3.3.2), the state co-
variance matrix, @, can be set equal to QW, where QW is given by the solution

to
0= AoQ” + QWAL 1+ BB + 820" + 3 (&) 4w AT 6.20
= A0% + QW A, + +Q+§§.Q.- (6.20)
where § € IR and §; is defined from Equation (3.78).
Finally, for the average cost bound dccomposition, Theorem (3.3.3), the state

covariance mairix, Q, can be set equal to Q4, where Q4 is given by the solution to

- R - - - r 82\ . . .
0 = AOQA+QAA§+BBT+52Q1+Z(5—;) A0 A; (6.21)
1=1
UL ¥ 1 W ‘
0 = AQi+Qid +8Q4+3 (7 ) AQ44 (6.22)
=1

where § € IR and §; is defined from Equation (3.78).

The covariance matrix, Q, for each case can be used to decompose the component
costs. The resulting ordering reflects the nature of the approximation or bounding
method and can give component costs orderings which may not be identical to the or-
derings derived using the exact average cost decomposition. To make further progress
in understanding the nature of a particular approximation or bound, the modal costs
for a second order system will be derived in Section 6.2.4 for each of the cases. Before
this is done, however, some possible indicators of the quzlity of the uncertain model

truncation will be derived.
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6.2.3 Model Reduction and Reduction Indices

Having defined some possible parameter sensitive cost decompositions, the generalized

component cost analysis (GCCA) model order reduction procedure can now be defined

Definition 6.2.1 (GCCA Modei Order Reduction Procedure)

Step 1 Pick one of the performance metrics given above in Eg. (6.11) for the ezxact

average or Eq. (6.15) for the approzimations and bounds.
Step 2 Compute the component costs, J;.

Step 3 Rank the component costs for the closed-loop system by magnitude

|Jh] < o] £ -+ < 4] (6.23)

Step 4 Remove those open-loop model components which are associated with the
smallest compenent costs. Only the original states associated with the open-

loop plant are candidates for truncation.

There are some clear shortcomings of the above algorithm. The first is that the
components are coupled so that removing a component effects the relative ordering of
all of the other components. The coupling is neglected in the algorithm and therefor
the reduced order system will be in no way optimal. The proceedure is necessarily
hueristic in nature. Thbe second shortcoming is that the ranking of the components
is dependent on the compensator used to close the loop (assuming closed-loop model
reduction). Since the compensator is designed using the reduced model it is not yet
available for reduction purposes. This problem can be ameliorated by incorporating
the reduction step into the controller solution algorithm discussed in Definition 4.3.1.

By performing this procedure, a reduced order open-loop system can be obtained
which combined with the given controller produces a reduced order closed-loop sys-

tem. If it is assumed that k components are retained from the open-loop model, this
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closed-loop system can be described in state space for the general set of systems as

A¥(a)  Bf(a)C.| Bf(a)
GE(a) = | B.CK(a) A B.DX ()
CK(a) DE(a)C. 0

Ea) | B (=) J (6.24)

and for the structured set of systems described by

A¥ +> aA¥  BEC.+) aBEC.| Bf
1=1 =1
GE(a) = | B.CK + 3 B.CK A, B.D

i=1

i oK DfC. 0

[ -K «~ <K | =K

= =1 (6.25)
AAERE

where the superscript (-)¥ indicates that the rows and columns associated with
the truncated states have been removed from the respective matrices.

Having defined a reduced model from Eq. (6.24) or (6.25), a model order reduction
index can be defined to measure the size of the reduction error. This model order
reduction indez can be defined as the relative error between the cost associated with
the full order model and the cost associated with the fixed order model. It can be

written
|J — JX]|
J

where J¥ is the cost associated with the reduced order model calculated using the

I= (6.26)

chosen performance metric.
It is important to note that the GCCA algorithm for model reduction of para-
metrically uncertain systems given in Def. 6.2.1 does not necessarily minimize the

model reduction index, (6.26). It does however minimize the predicted model order
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reduction index
|J — JX]|

1= 6.27
. (5.27)

where, if R is defined as the set of retained components, JK is defined as
JE=3"U; (6.28)

i€R
The difference between the predicted and actual model reduction indices is caused
by the coupling between the components. The component costs are not necessarily
independent. If the components were uncoupled the two indices would be identical.
If in fact JK = JX, this property is known as the Cost Superposition Property since
equivalence between (6.26) and (6.27) implies that the total cost is just a superposition
of the costs found when considering only the respective subsystems.

When there is no uncertainty, several coordinate transformations can be found
which decouple the component costs. These can be modal coordinates, balanced
coordinates, and cost-decoupled coordinates. For parametrically uncertain systems,
however, the parameter dependence can make it impossible to find a coordinate trans-
formation which decouples the component costs for each model in the parameterized
set. In general, a decoupled coordinate system cannot be found for parameterized
‘systems. In some cases, for instance modal coordinates with modal parameter uncer-
tainties, the Cost Superposition Property holds and the GCCA algorithm minimizes
the model reduction index. This special case will be examined in more detail in the

next section.

6.2.4 Modal Costs for Uncertain Systems

In this section, the modal costs of a system with uncertain natural frequencies and
damping will be computed using the equations for the exact average and its approx-
imations and bounds. In the following derivations, the system will be assumed to be
in modal form. The costs for the system will be derived as a function of the modal

natural frequencies, damping ratios, and input and output weights. These can be
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open-loop quantities or the closed-loop quantities as long as the modal decomposi-

tion remain intact. To start consider the n mode system in modal form
i+ 26 +win = baw,  i=1,--,n (6.29)

where 7; is the modal coordinate and w is thc m x 1 Gaussian white noise forcing
vector with unity intensity matrix E[w(t)wT(r)] = I§(t — ), and b; is the 1zm modal

input vector. The system can be represented in state space form as:

[ 4| B
G(s) = (6.30)
| C |0
where _
Ay B,
A= B=| : 0:[01 CN] (6.31)
Ay ] Byx
0 1 0 < 0
A = B; = C; = V¥ ' (6.32)
—w? 2w b; 0 FB:

where w; and (; are the natural frequency and damping ratio of the i** mode and
v; and (; are the position and velocity penalties for that mode. In this problem the
natural frequency and damping ratios of the modes will be assumed uncertain and of

the form

w} = wo,’ 4@ b < <6 (6.33)

]

G o= CutG, 6 <G<é (6.34)

and the values are distributed uniformly.

The system dynamics for each mode are identical to those of the second order
example considered in Section 3.4. The modal costs will therefore have the same
form as the open-loop costs for that system. Much of this comparison discussion is
drawn from that section with special emphasis placed here on the role of the parameter

uncertainty.
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If it is assumed that all of the modes are nominally stable as well as observable
and controllable, the component cost for each mode can be defined for each of the

cases as

J=tr {QC’TC’} (6.35)

it

where the matrix, Q, is calculated using the appropriate equations for each case.
The first case to be considered is the modal cost of the nominal plant with no

parametric uncertainty. From Section 3.4

. 2p.\s2
JO — (l/, +w0i ﬁl)al (6.36)

! 4(o,wo;?

where o; = b;b7. The nominal cost is thus composed of three parts: the modal
observability through v; and ;, the modal controllability through o, and the modal
time constant as reflected in 4{o,wo,>.

The exact average modal cost is computed by averaging over the modal costs in
the parameter domain. It is given by

s o2 (ta.nh_-l Z‘) (Vg (tan};;l GJ,Z) +,3iwo;é) (6.37)

- 4(o;wo,’ G §

where
wiz = 5“,‘3/(41()‘2 Zi = 5(.'/<0( (638)

are the non-dimensional uncertainty bounds. The exact average modal cost is essen-
tially the same as the nominal cost with the exception of the two terms involving @?
and ;. As is noted in Section 3.4, in the limiting case of no uncertainty these terms
assume unity value, so the nominal modal cost is recovered in the limit. Infinite modal
cost occurs when either @? = 1 or §; = 1. Note that the frequency uncertainty must
be on the order of the natural frequency itself before it starts to effect the cost. The
exact average cost will be insensitive to frequency uncertainty if the modal position
penalty, v;, is zero. This is an expression of the wuncertainty independence property.
This property states that the amount of parameter uncertainty which will give infinite

modal costs is independently effected by each uncertain parameter.
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The perturbation expansion approximate average modal cost is given by:

o?

TE

J.P

v; + ,B,'wo‘.z + Q v; + ﬂ;wo‘."’ + hwf 7 (639)
3 3

The relationship between the exact average and the perturbation expansion approxi-
mate average is established in Section 3.4. The perturbation expansion approximate
average modal cost can be obtained from the exact average by retaining only the
first order terms in the expansion for tanh™!. In contrast to the exact average, the
perturbation approximation retains only a quadratic dependence on the uncertain pa-
rameters and therefore a finite cost is associated with all finite values of the parameter
bounds. It also retains the uncertainty independence property.

The Bourret approximate modal cost has a form very similar to the exact average

P = o ! { ; ! L2
= 4(o;wo;* (1 _ E’;) ky' (1 _ gg_) + Biwo, ) (6.40)

3

modal cost.

As discussed in Section 3.4, the Bourret cost is a better approximation to the ex-
act average cost than the perturbation expansion approximate cost is. The Bourret
approximate average cost also shares the uncertainty independence property of the
exact average.

The worst case bound modal cost is given by

JW =J° (6.41)
1-(p+&+-2L,
PT% 4p{o;
where
& beR 6.42
p - 2(0‘-&)0‘-’ E ( ‘ )

is the free parameter used in the bound in Eq. (6.20) and it has been assumed that
8§ =208,4) & =28) (6.43)
Eq. (6.41) is essentially the nominal cost modified by a term which is dependent on
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the parameter uncertainty bounds and p. This term has the form

2 ‘D4

The characteristics of this bound can be obta.lned by examining Eq. (6.44). The worst
case modal cost does not have the uncertainty independence property since both
uncertainties ({? and @¢) contribute to (6.44) and their effects are additive. That is,
increasing uncertainty in the damping ratio will decrease the allowable uncertainty
in the natural frequency. This frequency uncertainty also enters into the cost even
if there is only a rate penalty, unlike the exact average and the approximrations. In
addition, the frequency uncertainty bound, @, is scaled by a term containing Co.”.
This scaling greatly increases the bounds sensitivity to frequency variation when the
system has light damping. Even with no uncertainty, (? = 0 and @} = 0, the cost
does not reduce to the nominal because the bound contains a term which shifts the

apparent system eigenvalues to the right and thereby increases the cost.

The average bound modal cost is given by:

1

(*“*»c )

This modal cost function is always less than the worst case bound. It also lacks the

JA =JP° (6.45)

uncertainty independence property and shares the worst-case bound’s sensitivity to
frequency uncertainty.

This concludes the discussion of the open-loop modal costs derived by using the
exact average and its approximations and bounds. These costs are more illustrative
than useful since the real desire is for closed loop costs with dynamic compensators
coupling the modal dynamics. They do, however, illustrate the properties of the
various possible average related cost functionals and can thus help guide the designer
to the correct state truncation for reducing the order of a particular problem. For
instance, it is evident that the bounds are more sensitive to frequency uncertainty

than are the exact average and its approximationa.
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Although the cost decomposition technique for model reduction has some clear
shortcomings in terms of ignoring component coupling and requiring foreknowledge
knowledge of controller, it can stil provide a powerfull tool for including the effects

of parametric uncertainties in the reduction decision.

6.3 Reducing the Number of Uncertain Parame-

ters

6.3.1 Problem Statement

In this section the problem of uncertain parameter truncation will be addressed. This
problem is distinct from the model order reduction problem considered in the previous
section. The model order reduction problem considered the importance of uncertain
system components or subsystems. The uncertainties entered the problem through
their effect on making a certain component more or less important. The average
cost was decomposed as an ezplicit sum over the components with the effect of the
‘uncertain parameters being implicit.

The uncertain parameter truncation problem involves explicitly considering the
costs due to the parameter uncertainties arnd using these as a basis for removing pa-
rameter uncertainties from the system model. The number of uncertain parameters
is completely independent of the number of components. For example, a second-
order SISO system could have uncertainties in each of the 8 matrix elements. Each
element could also have multiple uncertain parameters contributing to it. The un-
certain parameters also enter the model in a different manner than the components.
The components represent dynamic systems which interact through time with the
other system components. The parameter uncertainties are time invariant elements
which specify the nature of these interactions. The problem of removing uncertain

parameters from the model is therefore distinct from the problem of removing model
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components or states.

The need for reducing the number of uncertain parameter retained in the system
model used for control design is motivated by the large computational burden asso-
ciated with each uncertainty. For the computation of the exact average cost, each
parameter uncertainty contributes an extra dimension to the parameter space over
which the integration is performed. This curse of dimensionality limits the number
of uncertain parameters which can in practice be considered in average cost eval-
vation and minimization for control design. While the problem is not so severe for
approximate average cost or bounding function evaluation (the computational burden
increases linearly with additional parameters for these cases rather than geometrically
as in the exact average case) retaining unnecessary parameters in the control design
is computationally wasteful.

Although model order reduction is distinct from uncertain parameter truncation,
both can be performed using cost decomposition. Instead of decomposing the cost
along the lines of component contributions, the cost can be decomposed into the
cost associated with the nominal system and the addition cost associated with the
uncertain parameters. This uncertain parameter cost decomposition can then be used
as a measuring stick for evaluating the relative importance of the parameters and
truncating the least important parameter uncertainties from the model. Removing a
parameter uncertainty does not involve removing the parameter from the model as
in order reduction; but rather setting the parameter to its nominal value for later

analysis, order reduction, or control synthesis.

6.3.2 Decomposition by Uncertain Parameter

In this section, the decomposition of the chosen performance metric in terms of con-
tributions from the uncertain parameters will be presented. The decomposition will
be restricted to the approximations and bounds because it is difficult to decompose

the exact average cost into portions attributable to individual parameters. The cal-
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culation of the exact average cost involves averaging the solution to a parameterized
Lyapunov equation, (6.14). The average is performed over the uncertain parameters
which enter iiito the solution procedure nonlinearly. The sums of the costs calculated
using only one parameter at a time would therefore not equal the average cost con-
sidering all of the parameters. In addition, the average over the parameters to obtain
the average solution to (6.14) implicitly defines a function from the parameter domain
to the average cost. Since the function is implicit, there is no way to explicitly solve
for a given parameter’s contribution to the total average cost.

The approximation and bound equations involve explicit terms for the effects of
uncertain parameters on the respective costs, in contrast to the implicit mapping from
the parameter domain to the exact average cost. This is because the approximation
and bound equations have already encapsulated the parameter dependence either by
incorporating the average over the parameter explicitly or by bounding the parameter
with an explicit function. These functions are therefore easily decomposable into cost
contributions due to the nominal system and due to the uncertain parameters.

As in the model order reduction problem, we are primarily interested in uncertain
parameter truncation for the purposes of control design and will therefore consider
.closed-loop parameter truncation. The importance of closed-loop model reduction
has been previously discussed in Section 6.2.2. Throughout the remainder of this
section, it will be assumed that the loop from y to u has been closed by some fixed-
form static or dynamic compensator, G., which is subsequently incorporated into the
system transfer function from w to z. The structured set of closed-loop systems,
G.w, Will therefore be the model upon which parameter truncation is performed. The
respective costs can be decomposed

r
J=Jo+ Y % (6.46)
i=1

where Jp is the cost associated with the nominal plant
Jo = tr {Q%"TC'} (6.47)
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and Q° is given by the solution to the nominal Lyapunov equation
- 2y oz 2T = =T
0 = 4,Q° + Q°A, + BB (6.48)

The uncertain parameter cost contribution, J;, depends on the particular approxima-
tion or bounding function. The equations for J; will be presented in the following
paragraphs.

For the perturbation expansion approximate average cost, Proposition (3.2.1), the

uncertain parameter cost contribution, J;, is given by

Ji = tr {Q,,CTC’} (6.49)
where Q. is given by the solution to
- . - B &
0 = AoGatQudy +oi (AQi+ &) (6.50)
0 = A+ QA +o; (A.-Q° + 0047 ) (6.51)
QO is defined in (6.48), and o; is defined in (3.47).

For the Bourret approximate average cost decomposition, Proposition (3.2.2), Qa,

is given by the solution of

0 = A+ Ouls +0: (A,-Q*’ + Q*Af) (6.52)
0 = Aoi+ 04 + o (A;QB + QBjif) i=1,...,r (6.53)

where OPis the Bourret approximate average, Egs. (6.18) and (6.19), and 0; is defined
as before.
For the worst case cost bound decomposition, Proposition (3.3.2), Q.. is given by

the solution to

~

- = - - 20 62 . -, -
0= AoQa+ Quly +——+ HAQVA (6.54)
where QWis the worst case cost bound, Eq. (6.20), and o is defined from Equa-
tion (3.78).
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Finally, for the average cost bound decomposition, Theorem (3.3.3), Q, is given'

by the solution to

0 = AoQa + Onds + 52Q‘ AQ1 (6.55)

0 = Add:+ 0.4, + 8204 + Z (62) AO4AT (6.56)

i=1

where Q4 is the average cost bound, Eqs. (6.21) and (6.22), §; is defined from Equa-
tion (3.78), and r is the number of uncertain parameters.

Each definition for the uncertain parameter cost decomposition defines a ranking
of the relative importance of the parameters. The resulting orderings can be used as
a basis for removing unimportant parameters from the design process. Each ordering
reflects the nature of the approximation or bounding method. To investigate the
ramifications .+ using a particular approximation or bound, the uncertain parameter
costs for a second order system with uncertain natural frequency, damping ratio, and
forcing constant will be considered in Section 6.3.4. First some possible indicators of

the quality of the uncertain parameter truncation will be derived.

6.3.3 Parameter Truncation and Truncation Indices

Having defined some possible uncertain parameter cost decompositions, an uncertain

parameter cost analysis (UPCA) model reduction procedure can be defined.

Definition 6.3.1 (UPCA Model Reduction Procedure)

Step 1 Pick one of the performance metrics given above for the approzimations and

bounds.
Step 2 Compute the uncertain parameter costs, J;.

Step 3 Rank the parameter costs by magnitude
|| < o <--- < | (6.57)
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Step 4 Remove those parameters from the open-loop model which are associated with
the smallest uncertain parameter costs by setting these parameters equal to their

nomainal values.

If it is assumed that % uncertain parameters are retained from the original r in
the open-loop model, this closed-loop set of system can be described for the general

set of systems as

Gew = {Giw(a) Va € Q} (6.58)

where © C IR* and each system is described in the state space as defined in (2.28).

For the structured case this set is composed of elements of the form

_ N k -
AO + ZaiAi Bzo Cc + ZaiB2;Cc B,
1=1 =1
K _ k
Col@) = | B0y + 3 B.Cy, A, B.Dy
1=1
L C1 DnCc 0 ]
i k
Ao + au‘ii l B
= ; (6.59)
¢ o

where there are now only k uncertain parameters.

A model reduction index can be defined to measure the size of the error incurred by
assuming the nominal values of the truncated uncertain parameters. This parameter
truncation indez can be defined as the relative error between the cost associated with
using the full set of uncertain parameters and the cost associated with using the

reduced set. It can be written as in the case of model order reduction

_=JX

z J

(6.60)

where JX is the cost associated with the reduced uncertainty model calculated using
the chosen performance metric.
As in the case for model order reduction, it is important to note that the UPCA

algorithm for uncertain parameter truncation given in Def. 6.3.1 does not necessar-
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ily minimize the parameter truncation index, (6.60). It does however minimize the
predicted parameter truncation index

[/ — J¥|

I = 6.61
1 7 (6.61)

where, if R is defined as the set of retained uncertain parameters, JK is defined as
JE =% (6.62)
iER
The difference between the predicted and actual parameter truncation indices is
caused by the coupling between the parameters. The uncertain parameter costs are
not necessarily independent. If in fact JX = JX, this property is known as the Cost
Superposition Property since equivalence between (6.60) and (6.61) implies that the
total cost is just a superposition of the costs found when considering only a single
parameter uncertainty.
A simple system will be considered in the next section to further investigate the
nature of the uncertain parameter decomposition in the context of the various ap-
proximations and bounds to the exact average. The system is identical to the one

considered in Section 6.2.4. In the next section, however, the costs will be decomposed

into uncertain parameter contributions rather than modal contributions.

6.3.4 Costs for Uncertain Modal Parameters

In this section, the modal costs presented in Section 6.2.4 will be further decom-
posed into cost associated with the nominal system and the cost associated with the

uncertain natural frequencies and damping ratios.
Ji=Jdip + J(i + J“,'; (6.63)

The intent is to establish the relative importance of the uncertainties in the modal
parameters to help in the uncertain parameter truncation process. The system con-

sidered in this section is the same as the one considered in Section 6.2.4. The natural
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frequencies and damping ratios of the various modes have been assumed to be inde-
pendent. The uncertain parameter costs are only calculated for the approximating
and bounding functions since the exact average cost can not be simply decomposed.

The perturbation expansion approximate costs can be decomposed

o? C?

2 ~4

P _ o wy
Jw‘g = 4(0"‘”0‘3 ( 3 l/) (665)

which are quadratic functions of the uncertainty bounds. Notice that each uncertain
parameter cost is independent of the bound on the other parameter.

The Bourret approximate costs can be decomposed

o? g
Jg = (1_33) (v + Bu?) (6.66)

4(o;wo;? >

o= L) (5 (6.67)
““ 7 twed \1 -8/ \1-% ’ '

The structure of the uncertainty dependent terms in these equations is the same

as in Eq. (6.40). The uncertain damping ratio cost is independent of the uncertain
frequency bound, but the uncertain frequency cost is not independent of the damping
ratio bound. The values of the uncertainty bounds where these cost go to infinity is
however unchanged from Eq. (6.40).

The worst-case bound can be decomposed into the contributions from the uncer-

tain parameters

2y 2 A
== \Zcsz') > (6.68)
Wy _ _Q ot
\1 (p + ) + 4pc0'-,>)
of \
W o? (v + Bw?) 5t oo,
Ju? = 4Cw3 F L] ; (6.69)
Wy 1_ (54 [~
\ (P+ » + —"‘—IPC )/



These equations have the same asymptotes and properties as Eq. (6.41). This can be
seen by substituting Eq. (6.41) into Egs. (6.68) and (6.69).

72
N A (’23 + %) (6.70)
o
o= (g +4p(-0.2) (6.71)

The dependence on p/2 rather than p is due to an arbitrary factoring of the p term
in the denominator of (6.41).

The average bound function can be decomposed in a fashion similar to the worst

case bound
T &
JA = A (+<—+ = )(p+—‘—) 6.72
3 4 (0‘ p ( )
72 -4 —4
JA = JA ( C+ ] )(3+ “"' ) 6.73
“ P T a2 T a? (673)

The average hound parameter costs are always less than the worst case linear bound

parameter costs since

F2 —4
p+< +4:2,$1 (6.74)

These parameter costs can be used to rank relative importance of the parameter
uncertainties for the uncertain parameter reduction process. The general Lyapunov
equation forms of these parameter costs have been applied to this simple system
in modal form to better understand the ramifications of a particular choice of cost

functional.

6.4 Summary

This chapter has dealt with two model reduction problems, the problem of reducing
the order of a system with parameter uncertainties and the problem of reducing the
number of parameter uncertainties in the model. These model reduction problems

are motivated by the need to reduce the computational burden associated with the
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calculation of the exact average cost and its approximations and bounds. Procedures
similar to Component Cost Analysis were proposed to help solve these model reduc-
tion problems. The open-loop modal costs and modal parameter costs were derived
to illustrate the properties of the exact average cost decomposition in relation to the
certain system cost decomposition and to compare the decompositions of the approxi-
mations and bounds to the average. The cost decomposition model reduction schemes
presented in this chapter have some clear weaknesses in that they essentially ignore
the component and uncertain parameter cost coupling and assume knowledge of the
controller. In spite of these weaknesses, the methods presented provide a powerfull

tool for initial model reduction for parametrically uncertain plants.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work has addressed the problem of synthesizing robust controllers for linear time-
invaziant systems with real parameter uncertainty. This problem is motivated by the
types of uncertainty encountered in control of flexible structures, where the natural
frequencies, damping ratios, stiffnesses, and other model parameters can be uncertain.
This work has examined the trades between stability robustness, performance, and
control effort in the context of systems with real parameter errors.

Present frequency-domain, input-output techniques for dealing with such uncer-
tainties, such as Heo robust design or p-synthesis, treat the uncertainties as complex
quantities and are conservative for real parameter errors. These types of error models
are better suited for characterizing high-frequency unmodelled dynamics. When used
for parametric errors, design techniques employing unstructured error representations
can require higher control effort than that necessary for achieving stability. When
designing robust controllers for parametric errors, care must be taken to avoid sacri-
ficing stability robustness to high-frequency unmodelled dynamics. In this sense the
two error representations are complementary.

Present time domain techniques can be divided into those which guarantee sta-
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bility and those which do not. Those which guarantee robust stability scmetimes
guarantee robust performance as well as. Chief among these are those which rely on
Lyapunov stability theory. While desirable, the guarantee for robust performance is
in most cases associated with higher control effort. The other class of time domain
techniques typically involve minimization of cost functionals that approximate the
parametric dependence of the system performance. This has been accomplished by
minimizing cost sensitivity or by considering multiple models and minimizing the
average cost.
The present work has extended the methods of multi-model robust control design
by considering performance metrics related to the quadratic (H;) cost averaged over a
set of possible systems. The set of possible systems, called the model set, has system
matrices which are functions of a number of real parameters varying over a bounded
region. The average cost is defined as the average of the Hz-norms of the elements
of the model set. Bounded average cost over a continuous set was shown to be a
sufficient condition for set stability. Average cost analysis tools were developed for
modeling, analysis, and control design for systems with parametric uncertainty.
For modeling of uncertain systems, the key concept considered was one of appro-

.priateness of the uncertainty representation. For high frequency unmodeled dynamics,
frequency domain input-output representations were considered most appropriate be-
cause the structure of the interactions between the sysiem components is not known.
Parametric uncertainty modeling was most appropriate when the structure of cc:npo-
nent interactions was known but the properties of these interactions were uncertain.
It was shown that a given parametric uncertainty could be represented in different
forms; for instance, a single uncertain stiffness could be modeled in modal coordinates
as many independent uncertain natural frequencies and mode shapes. In general, pa-
rameter uncertainties should be represented in their most primitive forms to reduce
model representation conservatism.

The average cost was shown to have useful properties for analyzing the stability
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of the model set. It was shcwn that bounded average cost implies that there are no
elements of the model set that have eigenvalues with positive real parts, i.e., all the
elements are stable. This new result was the foundation and motivation for developing
average cost techniques for robust control design. The average cost could be written as
the average solution of a parameterized Lyapunov equation. A sufficient condition for
simultaneous stability was developed based upon guaranteeing existence of a solution
for this equation.

One of the principle thesis contributions is the analysis of the average cost of
a set of systems using operator decomposition techniques. These techniques have
been borrowed from the fields of wave propagation in random media and turbulence
modeling. This was their first application to the analysis and control of parameterized
systems. The techniques entailed decomposing a parameter dependent operator into
a known nominal operator and a parameter dependent remainder. This technique was
applied to find expressions for the average solution of the parameterized Lyapunov
equation. The techniques were most usefull in deriving computable approximations
to the average cost.

Computing the exact average cost for systems with large numbers of uncertainties
was shown to be impractical. The operator decomposition techniques were used to
derive computable expressions for approximations and bounds to the average cost.
Two types of approximations and two types of bounds were presented. The first type
of approximation was based on the truncation of the perturbation expansion for the
average solution. This approximation, though easily solved, was shown to be accurate
for only small amounts of uncertainty. It was shown to be essentially identical to the
sensitivity system cost used by Skelton. The second type of approximation was gen-
erated by the Bourret equation, which is based on the truncation of an operator series
for the exact average. The Bourret approximation possessed some useful properties
for control design and was shown to be a better approximation to the average cost of a

single spring/mass system than the perturbation expansion. In addition, existence of
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a positive definite solution to the Bourret equation was shown to guarantee stability
on a specifiable set of parameters. No such stability guarantee was available for the
perturbation expansion approximation. The structure of the Bourret equation made
it more difficult to solve than the perturbation expansion approximation, however.
Existence of a solution to the iwo bounds was shown to guarantee stability over
the set of systems. The first bound discussed was based on the linear bound devel-
oped by Bernstein. It was called “worst-case” because its soluiion bounded all of the
possible H;-uorms of the elements of the model set :cluding the set with the highest
cost. Since bounded average (and not worst case) is all that is needed for stability
robustness, another bourd was developed which bounded the average but not neces-
sarily the worst case cost. This bound, called the average bound, was developed in
an attempt to guarantee robust stability without the cost increases associated with
worst-case design. A simple mass spring example validated the relative orderings of
the approximations and bounds. The bounds were found to be more sensitive than
necessary to frequency uncertainties and less representative of the physical structure
of the uncertainties. They did, however, guarantee stability over their design set.
The synthesis of conirollers based on minimizing either the exact average cost or
its approximations and bounds was presented. The necessary conditions for the five
cost functionals were derived for static and dynamic output feedback. Coutrollers
derived using either the Bourret approximation, the exact average, or the two bounds
were shown to guarantee stability over a specifiable set. In the case of the Bourret
approximation, this set is smaller than the design set while the others guranteed
stability over the design set a priori.. Because of the complexity of the cost equations,
closed form solution for the controller gain matrices was impractical. Instead, the
necessary conditions were used for slope information in a quasi-Newton numerical
minimization scheme. Since it is difficult to find stabilizing starting compensators
for the minimization scheme, a homotopy on the uncertain parameter design bounds

was utilized to derive controllers at progressively larger values of the uncertainty.
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This homotopy framework also provided a useful structure for performing closed-loop
uncertain model reduction.

The utility of this homotopy algorithm was demonstrated with several numeri-
cal examples. These were static and dynamic compensation for the robust control
sample problem ard dynamic compensation for the Cannon-Rosenthal problem. The
homotopy algorithm for solution computation worked well in general. There were
some problems with homotopy path discontinuities in the higher order problem, but
these are easily attributable to the nature of the uncertainty. The central concept
used to distinguish the controllers designs was design efficiency. An cfficient design is
one which achieves large stability bounds while sacrificing little nominal performance.
The exact average design was found to be most efficient as expected from the analysis.
The Bourret approximation design was the next best with efficiency very similar to
the exact average. The perturbation expansion approximation, which is structurally
similar to Skelton’s cost sensitivity design, was shown to have the worst efficiency for
the cases considered. In general it was also more numerically finicky and less capable
of stabilization for high levels of uncertainty.

The average bound and the worst case bound were shown to be functionally iden-
tical for the cases considered. Since the average hound is more difficult to calculate
than the worst case bound, its utility was deemed questionable. It did not achieve its
desired objective of lower cost for guaranteed stability than the worst case bound, in
part because the stable regions given by the two bound equations are identical. As
predicted by the analysis, the design using the bounds guaranteed stability over the
design set. This stability guarantee was associated with control and output costs that
were higher for a given achieved bound than those resulting from the exact average
and approximation-based designs. Since the purpose of using bounds is a priori sta-
bility guarantees, it is more appropriate to judge the bound-based designs on design
rather than achieved stabiliiy bound. In this case the bounds fare even worse in

comparison to the other design techniques.
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During the design process, damping was shown to be important for stabilization
in the face of uncertainties resulting in pole-zero flipe. This characteristic was found
in the Cannon-Rosenthal problem. Stabilization of poles-zero flips was found to be
impossible without some system damping. The problem becarne progressively eas-
ier as the damping was increased. This result supported the claims made in [142]
concerning the need for passive damping for robust structural control.

Finally, the problem of model reduction was briefly considered to enable the appli-
cation of these average-based robust control desiga techniques to higher order systems
with multiple uncertainties. It was shown that model reduction techniques which ex-
plicitly incorporate the “cost” of the uncertainty must be used when dealing with
parametrically uncertain systems. This was necessary to avoid truncation of nom-
inally benign but highly uncertain modes and parameters. The model reduction
problem could be divided into the problem of reducing the model order and that of
reducing the number of uncertain parameters. Both reduction problems were moti-
vated by the need for simplifying the controller computation. An algorithm similar
to Component Cost Analysis has be applied to both model order and parameter
number reduction. General formulae for component and parameter costs have been
developed for each of the approximations and bounds. Explicit modal costs and un-
certain modal parameter costs were derived which possessed the same properties as
the single mass/spring example considered above.

In general, all five design techniques were shown to be capable of increasing the
srstem robustness to some extent. The perturbation based method was limited in
the amount of uncertainty it could accommodate. The bound based designs were
also limited and resulted in high-cost controllers in the cases considered. The exact
average-based design, though most efficient, is not computable for more complex cases
than those considered here. Based on the above considerations and its high efficiency,
the Bourret approximation based design method was shown to be the best overall

tool for robust control design.
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7.2 Future Werk

The results of the present work suggest several new avenues of investigation. They
are generally in the areas of improving robust controller computation, expanding the
average based analysis tools, and further applications of these tools.

There is clear motivation for improving the computation of the controllers. Faster
robust controller computation greatly increases a design technique’s usefulness. The
present work has barely scratched the surface of the controller computation issues
focusing instead on comparing the various types of controllers. This investigation
has indicated that the Bourret approximation based design method was the best and
future work should be devoted to its more efficient computation.

There is good reason to believe that the structure of the Bourret equation can
be utilized to develop a solution algorithm more efficient than the Kronecker math
solution presented. Under certain conditions the Bourret equation can be represented
by a double order Lyapunov equation, and it can always be represented by a higher
order modified Lyapunov equation. This structure suggests psooibilities for more
efficient solution. The controller computation can be speeded by using a more efficient
cost minimization algorithm and by using a continuous rather than discrete homotopy
in the solution process.

The average bound failed to live up to its promise of low cost guaranteed stability
because it was as conservative as the worst-case bound, which also guarantees robust
stability. One potentially fruitful avenue of research would be to develop a better
(less conservative) computable bound for the average. This average woulc guarantee
a priori stability without the high cost associated with robust performance. One
approach to deriving such a bound would be to find a function which bounds the
Dyson equation from which the Bourret approximation is derived rather than bound
the perturbation expansion series as do the present bounds.

An exciting area of future work is related to further applications of these tech-

niques. The problem of uncertain model reduction was briefly presented in Chapter
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4. It would be interesting to apply these reduction procedures to an uncertain large
order structure to better evaluate the role of uncertainty in mode retention. 'This is
particularly feasible since the component and parameter cost ranking require only a
single cost calculation and not the thousands required for controller calculation. The
effects and importance of component and parameter cost coupling can be evaluated
to test the practicallity of the model reduction techniques presented in Chapter 6.
Another applications related area is the quantitative assessment of the relationship
between passive damping and robust control of uncertain systems. The average cost
analysis tools presented in this work provide a framework in which the effects of the
uncertainties on the system cost can be measured. It is a straightforward extension
to use these tools to measure the effects that varying passive system parameters has
on the uncertainty cost. Thus, the tools developed in Chapter 3 can be applied to the
design of structures for robust control by varying such passive parameters as system
stiffness distribution and damping. The Bourret approximation can also be used to
investigate more fully the robustness-performance-control effort trades analytically
on simple structural sample problems and numerically on more complex problems.
The final area of extension of this work is in the area of experimental design veri-
fication. A design methodology was presented and the elements of this methodology
were discussed in detail. This methodology needs to be applied to the robust con-
trol of a realistic structure whose uncertainties cannot necessarily all be represented
within the framework presented. This particular application will most help focus
the process of model development for robust control which was briefly discussed in

Chapter 2, and help further assess the limitations of the cost averaging techniques.
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