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Stable concurrent learning and control of dynamical systems is the sub-
ject of adaptive control. Despite being an established field with many
practical applications and a rich theory, much of the development in
adaptive control for nonlinear systems revolves around a few key al-
gorithms. By exploiting strong connections between classical adaptive
nonlinear control techniques and recent progress in optimization and
machine learning, we show that there exists considerable untapped po-
tential in algorithm development for both adaptive nonlinear control and
adaptive dynamics prediction. We begin by introducing first-order adap-
tation laws inspired by natural gradient descent and mirror descent. We
prove that when there are multiple dynamics consistent with the data,
these non-Euclidean adaptation laws implicitly regularize the learned
model. Local geometry imposed during learning thus may be used to se-
lect parameter vectors—out of the many that will achieve perfect tracking
or prediction—for desired properties such as sparsity. We apply this re-
sult to regularized dynamics predictor and observer design, and as con-
crete examples, we consider Hamiltonian systems, Lagrangian systems,
and recurrent neural networks. We subsequently develop a variational
formalism based on the Bregman Lagrangian. We show that its Euler
Lagrange equations lead to natural gradient and mirror descent-like
adaptation laws with momentum, and we recover their first-order ana-
logues in the infinite friction limit. We illustrate our analyses with simu-
lations demonstrating our theoretical results.

1 Introduction

Adaptation is an online learning problem concerned with control or pre-
diction of the dynamics of an unknown nonlinear system. This task is
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Implicit Regularization and Momentum in Adaptive Control 591

accomplished by constructing an approximation to the true dynamics
through the online adjustment of a vector of parameter estimates under the
assumption that there exists a fixed vector of parameters that globally fits
the dynamics. The overarching goal is provably safe, stable, and concurrent
learning and control of nonlinear dynamical systems.

Adaptive control theory is a mature field, and many results exist tai-
lored to specific system structures (loannou & Sun, 2012; Narendra & An-
naswamy, 2005; Slotine & Li, 1991). An adaptive control algorithm typically
consists of a parameter estimator coupled in feedback to the controlled
system, and the estimator is often strongly inspired by gradient-based
optimization algorithms. A significant difference between standard opti-
mization algorithms and adaptive control algorithms is that the parameter
estimator must not only converge to a set of parameters that leads to per-
fect tracking of the desired trajectory, but the system must remain stable
throughout the process. The additional requirement of stability prevents
the immediate application of optimization algorithms as adaptive control
algorithms, and stability must be proved by jointly analyzing the closed-
loop system and estimator.

Significant progress has been made in adaptive control even for
nonlinear systems in the linearly parameterized setting, where the dynam-
ics approximation is of the form f = Y(x, t)a for some known regressor ma-
trix Y(x, t) and vector of parameter estimates a(t). Examples include the
adaptive robot trajectory controller of Slotine and Li (1987) and the neu-
ral network-based controller of Sanner and Slotine (1992), which employs a
mathematical expansion in physical nonlinear basis functions to uniformly
approximate the unknown dynamics.

Unlike its linear counterpart, solutions to the adaptive control problem
in the general nonlinearly parameterized setting f = f(x, 4, t) have re-
mained elusive. Intuitively, this is unsurprising: guarantees for gradient-
based optimization algorithms typically rely on convexity, with a few
notable exceptions such as the Polyak-Lojasiewicz condition (Polyak,
1963). In the linearly parameterized setting, the underlying optimiza-
tion problem will be convex. When the parameters appear nonlinearly,
the problem is in general nonconvex and difficult to provide guarantees
for.

In this work, we provide new provably globally convergent algorithms
for both the linearly and nonlinearly parameterized adaptive control prob-
lems, along with new insight into existing adaptive control algorithms for
the linearly parameterized setting. Our results for nonlinearly parameter-
ized systems are valid under the monotonicity assumptions of Tyukin,
Prokhorov, and van Leeuwen (2007) and the convexity assumptions of
Fradkov (1980). These monotonicity assumptions are equivalent to those
commonly satisfied by generalized linear models in statistics (Kakade,
Kalai, Kanade, & Shamir, 2011).
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592 N. Boffi and J.-J. Slotine

1.1 Description of Primary Contributions. Our contributions can be
categorized into two main advances.

1. We further develop a class of natural gradient and mirror descent-
like algorithms that have recently appeared in the literature in
the context of physically consistent inertial parameter learning in
robotics (Lee, Kwon, & Park, 2018) and geodesically convex opti-
mization (Wensing & Slotine, 2020). We prove that these algorithms
implicitly regularize the learned system model in both the linearly
parameterized and nonlinearly parameterized settings.

2. We construct a general class of higher-order in-time adaptive con-
trol algorithms that incorporate momentum into existing adaptation
laws. We prove that our new momentum algorithms are stable and
globally convergent for both linearly parameterized and nonlinearly
parameterized systems.

Unlike standard problems in optimization and machine learning, explicit
regularization terms cannot be naively added to adaptive control algo-
rithms without affecting stability and performance. Our approach enables a
provably stable and globally convergent implementation of regularization
in adaptive control. We demonstrate the utility of these results through ex-
amples in the context of dynamics prediction, such as sparse estimation of a
physical system’s Hamiltonian or Lagrangian function, and estimating the
weights of a continuous-time recurrent neural network model.

It is well known in adaptive control that the true parameters are only
recovered when the desired trajectory satisfies a strong condition known
as persistent excitation (Narendra & Annaswamy, 2005; Slotine & Li, 1991).
In general, an adaptation law need only find parameters that enable per-
fect tracking, and very little is known about what parameters are found
when the estimator converges without persistent excitation. Our proof of
implicit regularization provides an answer and shows that standard Eu-
clidean adaptation laws lead to parameters of minimum /, norm.

For the second contribution, we utilize the Bregman Lagrangian (Betan-
court, Jordan, & Wilson, 2018; Wibisono, Wilson, & Jordan, 2016; Wilson,
Recht, & Jordan, 2016) in tandem with the velocity gradient methodol-
ogy (Andrievskii, Stotskii, & Fradkov, 1988; Fradkov, 1980, 1986; Fradkov,
Miroshnik, & Nikiforov, 1999) to define a general formalism that generates
higher-order in-time (Morse, 1992) velocity gradient algorithms. Our key
insight is that the velocity gradient formalism provides an optimization-
like framework that encompasses many well-known adaptive control algo-
rithms and that the velocity gradient “loss function” can be placed directly
in the Bregman Lagrangian.

1.2 Summary of Related Work. Our work continues in a long-standing
tradition that utilizes a continuous-time view to analyze optimization
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algorithms, and here we consider a nonexhaustive list. Diakonikolas and
Jordan (2019) develop momentum algorithms from the perspective of
Hamiltonian dynamics, while Maddison, Paulin, Teh, O’'Donoghue, and
Doucet (2018) use Hamiltonian dynamics to prove linear convergence of
new optimization algorithms without strong convexity. Muehlebach and
Jordan (2019, 2020) study momentum algorithms from the viewpoint of dy-
namical systems and control. Boffi and Slotine (2020) analyze distributed
stochastic gradient descent algorithms via dynamical systems and nonlin-
ear contraction theory. Su, Boyd, and Candes (2016) provide an intuitive
justification for Nesterov’s accelerated gradient method (Nesterov, 1983)
through a limiting differential equation. Continuous-time differential equa-
tions were used as early as 1964 by Polyak to derive the classical mo-
mentum or “heavy ball” optimization method (Polyak, 1964). In all cases,
continuous time often affords simpler proofs, and it enables the applica-
tion of physical intuition when reasoning about optimization algorithms.
Given the gradient-based nature of many adaptive control algorithms, the
continuous-time view of optimization provides a natural bridge from mod-
ern optimization to modern adaptive control.

Despite the simplicity of proofs in continuous time, finding a discretiza-
tion that provably retains the convergence rates of a given differential equa-
tion is challenging. In a significant advance, Wibisono et al. (2016) showed
that many accelerated methods in optimization can be derived via a vari-
ational point of view from a single mathematical object known as the
Bregman Lagrangian. The Bregman Lagrangian leads to second-order
mass-spring-damper-like dynamics, and careful discretization provides
discrete-time algorithms such as Nesterov’s celebrated accelerated gradi-
ent method (Nesterov, 1983). We similarly use the Bregman Lagrangian to
generate our new adaptive control algorithms, which generalize and extend
a recently developed algorithm due to Gaudio, Gibson, Annaswamy, and
Bolender (2019).

Progress has been made in nonlinearly parameterized adaptive control
in a number specific cases. Annaswamy, Skantze, and Loh (1998), Ai-Poh
Loh, Annaswamy, and Skantze (1999), and Koji¢ and Annaswamy (2002)
develop stable adaptive control laws for convex and concave parameteri-
zations, though they may be overly conservative and require solving op-
timization problems at each time step. Astolfi and Ortega (2003) and Liu,
Ortega, Su, and Chu (2010) develop the immersion and invariance (1&I) ap-
proach, and prove global convergence if a certain monotone function can
be constructed. Ortega, Gromov, Nufio, Pyrkin, and Romero (2019) use a
similar approach for system identification. Tyukin et al. (2007) consider dy-
namical systems satisfying a monotonicity assumption that is essentially
identical to conditions required for learning generalized linear models in
machine learning and statistics (Goel & Klivans, 2017; Goel, Klivans, &
Meka, 2018; Kakade et al., 2011), and develop provably stable adaptive
control algorithms for nonlinearly parameterized systems in this setting.
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594 N. Boffi and J.-J. Slotine

Fradkov (1980), Andrievskii et al. (1988), Fradkov (1986), and Fradkov
et al. (1999) develop the velocity gradient methodology, an optimization-
like framework for adaptive control that allows for provably global con-
vergence under a convexity assumption. As mentioned in section 1.1, this
framework, in tandem with the Bregman Lagrangian, is central to our de-
velopment of momentum algorithms.

Our work is strongly related to and inspired by a line of recent work that
analyzes the implicit bias of optimization algorithms in machine learning.
Soudry, Hoffer, Nacson, Gunasekar, and Srebro (2018) and Gunasekar, Lee,
Soudry, and Srebro (2018b, 2018a) characterize implicit regularization of
common gradient-based optimization algorithms such as gradient descent
with and without momentum, as well as natural gradient descent and mir-
ror descent in the settings of regression and classification. Azizan, Lale, and
Hassibi (2019) and Azizan and Hassibi (2019) arrive at similar results via
a different derivation based on results from ., control. Similarly, Belkin,
Hsu, Ma, and Mandal (2019) consider the importance of implicit regular-
ization in the context of the successes of deep learning. Our results are the
adaptive control analogues of those presented in these papers.

1.3 Paper Outline. The paper is organized as follows. In section 2, we
present some required mathematical background on direct adaptive con-
trol in the linearly and nonlinearly parameterized settings. In section 3 we
analyze the implicit bias of adaptive control algorithms, while in section 4
we consider general observer and dynamics predictor design, Hamiltonian
dynamics prediction, control of Lagrangian systems, and estimation of re-
current neural networks. In section 5 we provide background for our de-
velopment of momentum algorithms, including a review of the velocity
gradient formalism (section 5.1) and the Bregman Lagrangian (section 5.2).
In section 6 we present adaptive control algorithms with momentum, and
we extend them to the non-Euclidean setting in section 7. We illustrate our
results via simulation in section 8, and we conclude with some closing re-
marks and future directions in section 9.

2 Direct Adaptive Control

In this section, we provide an introduction to direct adaptive control for
both linearly parameterized and nonlinearly parameterized systems, along
with a description of some natural gradient-like adaptive laws that have
appeared in the recent literature.

2.1 Linearly Parameterized Dynamics. For simplicity, we restrict our-
selves to the class of nth-order nonlinear systems,

XM 4 f(x,a,t)=u (2.1)

220z Atenuer g uo Jasn salteiqr LIN Aq jpd-09€ L0 & 099U/091688 L/06S/E/EE/PA-aI0IE/00BU/NPS W I0RIIP//:d]RY WO} papeojumog
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where x) € R denotes the ith derivative of x, x = (x,x1, .., x(”*l))T e R"
is the system state, a € R is a vector of unknown parameters, f : R" x RV x
R, — Ris of known functional form but is unknown due to its dependence
ona,and u € Ris the control input. We seek to design a feedback control law
u = u(x, a) that depends on a set of adjustable parameters 4 € R” and en-
sures that x(t) — x;(t) where x;(t) € R" is a known desired trajectory. Along
the way, we require that all system signals remain bounded. The estimated
parameters a are updated according to a learning rule or adaptation law,

a=g(a ax), (2.2)
where g : R? x R? x R" — R? must be implementable solely in terms of
known system signals despite its potential dependence on a. For nth-order

systems as considered in equation 2.1, a common approach is to define the
sliding variable (Slotine & Li, 1991),

n—1
5= (7 + )\) % =201 _ =) (2.3)

where A > 0 is a constant and %(t) = x(t) — x,(t). We have defined ) (t) =
xO(t) — xf;)(t) and 9?5"_1) as the remainder based on the definition of s. Ac-
cording to the definition, equation 2.3, s obeys the differential equation,

§=u— f(x,a,t)—x". (2.4)
Hence, from equation 2.4, we may choose

u=f(x,a,t)+x" —ps (2.5)
to obtain the stable first-order linear filter:

s=-—ns+ f(x,a,t)— f(x,a,t). (2.6)
For future convenience, we define f(x, a,a,t)= f(x,a,t) — f(x,a,t) and

will omit its arguments when clear from the context. From the definition
of s in equation 2.3, s = 0 defines the dynamics

n—1
(% + k) £=0. (2.7)

Equation 2.7 is a stable (n — 1)th-order filter which ensures that £ — 0 ex-
ponentially. For systems of the form in equation 2.1, it is thus sufficient to
consider the two first-order dynamics, equations 2.2 and 2.6. The adaptive
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596 N. Boffi and J.-J. Slotine

control problem has thus been reduced to finding a learning algorithm that
ensures s — 0.

Remark 1. Systems in the matched uncertainty form
x=Ax+bu— f(x,a,t)),

where the constant pair (A, b) is controllable and the constant parameter
vector a in the nonlinear function f(x, a, ) is unknown, can always be put
in the form of equation 2.1 by using a state transformation to the second
controllability canonical form (see Luenberger, 1979, chap. 8.8). After such
a transformation, the new state variables z satisfy z; = z;11 for i < n and
z, ==Y azi 4+ u — f(x, a, t) for some fixed constants ¢;. Defining s as in
equation 2.3 and choosing u accordingly leads to equation 2.6. Hence, all
results in this article extend immediately to such systems.

Remark 2. The fundamental utility of defining the variable s is its conver-
sion of the adaptive control problem for the nth-order system, equation 2.1,
to an adaptive control problem for the first-order system, equation 2.6. Our
results may be simply extended to other error models (Ai-Poh Loh et al.,
1999; Narendra & Annaswamy, 2005) of the form 2.6, or error models with
similar input-output guarantees, as summarized by lemma 2.

Remark 3. We will use f to denote the equivalent first-order system to (2.1),
x =f(x,a,t) +u, where f = (x2,x3,..., f(x,a,t))and u = (0,0, ..., u).

The classic setting for adaptive control assumes that the unknown nonlinear
dynamics depends linearly on the set of unknown parameters, that is,

f(x,a, t) =Y(x, t)a,

with Y : R” x Ry — R™? a known function. In this setting, a well-known
algorithm is the adaptive controller of Slotine and Coetsee (1986), given by

i =—PY's, (2.8)

and its extension to multi-input adaptive robot control (Slotine & Li, 1987),
where P =P! > 0 € RP*? is a constant positive-definite matrix of learn-
ing rates. Consideration of the Lyapunov-like function V = 1s?> + 1a"P~'a
shows stability of the feedback interconnection of equations 2.6 and 2.8 and
convergence to the desired trajectory via an application of Barbalat’s lemma
(see lemma A.1). We will refer to equation 2.8 as the Slotine and Li controller.

In this work, we make a mild additional assumption that simplifies some
of the proofs.

Assumption 1. The dynamics f(x, 4, t) is locally bounded in X and & uniformly
int. That is, if ||x|| < oo and ||a|| < oo, then Vt > 0, |f(x, 4,t)| < oo.
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2.2 Nonlinearly Parameterized Dynamics. While a difficult problem in
general, significant progress has been made for the nonlinearly parameter-
ized adaptive control problem under the assumption of monotonicity, and
several notions of monotonicity have appeared in the literature (Astolfi &
Ortega, 2003; Liu et al., 2010; Ortega et al., 2019; Tyukin, 2011; Tyukin et al.,
2007). We consider one such notion as presented by Tyukin et al. (2007),
which is captured in the following assumption.

Assumption 2. There exists a known time- and state-dependent function « :
R" x Rsg — RP such that

aTa(x,t) (f(x, a,t)— f(x,a,t)) >0, (2.9)

j(x, )73 > Dil|f<x, ab-fxabl (210

where Dy > 0 is a positive scalar.

This assumption is satisfied, for example, by all functions of the form

flx.at) =1 t) ful(x, d(x. 1) a,t), (2.11)

where 1 : R" xRso > R, ¢ : R" x Rog > R?, f, : R" x R x Ryg — R, and
where f,, is monotonic and Lipschitz in ¢(x, ) a. In this setting, a(x, t) may
be taken as a(x, t) = (—1)’D1r(x, t)$(x, t), where p = 0 if f,, is nondecreas-
ingin ¢laand p = 1if f,, isnonincreasing in ¢Ta (Tyukin, 2011; Tyukin et al.,
2007).

Under assumption 2, Tyukin et al. (2007) showed that the adaptation law,

A= —f(x, 4, a,t)Pa(xt), (2.12)

with P = PT > 0 a positive-definite matrix of learning rates of appropriate
dimensions ensures that f € L, over the maximal interval of existence of
x. Under suitable conditions on the error model, this then ensures that f c
LN Ly, x(t) and a(t) both remain bounded for all £, and that x — x;. The
proof follows by consideration of the Lyapunov-like function V = 1a"P~'a.

While f itself is unknown, and hence equation 2.12 is not directly im-
plementable, it is contained in s. Intuitively, unknown quantities contained
in s can be obtained in the adaptation dynamics through a proportional
term in & that contains s. This idea of gaining a “free” derivative is the basis
of the reduced-order Luenberger observer for linear systems (Luenberger,
1979).! Proportional-integral adaptive laws of this type have been known as

'Similar concepts can be extended to nonlinear observers; see Lohmiller and Slotine
(1998, sec. 4.1).
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598 N. Boffi and J.-J. Slotine

algorithms in finite form (Fradkov et al., 1999; Tyukin, 2003) and ap-
pear in the well-known 1&I framework (Astolfi & Ortega, 2003; Liu et al.,
2010). Following this prescription, equation 2.12 may be implemented in a
proportional-integral form,

E(x,t) = —Ps(x, Ha(x, t), (2.13)
X (t) 9 t
p(x,t) = P / s 22D (2.14)
xn(to) Xn
a=a+&x 1)+ p(x, 1), (2.15)
n—1 n—1 T
- da ap ap ) .
a = —nsPa + Ps —Xjp1 — —Xi1— [ — ) x
7 ; ox; +1 ; ox; +1 (8Xd 4
&€ 9p
- = - 2.1
at ot (2.16)

Algorithm 2.12 is similar to a gradient flow algorithm. If f(x, a, t) has the
form in equation 2.11 and is nondecreasing, gradient flow on the loss func-
tion L(x, &, a, t) = %fZ(x, a, a, t) with a gain matrix D, P leads to

a=—f(x,aa1t)f),(x ¢'a t)Pa(x,t),

where ' denotes differentiation with respect to the second argument.
f1,(x, ¢4, t) is of known sign due to the monotonicity assumption but
of unknown magnitude. It is sufficient to remove this quantity from the
adaptation law and instead to follow the pseudogradient f(x, a,a, Ha(x, t)
despite nonconvexity of the square loss in this setting. Similarly, if f is
nonincreasing, we find

A= f(x, 4 a,t)f,(x, ¢"4, t)Pa(x,t),
and it is sufficient to set f;, to negative one.

2.3 The Bregman Divergence and Natural Adaptation Laws. Leeetal.
(2018) introduced an elegant modification of the Slotine and Li adaptive
robot controller, later generalized by Wensing and Slotine (2020). It con-
sists of replacing the usual parameter estimation error term 7a"P~'a in the
Lyapunov-like function V = 1s? + 1a"P~'a with the Bregman divergence
(Bregman, 1967),

dy(y11x) = ¥ (y) — ¥ (x) — (y —%)" V()
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Implicit Regularization and Momentum in Adaptive Control 599

to obtain the new “non-Euclidean” Lyapunov-like function,

1
V= Es2 +dy(ala), (2.17)

for an arbitrary strongly convex function .

The Bregman divergence may be understand as the error made when
approximating v (y) by a first-order Taylor expansion around x. It is guar-
anteed to be nonnegative for strongly convex functions by the first-order
characterization of convexity. While it is not a norm in general, it de-
fines a distance-like function for ¥ strongly convex related to the Hessian
metric %HXHZVZV/ = 1x"V2y (x)x. As two simple examples, for ¥ (x) = 1(x|?,
dy(x|ly) = 3lx — yl* For (x) = 3x"Qxwith Q > 0a positive-definite ma-
trix, dy (x| y) = % (x— y)T Q (x —y). For general convex functions, dy (- || -)
can always be written via Taylor’s formula with an integral remainder for
multivariate functions as

1
d¢<y||x)=<y—x>T(f0 v2w<x+s(y—x>><1—s)ds)(y—x).

Indeed, a quick calculation shows that the derivative of the Bregman di-
vergence is simply

%d,,, (a]la) =a'vV2y(a)a, (2.18)

which can be directly used to show stability of the adaptation law

h=—[Vy@)] " Ys.

This procedure replaces the gain matrix P in the adaptation law by the

a-dependent inverse Hessian [Vzljf(é)]_l of the strongly convex function
Y. In essence, this amounts to the adaptive control equivalent of the nat-
ural gradient algorithm of Amari (1998), so that the resulting adaptation
law respects the underlying Riemannian geometry captured by the Hessian
metric V2 (a). The standard adaptation law i = —PY's uses the constant
metric P!, which in turn explains the appearance of P in the natural
gradient-like system.

The choice of ¥ enables the design of adaptation algorithms that re-
spect physical Riemannian constraints (Lee, Wensing, & Park, 2020) obeyed
by the true parameters, as in the estimation of mass properties in robotics
(Wensing, Kim, & Slotine, 2018). Similarly, it allows one to introduce a priori
bounds on parameter estimates without resorting to parameter projection
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600 N. Boffi and J.-J. Slotine

techniques by choosing ¥ to be a log-barrier function (Wensing & Slotine,
2020). In section 3.1, we further prove that the choice of ¢ implicitly regu-
larizes the learned system model.

Remark 4. The relation 2.18 shows that Tyukin’s algorithm, equation 2.12,
can be generalized to have a parameter estimate-dependent gain matrix.
Indeed, consideration of the Lyapunov-like function V = %dw (a|l &) shows
that the algorithm

A= —yfxaat) V@] axt).

with ¢ strongly convex and y > 0 ensures that f € £, over the maximal
interval of existence of x(t) for nonlinearly parameterized systems catego-
rized by assumption 2. The proof is identical to that of Tyukin et al. (2007).
The implementation of this algorithm in PI form will be described in re-
mark 8 and is based on a correspondence between mirror descent and nat-
ural gradient descent in continuous time. This algorithm can be seen as the
adaptive control equivalent of a mirror descent or natural gradient exten-
sion of the GLMTron of Kakade et al. (2011), and this correspondence will
be considered in greater detail in section 6.

Remark 5. In the linearly parameterized setting, rather than the Lyapunov-
like function V = 1s> +d,(a| ), the Lyapunov-like function V = 1s* +
dy (Pa || Pa) may be used for any positive-definite matrix P. This shows sta-
bility of the adaptation law & = —P~ (V2y(P4)) "' P~1YTs, where the choice
of the matrix P offers an additional design flexibility.

Remark 6. In some practical applications, as in adaptive robot control, the
estimated parameters a may correspond to physical constants. In this case,
the weighted parameter estimation error term %éTP‘lé not only provides
additional design flexibility through the elements of P in the adaptation
law, but is necessary for physical consistency of units. Indeed, the usual
Lyapunov-like function V = 1s? + 1a"P~'a shows that P~! must be chosen
so that the parameter estimation error term 1a"P~'a has the same units as
the tracking error term 1s2. Similar considerations apply when replacing
this standard parameter estimation error term with the Bregman divergence
dy(a |l &), which has the same units as ¥ (). In this case, 1/ (&) must be chosen
to have the same units as the tracking error term, for example, by introduc-
ing a diagonal matrix of constants to ensure consistent dimensions.

3 Natural Gradient Adaptation and Implicit Regularization

In this section, we show that the “natural” adaptation algorithms of the
previous section implicitly regularize the learned system model.
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3.1 Implicit Regularization and Adaptive Control. With deep net-
works as the predominant example, modern machine learning often con-
siders highly overparameterized models that are capable of interpolating
the training data (achieving zero error on the training set) while still gener-
alizing well to unseen examples. The classical principles of statistical learn-
ing theory emphasize a trade-off between generalization performance and
model capacity, and predict that in the highly overparameterized regime,
generalization performance should be poor due to a tendency of the model
to fit noise in the training data. Nevertheless, empirical evidence indicates
that deep networks and other modern machine learning models do not obey
classical statistical learning wisdom (Belkin et al., 2019) and can even gen-
eralize with significant label noise (Zhang, Bengio, Hardt, Recht, & Vinyals,
2016).

More surprisingly, the ability to simultaneously fit label noise in the
training data yet generalize to new examples has been observed in
overparameterized linear models (Bartlett, Long, Lugosi, & Tsigler, 2020;
Muthukumar, Vodrahalli, & Sahai, 2019). A possible explanation for the
ability of highly overparameterized models to generalize when optimized
using simple first-order algorithms is their implicit bias—that is, the ten-
dency of an algorithm to converge to a particular (e.g., minimum norm)
solution when there are many that interpolate the training data (Azizan &
Hassibi, 2019; Azizan et al., 2019; Gunasekar et al., 2018a, 2018b; Soudry
et al., 2018).

In adaptive control, the possibility of there being many possible param-
eter vectors a that lead to zero tracking error is not unique to the overpa-
rameterized case. Unless the trajectory is persistently exciting? (Narendra &
Annaswamy, 2005; Slotine & Li, 1991), it is well known that & will not con-
verge to the true parameters a in general. Depending on the complexity
of the trajectory, there may even be many solutions in the underparameter-
ized case where dim(a) < dim(a). To achieve perfect tracking, the adapta-
tion algorithm need only fit the unknown dynamics f(x(t), a, t) along the
trajectory rather than the whole state space, so that the effective number of
parameters may be less than dim(a).

The wealth of possible solutions in the linearly parameterized case is
captured by the time-dependent null space of Y(x(t), t): when x — x;, we
can conclude that Y(x;(t), t)a(t) = 0, and hence that a(t) = a + fi(t) where
Y(x4(f), t)fi(f) = 0 for all f. This observation also highlights that any el-
ement fi(t) of the null space may be added to the parameter estimates
4 without affecting the value of f.> In the overparameterized case when

A typical characterization of persistent excitation in the linearly parameter-
ized setting is that there exists some 8 >0 and some T >0 such that for all
t, fé*'T YT (x(), 7)Y (x(t), T)dt > SL

In principle, Ai(t) could be chosen to shape the parameters a(t) to satisfy some desired
property.
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602 N. Boffi and J.-J. Slotine

dim(a) > dim(a), the set of parameters that achieve zero tracking error is
not unique regardless of the complexity of the desired trajectory. By de-
riving a continuous-time extension of a recent proof of the implicit bias of
mirror descent algorithms (Azizan & Hassibi, 2019; Azizan et al., 2019), we
now show that the natural adaptive laws of the previous section implicitly
regularize a. This proof of implicit regularization provides an answer to the
question, with infinitely many parameter vectors that achieve zero tracking
error, which does adaptation choose?
Define the set

that is, the set in equation 3.1 contains only parameters that interpolate the

dynamics f(x(t), a, t) along the entire trajectory. We are now in a position
to state the following proposition.

Proposition 1. Consider the natural gradient-like adaptation law for a linearly
parameterized dynamics,

A=—[V2y@)] " Ys, (3.2)
where  (-) is a strongly convex function. Assume that a(t) — a., € A. Then

400 = argmin dy(01a(0)).

In particular, if 4(0) = arg mingegy ¥ (0), then

a,, = arg I(}ll}ll v(0). (3.3)

Proof. Let# be any constant vector of parameters. The Bregman divergence
dy(0]a) = ¥ () — ¥ (a) — Vi (a)T (0 — &) has the time derivative

2018 = (Lev@) 0-a
'’ —\at '
From equation 3.2, £ Vy(a) = —Y's, so that
L0013 =sY(0-4)
t ¥ a) = a).
Integrating both sides of the above shows that

t
dy (01a(0)) =dy (6] at)) +/0 s(0)Y(x(z), 7) (a(r) — O) dx.
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If we now take 6 € A, Y(x(7), )0 = f(x(7), a, 7) and the integral term is in-
dependent of . Assuming thata — 4, € A, we can take the limitast — oo
and say that forany @ € A, 4 € A,

dy (014(0)) =dy (0| ﬁoo)+/0 s(1) (Y(x(7), 1)a(r) — f(x(7). a, 7)) dz.

Because the only dependence of the right-hand side on @ is in the first term
and because this relation holds for any 6, the argmin of the two Breg-
man divergences must be identical. The minimum of the right-hand side
over 6 is clearly obtained at a4, while the minimum of the left-hand side
is by definition obtained at arg minge 4 dy (6, a(0)). From this, we conclude
that

do = arg 13;1;1 dy(01a(0)),

which completes the proof. O

Equation 3.3 captures the implicit regularization imposed by the adapta-
tion algorithm equation 3.2: out of all possible interpolating parameters, it
chooses the a that achieves the minimum value of .

Remark 7. The assumptions of proposition 1 provide a setting where the-
oretical insight may be gained into the implicit regularization of adap-
tive control algorithms, but they are stronger than needed. In general, the
parameters a(t) found by an adaptive controller need not converge to a con-
stant despite the fact thata — 0. Similarly, even in the case that the parame-
ters converge, it is not strictly required that Y(x(t), t)a~ = f(x(t), a, ) along
the entire trajectory, as this condition is satisfied asymptotically. Numerical
simulations in section 8 will demonstrate the implicit regularization of pa-
rameters a(t) found by adaptive control along the entire trajectory.

We may make a similar claim in the nonlinearly parameterized setting cap-
tured by assumption 2. To do so, we require an additional assumption.

Assumption 3. For any vector of parameters @ and the true parameters a,
f(x(t),0,t) = f(x(t), a, t) implies that a(x(t), )10 = a(x(t), t)'a.

4Lyapunov function arguments based on a parameter estimation error term generally
lead to the conclusion that the parameters remain bounded, and it is generally the case
that 4 — 0 as it is driven by an error term. Nevertheless, 4 may stay time-varying for all t.
For instance, the function f(t) = sin(+/#) remains bounded and time-varying for all t, but
has f'(t) = 2}5 cos(+/t) — 0. A sufficient condition (by Barbalat’s lemma [lemma 1 in this
article]) for convergence to a constant a is that (4 — ax) € £, for some p.
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For the class of systems 2.11, a sufficient condition for assumption 3 is that
L(x(t), t) # 0 and that the map ¢(x, t)Ta — f,,(x(t), ¢(x, t)Ta) is invertible at
every t. We may now state our implicit regularization result for nonlinearly
parameterized systems.

Proposition 2. Consider the adaptation algorithm

h=— [V @] Fx(t).a(). a, Dax(t). t) (3.4)
under assumptions 2 and 3. Assume a(t) — a € A. Then

a,, = arg rarg? dy(01a(0)).

Proof. The proof is much the same as proposition 1. The Bregman diver-
gence dy (0 || &) for any fixed vector of parameters 6 verifies

d%wna=fﬂt a(t), a, He(x(t), )" (6 - a),

so that, integrating both sides,

dy (0114(0)) = dy (01 a(t) )—/ fx(z ca, D)e(x(z), 7)" (8 - a(v)) dr.

Now take 6 € A. By the assumptions of the proposition, a(x(r), 7)'0 =
a(x(t), t)Ta is independent of 6. Hence, using that a(t) — 4, € A, we can
write

dy(011a(0)) = dy (0| aoo)_/ f(x(2), 4(x), a, D)er(x(2), 7)" (a - a()) dr.

Optimizing both sides over § € A as in proposition 1 yields the result. [

Remark 8. Algorithm 3.4 must be implemented in PI form due to the
appearance of f. The use of the PI form in &, equations 2.13 to 2.16, is
complicated by the presence of the inverse Hessian of . To implement
equation 2.12, the Euclidean variant may be implemented through the
usual PI form for an auxiliary variable v = — f(x(t), a(t), a, t)a(x(t), t), and
then the controller parameters may be computed by inverting the gradi-
ent of ¥, a(t) = (V') (¥(t)). This follows by the equivalence of mirror
descent and natural gradient descent in continuous time. Concretely, the

identity £V (a) = V2 (a)a shows thatd = — (Vzlﬂ(ﬁ))_l f(x, 4, a, te(x, )
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is equivalent to %Vl//(ﬁ) = — f (x, 4, a, t)a(x, t). The auxiliary variable ¥ can
then be identified with Vi (a).

Remark 9. If the inverse gradient of ¥ is unknown but ¥ is chosen to
be strongly convex, the contracting (Lohmiller & Slotine, 1998) dynamics
W= —% (VY (w) — Vi (¥)) with > 0 will converge to a ball around ¥ with
radius set by || %Vw(‘?)ll x 7 where [ is the strong convexity parameter. By
choosing 7 so that this contracting dynamics is fast on the timescale of adap-

tation, w will represent a good approximation of the instantaneous v.

Remark 10. Our results highlight, through the equivalence of their
continuous-time limits, that both mirror descent-like and natural gradient-
like adaptive laws impose implicit regularization. This observation extends
recent results on the implicit regularization of mirror descent (Azizan &
Hassibi, 2019; Azizan et al., 2019) to natural gradient descent and, further-
more, applies to linearly parameterized and generalized linearly param-
eterized models in machine learning, not just in the context of adaptive
control. This has previously been noted in Gunasekar et al. (2018a),
where it was discussed that in discrete time, natural gradient descent
only approximately imposes implicit regularization due to discretization
€erToTS.

Propositions 1 and 2 demonstrate for the first time the implicit bias of adap-
tive control algorithms. In doing so, they identify an additional design
choice that may be exploited for the application of interest. Proposition 1im-
plies that the Slotine and Li controller, when initialized with the parameters
at a(0) = 0, finds the interpolating parameter vector of minimum /, norm.
Other norms, such as the [y, ., l;7 for arbitrary p, or group norms will find
alternative parameter vectors that may have desirable properties such as
sparsity.” The usual Euclidean geometry-based adaptive laws can be seen
as a form of ridge regression, while imposed /1, I and [; simultaneously, or
I, regularization through the choice of ¥ can be seen as the adaptive control
equivalents of LASSO (Tibshirani, 1996) or compressed sensing, elastic net,
and bridge regression, respectively. In the context of adaptive control, this
notion of implicit regularization is particularly interesting, as typical regu-
larization terms such as /1 and I, penalties cannot in general be added to the
adaptation law directly without affecting the stability and performance of
the algorithm.

Remark 11. Following remark 6, if ¥(:) is chosen as the [th power of
a p norm, in practical applications it is necessary to include a matrix
I' to ensure that ¥ (a) = ||I'é||lp has the same units as the tracking error

®Because the [; norm is not strongly convex, it may be replaced with a suitable approx-
imation such as the I, norm for € > 0 and small (Azizan & Hassibi, 2019; Azizan et al.,
2019).
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component of the Lyapunov function. For example, if / = 2, then I' may
be chosen as ' = P~'/2 for consistency of units where P is a gain matrix
tuned for the standard adaptive law a = —PY"s. In addition, / = 2 admits a
simple inversion formula for Vi for any p, as will be utilized in the simula-
tions in section 8, although the corresponding inverse Hessian (V21 (-)) “lis
nondiagonal for p # 2. For! = p, the inverse Hessian is diagonal, but I' must
then be calibrated independently from P tuned for the standard /, law. Note
that choosing ¥ to be an [; norm will impose sparsity on I, so that I should
be taken to be diagonal to ensure sparsity in a itself.

3.2 Non-Euclidean Measure of the Tracking Error. The usual Lya-
punov function incorporates a Euclidean tracking error term given by 7s.
In a similar vein to the derivation of the “natural” adaptive laws, for any
strictly convex function ¢ : R — R, we may instead replace this tracking
error term by the Bregman divergence d4(0 | s). This quantity has time
derivative

d
0 (O0ls) = —ns*¢"(s) + ¢"(s)Ya

in the linearly parameterized case. Because ¢"(s) > 0 for strictly convex ¢,
it is simple to see that this modification to the usual Lyapunov function
in combination with a non-Euclidean measure of the parameter estimation
error leads to a family of stable adaptation laws parameterized by ¢ and
of the form 4 = — [Vzt/f(ei)T1 YT¢"(s)s. This shows, for example, that any
odd power of s may be stably employed in the adaptation law by taking
¢ = s” for even some power p. Surprisingly, more exotic adaptation laws
suchas 4 = — [Vzw(é)]fl YTe*sls for 1 > 0 may also be used.

In the single-input case, these laws could be more simply obtained by
replacing the %SZ term in the Lyapunov-like function with a term of the form
g(s) where ¢'(s)s > 0 and g'(s) is known. In the multi-input case, these two
approaches differ. Taking g to be a strongly convex function with minimum
attained at s = 0 and a known gradient, the Lyapunov-like function

V =g(s) — infg(s) + dy (2| &)
shows that the adaptation law
i=—[V2y@)] " Y'Vgs)
is globally convergent. On the other hand, the Lyapunov-like function

V =dy(0lls)+dy(alla)
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shows that the distinct adaptation law

a=—[V2y@)] Y [V2e(s)]s

is also globally convergent.

4 Adaptive Dynamics Prediction, Control, and Observer Design

In this section, we demonstrate how the new non-Euclidean adaptation
laws of section 3.1 may be used for regularized dynamics prediction, regu-
larized adaptive control, and regularized observer design.

4.1 Regularized Adaptive Dynamics Prediction. Similar to direct
adaptive control, online parameter estimation may also be used within
an observer-like framework for dynamics prediction. This enables, for in-
stance, the design of provably stable online learning rules for the weights of
a recurrent neural network in the dynamics approximation context (Alemi,
Machens, Deneve, & Slotine, 2018; Gilra & Gerstner, 2017; Sussillo & Abbott,
2009). Consider a nonlinear system dynamics

x = £(x) + c(t),

where x € R" is the system state, f : R" — R" is the system dynamics, and
c: Ry — R"is a system input. Define the observer-like system

% = —k(&x —x) + Y(X)a + c(t),

where Y : R" — R"*?, d € R?, and k > 0 is a scalar gain. Assume that there
exists a fixed parameter vector a such that for all x € R", Y(x)a = f(x). By
adding and subtracting f(X) = Y(X)a, the error e = X — x has dynamics

e = —ke+ Y(x)a + f(X) — f(x).
Consider the parameter estimator
d=—y[V?y@)] " Y ®)Te, @.1)

where y > 0 is a constant learning rate, ¥ is a strongly convex potential
function,and T € R"*" > (0is a constant symmetric positive definite matrix.
Now consider the Lyapunov-like function

1 1
V= EeTre + ;dw(a | &),
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which has time derivative

V = eI (ke + Y(X)a + £(X) — f(x)) —a"Y'(X)Te,
= eI (ke + f(X) — f(x)),

=el (/01 (Fg—i(x +se) — kr) ds) e. 4.2)

Equation 4.2 shows that e — 0 as long as f(x) — kx is contracting in the met-
ric ' (Lohmiller & Slotine, 1998; Slotine, 2003), that is, if

T
(af(x)> r+r2™ ou_or
ax 0x

uniformly over x for some contraction rate A > 0. It is simple to check that
the metric I may also be time dependent, I' = I'(t). More generally, rather
than the proportional term —ke, any term of the form g(X) — g(x) may be
used in X, leading to the condition

0f() _ 9g()\" DEX) | 0800 _
( .t o ) r+r< o oy )_—mr

uniformly over x for some contraction rate A > 0. The implicit regulariza-
tion results of section 3.1 show that this framework provides a technique for
provably regularizing learned predictive dynamics models without nega-
tively affecting stability or convergence of the combined error and param-
eter estimation systems.

The above discussion demonstrates a separation theorem for adaptive
dynamics prediction. If a dynamics predictor can be designed under the as-

sumption that the true system dynamics is known (e.g., if bounds on %
are available), then the same dynamics predictor can be made adaptive by
incorporating the skew-symmetric law, equation 4.1. Convergence proper-
ties then only depend on the nominal system with control feedback and
are independent of the parameter estimator, as shown by the conditions for

contraction.

Remark 12. In principle, these simple results could be made more gen-
eral using the techniques developed in Lopez and Slotine (2021), or could
be performed in a latent space computed via a nonlinear dimensionality-
reduction technique such as an autoencoder (Champion, Lusch, Kutz, &
Brunton, 2019) or more generally a hierarchical expansion (Chen, Paiton, &
Olshausen, 2018). This could also extend to adaptive control, for example, in
robot control applications where an adaptive controller could be designed
in a latent space computed from raw pixels via a neural network.
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4.2 Regularized Dynamics Prediction for Hamiltonian Systems. If the
underlying system is known to have a specific structure, this structure may
be leveraged in a principled way to adaptively compute models for dynam-
ics prediction (Sanner & Slotine, 1995). For example, large classes of physical
systems are described by Hamiltonian dynamics,

H ="H(p.q).
P = —Vqti(p. ).
q = VpH(p. 9,

where H(p, q) is the system Hamiltonian, p is the generalized momentum,
and q is the generalized coordinate conjugate to p. This structure was ex-
ploited in recent work by Chen, Zhang, Arjovsky, and Bottou (2020) via
direct estimation of the system Hamiltonian with a deep feedforward net-
work in combination with symplectic integration of the resulting dynam-
ics. In a similar spirit, rather than parameterizing the system dynamics as
in section 4.1, consider estimating the scalar Hamiltonian itself as a linear
expansion in a set of known nonlinear basis functions {Y}},

H(@.p.q) =Y aYi(p.q) = Y(p. 9)a,
k

where Y(p, q) € R*7 is a row vector of basis functions. Assume that there
exists some true parameter vector a that exactly approximates the Hamil-
tonian globally, and consider the dynamics prediction model for k, > 0,
k, > 0O:

q

p=—(VaY(P.4)a+k(p—p). (4.3)
q=(VsY(p, @) a+k(q-4q). (44)
The above predictor employs parameter sharing between both dynamics
due to the direct estimation of the system Hamiltonian. The basis func-
tions for the individual dynamics reflect the symplectic structure, as they
are given by partial derivatives of the basis functions for the Hamiltonian.

After subtracting the true dynamics p and q from above, consider the
decomposition of the error dynamics,

p=—(VaY(P. Q) a—kp— (VaH(p,q) — VaH(p. Q)
— (VaH(p. @) — VqH(p. q)

q=(VpY(p.q)a—kq+ (VaH(P. Q) — VpH(P. q))
+ (VoM (p. q) — VpH(p. q)).
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along with the adaptation law,
=y [V @] ((VaY(®. @) B - (%X(P.9) ' q).

with y > 0 a positive learning rate. The Lyapunov-like function

—_

1~ , dy(alla)
qTq_f_'//i

1
Ve _8T54
PP"‘2 ”

N

has time derivative

V=p'[— (VaY(P. @) & — kpp — (VaH (P, @) — VaH(p, Q))

— (Vg (p, @) — VqH(p. Q)]

+q"[ (VpY(p, @) & — kyd + (VoH(P, @) — VsH (P, q)

+(VpH(P. q) — VpH(p. q)) ]

+3" ((VaY(p. @) B~ (VpY(P. )" 4)

=P [~kpp — (VaH(P. ) — VaH(p. @) — (VaH(p. @) — VaH(p. q)]
+§" [~k + (VoH(P. @) — VoH(B. @) + (VpH(B. @) — VpH(p. q))]
- )

) (—kpl—f& VpispVaH(p+sp, s — [y V2, H(p, q-+5q)ds )

fol VorspH(p +5P. q)ds —kgI+ fo Va+sq Vo H(P, q+59)ds
(f)>
X ~
q

A sufficient condition for convergence of p — 0 and q — 0 is uniform neg-
ative definiteness of the Jacobian matrix

. (—kpl—vpqu(p, Q  -V2H(qp) )

VoH(p, q) —kl+ VqVpH(p, q)

in p and q, that is, contraction of the nominal p and § system in the Eu-
clidean metric. Sufficient conditions for this are
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1
kp > =5 dmin (VpVa M (P, @) + VaVpH(p, 9))
1
kq = E)”max (VquH(Ps q) + qupH(P» q)) s
ApA 1x2 V2H ViU
prg > Z max[ P (P"])_ q (Paq):l7

where A, and 1, are the contraction rates of the p and § systems, respec-
tively, given by the difference of the left- and right-hand sides of the first
two inequalities above. More general conditions can be obtained by utiliz-
ing a nonidentity metric, that is, replacing the 1p'p and 1g7q terms in V
by the Mahalanobis distances 1p'T'pp and 1q"Tq§ where T, and I'q are
symmetric positive-definite matrices. The adaptation law will need to be
modified accordingly.

Rather than a general Hamiltonian % = #H(p, q), it is common to have a
separable Hamiltonian structure,

H(p,q) =T(p)+ U(q).

Above, T(-) is the kinetic energy and U(-) is the potential energy. Following
an identical proof, the Jacobian matrix then reduces to

—kd -V2U@)

VIT(p) kI

so that the conditions for contraction in the Euclidean metric are simplified
to

1
kiky > 330 (VET(B) = VAU(@)) (45)

4 max

The results of section 3.1 show that the choice of ¥ may be used to regular-
ize the estimate of the Hamiltonian and, in turn, the dynamics. This may be
used, for instance, for parsimonious Hamiltonian estimation through the
combination of a rich set of physically motivated scalar basis functions and
a sparse representation obtained via I; regularization, similar to Champion
et al. (2019). Further results that exploit the structure of separable Hamilto-
nians through independent estimation of the kinetic and potential energies
are presented in appendix B.
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4.3 Regularized Adaptive Control for Lagrangian Systems. A similar
methodology can be applied to parameterize a scalar Lagrangian rather
than Hamiltonian, leading to a second-order differential equation with
inertia matrix, centripetal and Coriolis forces, and potential energy parame-
terized by a shared set of weights. As we now show, generalizing the deriva-
tion of the Slotine and Li robot controller (Slotine & Li, 1987) to this setting
allows for stable adaptive control of Lagrangian systems by direct estima-
tion of the Lagrangian itself. Consider the Lagrangian

1
L= EqTH(q)q —u(q).

with H(q) an unknown inertia matrix and U(q) an unknown potential.
Assume that the inertia matrix and scalar potential are given exactly by
an expansion in physically motivated basis functions. That is, for a set of
positive-definite matrices M' > 0 and scalar functions ¢/,

H(q) = Y a"M'(q).
i

u(q) =Y a"¢'(q),
1

where superscript (K) and (P) denote kinetic and potential, respectively,

and the vectors a® and a® are unknown. The Euler-Lagrange equations
of motion 4 % - % = u with u a control input then give the dynamics

IMi(q) 1M (q) ¢!

K .. K). - i k P ¢ (CI)
Za§ )Mﬁj(q)q,* + Za§ )qkqj|: 8‘;k —5 31; +Zul( )Tq' = u;.
1j Ikj ! I !

Above, the second term,

OMj(q)  10M,(q)
aqx 2 aq; ’

> a Vi

Ikj

uniquely defines the centripetal and Coriolis forces (traditionally written
as C(q, q)q with C the Coriolis matrix), but does not uniquely define the
Coriolis matrix (Slotine & Li, 1991). Choosing

1[oMi(@)  [IMi(@) aM(q)
Ci(q. q) = a8 ) _ J _ ki G
! %: b2 o 94 9q;
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preserves the Coriolis force C(q, q)q and ensures that H(q) — 2C(q, §) is a
skew-symmetric matrix. In matrix notation, the dynamics are then given by

H(q)q + C(q, 9)q + g(q) =

with the potential force g(q Zz qu (q). Defining s and q, as s =
(% +1)§=q— qy, these dynamlcs can be equivalently rewritten as

H(q)s + C(q, q)s = u — (H(q)q, + C(q. 9)q, + 8(q)) - (4.6)

Observe that because the Lagrangian was linearly parameterized, the re-
sulting dynamics are also linearly parameterized. Defining the known basis
functions,

3¢ (q)
(P)
Y® = ,

Bq,-

IM(q) - (8Mij(q) IML,(q)

1 ij
= Y qu + M, qr >
%: 2 |: aqk aql aq] >:| j Z jir.j
we can write equation 4.6 as
H(q)$ + C(q, q)s = u — YPa® — YR,

For K > 0 a positive-definite matrix and for parameter estimates 4 and
a®, taking u = —Ks + YPaP) 4+ YKZK) Jeads to

H(q)5 + C(q, q)s = —Ks + YPal?) + y®IZK)

The proof in Slotine and Li (1987) can now be directly extended. For
Y&, @) strictly convex functions and yx > 0, yp > 0 positive gains, the
Lyapunov-like function

1 1 . 1 X
V= LstH@s + Ly (39159 4 L (a0 a0).

shows stability of the adaptation laws
5 25 (30)) " [yw]"
= e (P (@) [

i = (w0 3) o s
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614 N. Boffi and J.-J. Slotine

after an application of Barbalat’s lemma (lemma 1 in this article) and using
skew-symmetry of H — 2C to eliminate 3s"Hs. In physical applications, di-
mensions or relative scaling of the components of 4% and a4 can be han-
dled as described in remarks 6 and 11.

As in section 4.2, by using an /; approximation for v, this approach may
find sparse, interpretable models of the kinetic and potential energies. Es-
timating the potential energy directly may in some cases lead to simpler
parameterizations than estimating the resulting forces.

If more structure in the inertia matrix is known, for example, that it de-
pends only on a few unknown parameters, it may still be approximated
using the usual Slotine and Li controller. The external forces can then be es-
timated by directly estimating the corresponding potential that generates
them.

4.4 Regularized Adaptive Observer Design. In many physical and en-
gineering systems, only a low-dimensional output of the system y(x) € R"
is available for measurement. Assuming that y(x) = Cx is a linear readout
for some known matrix C € R™"  we now show that the tools of sections
4.2 and 4.3 can be used to design regularized adaptive observers for the full
system state. Assume that the true system dynamics satisfies

x = f(x) + c(t) = Y(y(x))a + c(t),

with a € R” a vector of unknown parameters and where the known regres-
sor matrix Y € R"*? only depends on the system output y(x). Consider the
adaptive observer,

x=Y(@)a+ct)+g[§) —gy),
—y (Vv (@) Y §)C'Ty,

a

with y > 0 a positive learning rate, ¥ = y(X), ¥ a strongly convex potential
function, and T a positive-definite matrix. The Lyapunov-like function

1 1
V=355I + Zdy(ala).

has time derivative

v

yITC(Y®)a+ [YF) - Y(y)]a+8F) — 8y)) — ¥ TCY(§)a,
y'rC([Y(®) — Y(y)]a+g¥) — 8(y)).

L oY(y+sy)a | dg(y +s§)
a FC/ ( + )ds) v,
y ( 0 dy ay y
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which shows that a sufficient condition for convergence of § — 0 is

T
o <3Y(Y)a . ag(y)) . <8Y(y)a N 3g(y>> C'T < AT
dy dy Iy ay

uniformly in y for some contraction rate A > 0. A natural choice of g(y) to
satisfy this condition with I' = Tis g(y) = —kC"y for somek > 0if CC is full
rank. The requirement is equivalent to contraction of the unknown output
dynamics,

y = CY(y)a + Cg(y) + Cc(t),

in the metric T'. Under suitable observability assumptions on the system,
convergence of ¥ to y ensures that X converges to x, and hence that the full
system state can be observed (Luenberger, 1979).

As in section 4.1, this discussion demonstrates a separation theorem for
adaptive observer design. If an observer can be designed for the true system
with unknown parameters, then the same observer can be made adaptive
by incorporating the adaptation law presented in this section. Convergence
properties then depend only on the true system with feedback and are inde-
pendent of the parameter estimator. The results of section 3.1 show that the
choice of  can be used to regularize the observer model while maintaining
provable reconstruction of the full system state.

4.5 Regularized Dynamics Prediction for Recurrent Neural Networks.
Consider a recurrent neural network model,

™x=—Xx+0(0x), (4.7)

with x € R" a vector of neuron firing rates, ® € R"*" the synaptic weights,
o (Ox) the postsynaptic potentials, and v > 0 a relaxation timescale. Let o (-)
be an elementwise Lipschitz and monotonic activation function:

o (x); = oi(x;),

A

|oi(x) — 0i(y)| < Lilx — yl,
(x = y) (0i(x) = ai(y)) = O.
These requirements are satisfied by common activation functions such as

the ReLU, softplus, tanh, and sigmoid. For ¢ a strongly convex function

on 1 x n matrices or vectors in R” and y > 0 a positive gain, consider the
regularized adaptive dynamics predictor for equation 4.7,

X = —%+06(0x) +k(x—%), (4.8)

6 = —y (V2 (©)) ' (¢ (6x) — o (Ox)) x". (4.9)
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616 N. Boffi and J.-J. Slotine

In equation 4.8 the true vector of firing rates x is used underneath the appli-
cation of o/(-) in the X dynamics. The update law, equation 4.9, can be seen as
the vector-valued generalization of the algorithm considered in remark 4.
The Lyapunov-like function

1 ~
=—dy(0] ),
14

has time derivative

ZO’J ®x —a(@x)) X,

_ ZJ &; (m (; @kak> i (; 6”‘”)) '
() (g0) -+ (2))
(g o (5o

1
max Ly

IA

|0 (6x) — o (@x)]; < 0.

Integrating the above inequality shows that [o (©x) — o (@x)] is an £, sig-
nal and, hence, that each component [ai (G)x) — 0 (@x)] is also an £, signal.
The error dynamics

é:—(k+1)e+a(€)x)—a(®x),

shows that each component ¢; is a low-pass filter of each component of the
function approximation error [a, (@x) —0j (G)x)] Applying lemma 2 shows
that e — 0. This approach could be used, for example, for identifying reg-
ularized low-dimensional models in computational neuroscience. Our re-
sults are similar to those of Foster, Rakhlin, and Sarkar (2020), but handle a
mirror descent or natural gradient extension valid in the continuous-time
deterministic setting.

The adaptation law, equation 4.9, cannot be implemented directly
through a PI form. However, it can be well approximated, for example, by
the PI construction
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(x—x),
y(@—eiT),

—(k+1)ex" +re(x—%)",

X
I
>

vy (@

SN—
I

©
for A > 0 a positive gain ensuring X ~ x.
5 Velocity Gradient Algorithms and the Bregman Lagrangian

In this section, we provide background material on the velocity gradient for-
malism (Andrievskii et al., 1988; Fradkov, 1980, 1986; Fradkov et al., 1999)
and the Bregman Lagrangian (Betancourt et al., 2018; Wibisono et al., 2016;
Wilson et al., 2016).

5.1 Velocity Gradient Algorithms. We now provide a brief introduc-
tion to a class of adaptive control methods known as velocity gradient al-
gorithms (Andrievskii et al., 1988; Fradkov, 1980, 1986; Fradkov et al., 1999).
In their most basic form, they are specified by a “local” goal functional
Q(x,t) : R" x Ry — R we would like to drive to zero. The adaptation law
is defined as

A= —-PV;Q(x, 4, 1), (5.1)

where P = PT > 0is a positive definite matrix of learning rates of appropri-
ate dimension and Q(x, &, t) = (VxQ(x, 1))" x + 2% Tntuitively, while the
goal functional Q(x, t) may only depend on the control parameters a indi-
rectly through x, its time derivative will depend explicitly on a through x.°
The adaptation law, equation 5.1, ensures that & moves in a direction that
instantaneously decreases Q(x, 4, t). Under the conditions specified by as-
sumptions 4 to 6, this causes Q(x, 4, t) to be negative for long enough to
accomplish the control goal (Fradkov et al., 1999).

Assumption4. Q(x, t)is nonnegative and radially unbounded, so that Q(x, t) >
0 for all x, t and Q(x, t) — oo when ||x|| — oo. Q(x, t) is uniformly continuous
in t whenever x is bounded.

Assumption 5. There exists an ideal set of control parameters a such that the ori-
gin of the system 2.1 is globally asymptotically stable when the control is evaluated
at a. Furthermore, Q(x, t) is a Lyapunov function for the system when the control
is evaluated at a. That is, there exists a strictly increasing function p such that

p(0) = 0 with Q(x, a, t) < —p(Q).

*It will also depend on a, but we suppress this dependence for notational simplicity.
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618 N. Boffi and J.-J. Slotine

Assumption 6. The time derivative of Q is convex in the control parameters 4,
that is,

Q(x, ap, t) > Q(x, ap, t)+ (ag — az)T VazQ(x, ap, t), (5.2)

is satisfied for all a; and aj.

The properties of equation 5.1 are summarized in the following proposition
(Fradkov et al., 1999).

Proposition 3. Consider the local velocity gradient algorithm equation 5.1, under
assumptions 4 to 6. Then all solutions (x(t), a(t)) of equations 2.1 and 5.1 remain
bounded, and

tlim Qx(),t)=0

for all x(0) € R".

The proof follows by consideration of the Lyapunov-like function V = Q +
;aPa
2

Remark 13. If Q(x, t) is chosen so that Q(x, 4, ) depends on a only through
f (x,a,t)and f(x, a, t) is linearly parameterized, then assumption 6 will im-
mediately be satisfied by convexity of affine functions. Indeed, consider
defining the goal functional Q(x,t) = %s(x, t)? for system 2.1 where s de-
pends on t through x4(f). It is clear that this proposed goal functional sat-
isfies assumptions 4 and 5 for bounded x,(t). Then O(x,a,t) = —ns(x, t)? +
S f (x, 4, a, 1), and equation 5.1 exactly recovers the Slotine and Li controller,
equation 2.8.

Remark 14. An alternative perspective on velocity gradient algorithms can
be found by using the expression O(x,a,1) = (VxQ(x, 1)) x + % As-
sume that x = u — Y(x, t)a, and set u = Y(x, t)a + u; where u, ensures that
x(t) = x(t) for a = a. Then ViQ(x, &, t) = Y'V,Q(x, t). This shows that the
adaptation law 4 = —PV;Q(x, 4, t) = —PY(x, t)TV,Q(x, ) transforms the
gradient of Q(x, t) with respect to x by premultiplication by the regressor
Y(x, t)T. This interpretation applies to the observers and dynamics predic-
tors designed in section 4, as well as the adaptation law for contracting
systems developed in Lopez and Slotine (2021). Conversely, this perspec-
tive shows that if a Lyapunov function V (x, t) is known for a nominal sys-
tem x = f(x, t), then the control input u = Y(x, t)a with adaptation law i=
—PY™V,V(x,t) will return the perturbed system x = f(x,t) +u — Y(x, t)a
back to its nominal behavior.
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Rather than a local functional one may instead specify an integral goal

functional of the form Q(x fo ). ('), t")dt’. In this case, equa-
tion 5.1 takes the form

i = —PV;R(x, 4, t). (5.3)

Equation 5.3 is a gradient flow algorithm on the loss function R(x, a, t). We
now replace assumptions 4 and 5 by a slightly modified setting.

Assumption 7. R isanonnegative function and R(x(t), a(t), t) is uniformly con-
tinuous in t for bounded x and a. Furthermore, V3R(x, &, t) is locally bounded in
x and & uniformly in t.

Assumption 8. There exists an ideal set of controller parameters a and a scalar
function p such that fo )t < 0o, limy_ oo pu(t) = 0,and R(x(t), a, t) < u(t)
forall t.

The properties of algorithm 5.3 are summarized in the following proposi-
tion (Fradkov et al., 1999).

Proposition 4. Consider the integral velocity gradient algorithm 5.3 where the
goal functional Q satisfies assumptions 6 to 8. Then Q(x(t); t) < o, where

1 0]
:7~0TP—1~0 ,d,,
@ = 330 P130)+ [ e

and [ R(x(t'), a(t'), ')dt' < oo over the maximal interval of existence of x. Fur-
thermore, R(x, &, t) — 0 for any bounded solution x(t).

The proof follows by consideration of the Lyapunov-like function V =
Jy R(E), at'), t)dt' + 1aTP1a + [ pu(t))dt'.

Integral functionals allow the specification of a control goal that depends
on all past data. R(x, 4, ) is chosen so that it does not necessarily depend
on the structure of the dynamics but depends explicitly on a. Local func-
tionals, on the other hand, result in adaptation laws that do have an explicit

dependence on the dynamics through the appearance of the term (%%)T X
in Q(x, at).

Integral functionals can be particularly useful if R(x, &, f) — 0 implies
the desired control goal. In this work, we focus on the choice R(x, a,t) =
3 1 f(x, 2, which will require a PI form as described in section 2 in the
context of Tyukm s algorithm.” In particular, note that for this choice of R,
the result of proposition 4 implies that f € £, over the maximal interval of

"Indeed, Tyukin’s algorithm can be seen as an integral velocity gradient algorithm
with the pseudogradient modification described in section 2.
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620 N. Boffi and J.-J. Slotine

existence of x. For some error models, this is enough to ensure that x € £,
and hence that f(x, a,a,t) — 0 and x — x.

Goal functionals can also be written as a sum of local and integral func-
tionals with similar guarantees, and these approaches will lead to compos-
ite algorithms in the subsequent sections. (See Fradkov et al., 1999, chap. 3
for more detail.)

Remark 15. Following the developments of section 3, we can immediately
prove analogous results for natural gradient or mirror descent-like velocity
gradient algorithms. For local functionals, the adaptation law

A Ay 1 2 A
a=—y (V@) ViQ(x 4 t)
with y > 0 a positive learning rate and ¥ a strongly convex function will

lead to the same conclusions as proposition 3 under the same conditions.
The proof follows by consideration of the Lyapunov-like function,

V = Qx.t) +dy(all ).

Similarly, the Lyapunov-like function

t [eS)
V= /O R(x(t'), a(t'), t')dt’ +dy(a| &)+ /, w(t)dt'

shows that the same conclusions as in proposition 4 hold under the same
conditions for the integral natural velocity gradient algorithm,

d=—y (V2¥ () VaR(x, 4,¢).

In both cases, the choice of ¥ offers a principled way to regularize velocity
gradient algorithms.

5.2 The Bregman Lagrangian and Accelerated Optimization Algo-
rithms. In Wibisono et al. (2016), the Bregman Lagrangian was shown to
generate a suite of accelerated optimization algorithms in continuous time
by appealing to the Euler Lagrange equations through the principle of least
action. In its original form, the Bregman Lagrangian is given by

L% 1) = 7 (dy (x+ % %) = f()) . (5.4)

8See, for example, lemma 2, which shows that our error model 2.4 has this property.
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In equation 5.4, f(x) is the loss function to be optimized, and v (x) is a
strongly convex function. We take () = %II . ||§ in section 6 and consider
extensions to arbitrary ¢ in section 7. Allowing for arbitrary r extends the
algorithms presented in section 6 to the natural gradient-like setting of sec-
tion 2.3.

The quantities@(t) : R, — R, () : Ry — R,and ¥(t) : R, — Rinequa-
tion 5.4 are arbitrary time-dependent functions that will ultimately set the
damping and learning rates in the second-order Euler Lagrange dynam-
ics. To generate accelerated optimization algorithms, Wibisono, Wilson, and
Jordan (2006) required two ideal scaling conditions: g < ¢ and v =é".
These conditions originate from the Euler Lagrange equations, where the
second is used to eliminate an unwanted term, and a Lyapunov argument,
where the first is used to ensure decrease of a chosen Lyapunov function.

Gaudio et al. (2019) recently utilized the Bregman Lagrangian to derive
a momentum-like adaptive control algorithm. To do so, they defined @ =
log(BN), B = log (ﬁLN')' andy = [¢"dt’. Here,y > 0and B > 0 are nonneg-
ative scalar hyperparameters, and V" = N/ (t) is a signal chosen based on the
system. With these definitions, choosing the Euclidean norm ¢ (-) = %ll 1%,
and modifying the Bregman Lagrangian presented in Gaudio et al. (2019) to
the adaptive control framework defined in section 2, equation 5.4 becomes

£(aat)=ch ﬂNWfﬂLN (%55 - yﬁ/\/% ESZ]) . (55)

Comparing equations 5.4 and 5.5, it is clear that the loss function f(x)
in equation 5.4 has been replaced by %%52 in equation 5.5. Following re-
mark 13, this is precisely the Q velocity gradient functional that gives rise
to the Slotine and Li controller. For equation 5.5, the Euler-Lagrange equa-
tions lead to the adaptation law,

ata <5N - x> = —yBNY's. (5.6)

Equation 5.6 may be understood as a modification of the Slotine and Li
adaptive controller to incorporate momentum and time-dependent damp-
ing. This equation may also be rewritten as two first-order systems,

’Note that these conditions validate the second ideal scaling condition but not the
first. As mentioned above, the first ideal scaling condition is required only by the choice
of Lyapunov function in the original work, which was used to derive convergence rates
for optimization algorithms (Wibisono et al., 2016). In this sense, it is not strictly required
for adaptive control.
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v =—yYTs, (5.7)
a= BN (¥v—a), (5.8)

which are useful for proving stability. The properties of equation 5.6 are
summarized in the following proposition.

Proposition 5. Consider the higher-order adaptation algorithm, equation 5.6,
with N =1+ p||Y||? and p > # Then all trajectories (x, ¥, &) remain bounded,
s€LoNLy (A—Y) € Ly s— 0and x — xy.

The proof follows by consideration of the Lyapunov-like function V =
L(+ 21912 + Lo —a)?).

Remark 16. The transformation to a system of two first-order equations
may seem somewhat ad-hoc, but it follows immediately by consideration
of the non-Euclidean Bregman Lagrangian, equation 5.4. Indeed, itis easy to

check thatv = a + /Si/\/" which is precisely the adaptive control equivalent of

X + e~%xin the first argument of dy, (- || -) in equation 5.4. The transformation
is also readily apparent by use of the Bregman Hamiltonian

. 1 . rd1
H(a, p) = Eﬂ/\fe 7Ipl* + ye” [Eisz] , (5.9)

which, via Hamilton’s equations, leads to

oH

p=—75 = vV,
9 _
a= % = pNe 7p.

Defining ¥ = e””p + a4 immediately leads to equations 5.7 and 5.8. This line
of reasoning was recently investigated further by Gaudio, Annaswamy,
Bolender, Lavretsky, and Gibson (2021). As is typical in classical mechan-
ics, the Bregman Hamiltonian may be obtained from a Legendre trans-
form of the Bregman Lagrangian. The Hamiltonian dynamics may be useful
for discrete-time algorithm development through application of symplectic
discretization techniques (Betancourt et al., 2018; Franga, Sulam, Robinson,
& Vidal, 2019; Shi, Du, Su, & Jordan, 2019).

Remark 17. It is well known, for example from a passivity interpretation
of the Lyapunov-like analysis (see, e.g., Slotine & Li, 1991), that the pure
integrator in the standard Slotine and Li adaptation law, equation 2.8, can
be replaced by any linear positive real transfer function containing a pure
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integrator. The higher-order algorithms presented in this work are distinct
from this approach, as most clearly seen by the state-dependent damping
term in equation 5.6.

Remark 18. In Wibisono et al. (2016), the suggested Lyapunov function
in the Euclidean setting is V = ||x + ™%X — x. ||*> + € f(x), where x, is the
global optimum and f(x) is the loss function. Noting that ¥ is the equivalent
of x + e~*x in the adaptive control context (see remark 16), we see that the
Lyapunov-like function used to prove stability of the adaptive law, equa-
tion 5.6, is similar to that used to prove convergence in the optimization
context. The loss function term f(x) is replaced by }s?, and it is necessary
to add the term %llf/ — a3

6 Adaptation Laws with Momentum

In this section, we develop several new adaptation laws for both linearly
and nonlinearly parameterized systems. We begin by noting that the Breg-
man Lagrangian generates velocity gradient algorithms with momentum.
We prove some general conditions under which these momentum algo-
rithms will achieve tracking. By analogy with integral velocity gradient
functionals, we then derive a proportional-integral scheme to implement a
first-order composite adaptation law (Slotine & Li, 1991) driven directly by
the function approximation error rather than its filtered version. We subse-
quently fuse the generating functional for the composite law with the Breg-
man Lagrangian to construct a composite algorithm with momentum.

We then employ a connection between recent developments in isotonic
regression—the GLMTron of Kakade et al. (2011), along with extensions due
to Goel and Klivans (2017) and Goel et al. (2018)—and Tyukin’s algorithm,
equation 2.12, to derive momentum algorithms for nonlinearly parameter-
ized systems. These momentum algorithms can be seen as the adaptive con-
trol equivalent of the GLMTron with momentum.

We follow this development by discussing a new form of high-order
algorithm inspired by the elastic averaging stochastic gradient descent
(EASGD) algorithm (Boffi & Slotine, 2020; Zhang, Choromanska, & LeCun,
2014). We subsequently demonstrate the capability of using time-varying
learning rates with our presented algorithms (Slotine & Li, 1991).

6.1 Velocity Gradient Algorithms with Momentum. As noted in
section 5.2, the Bregman Lagrangian (equation 5.5) that generates the
higher-order algorithm in equation 5.6 contains the local velocity gradient
functional Q(x, t) = %s(x, t)? that gives rise to the Slotine and Li controller
(equation 2.8). Based on this observation, we define local and integral
higher-order velocity gradient algorithms via the Euclidean Bregman La-
grangian. We begin with the local functional
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L(aar) = el WW% (%Ja BN S, t)) ,

which generates the higher-order law

A+4a (/3/\/ - x> = —yBNViQ(x, 4, t). (6.1)

Algorithm 6.1 can be rewritten as two first-order systems:

V= —yVi0(x, 4, 1), (6.2)
A= BN (V—a). (6.3)

To achieve the control goal, we require the following technical assumption
in addition to assumptions 4 and 6. This assumption replaces assumption 5
for first-order velocity gradient algorithms.

Assumption9. There exists a time-dependent signal N(t) and nonnegative scalar
values B > 0, u > 0 such that the time-derivative of the goal functional evaluated
at the true parameters, Q(x, a, t), satisfies the following inequality:

Qx.a.t) - %"N(t)na P42 )T Va0 A D) < —p(Q). (64)

In equation 6.4, p(-) is positive definite, continuous in Q, and satisfies p(0) = 0.

Assumption 9 is a formal statement that we may “complete the square”
on the left-hand side of 6.4. For example, for ViQ(x,4,t) = Y's and for
Q(x, a, t) = —ns?, we may choose N = ||YT|2.

With assumption 9 in hand, we can state the following proposition.
Proposition 6. Consider algorithm 6.1 or its equivalent form, 6.2 and 6.3, and

assume Q satisfies assumptions 4, 6, and 9. Then, all solutions (x(t), ¥(t), a(t))
remain bounded, (4 — ¥) € L, and lim;_, o, Q(x(t); t) = 0.

Proof. Consider the Lyapunov-like function,
Dore o b oms o
V=0xt)+ —v v+ —(@-%) (a—-v). (6.5)
2y 2y

Equation 6.5 implies that with N'(f) = 1 + uN(t),
B

A SN2
—lla—-v|"—

B

V =0Q(kx,4,t)—a ViO(x, a,t) — 7N(t)||é — 92

+2(a—9)" ViO(x, 4, 1),
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IA

Otx.a,t) - §||a—0||2—’37“N<t)||a—w|2 12— 9)T Va0 4. 1),

IA

-p(Q) — fna — V| (6.6)

By radial unboundedness of Q(x, t) in x, equations 6.5 and 6.6 show that
x remains bounded. Similarly, radial unboundedness of V in ¥ and 4 — ¥
show that ¥ and a remain bounded. Integrating equation 6.6 shows that
5 Jo° la —¥|dt < V(0) — V(c0) < 00, so that (4 — ¥) € £,. An identical ar-
gument shows that fooo 0(Q)dt < co. Now, because x and a are bounded
and because f (x, 4, a, t) is locally bounded in x and & uniformly in ¢ by as-
sumption, writing x(t) — x(s) = f; (£(x(t'), a,t') + u(a(t'), t')) dt' shows that
x(t) is uniformly continuous in ¢. Because Q(x, t) is uniformly continuous
in t when x is bounded, because Q is bounded, and because p is contin-
uous in Q, we conclude p is uniformly continuous in t and limy_.. p(t) =
limy_, o p(Q(x(t),t)) = 0 by Barbalat’s lemma (lemma 1). This shows that
lim; o Q(x(f),t) = 0. O

By taking Q = 15 in proposition 6, we immediately recover proposition 5.
We now consider the integral functional,

t . . t
£(3.3.1) = el s ﬂ; - (%aTa BN /0 RO(E'). A(E), t/)dt/),

which generates the higher-order law

. N

a+ é(ﬂ]\/— N) = —yBNViR(x, 4, t). (6.7)
We again rewrite equation 6.7 as two first-order systems

V= —yViR(x & 1), 68)

A= pN (¥v—a), (6.9)

and now require a modified version of assumption 9.

Assumption 10. R(x, a,t) > 0 for all x, &, and t, and is uniformly continuous
in t for bounded x and a. V;R(x, 4, t) is locally bounded in x and a uniformly in
t. Furthermore, there exists a time-dependent signal N(t) and nonnegative scalar
values B > 0, u > 0 such that

Rixa t) — R(x, 4, £) — PEN(E) 14 — 917 +2 (3 — )T VaR(x, 4, 1)
y

< —kR(x, 4, t)

for some constant k > 0.
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Similar to assumption 9, assumption 10 is a formal requirement that
we may “complete the square.” Consider the case when R(x,a,t)=
1f(x,a,a,t)>. Then R(x,a,t) = 0, VaR(x, 4. t) = f(x, 4, a,t)Vaf(x, &, t), and
we may choose N(t) = || Vs f(x, 4, t)|1%.

With assumption 10, we can state the following proposition.

Proposition 7. Consider algorithm 6.7 along with assumptions 6 and 10. Let T,
denote the maximal interval of existence of x(t). Then ¥ and a remain bounded
fort €10, Ty], (&4 — ¥) € L, over this interval, and fOT" R(x(t), a(t"), t')dt’ < oo.
Furthermore, for any bounded solution x, these conclusions hold for all t and
R(x(t),a(t),t) — 0.

Proof. Consider the Lyapunov-like function,
Lo o\Tis o

v+—(@a-—-v) (a—v). (6.10)
2y

Equation 6.10 implies that with N'(t) = 1+ uN(f),

V = —a"ViR(x, 4. 1) — gna L %“N(t)ﬂa —op

+2(a—9)" ViR(x, 4, 1),

<R(at)—Rxat) - 2ja— o = PENena—op
Y Y

Pla—ep

< —kR(x, a,t) — ;Ha —-v (6.11)

Equations 6.10 and 6.11 show boundedness of ¥ and a over [0, T;]. Fur-
thermore, integrating equation 6.11 shows that fOTX la — ¥|%dt’ < oo and

Jo " R(x(t"), a(t'),t')dt' < co. For any bounded solution x, these integrals
may be extended to infinity, and we conclude that (4 — ¥) € £5,4 € L, and
V € L. Writing x(t) — x(s) in integral form as in the proof of proposition 6
shows that x(t) is uniformly continuous in ¢, and in light of the local bound-
edness assumption on V;R, the same procedure can be applied to ¥ and a.
Because R(x(t), a(t), t) is uniformly continuous in t for bounded xand &, and
because x(t) and a(t) are both uniformly continuous in t, we conclude that
R(x(t), a(t), t) is uniformly continuous in t and R — 0 by Barbalat’s lemma
(lemma 1). O

As mentioned in section 5.1, we will be particularly interested in proposi-
tion 7 when R = 1 f2, which will generate composite adaptation algorithms
and algorithms applicable to nonlinearly parameterized systems. Proposi-
tion 7 then shows that f € £, over the interval of existence of x(t). As shown
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by lemma 18, with our error model this is enough to show that x(t) always
remains bounded and hence f — 0.

Remark 19. Classically, Lyapunov-like functions used in adaptive control
consist of a sum of tracking and parameter estimation error terms, with
4 chosen to cancel a term of unknown sign. Several Lyapunov functions in
this work consist only of parameter estimation error terms, such as equation
6.10. From a mathematical point of view, all that matters is that V is negative
semidefinite and contains signals related to the tracking error. Integrating
V allows the application of tools from functional analysis to ensure that
the control goal is accomplished. The lack of tracking error term in V is the
origin of the additional complication that x(t) must be shown to be bounded
even after it is known that V < 0.

6.2 First- and Second-Order Composite Adaptation Laws. Here we
consider the linearly parameterized setting f(x, a, t) = Y(x, )a, and derive
new first- and second-order composite adaptation laws. Composite adap-
tation laws are driven by two sources of error: the tracking error itself, as
summarized by s in the Slotine and Li controller, and a prediction error.
The prediction error term is generally obtained from an algebraic relation
constructed by filtering the dynamics (Slotine & Li, 1991). We present a com-
posite algorithm that does not require any explicit filtering of the dynamics
but is instead driven simultaneously by s and f.

A starting point for our first proposed algorithm is to consider a hybrid
local and integral velocity gradient functional,

Q(x, t) = Zs(x, t)* + / FA(x(t), a(t'), a, t)dt, (6.12)

where ¥ > 0 and y > 0 are positive learning rates weighting the contribu-
tions of each term. As discussed in section 5.1, the first term leads to the
Slotine and Li controller. The second can be clearly seen to satisfy assump-
tions 7 and 8 with x1(t) = 0. It also satisfies assumption 6, as f? is a quadratic
function of a for linear f. Following the velocity gradient formalism, the re-
sulting adaptation law is given by

a=—PY' (ys+«Ya), (6.13)

which is a composite adaptation law simultaneously driven by s and the in-
stantaneous function approximation error Ya = f. Equation 6.13 depends
on the function approximation error f, which is not measured and hence
cannot be used directly in an adaptation law. Nevertheless, it can be ob-
tained through a proportional-integral form for a in an identical manner to
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628 N. Boffi and J.-J. Slotine

section 2.2. To do so, we define

E(x,t) = —kPs(x, H)Y(x, t)T, (6.14)
*(e) Y (x, )"
p(x, t) = I{P/ s(x, t)ﬁdxn, (6.15)
xu(fo) Xn
a=a+&x,t)+ p(x,t), (6.16)
n—1 n—1 T
=— PY! P—ux; — L
a (kn+y)s +KS§ Bxix’ ;(ax,) X
ap\" 9 9
(2P 4, B 0 (6.17)
pe] ot ot

Computing & demonstrates that equation 6.13 is obtained through only the
known signals contained in equations 6.14 to 6.17 despite its dependence
on Ya. A few remarks concerning algorithms 6.13 to 6.17 are in order.

Remark 20. The Ya term may also be obtained by following the 1&I for-
malism (Astolfi & Ortega, 2003; Liu et al., 2010). To our knowledge, this
discussion is the first that demonstrates the possibility of using a PI law in
combination with a standard Lyapunov-stability motivated adaptation law
to obtain a composite law.

Remark 21. More error signals may be used for additional terms in
the adaptation law. For example, a prediction error obtained by filtering
the dynamics may also be employed, leading to a three-term composite
algorithm.

Remark 22. Much like the standard composite law obtained by filtering
the dynamics, rearranging equation 6.13 shows that a + PY'Ya = —PYTs,
so that the additional term can be seen to add a damping term that smooths
adaptation (Slotine & Li, 1991).

Remark 23. Asmentioned in section 2.1, for clarity of presentation we have
restricted our discussion to the nth-order system 2.1. In general, the PI form

6.16 leads to undesired unknown terms contained in (W)T xin addition
to the desired unknown term. In this case, the desired unknown term is
—«PYTY3, while the undesired unknown term is —KP —X;s. Indeed, the
purpose of introducing the additional proportional term p(x X4) inequation
6.14 is to cancel this undesired unknown term. In general, cancellation of
the undesired terms can be obtained by choosing p to solve a PDE, and
solutions to this PDE will only exist if the undesired term is the gradient of
an auxiliary function. p is then chosen to be exactly this auxiliary function.

In some cases, the PDE can be avoided, such as through dynamic scaling
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techniques (Karagiannis, Sassano, & Astolfi, 2009) or the similar embedding
technique of Tyukin (2011).

The properties of the adaptive law, equation 6.13, may be summarized with
the following proposition.

Proposition 8. Consider the adaptation algorithm 6.13 with a linearly parameter-
ized unknown,~ f(x,a,t) = Y(x,t)a. Then all trajectories (x, &) remain bounded,
S€LyNLe, f €Ly s— 0,andx — xg4.

The proof is given in section A.1.

Following the velocity gradient with momentum approach of section 6.1,
we now obtain a higher-order composite algorithm and give a PI imple-
mentation. We again consider a hybrid local and integral velocity gradient
functional, so that equation 5.4 takes the form

. t 1 1. T
A A _ ol BN ()dt
E(a,a,t>_e 7,8/\/’(1‘)( a ()

><|: / FA(x(t), a(t) a,t/)dt/D (6.18)

where y > 0and « > 0 are positive constants weighting the two error terms.
The Euler-Lagrange equations then lead to the higher-order composite
system:

i+ (ﬁ/\f — x> d=—BNY' (ys+«Ya). (6.19)

As in section 5.2, equation 6.19 may be implemented as two first-order sys-
tems:

v =Y (ys+«Ya), (6.20)
A= pN (v —a). (6.21)
In an implementation, equation 6.20 is obtained through the PI form v =
v+ &(x,t) + p(x,t) with &, p, and V given by equations 6.14, 6.15, and 6.17,

respectively, with P = I. The properties of the higher-order composite adap-
tation law, equation 6.19, are stated in the following proposition.

Proposition 9. Consider the higher-order composite adaptation algorithm, equa-
tion 6.19, for a linearly parameterized unknown, f(x,a,t)=Y(x,t)a. Set N' =

1+ pl|Y)? and o > % (% + 7) Then all trajectories (x, ¥, a) remain bounded,
¥ —a| € Ly, s eﬁooﬂLz,fe,CooﬂLz,se 0, and x — xg.

The proof is given in section A.2.
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Remark 24. By following the proof, the signal A/ may be chosen alterna-
tively to be matrix-valued as N = I + nYTY.

Remark 25. The Ya term may be used in isolation, by considering the Lya-
punov function V = 1([v]> + 1[4 — ¥|%

Remark 26. A gain matrix P = PT > 0 of appropriate dimension may be
placed in front of YT in ¥. The quadratic parameter estimation error terms
in the Lyapunov function should then be replaced by the weighted terms
19"P'v + 1 (a—¥)" P! (a — ¥), and bounds on . will be given in terms of
Pl

6.3 A Momentum Algorithm for Nonlinearly Parameterized Adap-
tive Control. We now use the development in section 6.2 to present a new
momentum algorithm applicable when the unknown parameters appear
nonlinearly in the dynamics. We begin with an analogy to statistics.

Generalized linear model (GLM) regression is an extension of linear re-
gression where the data are assumed to be generated by a function of the
form f(x) = u(w'x) for a known “link function” u and unknown parame-
ters w. The first computationally and statistically efficient algorithm for this
problem, the GLM-Tron of Kakade et al. (2011), assumes that u is Lipschitz
and monotonic, much like assumption 2.

The GLM-Tron algorithm was recently extended to the setting of ker-
nel methods and was subsequently used to provably learn two hidden-
layer neural networks by Goel and Klivans (2017); this extension is known
as the Alphatron. In the kernel GLM setting handled by the Alphatron,
the function to be approximated is assumed to be of the form f(x) =
u (3, wik (x, X)), where K is the kernel function for a reproducing ker-
nel Hilbert space (RKHS) H. K is thus given by the RKHS inner product of
a feature map ¢, K(x, y) = (¢(x), ¢(y))n

The Alphatron initializes all weights to zero and, given a batch of labeled
training data (x;, f(x;))iL,, updates them with a learning rate A > 0 accord-
ing to the iteration

WJm;%Uw& - f&x)) (6.22)

We now demonstrate an equivalence between Tyukin’s adaptation law
equation 2.12, and the Alphatron weight update, equation 6.22 in the fol-
lowing proposition.

Proposition 10. The adaptation law, equation 2.12, is an application of the Al-
phatron algorithm, equation 6.22, to adaptive control.

The proof is given in section A.3.
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Proposition 10 shows a convergence of techniques in nonlinearly param-
eterized adaptive control and nonconvex learning. This correspondence
suggests the momentum-like variant of equation 2.12,

a4t (ﬁ/\/— j\\[[> A= —yBN f(x, &, a, t)a(x, t), (6.23)

which, as before, admits an equivalent representation in terms of two first-
order systems,

V= —yf(x, a, a, t)a(x,t), (6.24)
A= pN (v —a). (6.25)

Equation 6.23 may be implemented through equations 6.24 and 6.25 via the
PI form, equations 2.13 to 2.16, applied to the ¥ variable.

Equation 6.23 may be obtained via the Bregman Lagrangian, equation
6.18, for velocity gradient laws with momentum by choosing only the inte-
gral term. It is then necessary to modify the resulting Euler-Lagrange equa-
tions by setting f/, to +1 based on the monotonicity of f as described in
section 2.2. The following proposition summarizes the properties of equa-
tions 6.24 and 6.25.

Proposition 11. Consider the algorithm 6.23 or its equivalent form, 6.24 and 6.25

under assumption 2 with N' = 1 + pllee(x, t)||> and p > YD1 Then all trajectories

- B
(x, &, V) remain bounded, f € Ly, (A—¥) € L3,5 € LN Ly, 5 — 0andx — xg.

The proof is given in section A 4.

Remark 27. Asnoted in remark 24, by following the proof of proposition 11,
one may also take A to be matrix-valued as N = 1 + pa(x, t)a(x, t)T.

Remark 28. As in remark 26, a gain matrix P = PT > 0 of appropriate di-
mension may be placed in front of e(x, t) in ¥.

Predominantly inspired by deep learning, there has recently been strong
interest in nonconvex models that are nevertheless amenable to gradient-
based or gradient-inspired optimization. The development in this section
suggests that machine learning models that can be provably optimized us-
ing gradient techniques represent a promising class of nonlinear parame-
terizations for adaptive control development.

6.4 The Elastic Modification. We now consider a modification to the
previously discussed adaptive control laws inspired by the elastic aver-
aging SGD (EASGD) algorithm (Boffi & Slotine, 2020; Zhang et al., 2014).
EASGD is an algorithm intended for distributed training of deep neural
networks across p graphics processing units (GPUs). Each GPU is used to
train a local copy of the deep network model, and each local copy maintains
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its own set of parameters 4”). These parameters are updated according to
the iteration

al), =a” g +ak (at - a§">) , (6.26)
1o
A1 = a, + Ak (p > Al — at) , (6.27)
i=1

where A is the learning rate, gfz) is the stochastic gradient approximation
computed by the ith agent at time step t, k is the coupling strength, and a is
the center variable. Equation 6.27 takes the form of a low-pass filter of the
instantaneous average of the set of local parameters.

Boffi and Slotine (2020) observed that in the nondistributed (p = 1) case,
equations 6.26 and 6.27 do not reduce to standard stochastic gradient de-
scent, and that application of EASGD in this setting has different gener-
alization properties from those of standard SGD when used to train deep
neural networks. In a similar spirit, by construction of suitable Lyapunov
functions, we now show that adding a center-like variable to the adaptive
laws considered in previous sections maintains their stability. This immedi-
ately gives rise to a new class of higher-order adaptive control algorithms.
Interestingly, these algorithms do not seem to admit an equivalent repre-
sentation in terms of a single second-, third-, or fourth-order system for 4,
but must be written as a system of first-order equations.

Remark 29. The algorithms considered in this subsection immediately ex-
tend to the case of cloud-based adaptation for networked robotic systems
(Wensing & Slotine, 2018), where the center variable is allowed to have its
own dynamics as in equation 6.27 rather than simply representing the in-
stantaneous spatial average of the distributed parameters.

We first apply the elastic modification to the Slotine and Li adaptive con-
troller, equation 2.8, for linearly parameterized unknown dynamics f = Ya.
These results extend trivially to the nonfiltered composite algorithm of sec-
tion 6.2. To this end, we define the adaptation law

a=-PY's+k(@-a), (6.28)
a=k@a-a), (6.29)

whose basic stability properties are summarized in the following proposi-
tion.

Proposition 12. Consider the adaptation law, equations 6.28 and 6.29. Then all
trajectories (X, &, a) remain bounded, s € Lo N Lo, (A —a) € L3, 5 — 0and x —
X4.

The proof is given in section A.5.
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We now apply the elastic modification to algorithm 2.12 for nonlinearly
parameterized unknown dynamics satisfying assumption 2. As in equa-
tions 6.28 and 6.29, we define

A= —fPa+k(@-a), (6.30)
a=k(—a). (6.31)

Proposition 13. Consider the adaptation law, equations 6.30 and 6.31. Then all
trajectories (X, &, @) remain bounded, f € LN Lo, (A—2a) € L2, 5 € Lo N Ly,
s — 0and x — xg.

The proof is given in section A.6.

We now consider the higher-order algorithms presented in sections 6.2
and 6.3. In the higher-order setting, there are three clear possibilities for the
elastic modification: coupling to a center variable for the a variable, cou-
pling to a center variable for the ¥ variable, or coupling to center variables in
both 4 and ¥. We prove stability for all three possibilities only in the nonlin-
early parameterized setting described by assumption 2. The results extend
naturally to the higher-order composite algorithm for linearly parameter-
ized systems presented in section 6.2. We begin with the first possibility,

V= —yfoe, (6.32)
A= pN (¥ —2a)+kBN (a—a), (6.33)
a=kBN (a—2a). (6.34)

The basic stability properties of the algorithm, equations 6.32 to 6.34, are
summarized in the following proposition.

Proposition 14. Consider the algorithm, equations 6.32 to 6.34, under assump-
tion 2. Set % <k<1L, N =1+ plext)|? and pu > /32(?1_11;). Then all trajectories
(x, &, ¥, @) remain bounded, f € LN Loy, 5 € L2N Log, (A—¥) € Lo, (4—17) €

Ly, 8 — 0and x — x,.

The proof is given in section A.7. We now consider the second possibility
of adding a center variable in the ¥ variable,

V=—yfa+p@-Y), (6.35)
V=p({@ -9, (6.36)
A= pN (v —a). (6.37)

The basic stability properties of equations 6.35 to 6.37 are summarized in
the following proposition.

Proposition 15. Consider the algorithm, equations 6.35 to 6.37, under assump-

tion 2. Set p <28, N =1+ pulax, t)||?, and pn > VTD]. Then all trajectories
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(x, &, v, V) remain bounded, f € Lo N Lo, s € L2 N Loo, (V—V) € Ly, (V—4) €
Ly, 5 — 0and x — xy.

The proof is given in section A.8. Finally, we consider adding coupling to
center variables in both 4 and v,

V=—yfa+p(@-¥), (6.38)
V=p(¥—-%), (6.39)
a=pN (¥ —4)+kBN (@-a), (6.40)
a=kBN (4—2). (6.41)

The basic stability properties of equations 6.38 to 6.41 are summarized in
the following proposition.

Proposition 16. Consider the algorithm, equations 6.38 to 6.41, under as-

sumption 2. Set p < B(1 —k), 3 <k <1, N =1+ plla(x, t)|? and p > ‘%?}1{)‘

Then all trajectories (x,¥,V, &, a) remain bounded, f €LoNLy,s€LoN Ly,
(V—vV)e Ly, (a—a)e Ly, (V—2a)e Ly, 5s— 0,and x — xy.

The proof is given in section A.9.

We have thus shown that all Euclidean adaptive control algorithms pre-
sented in this article,'? as well as the classic algorithm of Slotine and Li, can
be modified to include feedback coupling to a low-pass filtered version of
the adaptation variables. It is well known that iterate averaging for stochas-
tic optimization algorithms such as stochastic gradient descent can improve
convergence rates via variance reduction (Polyak & Juditsky, 1992). The
elastic modification is similar in spirit but employs feedback rather than
series coupling. This suggests that adding the elastic term may improve ro-
bustness of adaptation algorithms, and we leave a theoretical investigation
of this conjecture for future work.

6.5 Exponential Forgetting Least Squares and Bounded Gain Forget-
ting. We now demonstrate how to apply the techniques of exponential for-
getting and bounded gain forgetting least squares (Slotine & Li, 1991) to
the adaptation algorithms we have developed. These techniques are useful
for estimation of time-varying parameters, as they rapidly discard previ-
ous information used for parameter estimation. Exponential forgetting least
squares is described by a time-dependent learning rate matrix P(t), which,
in the linearly parameterized case f = Y4, takes the form

" Similar results apply for the natural algorithms with additional technical details by
replacing quadratic terms in the Lyapunov functions with Bregman divergences.
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6.42
0 else ( )

{ AP —PYTYP if |P|| <P
where A > 0 is a constant forgetting factor, P is a maximum bound on the
norm, and ||P| is a matrix norm such as the opeator norm. Equation 6.42
implies for the inverse matrix,

dt

d AP 1+ YTY if |P| <P
pi_ { IP|| < Py (6.43)

0 else

In the nonlinearly parameterized case described by assumption 2, we will
replace Y! in equations 6.42 and 6.43 by «(x, t). In the bounded gain forget-
ting technique, A is a time-dependent function,

P

At) = Ao (1 - P—()) , (6.44)

where Ay > 0 sets the forgetting factor when the norm of P is small. It can be
shown that this choice of A(t) ensures that ||P|| < Py, and thus we may drop
the case statement in equations 6.42 and 6.43 (Slotine & Li, 1991). The choice
of A(t) in bounded gain forgetting and the case statement used in equations
6.42 and 6.43 are both employed to prevent unboundedness of the learning
rate matrix.

We focus on algorithms without the elastic modification of section 6.4;
extension to the elastic modification is simple. We also focus on the bounded
gain forgetting technique: proofs for the exponential forgetting least squares
technique are identical, with the addition of an appropriate case statement
in the time derivative of the Lyapunov function. For simplicity, we include
only the time-dependent gain P(t) and set the scalar gains k = y = 1 where
applicable.

We begin with the first-order non-filtered composite, equation 6.13, with
P given by equation 6.42. In this case, the composite algorithm may be im-
plemented via the PI form equations 6.14 to 6.17, where now P = P(t).

Proposition 17. Consider the adaptation algorithm, equation 6.13, with P(t)
given by equation 6.42, A(t) given by equation 6.44, and k = y = 1. Then all tra-
jectories (x, &) remain bounded, f € L3N Lo, 5 € L2 N Log, s — 0, and x — x4.

The proof is given in section A.10.
We can state a similar result for the higher-order nonfiltered composite
with time-dependent P(t) given by equation 6.42,

At (,s/v - % - I"IH) a=—BNPHY (s + f). (6.45)
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which admits a representation as two first-order equations,

v=-POY' (s+f), (6.46)
a=BNP(t)(V—a). (6.47)

Equation 6.46 can be implemented via the PI form ¥ = v + §(x, t) + p(x, t)
where &, p, and V are given by equations 6.14, 6.15, and 6.17, respectively,
withy =k =1.

Proposition 18. Consider the adaptation algorithm, equation 6.45, with P(t)
given by equation 6.42, A(t) given by equation 6.44, N'(t) = 1+ || Y||*> and n >
%. Then all trajectories (x, ¥, &) remain bounded, f eLoNLy,s€LloNly,
s — 0and x — xy.

The proof is given in section A.11.

Remark 30. Because P(t) is uniformly bounded in ¢, it is not necessary to
include P(t) in equation 6.47; by a slight modification of the proof, it is easy
to show that the modified higher-order law,

a+ (ﬁj\/— x) a=—pNPHY (s + f).

is also a stable adaptive law with a suitable choice of gains.

We now consider Tyukin’s first-order algorithm for nonlinearly parameter-
ized systems, equation 2.12, with P = P(t) given by equation 6.42. To do so,
we require an additional assumption:

Assumption 11. For the same function o(x, t) as in assumption 2, there exists a
constant D, such that

|f(x,4,a,t)| > Dala(x,t)al. (6.48)

Together with assumption 2, Assumption 6.48 states that f lies between
two linear functions. Given that the update, equation 6.42, is derived based
on recursive linear least squares considerations, it is unsurprising that such
an assumption is required in the nonlinearly parameterized setting. We are
now in a position to state the following proposition.

Proposition 19. Consider the adaptation algorithm equation 2.12 with P(t) given
by equation 6.42 and A(t) given by equation 6.44 for f satisfying assumptions 2
and 11. Further assume that D1 < 2D§ or that Dy > % Then, all trajectories (x, &)
remain bounded, f €Ly,s€LoNLy,s— 0andx — xy.

The proof is given in section A.12.
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Last, we consider the momentum algorithm for nonlinearly parameter-
ized systems,

i+ (,3/\/ - %f - I"P‘1> A= —BNfP(t)a(x,t), (6.49)

which admits a representation as two first-order equations,

¥ = —FP(t)a(x, t), (6.50)
id=pBNP(t) (¥ —a). (6.51)

Proposition 20. Consider the adaptation algorithm, equation 6.49, with P(t)

given by 6.42, .(t) given by (6.44), N' = 1 + pl|e|? and n > %. Sup-

pose f satisfies assumptions 2 and 11. Further assume that Dy > % Then all tra-
jectories (x, ¥, &) remain bounded, f € Ly,s€LoNLy,s— 0andx — xg4.

The proof is given in section A.13.

Remark 31. As in remark 30, because P(t) is uniformly bounded in f, it
is not necessary to include P(t) in equation 6.51. It is simple to show by
modification of the proof that

i+ (ﬁ/\f— AN/> A= —BNfP(t)a(x,t)

is also a stable adaptive law with a suitable choice of gains.

7 Natural Momentum Algorithms

The Bregman Lagrangian allows for the introduction of non-Euclidean met-
rics. In section 5.2, we took the potential function ¥ to be the Euclidean
norm, ¥ (x) = %||x||2. We now show that taking ¥ to be an arbitrary strictly
convex function leads to a more general class of algorithms that can be seen
as the higher-order variants of those discussed in sections 2.3 and 3. With the
same definitions of @, 7, and B as in section 5.2, but now taking the general
Bregman divergence dy (- || -), the Bregman Lagrangian, equation 5.5 takes

the form
a1,
al—y—|= . 7.
a) v [25 D 7.1)

A

t n a
L= 6'[0 BN (t)dt (ﬂ./\/'dv, (a + ﬂW
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The Euler-Lagrange equations for equation 7.1 lead to the natural adapta-
tion law with momentum

. . -1
it (ﬁj\/ - x) At yBN <v2w (a 4 M)) Y's =0. (7.2)

Above, the Euclidean adaptive law has been modified so that YTs is now
premultiplied by the inverse Hessian of i evaluated at a + ,Bi/\/' As dis-

cussed in section 5.2, this quantity is precisely ¥. The resulting adaptation
law can thus be written in the equivalent form:

v =—y (V2y (@) YT, (7.3)
A= BN (V- a). (7.4)

Equations 7.3 and 7.4 demonstrate that using the Bregman divergence in the
Bregman Lagrangian leads to momentum variants of the natural algorithms
of section 2.3. Taking the 8 — oo limit immediately recovers the first-order
laws discussed in section 2.3. The stability of the above laws for strongly
convex ¥ is stated in the following proposition.

Proposition 21. Consider the higher-order “natural” adaptation law equation
7.2. Assume that  is l—strongly convex so that V*y(-) > 1 1 globally. Take

-1
N =1+ pulY)2and > V(ljﬁ’n )

se€LrNLy,s— 0,and x — xy4.

. Then all trajectories (x, ¥, &) remain bounded,

The proof is given in section A.14. A second, related variant is given by

=—y (v%/f(v)) (7.5)
A= BN (V2y(a) " (VY () — Vi (a). (7.6)

Algorithm 7.5 and 7.6 is equivalent to algorithm 5.6 entirely in the mirrored
domain. Indeed, it may be rewritten as

d o T

va(v) =—rY's,

d

aW(:,) = BN (VY (¥) — Vi (3)),

which shows that Vi/(a) obtains the same values over time as & computed
via algorithm 5.6. The stability of this adaptive law (shown in proposi-
tion 22) implies that the parameters obtained by the momentum algorithm,
equation 5.6, may be transformed via the inverse of the gradient of an
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[-strongly convex and L-smooth function, and the resulting transformed pa-
rameters will still ensure stability and tracking for the closed-loop system.

A modification of equation 7.6 that is driven by ¥ rather than Vy (V) is
given by

¥ =~y (V2y (@) YTs, 7.7)

a=pN (VY (@Qa) (v-a). (7.8)

The properties of these two possible adaptation laws are given in the fol-
lowing proposition.

Proposition 22. Consider the adaptation algorithm, equations 7.5 and 7.6, or the
adaptation algorithm, equations 7.7 and 7.8. Assume that  is I-strongly con-
vex and L-smooth, so that IT < V2> (-) < LI Take N' =1+ p||Y||%, and choose
w > V(i;;l?z in the former case and p > V(i;;’,%)z in the latter. Then all trajectories

(x, ¥, &) remain bounded, s € L, N Lo, s — 0 and x — x4.

The proof is presented in section A.15.

Remark 32. For efficient implementation of the proposed natural momen-
tum algorithms, as well as for their first-order equivalents, ¢ should be

chosen so that [V2y(-)] " is efficiently computable and ideally sparse. Al-
ternatively, if the inverse function of the gradient (V1) (-) is efficiently
computable, Vi/(a) or Vi (¥) may be updated directly and subsequently in-
verted to arrive at the parameter values. Discretization of these algorithms
is a subtle issue, and discretization of the 4 and ¥ dynamics directly re-
sults in a natural gradient-like update (Amari, 1998), while discretization of
the %Vl/x(é) and %Vx//(‘?) dynamics leads to a mirror descent-like update
(Beck & Teboulle, 2003; Nemirovski & Yudin, 1983); these discrete-time al-
gorithms have the same continuous-time limit (Krichene, Bayen, & Bartlett,
2015).

The above natural adaptation laws with momentum may be generalized
to composite algorithms, as well as to algorithms for nonlinearly param-
eterized adaptive control, by replacing Euclidean norms by Bregman di-
vergences where appropriate in the proofs of the corresponding Euclidean
algorithms (see, e.g., the proofs of propositions 21 and 22). Rather than de-
rive this for each algorithm, we now show how the general results on ve-
locity gradient algorithms with momentum (see propositions 6 and 7) can
be extended to the non-Euclidean setting. We start with the case of a local
functional, which requires the modification of assumption 9 to an equiva-
lent non-Euclidean version.

Assumption 12. There exists a time-dependent signal N(t) and nonnegative
scalar values B > 0, u > 0 such that the time derivative of the goal functional
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640 N. Boffi and J.-J. Slotine

evaluated at the true parameters, Q(x, a, t), satisfies the following inequality:

Ox, a t) — %"N(t)ua —)r+@-9" (1 + [v%/f(o)]‘l) ViO(x, 4, 1)
< —p(Q). (7.9)

In equation 7.9, p(-) is positive definite, continuous in Q, and satisfies p(0) = 0.

With assumption 12 in hand, we can state the following non-Euclidean
equivalent of proposition 6. We focus on the variant equation 7.2, as the
other possibilities are similar.

Proposition 23. Consider the algorithm

. A -1
i+ (,s/v - ﬁ/f) A+ ypN [vzw (é + ;)} VaQ(x. 1) =0

or its equivalent first-order form,

O =~y [VPY®)] " VaO(x. a. 1),
BN (¥ - 4),

a

and assume Q satisfies assumptions 4, 6, and 12. Then all solutions (x(t), ¥(t),
a(t)) remain bounded, (4 — ¥) € Ly, and lim;_, o, Q(x(t); ) = 0.

Proof. Consider the Lyapunov-like function,
1 . 1 . 1. .
V=0(x,t)+ ;dw(a 19)+ 2 a-v) (@a-v). (7.10)

Equation 7.10 implies that, with A'(t) = 1+ uN(t),

Bu

V= Qx4 1) — aTVa0(x, 4, 1) — fua — ol = Nl - o1

+@a-o" (1 + [v2¢f(o)]‘1) ViO(x, 4, 1),
<Qxat)— éllé -V - ﬂ—“N(t)na —9?
14 14

+@a-9" (1 + [v%/f(o)]‘l) ViO(x, 4, 1),

< Q) - fna ) (7.11)
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The first line to the second follows by convexity of Q(x, 4, t) in its second
argument, while the second line to the third follows by assumption 12. The
remainder of the proof is identical to Proposition 6. O

For the integral variant, we require a non-Euclidean version of assumption
10.

Assumption 13. R(x, a,t) > 0 for all x, &, and t, and is uniformly continuous
in t for bounded x and a. V3R(x, &, t) is locally bounded in x and a uniformly in
t. Furthermore, there exists a time-dependent signal N(t) and nonnegative scalar
values B > 0, u > 0 such that

R(x,a,t) — R(x, 4, t) — ﬂ—MN(t)Mé —9)?
Y

+@a-v" (1 +[V2y (o)]‘l) ViR(x, 4, 1) < —kR(x, 4, 1)

for some constant k > 0.

With assumption 13, we can state the following proposition.

Proposition 24. Consider the algorithm

. 1 -1
a+ (,8/\/’— //:/[> A+ypN {vzw (a + ;\/ﬂ VaR(x, a,t) =0,

or its equivalent first-order form,

O = —y [V2y ()] VaR(x, 4, t),
a=pN(¥-a),

along with assumptions 6 and 13. Let T denote the maximal interval of existence of
x(t). Then ¥ and a remain bounded for t € [0, Ty), (4 — ¥) € L, over this interval,

and fOT" R(x(t"), a(t"), t')dt’ < oo. Furthermore, for any bounded solution x, these
conclusions hold for all t and R(x(t), a(t), t) — 0.

Proof. Consider the Lyapunov-like function,

o>

V= ldv,(a ) + € a—9)"@E—v). (7.12)
14 2y

Equation 7.12 implies that, with N'(f) = 1 + uN(t),
V= —a"ViR(e 4. 0) — Zja— o2 = PEN@1a - o
12 14

+@E-9T (I + [vzw(v)]‘l) ViR(x, 4, 1),
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B ”2 Bu

< R(x,a,t) = R(x,4,t) — =[la—¥|* = =—N(t)la — ||
Y Y

+@a-o" (1 + [vzw(o)]‘l) VaR(x, &, 1),
< —kR(x, a,t) — gna — 92 (7.13)

The first line to the second follows by convexity of R(x, &, f) in its second
argument, while the second to the third follows by assumption 13. The re-
mainder of the proof is identical to proposition 7. 0

The general methodology captured by the proofs of propositions 23 and 24,
in combination with the results of section 6.3, may be exploited to derive
non-Euclidean variants of our nonfiltered composite algorithm and our mo-
mentum algorithm for nonlinearly parameterized adaptive control. Note
that the strong convexity and smoothness requirements of propositions 21
and 22, in combination with a suitable choice of N(t), are one way to satisfy
the requirements of assumptions 12 and 13.

Remark 33. Our implicit regularization results in section 3 also extend to
the higher-order setting captured by algorithm 7.2. The assumption that
a — a,, implies 4 — 0. As noted in section 5.2, v = a + ﬂi/\/’ and we thus
conclude that under this assumption ¥ — a.. Because ¥ in equation 7.3 is

identical to algorithm 3.2, the result follows. A formal statement of this fact
is provided in section B.1.

8 Simulations

In this section, we perform several numerical experiments demonstrating
the validity of our theory and consider a number of applications of our
non-Euclidean adaptive laws.

8.1 Convergence and Implicit Regularization of a Momentum Algo-
rithm for Nonlinearly Parameterized Systems. We first empirically verify
the global convergence and implicit regularization of our momentum algo-
rithm for nonlinearly parameterized systems, equation 6.23. In particular,
we consider a second-order system,

X1 = x2,
Xp = U — f(X, a, t),

with an unknown system dynamics of the form

fxat)=o (tanh (Vx)* a) . 8.1)
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Equation 8.1 represents a three-layer neural network with input layer x,
hidden-layer weights V, hidden-layer nonlinearity tanh(-), hidden-layer
weights a, and output nonlinearity o (x) = ¢'*. The system model, equation
8.1, can clearly be seen to satisfy assumption 2 with a(x) = tanh(Vx).!! The
PI form of algorithm 6.23 is given by

V() =v+&(x, 1)+ p(x, ), (8.2)
&(x, t) = —ys(x, t) tanh(Vx), (8.3)
p(x,t) = y[ tanh (Vx) x, — log (cosh (Vx)) @ V>
+ (A% — x2,4(t)) tanh (Vx) |, (8.4)
v =y (¥24(t) — A (x2 — x2,4(t)) — ns) tanh(Vx)
+ yx; tanh(Vx) o Vi @ Vo, (8.5)
a = B (1+ pl tanh(Vx)|?) (v — a), (8.6)

where o and @ denote elementwise multiplication and division, respec-
tively, where V; is the ith column of V and ¥ is obtained from V1 (¥) by
inverting V. For the squared p norm ¢ (-) = %II . IIfﬂ the inverse function
can be analytically computed as

(Vo) () = liylly "Iyl sign(y), 8.7)

where % + % =1, | - | denotes elementwise absolute value and sign(-) de-

notes elementwise sign (Gentile, 2003). We consider the [y, I, I4, I, and 1o
norms for /. To approximate the ; norm, equation 8.7 is used with p = 1.1.
All other p norms can be used directly.

In all simulations we take A = .5 in the definition of s (see equation 2.4)
and n = .5 in the control input (see equation 2.5). For the adaptation hyper-
parameters, we choose y = 1.5 for the I, I3, and Is norms. We take y = 50
for the [; norm and y = .5 for the [;g norm.'> In all cases, 8 = 1 and p = 2%
We set dim(a) = dim(a) = 500 and randomly initialize & and ¥ around zero
from a normal distribution with standard deviation 1073. The true param-
eter vector a is drawn from a normal distribution with mean zero and

standard deviation 7.5. The matrix V is set to have normally distributed

" While the exponential is not globally Lipschitz continuous, it is locally.

These values of y were chosen to ensure good control performance without exces-
sively high control inputs or fast parameter adaptation. In particular, adaptation occurs
very slowly with /1 regularization, as small parameters are quickly eliminated to promote
sparsity. A high adaptation gain was needed to ensure adaptation on a similar timescale
to the other norms.
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Figure 1: Tracking error and parameter trajectories. (A) Trajectory tracking er-
ror. All algorithms result in convergence x — X;, though transient performance
differs between the algorithms. (B-F) Parameter trajectories for 100/500 of the
total parameters. Each algorithm results in remarkably different parameter tra-
jectories and final values &Y.

elements with standard deviation ‘/17 The state vector is initialized such
dim a

that x(0) = x4(0). The desired trajectory is taken to be

x4(t) = sin (%t + cos <%t>) .

The tracking error for each choice of ¥ along with a baseline comparison
to fixed a(t) = a(0) is shown in Figure 1A. Figures 1B-1F show trajectories
for 100 out of the 500 parameters. The timescale on each axis is set to show
the trajectories approximately until the parameters converge for the given
algorithm. Each case results in remarkably different dynamics and resulting
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Figure 2: Parameter histograms. (A) True parameters a. (B) Parameter vector
found by the algorithm with ¢ () = % [ - 2. The resulting solution is extremely
sparse and has a few parameters with large magnitude, indicative of implicit /4
regularization. (C) Parameter vector found by the standard Euclidean algorithm
with ¥ (-) = 1| - 3. The resulting parameter vector looks approximately gaus-
sian distributed, indicating I, regularization. (C-F) Parameter vectors found
by ¥(-) =3l - ||f, with p = 4, 6, and 10, respectively. The transition clearly indi-
cates a trend toward /,.-norm regularization, with two bimodal peaks forming
around £1. The I, norm of the parameter vector decreases with increasing p.

converged parameter vectors a%. The tracking performance is good for each
algorithm.

Further insight can be gained into the structure of the parameter vector
4%, found by each adaptation algorithm by consideration of the histograms
(rug plots shown on x-axis) for a at the end of the simulation in Figures 2A to
2F. Figure 2A shows the true parameter vector. The choice of ¥ (-) = % Il - ||%1
in Figure 2B leads to a sparse solution with most of the weight placed on a
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Figure 3: Function approximation error and control inputs. (A) The function
approximation error fz(x(t), a(t)). All algorithms drive the error to zero. (B-
F) Comparison of the control input u” (t) to the “ideal” control u(t) = %4(t) +
f(xa(t), a). All algorithms converge to the ideal control, though at a different
rate. The control magnitude is kept to a reasonable level in every case.

few parameters. This is consistent with /; regularized solutions found by the
LASSO algorithm (Tibshirani, 1996). The inset displays a closer view around
zero. The choice of ¥ (-) = %II . II% in Figure 2C (Euclidean adaptation law)

leads to a parameter vector ééol"”% # a that is roughly gaussian distributed.
This distribution highlights the implicit [, regularization of standard adap-
tation laws. The progression from v (-) = %H . ||ﬁ toy () = %H . ||%0 displays
a trend toward approximate /-norm regularization: the distribution of pa-
rameters is pushed to be bimodal and peaked around +1, and the /., norm
of d,, decreases as p is increased.

Figure 3A shows the function approximation error F2(x(t), a(t), a) for
each algorithm along with a reference value for fixed a(t) = a(0). Each

220z Atenuer g uo Jasn saleiqr LIN Aq jpd-09€1L0™ & 099U/091688 L/06S/E/EE/PA-BI0IE/00BU/NPS W IORIIP//:dRY WO} papeojumog



Implicit Regularization and Momentum in Adaptive Control 647

algorithm, as expected by our theory and seen by the low tracking error
in Figure 1A, pushes f? to zero despite the different forms of regulariza-
tion imposed on the parameter vectors. Figures 3B to 3F show the con-
trol input as a function of time along with the unique “ideal” control law
u(t) = %4 + f(xq(t), a(t)) valid when x(0) = x4(0). All control inputs can be
seen to converge to the ideal law, though the rate of convergence depends
on the choice of algorithm. The control input is of reasonable magnitude
throughout adaptation for each algorithm.

8.2 Learning to Control with Primitives. We now demonstrate that the
mirror descent-like laws of section 3 can be used to learn convex combina-
tions of control primitives. Our approach is analogous to the use of mul-
tiplicative weight updates in machine learning and respects the natural /;
geometry over the probability simplex.

As a model problem for this setting, we consider the second-order
system

X1 = X2,

X, = u — tanh (Vx)T a,

with a € R? a fixed vector of unknown parameters and V € R"*? a random
matrix with V;; ~ N (0, p%) To define our control primitives, we consider
a distribution over tasks specified by random desired trajectories

xJ)(t) = Msin(A;t + B; cos(Cit)) + D,

with D; =2i(=1) x M, A; ~ Unif(0,57), B;~ Unif(0,3), and C;~

Unif(0, 57). The shift D; ensures that the desired trajectories occupy

nonoverlapping regions of state space. We then learn primitives {i;}Y | to
NN

track ixl(;)(t)}_ . where each u; is given by equation 2.5 with parameter
. 1=

estimates a(). The parameter estimates are found via the Slotine and Li
adaptation law,

50 —y tanh(Vx)Ts,

which is allowed to run until the parameter estimates converge. We set
p=15, N=300,M=0.1, y =5, and n = A = 0.5. Each vector of parame-
ter estimates 4" is initialized randomly, 47 (0) ~ A (0, 0?) with o3 = 1072
The state is initialized randomly for each task, xo ~ A (0, o) with oy = 5.
The true parameters a are drawn randomly, a ~ A (0, 67) with o, = 2.
With control primitives u; capable of tracking trajectories xfi’) in hand,
we consider tracking a desired trajectory x,;(t) given piecewise by the
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previously drawn random trajectories. Concretely, we fix a time horizon
T and a number of tasks k, and set

xa(t) =Xty if oy <t <,

withl =1, ...,k i drawn uniformly fromi=1,...,N,ty =0,and t;, = I%
To leverage the learned control primitives, we use the input

N
U= Zﬂiui =up.
i=1

Above, u € RN is a row vector with components u;. We require that Bi>0
for all i and that 3", A; = 1. In our experiments, we fix T = 1000 and set
k=5.

It is well known in the online convex optimization community that mir-
ror descent with respect to the entropy ¥ (B) = 3_; filog f; can improve
the dimension dependence of convergence rates in comparison to projected
gradient descent when optimizing over the simplex (Hazan, 2016). Here we
demonstrate that the same phenomenon appears in adaptive control. We
consider two adaptation laws,

B=—yu's,
d P T
VY (B) = —yu's,
with projection of B onto the simplex.!® In both cases, we initialize f; =
and set y = .25.
Our results are shown in Figure 4. In Figure 4A, we show convergence of
s for both adaptive laws. s jumps every 200 units of time as the task changes
discretely. While both converge, adaptation with respect to the entropy con-
verges significantly faster and minimizes s to lower values. This effect is
more prominently displayed in Figure 4B, which shows the convergence of
s on a logarithmic scale. Figures 4C and 4D show the parameter trajectories
for the mirror descent and Euclidean laws, respectively. The mirror descent

law displays trajectories in which fewer parameters stray from zero. Those
that do stray an order of magnitude farther from zero than the Euclidean

" We use the 1soda integrator in scipy.integrate.ode. For the Euclidean adaptation
law, we zero any components if they become negative and divide by the one norm of the
parameter vector. For the non-Euclidean adaptation law, we integrate the mirror descent-
like dynamics directly and update Vi (f}) via 1soda. After each time step, we compute B
by inverting the gradient of ¥, which ensures that each component is positive. We then
project by dividing by the one norm of the parameter vector.
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Figure 4: Learning to control with primitives. (A) s on a linear scale for the
Euclidean and mirror descent-like adaptation laws. Mirror descent converges
faster for all tasks. (B) s on a logarithmic scale for the Euclidean and mirror
descent-like adaptation laws. Mirror descent converges faster and minimizes
s further for all tasks. (C, D) Parameter trajectories for the mirror descent and
Euclidean adaptation laws. Mirror descent leads to smoother trajectories, with
fewer parameters straying from 0.

law. The discrete changes of the desired trajectory are more visible in the
parameter trajectories for the mirror-descent law.

8.3 Dynamics Prediction for Hamiltonian Systems. We now ex-
perimentally demonstrate the predictions of the theoretical calculations
performed in section 4.2. Similar to Chen et al. (2020), consider the Hamilto-
nian for three point masses interacting in d = 2 dimensions via Newtonian
gravitation (in units such that the gravitational constant G = 1),

1 1 1 miniy mymg
H=—Ipil* + =—Ilp2l* + =—lpsllI* — -
2my PYU T gy P2 T o P T Tl e — gl
_ s (8.8)
lq2 — qsll

with m; the mass of body 7, p; the momentum of body i, and q; the position

of body i. Denote by q the vector (q7, q1. qg)T with similar notation for p.
It is well known that physical systems can often be described by a few
common mechanisms (see, e.g., Feynman, Leighton, & Sands, 1977, sec.
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12.7). As such, we consider estimating the Hamiltonian, equation 8.8, di-
rectly with a physically motivated overparameterized basis,

#(a) = Y(q. p)a,

to form the dynamics predictor equations 4.3 and 4.4. We define Y(q. p)
to be a row vector of basis functions consisting of quadratics and quartics
in p; and q;, as well as 1/r;;, 1/r,.2j, and 1/7’?]. potentials with r;; = ||q; — gl
for i # j, comprising 21 total basis functions. These choices represent stan-
dard expressions for kinetic energy, spring potentials, central force poten-
tials, and higher-order terms; any basis functions can be chosen motivated
by knowledge of the physical system at hand.

We setk =5, y = 3.5, and choose ¥ (-) = %H . ||%05 to identify basis func-
tions relevant to the observed trajectory. We fix m; = 1 for all i and initial-
ize q and p to lock the system in an oscillatory mode. Past t = 10, we set
k =y =0 and run the predictor open-loop, as well as perform shrinkage
and set all coefficients with magnitude below 10~2 formally equal to zero,
leaving 13 remaining terms.

Results are shown in Figure 5. Figure 5A displays convergence of X to
zero with adaptation (solid) and demonstrates that adaptation is neces-
sary for convergence (dashed). When switching to the open-loop predictor
past t = 10, the system without adaptation sustains large errors, while the
learned predictor maintains good performance. The inset displays a slow
drift of the predictor trajectory X(t) from the true trajectory x(t) when run
open-loop. Figure 5B displays the state trajectory x (dotted), convergence of
x with adaptation (solid) to x, and the incorrect behavior of X without adap-
tation (dashed). The open-loop unlearned predictor tends to a fixed point,
while the open-loop learned predictor maintains the correct oscillatory be-
havior. Figures 5C and 5D show parameter trajectories and asymptotically
converged parameters, respectively. Together, the two panes demonstrate
that the implicit bias of the algorithm ensures convergence to a sparse esti-
mate of the system Hamiltonian.

8.4 Sparse Identification of Chemical Reaction Networks. We now
demonstrate an example of regularized adaptive dynamics prediction for
an unknown chemical reaction network. Consider a set of chemical reac-
tions with N distinct chemical species. Under the continuum hypothesis
and the well-mixed assumption, mass-action kinetics dictates that the sys-
tem dynamics can be described exactly in a monomial basis (Liu, Slotine, &
Barabasi, 2013),

aj

09 = kTl

x = I'v(x),

220z Atenuer g uo Jasn salteiqr LIN Aq jpd-09€ L0 & 099U/091688 L/06S/E/EE/PA-aI0IE/00BU/NPS W I0RIIP//:d]RY WO} papeojumog



Implicit Regularization and Momentum in Adaptive Control 651

B
Y BN
; @*@«*W’?‘%@ é‘ ;
ol
0 5 T_10 15 20
ime
D
3 4
]
[}
o 2 E10
] o
£ 1 2
5 2 s
£
-t 0 5 10 15 20 = O0?0I 0.1 0.2l 0.3 I0.4 0‘.5
Time Parameter value

Figure 5: Three-body system. (A) Observer error X = X — x for the adaptive dy-
namics predictor, equations 4.3 and 4.4, with adaptation (solid) and without
adaptation (dashed). Inset shows the asymptotic behavior of the open-loop pre-
dictor after learning. (B) Convergence of X with adaptation (solid) to x (dot-
ted) for the adaptive dynamics predictor. X without adaptation (dashed) does
not converge to the true behavior. When run open-loop, the learned predictor
maintains the correct oscillatory behavior, while the unlearned open-loop pre-
dictor incorrectly tends to a fixed point. (C) Parameter trajectories for the adap-
tive dynamics predictor. Many parameters stay at or near zero, as predicted by
proposition 1. (D) Histogram of final parameter values learned by the adaptive
dynamics predictor.

where x; is the concentration of chemical species i, T is the stoichiometric
matrix, and the a;; are stoichiometric coefficients. Under the assumption
that the full state of the network is measured, consider the adaptive dy-
namics predictor,

% =TH&) +k(x—%), (8.9)

—Vy (T) = -y & —x)p%)", (8.10)

with y > 0a positive learning rate, k > 0 an observer gain, ¥ a strongly con-
vex function, I" an estimate of the stoichiometric matrix, and #(X) a vector of
monomial basis functions representing available knowledge of the system.
Here we consider a four-species chemical reaction network (see Liu et al.,
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2013, supplementary information),

X1 = —kix1x2,

: 2
Xy = —k1X1X2 — k2X2X3,
J.C3 = —k1X1X2 — 2k23C2X§,
. 2

X4 = koxox3,

with corresponding adaptive dynamics predictor equations 8.9 and 8.10.
We set ¥ to be a vector of all monomials up to degree 3 comprising a to-

tal of 140 candidate basis functions, and we set y(I') = 1 | vec (T ”im to
identify a sparse, parsimonious model consistent with the data. Searching
over sparse models ensures that our learned predictor selects only a few
relevant terms in the approximate system dynamics. We fix k = 1.5 and
y = 0.25for t < 10. As in section 8.3, past t = 10, we set k = y = 0 and run
the predictor open-loop. We also perform shrinkage and set all coefficients
with magnitude below 102 formally equal to zero, leaving 19 remaining
parameters.

Results are shown in Figure 6. In Figure 6A, we show convergence of the
observer error to zero with adaptation (solid) and divergence away from
zero without adaptation (dashed), demonstrating that adaptation is neces-
sary for effective prediction. The inset displays a closer look at the asymp-
totic behavior of the open-loop dynamics predictor after shrinkage, which
shows that the fixed point of the system is correctly learned. Figure 6B
shows convergence of X (solid) to x (dashed). Figure 6C displays parameter
trajectories as a function of time. Many parameters stay at or near zero as
predicted by proposition 1. The inset displays a finer-grained view around
zero of the parameter trajectories. Figure 6D shows a histogram of the final
parameter values learned by the adaptive dynamics predictor, demonstrat-
ing that only a few relevant terms are identified.

9 Conclusion and Future Directions

Itis somewhat unusual in nonlinear control to have a choice between a large
variety of algorithms that can all be proven to globally converge. Neverthe-
less, in this article, we have presented a suite of new globally convergent
adaptive control algorithms. The algorithms combine the velocity gradi-
ent methodology (Fradkov, 1980; Fradkov et al., 1999) with the Bregman
Lagrangian (Betancourt et al., 2018; Wibisono et al., 2016) to systematically
generate velocity gradient algorithms with momentum. Based on analogies
between isotonic regression (Goel & Klivans, 2017; Goel et al., 2018; Kakade
et al., 2011) and algorithms for nonlinearly parameterized adaptive control
(Tyukin, 2011; Tyukin et al., 2007), we extended our higher-order velocity
gradient algorithms to the nonlinearly parameterized setting of generalized
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Figure 6: Chemical reaction network. (A) Observer error X = X — x for the adap-
tive dynamics predictor, equations 8.9 and 8.10, with adaptation (solid) and
without adaptation (dashed). The predictor without adaptation diverges im-
mediately. Past t = 10, shrinkage is performed, all coefficients with magnitude
below 1072 are set to zero, and the predictor is run open-loop with k =y = 0.
(B) Convergence of x to x for the adaptive dynamics predictor. The predic-
tor accurately learns the fixed point of the system and stays stationary when
run open-loop. (C) Parameter trajectories for the adaptive dynamics predictor.
Many parameters stay at or near zero, as predicted by proposition 1. (D) His-
togram of final parameter values learned by the adaptive dynamics predictor.
Only a few relevant terms are identified.

linear models. Using a similar parallel to distributed stochastic gradient de-
scent algorithms (Boffi & Slotine, 2020; Zhang et al., 2014), we developed a
stable modification of all of our algorithms. We subsequently fused our de-
velopments with time-dependent learning rates based on the bounded gain
forgetting formalism (Slotine & Li, 1991).

By consideration of the non-Euclidean Bregman Lagrangian, we derived
natural gradient (Amari, 1998) and mirror descent (Beck & Teboulle, 2003;
Nemirovski & Yudin, 1983)-like algorithms with momentum. Taking the
infinite friction limit of these algorithms recovers a recent algorithm for
adaptive robot control (Lee et al., 2018) that respects physical Riemannian
constraints on the parameters throughout adaptation. By extending recent
results on the implicit bias of optimization algorithms in machine learn-
ing (Azizan & Hassibi, 2019; Azizan et al., 2019) to the continuous-time
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setting, we proved that these mirror descent-like algorithms in the first-
order, second-order, and nonlinearly parameterized settings impose im-
plicit regularization on the parameter vectors found by adaptive control.

Throughout the article, for simplicity of exposition, we focused on the
nth order system, equation 2.1. As discussed in remark 2, our results extend
to more general systems that have an error model similar to equation 2.6, in
the sense that the proof technique summarized by lemma 2 is roughly pre-
served. The nth order system structure makes the employed proportional-
integral forms simple, as they can be written down explicitly as in equations
6.14 to 6.17. As summarized in remark 23, a PDE needs to be solved in the
general case, and solutions to this PDE may not exist. Solution of the PDE
canbe avoided by the dynamic scaling technique of Karagiannis et al. (2009)
or a similar embedding technique of Tyukin (2011).

A significant outstanding question is whether there is an empirical ad-
vantage to using our proposed momentum algorithms. In optimization, ac-
celerated algorithms generated by the Bregman Lagrangian provide faster
convergence when properly discretized, and it is thus likely that a careful
discretization is necessary to obtain optimal performance of our momen-
tum algorithms. However, we are not aware of any available convergence
rates in adaptive control, and it would be necessary to prove such rates to
understand analytically if there is an advantage. Similar higher-order algo-
rithms have appeared in the literature for linear systems of relative degree
greater than one (Fradkov et al., 1999; Morse, 1992), where first-order algo-
rithms cannot control the system. Here we have focused on feedback lin-
earizable systems, and perhaps there exist classes of nonlinear systems that
cannot be adaptively controlled with a first-order algorithm but can with a
momentum algorithm. We leave the investigation of these interesting and
important questions to future work.

Appendix A: Omitted Proofs and Required Results

Barbalat’s lemma is a classical technique in adaptive control theory, which
is used in conjuction with a Lyapunov-like analysis to prove convergence
of a given signal.

Lemma 1. (Barbalat’s Lemma (Slotine & Li, 1991)). Assume that lim;_, o fot
lx(t)ldt < oo. If x(t) is uniformly continuous, then lim;_, o, x(t) = 0.

Note that a sufficient condition for uniform continuity of x(t) is for x(t) to
be bounded. Hence, for any signal x(t) € £, N Lo with X(t) € Lo, We can
apply lemma 1 to the signal x*(t) and conclude that x(t) — 0.

Lemma 2. Assume that fot FA(x(t'), a(t'), a, t')dt' < oo where [0, T) is the max-
imal interval of existence of x(t). Further assume that a(t) is bounded over [0, T),
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that both bounds are independent of T, and that f is locally bounded in x and a
uniformly int. Then d € L, f € L2,5 € L2 N Lo, 5 — 0and x — xg.

Proof. By equation 2.6, we can write explicitly
t ~
s(t) = / e f(x(1), a(t), a, T)dt. (A1)
0

By the Cauchy-Schwarz inequality,

A(T) < < /0 Tez'ﬂf)df) ( /0 ! f%)df)
% ( /0 ! fz(r)dr> (1=

([ o)

so that sup, c[0.T) Is(t)| < oo. Observe that this bound is independent of T.
It immediately follows that sup, c[0.T) Ix(#)]| < oo and that this bound is in-
dependent of T. This observation contradicts that [0, T') is the maximal in-
terval of existence of x(t) for any T, and thus x(f) must exist for all ¢. This
shows thatx € L, s € L4, and that the bounds on f and 4 can be extended
for all t. From this we conclude f € L, and a € L. Similarly, Parseval’s
theorem applied to the low-pass filter, equation A.1, shows thats € £,. Be-
cause x € L, and 4 € L, and because f is locally bounded in x and a uni-
formlyint, f € L. By equation2.6,s € L, and hence by Barbalat’s lemma
(Lemma 1), s — 0. By definition of s, we then conclude that x — x;. U

IA

IA

A.1 Proof of Proposition 8.

Proof. Consider the Lyapunov-like function,

which has time derivative
. K ~
V=—ps* - —f.
Y

This immediately shows s € Lo, and a € L. Because s € L, x € L by
definition of the sliding variable (Slotine & Li, 1991). Integrating V shows
that s € £ and f € £,. The result follows by application of lemma 2 or di-
rectly by Barbalat’s lemma (lemma 1). O
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A.2 Proof of Proposition 9.

Proof. Consider the Lyapunov function,

1 1
V= Esz t5 (1> + 11a — ¥11%),

which has time derivative

V:—nsz—l—sf—F%[ (—kf—ys) Y +@—-9" (BN (¥ —a) + ysYT

+ 1 fYT)]
_ 2 kKm B o Bl TyT
=-ns"——f"——lla-Y| _7” —¥VIYIP+2s(a—-9"Y
Y Y
+2§f(é—€/)TYT
B .. . 2 lgﬂ

K ~
< -0’ ——f - ;Ila —* — = la—VlIYI*+2lslla - 91IYI]

K ~
2—[flla =¥yl
, f

2
< —ens’ —62— (v (1 —e)nls| — IIa—VIIIIYH)
\/ 61)

2
(1—e) = « Y A s B\ .
— (=51 L a—eiiyn ) - Zla—el?,
14 YV (A —-e) 14

where(0 < ¢; < 1and 0 < e < 1arearbitrary and where we have taken 1 =
v
B

negative semidefinite for u > % (% + %) Hence, vV € £, 4 € L, and s €

L. Because s € L, we automatically have x € L, which shows that s €
L by local boundedness of f in xand a uniformly in t. Integrating V shows
that s € £, and hence by Barbalat’s lemma (lemma 1) s — 0 and x — x;. O

((1 o T Tay ) ) Because €; and ¢, are arbitrary, this shows that Vis

A.3 Proof of Proposition 10.

Proof. Defining the vector ¥/ = Y, ®!¢(x;), equation 6.22 implies the it-
eration on v,

Y =9t - :1 i(f(wt,x, — fO)) (). (A2)
i=1

220z Atenuer g uo Jasn salteiqr LIN Aq jpd-09€ L0 & 099U/091688 L/06S/E/EE/PA-aI0IE/00BU/NPS W I0RIIP//:d]RY WO} papeojumog



Implicit Regularization and Momentum in Adaptive Control 657

Equation A.2 shows that at time ¢,

== Z Z 7l 6xi), (A3)
i=1 j=1

where f; /in equation A.3 is the function approximation error on the ith in-

put example at iteration j, f/ = fl = FW,x) — f(x).

Now, assuming that for the adaptive control problem f(x,a,t)=
u(a’(x, t)a), setting P = A1, 4(0) = 0, and integrating both sides of equation
2.12, we see that at time t,

=2 / Fx(t), a(t), a, t)eu(x(t), t')dt . (A4)

The current function approximation f at time t for the parameters in equa-
tion A.4 can then be written as

t
ft) = u(a"(x, t)at)) = u </0 —f(x(t), a(t"), a, t' ) (x(t), t)o(x(t'), H)dﬂ)

t
—u (/O (K (¢, t)dt ) , (A.5)

where we have defined c(t') = —Af ),a(t’),a,t’) and K(t,t') =
af(x(t), t)a(x(t'), #'). Similarly, in the case of the Alphatron, the current
approximation at iteration t is given by

<Z LR (x, X ) , (A.6)

where we have noted that with @ = 0 for all i, @} = 23;11 27 O

mJi

A.4 Proof of Proposition 11.

Proof. Consider the Lyapunov function candidate,

1 1
V= — %] 7A_A2’
2y vl +2y lla—¥i
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which has time derivative

V= L (e 4 Lo (o -+ )

~ (") F - EATla = 912 42— )"

P Ba oo By

<-5 - la-v 12— 91 leel® + 2el] 1 — 911 f1
1
2
€ A A 1—€ - Dy ..
<——f"-Bla-¥| - - allla—-vl]) .
< le Bll l (,/ D, |f] V1= el l
where 0 < € < 1lisarbitrary and we have chosen u = (1”2 75+ Because € is ar-

bitrary, this shows that ¥ and a remain bounded for p > ”T?l over the max-

imal interval of existence of x(t). By integrating V, we see that f € L, over
this same interval. Note that the bounds are independent of the length of
the interval. Application of lemma 2 completes the proof. O

A.5 Proof of Proposition 12.

Proof. The Lyapunov-like function,
v=1 (@ 'a+aPla+s?),
2
has time derivative
V=-p?—k(@a—a)'P'l@-—a).

This shows that s, 4, and a remain bounded. The remaining conclusions
of the proposition are immediately drawn by integrating V and applying
Barbalat’s lemma (lemma 1). O

A.6 Proof of Proposition 13.

Proof. The Lyapunov-like function,
v=1 (P 'a+a'pa)
> ;
has time derivative

. 1 -
V<-——f—-k(a—a)'Pl@a-a.
Dy
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This shows that & and a remain bounded over the maximal interval of exis-
tence of x(f). Integration of V shows f € £, and (4 —a) € £, over the same
interval. Note that the bounds are independent of the length of the interval.
Application of lemma 2 completes the proof. g
A.7 Proof of Proposition 14.
Proof. The Lyapunov-like function,
V= o (191 + a — 91 + 3 - alP)
2y '

has time derivative

V= @) f - Enia- v+ Laa- o @-a) +2f -9

—2kﬁf\/||a _apr+ P (a—a) (v—a)
Y Y
P OBN e e BN o Zis o
<L = =Rl — 91 = S =17 (k= 1) + 2l — 9l
ol
_7_£ _ '\_AZ_ﬂi _ a_ o2 2
<L - =R la= 9= EE A =B la = vIPal
N o
L ha -l Gk - 1)+ 2 fila ¥l
Y
~ 2
e (ViTAf [P, . I
<= < T =2 ta sl ) - - -bla—v)
1%

—g(%— Dlla—al?,

where 0 < € <1 is arbitrary and we have chosen u = %. From
above, we conclude ¥, 4, and a remain bounded over the maximal inter-
val of existence of x(t) for % < k < 1. By integrating V, we see that f € Lo,
(a—12a) € Ly,and (a — ¥) € L, over the same interval. Note that the bounds
are independent of the length of the interval. Application of lemma 2 com-
pletes the proof. g

A.8 Proof of Proposition 15.

Proof. The Lyapunov-like function,

1, ~ .
V= ” (912 + V1% + la = ¥11)
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has time derivative

. TNE L mFia o« N . o
V:—(aToc)f—i—Zf(a—v)Tot—7||a—v||2—;||v—v||2

~La-vw-v
Y
2
2 A B 0o\, . B .
= -5 +2Ifla -Vl - (— ——Jla=9F — —a— 9[>
1 y 2y 4
P ia =2
——v—=v
2yn [

2
€ o 1—e - Dy . P s o2

< _ I _ _ _ —_

= le (d D, | f1 V1= IV~ alllel 2y||V v

1 .
— 55 @B—p) IV - a|
Y

yDy
- . pi—o:
we conclude ¥, v, and a remain bounded over the maximal interval of ex-

istence of x(t) for p < 2. Integrating V shows that feLly (v—V)eLly,
and (v — a) € £, over the same interval. Note that the bounds are indepen-
dent of the length of the interval. Application of lemma 2 completes the
proof. O

where 0 < € < 1is arbitrary and we have chosen u = From above,

A.9 Proof of Proposition 16.

Proof. The Lyapunov-like function,

1 A A A —_— ~ =
V= 3 (la =¥+ la —al* + 9] + [IVI1?)

has time derivative

N — |2 - %%Vna—an%zjf(a—w%

V=—(a"e) f - ’%ua

LANG-a) (@ —a)+ PN (a—o)T(a—a)—fuo—vnz

~La-9)w-v

1 - 1 1
< _Dsz ~3 (B(L—k)—p)la—v|*— 5 (B (1 =) [1a — ¥l

2P k-1 1a-al? -
2y

P A 2 Fina o~
— ||V — 2 a— Y
2yIIV vIT+21flla =¥yl
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S—D1f2—<,/ Il - VI IIR—AIIIINII) —EIIV—VIIZ

BN
—5—Gk=Dla-al* — 5= (1 -k)B - p)lla I,
2y 2)/
where0 < € < 1isarbitrary and we have chosen u = %. This imme-

diately shows that a, ¥, a, and V remain bounded over the maximal interval
of existence of x(t) for % <k <1landp < B(1 — k). Integrating V shows that
feLly (V—Y)e Ly, (4—12)c Ly and (4 — ¥) € £, over the same interval.
Note that the bounds are independent of the length of the interval. Appli-
cation of lemma 2 completes the proof.

A.10 Proof of Proposition 17.

Proof. The Lyapunov-like function,

1 1
V = ESZ + EQTP_lé,
has time derivative

: 1, &
V= —ns* - Ef2 - Ea?nTP—la,

which shows that s and a remain bounded. Because s remains bounded, x
remains bounded. Integrating V shows that s € £, and f € £,. The proof
is completed by application of lemma 2 or directly by Barbalat’s Lemma
(lemma 1). O

A.11 Proof of Proposition 18.

Proof. Consider the Lyapunov-like function,

1, 1 1
V= Es2 + EVTP*HH 5 (- )P l(v—a),

which has time derivative
V= —nsz+sf—(0—é+§)T(s+f)YT+%(\”ITYT)Z— —
+@—a) (BN (¥ —a)—(s+ ) Y") +

Mo ayre-a)
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y o y o 1 a2
= - fP-200-a) (s+ f)Y - pN|v—a|* + 5 (2%
Lo syt A (orpae o ATl e
+§[(v—a) Y] —T(VP V+(v—a) P (v—a)).
Now we use that "Y' =@ —4)TY + to say that 1 (¥7YT)’ =
2 L
! [(v —a) YT] + (¥ —a) Y f+ 1 72 Hence,

. 1 -
V= —ns? — Ef2—25(‘7—a)T\(T—f(o—a)T\(T—fm/||x7—;:1||2

+[@-a" YT]2 - %t) (VP v+ @-a) P (v -a)

1. o ) o
—n5 =S PP -2s(@-a) Y - f(v-a) Y - gl —a|?

Il
<>

Bl — a1 + [0 - oY
- ? (VP v+ (-8 P (v - a))

1. . S .
—ns® — Efz +21slll (¢ — &) Y + LAl (0 —a) [1Y" ] — BIIY

=<
—4> — (B — D) IYIPIv — &)
)L(t) ~Tp—1z A T p—1 /4 A
_T(VP v+ (@ —a)'P (V—a))
1 2
€ z A
< —nes? — 22— (VT —e)nlsl — ——I¥ - alllY]|
2 -
2
1—62 ~ 1 2 T
- -z v —al|[lY
( 5 Il 2\/:uv alll ||>
At
pre a2 (sp v s - a7 P - 0).

where 0 < ¢; <1 and 0 < €2 <1 are both arbitrary and where we have
chosen u = % (1 + "(%_61) + ﬁ) This shows that s, ¥, and 4 remain

bounded. Because s remains bounded, x remains bounded. Integrating V/
shows that s € £, and f' € L,. By local boundedness of f in x and 4 uni-
formly int, f remains bounded and hence § remains bounded. By Barbalat’s
lemma (lemma 1), s — 0 and x — xg. (]
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A.12 Proof of Proposition 19.

Proof. Consider the Lyapunov-like function,

1
V =-a'Pla, (A7)

N
—
~—

[N)
|
| >
i1

—
-]

N
f-* 1]

V:—faT€1+

1., 1 1)
b,/ +2D2f <D1 2D§>f'

For D; <2D2,V <0 and f € L, over the maximal interval of existence of
x(t). Alternatively, using the same Lyapunov function,

V<—(O( a) (Dz—%>

For D, > %, V <0 and «'a € £, over the maximal interval of existence
of x(t). By assumption 2, this implies that f € £, over the same interval.
Hence, both approaches demonstrate that a remains bounded over the max-
imal interval of existence of x(t) and that f € L, over the same interval.
Furthermore, these bounds are independent of the length of the interval.
By lemma 2, the proposition is proved. O

A.13 Proof of Proposition 20.

Proof. Consider the Lyapunov-like function,
_1 Pl (a—9)Pl(a_ v
V_2( Plv+@E—v)'P (a—v)),

which has time derivative

V= —VTaf+%‘7T(—AP "taa") v+ (a—9) (BN (V- &) + af)
+%(a—e)T (=2P' + ) (A V)
5—(5Ta)f+%(\7Toe)2+%((é—\7) ) — BNIa — V|2 +2F (a—¥)
< D; (@a) + 5770 + 5 (@~ 9T ) —pAIa — 917+ 21 lla 9]
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Now, we use the fact that 1 (\7Tct)2 =3 [(0 —a)t oz] +(@-a)a(a)+
3 (ﬁTa)z to rewrite
2

—a||lleelle”a] (2D; + 1)

V<- (Dz - 1) (@) + [@—9)a] —pNIa— 917 + 1%

1
- (Dz - 5) («"a)” — Blla— 912 — (B — 1) l1a — V1Pl + |19

—al||lefl|e’a] (2D1 + 1)

—e (D2 = %) («'a)’

_ \/(1—6)<D2—1)|aTé|— it ol
2 (1—6)(D2—%)

IA

a_ o2
—Blla =¥,

where 0<e <1 is arbitrary and where we have chosen u =
% (1 + %). V is clearly negative semidefinite for D, < 1, which
shows that ¥ and a remain bounded over the maximal interval of existence
of x(t). Integrating V shows that («'a) € £, over this interval, which
implies that f € £, over the same interval by assumption 2. Note that the
bounds are independent of the length of the interval. By lemma 2, the
proposition is proven. ([l

A.14 Proof of Proposition 21.

Proof. Consider the Lyapunov-like function candidate,

1 1 1
V= Esz + ” (dw (a,9) + E||a —o||2) .

This function has time derivative

. 1 . . .

V= —n?+sYa+ — ((o )T V2 @)+ (a—9)" (a - v))
14

= —nP+sYa+ (a—v) Y s + % -7 (ﬂ/\/ (¥ —4)+ V2 (9) YTs>

I

|
=

195}

|
>

—vP+@— 9" ([Vy@] " +1)Ys.
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By I-strong convexity of v, (Vzw(ﬁ))_l < I7'1. Hence, using that N' =1 +

mlYI?,
~ Bis o2 BH I+1
V< =g’ = DA =9I = SRIa = 9IPIYIE + (= ) Islla = 9
(A8)
+1 ? B
< —ens’ — | v nls| — 7”5—‘7””\(” - =lla-v|?
( 21y =€) v
(A9)
where 0 < € < 1is arbitrary and we have chosen . = 4/;’1&[(% This shows

that V is negative semidefinite, so that a, ¥, and s remain bounded. Because

s remains bounded, x remains bounded. Integrating V shows that s € £,

so that s € £, N L. By local boundedness of Y in x, s remains bounded,

and hence by Barbalat’s lemma (lemma 1) s — 0. Then x — x; by definition

of s. O
A.15 Proof of Proposition 22.

Proof. Consider the Lyapunov-like function candidate,

1 1
V:§¥+;MMmW+@Wj»

= 55 (@)~ ¥ ) = VO =D+ Y ()~ v @)
—Vy () (v —a)).

These individual terms satisfy

a1,
EES _—7]5 +Ya5

1%@ (a,v)=—Yas+@a—9)"Y's

1d 1 . _
——dy(%,4) = - (¥ — 8)T V2y(2)a — sY (VY (9) " (VY (9) — V().

Note that by [-strong convexity and L-smoothness, the second term in the
last line above can be bounded as

Y (VY @) (V) - V@) = L - o,
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First consider equation 7.6. Then, by /-strong convexity of ,

1 .., o 18BN
=) V@i <~ la ol
14
For equation 7.8, we obtain
Le-ar @i s e
14

Hence, for equations 7.5 and 7.6,

~ B . o2 1Bu s o2 LTYL Ao
V< -’ = a0 = VI = 01 4+ sl Yl - 91

Similarly, for equations 7.7 and 7.8,

B . _‘7”2 ,3//«

. o+
V< —ps - ;Ila —=YI*la - ¥|* + —— | mYfia—f.

In both cases,

2
V < —ens’ —(v(l—e) Is I—Wl_iLlYllllﬁ—‘AfH) :

In the former case, we have chosen u = il
y(l+yL

TR This shows that V is negative semidefinite, so that a, ¥,
and s remain bounded. Because s remains bounded, x remains bounded.
Integrating V shows that s € £y, so thats € £, N L. By local boundedness
of Y in x, § remains bounded, and hence by Barbalat’s lemma (lemma 1)
s — 0. Then x — x4 by definition of s. O

”(HVL)Ig and in the latter we have

chosen =

Appendix B: Further Results on Dynamics Prediction for Hamiltonian
Systems

We now provide some extensions to the results in section 4.2 by exploiting
the structure of separable Hamiltonians. With a separable Hamiltonian, it
is natural to estimate the kinetic and potential energies separately,

T(P) = Y,(P)ay,
u(q) = Yq4(9)a,,

d-a|0111B/008U/NPa NIWI}03.IP//:dNY WOol) papeojumod

B 008U/09¥6881/06G/C/CE/HP
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where Y, and Y, are row vectors of basis functions for the kinetic and po-
tential energies, respectively. In this case, following the same derivation as
in section 4.1, the error dynamics become

P = —V4Y,(@)a,; — kyp — (Y4l (@) — VaU(@)).
q=VpY,(P)a, — kg + (VaT(®) — VT (p)).

Consider the adaptation laws,

a, = =y [V2Up(a,)] (Vpr(p))Tq
éq =Y [Vz‘/’q(ati)]i (Vqu(Q))T P

where ¥,(-) and ¥,(-) are strongly convex functions, and where y, > 0 and
¥s > 0 are positive learning rates. The Lyapunov-like function

1 1
V=oppt5a'a+ dwp(ap | &) + dwq(aq | 45) (B.1)
‘7

shows that a sufficient condition for convergence p — 0 and q — 0 is for
the Jacobian

B ( —k,I —VéU(q))
ViT(p) —k,1
to be uniformly negative definite. A sufficient condition for uniform nega-
tive definiteness is given by equation 4.5.
While separable Hamiltonians encompass many physical systems, some,

such as robotic systems, do not have this structure. A more general form
encompassing robotic systems is

Hip. @) =T(p.q) +U(q)
Parameterizing these terms independently,
TP, q) = Y,(P, @)y,
U(q) = Y4(q)a,.
the error dynamics becomes
P =~ (VaYp(p. @) & — (V4Y,(@)) & — kb — (VaU (@) — Vql(q))
q=(VpY,(p ) a, — kyq + (VT (. @) — VpT(p. q)) -
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Now consider the adaptation laws,
A ~ 11 A A ~ A A -
dp = v [V, a)] " ((VaY, (0. @) B~ (VY,(p. )" @)
54 =Y [Vzwfi(aq)]_l (Vqu(Q))T P

again where v¥,(-) and v, (-) are strongly convex functions and y, > 0 and
s > 0 are positive learning rates. The Lyapunov-like function, equation B.1,
shows that a sufficient condition for convergence is for the Jacobian matrix,

j_ (-kpl ~VpVaT(p.q) —Vil(q) - ViT(p. q))
VeT(p. q) —k 1+ VgV T(p.q) )

to be uniformly negative definite. Sufficient conditions for this are now
given by
1 - L
kp > —E)»min (Vf,VqT(I), q) + Vqu,T(p, q)) N

1 .. ..
ky > ~Amax (VpVaT (P, @) + V4V T (P. §)) .

= N

Mg > T | VAT (B @) = VAT (B @) — VAU(@)].

similar to the fully general case handled in section 4.2. More general results
can be obtained by using a non-Euclidean metric as a replacement for the
momentum and position estimation error terms in equation B.1.

B.1 Implicit Regularization for Higher-Order Laws. For simplicity, we
only consider the linearly parameterized setting. The nonlinearly parame-
terized setting can be handled immediately.

Proposition 25. Consider the natural gradient-like higher-order adaptation law
for a linearly parameterized dynamics,

A= pBN(E —a)
o= —[V2y@)] " Y's,

where (-) is a strongly convex function. Assume that a(t) — a € A where A
is defined in equation 3.1. Then

iy =arg I(}éifrs dy (01 %(0)).
In particular, if ¥(0) = arg minger» ¥ (0), then

a,, = arg r;gli v(0).
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Proof. First note that if & — 4., then v — a,.. Now let § be any constant
vector of parameters. The Bregman divergence has time derivative

L4019 = (Svv@) 09
a ' - \at ’
Using that %Vlﬁ(é) = —YTs and integrating both sides of the above shows

dy (0119(0)) =dy (0] 4x) + /Ooo s(D)Y(x(r). 7) (¥(7) — O) dx.

Taking 6 € A, the integral becomes independent of §. The proof from here
is identical to the first-order case. g
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