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Abstract
Intracranial pressure (ICP) is a cranial vital sign for monitoring patients with head in-
juries and to guide treatment decisions. Clinical ICP measurements are highly invasive and
hence, ICP measurement is limited to critically ill patients. We present a spectral approach
to model-based noninvasive ICP estimation, relying on a second-order circuit model of
cerebrovascular physiology. We estimate ICP in the frequency domain, from arterial blood
pressure and cerebral blood flow velocity waveforms. When validating our algorithm on
two clinical patient cohorts of eight and a half hours, with measured ICP ranging from
1.3 mmHg to 24.8 mmHg, we achieved an accuracy and precision of 0.1 mmHg and 5.1
mmHg, respectively. Additionally, we designed an experimental porcine model to titrate
the ICP in a predetermined manner over a wide range. This experimental model resulted in
a rich dataset comprising 35 hours of data from eight pigs, with measured ICP ranging from
2.1 mmHg to 78.2 mmHg. We obtained an accuracy of 1.6 mmHg and a precision of 5.2
mmHg in estimating ICP on the porcine data. To evaluate our estimates’ ability to correctly
classify elevated ICP (defined as ICP>22 mmHg), we obtained an area under the receiver
operating characteristic curve of 0.94. Additionally, the algorithm achieved a sensitivity of
0.88 and a specificity of 0.87 in this binary classification task at a noninvasive ICP thresh-
old of 22 mmHg. Clinically, missing an episode of elevated ICP or under-treatment can
have potentially fatal consequences, and we demonstrated that with appropriate margins on
the classification thresholds, the probabilities of these events are less than 1%, using our
noninvasive ICP estimates. Finally, we obtained a correlation coefficient of 0.89 between
our estimates and the measured ICP, indicating a high degree of capturing underlying varia-
tions in measured ICP. Our algorithm’s performance is well within the clinically acceptable
range and comparable or superior to past attempts at estimating ICP noninvasively reported
in literature. We believe that the work presented here takes a significant step towards realiz-
ing the clinical dream of implementing a real-time, noninvasive ICP measurement modality
in a calibration-free and patient-specific manner at the bedside.

Thesis Supervisor: Thomas Heldt
Title: Associate Professor of Electrical and Biomedical Engineering
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Chapter 1

Introduction

Neurological injuries and disorders of the brain are responsible for a significant fraction

of the worldwide hospitalizations annually [14, 15]. Traumatic brain injuries (TBI) are

primarily caused by contact injuries, and account for almost 2 million hospitalizations an-

nually [16, 17]. Hemorrhagic strokes result in accumulation of blood in an intracranial

space and shifting of cerebral structures, and need to be managed expeditiously [18, 19].

Hydrocephalus is another neurological condition, common in children and patients recov-

ering from previous neurological damage. It results in accumulation of fluid in the region

surrounding the brain. Brain tumors, cerebral malaria, tuberculous meningitis are all re-

sponsible for further increasing the clinical neurological burden worldwide [20, 21].

Most of these neurological conditions can be acutely life threatening in nature and

require immediate pharmacological or surgical intervention, and continuous monitoring

of the patient to ensure favourable outcomes. Moreover, these disorders are also usually

characterized by an increase in the compartmental pressure within the skull, referred to as

the intracranial pressure (ICP). Hence, the diagnosis, treatment, and monitoring of patients

with such conditions heavily rely on accurate measurement of this cranial vital sign, ICP.

ICP is defined as the hydrostatic pressure of the cerebrospinal fluid (CSF) that bathes the

brain tissue, and normally ranges from 5 mmHg to 15 mmHg in healthy, supine adults.

While ICP is routinely monitored in neuro-ICUs and neurocritical care units around

the world, the clinically accepted modalities for measuring ICP are highly invasive. These

approaches require drilling a hole in the skull and inserting a catheter or transducer into
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the intracranial space, thus leading to a risk of cerebral damage, infections and inducing

new hemorrhages. Due to its invasive nature and need for neurosurgical expertise, ICP

measurement is limited to a small subset of critically ill patients, thus potentially depriv-

ing a larger patient pool who could benefit from this cranial vital sign. Hence, significant

research efforts worldwide have been dedicated to the development of an accurate and ro-

bust noninvasive ICP measurement scheme, that could replace or complement the existing

invasive methods. While several attempts have been made to solve this clinically important

problem, achieving accurate, continuous noninvasive ICP estimates in a calibration-free

and patient-specific manner has remained elusive. While several data-driven approaches

have been attempted in the past, the use of model-based approach is extremely attractive

due to its tractable nature and the physiological basis of the model parameters. In this

thesis, we aim to build upon some of these past attempts [6, 7] to develop and implement

a spectral model-based approach to noninvasive ICP estimation, and validate our results

on two clinical patient cohorts and in an experimental porcine model, all independently

recorded by us.

1.1 Specific Aims

Motivated by past attempts at model-based attempts and their limitations, we propose the

following specific aims for our estimation framework:

1. Develop a model-based, calibration-free, patient-specific approach to noninvasive

ICP estimation by implementing a spectral algorithm on a simple, tractable, lumped-

parameter circuit model of the cerebrovascular physiology.

2. Design and deploy a custom data acquisition system for archiving high-resolution

physiological waveforms from multiple devices and important ancillary-data from

the bedside, on a common time axis

3. Design a reproducible experimental porcine model for altering the cerebrospinal state

of the animal over a wide range of ICP values, in a predetermined manner, and to

observe the physiological and hemodynamic response of the animal
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4. Validate the accuracy and robustness of our spectral noninvasive ICP estimation al-

gorithm in a comprehensive manner on clinical data recorded from neurologically

injured patients at local hospitals, and on the rich porcine model cohort, while quan-

tifying the estimation performance at varying levels of clinical accuracy

1.2 Thesis Structure

In Chapter 2, we review the relevant cerebrovascular and CSF physiology, to understand

the clinical significance of ICP as a key cranial vital sign. We then review the currently

accepted clinical standards for ICP measurement, and discuss the inherent risks associated

with their invasiveness. Thus, we motivate the pressing need for a noninvasive ICP mea-

surement modality, and review past attempts at solving this problem, while focusing on two

model-based approaches that motivated our work.

In Chapter 3, we detail our proposed model-based spectral algorithm of noninvasive

ICP estimation. We describe our model of craniospinal physiology, capturing the interplay

between blood flow through a major cerebrovascular territory and ICP. We then detail the

steps involved in our spectral algorithm to estimate ICP noninvasively in a patient-specific

manner. This chapter was published in [22].

In Chapter 4, we describe the motivation, design and deployment of a custom data

acquisition system at Boston Medical Center, for archiving multiple high-resolution physi-

ological data streams on a common time axis. We describe the data acquisition protocol at

the bedside, along with the multiple data streams and meta-data recorded. We then detail

the clinical datasets recorded from two independent patient cohorts, that served as valida-

tion datasets for our spectral algorithm. Finally, we present the estimation performance of

our algorithm on these patient datasets, and briefly discuss the clinical significance of these

results.

In Chapter 5, we describe the inherent limitations of using patient data for neurolog-

ical validation studies, and motivate the development of a novel large animal model to

overcome these challenges. We then describe the choice of a porcine model and the ex-

tensive preparatory work undertaken to understand and overcome some of the anatomical
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challenges posed by a porcine model. Finally, we describe the experimental protocol for

altering the ICP in a predetermined manner, over a wide range of cerebrospinal states, and

monitoring the physiological response of the animal.

In Chapter 6, we present the experimental census and statistics obtained from the

porcine model, and demonstrate its success in overcoming the challenges posed by hu-

man neurological data. We then describe the framework of quantifying our algorithm’s

estimation performance in a comprehensive manner on this rich dataset, at varying degrees

of clinical accuracy. Finally, we present the estimation results at these different levels of

accuracy and prove the robustness of the algorithm’s performance.

In Chapter 7, we analyze the algorithm’s estimation performance on the porcine model

dataset, by comparing the results to those of the currently accepted invasive ICP probes,

as reported in literature. We also compare our algorithm’s performance to past attempts at

noninvasive ICP estimation and to our estimation performance on the patient cohorts, to

assess the robustness of our approach. We then discuss some of the limitations and sources

of error identified in our current work, and suggest potential avenues to further improve

on these results. Finally, we summarize our contributions, and detail the future work left

to be undertaken, both short-term and long-term, to gain a better understanding of the

cerebrovascular dynamics and to clinically realize the goal of taking these model-based

noninvasive ICP measurement modalities to the bedside.
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Chapter 2

Background

ICP is defined as the hydrostatic pressure of CSF that bathes the brain tissue, and typically

ranges from 5 mmHg to 15 mmHg. ICP is a cranial vital sign for diagnosing, monitoring,

and guiding treatment decisions in patients with a variety of neurological injuries, some

of which were described in the previous chapter. In this chapter, we begin by reviewing

the cerebrovascular physiology and the dynamics of CSF circulation, to formalize the def-

inition of ICP. We then explore the reason why ICP is an important neurological indicator,

and how ICP is routinely monitored in patients by invasive means. We discuss the risks and

limitations of the clinically accepted invasive ICP measurement modalities, thus motivat-

ing the pressing need for an accurate noninvasive ICP measurement modality. Finally, we

briefly review the diverse attempts at noninvasive ICP estimation in literature, and focus on

the two model-based approaches by Kashif et al. [6] and Noraky et al. [7]) that serve as the

foundation for our spectral model-based approach at noninvasive ICP estimation.

2.1 Physiological Background of ICP

2.1.1 Cerebrovascular physiology

The brain is a soft tissue located within the rigid cranium or skull, and surrounded by

meningeal layers. The brain is bathed by CSF, which provides mechanical support, buoy-

ancy and a suitable chemical environment for the brain tissue [23, 24]. CSF is produced
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by a specialized capillary network , the choroid plexus, mostly in the CSF-filled lateral

ventricles of the brain by passive and active filtration of the blood plasma. From the lateral

ventricles, CSF flows through the foramen of Monro into the third ventricle, before reach-

ing the fourth ventricle through the cerebral aqueduct. Finally, the CSF empties into the

subarachnoid space through the foramina of Magendie and Luschka, where it circulates be-

fore getting reabsorbed into the venous system through projections, called arachnoid villi.

At steady-state, the volume of CSF circulating in the body is maintained constant by bal-

ancing the rates of formation and reabsorption. Moreover, the composition of CSF is kept

independent of the blood by regulation of the blood-brain and blood-CSF barriers. The

ventricular system and pathway of CSF flow is shown in Figure 2-1.

Figure 2-1: Sagittal slice of the brain depicting the ventricular system and pathway of CSF
flow from formation at the choroid plexus to reabsorption by the arachnoid villi. Image
adapted from [1].

The metabolic demands of the brain are met by a dense network of arteries, veins and

capillaries. A pair of internal carotid arteries, arising from the common carotid arteries are

responsible for a major portion of the oxygenated blood supplied to the brain tissue. The

rest of the oxygenated blood is supplied by a pair of vertebral arteries. Upon entering the

skull through the foramen magnum, these arteries anastomose at the base of the brain to
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Figure 2-2: Illustration of the cerebrovascular arterial network including the Circle of Willis
at the base of the brain. Image adapted from [2].

form a vascular ring-like structure, called the Circle of Willis. Three main pairs of arteries

arise from the Circle of Willis, each supplying blood to a different region of the brain. These

arteries are the Middle Cerebral Arteries (MCAs), Anterior Cerebral Arteries (ACAs), and

the Posterior Cerebral Arteries (PCAs). The arterial network of the brain is depicted in

Figure 2-2. These arteries branch into an extensive network of capillaries to perfuse all of

brain tissue and facilitate uptake of oxygen and excretion of carbon dioxide and metabolic

waste. The de-oxygenated blood drains into several venous sinuses, most notable of which

is the superior sagittal sinus, before they empty into the systemic jugular veins.

2.1.2 Significance of ICP

The rigid skull and relatively inelastic dura mater surrounding the brain tissue results in a

fairly constant volume of the intracranial space. Typically, the intracranial compartment

is composed of three main components – brain tissue or parenchyma (80%), CSF (10%)

and blood (10%). While the dura mater is relatively inelastic in the cranial space, the

dura covering the spinal canal can accommodate small increases in fluid volume. Hence,

small shifts in the intracranial volume are compensated by venous outflow into the jugu-

lar veins and by shunting small amounts of CSF into the dural sac surrounding the spinal
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canal. It is important to note here that these compensatory capacities are highly limited

(on the order of 30 cc), while the circulating CSF volume in an adult is usually around

150 cc [4, 25, 26]. Once these limited compensatory capacities are exhausted, any fur-

ther uncompensated shift or expansion in intracranial volume leads to an increase in the

compartment pressure. This manifests as an elevation in the ICP, defined as the hydro-

static pressure of the CSF. The resulting pressure-volume relationship in the intracranial

space is non-linear with two regimes - compensated and decompensated [27]. Langfitt et

al. [3] demonstrated this by placing an intraventricular balloon in monkeys and progres-

sively inflating it, thus simulating a space-filling lesion in the intracranial space. At smaller

balloon volumes, the intracranial system was found to be well-buffered by the aforemen-

tioned mechanisms, meaning that ICP did not increase appreciably. However, once these

compensatory reserves were exhausted, the system entered a highly non-linear unbuffered

or decompensated regime, where a slight increase in the intracranial volume led to a dras-

tic elevation in ICP, as shown in Figure 2-3. This nonlinear pressure-volume relationship,

based on the relatively fixed volume composition of the intracranial space is referred to as

the Montro-Kellie doctrine [28–30].

Perfusion to the brain tissue is maintained by regulating the volumetric cerebral blood

flow (CBF) in the vasculature. The primary driving force for CBF through the blood vessels

is the cerebral perfusion pressure (CPP), defined as the difference of the arterial blood

pressure (ABP) and the ICP [31, 32]. Under normal conditions, the CBF is maintained

constant over a wide range of CPP values by various complex control mechanisms, referred

to as cerebrovascular autoregulatory mechanisms. These mechanisms affect the vascular

tone by responding to changes in transmural pressure or blood gas concentrations, resulting

in constant CBF. As CPP decreases, the vascular smooth muscle dilates to increase flow

back to baseline and vice versa for an increase in CPP. However, these autoregulatory

mechanisms have limited thresholds of CPP over which they function. Beyond these CPP

thresholds, the vascular tone cannot be altered further, resulting in an approximately linear

relationship between the CPP and CBF. This results in a Lassen curve of cerebrovascular

autoregulation, shown in Figure 2-4.

Elevated ICP, known as intracranial hypertension, is associated with poor outcome in
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Figure 2-3: Illustration of Monro-Kellie doctrine depicting the nonlinear pressure-volume
realtionship in the intracranial space, based on experiments conducted by Langfitt et al. [3].
Image adapted from [4]

.

brain-injured patients [33, 34]. Substantial elevation in ICP, leads to a decrease in CPP be-

low the lower threshold of cerebrovascular autoregulation and hence leads to lower CBF,

poor perfusion and cerebral ischemia [27,31]. Extreme elevations in ICP can lead to herni-

ation of cerebral structures and potentially fatal outcomes [34]. These elevations in ICP are

caused by shifts in the volume of the intracranial compartments, and if not treated carefully,

could lead to the patient entering the unbuffered regime shown in Figure 2-3. Once in this

regime, ICP elevations are very dangerous owing to the steep pressure-volume relationship,

and thus the ICP needs to carefully monitored. Hence, ICP is an important cranial vital sign

that needs to be carefully monitored and titrated to remain within the normal range in pa-

tients with neurological injuries, to ensure they do not transition into the decompensated

regime, and to prevent significant elevations in ICP and poor clinical outcomes.
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Figure 2-4: Representative image of the Lassen curve for cerebrovascular autoregulation.
The volumetric CBF is maintained constant over a wide range of CPP values, which drives
the blood flow through the vasculature.

2.2 Current ICP Measurement Modalities

ICP is an important clinical indicator of neurological injury and is routinely monitored in

neurologically compromised patients, owing to the reasons outlined in the previous sec-

tion. The currently accepted gold-standards for clinical ICP measurement are highly inva-

sive, involving the drilling of a burr hole in the skull and carefully threading a catheter or

pressure transducer into one of the lateral ventricles or into the brain tissue (also called the

parenchyma) [31,35,36]. The former intraventricular approach is often implemented as an

external ventricular drainage (EVD) system to allow for measurement of ICP, while also

providing the option of draining out CSF to relieve episodes of elevated ICP. These EVD

systems are referenced at the level of the tragus, and are often re-calibrated to ensure ac-

curate readings over longer periods of time. The other gold-standard approach commonly

used for ICP monitoring involves the placement of a solid-state pressure transducer into

the brain parenchyma, and is hence referred to as an intraparenchymal ICP probe. While

both the intraparenchymal and EVD ICP measurements record the ICP waveform, clinical
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Figure 2-5: Image depicting the various invasive ICP measurement modalities. The two
clinically accepted gold-standards are the intraventricular (EVD) and intraparenchymal
probes, marked in green. Image adapted from [5].

decisions are primarily based on the the mean ICP, with the intra-beat dynamics largely

ignored for clinical purposes. The intraparenchymal ICP measurements are less invasive

than the EVDs, and are very useful when CSF drainage is not required or if EVD place-

ment is not recommended due to complications arising from cerebral edema and TBIs. The

intraparenchymal ICP probes cannot be re-calibrated once implanted and hence carry the

risk of drift in the measured ICP values. While EVDs and intraparenchymal ICP probes are

the clinical gold-standards, ICP can also be measured by placing pressure transducer in one

of several other intracranial spaces. However, these devices have largely been restricted to

research purposes as they can be inaccurate and suffer from significant drift [37–39]. A

schematic of the different possible ICP measurement modalities is shown in Figure 2-5.

2.2.1 Limitations of invasive ICP measurement

While the EVDs and intraparenchymal modalities are commonly used in neurocritical care,

they are highly invasive and require neurosurgical expertise to precisely place the device

in the correct intracranial location. The invasiveness also renders these modalities unsuit-

able for long-term monitoring of ICP and severely limits the patient population that could

potentially benefit from this vital sign. These invasive approaches also carry several addi-
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tional risks of further damaging the brain tissue or inducing intracerebral hemorrhages that

exacerbate the patient’s neurological injury. Kakarla et al. reported that out of 346 EVD

placements, around 23% were sub-optimally placed, and required re-positioning or removal

and re-attempting the EVD placement [40]. Each of these attempts is associated with a risk

of damaging the parenchyma [41] and causing a hemorrhage, with neurosurgeons often

attempting two or more times to accurately place the EVD in the correct location. Ortolano

et al. reported around 20% of EVD placements resulted in a small hemorrhage or ischemic

region [42]. Additionally, since these modalities require the drilling of a hole in the skull,

they carry a risk of infection by exposing the brain to harmful pathogens. Champey et al.

conducted a multi-center study in Europe and observed EVD-induced infection rates as

high as 7.2 % and 9.2% in two of the centers [43]. Another multi-center study by Jamjoom

et al. rreported EVD-induced infection rates of 9.3% among 452 patients [44]. Such infec-

tions are extremely dangerous and much higher than the reported infection rates of 0.7%

and 0.9% for placement of the commonly used venous and peripheral arterial catheters.

There are several other papers reporting the substantial risks of cerebral damage and EVD-

induced infections [41, 45–48]

The invasive ICP measurement approaches can also have inconsistencies in the reported

ICP values. Lescot et al. measured ICP using the Pressio intraparenchymal and the Cod-

man intraparenchymal devices, and independently compared the measurements from each

of these to the ICP measured simultaneously by an EVD [49]. They reported a bias of −0.6

mmHg and 0.33 mmHg with 95% limits of agreement of (−8.1 mmHg, 6.9 mmHg) and

(−6.7 mmHg, 7.1 mmHg) across 30 patients, for the Pressio and Codman intraparenchy-

mal devices, respectively. Brean et al. reported an accuracy of 0.7 mmHg and a precision

of 6.8 mmHg in over 218,000 simultaneous comparisons of ICP measured by an EVD and

intraparenchymal device [50]. While some of these discrepancies could be explained by

naturally occurring pressure gradients in the intracranial space [51], the residual errors be-

tween the invasive ICP probes provide a reference against which to compare the accuracy

and precision error metrics of the noninvasive approaches.
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2.2.2 Potential benefits of noninvasive ICP monitoring

Since the clinically accepted ICP measurement modalities carry the risks previously de-

scribed of further cerebral damage and introducing cranial infections, ICP monitoring is

only indicated in a small subset of critically ill patients. However, the patient population

that could benefit from ICP monitoring is vast and hence there is a pressing need to de-

velop a robust and accurate noninvasive ICP measurement modality. A noninvasive ICP

modality would allow for screening of patients with mild symptoms, where drilling a burr

hole is not warranted, but where the symptoms could be indicative of underlying neuro-

logical damage. Additionally, it would allow for early screening of patients at the site of

injury, at home or en route to the hospital, enabling early triage without the need for neuro-

surgical expertise. This is crucial since neurological injuries and intracranial hypertension

are often acute and can be life-threatening in nature, with the the probability of favorable

outcomes increasing significantly with early detection [13,34]. Another challenge with in-

vasive ICP measurement is that of patients with altered mental states. Identifying patients

who require an invasive ICP probe usually requires knowledge of the source of injury or

interrogating the patient, which is not feasible in patients with altered mental states or in

inebriated states. A concrete example is an inebriated patient arriving at a hospital’s Emer-

gency Department with a traumatic brain injury. Even though acute intracranial bleeds

can be ruled out with an initial head Computed Tomography (CT) scan, slowly developing

bleeds can alter the mental state of the patient. Hence, it is difficult to assess whether the

altered mental state is due to the source of the original inebriation or a developing intracra-

nial hypertension, which needs to be managed expeditiously. These cases would be greatly

benefited by a noninvasive ICP measurement, in order to guide treatment decisions. Fi-

nally, noninvasive ICP measurements could guide future research into the pathophysiology

underlying other disorders such as unexplained headaches and migraines [52, 53], as well

as shed light on poorly understood and hotly debated conditions, such as craniosynostosis,

for example [54]. These measurement modalities could also enable wider studies to better

understand the dynamics of cerebrovascular autoregulation. Hence, there is an immediate

need for the development of an accurate noninvasive ICP measurement modality to benefit
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a larger patient population, improve clinical outcomes by early diagnoses, and overcome

the substantial risks of the clinically accepted invasive modalities.

2.3 Noninvasive ICP Estimation

The development of a noninvasive ICP measurement modality has been an active area of

research for decades and several approaches have been proposed in the clinical and en-

gineering literature. Some of these approaches involve supplying a physical input to the

brain in a variety of ways, and recording the response. Ragauskas et al. proposed a novel

method of applying an external pressure on the eyeball to balance the retro-orbital pres-

sure with the ICP [55]. Similarly, ultrasonic approaches of detecting optic nerve distension

have been proposed, motivated by previously reported correlations between elevations in

ICP and increase in optic nerve sheath diameter [56–58]. Levinsky et al. proposed an

approach of estimating ICP by using transcranial acoustic signals [59]. Other approaches

involve measuring the deformation of the skull precisely and calibrating to estimate ICP

changes [60]. These approaches have been validated on patient cohorts over limited ranges

of measured ICP and importantly, require calibration for each patient. Moreover, these

approaches might not be widely usable as additional stimulation of neurologically injured

patients is not recommended.

Most of the current research focuses on leveraging the intrinsic relationship between

the ABP, CBF and ICP to estimate the ICP noninvasively in a data-driven or model-based

manner [4, 35, 36, 48, 61, 62]. Since volumetric CBF is not routinely measured, most of

these approaches adopt a measurable, linearly scaled parameter, the cerebral blood flow

velocity (CBFV). Some of these approaches correlate indices computed from the ABP

and CBFV waveforms with the ICP, using metrics such as pulsatility index (PI), resistiv-

ity index (RI) and pressure reactivity index (PRx) [63]. Several other reports utilize data-

mining and machine learning approaches to estimate the absolute ICP or predict varia-

tions in ICP, based on features extracted from ABP, CBFV and potentially other vital signs

[64–69]. These algorithms are trained on a subset of clinically recorded patient data or

simulated data, and the parameter values are generalized to estimate ICP on a wider valida-
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tion dataset. These approaches can estimate ICP continuously over long periods, but do not

give any pertinent information on the underlying physiology or sources of performance er-

ror, due to their physiology-independent black-box approach. The model-based approaches

rely on representing the cerebrovascular hemodynamics using models of varying complex-

ities, and developing algorithms to estimate the ICP in a physiologically tractable manner

– meaning the models are grounded in cerebrovascular physiology with each parameter

potentially representing a meaningful physiological analogue. These approaches have an

inherent trade-off between the higher complexity of models and the independence of pa-

rameter estimation. The higher order models capture complex cerebrovascular dynamics

more efficiently, but require the specification of several model parameters rendering it im-

possible to estimate ICP in a simple and calibration-free manner [6, 7, 9, 22, 70–78]. Here

we focus on two such model-based approaches, both relying on simple lumped-parameter

models of cerebrovascular physiology, developed by Kashif et al. [6] and Noraky et al. [7].

2.3.1 Model-based noninvasive ICP estimation

Figure 2-6: First-order circuit model of cerebral vasculature, as proposed by Kashif et
al. [6].

Figure 2-6 depicts a first-order circuit model of the a major cerebrovascular territory

proposed by Kashif et al. [6], and also further explored by Fanelli [9, 79] and Imadud-

din [78]. This model is inspired by the canonical Windkessel model of peripheral circu-
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lation, routinely used in cardiovascular literature. In the Kashif model, R represents the

viscous resistance to blood flow through the vasculature, while C models the lumped com-

pliance of the arterial walls and brain tissue. Hence, the transmural pressure across the

lumped compliance is the difference of the ABP at the inlet of the artery, pa(t), and the

external ICP, pic(t). The flow of blood through the resistance, R, is also driven by the pres-

sure gradient between the upstream ABP and effective downstream ICP, due to the Starling

resistor effect (further explained in the next chapter). Since volumetric CBF is not eas-

ily measurable, Kashif exploited the linear invariance of the model to replace CBF by the

CBFV, q(t), in the model. Kashif implemented a time-domain algorithm to estimate the ICP

on a window-by-window basis from simultaneously recorded ABP and CBFV waveforms,

in a three-step procedure. He first estimated the compliance, Ĉ, then the resistance, R̂, and

finally the noninvasive ICP, nICP. He assumed ICP was constant at its mean level within

each window, resulting in a single nICP estimate every estimation window,as clinical de-

cision making relies on mean ICP measurements only. The Kashif time-domain algorithm

performed accurately on a clinical dataset comprising 35 hours of data from 37 TBI pa-

tients, resulting in a bias of 1.6 mmHg and a SDE of 7.6 mmHg [6,77]. While these results

were extremely encouraging, the Kashif model had a fundamental drawback. The Kashif

algorithm required the approximation of an unquantifiable phase lag/time delay between

the ABP waveform, measured peripherally from the radial artery, and the CBFV waveform

recorded cerebrally from the MCA. This phase lag arises due to path length variations and

inherent physiological mechanisms, and the estimation performance was shown to be very

sensitive to this phase lag [9,22] and required significant consideration to estimate an opti-

mal phase lag [9]. However, the proven validation performance of a simple, tractable model

in a patient-specific manner was encouraging and motivated Noraky et al. to develop a sim-

ilar model-based approach using a second-order model of the cerebral vasculature [7, 80].

Noraky attempted to overcome the fundamental limitations of the time-domain approach

by implementing a frequency-domain based algorithm, and achieved encouraging results

on a simulated dataset [80]. However, due to a few algorithmic approximations that could

not be physiologically justified [81], the Noraky algorithm achieved clinically unacceptably

large errors on a clinical dataset, with a bias of 13.7 mmHg and a SDE of 15 mmHg.
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Figure 2-7: An overview of our model-based spectral approach to noninvasive ICP estima-
tion. The model formulation, algorithm and validation results will be described in detail in
the next chapters.

While both the Kashif and Noraky approaches had some limitations, they both moti-

vated our work to a large extent. Noraky’s idea of using a second-order circuit model and a

spectral approach to overcome the fundamental limitation of a time-domain approach mo-

tivated our spectral approach, which is described in the next chapters.Kashif’s impressive

validation performance with a model-based approach provided a standard to compare our

model-based nonivasive ICP estimation performance against. Additionally, both Kashif

and Noraky emphasized the need to record high-resolution, annotated, time-aligned wave-

form data from the bedside to quantify any algorithm’s estimation performance, as a major

source of errors can be attributed to data-related issues. This also motivated us to design

and deploy a custom data acquisition system in the ICU, to record waveforms in a con-

trolled and efficient manner, while ensuring the high fidelity of all recorded waveforms.

Hence, building upon the Kashif and Noraky approaches, we developed a model-based

spectral approach to estimate ICP noninvasively in a patient-specific manner and validated

the approach on two patient cohorts and a porcine model dataset. Our work is detailed

in the remainder of this thesis, but an overview of our model-based approach is shown in

Figure 2-7.

37



38



Chapter 3

Model-based Spectral Noninvasive ICP

Estimation

Due to the importance of monitoring ICP in patients with neurological conditions and in-

juries and due to the inherent invasiveness of the currently used gold-standard ICP measure-

ment modalities, there is a pressing need for an accurate, robust and clinically convenient

noninvasive ICP measurement modality, as outlined in the previous chapter. In this chapter

we propose a novel model-based spectral algorithm to estimate ICP noninvasively from

ABP and CBFV waveforms. We first describe our proposed second-order, lumped param-

eter circuit model of the cerebral vasculature. We then describe our spectral algorithm in

detail as well as the signal processing steps and important meta-data required for accurate

computation of noninvasive ICP estimates. The contents of this chapter formed the basis

of our publication in the IEEE Journal of Biomedical and Health Informatics [22].

3.1 Model of craniospinal physiology

Building on prior work by Kashif et al. [6,77,82], Noraky [7,80] proposed the second-order

circuit model depicted in Figure 3-1 to represent a major cerebrovascular territory and its

interplay with ICP. This model is based on a simplified mechanistic compartmental view of

blood flow through the brain, in which pa(t) represents the ABP waveform at the inlet of a

major cerebral vascular territory such as the middle cerebral artery (MCA), q(t) represents
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the volumetric cerebral blood flow (CBF) into the vascular territory, and pic(t) represents

the ICP waveform. The inductor L models the inertia of blood, and the capacitance C rep-

resents the lumped compliance of the arterial vessel walls and surrounding brain tissue.

The terminal pressure in the capacitive branch of the circuit is ICP, as the pressure external

to the vessel and brain tissue is ICP. The resistor R models the viscous resistance to blood

flow through the vascular territory, between the upstream arteries and downstream veins.

However, ICP is typically larger than the cerebral venous pressure and since veins typically

cannot sustain a negative transmural pressure, ICP is established as the effective down-

stream pressure [6]. This phenomenon is known as flow limitation in collapsible tubes and

has been described in other physiological systems in which the pressure outside a collapsi-

ble structure exceeds the inside pressure. It is also commonly referred to as the Starling

resistor effect [83]. Hence the blood flow through the cerebrovascular system is driven by

the difference of the upstream ABP and effective downstream ICP, denoted as the cerebral

perfusion pressure (CPP), which we will also denote as x(t).

CPP ≡ ABP − ICP = pa(t) − pic(t) ≡ x(t) (3.1)
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Figure 3-1: Schematic representation of the second-order circuit model [7].
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3.1.1 Model formulation

The Kashif approach [6] implemented a time-domain model-based algorithm to noninva-

sively estimate ICP, using a peripherally measured ABP waveform, rather than the cerebral

ABP, and a CBFV waveform, instead of the volumetric CBF waveform, as inputs. The

primary limitation of this time-domain algorithm was the need to accurately estimate the

inherent and unknown time - and corresponding phase - lag that exists between the cere-

bral ABP and CBFV waveforms, and to adjust the timing of the peripherally measured ABP

waveform to compensate for this phase lag. Kashif et al. accounted for this by adjusting

the timing of the ABP recording post-hoc based on physiological considerations. However,

the resultant ICP estimates were very sensitive to this this adjustment, which motivated our

approach of estimating ICP in the frequency domain. This is evident since a Fourier trans-

form of the time-series physiological signals results in a transformation of all time-delays

(int eh time-domain) to phase lags (in the frequency-domain), by fundamental properties of

Fourier transforms [84]. Hence, by computing the power spectrum or square of the magni-

tude of these Fourier transformed signals, the phase lag is completely eliminated from the

formulation, thus overcoming the limitation of the time-domain approach.

We used the model of the cerebral vasculature shown in Figure 3-1, described by the

second-order equation

q(t) +
L
R

dq(t)
dt

+ LC
d2q(t)

dt2 =
x(t)
R

+ C
dx(t)

dt
(3.2)

which is obtained by applying Kirchhoff’s current law and using the constitutive relation-

ships for the inductor L, capacitor C, and resistor R.

A major advantage of using this lumped parameter circuit model is the invariance of the

resulting ICP estimates to constant scaling (or linear transformation) of the CBF waveform,

as also described by Kashif. To the extent that the CBFV waveform is linearly related to the

volumetric blood flow (through scaling by the vessel’s cross-sectional area), this invariance

allows for the substitution of CBF by CBFV as one of the input waveforms [6]. As with

the first-order Kashif model, Eqn. 3.2 is also invariant under linear transformations of q(t),

as can be verified by dividing Eqn. 3.2 by a non-zero scaling parameter β, to obtain
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q(t)
β

+
L

Rβ
dq(t)

dt
+

LC
β

d2q(t)
dt2 =

x(t)
Rβ

+
C
β

dx(t)
dt

(3.3)

which can be re-written, by replacing q(t)
β

with q̃(t), as

q̃(t) +
L̃
R̃

dq̃(t)
dt

+ L̃C̃
d2q̃(t)

dt2 =
x(t)
R̃

+ C̃
dx(t)

dt
(3.4)

The linear scaling of Eqn. 3.2 results in an equation retaining its form with q(t), R, C and

L being replaced by q̃(t) =
q(t)
β

, R̃ = βR, C̃ = C
β

and L̃ = βL, respectively. To the extent that

the model is a realistic representation of the relevant cerebrospinal physiology, this scaling

invariance has a major advantage as it allows for the replacement of the volumetric CBF,

which is a parameter that cannot be measured continuously in real-time at the bedside with

a scaled version without requiring a re-scaling of the pressure variables, including the ICP.

Hence, CBF can be replaced by CBFV, if the two are related by a scaling factor, constant

over some suitably chosen time window, accounting for the effective cross-sectional area

of the vessel and possibly the Doppler angle. CBFV is routinely measured in patients by

trans-cranial Doppler (TCD) ultrasonography and hence can serve as an easily measured

input to our algorithm.

For notational simplicity, henceforth q(t) will be used to denote CBFV, while R, C and L

will denote the scaled versions of the original parameters. Hence, Eqn. 3.5 now represents

the relationship between ABP (pa(t)), CBFV (q(t)) and CPP (x(t)). To address the need for

careful time alignment, we transform Eqn. 3.2 in its frequency-domain form and square the

magnitude to eliminate the phase lag, resulting in

|Q( jω)|2[(1 − ω2LC)2 + (
ωL
R

)2] = |X( jω)|2[
1
R2 + (ωC)2] (3.5)

where Q( jω) and X( jω) are the Fourier transforms of q(t) and x(t), respectively, and jω

is the complex frequency. The Fourier transforms can be computed over any suitably cho-

sen time window, after accounting for the quasi-stationarity of the signals and to avoid

aliasing [84].

The use of power spectra illustrates the advantage of estimation in the frequency do-
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main, as it eliminates the need for careful estimation of the phase offset between the ABP

and CBFV waveforms. Eqn. 3.5 can be solved using a constrained least-squares optimiza-

tion at appropriately chosen frequencies ω0, ω1, .... ωk, to obtain parameter estimates for R,

L, and C, and ultimately an estimate of ICP. However any such least-squares formulation

would require the prior knowledge of the unknown CPP spectrum, as |X( jω)|2 depends on

knowledge of the unknown ICP waveform, and Eqn. 3.5 relates the CBFV power spec-

trum, |Q( jω)|2, to the CPP power spectrum . Hence, a valid algorithmic approximation

of the CPP spectrum must be made in order to solve the least-squares optimization and

ultimately estimate mean ICP.

3.1.2 CPP spectrum approximation

An approximation to |X( jω)|2 can be obtained by observing the relationship between the

measured ABP and ICP waveforms. This approximation is motivated by the recognition

that the systolic upstroke of the ICP wavelet is driven by the ABP wavelet impinging on the

intracranial tissue compartments [85, 86] and hence is often referred to as the percussion

wave of the ICP waveform.

The relationship between the mean-subtracted ABP and ICP waveforms largely con-

forms to a characteristic shape over each beat, as shown in Figure 3-2, where the ABP-ICP

dynamics were obtained from one patient over one 60-beat data window. The relationship

exhibits two clear phases: one representing the systolic upstroke (from the onset of a beat

to the systolic peak) and the other corresponding to the diastolic decay. We leverage this

relationship to reconstruct the mean-subtracted ICP waveform from the mean-subtracted

ABP waveform.

We define the mean-subtracted pressure waveforms over each beat as

𝒫ic(t) = pic(t) − pic(t) (3.6)

𝒫a(t) = pa(t) − pa(t) (3.7)

where 𝒫ic(t) and 𝒫a(t) are computed over each beat, and pic(t) and pa(t) represent the mean
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Figure 3-2: Representative example of the relationship between mean-subtracted ABP and
mean-subtracted ICP over the duration of a 60-beat estimation window. There are two clear
phases: a systolic upstroke (blue line) and a diastolic decay (black cubic polynomial). The
error bars represent the standard deviation of error at each mean-subtracted ABP sample.

of the respective w‘aveforms over a beat. The systolic upstrokes and diastolic decays are

fitted for these mean-subtracted waveforms.

The upstroke of the reconstructed mean-subtracted ICP waveform, 𝒫u
ic(t), is modeled

as a linear function of the mean-subtracted ABP waveform, 𝒫u
a(t),

𝒫u
ic(t) = 𝒫u

a(t) · αu + βu (3.8)

with associated fitting parameters αu and βu. The diastolic portion of the reconstructed

mean-subtracted ICP waveform, 𝒫d
ic(t), is modeled as a cubic polynomial according to

𝒫d
ic(t) = [𝒫d

a(t)]3 · αd
3 + [𝒫d

a(t)]2 · αd
2 + 𝒫d

a(t) · αd
1 + βd (3.9)

with fitting parameters αd
1, αd

2, αd
3 and βd. The fitting parameters of these relationships
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can be determined in a training step, as described in the next chapter. Henceforth, 𝒫(t)

will denote the mean-subtracted pressure waveforms, while p(t) will represent the entire

pressure waveform including the DC component.

The reconstructed mean-subtracted ICP wavelet, 𝒫r
ic(t), is obtained for each beat by

linking 𝒫u
ic(t) and 𝒫d

ic(t). Thus, the reconstructed mean-subtracted CPP, 𝒳r(t), is obtained

over each window by subtracting the mean-subtracted ABP and reconstructed mean-subtracted

ICP

𝒳r(t) = 𝒫a(t) − 𝒫r
ic(t) (3.10)

It is important to emphasize that the relationship seen in Figure 3-2 and the recon-

struction of CPP are with respect to the mean-subtracted waveforms and the ultimate aim

is two-fold, namely to estimate the mean ICP over an appropriately chosen data window

duration, and to estimate the ICP pulse pressure on a beat-by-beat basis.

3.2 Model-based ICP estimation

The ICP estimation procedure is performed on a windowed basis. An appropriate duration

of data window is chosen, such that the assumptions of constant parameter values are valid,

while also ensuring the presence of sufficient data variability and spectral richness. Once a

window duration is chosen for implementation, the reconstructed ICP and CPP waveforms

are computed from the ABP waveforms over each data window, as outlined above. We

then identify, in a fully automated manner, the first n dominant peaks (ω1, ω2 . . .ωn) in the

CBFV and reconstructed CPP spectra in each window, by estimating the heart rate from

the ABP as the fundamental frequency ω0, and scanning around integral multiples of ω0

for spectral peaks. Thus, the frequency of each dominant peak is determined as

ωk = k · ω0 + εk; k = 1, 2, . . . n (3.11)

where ω0 is the fundamental frequency and εk is a correction over the scanning range to

locate the spectral peak. The motivation for only choosing the dominant peaks around the

harmonics is due to the sparse nature of the power spectra of these physiological wave-
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forms, with a sharp drop on either side of the dominant peak to the noise floor.

This process gives a total of (n + 1) spectral peaks for power spectral densities of

|𝒳r( jω)|2 and |Q( jω)|2 in each window. A constrained least-squares optimization is for-

mulated using the harmonic frequencies and their corresponding peak amplitudes. Note

that the DC component has not been used in the least squares formulation. The choice of

n must be such that the optimization problem is sufficiently well-conditioned, while also

ensuring none of the dominant peaks are in the noise floor of the power spectrum. The

resulting optimization problem is implemented as formulated in Eqn. 3.12,

min||

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
|Q( jω0)|2

...
|Q( jωn)|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
|𝒳r( jω0)|2 ω2

0|𝒳
r( jω0)|2 −ω2

0|Q( jω0)|2 −ω4
0|Q( jω0)|2

...
...

...
...

|𝒳r( jωn)|2 ω2
n|𝒳

r( jωn)|2 −ω2
n|Q( jωn)|2 −ω4

n|Q( jωn)|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦~ν||22 (3.12)

where the auxiliary variables are related to the model parameters by the auxiliary equa-

tions

ν1 =
1
R2

ν2 = C2

ν3 =
L2

R2 − 2LC

ν4 = L2C2

and are subject to the constraints

ν1 > 0

ν2 > 0

ν4 > 0

ν3 =
ν1ν4

ν2
− 2
√
ν4

The parameter estimates ̂︀R,̂︀L and ̂︀C for each window can be obtained from the solutions

of the least-squares optimized parameters ̂︀ν1, ̂︀ν2 and ̂︀ν4 according to
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̂︀R =
1√︀̂︀v1

(3.13)

̂︀C =
√︀̂︀v2 (3.14)

̂︀L =

√︃̂︀v4̂︀v2
(3.15)

Finally, the noninvasive estimate of mean ICP is computed for each estimation window

as ̂︂nICP = pw − ̂︀R qw (3.16)

where pw and qw denote the window-averaged ABP and CBFV, respectively.

The reconstructed ICP waveform can be obtained over each window by adding the

estimated mean ICP to the previously reconstructed mean-subtracted ICP.

nICPrecon(t) = ̂︂nICP + 𝒫r
ic(t) (3.17)

In addition to the window-by-window mean ICP estimates, we also compute the pulse

pressure of the reconstructed ICP waveform, PPr
ic[n], as the difference between the max-

imum and minimum values of 𝒫r
ic(t) over each beat. Since the peak of 𝒫r

ic(t) also corre-

sponds to the point where 𝒫u
ic(t) and 𝒫d

ic(t) are concatenated, there is a potential for artifacts

at this point. Hence, the peak and trough of 𝒫r
ic(t) are selected as the mean of three neigh-

boring samples, after excluding spike-like artifacts. Another method to avoid these artifacts

at the peak was to instead have a single constitutive fitting relationship between the mean-

subtracted ABP and ICP wavelets, which was found to have similar performance, and is

detailed in Chapter 6.
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3.3 Data pre-processing

3.3.1 Signal Processing Pipeline

The estimation algorithm described above requires high-quality ABP and CBFV waveform

recordings to generate estimates of ICP, since quantification of the algorithm’s performance

is meaningless if the inputs are noisy, contain artifacts or of low resolution. The periph-

eral ABP signal measured at the bedside was found to be comparatively free of noise, but

was still subject to occasional corruption due to clogging or flushing of the catheter, and

intermittent movement artifact. The CBFV waveform was far more prone to noise and

artifacts, due to its high sensitivity to relative motion of the TCD transducer and the pa-

tient. Unlike the ABP waveform which is measured continuously in an automated manner

once the artery is cannulated, measurement of a CBFV signal requires manual insonation

of a blood vessel by a trained ultrasonographer. Hence, the CBFV signal also consisted

of stretches of unusable data during periods in which the ultrasonographer searched for an

acoustic window to obtain a continuous, strong acoustic signal from the MCA. Since our

algorithm relies on the spectral information of the waveform recordings, the ICP estimates

can be severely affected by poor signal quality and intermittent artifacts.

To guard against inclusion of stretches of data with unphysiological signatures or ex-

cessive noise, we have previously developed an automated signal waveform pre-processing

pipeline, consisting of ABP and CBFV signal quality assessment, waveform synchroniza-

tion, and beat-onset alignment [9]. The signal quality assessment pipeline rejects stretches

of unusable waveform data due to a variety of metrics relying on the spectral content of

the two waveforms and grounded in physiology. Once "good" data segments of ABP and

CBFV, of a specified minimum duration, are identified, they are time-aligned based on the

correlation of instantaneous heart rates computed from each of the waveforms.

3.3.2 Hydrostatic Correction

Another important data pre-processing step is to account for the hydrostatic correction

between pressure measurements at bedside. Although our model assumes input ABP and
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CBFV measurements referenced to a major cerebrovascular territory, such as the MCA,

clinical ABP measurements are routinely obtained from a peripheral arterial site such as

the radial artery, and referenced to the level of the left atrium. Therefore, we performed a

hydrostatic pressure correction to account for the difference between the desired reference

level (MCA) and the actual reference level (heart) of the ABP (Figure 3-3). This was

done by measuring the height at which the ABP transducer was levelled at the bedside,

denoted as hABP, and the height of the ICP transducer, denoted as hICP. These heights are

significantly different, as patients in neurocritical care are routinely placed in the head-up

position, to alleviate some of the intracranial trauma. Assuming the vertical height of the

ICP transducer to be a good approximation for the vertical height of the MCA or major

cerebral vessel, the mean pressure correction factor is computed from the height difference

of a theoretical column of blood between the two transducer locations as

∆Pa = ρg∆h (3.18)

∆h = hICP − hABP (3.19)

where ρ denotes the density of blood and g denotes the acceleration due to gravity, taken

as 9.8 m/s2.

The density of blood can be computed from a recent hematocrit measurement from

the bedside, as described by Hinghofer-Szalkay et al. [87], or by using an assumed blood

density value of 1060 kg/m3. As shown by Fanelli et al., the difference in ∆Pa between

the two choices of density has a negligible effect on the ICP estimation algorithm [9].

The heights of the transducers, hABP and hICP, are recorded for each measurement at the

bedside, as described in the next chapter. Finally, ∆Pa is subtracted from the measured

ABP waveform for each data segment to obtain the approximate MCA ABP waveform,

and this corrected ABP serves as the true input to the spectral noninvasive ICP estimation

algorithm described earlier. It is important to note the implicit assumption here that the

difference between the ABP waveforms recorded at the radial and cerebral arteries is purely

due to the hydrostatic column of blood, owing to a difference in the vertical height. There

could also be morphological differences between the two waveforms, which are neglected
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Figure 3-3: Schematic of a standard bedside setup with the vertical reference levels of the
pressure transducers marked. Image adapted from [8].

here. Another important takeaway is that the hydrostatic correction factor solely affects

the mean ABP. Hence, the effect of this correction is limited to the final estimation step

of the algorithm, which directly depends on the window-averaged mean ABP, and this

compensation does not affect the estimated circuit parameters ̂︀R, ̂︀L, and ̂︀C.
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Chapter 4

Clinical Data Acquisition and Validation

on Patient Cohort

The performance of the noninvasive spectral algorithm outlined in the previous chapter and

detailed in [22], needs to be validated on a clinical dataset, to test its accuracy in a real

ICU setting. However, meaningful contextualization of these performance metrics rely on

the availability of high resolution ABP and CBFV waveforms along a common time axis,

along with other important meta-data such as the vertical heights of the pressure trans-

ducers. The lack of high resolution waveform data, or carefully controlled and annotated

datasets can contribute to a large error in the performance metrics, as mentioned in past

publications [6,9,22,80]. To overcome this challenge, we designed and deployed a custom

data acquisition system in the neuro-ICU of a local Boston hospital, and the details of this

system are detailed in this chapter and by Fanelli et.al. [88]. We then describe the clinical

data acquisition procedure at Boston Medical Center, and detail the clinical dataset used for

validating our algorithm, obtained from two different patient cohorts. Finally, we carefully

analyze the performance of our noninvasive estimation algorithm on these patient datasets,

and discuss the clinical significance of these results, and their comparison to previously

reported results in literature.
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4.1 Motivation for custom data acquisition system

Patients in neurocritical care are usually heavily instrumented and connected to various

bedside monitoring devices. These devices measure physiological waveform signals, in-

cluding ECG, SpO2, ABP, ICP, RESP, temperature, and associated trends and features

computed from these waveforms. Additional instrumentation may be present depending on

the necessity, such as transcranial Doppler (TCD) ultrasonography or near-infrared spec-

troscopy (NIRS) [89].

Most bedside ICU monitors display a number of high-resolution data streams simul-

taneously, but do not archive these high-resolution waveforms for future use. Addition-

ally, the transmission of multiple data streams out of these monitors are prone to errors in

subsequent waveform alignment due to inaccurate time stamps. These limitations pose a

challenge in accurately archiving waveforms at a high temporal resolution along a common

time axis, as detailed by Fanelli [88].

In order to validate our spectral noninvasive ICP estimation algorithm, detailed in the

previous chapter, we faced the need to archive high-resolution physiological waveforms

recorded from multiple bedside devices. Additionally, the algorithm requires the recording

of important meta-data from the bedside such as the vertical heights of pressure transduc-

ers, hematocrit values and important demographic and clinical information. The accurate

time-alignment of these waveforms is crucial for waveform-based noninvasive ICP estima-

tion approaches, as outlined by Fanelli [9]. Low temporal resolution or non-uniform time

stamping of the recorded physiological waveforms can contribute to significant errors in

estimation performance [6,80].These requirements motivated the development and deploy-

ment of a custom data acquisition system to record multiple physiological data streams and

important ancillary data from the bedside, along a common time axis, in order to record a

clinical validation dataset in a controlled manner.
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4.2 Data acquisition system at Boston Medical Center

A typical neuro-ICU setup at Boston Medical Center has the patient instrumented with mul-

tiple sensors for measuring ECG, ABP, SpO2, RESP, central venous pressure (CVP), tem-

perature and ICP. All these sensors are connected to the GE Patient Data Module (PDM),

which collects data streams from multiple bedside monitoring devices, processes them, and

transmits the data to a compatible ICU monitor. The PDM can also store trend information

at a very low resolution (1 sample per minute) for up to 24 hours [90]. All the ICUs at

Boston Medical Center are equipped with GE Solar 8000i bedside patient monitors, each

of which is connected to a PDM and display all the waveforms recorded from the patient

described above. However, the patient monitors do not have an analog data interface for

real-time waveform streaming and the temporal resolution of data stored in the PDM is

too low for noninvasive ICP estimation purposes. Hence, we designed a data acquisition

system to interface with the existing neuro-ICU setup at Boston Medical Center, as well as

ensure accurate, time-aligned, high-resolution waveform data archiving.

Since the GE Solar 8000i bedside patient monitors do not have an analog data interface,

our data acquisition system consisted of a GE TramRac 4A unit [91], to interface with the

bedside patient monitor, and a Microsoft Windows-based computer for controlling the data

archiving process and for storage of the time-aligned waveform data. The TramRac effec-

tively served as a port replicator for the Solar 8000i’s PDM, providing access to waveforms

from up to thirteen attached sensors through an analog data interface. Typically, the wave-

form signals streamed through the monitor to our system included multi-lead ECG, SpO2,

ABP, CVP, and ICP. Additional data streams specifically recorded for our study purpose

included a noninvasive ABP signal recorded from the BMEYE Nexfin monitor, and the

CBFV waveform recorded from either the DWL Doppler BoxX (Compumedics, Singen,

Germany) or the Philips CX-50 (Philips Healthcare, Andover, MA) TCD ultrasound de-

vice, . The Nexfin noninvasive ABP monitor and the DWL ultrasound device both have a

dedicated analog output, through which the waveform data can be streamed directly to our

system. The Philips CX-50 does not allow for real-time streaming of the analog waveform

data, and hence the CBFV data collected on this device were aligned with all the other
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data streams in post-processing, by correlating the instantaneous heart rates. All the data

streams (from the GE Monitor and external devices), except the CX-50 CBFV data, are fed

to an analog-to-digital converter (National Instruments DAQ 6218), and sampled at 250

samples/second at 16-bit amplitude resolution.

GE	Tram-rac	4A		

DWL	Doppler	
Boxx		

Tripp-Lite	
IS500HG	

BMEYE	Nexfin	
monitor	

National	
Instruments	
DAQ	6218	

Figure 4-1: Data acquisition system deployed at Boston Medical Center.

Data acquisition, visualization and annotation are controlled on a computer by a custom

designed LabView Virtual Instrument (VI), allowing for time-stamped annotations of im-

portant clinical, patient and study notes. The VI is configured to automatically duplicate the

recorded data and create both an identifiable and de-identified version of the recorded data.

Both these copies of the patient data are automatically organized into separate directory

trees to reduce the risk of accidentally accessing protected health information (PHI), and

to eliminate the need for tedious post hoc de-identification. All the data are archived on an

encrypted hard drive at the end of each recording session. In addition to the waveform data

recorded, the VI allows for recording of ancillary data to better contextualize and interpret

the validation results post-hoc. These ancillary data include the following
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∙ Patient demographic information: Age, gender, race, ethnicity

∙ Clinical information: Diagnosis, site of neurological injury, Glasgow Coma Scale

(GCS) score, hematocrit, medications administered

∙ Study information: Date and time of recordings, medical record number (MRN),

study ID

∙ Important meta-data: Vertical heights of ABP and ICP transducers (essential for

hydrostatic correction in the estimation algorithm), type and placement of ICP probes

(EVD or parenchymal), state of EVD drainage

∙ Recording observations: A textbox is also provided for recording of any potentially

significant observations made during the recording session

The entire data acquisition system was designed on a small footprint movable Ergotron

medical cart to enable agile movement inside a crowded ICU. The patient is electrically iso-

lated and protected from macroshock hazards by powering all devices through a cart-based

Tripp-Lite IS500HG isolation transformer. The design and details of the data acquisition

system were originally published by Fanelli [88].

4.3 Protocol for clinical recording of data

Clinical data collection at Boston Medical Center was approved by the Institutional Review

Boards at Boston Medical Center and MIT. Patients in the neurocritical care are regularly

screened to check for compliance with all the inclusion criteria for our study, before they

are enrolled in the study. For enrollment, informed consent is obtained from the patients or

their legally authorized representative. Once consent is obtained, the data acquisition cart

is wheeled into the ICU and turned on, after consulting with doctors and nurses to ensure

no disruption to standard medical care to be provided to the patient. The sensor cables for

ECG, SpO2, ABP, CVP and ICP are disconnected from the PDM in the GE Solar 8000i

bedside monitor, and connected to the TramRac 4A instead. During the process, there is
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a short interruption of patient data recording for around 30 seconds, which is communi-

cated to the clinical staff beforehand. Once the re-cabling process is completed, the clinical

staff zeroes all pressure sensors to ensure accurate pressure recordings. Simultaneously, the

custom-designed LabView VI is opened and all ancillary patient information are recorded

on the VI, including demographic, clinical and study information. Accurate measurements

of the heights of the various pressure transducers are made and logged in the VI as well.

At this point all waveforms from the patient monitor are visualized on a common time

axis on the VI. These include the multi-lead ECG, SpO2 recorded using an optical sensor

on the finger, invasive ABP measurement recorded using a radial arterial line, and inva-

sive ICP recorded from either an EVD or parenchymal probe. A trained ultrasonographer

then attempts to locate and insonate the MCA through the temporal acoustic window on

one side, using either the DWL Doppler BoxX or the Philips CX-50 ultrasound system.

Once the MCA has been visualized and while the vessel is being insonated, a stable CBFV

envelope is streamed and recorded on the same time axis. All data streams are recorded

continuously for around 20 to 30 minutes before the MCA on the contralateral side of the

patient is located and the procedure is repeated. Throughout the recording session, notes

and observation pertaining to the recording session are logged in the VI. At the end of

each session, the sensor cables are reconnected to the PDM in the patient monitor and the

pressure signals are zeroed again.

Ideally, each recording session yields around 40 to 60 minutes of high-resolution, time

aligned waveform data. However, in practice, the duration of useful clinical data obtained

is far less due to a variety of issues. The CBFV waveform requires the manual location

and insonation of the patient’s MCA by an ultrasonographer, and the stability of the signal

depends on the operator’s ability to keep the transducer locked on to the vessel. However,

due to potential movement of the patient and/or the ultrasonographer, he ultrasound probe

often slips off the MCA, resulting in a loss of signal and requiring the re-positioning of

the probe to locate the MCA again. As a result, the duration of good quality CBFV signal

is usually less than the expected 20 to 30 minutes. Other sources of error with respect to

the CBFV are associated with the inability to locate the MCA accurately, possibly due to

the lack of an acoustic window in the patient, irregular anatomy of the Circle of Willis, or
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Table 4.1: Table describing the demographics of the adult patients included in the clinical
dataset for validation of the algorithm.

Patient Gender Age (Years) Duration Diagnosis
1 Male 52 8 minutes TBI
2 Male 20 12 minutes TBI
3 Male 47 10 minutes Brain tumor
4 Male 40 55 minutes TBI
5 Female 74 23 minutes Hydrocephalus

a potential injury in the region of insonation. While less prevalent than CBFV artifacts,

artifacts can be present in the ABP waveform also, due to movement of the patient or

placement of the radial line too close to the vessel wall or flushing of the catheter.

4.4 Patient cohorts for algorithm validation

4.4.1 Adult population

The adult dataset was recorded on the custom data-acquisition system described in Section

4.2, fromt he neuro-ICU at Boston Medical Center. The signal preprocessing pipeline

described in the previous chapter selected a total of one hour and 48 minutes of high quality

data for validaiton of the noninvasive ICP estimation algorithm. The validation data were

recorded from sixteen studies recorded on five patients (4 male, 1 female). These studies

were recorded between February and September 2016. The patients ranged in age from 20

to 74 years (median of 47 years) and were hospitalized for severe TBI (3 patients), brain

tumor (1 patient), and acute hydrocephalus (1 patient) (Table 4.1).

4.4.2 Pediatric population

A custom data acquisition very similar to the previously described one was also deployed

at Boston Children’s Hospital to record pediatric data [9] to go along with the adult pa-

tient population recorded at Boston Medical Center. The pediatric patient dataset has been

previously reported and was collected at Boston Children’s Hospital [9]. Briefly, a custom

data-acquisition system, similar to the previously described one, was deployed in the hos-
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pital’s Medical and Surgical Intensive Care Unit for collection of high fidelity waveform

recordings and ancillary demographic and clinical information and meta data related to the

data-acquisition process. Data collection was approved by the Institutional Review Boards

at Boston Children’s Hospital and MIT, and informed consent or – when appropriate –

assent were obtained from the patient or their legally authorized representative. Pediatric

patients in whom invasive ICP monitoring was indicated as part of routine clinical care

were eligible for enrollment [9].

A total of 41 studies from thirteen patients (nine males, four females), recorded between

February 2015 and June 2017, were used for validation of the spectral noninvasive ICP

estimation algorithm outlined in the previous chapter. The dataset consists of a diverse

population of patients, with ages ranging from 2 to 25 years (median of 11 years) and

presenting with various conditions requiring invasive ICP as part of standard practice of

care, including TBI, hemorrhagic strokes, hydrocephalus, and metabolic abnormalities.

From the pediatric dataset, the preprocessing pipeline identified a total of around six hours

and 40 minutes of good quality data segments across the thirteen patients for validation of

our algorithm (Table 4.2).

Table 4.2: Patient demographic, clinical and study information of the pediatric patients
included in the clinical dataset for validation of the algorithm.

Patient Gender Age (Years) Duration Diagnosis
1 Male 12 2 hours 3 minutes Stroke
2 Female 16 45 minutes TBI
3 Male 14 18 minutes Stroke
4 Female 2 24 minutes Hemorrhage
5 Female 11 10 minutes Brain tumor
6 Male 18 30 minutes Intraventricular hemorrhage
7 Male 20 27 minutes Hydrocephalus
8 Male 11 9 minutes TBI
9 Male 7 45 minutes TBI
10 Female 6 2 minutes Hydrocephalus
11 Male 4 36 minutes Cerebrohepatopathy
12 Male 6 30 minutes Cavernous malformation
13 Male 25 11 minutes Chiari malformation

58



4.5 Estimation results on pediatric and adult data

4.5.1 Algorithmic specifications

The spectral algorithm for noninvasive estimation of ICP outlined in the previous chapter

was implemented on a non-overlapping window-by-window basis. Similar to Kashif et

al., within each window, the values of the circuit parameters (R, L and C) are assumed to

be constant and the ICP is assumed to be constant at its mean level. The duration of the

data window was chosen to be long enough for availability of sufficient spectral richness

in the waveform data, but also short enough for the algorithmic approximations of con-

stant circuit parameter values to be valid. For implementation purposes, a data window

duration of 60 beats was chosen, similar to past implementations [6, 7, 9], resulting in a

single mean ICP estimate every 60 beats. Within each data window, the dominant peaks

in the power spectra of the CBFV and reconstructed CPP spectra are identified, for solving

the constrained least-squares optimization problem described in Eqn. 3.12. Since the spec-

tral data in these physiological waveforms is sparse, each estimation window was further

divided into two non-overlapping subwindows, each 30 beats in duration, for the power

spectral density computations. The power spectral densities |𝒳r( jω)|2 and |Q( jω)|2 are then

computed over each sub-window, using a Hamming-window based averaged periodogram

method with 50% overlap, and the four dominant peaks in each subwindow are picked in a

fully automated manner (Figure 4-2). This process results in a total of eight spectral peaks

over each estimation window (n = 7 in Eqn. 3.12).

The training of the fitting parameters, αu and βu for the upstroke, and αd
1, αd

2, αd
3 and

βd, for the downstroke, was performed on a very small subset of the pediatruic patient

cohort. Only three of the pediatric data segments (less than 2% of the pediatric dataset)

were chosen to serve as the training set, and the ICP was not blinded only in these data

segments. The fitting parameters obtained from this training step were used for validation

of the algorithm on the rest of the pediatric dataset and the entire adult dataset, without any

modifications to the estimation algorithm.
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Figure 4-2: Example of power spectra of mean-subtracted CPP and CBFV waveforms as
computed by the average periodogram method. The first four harmonic peaks are identified
in each spectrum.

4.5.2 Error metrics

The estimation results presented in the thesis henceforth are quantified in terms of the mean

estimation error (bias or accuracy), the standard deviation of the error (SDE or precision),

and the root mean squared error (RMSE) of the ICP estimates with respect to the mean of

the invasively measured ICP.

bias =
1
n

n∑︁
i=1

(nICPi − ICPi) (4.1)

SDE =

√︃∑︀n
i=1(nICPi − ICPi − bias)2

n − 1
(4.2)

RMSE =

√︃∑︀n
i=1(nICPi − ICPi)2

n
(4.3)

where ICPi is the mean measured ICP, and nICPi is the mean ICP estimate, both for

the ith 60-beat estimation window. Additionally, we compute the accuracy and precision
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errors for the estimated beat-by-beat ICP pulse pressure.

4.5.3 Mean ICP estimation
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Figure 4-3: Representative examples of noninvasive ICP estimation performance on two
segments from different patients.

The spectral estimation algorithm described in the previous chapter was validated on

the two clinical datasets detailed above, and these results are also detailed in [22]. The

pediatric dataset yielded 514 60-beat estimation windows of sufficiently high data quality

from thirteen patients. Overall, the mean measured ICP ranged from 1.3 to 24.8 mmHg,

with a mean and median of 11.2 mmHg and 10.3 mmHg, respectively [22].
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Figure 4-4: Bland-Altman plot comparing estimated and mean measured ICP on a window-
by-window basis across all patients in the pediatric and adult datasets.

On the pediatric dataset, the algorithm achieved an overall estimation accuracy of 0.4

mmHg, a SDE of 5.1 mmHg, and a RMSE of 5.1 mmHg in estimating mean ICP. Figure 4-3

shows the performance of the estimation algorithm on two different patients, with different
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levels of mean ICP. The overall performance of the algorithm on a window-by-window

basis are summarized in the Bland-Altman plot [92] shown in Figure 4-4a. These sum-

mary results are essentially in agreement with those obtained on the same datasets using

the Kashif algorithm, as implemented by Fanelli [9], requiring careful time alignment be-

tween the ABP and CBFV waveform recordings [9]. In contrast, the Noraky algorithm [80]

achieved a bias of 5.4 mmHg, an SDE of 11.2 mmHg, and a RMSE of 12.5 mmHg on the

same dataset, which are clinically unacceptable.

The adult dataset yielded one hour and 48 minutes of high fidelity data from five pa-

tients, resulting in 138 60-beat estimation windows. This population served as a completely

independent validation dataset, as no previous training was performed on the adult data,

and the equipment and study staff was completely different from those of the pediatric

study. Our algorithm achieved an accuracy of −1.5 mmHg, a SDE of 4.3 mmHg and a

RMSE of 4.5 mmHg in estimating mean ICP on this adult dataset, as summarized in the

Bland-Altman plot in Figure 4-4b. To put these validation results into context, when we

separately derived the fitting parameters of our spectral estimation approach from all avail-

able adult data and then performed the nICP estimation on the adult data we obtained a bias

of −0.9 mmHg, a SDE of 3.6 mmHg, and a RMSE of 3.7 mmHg. This approach essentially

amounts to a training performance as we derive the fitting parameters and the estimation

performance on the same set of (adult) data. It is therefore an upper limit on the quality of

results that can be expected. This exercise demonstrates that the estimation performance

obtained on the adult data when the fitting parameters are trained on a small subset of the

pediatric data is very close to and – for all clinical purposes – essentially the same as when

the method is trained on all adult data.

When pooling both the pediatric and adult data and evaluating the performance of the

spectral estimation approach on the combined dataset, we obtain an overall accuracy of

0.1 mmHg, a SDE of 5.1 mmHg, and an RMSE of 5.1 mmHg. To further summarize the

overall performance of mean ICP, we analyzed the estimation performance on a window-

by-window, study-by-study and patient-by-patient basis. We generated the cumulative dis-

tribution functions of the RMSE for these analyses across both datasets (Fig. 4-5). Around

80% of our window-by-window mean ICP estimates fall within a RMSE of 6 mmHg.

62



0 2 4 6 8 10 12 14 16 18 20

RMSE (mmHg)

0

10

20

30

40

50

60

70

80

90

100

C
u
m
u
la
ti
ve

C
ou

n
t
(%

)
Window-by-window
Study-by-study
Patient-by-patient

Figure 4-5: Cumulative distribution functions for the nICP RMSE on both datasets together.
The analysis is carried out on a window-by-window, study-by-study, and patient-by-patient
basis.

4.5.4 Robustness of the mean ICP estimates

The time offset between a CBFV wavelet recorded at the middle cerebral artery and the

corresponding ABP wavelet recorded peripherally depends on physiological factors and

internal processing delays of the recording devices [9]. Estimation algorithms that process

these signals in the time domain therefore need to estimate a physiologically plausible

time offset and adjust the relative timing of these waveforms for each recording [6, 7, 9].

To evaluate the sensitivity of the ICP estimates to temporal misalignment of the CBFV

and ABP waveforms, we shifted these waveforms out of phase, one sampling interval at

a time, and computed the RMSE between the nICP estimate and mean measured ICP for

the spectral estimation approach and the time-domain estimation approach on the pediatric

dataset.

The RMSE of the spectral approach remains entirely unaffected by the waveform mis-

alignment, while the time-domain approach only produces credible estimation results for a

narrow range of offsets of only about 8 sampling intervals, or 64 ms (Fig. 4-6). Applying

the Kashif algorithm to the pediatric dataset without conducting the beat-onset adjustment

outlined by Fanelli [9] resulted in a bias of −4.2 mmHg, a SDE or 70.2 mmHg and a RMSE

or 70.4 mmHg, demonstrating the sensitivity of the time-domain approach to estimating a

physiologically plausible offset between the two waveforms, while the spectral approach is

insensitive waveform misalignment as long as the two waveforms are not shifted by more
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than an entire beat.
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Figure 4-6: RMSE between nICP estimates and mean measured ICP as a function of tim-
ing offset between ABP and CBFV waveforms. The zero offset relates to the beat-onset
alignment described by Fanelli and co-workers [9].

To evaluate the sensitivity of our nICP estimates to the identification of the peaks in

the CPP and CBFV spectra we computed the nICP estimates on the basis of the spectral

amplitudes associated with the frequency bins to the right or left (selected at random) of

the frequencies corresponding to each of the spectral peaks. This analysis resulted in a

bias of 1.2 mmHg and RMSE of 6.7 mmHg, indicating that slight errors in identifying the

dominant spectral peaks can decrease the performance appreciably.

4.5.5 ICP pulse pressure estimation

Our spectral algorithm was also used to reconstruct the ICP waveform from the ABP wave-

form, based on the fitting parameters obtained from the training data. For every cardiac cy-

cle, a mean-subtracted ICP waveform was reconstructed. An example of the reconstructed

ICP waveform and the corresponding reference clinical ICP is shown in Figure 4-7. The

pulse pressures, PPr
ic[n] and PPic[n] of the reconstructed and measured ICP waveforms, re-

spectively, were calculated for every beat and compared. This analysis was performed on a

total of 12984 beats from eight patients from both datasets, with a range of pulse pressures

64



0 1 2 3 4
Time (seconds)

5

10

15

20

25

 n
IC

P
 o

r 
 I
C

P
  
(m

m
H

g
)

Reconstructed Estimated ICP

Measured Invasive ICP

Figure 4-7: Comparison between the algorithmic reconstruction of the ICP waveform from
ABP and the clinically obtained gold-standard ICP measurements.

from 3 mmHg to 18 mmHg. Some of the data windows from both datasets were rejected

because the ICP exhibited non-physiological pulsatility, as could arise due to opening of

the EVD to drain CSF. Our reconstructed ICP pulse pressure estimates had a bias of 1.3

mmHg, SDE of 2.9 mmHg and a RMSE of 3.2 mmHg. Sixty six pecent of all ICP pulse

pressure estimates fall within ±3 mmHg, and 87% of estimates fall within ±5 mmHg of the

measured ICP pulse pressure. The full distribution of errors in estimating pulse pressure

on a beat-by-beat basis is shown in Figure 4-8.
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Figure 4-8: Distribution of ICP pulse pressure estimation errors.
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4.6 Discussion of validation results and limitations

Noninvasive assessment of brain health remains one of the pressing open challenges in

clinical neuroscience. To address this need, a series of model-based approaches to non-

invasive and continuous ICP estimation have recently been proposed based on the anal-

ysis of time-locked measurements of CBFV and (peripheral) ABP waveform measure-

ments [6,7,9,66,76–78,80]. Some of these approaches rely on reduced-order models of the

cerebrospinal physiology [6,7,9,76–78,80] while others represent the relevant anatomy and

physiological relationships in more detail [66]. The majority of prior work has approached

the estimation problem in the time domain, which requires consideration of how to align

the waveform measurements and thereby overcome temporal offsets inherent in measuring

physiological waveforms with different medical devices and at different anatomical loca-

tions. In pre-processing steps Kashif [6] and Fanelli [9] aligned the waveforms to approxi-

mate the phase relationship that can plausibly be expected to exist between CBFV and the

ABP waveforms measured simultaneously at the MCA. Imaduddin [78] made the offset an

explicit modeling parameter and later marginalized a likelihood function over all plausible

offsets. Our work here was directly motivated by the recognition that solving the estima-

tion in the frequency domain should be immune to misalignment of the ABP and CBFV

waveform recordings. While we demonstrated that this is indeed the case using clinical

datasets for validation, the approach required estimation of the CPP power spectrum and

hence necessitated a heuristic estimation of the ICP pulsatility. We based our estimation

on the fact that the initial upstroke of the ICP wavelet (the percussion wave) is driven pri-

marily by the systolic upstroke of the ABP waveform [85, 86]. While the ICP waveform

morphology also depends on the biophysical properties of the cerebrospinal fluid space and

surrounding brain tissue, the assumption that the ICP pulsations are largely driven by the

ABP pulsation allowed us to make the spectral estimation problem tractable.

The resulting estimation accuracy and precision of our spectral estimation algorithm are

highly encouraging, as an overall accuracy of 0.1 mmHg, a SDE of 5.1 mmHg, and a RMSE

of 5.1 mmHg in estimating the mean ICP are well within the errors reported when compar-

ing the currently used invasive ICP measurement modalities [35,36,49]. Lescot et al. [49],
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for instance, compared the Pressio and Codman intraparenchymal sensors to ventricular

ICP measurements in thirty patients. They reported measurement accuracies of −0.6 and

0.3 mmHg between intraparenchymal and ventricular measurements with the Pressio and

Codman devices, respectively, with 95% limits of agreement (bias ± 1.96 SD) of (−8.1

mmHg, 6.9 mmHg), and (−6.7 mmHg, 7.1 mmHg), respectively. Brean et al. [50] com-

pared simultaneous ventricular and intraparenchymal (Codman) ICP measurements in one

patient undergoing treatment for subarachnoid hemorrhage. They reported a measurement

bias of 0.7 mmHg with a standard deviation of 6.8 mmHg across 218,589 comparisons.

In a recent meta-analysis of invasive ICP measurement approaches, Zacchetti et al. [36]

reported a mean error between invasive measurements of 1.5 mmHg with an associated

95% confidence limit of 0.7 to 2.3 mmHg. Some of these discrepancies between differ-

ent modalities might be due to possible natural or pathology-dependent pressure gradients

within the CSF space (as demonstrated by Eide [51]), to hydrostatic differences between

the location of the EVD and parenchymal transducers or due to sensor inaccuracies. These

reasons for different readings notwithstanding, the parenchymal and EVD measurements

are both standards-of-care in many neurosurgical and neurocritical settings [93]. Hence,

it is highly encouraging that our results are comparable to the currently accepted invasive

clinical standards of ICP monitoring.

The accuracy and precision achieved by our spectral estimation approach are also in

line with those reported by Fanelli et al. [9] and Imaduddin et al. [78] on the same pedi-

atric dataset. Hence, despite our having based our estimation of the ICP pulsatility on the

ABP pulsatility, our algorithm performed in a manner entirely comparable to some of the

previous estimation strategies, using similar model-based approaches.

The implementation of our approach requires one training step to obtain the fitting

parameters in order to reconstruct the estimated ICP waveform. Here, this training was

performed on a small fraction (less than 2%) of the pediatric dataset. The remaining pedi-

atric population was diverse, representing a wide range of age, body size, and neurological

and neurosurgical conditions. Moreover, we did not retrain the model on the adult data,

which was collected in a different hospital, involving different bedside monitoring devices,

and different study staff. Our algorithm still achieved very encouraging results on this
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(albeit small) hold-out validation dataset, thus suggesting that the relationship between

mean-subtracted ICP and mean-subtracted ABP has a sufficient degree of robustness to be

valid.

Our algorithm also has the advantage over other model-based noninvasive ICP estima-

tion methods [6, 7, 9], of estimating the pulse pressure by reconstructing the ICP wavelet

from each beat of the ABP signal. While the estimate of mean ICP obtained is clinically

acceptable and sufficient for clinical monitoring, an estimate of the ICP pulse pressure is

thought to provide valuable additional information. The pulsatility of the ICP waveform

could be a useful indicator of intracranial compliance [27], and variations in pulsatility have

been linked to intracranial hypertension, or hydrocephalus [28, 51, 94]. Compared to other

noninvasive ICP estimation techniques that result only in an estimate of the mean ICP, our

frequency-domain algorithm has the added benefit of estimating the pulsatility as well.

Our estimation approach and associated validation strategy have some limitations that

have to be further explored. First, while we were able to collect sufficient patient data to

validate our estimation approach in the clinically important ICP transition range between

15 to 25 mmHg, we were not able to evaluate the approach in the pathological ICP range

of 25 to 40 mmHg. This is due to the fact that patients in neuro-ICUs are constantly

monitored by the clinical staff and their health is the utmost priority. As a result, care is

taken to ensure that their ICP is kept within acceptable limits, and adverse events result

in immediate interventions. As a result, we were unable to validate our algorithm on ICP

measurements above 25 mmHg or record any significant trends in ICP. The data also ex-

hibited low variability in the ICP pulse pressures, making it difficult to definitively evaluate

the accuracy of our pulsatility estimation. On the technical side, one of the major practical

limitations is the use of radial ABP as a surrogate for the MCA ABP. While we do apply

a hydrostatic correction to account for differences in mean pressure, it is expected that the

two waveforms are morphologically different, which is not accounted for int he spectrum

computation. Any potential morphological variations would affect the spectral estimation

which relies on the frequency characteristics of the ABP and CBFV waveform recordings.

Finally, our spectral estimation approach relies on the estimation of the ICP pulsatility from

the ABP pulsatility. A mechanistic understanding of how the ICP waveform relates to the
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ABP waveform and the biophysical properties of the intracranial compartments would al-

low us to improve upon our method, though development of such a detailed understanding

currently remains an open challenge in clinical neuroscience.
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Chapter 5

Porcine Model for Probing Intracranial

Dynamics

As detailed in the previous chapter, the performance of the spectral noninvasive ICP estima-

tion algorithm on two different patient cohorts was highly encouraging, and was found to be

comparable to the currently used invasive ICP measurement modalities and past attempts

at noninvasive ICP estimation. However, the range of measured ICP in the the patient co-

horts was limited and hence the robustness of the algorithm could not be quantified in the

pathological ICP ranges of 25 mmHg and above. In this chapter, we begin by detailing

the fundamental limitations of using human neurological data for clinical validation, and

motivate the use of a newly developed porcine model for probing intracranial dynamics.

We then describe the extensive preparatory work performed to understand the anatomical

challenges of a swine model. Finally, we detail the experimental protocol for manipulating

the ICP in the porcine model and for monitoring the physiological response of the animal,

primarily to validate the noninvasive ICP estimation algorithm over a wide range of ICP.

5.1 Porcine large animal model

The importance of developing an accurate and robust noninvasive ICP measurement modal-

ity has been detailed in the previous chapters, and most of the approaches described in

the literature, including our spectral approach, have been validated on human waveform
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data collected from patients in neurocritical care [6, 9, 22, 35, 78]. However, using human

neurological data for clinical validation poses an inherent difficulty due to the need to in-

tervene aggressively in response to ICP elevations. As a result, the patients’ neurological

health and physiological stability must always remain the foremost priority. Hence, if the

patient’s neurological health is potentially compromised at any time the clinical staff inter-

vene immediately and titrate therapy so that the ICP returns back down to normotensive

levels. Since some of the patients’ health is severely compromised, data collection can also

be frequently interrupted for clinical interventions to prevent sustained periods of intracra-

nial hypertension. Thus, a large fraction of the data collected from patients in neurocritical

care usually has either a limited range of ICP, or has several discontinuities. This poses a

challenge in quantifying the robustness of a noninvasive ICP estimation technique over the

clinically relevant range of elevated ICP, or over long periods of time to assess temporal

stability of the noninvasive ICP estimates.

Another limitation of the clinical validation of our noninvasive ICP estimation algo-

rithm is the use of radial ABP as an input to our model. The lumped-parameter model

described earlier aims to capture the dynamics of a major cerebrovascular territory, and

hence requires the measurement of ABP and CBFV from a site close to the cerebral vascu-

lature. While CBFV is routinely and noninvasively measured ultrasonically from the MCA

of patients, ABP is clinically measured only at a peripheral arterial site. As a result, none of

the clinically recorded data included ABP measured centrally or from a site near the Circle

of Willis. This discrepancy in the site of measuring ABP is partially compensated by means

of the hydrostatic correction factor between the vertical heights of the two pressure trans-

ducer locations. However, this hydrostatic correction factor only alters the DC component

of the ABP and does not account for any potential morphological variations between the

ABP waveforms at the radial artery and at the MCA. Thus a more robust assessment of our

algorithm’s performance ideally requires the measurement of ABP from a central site or a

site closer to the cerebral vasculature, which can be performed easily in an appropriately

chosen animal experimental model.

These are fundamental limitations of human neurological data and made it difficult for

us to assess the performance of our spectral noninvasive ICP estimation approach above

72



an ICP of 20 mmHg. This motivated the use of an animal model, where the ICP can be

“dialed in” to a desired level and the physiological response can then be studied. There

are multiple methods to achieve this goal including direct alteration of the ICP, altering

the hemodynamic state or altering the respiratory state of the animal. A swine model

was chosen due to the similar cardiovascular and cerebrovascular anatomies in pigs and

humans. Pigs also have comparable vital signs and range of normal physiological and

cerebrospinal parameters to humans, while also being sufficiently large to allow for easier

surgical access and hemodynamic manipulations. Porcine models have also routinely been

used in past studies for ischemic stroke models [95–99], monitoring of ICP and monitoring

of cerebrovascular autoregulation [100–108].

Thus, we aimed to develop a stable, reproducible experimental protocol to alter the

cerebrovascular and hemodynamic states in a Yorkshire swine model, and study the physi-

ological response of the animal, primarily through the recording of high resolution CBFV

and central and peripheral ABP signals. The rich waveform data recorded during these

experiments can then be analyzed to validate the robustness of our noninvasive ICP esti-

mation method over a wide range of cerebrospinal pressure conditions, and to potentially

quantify and understand the dynamics involved in cerebrovascular autoregulation.

5.2 Preparatory work

5.2.1 Anatomical challenges in porcine model

While similar to human cerebrovascular anatomy in many aspects, pigs also pose chal-

lenges in neurosurgery, specifically because of their extremely thick cranium and compar-

atively small brain and ventricular space [107]. Swine skulls are four to six times thicker

than a human skull making it difficult to place a ventricular catheter using standard human

neurosurgical approaches. The standard procedure for measuring ICP in humans involves

drilling a burr hole in the skull and blindly advancing a catheter into the lateral ventricles of

the brain or placing a pressure transducer in the intraparenchymal space, through the burr

hole [12, 36, 109]. However, both these approaches are difficult to perform in pigs due to
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their thick skull. Moreover, the anatomical landmarks on the skull for drilling the burr hole

is well known in humans but not well defined in a pig.

Another challenge posed by the thick calvarium is the difficulty in obtaining a strong

ultrasound signal from one of the major cerebral arteries. Most humans have good temporal

acoustic windows that can be used to ultrasonically insonate the MCA. However, the lack

of these windows in pigs and the attenuation of ultrasound due to bone make it difficult to

reliably insonate the MCA on a consistent basis through the skull [110]. Hence it is difficult

to transcranially obtain a strong CBFV signal, which is one of the primary inputs for the

spectral noninvasive ICP estimation algorithm described in Chapter 3.

Lateral	
Ventricle	

(a) Coronal Slice

0	cm	

2	cm	

(b) MRI Slice

Figure 5-1: Location of the lateral ventricles in two harvested pig heads, one sliced using a
bandsaw, and the other digitally reconstructed using MRI.

5.2.2 Pre-experimental explorations

In order to quantify the scale of the previously outlined challenges and refine details of

the final experimental protocol, extensive preparatory work was carried out on pig heads

harvested from freshly euthanized pigs, approved under a Tissue Harvest Protocol by the

MIT Committee on Animal Care. One of the harvested heads was frozen at −70 degrees

for two weeks, and then sliced coronally with support from staff at Cummings School of

Veterinary Medicine, Tufts University, Grafton, MA. Upon inspection of the coronal slices,

a better understanding of the intracranial anatomy, thickness of the skull and location of the

ventricles with respect to anatomical landmarks was obtained. Figure 5-1a shows one such
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coronal slice with the caudal aspects of the lateral ventricles clearly visible, along with

the thick cranium and tough temporalis muscle. The thickness of the swine skull was

found to be around 20 mm, which agreed with past estimates [107], while a human skull

is typically no more than 6 mm thick. An MRI reconstruction of another harvested head

was generated to confirm the approximate anatomical location of the ventricular space, as

shown in Figure 5-1b. A key observation from the MRI was that the external auditory

canal is below the level of the lateral ventricles, and hence would not serve as a good

external anatomical landmark for the approximate height of the ventricular space. Hence,

these explorations confirmed the need for a craniectomy to access the ventricles and record

CBFV transdurally in an accurate and reproducible manner.

Figure 5-2: Comparison of swine cerebrovascular anatomy observed experimentally (left)
to the anatomy reported in literature (right) [10]. The hemostats in each figure point to one
of the right MCAs.

Once a better understanding of the swine ventricular anatomy was obtained by care-

fully inspecting the coronal slices, several mock craniectomies were performed on addi-
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tional freshly harvested heads to study the cerebrovascular anatomy, both with the brain

in the intracranial space and with the brain extracted. A study of the base of the extracted

brain indicated that the anatomy of the cerebral vasculature was very similar to that of hu-

mans, with a prominent Circle of Willis and major cerebral vessels arising from it. This

was in agreement with past studies of the porcine cerebrovascular anatomy as seen in Fig-

ure 5-2. The major difference between a porcine model and the human anatomy was the

presence of paired MCAs on either side in a pig, rather than a single MCA on either side

for humans [10].

5.3 Experimental protocol

The extensive preparatory work described earlier gave us an understanding of the anatom-

ical challenges posed by a swine model and the location of the pig’s cerebrospinal ven-

tricular system relative to surface landmarks. Building on this work and knowledge, an

experimental protocol was submitted and approved by MIT’s Committee on Animal Care.

5.3.1 Specific aims

The experimental protocol approved by the Committee on Animal Care, allowed for surgi-

cal procedures and interventions to be performed on anesthetized female Yorkshire pigs, to

achieve the following specific aims:

∙ To collect invasively measured ICP, ABP and noninvasive CBFV waveform data un-

der a wide range of hemodynamic and cerebrospinal pressure conditions, in a prede-

termined manner, to validate our spectral noninvasive ICP estimation approach.

∙ To collect peripheral and central ABP waveforms, to better understand the sensitivity

of our algorithm’s performance to the site of ABP measurement.

5.3.2 Anesthesia protocol

Prior to each experiment, the animals were fasted overnight. On the day of the exper-

iment, they were sedated with an intramuscular injection of 5 mg/kg telazol (tiletamine
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and zolazepam), 2 mg/kg xylazine and 0.04 mg/kg atropine. Once intravenous (IV) access

was obtained percutaneously through an ear vein, endotracheal intubation was performed

using a 7-0 endotracheal tube. Anesthesia was maintained using isoflurane (2-3% in oxy-

gen maintenance concentration). The animals were placed on continuous IV fluid support

(physiological saline), at a rate of 5 ml/kg/hr, adjusted for any blood loss, for the duration

of the experiment. The animals were mechanically ventilated (DRE Veterinary AV-800 or

Hallowell EMC Model 2000) in the controlled-volume setting with a tidal volume of 10

to 15 ml/kg and a respiratory rate set to around 20 breaths per minute. Heated surgical

tables and blankets were used to maintain a stable core body temperature. At the end of

the experiment, the animals were euthanized with an IV injection of 390 mg/ml sodium

pentobarbital.

5.3.3 Instrumentation

The animals were initially placed supine and instrumented for vital sign measurement and

hemodynamic monitoring. Surface ECG leads were placed on the limbs in the standard

three-lead configuration (left arm, right arm and left leg) to monitor cardiac electrical activ-

ity. The tip of the ear or the inside of the lower jaw was used to monitor blood oxygenation

levels using a standard optical photoplethysmograph (PPG) sensor. Core body temperature

was measured by inserting a temperature probe into the esophagus. Sidestream capnogra-

phy was used to measure EtCO2 and respiratory rate. The femoral arteries were cannulated

bilaterally under ultrasound guidance, and ABP was typically measured continuously from

both sides, using standard fluid-filled catheters. One of the femoral veins was also cannu-

lated under ultrasound guidance for direct large-vessel IV access. The carotid artery was

cannulated via surgical cut down to expose the carotid sheath. A 2F Mikro-Tip catheter

(Millar Instruments) was threaded approximately 5 cm into the carotid artery towards the

heart to continuously record a high-fidelity carotid ABP signal. Urine output was moni-

tored by placement of a 12 F urinary catheter via a cystotomy. The ECG, PPG, temperature,

capnogram, and one femoral ABP signal were displayed on a Cardell VetTrends V monitor

for continuous surveillance of the animal’s vital signs.
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(a) Shaved head of the prone animal with

midline and planning line perpendicular to

the midline marked for incisions.

(b) The temporalis muscle is removed and

the temporal zygoma is exposed. The shaded

region represents the original location of the

excavated temporalis muscle.

(c) After burring down on the calvarium, a

small window of the brain covered by the in-

tact dura (marked in blue) is exposed.

(d) A larger portion of the dura-covered

brain, until the Sylvian fissure, is exposed

by removing the lateral sphenoid and pterion

using a Kerrison punch and rongeurs.

(e) A 4 MHz ultrasound probe is used to in-

sonate the MCA trans-durally, and two ICP

transducers - an intraventricular (black nee-

dle) and intra parenchymal one (yellow wire)

- are inserted in the intracranial space.

Figure 5-3: Steps involved in craniectomy procedure to expose the dura-covered brain, and
instrument the intracranial space. Note that the procedure is performed with the animal’s
head held in place by a custom designed stereotaxic frame. Image courtesy of Ken Pierce,
MIT.
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5.3.4 Craniectomy

Following induction of general anesthesia, intubation, and instrumentation, the animal was

placed into the prone position on a warming pad. With the forelimbs flexed at the elbows,

shoulders adducted, the head was positioned in a custom designed stereotaxic frame with

the neck slightly extended and the orbitomeatal line positioned horizontally. The head was

secured in place with snout and ear bars placed in the mouth and external auditory canals,

respectively. Adjustments were made to maintain the head in the horizontal position and

centered in the head frame. The stereotaxic frame was crucial to stabilize the head of the

animal for the craniectomy, to hold the ICP and TCD probes in place, and to measure

approximate cranial landmarks.

The frontal, parietal, and temporal scalp were then shaved, and the midline marked in

ink. An additional planning line was drawn perpendicular to the midline and extended ap-

proximately 8 cm just posterior to the lateral canthus on the operative side (Figure 5-3a).

A 10-blade was then used to incise the scalp along the midline and laterally to expose the

temporalis fascia. Raney clips were placed along the incision edges as needed to maintain

hemostasis. Small perforating towel clamps were placed at the vertices of the scalp flaps,

which were reflected antero-inferiorly and postero-inferiorly and held in place with large

rubber bands clamped to the nearby head appliance posts in the frame. Using monopolar

cautery, the pericranium was dissected and removed from the superior surface of the ex-

posed calvarium and the attachment of the temporalis muscle along the temporal line was

incised. The temporalis muscle was then undercut with monopolar cautery and removed in

its entirety from the temporal fossa using rongeurs. In this fashion the temporal zygoma is

exposed which establishes the approximate superior-inferior level of the floor of the middle

intracranial fossa (Figure 5-3b).

A handheld powered drill with a 9 mm steel acorn cutting burr was used at high speed

to thin (< 1mm) the frontal, parietal and temporal calvarium. Using Kerrison rongeurs the

inner cortex of calvarium was then removed slowly and carefully to expose the underlying

and intact dura mater (Figure 5-3c). A double action, thin-point rongeur was then used to

remove the lateral sphenoid and pterion and expose the dural fold overlying the Sylvian
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fissure (Figure 5-3d). Small cotton rolls were placed along the edges of the craniectomy in

the epidural space to control epidural venous bleeding. The operative field was periodically

irrigated with room temperature saline to remove any residual bone dust and blood.

5.3.5 Physiological measurements from the intracranial space

Midline	
Lateral	
Ventricle	

0	cm	

1	cm	

Figure 5-4: Ultrasound image showing the target lateral ventricle in a swine brain for plac-
ing an EVD. Note this image was taken transdurally after a craniectomy to expose the
dura-covered brain.

Ultrasound imaging (CX-50, Philips Healthcare) was then used to visualize the inter-

hemispheric fissure and the lateral ventricle on the operative side (Figure 5-4). An 18G

spinal needle with stylet in place was affixed to an articulated positioning arm, attached

to the head frame, and positioned over the parietal dura. The needle angle was adjusted

in parallel with the long axis of the ultrasound probe. With the lateral ventricle actively

in view, the needle was advanced to make contact with the dura. The dura of the planned

puncture site was then coagulated using monopolar cautery, and the needle was slowly
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advanced under ultrasound guidance into the lateral ventricle. The stylet was removed,

and the needle attached to IV extension tubing and a 5 ml syringe filled with saline. A

small amount of saline ( 0.2 cc) was injected, and the lateral ventricle was visualized via

ultrasound to confirm needle tip placement in the lateral ventricle and to demonstrate that

the ventricular volume expanded upon saline injection. Saline-filled extension tubing was

then connected to a saline-primed three-way Luerlock stopcock, a pressure transducer, and

a saline bag maintained at body temperature. Using a second spinal needle, a point on the

dura 0.5 cm anterior to the ventricular catheter puncture site was perforated. A calibrated

3.5F Millar Mikro-Tip catheter was then placed through this dural puncture site into the

parietal brain parenchyma to a depth of 1-1.5 cm and secured in place by attaching it to

an arm of the frame. Thus, ICP recordings from both the intraventricular catheter and

parenchymal probe were obtained.

A 4 MHz TCD ultrasound probe, connected to the DWL Doppler BoxX (Compumedics,

USA), was then positioned over the dural fold overlying the most anterior part of the Syl-

vian fissure, with generous amounts of ultrasound gel, to insonate the MCA. The probe

was adjusted to obtain stable and strong CBFV signals from the MCA and held securely in

place by a second articulated fixture from the frame (Figure 5-3e). The operative field was

gently irrigated with room temperature saline and inspected for epidural bleeding which,

if present, was controlled with cotton rolls, thrombin-soaked gelfoam, and mild pressure.

Additional ultrasound gel was gently added in small amounts to obtain a water seal at the

parietal dural puncture sites, to ensure an accurate physiological ICP measurement was

obtained at all times.

5.3.6 Vertical height measurement of pressure transducers

An important pre-processing step in the noninvasive ICP estimation algorithm is the hydro-

static correction of the ABP waveform, to approximate the ABP at the level of the cerebral

vasculature. This requires the accurate measurement of vertical heights of the ABP and ICP

transducers, as outlined in Chapter 3. The heights of the femoral ABP transducers could be

fixed manually, and these were denoted as h f ABP for each animal. The central ABP, on the
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other hand, was measured by a solid-state Millar catheter, where the pressure transducer

was at the tip of the catheter in the blood vessel. Hence, this height could not be adjusted

and was approximated based on the height of the insertion point int he neck and the depth

of the inserted catheter, measured by clear markings. This height was denoted as hcABP.

Figure 5-5: Schematic of a typical IV infusion set. The trocar end is used to pierce the bag
of fluid to be injected into the patient, while the Luer Lock end is connected to the blood
vessel which is to receive the fluid. Image adapted from [11].

The height of the ventricular needle, denoted as hEVD, was estimated in two different

ways:

∙ A simple approach to approximating the vertical height of the ICP ventricular nee-

dle was by measuring the depth to which the needle was inserted, via the CX-50

ultrasound device, and accounting for an acute angle of insertion.

∙ Another approach at estimating the exact height of the ventricular needle relied on

the basic principle that flow through a system ceases when the pressure difference

across the system is zero. The ventricular needle was connected to a saline bag,

through a typical IV infusion setup, a schematic of which is shown in Figure 5-5.

Due to pressurization of the drip chamber shown in Figure 5-5, the height at which
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flow through the tubing stops is higher than the level of fluid in the chamber itself.

This height difference between the level of fluid in the drip chamber, and height

of the connector end where flow stops was estimated in tabletop experiments, and

denoted as ∆h f low. During the experiment, this IV infusion setup was connected to

the ventricular needle, with the drip chamber at a height much greater than ∆h f low

below the ventricles, thus leading to zero flow of saline. The drip chamber was

slowly elevated until intraventricular saline flow just started, and the height of the

drip chamber at this level was noted a s hdrip. Finally, the height of the ventricular

needle could be estimated as hEVD = hdrip + ∆h f low.

Once the height of the ventricular needle, hEVD, was estimated, the hydrostatic correc-

tion factor could be computed in the pre-processing step of the estimation algorithm as

outlined in Chapter 3.

5.3.7 ICP manipulations

Elevation of ICP was achieved by direct intraventricular infusion of saline, warmed to

body temperature by a SurgiVet Hotline IV fluid warmer, through the intraventricular port

described previously. A 1-liter saline bag was mounted on a height-adjustable IV stand and

connected to the Luer lock of the intraventricular catheter through a standard IV tubing set

(Figure 5-5). Once the hieght of the ventricular needle was estimated, as outlined above,

ICP could be manipulated by elevating the drip chamber was elevated above hdrip. When

this occurs, saline is infused into the ventricles until the inflow into the ventricles matches

the outflow through the cerebrospinal fluid pathways, thus establishing a new cerebrospinal

fluid pressure.

To control the vertical height of the saline bag, the inner, movable shaft of the IV

stand was mechanically coupled to a linear actuator (JoyNano Nema 17) and controlled by

a programmable microprocessor (Arduino Uno R3). The actuator consisted of a stepper

motor (1.8o/step; 8 mm/360o revolution) connected to the outer shaft and the lead screw

connected to the inner, movable shaft of the IV stand. With the stepper motor engaged,

the inner shaft of the IV stand, and hence the saline bag, were raised and lowered in a
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controllable manner.

(a) Stepwise elevation of ICP (b) Plateau wave simulation

Figure 5-6: Two different experimental elevation profiles of mean ICP in porcine model.
The red lines and shaded regions represent the mean and standard deviation of the exper-
imentally observed ICP elevations, respectively. The blue line indicates the expected ICP
change for the programmed saline bag elevation, computed using the equation ∆P = ρg∆h.

Two elevation/lowering profiles were programmed. The first profile simulated a step-

wise increase and decrease of ICP. The saline bag was elevated in steps of 5 cm at a time up

to a maximum of 30 cm above baseline ICP; the ICP was allowed to stabilize at each new

level for 10 minutes. At the conclusion of the stepwise increase, the saline bag was lowered

to baseline again in steps of 5 cm (Figure 5-6a). Each 5 cm change in the vertical height

of the saline bag theoretically should have resulted in a change in ICP of approximately

3.7 mmHg. This profile was chosen to probe the important transition zone in ICP from a

normal ICP of about 5 to 10 mmHg to a neurosurgical emergency of about 30 to 35 mmHg.

The second profile sought to mimic a plateau wave commonly seen in neurotrauma pa-

tients [111,112]. The stepper motor was programmed to elevate the saline bag at a constant

speed of 5 cm/min to 30 cm above baseline ICP. The ICP was allowed to equilibrate at the

maximum level for 10 minutes before the saline bag was returned to its baseline position,

again at constant speed of 5 cm/min (Figure 5-6b).

Figure 5-6 reveals discrepancies between the observed ICP elevations, and the theoret-

ically predicted ones. These can be attributed to the cerebrovascular control system, which

is not modeled in our simplified computation of the expected ICP elevation. ∆P = ρg∆h.

In reality, every elevation of the saline bag results in an immediate flow of fluid into the

ventricular space, which quickly redistributes, and along with the cerebrovascular autoreg-

ulatory processes, results in ICP not increasing by the theoretically predicted magnitude.
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Finally, to simulate excessively high ICP values, in a subset of the animals the IV stand

was disconnected from the stepper motor, and the inner shaft was manually elevated to ex-

treme heights, to achieve a maximum ICP of about 70 mmHg, depending on the prevailing

ABP and hemodynamic stability of the animal (Figure 5-7).

Figure 5-7: Example of manual ICP elevation to extreme levels of intracranial hypertension
(ICP=70 mmHg). The shaded region shows the normal range of ICP in humans [12].

5.3.8 Data acquisition

Two ADInstruments eight-channel PowerLab 8/35 data acquisition systems were daisy-

chained and used to record data streams from the multiple devices used throughout the

experiment. The ECG, PPG, SpO2, EtCO2, respiratory rate, and one of the femoral ABP

measurements were routed through the analog output of the veterinary monitor to the Pow-

erLab for archiving. The other femoral ABP, the ventricular ICP (when transducing), the

parenchymal ICP, and the carotid ABP waveforms were directly fed into the PowerLab.

The MCA CBFV waveform was measured with the DWL Doppler BoxX, and the analog

output was also streamed to the PowerLab for real-time CBFV archiving. All physiological

waveforms were calibrated before the experiment and recorded on a common time axis, at

a sampling rate of 1,000 samples/s and at an amplitude resolution of 16 bits. The heights of

the femoral ABP transducers were adjusted to the same vertical level as the ICP transducer

to eliminate any hydrostatic offsets. Once all the instrumentation was complete, stable
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baseline data were collected for an hour.
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Chapter 6

Estimation Results on Porcine Model

Cohort

The experimental porcine model described in the previous chapter enabled the titration of

ICP in a predetermined manner over a wide range of cerebrospinal states, and resulted in

the recording of a rich dataset of high resolution waveform data to validate the accuracy

and robustness of our noninvasive ICP estimation algorithm. In this chapter, we begin

by summarizing the experimental results of our porcine model and presenting a census of

the porcine model validation data, with a much wider range than the previously described

patient cohorts. We then present the validation results of our spectral noninvasive ICP

estimates on this porcine model dataset, by comprehensively quantifying the estimation

performance at varying degrees of clinical accuracy. We detail three main degrees of error

quantification – classification of elevated ICP, capturing trends in ICP, absolute accuracy

of mean ICP – and demonstrate the accuracy and robustness of our estimates across a wide

range of ICP and across all these three metrics. Finally, we detail the significance of our

estimation results, by comparing to errors reported in literature for the invasive ICP probes

and for past attempts at noninvasive ICP estimation.
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6.1 Experimental porcine model summary

6.1.1 Experimental statistics

The experimental protocol detailed in Chapter 5 resulted in a rich collection of high-

resolution physiological waveform data, over a wide range of ICP and hemodynamic states.

A total of 12 female Yorkshire pigs were studied over a two-year period, with the animals

weighing between 41 and 52 kg. In each experiment, the surgical procedures for hemo-

dynamic instrumentation and the craniectomy lasted for an average of six hours and 39

minutes, with the duration significantly reduced after the first few animals. All experi-

ments were successful from a surgical standpoint, with no adverse outcomes or premature

deaths. However, there were still some experimental challenges faced over the course of

the twelve experiments. One of these was the shivering of some animals when the ICP was

elevated and/or returned back to baseline levels. This was observed in four of the animals

and spontaneously resolved in all cases. Additionally, in one of the animals, a femoral

artery catheter became partially dislodged during the surgery, leading to bleeding and hy-

povolemic shock for a short while. The animal was stabilized by closing the site of the

bleed and restoring intravascular volume. All the other animals had no surgical issues.

6.1.2 Porcine model data census

The porcine model described in the previous chapter was implemented on twelve pigs,

with eleven of the pigs have two invasive ICP probes. For all validation purposes, only the

parenchymal ICP was used as the gold-standard to compare our estimates against, since

the intraventricular ICP was not transducing during ICP manipulations by intraventricular

saline infusion. Nine of the pigs had reliable central ABP measurements since in the first

three pigs, the Millar Mikro-tip catheter was placed with the tip facing the rostral end of the

animal, resulting in a damped cABP signal. In the remaining pigs, the transducer tip was

placed facing the blood flow (i.e. threaded towards the heart), which resulted in accurate

cABP waveform measurements. Eleven of the pigs had a reliable fABP waveform, as in

the first pig the fABP was streamed out of the Cardell veterinary monitor, which heavily
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quantizes the waveforms.

The basic criteria for inclusion of the recorded data form an experiment in our vali-

dation dataset, was the presence of high-resolution ABP (fABP and cABP whenever pos-

sible), CBFV and parenchymal ICP waveform data for long stretches of time. Out of all

twelve animals studied, the data collected from four pigs were excluded due to the follow-

ing reasons:

Pig 1: The parenchymal ICP was not measured in this pig, and as a result during

intraventricular saline infusion, there was no gold-standard invasive ICP reference

recording. Additionally, the femoral ABP was quantized by the veterinary monitor.

Pig 3: The animal was not stable for the majority of the experiment and no continu-

ous stretch of stable CBFV recordings were obtained.

Pig 5: The intraventricular needle was not in the ventricular space. This resulted in

erroneous ICP readings, and potential parenchymal damage.

Pig 8: The animal had a bleed due to a dislodged femoral arterial catheter, as de-

scribed earlier. As a result, the animal was unstable and had to be sustained on

vasopressors, which made it difficult to isolate the effects of intraventricular infusion

on ICP.

All the data from the eight remaining pigs were screened by the automated pre-processing

pipeline used for the patient cohorts [9], and additionally manually reviewed to ensure only

contiguous stretches of stable recordings were used for validation of our noninvasive ICP

estimation algorithm. This resulted in around 35 hours of data selected from the eight pigs,

with a mean ICP of 17.6 mmHg and a range of mean ICP from 2.1 mmHg to 78.2 mmHg.

This porcine validation dataset was much larger, in terms of duration, than the patient co-

hort (around eight and a half hours) and had a much wider range than the patient cohorts

(1.3 mmHg to 24.8 mmHg). Moreover the distribution of ICP was more spread out in

the porcine model dataset (Figure 6-1), with a significant fraction of data recorded in the

clinically relevant elevated ICP range (ICP>22 mmHg [13]).
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Figure 6-1: Comparison of distributions of mean ICP in human and porcine model valida-
tion dataset. The normotensive range of ICP is from 0 mmHg to 15 mmHg (green), and the
region of intracranial hypertension which necessitates intervention is for mean ICP above
22 mmHg (red) [13]. The larger fraction of data available in the pathological higher ICP
ranges in the porcine model data, when compared tot he narrow distribution of ICP in the
human data, enables a more robust quantification of the algorithm’s performance.

6.2 Spectral algorithm implementation in porcine model

The spectral noninvasive ICP estimation algorithm described in Chapter 3 was applied

without any major changes to the porcine model dataset. The estimation was performed on

a windowed basis using non-overlapping windows of duration 60 beats. A single linear fit

was used to reconstruct the mean-subtracted CPP instead of the combination of a linear and

cubic fit. This was done because the combination of two different fits has the potential for

introducing high-frequency artifacts at the point of concatenation of the reconstructed CPP

upstroke and diastolic decays. Hence, a more reduced implementation using a single linear

fit was adopted, with no re-training of the parameters on the porcine data. Thus, the linear

fitting parameter was still obtained on the same training set as the patient cohorts, and the

porcine model data served as a blinded hold-out validation dataset. Finally, as in the patient

cohorts, four harmonics in the power spectra over two sub-windows were calculated for the

least squares estimation.

An important pre-processing step is the hydrostatic correction of the mean peripheral

or central ABP, to approximate the mean cerebral ABP. The height of the intraventricular
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trasnducer (hEVD), fABP transducer (h f ABP) and cABP transducer (hcABP) were determined

as described in Chapter 5. However, to ensure physiological accuracy of this hydrostatic

correction factor, the compensation was calculated based on the cutoff of cerebral blood

flow. As shown in the model in Chapter 3, the cerebral blood flow is driven by CPP,

and hence whenever ICP exceeds ABP, CPP goes to zero, the blood vessel completely

collapses, and the blood flow (and hence CBFV) is zero. Each of the eight pigs included

in the validation dataset had at least one continuous time period where the diastolic CBFV

was zero during ICP manipulations. Hence, during this time the diastolic ICP must have

exceeded the diastolic cerebral ABP, resulting in flow limitation. Thus, to compute the

exact hydrostatic correction, the first time point where diastolic CBFV were zero during

ICP elevation was computed, and the difference between the diastolic ICP and ABP were

computed at this point, denoted by ∆Pdias. After confirming that this value of ∆Pdias was

consistent across all such periods of diastolic CBFV cutoff within each animal, ∆Pdias can

be assumed to be the physiologically correct pressure correction factor and applied to the

fABP and cABP waveforms to obtain the approximate cerebral ABP.

6.3 Porcine model estimation performance

The spectral algorithm for noninvasive ICP estimation was implemented on around 35

hours of porcine model data, as detailed in the previous section. When compared to the

patient validation cohort, the porcine data had more significant trends in ICP as a result

of the manipulations described in the previous chapter, and a wider distribution of mean

ICP, specifically resulting in a larger fraction of data in the clinically relevant intracranial

hypertension region (Figure 6-1). Hence, the porcine model data served as a richer valida-

tion dataset for a more comprehensive quantification of the accuracy and robustness of the

noninvasive ICP estimation algorithm than the patient cohorts.

While 35 hours of validation data from eight pigs were available with high-quality

fABP waveform data, the cABP validation dataset consisted of 33 hours 30 minutes of

data from seven pigs. This was due to the lack of a cABP recording in one of the eight

included pigs. Henceforth, all estimation results shall be presented for estimates obtained
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from (fABP, CBFV) as input waveforms and (cABP, CBFV) as input waveforms indepen-

dently. Since the porcine model validation dataset was very rich and diverse, a comprehen-

sive quantification of the algorithm’s performance could be performed at multiple levels of

granularity

1. Intracranial hypertension classification: Accurate classification of the cerebrospinal

state of the patient as normotension or intracranial hypertension is crucial for clinical

decision-making and guiding treatment.

2. ICP trend analysis: Capturing trends of increasing or decreasing ICP in an accurate

and timely manner is essential in detecting episodes of elevated ICP early and to

assess response to treatment.

3. Overall absolute accuracy: Clinically, accurate estimation of absolute mean ICP

is important so clinicians can assess the CSF space in real-time and titrate therapy

accordingly to specific target values. Additionally, for each individual animal, a

comparison of the mean ICP and noninvasive ICP estimates over time quantifies the

tracking of our estimates over a wide range of hemodynamic states and simulated

ICP profiles.

6.3.1 Performance in classification of intracranial hypertension

Classification setup

One of the most important applications of accurate noninvasive ICP estimates is early triage

for assessment of elevated ICP in potentially neurologically compromised patients. In the

current clinical setup, mildly symptomatic patients with potentially elevated ICP are as-

sessed based on their mental state, as measuring ICP invasively is not recommended unless

the symptoms are severe. However, the lack of an altered mental state does not neces-

sarily imply that the ICP is normal, and hence there is the potential for missed cases of

elevated ICP due to the invasiveness of the measurement modality. A noninvasive ICP

modality would allow for this detection of elevated ICP or intracranial hypertension to be

performed easily at home or in an ambulance, without the need for neurosurgical expertise,
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thus enabling better treatment decisions and enabling more favorable outcomes in the case

of aggressive intracranial hypertension. Hence, quantifying the performance of our ICP

estimation algorithm in accurately classifying intracranial hypertension is clinically vital.

This assessment was not possible on the clinical patient cohorts, due to limited range of ICP

with almost no data in the intracranial hypertension range. However, due to the richness

and wide range of the porcine model dataset, the classification performance of the spec-

tral noninvasive ICP estimation algorithm could be quantified using Receiver Operating

Characteristic (ROC) curves.

For assessing the classification performance of our noninvasive ICP estimates on the

porcine model data, we defined the two classes as

∙ Intracranial Hypertension: Measured ICP > ICPth (positive class)

∙ Normotension: Measured ICP < ICPth (negative class)

where ICPth is a threshold chosen as the upper limit of normal measured ICP. We then com-

puted the performance of our estimates in correctly classifying the invasive parenchymal

ICP into these two classes by picking a threshold for nICP (nICPth) and computing the sen-

sitivity and specificity at this threshold. Varying nICPth over the range of values resulted

in a ROC curve. This was done separately for the estimates obtained from the femoral and

central ABP as inputs. Furthermore, we computed the sensitivity and specificity of our

estimates’ classification performance at two operating points:

∙ Operating point 1 (nICPth = ICPth): Clinically, computing the sensitivity and speci-

ficity at ICPth is important as it is the threshold between normal ICP and potentially

needing treatment or continuous monitoring. Hence, ICPth was chosen as one of the

operating points.

∙ Operating point 2 (nICPth = point of equal sensitivity and specificity) : Choos-

ing the point of equal sensitivity and specificity as an operating point enables us

to calculate the exact probability of correct classification, independent of the preva-

lence of the positive or negative classes in a cohort. At all the other points on the

ROC, the probability of correctly classifying intracranial hypertension is biased by
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the relative prevalence of the positive and negative classes in the validation data. The

independence of the performance estimate at this operating point on the data makes

it useful for practical implementation of the classifier. The computations underlying

the choice of this operating point are shown below:

At any point on the ROC,

𝒫(CC) = 𝒫(ICH) · 𝒫(CC|ICH) + 𝒫(Normal) · 𝒫(CC|Normal) (6.1)

where𝒫(CC) is the probability of correct classification by the nICP estimates,𝒫(ICH)

is the probability of occurrence of the positive class, or intracranial hypertension, in

the dataset, and 𝒫(Normal) is the probability of occurrence of the negative class, or

normotension, in the dataset.

Since 𝒫(CC|ICH) = Sensitivity and 𝒫(CC|Normal) = Specificity,

𝒫(CC) = 𝒫(ICH) · Sensitivity + 𝒫(Normal) · Specificity (6.2)

At the point where both sensitivity and specificity are equal, and the value is denoted

as 𝒮,

𝒫(CC) = (𝒫(ICH) + 𝒫(Normal) · 𝒮 = 𝒮 = Sensitivity = Specificity (6.3)

since by fundamental laws of probability, all the data must be either in the positive or

negative class, and hence 𝒫(ICH) + 𝒫(Normal) = 1. Thus, by inspecting the point

of equal sensitivity and specificity, we get an estimate of the probability of correct

classification (𝒫(CC)), independent of the distribution of the validation data.

Noninvasive ICP estimates’ classification performance

Based on the classification problem described previously, ROC curves were constructed

for three different choices of the threshold, ICPth = The thresholds of 20 mmHg, 22

mmHg, and 25 mmHg. 20 mmHg and 22 mmHg were chosen as recommended by the
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Brain Trauma Foundation guidelines in their 3rd [12] and 4th editions [13], respectively.

The threshold of 25 mmHg was chosen as as ICP measurement above 25 mmHg usually

necessitates aggressive treatments in neurocritical care [31].
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Figure 6-2: ROC curves along with associated AUC for assessing classification perfor-
mance for three different thresholds of intracranial hypertension. The left column shows
the operating point at ICPth, and the right column shows the operating point at the point of
equal sensitivity and specificity. Note that ROC curves were independently generated for
estimates obtained from femoral ABP (fABP) and central ABP (cABP).
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The ROC curves generated from the noninvasive ICP estimates are shown in Figure 6-2.

For each value of ICPth, two ROC curves are obtained, one for ICP estimated from fABP,

and one for ICP estimated from cABP. For each ROC curve, the area under the curve (AUC)

and the sensitivity and specificity at each of the two choices of operating points, described

earlier, were computed.

If a peripheral ABP waveform was chosen as the input to our spectral algorithm, the

resulting noninvasive ICP estimates had AUCs of 0.95, 0.95 and 0.96 for ICH thresholds

of 20, 22 and 25 mmHg, respectively. Similarly, using cABP as an input instead resulted

in AUCs of 0.94, 0.94, and 0.95 for ICH thresholds of 20, 22, and 25 mmHg, respectively.

The sensitivities and specificities at the two operating points are shown in Table 6.1 for

fABP, and in Table 6.2 for cABP.

Table 6.1: Classification performance of estimates obtained from fABP as an input, at both
operating points for all three thresholds.

Operating Point 1 Operating Point 2
ICPth 20 mmHg 22 mmHg 25 mmHg 20 mmHg 22 mmHg 25 mmHg

Sensitivity 0.92 0.88 0.88 0.87 0.87 0.88
Specificity 0.81 0.87 0.91 0.87 0.87 0.88

Table 6.2: Classification performance of estimates obtained from cABP as an input, at both
operating points for all three thresholds.

Operating Point 1 Operating Point 2
ICPth 20 mmHg 22 mmHg 25 mmHg 20 mmHg 22 mmHg 25 mmHg

Sensitivity 0.94 0.91 0.95 0.88 0.88 0.88
Specificity 0.81 0.84 0.87 0.88 0.88 0.88

The ROC curves assess the algorithm’s performance in the binary classification prob-

lem of intracranial hypertension. However, the transition between a normotensive state and

intracranial hypertension does not occur sharply at a fixed threshold value, and hence clin-

icians look at a transition range between normal ICP and elevated ICP, where the patient is

closely monitored. This manifests as different thresholds for normal ICP and elevated ICP.

Let us define X as the upper limit of normal ICP (ICP < X indicates normal ICP), and Y as
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the lower limit of abnormal ICP (ICP > Y indicates elevated ICP). Note that X and Y need

not be the same, as defined in the binary ROC classification setup, where X = Y = ICPth.

Denoting invasive ICP as ICP, and the noninvasive ICP as nICP, we now define four types

of classification errors from these thresholds:

1. 𝒫1 = 𝒫(nICP> Y |ICP< X) = Probability of false alarm or false positive.

2. 𝒫2 = 𝒫(nICP< X|ICP> Y) = Probability of missed clinical event or false negative.

3. 𝒫3 = 𝒫(ICP> Y |nICP< X) = Probability of not giving required treatment.

4. 𝒫4 = 𝒫(ICP< X|nICP> Y) = Probability of over-treatment.

𝒫3 and 𝒫4 serve as confidence metrics of our estimates, as the clinical goal would be to

rely on the noninvasive estimates for accurate information about the patient’s ICP, that is

not known.

To evaluate the probabilities of mis-classification, X and Y were initially both chosen

to be the same (= 20 mmHg) as a stringent threshold between normal and elevated ICP. X

and Y were then separated in steps of 2 mmHg symmetrically from 20 mmHg, to compute

the errors in a more realistic clinical situation, with a transition range between the normal

and elevated ICP zones. The resulting errors are shown in Table 6.3 for estimates obtained

from the fABP, and from the cABP.

Table 6.3: Probabilities of errors in classifying normal or elevated ICP

fABP cABP
(X,Y) 𝒫1 𝒫2 𝒫3 𝒫4 𝒫1 𝒫2 𝒫3 𝒫4

(20,20) 0.19 0.08 0.05 0.29 0.19 0.06 0.04 0.27
(19,21) 0.11 0.04 0.02 0.17 0.12 0.04 0.03 0.18
(18,22) 0.07 0.01 0.01 0.11 0.09 0.03 0.02 0.13
(17,23) 0.04 0.01 0.01 0.07 0.05 0.02 0.01 0.08
(16,24) 0.02 <0.005 <0.005 0.04 0.02 0.02 0.01 0.04
(15,25) 0.01 <0.005 <0.005 0.01 0.01 0.01 <0.005 0.01
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6.3.2 Comparison of trends in ICP and noninvasive ICP

Capturing increasing and decreasing trends in ICP in a timely manner is crucial to prevent

adverse outcomes and to evaluate the efficacy of treatment choices. Increasing trends in ICP

are usually indicative of worsening neurological health and, coupled with close observa-

tion of the patient, might necessitate pharmacological or surgical interventions. Capturing

these trends accurately and early on is essential to start any therapeutic intervention im-

mediately to alleviate the patient’s health by titrating the ICP back to normotensive levels,

and thus prevent any potential neurological damage. Similarly, decreasing trends in ICP

are indicative of the patient’s health improving, which could be a useful indicator for treat-

ment administered. Monitoring these trends after the start of an intervention could guide

further treatment decisions by the neurologist or neurosurgeon, and potentially avoid over-

treatment. Hence, while classification of elevated ICP, as described previously, is important

for triage purposes, accurately tracking trends in ICP is also important for monitoring the

patient’s neurological health and treatment efficacy.
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(b) Correlation plot from cABP

Figure 6-3: Correlation plots between estimated nICP and mean measured ICP. The solid
black line indicates the best linear fit for all the data points, while the red dashed line
indicates the ideal linear fit, nICP = ICP with slope = 1.

Due to the inherently limited ICP range in the human data, there were no significant

observable trends in the ICP, and hence a meaningful trend analysis could not be performed

in the clinical patient cohorts. In the porcine model dataset, the correlation plot of the
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noninvasive ICP estimates and the mean measured ICP is shown in Figure 6-3. The slopes

of the best linear fits for correlations between the measured ICP and the estimates obtained

from the fABP and the cABP, were 0.79 and 0.87, respectively. For both the correlation

plots, the data points seemed to be well represented by this linear fit for the whole range of

measured ICP, from 2 mmHg to 78 mmHg, with no significant cloud of outliers.
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Figure 6-4: Bland -Altman plots comparing the instantaneous slopes of mean measured
and estimated ICP over 300 beats. The solid line indicates the bias, while the dotted lines
indicate the limits of agreement (bias ± 1.96 · SDE.)

The correlation plot gives information on the degree of co-variation between the mea-

sured and estimated ICP, and the degree to which a linear transformation of the estimates

captures the variations in measured ICP. While this represents the degree of the estimates

tracking the measured ICP to an extent, it does not give information on the absolute errors in

comparing the slopes of the measured and estimated ICP values. For this, we computed the

instantaneous slope of the estimated and mean measured ICP over non-overlapping win-

dows of 300 beats each, and compared them. The resulting Bland-Altman plot is shown in

Figure 6-4.

6.3.3 Evaluation of mean ICP accuracy

The ultimate goal in evaluating the estimation performance is to accurately estimate the

mean measured ICP value, in very estimation window. This was quantified using the same

error metrics as in the patient validation cohorts, described in Chapter 4. On the porcine

model dataset, if fABP was used as the input waveform, the algorithm achieved a bias

of 1.6 mmHg, a SDE of 5.2 mmHg, and a RMSE of 5.5 mmHg, on around 35 hours of
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Figure 6-5: Bland-Altman plots comparing the mean measured and estimated ICP on a
window-by-window basis on all the porcine model data. The solid line indicates the bias,
while the dotted lines indicate the limits of agreement (bias ± 1.96 · SDE.)

data from eight pigs (Figure 6-5a). If the cABP waveform was used as the input ABP, the

algorithm’s bias was 1.6 mmHg, with a SDE of 4.8 mmHg and a RMSE of 5.0 mmHg, on

around 33 hours and 30 minutes of data from seven pigs (Figure 6-5b). These results are

essentially the same as the estimation results obtained on the overall patient cohorts, where

the bias, SDE and RMSE were 0.1 mmHg, 5.1 mmHg and 5.1 mmHg, respectively. To

further quantify the performance, the estimation errors were computed for different ranges

of measured ICP. For all data points with measured ICP < 15 mmHg, corresponding to a

normal range of ICP, the (bias, SDE, RMSE) were (3.1 mmHg, 4.7 mmHg, 5.6 mmHg)

for estimates obtained from femoral ABP and (1.9 mmHg, 4.2 mmHg, 4.6 mmHg) for

estimates obtained from central ABP. Similarly, if we only consider the data where the ICP

ranges from 22 mmHg to 45 mmHg, corresponding to clinically relevant elevated ICP, the

(bias, SDE, RMSE) were (-1.2 mmHg, 4.8 mmHg, 4.9 mmHg) for estimates from femoral

ABP and (−0.1 mmHg, 4.7 mmHg, 4.7 mmHg for estimates from central ABP. Thus, the

performance metrics are consistent across all ranges of the measured ICP.

6.3.4 Temporal ICP tracking in individual animals

All the previous results described the aggregate performance of the estimation algorithm,

on the overall dataset. We also investigated the individual estimation performance one

each animal, to evaluate the temporal tracking ability of the estimates over various ICP

manipulations, and to identify systematic sources of error. These are shown in Figure 6-6.
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(e) Estimation performance in pig 9
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(f) Estimation performance in pig 10
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(g) Estimation performance in pig 11
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Figure 6-6: Individual estimation performance on each of the animals studied. The bias,
SDE and RMSE for each animal are shown in the figures.

6.3.5 Robustness of Noninvasive ICP Estimates

The error metrics on the porcine model dataset, reported in this chapter, are comparable to

the error metrics obtained on the pooled patient cohorts, which were reported in Chapter 4

as (0.1 mmHg, 5.1 mmHg, 5.1 mmHg). This validates the robustness of our algorithmic
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approach since there was no re-training of the algorithm on the porcine model data, and

the data acquisition system for all the three cohorts (pediatric, adult and porcine) were

all very different and yet the results were consistent across all the data. Moreover, the

range of measured ICP in the porcine model data was much wider than the patient cohort

with a significant portion of data in the clinically important ICP range of ICP>20 mmHg

(Figure 6-1), further validating the algorithm’s robustness, by proving the independence of

the algorithm’s accuracy on the dataset or range of ICP.
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Figure 6-7: Distribution of the linear fitting parameter when trained on individual and
overall porcine data, obtained from the femoral and central ABP, and when trained on
human data, obtained from the radial ABP.

To further analyze the robustness of the estimates, we derived the fitting parameter

for the ABP-ICP linear fit on the whole porcine model data in another training step, and

analyzed the training performance on the porcine data. This resulted in an accuracy (bias)

of 1.2 mmHg and 0.4 mmHg, a precision (SDE) of 5.2 mmHg and 4.8 mmHg, and a RMSE

of 5.4 mmHg and 4.8 mmHg, respectively for nICP estimated from fABP and cABP. These

performance metrics are very similar to the ones obtained without recalibrating on the

porcine data, and effectively defines a training performance.

Similarly, if the fitting parameter is optimized for each individual pig and tested on each

pig, the overall error metrics improve to a (bias, SDE, RMSE) of (0.9 mmHg, 5.1 mmHg,

5.2 mmHg) from the femoral ABP and (0.1 mmHg, 4.5 mmHg, 4.6 mmHg) from the cen-

tral ABP measurement. These metrics essentially amount to the performance attained by
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individual calibration of the model to each pig, thus providing a lower bound on the error

metrics that can be expected within the current model and algorithmic framework.

The resultant distribution of fitting parameters obtained by training on different datasets

is shown in Figure 6-7. Importantly, this exercise demonstrates that the overall results do

not improve significantly (<10% improvement) by calibrating individually or training on

the overall porcine data. The robustness of our estimation performance to the fitting param-

eter choice, on the overall porcine data, is summarized in Table 6.4. A similar study of the

effect of calibrating the fitting parameter on each pig’s individual estimation performance

is described in Appendix A.

Table 6.4: Estimation performance on the porcine data with respect to the fitting parameter
training scheme.

fABP errors (mmHg) cABP errors (mmHg)
Fitting Procedure Bias SDE RMSE Bias SDE RMSE

mmHg mmHg mmHg mmHg mmHg mmHg
Single parameter from
the clinical training set
(testing performance)

1.6 5.2 5.5 1.6 4.8 5.0

Single parameter
trained on whole
porcine data (training
performance)

1.2 5.2 5.4 0.4 4.8 4.8

Optimal parameter for
each animal (calibrated
performance)

0.9 5.1 5.2 0.1 4.5 4.6

The sensitivity of the error to perturbations of the fitting parameter were also analyzed.

A perturbation in the fitting parameter of less than 10% resulted in a RMSE degradation

of less than 5%, and a 20% perturbation of the fitting parameter resulted in the RMSE

degrading by less than 10%, irrespective of the choice of fitting parameter. Hence, the

estimation results do not seem to be critically dependent on the fitting parameter.
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6.4 Discussion

The estimation performance of our spectral algorithm for classification of intracranial hy-

pertension, tracking of trends in ICP and for absolute mean ICP estimation, were assessed

in terms of errors reported in past noninvasive ICP estimation methods. Past attempts at

noninvasive ICP estimation by Fanelli et al. [9] and Kashif et al. [6] leveraged similar

models of cerebrovascular physiology, and obtained AUCs of 0.79 and 0.83 respectively

in classifying intracranial hypertension. It is encouraging that our approach resulted in an

AUC of 0.94 to 0.96 for different definitions of elevated ICP, and over a wider range of

ICP variability in the validation dataset. Expanding the scope of approaches to estimating

ICP noninvasively, Robba et al. [113] evaluated the classification performance of four dif-

ferent types of algorithms on 100 patients, where they defined elevated ICP as ICP >20

mmHg. They reported an AUC of 0.78 for an approach predicated on estimating the optic

nerve sheath diameter (ONSD), an AUC of 0.85 for an algorithm estimating ICP from the

pulsatility index (PI) of CBFV, an AUC of 0.86 for ICP estimated purely by a TCD-based

approach, and an AUC of 0.71 for estimates based on the neurological pupil index (NPI)

measured by pupillometry. Additionally, when utilizing a combination of these techniques,

the best AUC they reported was 0.91. For the same classification task and definition of

elevated ICP (ICP>20 mmHg), our algorithm resulted in an AUC of 0.94 and 0.95, for

different ABP inputs, which are better or comparable to these reported metrics. Andersen

et al. [114] proposed a method to assess ICP from the optical arteriole-venule diameters,

measured using fundus photography, and reported an AUC of 0.74 for classifying eleva-

tions in ICP above 20 mmHg, when compared to our AUC of 0.94 and 0.95. Moreover, at

their choice of operating point, they reported a sensitivity of 94% and specificity of 50%,

which implies a large probability of identifying a healthy individual as sick. The trade-off

between sensitivity and specificity also provides a useful qualitative assessment of our clas-

sification performance. While an ideal clinical scenario would be perfect prediction of both

normotensive and intracranial hypertension cases, such perfect classification does not exist

in realistic clinical applications of screening tests. Additionally, it might be more important

to accurately classify the sick patients to guide treatment decisions and reduce the chance
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of adverse outcomes. Table 6.3 shows the four types of probability errors obtained from our

algorithm’s classification performance. 𝒫2 and 𝒫3 indicate the probability of missed events

of intracranial hypertension and the probability of under-treatment, respectively. Clinically,

it is vital to minimize these two errors, rather than 𝒫1 and 𝒫4, to potentially save lives. Ta-

ble 6.3 shows that 𝒫2 and 𝒫3 are less than 8% for all combinations of thresholds. Also,

for a clinically acceptable definition of normal ICP as ICP<16 mmHg and elevated ICP as

ICP>24 mmHg, these two errors are <0.005%, implying that all episodes of intracranial

hypertension are correctly identified.

Correlation analyses have been performed in various past noninvasive ICP estimation

approaches, with comparable results to our correlation coefficient of 0.89 [6,35,36,78,113].

The best linear fit for these plots in our porcine model data was shown in Figure 6-3.

Imaduddin [78] and Kashif [6] reported correlation coefficients of 0.64 and 0.90, using

similar model-based approaches to noninvasive ICP estimation. While the range of mea-

sured ICP int he Kashif data was similar to the range in our porcine data, Imaduddin used

the pediatric patient data described in Chapter 4 of this thesis, which has an inherently more

limited range and hence may have affected the correlation analysis negatively. Robba [113]

reported correlation coefficients of 0.54, 0.50, 0.61 and −0.41 for approaches based on

ONSD, PI, TCD and NPI, respectively. Park [76] reported a correlation coefficient of 0.75

in assessing ICP from ABP and CBFV, using a state space model-based approach. The cor-

relation plot gives a metric of how well an affine function of the noninvasive ICP estimate

approximates the mean invasive ICP, and hence it is highly encouraging that our approach

results in better or comparable correlation coefficients to a number of recently reported

estimation approaches. However, it is important to note that the correlation coefficient is

also a function of the range of measured ICP and is expected to be lower for limited ICP

ranges [22, 78]. Additionally, as seen in Figure 6-3, there were no signiifcant outliers in

the correlation plots, indicating that the correlation performance of our estimates was good

across the whole range of measured ICP.

Our estimation algorithm resulted in a (bias, SDE, RMSE) combination of (1.59 mmHg,

5.21 mmHg, 5.45 mmHg) and (1.64 mmHg, 4.77 mmHg, 5.04 mmHg) for estimates ob-

tained from fABP and cABP, respectively, on the rich porcine model dataset. As described
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in Chapter 4, it is encouraging that these error metrics are also comparable to the errors re-

ported between the currently accepted gold-standards for invasive ICP monitoring, namely

the intraventricular and intraparenchymal modalities [36, 49]. Furthermore, these error

metrics are also similar to or better than some of the past noninvasive ICP estimation ap-

proaches [6, 9, 66, 76, 78]. Additionally, the estimation performance was analyzed over

different ranges of measured ICP and the error metrics were found to be comparable for

ICP < 15 mmHg and for ICP in the range of 22 mmHg to 45 mmHg. These comparable

metrics indicate the robustness of our estimates and their independence of the range of the

underlying ICP.

A systematic source of error observed in all the porcine model data is the underesti-

mation of nICP during regions of intracranial hypertension. These regions correspond to

a period of diastolic cutoff, where CBFV goes to zero due to ICP exceeding the ABP. If

these regions of diastolic cutoff are excluded, the RMSE improves to 5.0 mmHg for esti-

mates from femoral ABP and 4.3 mmHg for estimates obtained from central ABP. Thus

the regions of intracranial hypertension contribute to a consistent source of error, which is

explained in the next chapter.

Another advantage of quantifying the estimation performance on the porcine model

data, was the ability to independently assess the effect of peripheral or central ABP as an

input to the algorithm. While ideally we aimed to measure the cerebral ABP and com-

pute estimates of ICP, the extensive branching of the carotid arteries seen in pigs, and the

narrowing of the cerebral vessels, rendered the measuring of cerebral ABP very difficult.

Hence the measurement of central ABP served as a better approximation of the cerebral

ABP that could be conveniently measured. The consistent AUC, correlation coefficient,

and bias, SDE, and RMSE across the estimates obtained from the two ABP waveforms

as input, validated the relative independence of the algorithm’s performance on the exact

choice of measured ABP. This is clinically important, as this analysis proved the suffi-

ciency of a peripheral ABP for optimal estimation performance, as long as the hydrostatic

compensation is accurately performed, and since only radial (peripheral) ABP is routinely

measured at the bedside.
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Chapter 7

Contributions and Future Work

The previous chapters detail our proposed model-based noninvasive ICP estimation frame-

work, particularly as exemplified by our spectral estimation algorithm. The accuracy and

robustness of our algorithm’s performance were quantified on three diverse validation

datasets, in a calibration-free manner. The results were found to be highly encouraging

as the error metrics were comparable across all the datasets, as well as comparable to the

errors reported for the invasive ICP measurement modalities. In this chapter, we briefly

summarize all our contributions, previously detailed in this thesis, and explore some of the

residual sensitivities and limitations of our current estimation framework. We then describe

the avenues for future work to further refine our estimation performance, as well as detail-

ing the various technological advancements and research directions necessary on a longer

time scale, to implement a real-time, fully noninvasive ICP measurement modality at the

bedside. Finally, we present our concluding remarks on the clinical problem of noninvasive

ICP estimation.

7.1 Summary of Contributions

The previous chapters detail our noninvasive ICP estimation framework and its compre-

hensive validation. Our overall contributions are briefly summarized as follows:

1. Building upon past attempts, we developed a model-based, calibration-free, patient-

specific, spectral approach to noninvasive ICP estimation. Our approach was based
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on a simple, computationally and physiologically tractable lumped-parameter circuit

model of cerebrovascular physiology, modeling the interplay between ABP, CBFV,

and ICP at a major cerebrovascular territory. We implemented a frequency-domain

algorithm to estimate mean ICP noninvasively from the ABP and CBFV waveforms

in a windowed manner.

2. We designed and deployed a custom data acquisition system at the neuro and trauma

ICUs of Boston Medical Center, with the aim of archiving high resolution physiolog-

ical waveforms from multiple devices, and important ancillary data, at the bedside,

on a common time axis. In conjunction with a similar data acquisition system at

Boston Children’s Hospital, we obtained two clinical datasets from different patient

cohorts – pediatric and adult – over a wide range of age and pathologies.

3. Motivated by the inherent limitations of clinical data for neurological validation, pri-

marily the limited range of ICP, we developed a novel experimental porcine model

for altering the cerebrospinal pressure state of a pig in a predetermined manner, and

observing the physiological and hemodynamic response of the animal by recording

high resolution ABP and CBFV waveforms. We demonstrated the ability to reliably

and reproducibly manipulate ICP in a pre-programmed elevation profile and recorded

a rich porcine validation dataset from twelve pigs. This porcine dataset had a wide

range of ICP values, ranging from the normal mean values to those of extreme in-

tracranial hypertension. We were also able to demonstrate significant trends in ICP

in this dataset.

4. We validated the estimation performance of our model-based spectral algorithm on

the two patient cohorts (pediatric and adult) and on the rich porcine dataset and com-

pared the estimates to the gold-standard invasive ICP recorded simultaneously. Our

estimates across all the three datasets were found to be accurate and comparable to

the errors reported in literature for the currently accepted clinical invasive ICP mea-

surement. The noninvasive estimation approach’s performance was also found to be

robust as it was comparable across all three validation cohorts, despite the vast differ-

ence in the data collection hardware, the age range of the patients and their clinical
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conditions, and the fact that the animal model was designed to challenge the algo-

rithm to estimate ICP at the very extremes of physiology. Owing to the wide range

of ICP values in the porcine data, we were able to comprehensively quantify the es-

timation performance at varying levels of clinical accuracy, and proved the accuracy

and robustness of our algorithm when compared to previous attempts at noninvasive

ICP estimation reported in literature.

7.2 Future Work

While our noninvasive ICP estimation approach was found to be accurate and robust over

a diverse range of patients and animal data, and over a wide range of ICP values, the resid-

ual errors and sensitivities in our algorithm’s performance can be attributed to limitations

that can be further improved upon. These sensitivities can be broadly classified into data-

based, model-based, and algorithm-based and are outlined in this section. Even when the

noninvasive ICP estimation performance is further refined and validated on a larger patient

cohort, realizing the aspiration of implementing a fully noninvasive real-time ICP estima-

tion device at the bedside still faces some challenges. In this section, we also outline the

various challenges and suggest research directions necessary to take these noninvasive ICP

modalities to the bedside.

7.2.1 Avenues for Improving Estimation Performance

Among all the individual nICP-ICP comparisons with errors greater than 5 mmHg, a sig-

nificant fraction (around 21%) can be attributed to data-related errors. These are errors

primarily comprised of artifacts in the input ABP and CBFV signals due to motion, damp-

ing of the ABP signal due to clogging of the catheter, loss of CBFV signal and repositioning

of the TCD transducer to relocate the MCA. While the majority of these artifacts are re-

jected by the signal processing pipeline, some of these are intermittent and account for a

noisy or physiologically incorrect signal, resulting in large errors in both the patient and

porcine cohorts. Additionally, in the porcine model dataset, there were individual cases

where the animal became hemodynamically unstable due to ICP manipulations and had to
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be stabilized by bolus or continuous infusions of vasopressors and fluids. These pharma-

cological interventions pose a challenge to our current ICP estimation approach, given that

bolus injections tend to be short-lived and hence may induce transient changes in cardio-

vascular variables that are short compared to the estimation windows assumed here. Future

experimentation with shorter window-lengths and constant-rate infusions of a variety of

drugs commonly used in neurocritical care will be an important area of exploration. Fi-

nally, another potential source of errors arises from the need for accurate estimation of the

hydrostatic correction factor. Data-related errors can significantly degrade the estimation

performance [9,80] and hence motivated our design of a custom data acquisition system, to

carefully control the data recording and isolate the “true” estimation performance of the al-

gorithm. However, some of these data-related errors are physiological responses and hence

cannot be accounted for a priori. The exact computation of the hydrostatic correction fac-

tor needs to be further investigated to design and validate an accurate empirical method

of noninvasively calculating the appropriate vertical heights. This is crucial as the nICP

estimates are directly affected by this hydrostatic correction factor, as explained in Chapter

3.

Model-based errors primarily arise due to the inability of our simple, lumped-parameter

model to capture some of the more intricate intracranial dynamics. While a simpler model

like ours has a number of advantages (including computational tractability, physiologically

grounded parameters, and not requiring a priori knowledge of parameter values), our mod-

eling framework also assumes constant ICP and circuit parameters over each estimation

window, thus failing to account for cerebrospinal dynamics occurring on a shorter time

scale. This manifests as a consistent negative bias in our estimation performance at high

ICP values, where the ICP exceeds the ABP. In this regime, ICP exceeds ABP for a fraction

of the beat duration, and results in CBFV getting “cutoff” at zero for a short duration within

each beat. However, our model framework would require a negative CBFV or alternatively

a negative resistance, R, during these periods to be consistent with the data. If this were

true, the mean CBFV required by the model to be consistent with the data during these

phases of diastolic cutoff would be lower than the actual measured mean CBFV. Thus, the

noninvasive ICP estimates from the measured CBFV are lower than the nICP estimates
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would be if the non-negativity constraint were met, thus resulting in underestimation of

the noninvasive ICP estimates when compared to the invasive measured ICP. Hence, this

underestimation can be attributed to a breakdown of the modeling assumptions.

Solving this issue would require modification of the model by potentially introducing

a diode or a voltage-gated switch, and re-implementing the algorithmic framework to ac-

count for the discontinuities introduced by these non-linear or quasi-linear circuit elements.

While past attempts at noninvasive ICP estimation have implemented higher-order models,

these models have the disadvantage of requiring a priori knowledge of certain parame-

ters, which renders it impossible to estimate ICP in a patient-specific manner. Thus, while

modifying the model might solve some of these model-related errors, it is important to be

mindful of the trade-off in implementing higher-order models.

Another direction to be undertaken in the future to refine the estimation performance

is the incorporation of cerebrovascular autoregulatory dynamics into the estimation frame-

work. The current framework does not account for the complex interplay of the various

control mechanisms responsible for maintaining constant perfusion to the brain. Explicit

modeling of these control mechanisms might improve the estimation performance, partic-

ularly if the assumption of constant cerebrovascular resistance, compliance, and ICP over

the duration of an estimation window is violated.

Various approaches at modeling and quantifying the autoregulation have been proposed

in the literature, and further explorations of these mechanisms can potentially improve our

estimation results and explain some of the errors seen in the validation data, such as the

overestimation when ICP returns to a normotensive value from a region of intracranial

hypertension.

From an algorithmic perspective, further sensitivity analyses of the sensitivity of the

estimation error to the exact power spectral density computation can be performed by per-

turbing the peak locations and comparing the spectrum to that of the original invasive CPP

waveform. Additionally, sensitivities of the error to the last-squares convergence optimiza-

tion scheme can be studied and a theoretical investigation into the optimization scheme can

be undertaken. Finally, a physiological and clinical study can be undertaken to investigate

the origin of the empirical ABP-ICP relationship, and its variability with ICP.
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7.2.2 Taking these Models to Point of Care

All the previously detailed limitations outline the future steps required to refine the algo-

rithm’s performance further and improve upon the already encouraging estimation perfor-

mance. Once the noninvasive ICP estimation performance is refined, the validation accu-

racy and robustness needs to be verified on a larger and more diverse patient cohort. In

order to achieve this, data collection is ongoing at the two Boston-area hospitals previously

described, to further enrich the validation dataset. However, a few technological advance-

ments, listed below, are essential to fully realize the dream of taking these noninvasive ICP

measurement modalities to the point of care, each of which spawns an independent research

direction.

1. Operator-independent CBFV Waveforms: As discussed previously [9,22,78], the

nICP estimation results are very sensitive to commonly observed artifacts in the

CBFV waveform. Some of these artifacts arise due to the need for a manual op-

erator to locate the vessel, insonate it, and obtain a stable waveform. However, such

a setup is prone to motion artifacts and frequent loss of signal, and hence not suitable

for long-term CBFV recordings, which is essential for the realization of a real-time

noninvasive ICP measurement modality. Hence, there is a need to develop a wear-

able, self-steering, automated TCD ultrasound device that can lock on to a chosen in-

tracranial blood vessel and insonate it to obtain stable CBFV waveforms over a long

duration. There have been attempts reported in the literature of such a device, but

their accuracy and clinical translation have not been completely verified [115–117].

2. Accurate Noninvasive ABP Waveforms:While our spectral approach to nICP esti-

mation is a significant improvement over the currently accepted invasive approaches

in minimizing the risk to the patient, it is not fully noninvasive as the ABP wave-

form is still obtained invasively from a peripheral arterial site (radial or femoral).

The development of an accurate, continuous noninvasive ABP measurement device

to record high resolution peripheral ABP waveforms has been an unsolved clinical

problem and an active area of research for a long time. The commercially available

continuous noninvasive ABP monitors suffer from temporal drift, the need to period-
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ically recalibrate or a large bias [118]. Motivated by this unsolved clinical problem,

several attempts have been made in the past to achieve a fully noninvasive and accu-

rate measurement of the ABP waveform [119–124]. To date, none of these methods

have been found to be sufficiently accurate to replace or complement the existing

radial arterial catheters.

3. Volumetric Cerebral Blood Flow Estimation:The modeling framework detailed in

this thesis utilizes CBFV waveform as an input in lieu of the volumetric CBF, by

exploiting the invariance of the model to linear transformations. This was done since

CBFV is conveniently measurable by noninvasive ultrasonic means, while there is

no clinically accepted method of monitoring volumetric CBF. However, an accurate

estimate of volumetric CBF over time would provide additional information on the

neurological health of the patient, in addition to the ICP [4, 48]. Moreover, the CBF

estimate would allow for estimation of the exact resistance and intracranial compli-

ance, which might have clinical significance for predicting episodes of intracranial

hypertension [48,51,125,126]. In conjunction with ICP, CBF could also lead to a bet-

ter understanding and model of the cerebrovascular autoregulation and its dynamics

in maintaining constant cerebral perfusion. However, so far, these CBF measure-

ments have been primarily limited to extracranial vessels with intracranial estimation

of CBF proving to be inaccurate, due to limited spatial resolution [127–129].

7.3 Conclusion

ICP is an important clinical indicator of neurological injury and is routinely measured in

neurocritical care units worldwide. Clinicians rely on ICP for diagnosing, monitoring and

guiding treatment decisions in patients presenting with several neurological disorders, each

of which imposes a significant clinical burden annually. The currently accepted measure-

ment modalities for ICP are highly invasive and carry several risks to the patient’s neuro-

logical health, thus limiting ICP measurement to critically ill patients. Hence, there is a

pressing need for the development of an accurate noninvasive ICP measurement modality

to expand the fraction of patients who could benefit from this cranial vital sign.
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Motivated by past attempts at solving this crucial clinical problem, we proposed a

model-based spectral approach to estimate ICP noninvasively from ultrasonically recorded

CBFV and peripherally measured ABP waveforms in this thesis. In order to clinically val-

idate our algorithmic implementation, we designed and deployed a data acquisition system

at the bedside of two Boston area hospitals and recorded two distinct and diverse patient

cohorts. Recognizing the inherent limitations of human neurological data, we designed a

novel experimental porcine model to record high resolution waveform data over a wide

range of ICP states. We then tested our algorithm’s performance on these rich and diverse

validation datasets, and obtained an accuracy and precision of 0.1 mmHg and 5.1 mmHg

on the pooled patient data, and 1.6 mmHg and 5.2 mmHg on the porcine model data, re-

spectively. These error metrics are highly encouraging and were found to be comparable to

those reported in literature for past noninvasive ICP estimation attempts and, importantly,

for the currently accepted invasive modalities. Finally, we discussed the sources of error in

the current framework and the future advancements in research and technology required to

clinically implement a noninvasive ICP measurement modality.

Continuous noninvasive monitoring of ICP and neurological health can benefit many

people and potentially save a large number of lives. Our contributions, detailed in this

thesis, hopefully takes one step (or a giant leap) forward towards realizing the clinical

dream of implementing a real-time, calibration-free, patient-specific, accurate, robust, and

fully noninvasive ICP measurement modality at the bedside to replace the current invasive

modalities, and to better the state of neurological health monitoring and neurocritical care

worldwide.
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Appendix A

Individual Calibration of Fitting

Parameters on Porcine Data

Table A.1: Comparison of estimation performance if fitting parameter (m f it) is calibrated
to each pig or chosen in a blinded manner from the pediatric dataset.

RMSE from fABP (mmHg) RMSE from cABP (mmHg)

Pig Individually
Calibrated m f it

m f it from Pedi-
atric Data

Individually
Calibrated m f it

m f it from Pedi-
atric Data

2 6.5 mmHg 6.7 mmHg N/A N/A
4 4.7 mmHg 5.0 mmHg 4.7 mmHg 5.7 mmHg
6 2.8 mmHg 3.0 mmHg 4.3 mmHg 5.1 mmHg
7 5.5 mmHg 5.5 mmHg 2.6 mmHg 2.6 mmHg
9 4.4 mmHg 5.4 mmHg 6.9 mmHg 6.9 mmHg
10 5.7 mmHg 6.1 mmHg 3.5 mmHg 4.3 mmHg
11 6.3 mmHg 7.0 mmHg 4.8 mmHg 5.4 mmHg
12 4.5 mmHg 4.5 mmHg 4.9 mmHg 4.9 mmHg

Overall
Porcine
Data

5.2 mmHg 5.5 mmHg 4.6 mmHg 5.0 mmHg

The estimation results presented in Chapter 6 are highly encouraging as they demon-

strate the accuracy of our approach on a wide range of measured ICP. Additionally, as

described in Chapter 6, the estimation performance was found to be insensitive to the exact

choice of fitting parameter, with no appreciable degradation in performance when the fitting
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parameter was perturbed by 5% or 10%. To further test the independence of the estimation

results to the fitting parameter, m f it, we obtained the optimal fitting parameter for each in-

dividual animal in the porcine model by allowing ourselves access to the invasive ICP data.

We then used this calibrated fitting parameter to obtain the optimal estimation performance

for each individual pig. The resulting RMSE are summarized for each individual pig in

Table A.1. As seen in the table, the RMSE are comparable for the individually calibrated

m f it and for the choice of m f it from the pediatric data. This a strong indicator of the robust-

ness of our algorithm as the individually calibrated estimation performance requires access

to the invasive ICP, while the performance metrics using the m f it chosen from the training

subset of the pediatric data were obtained in a blinded manner. Hence, our calibration-free

approach is insensitive to the choice of fitting parameter. Moreover, the comparable perfor-

mances were found to be true for each individual pig, for the overall porcine data, and for

estimates obtained from fABP and cABP, further proving the robustness of our approach.
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