
Composing Parallel Runtime Systems: A Case Study
in How to Compose the Julia and OpenCilk

Runtimes
by

Tim Kralj
B.S., Computer Science and Engineering, Massachusetts Institute of

Technology (2020)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021
Certified by. .

Charles Leiserson
Professor

Thesis Supervisor
Certified by. .

Tao B. Schardl
Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Composing Parallel Runtime Systems: A Case Study in How

to Compose the Julia and OpenCilk Runtimes

by

Tim Kralj

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Julia [5] [15] is a high-level computing language used by many developers for its perfor-
mance and ease of use. Julia operates on tasks that are run concurrently on threads.
In its current state, however, Julia is not able to effectively employ fine-grained par-
allelism. OpenCilk [9] is an open-source implementation of the Cilk concurrency
platform designed to utilize fine-grain parallelism. The Cilk runtime system, based
on Cheetah [12], offers provably efficient parallel scheduling whose performance is
borne out in theory and practice. I propose a combination of the Julia and OpenCilk
runtimes through the integration of multiple components. One contribution of this
thesis is a novel algorithm for combining C/C++ memory allocations with Julia’s
precise garbage collector. Composing the parallelism of OpenCilk and Julia enables
programmers to write efficient multithreaded code. Additionally, this work is a case
study of combining the high levels of parallelism present in Cilk with a high-level
language.

Thesis Supervisor: Charles Leiserson
Title: Professor

Thesis Supervisor: Tao B. Schardl
Title: Research Scientist

3

4

Acknowledgments

I would like to thank various people for their contributions and guidance on this thesis:

Valentin Churavy and Takafumi Arakaki for their guidance and help with Julia. They

have more knowledge about Julia than I would ever hope to know. Special thanks

should be given to my thesis advisors, Tao Schardl and Charles Leiserson, for their

guidance, talks, vision, and continual support. Without TB this thesis would not be

possible and his support this year was unrivaled.

Thank you to my family and friends who supported me through my years at MIT.

Life here is fun and challenging but you all helped me through it.

This material is based upon work supported by the Department of Energy, Na-

tional Nuclear Security Administration under Award Number DE-NA0003965. This

research was sponsored in part by the United States Air Force Research Laboratory

and was accomplished under Cooperative Agreement Number FA8750-19-2-1000.

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any agency

thereof, nor any of their employees, makes any warranty, express or implied, or as-

sumes any legal liability or responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference herein to any specific commercial

product, process, or service by trade name, trademark, manufacturer, or otherwise

does not necessarily constitute or imply its endorsement, recommendation, or favor-

ing by the United States Government or any agency thereof. The views and opinions

of authors expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof. The views and conclusions contained in

this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the United States Air Force or the

U.S. Government. The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation herein.

5

6

Contents

1 Introduction 11

2 Background 15

2.1 OpenCilk Overview . 15

2.1.1 Cilk Runtime System . 16

2.1.2 Cilk Reducer Hyperobjects . 19

2.2 Julia Overview . 21

2.2.1 Threading Model . 21

2.2.2 ptls Pointers . 22

2.2.3 pgcstack . 22

2.2.4 Garbage Collection . 23

2.2.5 LLVM . 25

3 Runtime Integration 27

3.1 Stop the World in Cilk . 27

3.2 Garbage Collection Algorithm . 28

3.2.1 Design Considerations . 28

3.2.2 Finding Roots on Cilk workers 30

3.2.3 Cilk Garbage Collection Algorithm 30

3.2.4 Cilk pgcstack Reducer . 32

3.3 In-depth Reducer and Closure Mechanism 32

3.3.1 Cilk stacks . 33

7

4 Implementation 37

4.1 Design Decisions . 37

4.2 Initializing Cilk in Julia . 39

4.3 Cilk Garbage Collection . 39

4.3.1 Garbage Created on the Heap 40

4.3.2 Garbage Collection Initiated 41

4.3.3 Workers Find Safepoints . 41

4.3.4 Cilk Root Discovery . 42

4.3.5 (Mark) Garbage Collector Scans Through Thread Stacks to

Find Roots . 43

4.3.6 (Sweep) Reclaim Space Occupied by Unmarked Objects 43

4.3.7 Threads Resume as Before . 43

5 Analysis 45

5.1 Glue Code . 45

5.2 Cilk Minimal Code Change . 46

5.3 Julia Code Changes . 48

5.4 Speed Evaluation . 49

5.4.1 Compilation Time . 49

5.4.2 Execution Time . 49

6 Related Work 51

6.1 External Objects in Julia . 51

6.2 MPI OpenMP . 52

6.3 Parallel Machine Learning Frameworks 53

7 Conclusion 55

7.1 Future Work . 56

8

List of Figures

1-1 Julia code of Fibonacci. The 𝑇𝑎𝑝𝑖𝑟.@𝑠𝑦𝑛𝑐 block specifies to the Cilk

runtime the tasks in this section must all complete before continuing.

The @𝑇𝑎𝑝𝑖𝑟.𝑠𝑝𝑎𝑤𝑛 signifies the execution of 𝑋[] = 𝑓𝑖𝑏(𝑁 − 2) may,

but not required, to happen in parallel to 𝑦 = 𝑓𝑖𝑏(𝑁 − 1). The tasks

tagged with Tapir constructs are run on Cilk workers and scheduled

by the Cilk scheduler using Cilk’s work stealing algorithm. 12

2-1 An example of a Cilk section. Function 𝐴 is semantically labelled as

parallel work that can be executed at the same time as function 𝐵.

Once both 𝐴 and 𝐵 complete, the function can move past the sync

and continue executing. 16

2-2 A simple Cilk program with its corresponding cactus stack. The Cilk

program creates 5 functions to execute with some in parallel. The

figure on the right is the cactus stack created from the Cilk program

execution. 17

2-3 Fibonacci written in C using Cilk keywords. 𝑓𝑖𝑏(𝑛 − 1) may execute

in parallel on a different worker as 𝑓𝑖𝑏(𝑛− 2). No thread may execute

code after the 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐 until the work of child computations in the

spawning functions have finished. 18

2-4 The initialization, identity, reduce, destroy, and access pattern of a

reducer. Cilk workers can execute 𝑠𝑢𝑚_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() in parallel followed

by retrieving summed value in 𝑠𝑢𝑚. 20

2-5 An example of a Julia program performing binary search. 22

9

2-6 The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 scanning mechanism. Every column is the stack for a

J-thread 𝐽1 to 𝐽4. Each node represents roots on the stack with a

previous pointer. On garbage collection, every root in the system can

be discovered by unwinding the linked lists starting at 𝐴, 𝐵, 𝐶, and 𝐷. 24

3-1 The linked lists of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. Each box is a node on the linked list

and contains roots in our program. On garbage collection, all roots

can be found by scanning from 𝐸, 𝐽 , and 𝐾 up the linked list. There

are no nodes which will be scanned twice. A blue node represents a

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 stored in the reducer. 33

3-2 The reducer mechanisms for the central 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 reducer. 34

4-1 The design choice of integrating Julia and OpenCilk. Each runtime

remains separate and a small layer of glue code orchestrates the two

to work together. Julia can send Cilk workers tasks to execute and

perform garbage collection whenever necessary. 38

10

Chapter 1

Introduction

Julia is used as a high-level computing language built to be highly efficient and is used

for many applications. In its current state, however, Julia is not able to effectively

employ fine-grained parallelism. Julia supports asynchronous tasks which users cre-

ate. The tasks are scheduled over several threads that execute the tasks concurrently.

The tasks may run in parallel using shared memory to execute work. Julia creates as

many threads as necessary to execute code concurrently. The concurrent threading

model is beneficial and gives programmers the ability to write efficient parallel code;

however the concurrent task model does not achieve the parallel performance Julia is

so well known for in serial execution.

OpenCilk is a system designed for high levels of parallelism utilizing Cilk workers.

The Cilk language is built upon 𝑠𝑝𝑎𝑤𝑛 and 𝑠𝑦𝑛𝑐 functions to expose opportunities

for parallel execution. The 𝑠𝑝𝑎𝑤𝑛 function indicates the function which was spawned

may, but is not required to, execute in parallel. The 𝑠𝑦𝑛𝑐 function creates a barrier

that ensures all outstanding child tasks executing in parallel have completed before

continuing. Cilk computations are scheduled and load-balanced using randomized

work stealing on Cilk workers. The parallelism of a Cilk program can be measured

in terms of two performance measures: work and span. The work, denoted by 𝑇1, of

a computation corresponds to the running time of the program on a single processor;

the span, denoted by 𝑇∞, of a computation corresponds to the running time of the

program on a machine with infinite processors. The parallelism of a computation

11

function fib(N)
if N <= 1

return N
end
x = Ref{Int64}()
Tapir.@sync begin

Tapir.@spawn begin
x[] = fib(N-2)

end
y = fib(N-1)

end
return x[] + y

end

Figure 1-1: Julia code of Fibonacci. The 𝑇𝑎𝑝𝑖𝑟.@𝑠𝑦𝑛𝑐 block specifies to the Cilk run-
time the tasks in this section must all complete before continuing. The @𝑇𝑎𝑝𝑖𝑟.𝑠𝑝𝑎𝑤𝑛
signifies the execution of 𝑋[] = 𝑓𝑖𝑏(𝑁−2) may, but not required, to happen in paral-
lel to 𝑦 = 𝑓𝑖𝑏(𝑁−1). The tasks tagged with Tapir constructs are run on Cilk workers
and scheduled by the Cilk scheduler using Cilk’s work stealing algorithm.

is the ratio of its work divided by its span: 𝑇1/𝑇∞. The Cilk scheduler provides a

mathematical guarantee to execute a Cilk computation with work 𝑇1, span 𝑇∞ on

𝑃 processors in time 𝑇𝑝 ≤ 𝑇1/𝑃 + 𝑂(𝑇∞) [21]. If a Cilk program exhibits ample

parallelism, 𝑃 << 𝑇1/𝑇∞, then the Cilk scheduler executes the computation with

almost linear speedup. This gives the user great flexibility to write efficient parallel

code.

OpenCilk was developed as an extension to C/C++. This thesis proposes to

create an integration of the Julia and OpenCilk runtimes to enable a programmer to

be able to run parallel code in Julia as in Figure 1-1. The spawned code in Figure

1.1 is run in parallel on Cilk workers while inside of Julia. The workers are able to

utilize all the parallel benefits of Cilk while running on the Julia runtime.

Two runtimes that behave in different ways and are built different do not easily

blend. One of the major issues is memory allocation. Julia is a high-level language

that incorporates a garbage collector. The garbage collector allows a user to not worry

about allocating memory while offering greater flexibility. Other commonly used

garbage collected languages are golang [2] and Java [4]. OpenCilk, on the other hand,

12

uses the classic parallel memory allocation scheme from C/C++. A user allocates

space on the stack and the C language provides an internal allocator that the user

interacts with to request memory. When memory is freed, the internal allocator

maintains the memory for future use by the program. The memory models of Julia

and OpenCilk are currently not compatible—a user cannot use the parallel workers

of Cilk while assuming a garbage collected model at the same time. Julia does not

know how to allocate objects on the stack for a user when operating on a Cilk worker.

This thesis explores how the OpenCilk runtime can be integrated into the Julia

runtime. The goal of the integration is to execute Julia code on OpenCilk workers.

Julia will create tasks and work to be executed while OpenCilk will perform the

work in parallel as specified by the user using Cilk constructs. OpenCilk workers

were created to operate on work efficiently in parallel and this thesis helps Julia

understand how to execute work on OpenCilk’s workers. The combination takes

advantage of existing mechanisms in both Cilk and Julia requiring a small number

of lines of code changed to existing mechanisms. The integration does not change

how a user interacts with Julia while adding parallel constructs. The benefits of the

integration are large: users can spawn parallel code in Julia with simple keywords

such as 𝑠𝑦𝑛𝑐 and 𝑠𝑝𝑎𝑤𝑛. Cilk workers are very effective at work stealing [17] to

provide large amounts of potential speedup in parallel programs.

My thesis explores a novel algorithm for integrating a garbage collected language

with the cactus stack used by the OpenCilk runtime using Cilk hyperobjects. The

design is made to change Julia and OpenCilk minimally and use constructs which

already exist. The combination also includes an approach to startup of Cilk to work

with Julia. Another goal of this work is to provide a case study in combining high-level

languages with OpenCilk.

The rest of this thesis is as follows. Chapter 2 provides an overview of OpenCilk

and Julia necessary for this thesis. Chapter 3 gives an overview of the design for

integration. Chapter 4 provides an in-depth implementation explanation. Chapter

5 evaluates the integration. Chapter 6 discusses related work. Chapter 7 suggests

future work for the integration.

13

14

Chapter 2

Background

This chapter covers requisite background knowledge for this thesis. Section 2.1 gives

an overview of OpenCilk. Section 2.2 gives an overview of the Julia runtime.

2.1 OpenCilk Overview

Cilk [17] is a multithreaded language for parallel programming that generalizes the

semantics of C and C++ by introducing linguistic constructs for parallel control. Cilk

control constructs allow sections of the program to execute in parallel. The language

uses a "work-first" principle to minimize the scheduling overhead borne by the work

of a computation. The language uses just three keywords: 𝑐𝑖𝑙𝑘_𝑠𝑝𝑎𝑤𝑛, 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐,

and 𝑐𝑖𝑙𝑘_𝑓𝑜𝑟. 𝑐𝑖𝑙𝑘_𝑠𝑝𝑎𝑤𝑛 indicates the spawned function may execute in parallel.

The code immediately following the 𝑐𝑖𝑙𝑘_𝑠𝑝𝑎𝑤𝑛 is allowed to execute in parallel with

the invoked child function. The keyword 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐 acts as a barrier that ensures that

spawned child computations executing in parallel have completed before proceeding.

The keyword 𝑐𝑖𝑙𝑘_𝑓𝑜𝑟 indicates iterations of a loop may happen in parallel. Figure

2-1 is an example of a simple program operating with Cilk. The function A is tagged

with 𝑐𝑖𝑙𝑘_𝑠𝑝𝑎𝑤𝑛 to indicate it may execute in parallel. The 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐 afterwards

creates a fence that waits upon work of the spawned children of the current function

to complete before moving on .

15

void main () {
cilk_spawn A ();
B ();
cilk_sync;

}

Figure 2-1: An example of a Cilk section. Function 𝐴 is semantically labelled as
parallel work that can be executed at the same time as function 𝐵. Once both 𝐴 and
𝐵 complete, the function can move past the sync and continue executing.

2.1.1 Cilk Runtime System

The Cilk runtime system [12] uses a provably-good work-stealing scheduler [16] to

automatically distribute work among a set number of workers. Workers initialize

at the start of the program and are built upon POSIX threads [10]. Each worker

maintains a deque of tasks it needs to run. A worker 𝑊1 may have work and interacts

with the bottom of its own deque, treating it as a stack. This worker is executing but

has extra tasks at the top of the deque which can be executed in parallel. If another

idle worker 𝑊2 wants to steal extra parallel work from 𝑊1’s deque, it steals from the

top of the deque. 𝑊2 is treated as a thief who is constantly looking at other workers

to see if they can steal any work. The work stealing algorithm functions utilizing

idle workers, called thieves, to search for continuations to steal. If a thief finds a

continuation, it will steal the work and start executing.

The Cilk runtime maintains a collection of data structures in order to implement

its work-stealing scheduler. It maintains a pool of fibers, blocks of memory that tasks

use as stack space. The pool of fibers is created upon runtime startup allowing any

worker to use the shared stack space. Whenever a task or continuation is stolen, the

runtime allocates a new fiber for the function’s exclusive use. These fibers are linked

together to be able to backtrack through the fiber stack. The linking of fibers forms

a cactus stack [23], a tree of stack allocated objects, inside of Cilk. Whenever a new

fiber is allocated, a new block is added to the cactus stack with a parent pointer. The

cactus stack is used to implement the runtime stack used by Cilk workers. Because

Cilk workers steal continuations, newly stolen work needs to contain local state to

16

void B () {
cilk_spawn D();
E();
cilk_sync;

}
void A () {

cilk_spawn B();
C();
cilk_sync;

}

Figure 2-2: A simple Cilk program with its corresponding cactus stack. The Cilk
program creates 5 functions to execute with some in parallel. The figure on the right
is the cactus stack created from the Cilk program execution.

the computation. The cactus stack provides the structure for workers to dynamically

switch work and maintain state of computations. The nodes are removed when the

relevant computation completes and are popped off the tree.

The runtime also maintains Cilk stack frames. Whenever a Cilk program enters

a spawning function or a spawn helper, it creates a Cilk stack frame, analogous

to creating frames for normal function calls. The Cilk stack frames are used to

store continuations that can be stolen and maintain state for each spawning function

and spawn helper. These stack frames are then passed to the runtime calls behind

𝑐𝑖𝑙𝑘_𝑠𝑝𝑎𝑤𝑛 and 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐, in order to properly maintain Cilk’s internal stack state,

called the cactus stack. When a worker steals work and the runtime allocates a new

Cilk stack frame, the stack frame is added to the cactus stack. The cactus stack

maintains a chain of Cilk stack frames for which the workers executed. At the end of

the function, the runtime exits the frame and removes it from the cactus stack.

Because Cilk stack frames are created for spawning functions or spawn helpers,

chaining together Cilk stack frames gives us a global view of a Cilk program’s stack

state. Figure 2-2 illustrates what the cactus stack for a simple Cilk program, on

the left of the figure, would look like. The Cilk stack frame for a spawner function

17

int fib (int n)
{

if (n<2) return n;
else {

int x, y;
x = cilk_spawn fib (n-1);
y = fib (n-2);
cilk_sync;
return (x+y);

}
}
int main (int argc, char *argv[])
{

int n, result;
n = atoi(argv[1]);
result = fib(n);
return 0;

}

Figure 2-3: Fibonacci written in C using Cilk keywords. 𝑓𝑖𝑏(𝑛 − 1) may execute
in parallel on a different worker as 𝑓𝑖𝑏(𝑛 − 2). No thread may execute code after
the 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐 until the work of child computations in the spawning functions have
finished.

(like function A or B) can have multiple child frames, but frames can only have one

parent. Each task’s local view of the cactus stack corresponds with its call stack. The

cactus stack is not equivalent to a C/C++ stack and is not present in Julia’s stack

allocations. Let’s consider an example with a single worker, 𝑊1, executing the code

in Figure 2-2. This worker executes section blocks in order of: 𝐴, 𝐵, 𝐷, 𝐸, 𝐶. The

worker will have a stack view at any point of the Cilk stack. During execution of

block 𝐷, the view the worker has of the stack is 𝐴 -> 𝐵 -> 𝐷–similar to a C/C++

view of the stack. Let us now have 2 workers, 𝑊1 and 𝑊2, executing in the code

block. While 𝑊1 is executing block 𝐷, 𝑊2 may be executing block 𝐸 because of a

steal of the continuation. In this case the workers would have different views of the

stack but share the exact same 𝐵 and 𝐴 blocks. 𝑊1’s view of the stack would be

the same as before while 𝑊2’s view would be 𝐴 -> 𝐵 -> 𝐸. Each worker could have

a different view of the stack, while sharing some elements, forming the cactus stack

structure.

18

The Cilk runtime uses Closures to manage the coordination of the stack view of

a worker. In the runtime, tasks are represented as Closures (also called full frames),

structs that contain the fiber and Cilk stack frame they are currently executing. These

closures allow workers to switch work execution and pick up other work execution.

On a steal, a worker picks up the task and local state from a Closure. A join counter,

which represents the number of outstanding children (i.e. the number of children we

need to wait for before we can proceed past a 𝑐𝑖𝑙𝑘_𝑠𝑦𝑛𝑐) is needed to track how

many outstanding jobs must occur before the sync may be executed. The entries of a

worker’s deque are pointers to Cilk stack frames. There is 1 Closure associated with

a workers deque at any time, and it is associated with the top most stack frame of

the deque. Closures also contain pointers to their parent closure, their left sibling

closure, and the right sibling closure. Workers maintain a busy leaves property: a

closure tree exists only if some leaf has a worker executing work. Closures may be

suspended by any workers when children are executing spawned code.

2.1.2 Cilk Reducer Hyperobjects

Cilk supports reducer hyperobjects, which allows concurrent updates to a shared vari-

able or data structure to occur simultaneously without contention [20]. The reducer

acts as a variable that can be shared safely between many threads. A reducer is

defined in terms of a binary associative REDUCE operator. The operator can be a

sum, list concatenation, etc. Updates to the hyperobject are accumulated in local

views, which the Cilk runtime system combines automatically when subcomputations

join. When a reducer is active, each worker has their own view of the nonlocal vari-

able. Each view is tied to the Closure in execution to allow worker stealing to occur

separately. On a steal, the worker updates the local view of a reducer to match that

from the stolen Closure. As we shall see, the Cilk-Julia integration uses a reducer to

store garbage collection state per worker for Julia during execution.

Reducers operate in a way that allows workers to have local views of the same

variable when executing parallel strands and then internal mechanisms "reduce" the

views together when the work completes. For example, a summation reducer, like

19

// creating reducer:
typedef CILK_C_DECLARE_REDUCER(int) ExampleReducer;

ExampleReducer n = CILK_C_INIT_REDUCER(int,
sum_reduce, sum_identity, sum_destroy, 0);

void sum_reduce(void* key, void* left, void* right) {
(int)left = *(int*)left + *(int*)right;

}

void sum_identity(void * key, void * value) {
(int)value = 0;

}

void sum_destroy(void* key, void* value) {
}

void sum_function(int i) {
// accessing Cilk reducer on a worker:

REDUCER_VIEW(n) += 1;
}

void main () {
cilk_for (int i = 0; i < 1000; i++) {

sum_function(i);
}
int sum = REDUCER_VIEW(n);

}

Figure 2-4: The initialization, identity, reduce, destroy, and access pattern of a re-
ducer. Cilk workers can execute 𝑠𝑢𝑚_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() in parallel followed by retrieving
summed value in 𝑠𝑢𝑚.

in Figure 2-4, may have multiple local views of the variable 𝑛, during the reduction

operation occurs all the views are summed together to get the final sum. This feature

allows for a thread-safe model of many different views of a variable maintained by

the runtime.

A reducer requires 3 functions associated with it. These are: the identity function,

the destroy function, and the reduce function. The identity is used to create a new

view of the reducer variable. This can occur on a new Closure or the first access

by a worker. The destroy is used to delete a view on completion of the local view.

20

The reduction is used when merging multiple views together. This can occur when a

subcomputation completes. The sum example mentioned earlier shows how to reduce

the hyperobject. Figure 2-4 illustrates the identity, destroy, and reduce functions

for the reducer 𝑛 as well as the creation and access pattern of the reducer on Cilk

workers.

A reducer is a powerful construct built into the Cilk language and is useful for

having different tasks maintain local variables.

2.2 Julia Overview

Julia is a high-level language made for general applications with a focus on numerical

analysis and computational science. Julia was made to process mathematical models

and has expanded to general computing. The language is written in C/C++ and com-

piled down to LLVM [6], a compiler intermediate representation (IR). Julia has many

features of other high-level programming languages such as garbage collection. This

section will be an overview of Julia’s runtime relevant to the Cilk-Julia integration.

Julia maintains a runtime that executes code written in the Julia language. The

components are tasks operated on in a threading model. A simple example of a Julia

program performing binary search is in Figure 2-5.

2.2.1 Threading Model

Julia’s threading model contains concurrent threads used to execute work. The

threads are built on libuv[11] using POSIX threads[10], same as Cilk. The Julia sys-

tem creates tasks, sections of work execution, that execute on Julia threads. Tasks are

used in Julia as a control-flow feature that allows computations to be suspended and

resumed. A Julia programmer writes a program which utilizes tasks. Syntactically,

a user of Julia can specify an aspect of a program to run in parallel using @𝑠𝑝𝑎𝑤𝑛

[8] syntax before an expression. The expression following the macro will run on an

automatically-chosen process by the runtime. The Julia runtime can then choose to

execute that program on system threads. Concurrent tasks become useful for exe-

21

function binarySearch()
u = T(1)
lo = lo - u
hi = hi + u
@inbounds while lo < hi - u

m = midpoint(lo, hi)
if lt(o, v[m], x)

lo = m
else

hi = m
end

end
return hi

end

Figure 2-5: An example of a Julia program performing binary search.

cution that benefits from having threads that rely on each other for execution. The

threads are concurrent to allow the CPU to switch between different threads during

execution of a program.

2.2.2 ptls Pointers

Julia maintains threads that operate together. The runtime tracks information about

each of these threads inside of their respective thread local storage (TLS) [19]. The

runtime initializes important components about each thread as the 𝑝𝑡𝑙𝑠 variable that

resides on the thread itself. The 𝑝𝑡𝑙𝑠 enables the runtime to track many components

about each thread and the task executing on the thread. The 𝑝𝑡𝑙𝑠 enables the runtime

to store and lookup important state about each thread in the thread itself instead of

a global variable in the runtime. The thread-local state is very important in Julia. It

keeps track of tasks, thread states, garbage collection states, and more.

2.2.3 pgcstack

One important part of the 𝑝𝑡𝑙𝑠 in each thread is the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. The 𝑝𝑡𝑙𝑠 component

of the thread tracks all the stack allocations that occur. The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 is the head

of a linked list of all roots a thread has created. The roots are created on the stack

22

when memory is allocated by the program. This linked list grows larger whenever

more roots are made on this thread and roots of the linked list are removed upon

popping of the stack. The linked list can be used to identify any roots which have

been created on this thread during execution and free the sections of the stack which

are no longer useful for the program execution–the garbage.

The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 allows Julia’s garbage collector to be precise. Precise garbage col-

lectors can correctly identify all pointers in an object. The opposite would be con-

servative garbage collection which assumes that any bit pattern in memory could be

a pointer if, interpreted as a pointer, it would point into an allocated object. Julia’s

garbage collector mandates a stack allocated linked-list, 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘, on which all heap

references currently in use are rooted.

2.2.4 Garbage Collection

Julia utilizes a garbage collector. A user does not malloc or free memory such as

in the C/C++ model, instead memory is allocated and reused without the user’s

input. The Julia garbage collector is mark-sweep/tracing, non-compacting, precise,

and generational. The runtime works as normal executing user code and creating

roots whenever necessary. When we reach a threshold for the amount of garbage in

our system, garbage collection initiates.

The collector is lead by a single thread and iterates over all the roots, pointers

to objects on the heap, to discover which ones are necessary for the program going

forward while the unused are swept away. In the mark phase the garbage collector

starts from 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 and walks through the object graph marking objects that are

reachable. If objects are necessary for future execution they exist as roots inside a

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 and are marked. The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 mechanism is illustrated in Figure 2-6. Every

root in the scope of workers 𝑗1 to 𝑗4 can be found by walking the linked list of nodes

starting at 𝐴, 𝐵, 𝐶, and 𝐷. These are the nodes contained in the 𝑝𝑡𝑙𝑠 of each Julia

thread. After the mark phase, the garbage collector sweeps away all objects that are

not marked, thereby reclaiming the memory. The garbage collector is non-compacting

since it does not move any objects during the mark or sweep phases, and the garbage

23

Figure 2-6: The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 scanning mechanism. Every column is the stack for a J-
thread 𝐽1 to 𝐽4. Each node represents roots on the stack with a previous pointer.
On garbage collection, every root in the system can be discovered by unwinding the
linked lists starting at 𝐴, 𝐵, 𝐶, and 𝐷.

collector forms a generational map for doing full scans or new scans. Julia’s garbage

collector operates on the generation hypothesis–the observation that, in most cases,

young objects are much more likely to die than old objects. Old objects that have

stayed in the program for a while are most likely to stay in the program for longer.

Julia takes advantage of this and has an option to do smaller garbage collections on

newer objects only.

Any thread can start garbage collection and continues to lead garbage collection

until the end of garbage collection. This thread will scan every root including its

own roots. In addition, threads must all come to safepoints before garbage collection

moves to the mark and sweep phases. Threads safepoint by coming to a stop during

execution and waiting until the garbage collection has ended to continue. Stop the

world execution is necessary to not create any new roots during garbage collection.

Each Julia thread will find a spot in their execution where it is determined safe to

stop. The leading thread iterates through the linked list of roots in the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘

values stored in the 𝑝𝑡𝑙𝑠 mentioned above. All of the roots can be found by following

24

each linked list to the head, every object not reachable from one of these roots will

be swept away.

Garbage collection has many steps that are important to the Cilk-Julia combina-

tion. The items that occur are listed in order below:

1. Garbage created on the heap (normal operation)

2. Garbage collection initiated

3. Each thread comes to a safepoint

4. (mark) Garbage collector scans through thread stacks to find roots

5. (sweep) Reclaim space occupied by unmarked objects

6. Threads resume as before

2.2.5 LLVM

Julia lowers code to LLVM [6] during compilation. LLVM is a set of compiler tech-

nologies used to develop programming languages. LLVM takes intermediate repre-

sentation (IR) code from a compiler and emits optimized IR. Julia uses the compiler

to produce fast code to run on different systems. Cilk also uses LLVM with an ex-

tension containing parallel constructs in the Tapir compiler [25]. The combination of

languages on the compiler aspect aids in adding parallel constructs in Julia which Cilk

also understands. To add parallel constructs in LLVM, Julia can switch the backend

ABI used to the Tapir/LLVM compiler.

25

26

Chapter 3

Runtime Integration

The Julia and Cilk runtimes were created in different ways and need to learn to

interact together. The goal of this thesis is to provide a method for combining the

two and a case study for future runtime integration’s. Section 3.1 describes how

Cilk workers deal with stop the world execution in Julia. Section 3.2 describes how

Julia handles the parallel cactus stack present in Cilk and garbage collection on Cilk

workers. These parts all orchestrate together to enable the integration of Cilk and

Julia.

There are other approaches that may work for the combination of two runtimes.

Chapter 6 focuses on previous work for the combination of threading models, and

Chapter 7 focuses on future work.

3.1 Stop the World in Cilk

As described in section 2, Julia garbage collection requires stop the world execution.

All the julia threads in the runtime come to a stop each time garbage collection is

performed. Cilk workers must do the same to allow Julia to garbage collect on top of

each Cilk worker. This section will describe the algorithm for stop the world execution

in Cilk.

Cilk workers are created on top of pthreads [10]. These threads are made to

execute a specified function until they are destroyed, and Cilk maintains a work

27

stealing loop until the runtime shuts down. The work stealing loop has 2 options for

a worker: executing work or searching for work to seal. The workers are a thief when

they search for work and steal some when they find it.

The integration takes advantage of this continuous loop of searching for work.

The Julia runtime sends stall work tasks to Cilk workers similarly to the mechanism

used for waiting on Julia threads in the Julia runtime. During a safepoint, threads

sleep constantly until garbage collection has ended. The Cilk runtime does not know

what is going on outside of its own scope and Julia sending instructions that allow the

current workers (not thieves) to loop continuously while waiting acts as a stall. Such

a mechanism allows the workers to be in a "stop the world" scenario like Julia requires

for garbage collection. The purpose of the halt in execution is to allow the garbage

collector to run through the pointers of the program to mark and sweep them. No

garbage should be made during the mark or sweep phases to not race on new pointers

being created. The Cilk runtime integration of sending a stall loop achieves this goal

and allows for garbage collection to occur. Thieves do not have any relevant roots for

garbage collection and are always in a safepoint state until they start executing Julia

work.

3.2 Garbage Collection Algorithm

This section includes a novel algorithm for integrating a garbage collector based lan-

guage with the cactus stack used by the OpenCilk runtime using Cilk hyperobjects.

The Julia runtime creates roots on Cilk workers and requires garbage collection to

occur on the workers to remove the generated garbage, as described in section 2.

3.2.1 Design Considerations

This section will describe the possible routes for the OpenCilk and Julia integration.

As described in chapter 2.2, the Julia runtime requires some knowledge about the state

of Cilk workers to perform garbage collection. Each worker will perform allocations on

the cactus stack to generate roots. These roots are tracked in Julia using thread-local

28

storage.

An obvious first route for the integration would be to track the same state inside

of Cilk workers TLS. Each worker can maintain their linked list of allocations using a

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 inside of their respective TLS. The garbage collector can discover all roots

which exist on each thread. An example can be used from Figure 2-2: one can

imagine 3 workers in operation. Worker 1 executes blocks 𝐴, 𝐵, and 𝐷; worker 2

executes block 𝐸, and worker 3 executes block 𝐶. During a steal of new work or stack

allocation, a worker updates their thread-local 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 variable to append the new

roots. The linked list of allocations would correspond to the view of the Cilk cactus

stack of each worker. Worker 1’s linked list would contain allocations from 𝐴, 𝐵, and

𝐷, worker 2’s contain 𝐴, 𝐵, and 𝐸, and worker 3’s 𝐴 and 𝐶.

One initial fault with this design is double counting roots. The roots contained

in block 𝐴 would be discovered in all 3 worker linked list states. Double counting

is acceptable for the garbage collector, but the algorithm would not be efficient if

workers share allocations higher in the stack. Some form of exclusion algorithm could

be created to only count objects once but the duplication of objects still exist on the

TLS of workers. Tracking TLS states during randomized work stealing also requires

new logic in the OpenCilk runtime. When a worker becomes a thief followed by

stealing new work, a new fiber is allocated and a new 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 is added to the linked

list. This is great for the tracking of new allocations and executing a continuation;

however, new complexity is added with parent pointers to states. These pointers

would need to be tracked across longjumps [1] in the code which is not an easy task.

One question that arises is what occurs when execution of block 𝐵 has completed and

the roots are no longer necessary for the program (now garbage) on the linked list of

worker 2? Each worker containing block 𝐵 in their linked list of stacks in TLS should

remove the node from their linked list. This is not an easy task and asking workers

to shift away from work on the program is against the principles of OpenCilk.

All of these drawbacks of using TLS in a similar manner to Julia threads lead to a

different design which is simpler, more efficient, and easier to implement. The design

will be described in the following sections.

29

3.2.2 Finding Roots on Cilk workers

The Julia runtime creates garbage during/after tasks are completed. Roots are neces-

sary for a program to have local state for operation; however, once state is no longer

useful it becomes garbage. The current mechanism Julia uses to create roots on the

stack can be re-purposed to create roots on Cilk workers. As mentioned in section

2-2, each thread inside of Julia has a pointer to the head of the linked list of roots,

the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘, inside of their thread local storage. Cilk workers also have thread local

storage, but the work stealing algorithm of Cilk workers means the workers could be

changing the space they are operating on at any time. In the subsequent sections, the

mechanism for maintaining a correct 𝑝𝑔𝑠𝑡𝑎𝑐𝑘 is described. Whenever Julia needs to

create roots on a stack it uses the same mechanism for Julia threads and Cilk workers.

The Julia runtime retrieves, the algorithm described below, the current 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 of a

worker, creates a new node containing the roots and updates the head of the linked

list with a previous pointer to the previous 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. The depiction of the system is

shown in Figure 2-6. This mechanism allows the Cilk stacks to grow with new roots

as long as the correct 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 are managed. The following section describes the

algorithm to do so.

3.2.3 Cilk Garbage Collection Algorithm

Julia can sends Cilk workers tasks to execute through the LLVM compiler integration

when parallel constructs in Julia mark functions such as in Figure 1-1. These tasks will

generate roots and garbage as mentioned in the previous section. Each worker must

maintain a 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 containing all the roots in the program for garbage collection

to occur correctly. The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 cannot be stored in the same way in a Cilk worker

as a Julia thread: workers perform work stealing and the stack linked list will not

operate correctly with steals and syncs without large changes to tracking TLS inside

of OpenCilk. The algorithm devised to fix this uses a central hyperobject to store

the most current 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 for every worker. The workers can track their current

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 inside of the reducer, update it with new allocations during work, and work

30

steal when necessary while storing the correct state. The mechanism provides the

ability to track roots created during current execution of work as well as any stolen

work. The central hyperobject can save the state of the worker inside a Closure on

a steal. This Closure, when restored by a worker on a continuation, will contain the

previous value of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. The reducer values are stored inside the Closure and

workers can restore state from a Closure.

During the start of garbage collection, the leading garbage collector thread sends a

safepoint instruction for all workers and Julia threads. Each worker which is currently

executing work (not a thief) will come to a stop and wait as described in 3.1. The lead

garbage collecting thread can now continue into the mark phase. During marking,

the leading thread discovers all possible stacks containing roots with the union of

3 parts: Julia threads 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 inside the 𝑝𝑡𝑙𝑠 (as happens currently in Julia), the

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 inside each workers local view of the hyperobject, and any 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 inside of

a suspended Closures. The combination of the 3 parts includes all roots in the system

and are marked as such. The garbage collector thread continues to the sweep phase

and removes any non-marked roots and execution continues on all threads/workers

as normal.

The algorithm adds some complexity to the original Julia garbage collector; how-

ever, it reuses many components to remain efficient. The steps laid out in order:

1. Garbage created on the heap (normal operation) on Cilk workers and Julia

threads

2. Garbage collection initiated

3. Each thread/worker comes to a safepoint

4. Cilk Root Discovery

5. (mark) Garbage collector scans through thread stacks to find roots

6. (sweep) Reclaim space occupied by unmarked objects

7. Threads resume as before

31

In subsequent sections will be a discussion on the hyperobject required to maintain

stack information on Cilk workers using a hyperobject.

3.2.4 Cilk pgcstack Reducer

The idea of a reducer [20] is a hyperobject implemented in the OpenCilk runtime as

described in section 2.1.2 The object lives as a central datastore and each worker can

have their own local instance of an object, called a "view". For a single variable, 𝑥,

each worker can have their own version of the variable to access and alter. Updates

to the hyperobject are accumulated in local views, which the Cilk runtime system

combines automatically when subcomputations join.

The integration can combine the ideas of a reducer and the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 to maintain

our cilk stacks. A central reducer will be used for all the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 management

throughout the usage of Cilk in Julia. The reducer hyperobject has a mechanism

for every Cilk worker to maintain their 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 like a Julia thread does inside of

their 𝑝𝑡𝑙𝑠. This reducer allows for the Cilk worker to access the current head of the

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 whenever roots are being created on the stack and allows the program to

perform stack scanning during garbage collection.

3.3 In-depth Reducer and Closure Mechanism

In this section I will be going in depth into the reducer and Closure system. The

reducer is used to maintain the relevant data needed to perform garbage collection

on Cilk stacks.

First, a mathematical description of the reducer. For a given Cilk program, let ℎ

be a reducer with an associative operator ⊗. Let 𝐺 = (𝑉,𝐸) denote the computation

dag (directed acyclic graph) modeling the Cilk program’s execution, and let 𝑢 and 𝑣

denote two strands in 𝑉 . The peers of 𝑢 is the set of strands in the Cilk computation

𝐺 that are logically in parallel with 𝑢. Consider a serial walk of 𝐺, and let 𝑎1, 𝑎2,...,

𝑎𝑘 denote the updates to ℎ after the start of strand 𝑢 and before the start of strand 𝑣.

Let ℎ(𝑢) and ℎ(𝑣) denote the views of ℎ at strands 𝑢 and 𝑣, respectively. If peers(𝑢)

32

Figure 3-1: The linked lists of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. Each box is a node on the linked list
and contains roots in our program. On garbage collection, all roots can be found
by scanning from 𝐸, 𝐽 , and 𝐾 up the linked list. There are no nodes which will be
scanned twice. A blue node represents a 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 stored in the reducer.

= peers(𝑣), then ℎ(𝑣) = ℎ(𝑢)⊗ 𝑎1 ⊗ 𝑎2 ⊗ ...⊗ 𝑎𝑘.

3.3.1 Cilk stacks

Cilk performs work-stealing between different workers. This means at any point

a piece of work could be stolen by a worker and the worker start allocating more

variables on the stack–something the runtime integration must track. The reducer

mechanism helps us with this: each worker has their own view and the view is changed

whenever a worker changes the work they are operating on. The feature allows the

Cilk runtime to halt at any point and scan through all the reducer views to find the

relevant 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠.

In this section I will reason about why we will have all the correct stacks even with

33

void pgc_stack_identity(void* key, void* value) {
*(jl_gcframe_t**)value = NULL;

}

void pgc_stack_destroy(void* key, void* value) {

}

void pgc_stack_reduce(void* key, void* left, void* right) {
assert(*(jl_gcframe_t**)right == NULL);

}

Figure 3-2: The reducer mechanisms for the central 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 reducer.

dynamic worker stealing and not miss any active roots during garbage collection. If

we have a single worker iterating through work then the worker will have the correct

view always on their 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. When multiple workers are in play there is extra

complexity. Every worker starts out as a thief with an empty 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. No roots

have been created yet. On a steal, the worker’s view is created with the identity

function to an empty 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘, without any roots, since this worker has not allocated

any new objects if picking up a continuation from a different worker. The previous

allocations of the continuation will be counted as roots in the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 of the worker

that created the objects. When a new allocation occurs, the stack will be updated to

maintain it. When a worker pops out of a function on completion all the roots which

are no longer necessary become garbage. This is represented in the hyperobjects by

removing the strand view of the reducer. On a suspended Closure, the reducer view is

saved inside the Closure itself. The mechanism allows the worker to switch the work

they are executing while storing our roots inside a scannable field by the garbage

collector: the Closure.

An example of the data-structure is shown in Figure 3-1. The linked lists are the

stacks needed to be tracked. The execution of this program had 2 spawns occur at 𝐶

and at 𝐺. When a worker picked up the continuation, their view of the reducer was

an empty 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 as shown in Figure 3-2. At the start of garbage collection, the

current reducer views for different workers are represented with a blue dot each. To

34

iterate over all nodes in the tree 𝐴->𝐾, there are 3 necessary nodes to be found: 𝐸,

𝐽 , and 𝐾. From these, the whole tree can be discovered with linked list unwinding.

If there existed any suspended Closures, the reducer view of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 inside the

Closure would contain the roots from the computation. These 3 nodes all exist within

current reducer views of workers or suspended Closures.

A worker may pop up the stack when work is completed. Popping indicates the

roots that were used in this section of work are no longer necessary and the worker

can reset their 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 view to be the "left" branch before a potential steal occurred.

The left branch of the reducer is one that contains all the previous 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in the

linked list of prior computations. The right should be empty on a pop because the

initial view of the reducer was empty. The worker asserts the right node is 𝑁𝑈𝐿𝐿

(indicating a sync and popping up the stack). The reducer view property maintains

the idea that the left most branch was the previous stack pointer before the steal and

any roots which are necessary in a program are maintained in the left branch.

35

36

Chapter 4

Implementation

As described in Chapter 3, there are many aspects that come together to form the

OpenCilk and Julia runtime integration. There are 3 main areas of changes for the

implementation: the Julia runtime changes, Cilk runtime changes, and the combina-

tion glue code. One of the goals of this thesis is to create a novel way to combine

runtimes with OpenCilk that required minimal changes to either original runtime.

The glue code, therefore, contains most of the changes and integration pieces.

This chapter will give a look at the implementation changes to both runtimes and

the glue code required to make the integration successful. Section 4.2 will focus on

the changes to startup and shutdown code. Section 4.3 will dive into the garbage

collection alterations necessary.

There are many possible ways to combine two runtimes. This approach is a

minimal extension design designed to alter both runtimes as little as possible. Chapter

5 will describe if the combination achieves the goals set out for it while Chapter 6

will examine at previous approaches at combining runtimes.

4.1 Design Decisions

An initial route the exploration of runtimes took was to rewrite parts of the OpenCilk

runtime inside of Julia. Julia already has threads that run concurrent tasks, and users

can create tasks within their code. The combination would entail porting much of the

37

Figure 4-1: The design choice of integrating Julia and OpenCilk. Each runtime
remains separate and a small layer of glue code orchestrates the two to work together.
Julia can send Cilk workers tasks to execute and perform garbage collection whenever
necessary.

OpenCilk runtime into Julia. Managing workers for randomized work stealing requires

code to orchestrate them and Julia would be required to do so. There were some

downsides when considering this approach. OpenCilk has many features bundled in

the concurrency platform such as a scalability analyzer and a race detector [27] [24].

These additions are helpful for writing Cilk code and debugging but less useful for

regular Julia threads and serial code. The extra aspects would not help users unless

they were writing parallel code. Instead of going down the path of full integration, a

design choice was made to have the runtimes of OpenCilk and Julia remain separate.

A user can decide to use OpenCilk workers and runtime with Julia but they are not

required to. Similar to Cilk’s composition with C/C++, Cilk is a system which Julia

can leverage for fine-grain parallelism but remains independent. The design in Figure

4-1 shows the integration with a small amount of glue code managing the combination.

A benefit of the minimal extension design is neither code base of OpenCilk or Julia

are altered in a substantial way. The runtimes stay separate but learn to interact

with each other whenever necessary. Some goals for the design are simplicity and

efficiency. The glue code contains a majority of the changes in this thesis.

38

4.2 Initializing Cilk in Julia

This section will cover the changes required to make Cilk initialize correctly in order

to work with Julia and shutdown after the completion of work.

The Julia runtime starts at the initialization of a Julia program. In the startup

steps, each of the Julia threads are set up and the components necessary to manage

the runtime are started. Cilk also requires initialization functions to start workers

and the runtime. In addition, Cilk has mechanisms to register callback functions.

For the integration, Cilk Workers must behave close to the behavior of Julia threads.

Initialization functions used to startup parts of the Julia threads are run on Cilk

workers through a callback function. The callback function creates the 𝑝𝑡𝑙𝑠 variable

on the worker’s TLS. Julia requires the 𝑝𝑡𝑙𝑠 exists on any thread it interacts with,

including Cilk threads. When the Julia runtime starts up, the system adds setup

callbacks to the Cilk runtime. This allows each worker to initialize their 𝑝𝑡𝑙𝑠.

The initialization of the 𝑝𝑡𝑙𝑠 on Cilk workers gives Julia some knowledge about

the Cilk runtime. Julia is able to query the workers in the same way as it normally

would with Julia threads. There are many aspects of the Julia runtime which rely on

thread local storage appearing in a certain format and the initialization of 𝑝𝑡𝑙𝑠 solves

many of these. This includes the garbage collection state per worker, the 𝑤𝑜𝑟𝑙𝑑−𝑎𝑔𝑒

of computations, and task information.

The central reducer is also created on the startup of the Julia runtime. The

reducer is nested inside of the glue code and operates until the shutdown of the Julia

runtime. The reducer allows Cilk workers and the Julia runtime to access 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠

on Cilk workers.

4.3 Cilk Garbage Collection

In this section I will describe the method by which Julia performs garbage collection

with Cilk workers. The algorithm for garbage collection was described in section 2.2

and the updates for the Cilk integration in section 3.2. The steps of the Julia garbage

39

collector that occur in order are:

1. Garbage created on the heap

2. Garbage collection initiated

3. Each cilk worker comes to a safepoint

4. Cilk Root Discovery

5. (mark) Garbage collector scans through thread stacks to find roots

6. (sweep) Reclaim space occupied by unmarked objects

7. Threads resume as before

Each component will be described in a separate subsection below. These will cover

the changes necessary to combine the Julia and Cilk runtimes.

4.3.1 Garbage Created on the Heap

Julia sends work to the Cilk workers and executes work for the Julia runtime. Func-

tions are run on Cilk using parallel workers for work stealing as outlined in the Cilk

[21] paper. Roots are created during normal worker operation inside of 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in

the reducer. When work for a stack section is complete, the corresponding 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠

are popped and the allocated memory remaining becomes garbage. The unused mem-

ory needs to be reclaimed by the garbage collector.

One important component that differs is the accessing of variables on the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘.

Whenever more stack is allocated on Cilk workers, the access for 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 needs to

be different from regular Julia accessing. These linked lists can be scanned during

garbage collection to identify any roots. The Cilk workers have a different access

pattern because 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 live in the reducer. Whenever a worker steals work the

current current place of the linked list head changes. As described in section 3.2.3,

Cilk workers maintain a view of their current 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 in the reducer. On a new stack

allocation or stack pop, Julia queries whether the code is executing on a Cilk worker

40

or Julia thread through an insertion call to LLVM code. The combination LLVM code

handles each incoming request to a 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘. In the latter case the lookup is just

as before: finding the previous 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 on that threads 𝑝𝑡𝑙𝑠. In the Cilk case, the

Julia runtime identifies the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 from the reducer on the executing worker. The

current view of the stack for the worker is always up to date within the hyperobject.

The lookup allows regular Julia threads to work normally while capturing all the

roots inside of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 mechanism for a Cilk worker.

4.3.2 Garbage Collection Initiated

At some points during collection, the Julia runtime decides enough garbage has been

created and one thread initiates garbage collection. The collection can occur on a

Julia thread or a Cilk worker. The worker/Julia thread which initiated the garbage

collector becomes the thread which leads garbage collection for the remainder of this

garbage collection cycle. Garbage collection can occur on any worker so Cilk workers

must have the ability to perform garbage collection. Julia’s current mechanisms are

sufficient in allowing a Cilk worker to run the garbage collector code.

4.3.3 Workers Find Safepoints

Each thread, Cilk worker or Julia thread, discovers a safepoint to stop at when trying

to allocate more objects. As discussed in section 3.1, Cilk workers now have the

ability to enter a wait loop. Julia sends instructions to Cilk workers whenever they

try to allocate memory on the heap to safepoint. They stay in the looping phase until

the lead thread/worker has completed the process of garbage collection.

Workers are not all executing Julia code. The Cilk worker thieves are executing

the work stealing loop in the Cilk runtime and cannot reach a safepoint. They will

never reach a safepoint and Julia would never continue executing. To account for

this, the integration marks each worker that becomes a thief as being at a safepoint

with a callback to Julia. On a steal, and therefore switching to executing Julia code

again, the worker exits the safepoint section and moves back to regular execution,

41

with another callback, that is not safe to garbage collect upon.

4.3.4 Cilk Root Discovery

The garbage collector needs to find all roots in the runtime. In Julia this is done

with 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠. As mentioned above, these stacks form a linked list of roots. New

roots create an extension of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 while popping roots removes them from

the linked list. The garbage collector from Julia needs to know all possible roots in

the Cilk runtime.To achieve this, two different parts of the Cilk runtime are scanned.

The first of these are the current 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 that exist in the reducer view of each

worker. These are the current heads of the linked list which contains all prior roots

created in this fiber (a section of work done on a worker) within this Cilk worker. All

of the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 from the Cilk workers are combined into a list that can be scanned

to discover all previous roots.

Another important area which could contain roots are suspended Closures, de-

fined in section 2.1. Whenever a worker completes a section of work and becomes a

thief, there is a possibility a child computation is still executing on a different worker.

The steal caused the worker executing the continuation to have an empty 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘

(creation of a new identity 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘, Figure 3-2) and therefore the roots in the sus-

pended Closure are not captured in the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 of the Cilk workers. These are

now dangling roots that also need to be marked. The Closure that contains work

when the worker becomes a thief remains with roots that are vital to execution. The

Closure becomes suspended and awaits for all child computations to complete. The

suspended closures inside of the Cilk runtime need to be discovered for its root point-

ers. The suspended Closures are iterated through from the root of the Closure tree.

Each Closure has its own local view of the Reducer view and allows the glue code to

discover all remaining 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 from suspended Closures in the Cilk runtime.

Together the list of 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in each of the workers and the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in the

suspended Closures is returned to the Julia garbage collector for the mark phase.

42

4.3.5 (Mark) Garbage Collector Scans Through Thread Stacks

to Find Roots

Julia iterates through the list of Cilk 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 objects to discover all possible roots.

The 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 are added to the garbage collector stacks in the same manner as for

regular Julia threads. Julia tasks created the roots on Cilk stacks so Julia knows how

to mark and sweep its own 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 from Cilk workers. The garbage collector will

be able to unpack all of these 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 to discover all possible roots.

4.3.6 (Sweep) Reclaim Space Occupied by Unmarked Objects

Now that Julia has all necessary 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 from the Cilk runtime, garbage collection

can occur as normal. The mark and sweep phases occur on all discoverable roots in

the Julia threads and Cilk workers. The discoverable roots are in 3 aspects of the

program: Julia 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠, Cilk workers 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 from the reducer, and the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠

inside of suspended Closures.

4.3.7 Threads Resume as Before

Garbage collection ends and all threads are sent a signal to continue execution as

before. The runtime is back to regular operation. Cilk workers and Julia threads can

continue executing as before, now with less garbage on their heaps.

43

44

Chapter 5

Analysis

In this section I will be providing analysis on the Julia and OpenCilk integration. In

design of the integration system, a few aspects appeared to be vital. OpenCilk was

designed to be a modular system in the compiler and runtime. One major goal was

to be able to integrate OpenCilk and Julia with minimal changes to either system.

After a completion of the integration, it is worthwhile to go through and evaluate

different aspects of the design and determine of the original goals were achieved.

Changes were made in 3 main components: the Julia codebase (runtime and

compiler), Opencilk codebase (runtime), and glue code akin to a library but currently

exists inside of the Julia runtime. A majority of the changes were in the glue code

that currently lives alongside the Julia runtime. In the following sections I will break

down each of the parts that were changed and evaluate the changes to assist future

runtime combinations. This thesis is meant as an exploration and case study in

runtime integrations of OpenCilk, Julia, and future languages.

5.1 Glue Code

The glue code was designed to be similar to a library which Julia users could choose

to use or to leave out. The goal is to have a majority of the changes inside of the glue

code.

Inside of the glue code are multiple parts:

45

1. The Cilk reducer to store all stack allocated roots inside the Cilk workers

2. Cilk reducer functions and definition

3. 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 lookup functions to determine if the work executed is on a Cilk worker

or Julia thread for LLVM

4. Cilk initialization code to create the 𝑝𝑡𝑙𝑠 variables on each of the Cilk workers

correctly

5. Cilk closure iterator

6. Cilk 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 linked list discovery through a Cilk reducer

7. Cilk stop the world functionality

8. Cilk initialization callback

9. Cilk garbage collection safepoint callbacks

All of these changes are vital to the integration. The proposed changes have a

majority of the code inside of the glue code to achieve the goal of minimal changes

to either of the existing runtimes. The glue code sits between the two runtimes to

describe interactions between them.

5.2 Cilk Minimal Code Change

In this section I will evaluate the changes made to the OpenCilk runtime. These

changes were designed to be minimal to allow easier incorporation between the two

systems.

The main changes in the Cilk runtime were the initialization of the system, en-

tering a worker stealing section callback, and entering thief section callback. The

OpenCilk runtime has updates to allow Julia to register reducers with the Cilk run-

time and to add initialization functions during startup. The functionality allows the

Cilk runtime to incorporate easier with the Julia runtime. There are 3 callbacks

46

added to Cilk to complete the integration. The startup callback to initialize the

workers correctly, a callback to change the 𝑝𝑡𝑙𝑠 of a Cilk worker when becoming a

thief, and a callback to change the 𝑝𝑡𝑙𝑠 of the Cilk worker when starting to execute

work (leaving the work-stealing loop). The callback design previously existed in Cilk

to add functions which ran at the startup of the runtime or the termination of the

runtime. The integration code in Cilk adds callbacks functionality to add foreign code

without adding any Julia specific code itself. The OpenCilk codebase has changed

around 50 lines total in the integration work.

In addition to changes meant for the Julia integration, the Cilk runtime now has

new methods for:

1. Iterating over all worker reducer views of a system given the workers. Cilk did

not have a mechanism for discovering all current worker views of a reducer with-

out the reducer executing the code. For example, if worker 1 wanted to see their

local view of a variable inside a reducer it could use the 𝑅𝐸𝐷𝑈𝐶𝐸𝑅_𝑉 𝐼𝐸𝑊

function; however, if the Cilk runtime desires the local view of worker 1’s vari-

able there was no functionality to do so. Previously, the main way to access

a reducer view of a specific worker was to be executing on the worker itself.

The Julia garbage collector requires the views of Cilk workers without actaully

executing code from this worker. A new function was created which allows the

Cilk runtime to iterate over all views of Cilk workers. The feature was necessary

to find any live 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in the system but the addition can be used for future

work with Cilk. Of note: the new view of every worker is not thread-safe; in

the Julia integration every worker is in a stop the world state during garbage

collection and was not a consideration for this thesis. One should be careful

using the lookup of a reducer view on a worker when the view could be changing

if the worker is executing work.

2. Another addition to the Cilk runtime is the ability to scan through the Closure

tree starting from the root Closure. The integration design requires a scanning

of all Closures in the Closure tree. These contain all relevant 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 for the

47

Julia integration, but are not specific to the integration. The functionality was

not built into Cilk but was added with this thesis. The code is useful for future

work with Cilk to allow the scanning of internal data structures.

These changes to the Cilk runtime are minimal. The new functionality is also a

benefit to the overall Cilk system because they are useful for future applications.

5.3 Julia Code Changes

In this section I will evaluate the changes made to the Julia runtime. The changes

involve using the glue code to track the Cilk runtime during execution. The glue code

currently exists within the Julia runtime source code, however it was designed to be

moved out of Julia and used as a library. The changed sections are listed below:

1. Garbage collection iterates over 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠 in the Cilk runtime used by Cilk

workers

2. Garbage collection calls to the glue code to retrieve Cilk stacks

3. Lookup of Cilk worker 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 during garbage collection

4. Callbacks into the OpenCilk runtime to discover Cilk state

5. LLVM compilation changes calling a 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 of Cilk workers or Julia threads

6. Compiler updates to include changes from OpenCilk

These changes are necessary to allow the combination to exist. The change in the

system to use an extra runtime with glue code and compiler support requires there

to be changes in the central runtime. While there are multiple locations that code

was changed, many of these areas was expanding on the currently used functionality

within the Julia runtime. For example, after the glue code returns a list of 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠

the garbage collector must iterate over, the existing Julia functionality adds these

𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 pointers to the garbage collector. While these changes are Julia specific, the

methodology for combining OpenCilk with a precise garbage collector is not.

48

5.4 Speed Evaluation

In this section I will evaluate the changes as it pertains to compilation and execution

speed. The proposed changes to the Julia runtime should not effect the performance

of the overall system as a design goal.

5.4.1 Compilation Time

The proposed changes currently have an impact on the compilation of the Julia sys-

tem. The compilation times are slower likely because of the LLVM lowering step that

add extra time to the compilation of Julia. The lowering step is forking to decide

if the 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘 should be evaluated from the Cilk worker or the Julia thread which

is currently believed to be the unoptimized slowdown. This is an area of continued

research to detect the actual increase in compilation time and discover a fix to the

issues.

5.4.2 Execution Time

The integration requires more development to be able to test execution time. When

completed, the benchmarks of the integration should resemble the speed of their re-

spective languages. The OpenCilk workers, excluding garbage collection time, should

see minimal performance degradation to using OpenCilk workers outside of Julia.

Julia’s garbage collection execution time should be similar to Julia without the inte-

gration but with the added time of scanning extra stacks on the Cilk workers.

49

50

Chapter 6

Related Work

In this chapter I will discuss how other languages handle parallelism and previous

work in the combination of runtimes.

6.1 External Objects in Julia

Julia contains functionality to add external objects to the runtime. These can be

used as roots to objects the a program and garbage collected within Julia’s garbage

collector. The method is used for some libraries to enable programmers to extend

the Julia language with new objects without writing a new garbage collector. GAP is

a Julia extension which utilizes the functionality. GAP [13] uses external objects to

Julia, creates the objects in the Julia runtime and provides callback functions to the

garbage collector for mark and sweep. The mark phase is required, by Julia, to mark

all objects still in use at the program and sweep defines how the objects can be swept

away. The functionality allows GAP to act as an extension to the runtime/garbage

collector. The approach is useful because GAP can create a library for Julia with

external types that are managed by Julia’s built in systems. While executing code

for the GAP extension, Julia does not understand what the new foreign types are

but is supplied with enough detail to garbage collection them. The initial approach

to this thesis was to use Julia’s external garbage collector module similar to GAP.

One downside of this approach was having to re-write systems already in use by

51

Julia on Cilk workers. The Julia runtime is sending work with predefined objects

to the Cilk runtime so while the objects may not be allocated on Julia threads, the

runtime has inclinations about the types of objects and their state data in 𝑝𝑔𝑐𝑠𝑡𝑎𝑐𝑘𝑠.

In a situation where external objects were necessary to the runtime combination,

the external object allocator Julia features come in useful. The minimal extension

approach proposed in this thesis is more integrated with Julia: the runtime creates

roots on Cilk’s stacks and already knows how to treat it (there are no external types).

The system proposed is a closer integration to allow Cilk to be shipped with Julia.

6.2 MPI OpenMP

One attempt at combining two runtimes for parallelization is MPI [7] and OpenMP

[3]. MPI is a message passing interface which can work on shared distributed mem-

ory. OpenMP is an implementation of a multithreading interface used commonly for

parallel computing. Inside of OpenMP, there exists a primary thread which forks a

specific number of sub-threads. These receive tasks to be executed on top of them.

Inside of the combination of MPI and OpenMP [26], there is a way where the two

are able to be used together as a hybrid system. The combined system often suffers

from poor scaling with load imbalance, too fine a grain problem size, memory limita-

tions, and poor optimization [18]. The over-subscription of processor cores causes the

overall program to be sometimes slower than doing just OpenMP or MPI separately.

In the work done by Capello et al., the authors discovered the parallel processing

benefits depended largely on the hardware system and the level of shared memory

in the system. In the combination of MPI and OpenMP, the user must be knowl-

edgeable about the type of system and have a large amount of knowledge in how to

write efficient parallel code. Over-subscription can lead to worse performance in a

combined parallel system than using MPI alone.

Another attempt [22] at creating a parallel version of MPI uses pthreads as the

parallelism framework. The authors created an algorithm for efficiently spawning

threads to enable intra-node and inter-node balancing of work. The efficiency is

52

again architecture dependent requiring the programmer to have knowledge about the

system reducing the portability of the system. The Cilk-Julia integration tries to

avoid the dependency of a programmer to have a vast knowledge of writing efficient

parallel programs. The fine-grain nature of work stealing in OpenCilk achieves this

goal.

6.3 Parallel Machine Learning Frameworks

Another set of systems combinations with parallel code are machine learning frame-

works called from user code. Some machine learning frameworks assume they have

full control over the system when they receive work. This works great for perfor-

mance if the framework is exclusive; however, if the program continues executing work

alongside the framework execution then the system fights for computation power. In

addition, a system may have work from other programs executing work at the same

time on a machine. When systems compete, parallel partitions of work will have

to wait while others execute. A lack of dynamic scheduling or balancing causes the

different programs to fight over the resources. TensorFlow [14] is an example of a

machine learning framework utilizing pthreads. When training is occurring, over-

subscription of threads can occur leading to performance degradation [28]. This is a

situation where a fine-grain parallelism framework such as Cilk would be beneficial:

threads are not explicitly tied to work and users create areas where threads can take

advantage of parallel execution to offer performance in practice. The Cilk-Julia com-

bination presented in this thesis strives to achieve an efficient threading model which

scales with amount of work. If all work is done inside of Cilk-Julia in parallel then

the system will not get oversubscribed because OpenCilk’s scheduler will be aware of

other processes occurring.

53

54

Chapter 7

Conclusion

This thesis presents a case study on combining two runtimes. The OpenCilk and Julia

integration is elegantly created to offer users a simple abstraction to show the Julia

compiler where parallelism exists within a program. The integration of the runtimes

is minimal and utilizes many of the existing Julia and OpenCilk interfaces. This

chapter includes contributions and future avenues of work for the integration.

This work makes several contributions to the runtime combination of OpenCilk

and Julia. I demonstrated an approach to combining two different runtimes and allow

them to work together. A novel algorithm was developed for managing Julia roots

on OpenCilk’s worker cactus-stack. The algorithm depends on changes in the Julia

runtime, OpenCilk runtime, and combination glue code. Specifically, a reducer hy-

perobject is used to manage the stacks on Cilk workers at all times. This hyperobject

allows the Julia garbage collector to discover roots of a program on Julia threads

and Cilk workers. I created a new method for managing objects on a Cilk stack by

utilizing the Julia methods that already exist within the runtime. While aspects of

the Julia and OpenCilk combination are solved, there are more avenues that need to

be explored. My work leaves several continuation points for future work.

55

7.1 Future Work

Some aspects of the the runtime integration need to be completed. Parts of the

combination are not working correctly such as finalizers inside of Julia. The Julia

runtime creates the ability to run code on top of the garbage after each garbage

collection run, known as a finalizer. In the current integration finalizers have been

removed and need to be worked on more. There are extra steps that need to be

accounted for when running a finalizer on a Cilk stack to coordinate.

Another aspect requiring more work to complete the integration is to have 𝑤𝑜𝑟𝑙𝑑−

𝑎𝑔𝑒 inside the 𝑝𝑡𝑙𝑠 work with Cilk workers. The age is required for aspects of the

language and is currently not tracked correctly when executing on Cilk workers. This

is a state of the thread-local storage which requires more exploration. It may need to

exist in a separate reducer or more logic could be necessary in the Cilk runtime. An

update to Julia is moving the 𝑤𝑜𝑟𝑙𝑑 − 𝑎𝑔𝑒 out of the 𝑝𝑡𝑙𝑠 in the future. When the

update occurs, the integration will be required to update also.

56

Bibliography

[1] C library function - longjmp() - Tutorialspoint. https://www.tutorialspoint.
com/c_standard_library/c_function_longjmp.htm, (accessed 2021-05-19).

[2] The Go Programming Language. https://golang.org/, (accessed 2021-05-19).

[3] Home. https://www.openmp.org/, (accessed 2021-05-19).

[4] Java | Oracle. https://www.java.com/en/, (accessed 2021-05-19).

[5] The Julia Programming Language. https://julialang.org/, (accessed 2021-
05-19).

[6] The LLVM Compiler Infrastructure Project. https://llvm.org/, (accessed
2021-05-19).

[7] MPI Forum. https://www.mpi-forum.org/, (accessed 2021-05-19).

[8] Multi-Threading · The Julia Language. https://docs.julialang.org/en/v1/
base/multi-threading/#Base.Threads.@spawn, (accessed 2021-05-19).

[9] OpenCilk. https://cilk.mit.edu/, (accessed 2021-05-19).

[10] pthreads(7) - Linux manual page. https://man7.org/linux/man-pages/man7/
pthreads.7.html, (accessed 2021-05-19).

[11] Welcome to the libuv documentation — libuv documentation. http://docs.
libuv.org/en/v1.x/, (accessed 2021-05-19).

[12] OpenCilk/cheetah. May 2021. https://github.com/OpenCilk/cheetah, (ac-
cessed 2021-05-19).

[13] oscar-system/GAP.jl, April 2021. https://github.com/oscar-system/GAP.
jl, (accessed 2021-05-19).

[14] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale machine
learning. arXiv:1605.08695 [cs], May 2016. arXiv: 1605.08695.

57

https://www.tutorialspoint.com/c_standard_library/c_function_longjmp.htm
https://www.tutorialspoint.com/c_standard_library/c_function_longjmp.htm
https://golang.org/
https://www.openmp.org/
https://www.java.com/en/
https://julialang.org/
https://llvm.org/
https://www.mpi-forum.org/
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@spawn
https://docs.julialang.org/en/v1/base/multi-threading/#Base.Threads.@spawn
https://cilk.mit.edu/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
http://docs.libuv.org/en/v1.x/
http://docs.libuv.org/en/v1.x/
https://github.com/OpenCilk/cheetah
https://github.com/oscar-system/GAP.jl
https://github.com/oscar-system/GAP.jl

[15] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98, January
2017.

[16] Robert D Blumofe. Scheduling Multithreaded Computations by Work Stealing.
page 29.

[17] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime
System. page 11.

[18] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on the IBM SP for the
NAS Benchmarks. In ACM/IEEE SC 2000 Conference (SC’00), pages 12–12,
Dallas, TX, USA, 2000. IEEE.

[19] Ulrich Drepper. ELF Handling For Thread-Local Storage. page 81, 2013.

[20] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin.
Reducers and other Cilk++ hyperobjects. In Proceedings of the twenty-first
annual symposium on Parallelism in algorithms and architectures, SPAA ’09,
pages 79–90, New York, NY, USA, August 2009. Association for Computing
Machinery.

[21] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. ACM SIGPLAN Notices, 33(5):212–223,
May 1998.

[22] Juan F.R. Herrera, Leocadio G. Casado, Remigijus Paulavicius, Julius ilinskas,
and Eligius M.T. Hendrix. On a Hybrid MPI-Pthread Approach for Simplicial
Branch-and-Bound. In 2013 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum, pages 1764–1770, May 2013.

[23] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E. Leiser-
son. Using memory mapping to support cactus stacks in work-stealing runtime
systems. In Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques - PACT ’10, page 411, Vienna, Austria, 2010.
ACM Press.

[24] I-Ting Angelina Lee and Tao B. Schardl. Efficiently Detecting Races in Cilk
Programs That Use Reducer Hyperobjects. In Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and Architectures, SPAA ’15, pages
111–122, New York, NY, USA, June 2015. Association for Computing Machinery.

[25] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
Fork-Join Parallelism into LLVM’s Intermediate Representation. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 249–265, Austin Texas USA, January 2017. ACM.

58

[26] Lorna Smith and Mark Bull. Development of mixed mode MPI / OpenMP
applications. Scientific Programming, 9(2,3):83–98, 2001. Publisher: IOS Press.

[27] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina
Lee. Provably Good and Practically Efficient Parallel Race Detection for Fork-
Join Programs. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’16, pages 83–94, New York, NY, USA, July
2016. Association for Computing Machinery.

[28] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu, Junxue Zhang, and Kai
Chen. RAT - Resilient Allreduce Tree for Distributed Machine Learning. In 4th
Asia-Pacific Workshop on Networking, APNet ’20, pages 52–57, New York, NY,
USA, August 2020. Association for Computing Machinery.

59

	Introduction
	Background
	OpenCilk Overview
	Cilk Runtime System
	Cilk Reducer Hyperobjects

	Julia Overview
	Threading Model
	ptls Pointers
	pgcstack
	Garbage Collection
	LLVM

	Runtime Integration
	Stop the World in Cilk
	Garbage Collection Algorithm
	Design Considerations
	Finding Roots on Cilk workers
	Cilk Garbage Collection Algorithm
	Cilk pgcstack Reducer

	In-depth Reducer and Closure Mechanism
	Cilk stacks

	Implementation
	Design Decisions
	Initializing Cilk in Julia
	Cilk Garbage Collection
	Garbage Created on the Heap
	Garbage Collection Initiated
	Workers Find Safepoints
	Cilk Root Discovery
	(Mark) Garbage Collector Scans Through Thread Stacks to Find Roots
	(Sweep) Reclaim Space Occupied by Unmarked Objects
	Threads Resume as Before

	Analysis
	Glue Code
	Cilk Minimal Code Change
	Julia Code Changes
	Speed Evaluation
	Compilation Time
	Execution Time

	Related Work
	External Objects in Julia
	MPI OpenMP
	Parallel Machine Learning Frameworks

	Conclusion
	Future Work

