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Abstract
We would like to have highly useful robot manipulators that can handle a diversity of ob-
jects/environments, perform challenging manipulation tasks while being sufficiently robust
such that deployment at scale is feasible. This thesis aims at such a generalizable, dexter-
ous and robust manipulation pipeline. At the core of our approach is the representation of
the environment. In particular, how should we represent the unstructured world such that
it is useful for: 1) developing a capable manipulation pipeline; 2) performing a thorough
robustness evaluation of it. To answer question 1), we propose the keypoint affordance, a
novel object representation consists of 3D semantic keypoints. Existing works typically use
6 Degree-of-Freedom (DOF) poses to represent the manipulated objects. However, repre-
senting an object with a parameterized transformation defined on a fixed template cannot
handle large shape mismatches among different objects. In contrast, our keypoint represen-
tation captures task-related geometric information while ignoring irrelevant details, which
enables the generalization to unknown objects. We implement perception, planning and
feedback control modules on top of the keypoint representation and integrate them into a
fully functional perception-to-action manipulation pipeline. The second part of this thesis
studies the pipeline robustness and attempts to answer the question 2). Due to the infeasi-
bility of a parametric (pose-based) object representation, we do not have a continuous input
domain for investigating how the object geometry impacts the robustness, which is a pre-
requisite for existing methods. To address this challenge, we model factors that affect the
robustness as a structured distribution over variables (e.g. the camera pose), combined with
an empirical distribution, that describes visual properties (e.g. the object geometry/texture).
We then formulate the robustness evaluation as a failure rate estimation problem on this
combined distribution and propose an efficient graph-based algorithm to solve it. Our for-
mulation is applied to the developed manipulation pipeline, and it can benefit many other
cyber-physical systems, such as autonomous cars.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

There are many people that I want to thank for helping me to complete this work over the

past years.

Firstly I would like to thank my advisor, Prof. Russ Tedrake. Russ directs me to think

of the challenge caused by the diverse, unstructured robot working environment, which

turns into this thesis. He provides me a lot of help in both academy and life, especially for

the last year under the challenging situation of the pandemic. In addition, Russ deserves

enormous credit for bringing together the people and integrated countless resources into

the lab. Everyone lab member, including me, benefits a lot from that.

I would also like to thank the rest of my thesis committee members, Prof. Phillip Isola

and Prof. Chuchu Fan, for their time, guidance and support throughout my thesis work. The

collaboration is a great pleasure and the suggestions they provide significantly improve this

thesis.

I have had a world-class set of labmates in the Robot Locomotion Group, who grant

me such a unique and inspiring place to work. In particular, I am introduced to robotics by

Twan Koolen’s contribution on humanoid robot. The discussion with him at MIT is very

fruitful. A special thanks to Pete Florence, Lucas Manuelli and Greg Izatt for their effort

of setting up the robot, writing the drivers and maintaining the spartan software stack. My

pursue of the MCMC-based risk evaluation is inspired by the contributions of Matthew

O’Kelly and Aman Sinha. They offer a lot of help during my own development of these

algorithms. I also want to thank Yunzhu, Tobia, Pang and many others for their helpful

suggestions. Their expertise leads me to the solution of many seemingly intractable prob-

lems. And finally thanks to all the other members of the group for constantly stimulating

and exciting discussions.

I have also learned a lot from many colleagues, friends and professors at the broader

MIT community. I’ve taken/audited many interesting courses, and the collaboration with

other MIT students is really a pleasure. For example, Prof. Guy Bresler’s class on graph-

ical model rebuilt my understanding of probabilistic inference and lead to an interesting

contribution on point-set registration.

5



Finally I would like to thank my family. Thanks to my Mom and Dad for supporting

me always.

6



Contents

1 Introduction 13

1.1 The Challenge of Representation . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Problem Statement and Contributions . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 21

2.1 Manipulator Planning and Motion Control . . . . . . . . . . . . . . . . . . 21

2.2 (Deep) Perception for Robot Manipulation . . . . . . . . . . . . . . . . . . 23

2.2.1 Pose Estimation for Robot Manipulation . . . . . . . . . . . . . . . 23

2.2.2 Robot Grasp Planning . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 End-to-End Learning for Robot Manipulation . . . . . . . . . . . . 25

2.3 The Reliability of Deep Networks . . . . . . . . . . . . . . . . . . . . . . 25

I Pipeline Development 27

3 kPAM: KeyPoint Affordance for Generalizable Manipulation 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 6-DOF Pose Representations for Pick-and-Place Manipulation . . . 32

3.2.2 Grasping Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 End-to-End Reinforcement Learning . . . . . . . . . . . . . . . . . 33

3.3 Manipulation Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Concrete Motivating Example . . . . . . . . . . . . . . . . . . . . 34

3.3.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 36

7



3.4 Comparison and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Keypoint Representation vs Pose Representation . . . . . . . . . . 40

3.4.2 Keypoint Target vs Pose Target . . . . . . . . . . . . . . . . . . . . 42

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Put Shoes on a Shoe Rack . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Put Mugs upright on a Shelf . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Hang the Mugs on the Rack by their Handles . . . . . . . . . . . . 47

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 kPAM-SC: Generalizable Manipulation Planning using Shape Completion 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Pose-based Manipulation Planning . . . . . . . . . . . . . . . . . . 53

4.2.2 Grasping and Manipulation with Shape Completion . . . . . . . . . 54

4.3 Manipulation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Manipulation Planning . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Experiment Setup and Implementation Details . . . . . . . . . . . 59

4.4.2 Perception and Comparison with Pose Estimation . . . . . . . . . . 61

4.4.3 Manipulation Task Specifications . . . . . . . . . . . . . . . . . . 61

4.4.4 Result and Failure Mode . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.5 Comparison with Alternative Pipelines . . . . . . . . . . . . . . . 63

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 kPAM 2.0: Feedback Control for Generalizable Manipulation 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Object Representation for Closed-Loop Manipulation . . . . . . . . 67

5.2.2 Robotic Manipulation with Proprioceptive Feedback . . . . . . . . 68

8



5.2.3 Pick-and-Place Manipulation at a Category Level . . . . . . . . . . 68

5.3 Manipulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Concrete Motivating Example . . . . . . . . . . . . . . . . . . . . 69

5.3.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3 Force/Torque Measurement . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Generalization w.r.t Global Rigid Transformation . . . . . . . . . . 74

5.3.5 Joint Space Control . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Pick-and-Place Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Perception Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

II Robustness Characterization 83

6 Preliminary: The Risk Based Framework 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Multi-Level Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 90

7 Robustness Evaluation using Semi-Empirical Distributions 95

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.2 Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.3 Failure Rate Estimation by Rare-Event Simulation . . . . . . . . . 98

7.2.4 Robust Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Comparison with Generative Model Representation . . . . . . . . . 101

7.4 Graph Structure in the Discrete Samples . . . . . . . . . . . . . . . . . . . 102

9



7.4.1 Graph-based Rare-Event Simulation . . . . . . . . . . . . . . . . . 104

7.5 Proof-of-Concept Experiment on MNIST . . . . . . . . . . . . . . . . . . 106

7.5.1 Comparison with Generative Model based Formulation . . . . . . . 108

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8 Application to a Robot Manipulation Pipeline 113

8.1 Robustness Evaluation of Keypoint Perception . . . . . . . . . . . . . . . . 113

8.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2 Robustness Evaluation of Manipulation Pipeline . . . . . . . . . . . . . . . 117

8.2.1 Component-Wise Verification with Whole-System Failure Rate . . 118

8.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 120

9 Discussion 123

9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Environment Representation for Manipulation . . . . . . . . . . . . . . . . 126

9.2.1 Information Contained in the Representation . . . . . . . . . . . . 126

9.2.2 Learned Representation vs. Hand-Crafted Representation . . . . . . 127

9.2.3 Dense Representation vs. Sparse Representation . . . . . . . . . . 128

9.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Implementation Details of kPAM 131

A.1 Dataset Generation and Annotation . . . . . . . . . . . . . . . . . . . . . . 131

A.1.1 3D Reconstruction and Masking . . . . . . . . . . . . . . . . . . . 131

A.1.2 Instance Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1.3 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Instance Segmentation Network . . . . . . . . . . . . . . . . . . . . . . . 133

A.3 Keypoint Detection Network . . . . . . . . . . . . . . . . . . . . . . . . . 134

B Implementation Details of kPAM 2.0 135

B.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10



B.2 Description of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.3 Visual Perception Implementation . . . . . . . . . . . . . . . . . . . . . . 136

B.4 Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.5 Visual Perception Accuracy Statistics . . . . . . . . . . . . . . . . . . . . 137

11



12



Chapter 1

Introduction

In recent years, significant advancements in computer vision [23,50,69,127] have brought

us the hope of deploying robot manipulators “in the wild”. Industrial robot manipulators

have been helping us in assembly lines since 1970, but they are restricted to hand-crafted

trajectories, strict separation from humans, and carefully controlled working environments.

With the availability of deep neural networks, perception-to-action robot manipulation

pipelines [27, 56, 61, 100] are much more reliable. We hope that in the future, robots can

help us with more demanding tasks, such as cleaning up a kitchen or taking care of the

elderly.

Despite these advancements, state-of-art robot manipulation pipelines today are still

highly inferior to humans and cannot meet our expectations. First of all, the capability of

current robot manipulators is still limited to small sets of known objects, relatively simple

manipulation skills, or both. We have seen amazing demos such as OpenAI’s finger gait-

ing [4] and BostonDynamics’ kitchen manipulation [27]. However, it is unclear whether

these robots can work with some new objects in another environment. Another series of

works on robot grasping [45,86,96,132,151] show surprising generalization in the Amazon

Picking Challenge. However, these works are restricted to picking up the object. Extending

them to more dexterous tasks is not straightforward.

In addition to the capability, the robustness of manipulation pipelines is another con-

cern, primarily due to the internal deep neural networks used for visual perception. The

performance of these neural networks can be catastrophically deteriorated by adversarial
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attacks [42, 72] and distributional mismatches [5, 6], which consequently leads to the fail-

ure of the entire pipeline. Thus, it is crucial to understand the robustness of a manipulation

system before deployment. However compared to replaying hand-crafted trajectories in

an assembly line, a perception-to-action manipulation pipeline in the wild risks from more

complex factors, such as the textures of objects and backgrounds. How to characterize these

complex factors and their impacts on the pipeline robustness is still an open problems.

In summary, existing pipelines are still inferior to the ideal, human-level robot manip-

ulation system in terms of their generalization, dexterity and robustness. In this thesis, we

take a step forward with respect to these perspectives. To achieve this, we need to address

the challenge caused by the diverse, unstructured robot working environment, as detailed

below.

1.1 The Challenge of Representation

Compared to many other types of robots such as humanoids/UAVs, perception-to-action

robot manipulation in the wild has the distinct challenge of environment representation.

Let us consider this challenge using the example task of robot kitchen cleanup, as shown

in Fig. 1-1.

We would like a robot manipulator to come into a kitchen and clean it up. Using a

classical planning and control formulation, we might consider this task as the following

optimal control problem

minπ Σtc(xt ,ut) (1.1)

subject to: (1.2)

xt+1 = f (xt ,ut) (1.3)

ut = π(xt) (1.4)

where we would like to find a policy π : X −→U that minimizes the sum of the cost function

c : X×U −→ R, subject to the dynamic constraint f : X×U −→ X . However, one major chal-

14



(b)(a)

Figure 1-1: Robot manipulation in the wild such as the kitchen cleanup task in (a) has
the distinct challenge of environment representation, unlike other types of robots such as
the humanoid in (b). For the kitchen clean-up task, it is unclear how to define the state
x = (xrobot,xworld) such that the environment representation xworld can handle kitchens with
potentially unseen objects. In contrast, in classical robotic tasks such as the humanoid
walking we usually have a natural state representation (as the generalized position and
velocity). The lack of this state representation makes it hard to both develop a capable
manipulation pipeline and understand its robustness, as described in Sec. 1.1.

lenge with this formulation is that we do not know how to define the state x=(xrobot,xworld).

Although the robot state xrobot can be easily defined as a joint state (generalized position

and velocity), it is unclear how should we write down the kitchen state as xworld, given the

diversity of objects in it. In the terminology of the machine learning community, we do not

know how to define the representation of the kitchen. Without a good state representation,

we cannot write down the cost function c and dynamic function f . Consequently, many

existing techniques that work well for other types of robots cannot be used for the “robot

cleaning up a kitchen” problem.

As a concrete example, let us consider an extremely simplified scenario where the

kitchen only contains one known object. Then, we can use the 6-DOF pose of that ob-

ject as the state representation xworld for the kitchen, and define the cost function c and

dynamic function f on top of that state. Pose-based representation has been extensively

used in existing robot manipulation pipelines [56, 100, 115, 142]. However, these contri-
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butions are limited to manipulating a fixed object. As detailed in Sec. 3.4, representing

an object with a parameterized pose defined on a fixed geometric template cannot capture

large shape variations among different objects. Thus, this pose-based representation is not

suitable if the kitchen contains a diverse set of objects with potentially unknown instances.

This challenge of representation also prevails when we are considering the pipeline ro-

bustness. Intuitively, our goal is to ensure that “the manipulator is safe for all possible

kitchens” or “the robot is very unlikely to fail in a usual kitchen”. These descriptions are

very straightforward in natural language. However, it is not easy to transform them into

concrete, solvable robustness evaluation problems because we don’t know how to materi-

alize “all possible kitchens” or “a usual kitchen”. Without a state representation xworld for

the kitchen, it is hard to materialize “all possible kitchens” as the state space of xworld or

materialize “a usual kitchen” as a prior distribution on that state space. As a result, we

cannot perform a robustness evaluation for the manipulation system that we are interested

in.

Let us again consider the extremely simplified example in which only one object is con-

tained in the kitchen. For this situation, xworld can be the pose of that object and “all possible

kitchens” is the space of the rigid transformation (SE(3)). Consequently, “a usual kitchen”

becomes a prior distribution on the rigid transformation space, for example a uniform dis-

tribution with bounds. In this case, we have a concrete robustness evaluation formulation

and many existing algorithms [11, 14, 46, 129] can be used to solve it. However, this for-

mulation becomes invalid if we consider a diverse set of objects with different geometries

(instead of a fixed instance). Thus, it is difficult to apply existing techniques to our problem

due to the lack of a good state representation xworld.

1.2 Problem Statement and Contributions

In this thesis, we address the representation challenge described above and take steps to-

ward an ideal manipulator that combines generalization, dexterity and robustness. In par-

ticular, we attempt to answer how to represent an environment such that it is useful for 1)

developing a capable manipulation pipeline; and 2) performing a robustness evaluation for
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the pipeline with respect to complex input domains (such as “all possible kitchens”).

The first part of this thesis focuses on building a capable manipulation pipeline that

combines generalization and dexterity. In Chapter 3, we propose a novel keypoint-based

object (state) representation for generalizable, pick-and-place manipulation. In other words,

we propose to use a set of 3D semantic keypoints as xworld. Existing methods typically use

the 6-DOF pose as the underlying object representation, which can lead to infeasible place-

ment configurations for new objects. In contrast, the proposed keypoint representation

provides a unified way to specify the desired object configurations for many objects, de-

spite the significant shape variations among them. Hardware experiments show that our

approach generalizes to novel objects for pick-and-place manipulation, and this general-

ization is accurate enough to accomplish tasks requiring centimeter-level precision.

Chapter 4 extends the pick-and-place pipeline in Chapter 3 with physical constraints

such as the collision avoidance, visibility and grasp stability. The sparse keypoint rep-

resentation in Chapter 3 is not sufficient, as reasoning about physical properties requires

dense geometric information. Thus, we propose a hybrid object representation consisting

of sparse keypoints and dense geometry, where the dense geometry can be obtained using

shape completion algorithms [92,104,155]. The integration of shape completion algorithms

enables many existing planners to handle a variety of objects in a unified and precise way.

Several hardware experiments demonstrate the efficacy of this integration.

Chapter 5 extends the pipeline from kinematic pick-and-place to closed-loop, contact-

rich manipulation tasks. To achieve this, we first augment keypoints with local orientation

information. Using oriented keypoints as the object representation, we propose a novel

object-centric robot action representation in terms of regulating the linear/angular velocity

or force/torque of these oriented keypoints. This formulation is surprisingly versatile – we

demonstrate that it can accomplish contact-rich manipulation tasks that require precision

and dexterity for many objects with different shapes, sizes and appearances. We demon-

strate our method with challenging tasks such as peg-hole insertion for pegs and holes with

significant shape variations and tight clearances.

The second part of this thesis focuses on the robustness of the manipulator, which is an

autonomous system deployed in diverse, unstructured working environments. Many factors
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of the environment impact the robustness. Some of them have natural representations (pa-

rameterizations), such as camera poses and illumination conditions. However, some other

factors might be hard to represent, such as the object geometry discussed in Sec. 1.1. As

a result, many existing works [11, 14, 46, 64, 129, 150] are not suitable for our problem, as

they assume a continuous, easily-parameterizable input domain.

Initially, we plan to use the keypoints in Chapter 3 as the object geometric representa-

tion for the robustness evaluation. To be more specific, can we represent the object as a set

of keypoints, and perform a robustness evaluation with the input space of these keypoints?

However this approach does not work well, because the keypoint representation loses ge-

ometric information, and this missing geometric information might impact the robustness.

This inspires us to use a complete geometric representation, similar to Chapter 4. In par-

ticular, we can over-parameterize each object geometry instance as a voxel grid, which

generalizes well to different objects. In this case, the challenge becomes how to represent

the underlying space or distribution of the object geometry. The space of “all possible

mugs” is obviously a large space, but it is much smaller than the voxel space, as realistic

object shapes occupy only a tiny portion of the voxel space. If we draw a random sample

from the voxel space, it is very unlikely that this sample would look like a realistic object,

and we should not expect the robot to handle it. Another prominent example is the textures

of the object, that we might want to ensure a manipulator can handle “all textures of a

mug”. We can over-parameterize each object texture instance as an image (texture map),

but the space of “all object textures” is again much smaller than the pixel space.

One method to address these texture/shape distributions is to use generative models [41].

These generative models learn generators that map simple distributions in the feature space

to complex texture/shape distributions. With this generator, we can use existing algorithms

in the continuous feature space. However, these generative models can yield unrealistic

samples (see [84] for a detailed study), although many of the generated results are almost

indistinguishable from authentic ones. As a result, we can discover unrealistic failure cases

that would never be encountered in the real world, and this phenomenon can be exploited

by the robustness evaluation algorithms.

In Part II of this thesis, we propose to directly materialize these texture/shape distribu-
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(a) (b)

Figure 1-2: In Part. II of this thesis, we consider the robustness of the robot manipulator.
Some environmental factors that impact the pipeline robustness might be hard to represent,
such as the object geometry in (a) and texture in (b). It is hard to write down a continu-
ous parameterization of them. As a result, we cannot perform the robustness evaluation
with respect to the object geometry/texture in a continuous parameter space, which is a
prerequisite of existing works [11, 14, 46, 64, 129, 150].

tions as empirical distributions (sets of offline-collected samples). Thus, we model factors

that affect the system robustness as a structured distribution over variables (e.g. the object

pose), combined with an empirical distribution, that describe the visual properties. We then

formulate the robustness evaluation as failure search and failure rate estimation problems

on this combined distribution. Compared to the generative model formulation, our method

does not produce arbitrarily unrealistic failure examples. One major challenge of this rep-

resentation is the lack of continuity structures among the discrete samples. To address

this issue, we formulate a weighted graph over the empirical dataset using the distance in

a learned latent space as the edge weights. This graph structure connects discrete sam-

ples and transforms the failure search/rare-event problems into more efficient graph-based

exploration. Moreover, failure rate estimation with the proposed graph converges to the

ground-truth asymptotically, despite the using of learned features in the graph representa-

tion.

In Chapter 6, we present the preliminaries about the risk-based framework. In this

framework, we prioritize finding the most likely failure modes and characterizing a sys-

tem’s safety by its failure probability. Existing works in this risk-based framework assume

continuous, easily parameterizable input domains. However as mentioned above, we need
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to perform robustness evaluation with respect to complex input domains such as object tex-

tures/shapes. This is addressed in Chapter 7. Then, in Chapter 8 we apply the resulting

robustness evaluation algorithm to the robot manipulation pipeline developed in Part. I. It

should be emphasized that our formulation can be applied to many other cyber-physical

systems, although we focus on robot manipulation in this thesis.
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Chapter 2

Related Work

There is a broad array of works that are related to this thesis. Rather than listing repeated

sections of related work, in this chapter we briefly comment on the overall body of work in

the literature that relates to this thesis, and highlight where additional detail can be found

within each subsequent chapter. We first review the existing motion planning and control

techniques for robot manipulators. These methods are the basis of Part I, and they have

been applied to industrial manipulators since 1970. Then, in Sec. 2.2 we review some

contributions regarding perception-to-action robot manipulation pipelines, as the pipeline

we propose in Part I falls into this category. These contributions are primarily driven by

the success of deep neural networks. Although these networks demonstrate exceptional

empirical performance, there are reliability concerns associated with using deep networks

in cyber-physical systems such as manipulation pipelines, which is discussed in Sec. 2.3.

In Part II of this thesis, we develop robustness evaluation algorithms to characterize and

improve the pipeline reliability.

2.1 Manipulator Planning and Motion Control

There are millions of industrial robots on assembly lines today [28]. They perform tasks

such as polishing, workpiece handling, painting, and welding. Despite the diversity of these

application fields, the only operation of these industrial robots is to replay a pre-specified

trajectory again and again. To facilitate this, the robot needs trajectory planning and motion
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control algorithms. In the following text, we briefly review some of the contributions in this

area, which are the basis of Part I.

Manipulation Planning: The task of manipulator planning is to automatically generate

robot trajectories [74], thus reducing or eliminating the manual effort required for lead-

through demonstrations. The planner takes the trajectory specification, such as the de-

sired end-effector pose, as the input. The planned trajectory should also satisfy physi-

cal feasibility constraints, and the most prominent example is perhaps the collision avoid-

ance [39,113,117]. Motion planners can be classified into two major categories: sampling-

based planners and optimization-based algorithms.

For sampling-based planners, the motion planning problem is typically formulated as

a search problem on a graph embedded in the search space. This graph can be explicitly

constructed before planning, by methods such as the probabilistic road map (PRM) algo-

rithm [40, 54]. In the PRM algorithm, we first sample a set of joint configurations that

are collision-free. Then, these joint configurations are connected by edges, and collision

checking is performed to eliminate infeasible edges. Finally, a graph search is performed

to find a feasible trajectory. The graph can also be constructed incrementally to reduce the

imposed computation and storage requirements [35,63,70,99]. There are many variants of

these algorithms; please refer to [74, 76] for a comprehensive study.

As suggested by the name, optimization-based planers formulate the planning problem

as a constrained optimization [20, 21, 94, 105, 117, 133]. A set of costs/constraints are used

to encode the task specification and physical feasibility constraints. For example, we can

constrain the minimum distance between the robot and the environment to avoid collisions.

These optimization problems are typically non-linear and non-convex, and they are usually

solved using the interior-point method or sequential convex programming [9] algorithms.

Several high-quality implementations of these solvers and optimization-based planners are

available [73, 117, 126, 131], and we use the drake library [131] for our implementation in

Chapter 4.

Robot Motion Control: The task of motion control algorithms is to track the robot tra-

jectory. To enable accurate tracking, researchers have investigated friction compensa-

tion [8,13], mass/inertia identification [66,102], and online adaptive control algorithms [53,
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123]. These methods are usually integrated into robot drivers because of their importance,

and please refer to for [123] a detailed review. The tracking of joint-space trajectories

is relatively easy since the actuation force is in the joint space. The end-effector space

trajectories should be transformed into joint space actions using robot kinematics [65].

Some controllers try to achieve compliance behaviors in the joint space or end-effector

space [22, 65, 112, 141]. For example, a peg-hole insertion controller should be stiff in the

insertion direction (to transmit force) and compliant in tangential directions (to avoid jam-

ming) [79, 103, 130]. Our implementation of the peg-hole insertion in Chapter 5 is based

on the concept of the end-effector compliance control [130], which is detailed in Sec. 5.5.

These planning and control algorithms form the basis of this thesis. However, they

are not sufficient for the task that we are interested in, such as the kitchen cleanup task in

Chapter 1. The major goal of this thesis is to enable the robot to handle diverse, unstruc-

tured working environments. The robot must automatically handle different objects and

task setups with visual perception, instead of replaying a pre-specified trajectory.

2.2 (Deep) Perception for Robot Manipulation

The industrial robots described in Sec. 2.1 cannot adapt to alignment errors and/or dif-

ferent initial object configurations. As a result, customized fixturing/gripper designs are

required. For example, wafer-handling robots require wafer carriers to be localized using a

three-groove kinematic coupling; thus, the initial configuration is accurate. As customized

fixturing/gripper hardware can be expensive, people resort to an alternative strategy of lo-

calizing objects using visual perception. The advancement of deep learning has signifi-

cantly improved the performance of visual perception algorithms, which has a huge impact

on robot manipulation. In the following text, we discuss how the deep networks enable

many interesting manipulation behaviors.

2.2.1 Pose Estimation for Robot Manipulation

The configuration of a known object can be defined as a rigid transformation (pose) from

a geometric template model. If we know the pose of the object, the manipulator can han-
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dle different initial object configurations. Pose estimation is an extensively studied topic

in computer vision and robotics, and existing methods can be generally classified into

geometric-based algorithms [37, 97] and learning-based approaches [115, 134, 142]. These

methods take inputs as raw observations (RGBD images or point clouds) and produce the

pose of the object of interest in the scene. Several contributions [56,100] integrate pose es-

timators into robot manipulation pipelines to accomplish interesting pick-and-place tasks.

However, as detailed in Sec. 3.4, pose estimation cannot handle the shape variations of dif-

ferent objects. Thus, it is not suitable for manipulation tasks such as cleaning up a kitchen.

This challenge of adapting to different objects is addressed in Chapter 3.

2.2.2 Robot Grasp Planning

In recent years, there has been an explosion of literature tackling the problem of robotic

grasping [45, 86, 87, 151, 152]. Given a scene observation (usually a RGBD image), these

grasping algorithms compute a robot end-effector action that can pick up an object. Among

the various grasping approaches, model-based methods [87, 152] typically rely on a pre-

built grasp database of common 3D object models labeled with sets of feasible grasps.

During execution, these methods associate the sensor input with an object entry in the

database for grasp planning. In contrast, model-free methods [45,86,96,151] directly eval-

uate the grasp quality from raw sensor inputs. Many of these approaches achieve promising

robustness and generality in the Amazon Picking Challenge [120,151,152]. Several works

also incorporate object semantic information using instance masks [120], or non-rigid reg-

istrations [114] to accomplish tasks such as picking up a specific object or transferring a

grasp pose to novel instances. However, grasping algorithms cannot accomplish any ma-

nipulation tasks beyond grasping an object and then dropping it somewhere else, which we

affectionately label the “pick-and-drop" task. Thus, we use the grasping algorithm more as

a building block in a larger manipulation system, rather than an end in itself.
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2.2.3 End-to-End Learning for Robot Manipulation

Impressive contributions [3,31,44,77,139,156] have been made in end-to-end learning with

applications to robotic manipulation. These methods usually learn a visuomotor policy that

maps raw observations to robot actions. Thus, they avoid the use of explicit state represen-

tations (or, they use the “image state"), which is challenging as discussed in Chapter 1. The

policy is typically trained with imitation learning [32, 111, 148, 154, 156] or reinforcement

learning [31, 118, 119] algorithms. In imitation learning, the algorithm requires training

data in the form of state action pairs from expert demonstrations. In reinforcement learn-

ing, an efficient simulator is used for trial-and-error attempts. The policy can be trained

in a purely end-to-end manner [31, 43, 111, 148, 156] or as a residual term [57, 116, 121]

added to an existing policy. Some works exploit autoencoders [31,77,139,148] and domain

randomization [4,15] to improve sampling efficiency. There are many variants of these two

types of learning algorithms; please refer to [128] for a detailed study.

Many interesting manipulation behaviors emerge from these data-driven algorithms [3,

31,77]. However, how to efficiently generalize the trained policy to different objects, cam-

era positions, initial object configurations and/or robot grasp poses remains an active re-

search problem. Theoretically, this generalization can be achieved by utilizing training

data with good coverage in terms of all these perspectives. However, this can be extremely

expensive in practice.

2.3 The Reliability of Deep Networks

As mentioned in Sec. 2.2, deep neural networks enable many interesting manipulation be-

haviors. However, the performance of these neural networks can be catastrophically de-

teriorated by adversarial attacks [42, 72] and distributional mismatches [5, 6], which con-

sequently leads to the failure of the entire pipeline. Thus, it is crucial to understand the

robustness of neural networks and autonomous systems with networks inside.

Most works on neural network robustness analysis aim at image input and pixel-wise Lp

constrained disturbance [11,14,46,129]. The practical usefulness of pixel-wise disturbance

has been questioned in recent works [26, 29]. Thus, researchers have targeted more prac-
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tically meaningful input domains, for example the “adversarial patch/sticker” in [12] and

the object pose/illumination condition in [80]. Some works [26, 136] have also studied the

robustness of systems with data-driven components inside instead of the singulated neural

networks. From the perspective of methodology, robustness analyses have been formulated

as optimization [80,129], search (planning) [68,135], and reinforcement learning [67,108]

problems. Depending on the availability of internal structures, these methods can be classi-

fied into white-box and black-box approaches; please refer to [1, 7, 18] for a more detailed

review.

Existing works on robustness evaluation are typically restricted to continuous, easily

parameterizable input domains. However, for neural networks and autonomous systems

deployed in unstructured environments, many factors with significant impact on robustness

might not have natural parameterizations. For example, we might consider how the object

geometry affects the pipeline robustness, as detailed in Chapter 1. Part II of this thesis

addresses this challenge and performs a robustness evaluation of the manipulation pipeline

developed in Part. I.
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Part I

Pipeline Development
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Chapter 3

kPAM: KeyPoint Affordance for

Generalizable Manipulation

3.1 Introduction

In this chapter, we consider manipulation tasks such as the kitchen cleanup in Chapter 1,

under the assumption of rigid objects. An illustration is shown in in Fig. 3-1. If we as-

sume the objects are rigid, then cleaning up a kitchen becomes a series of kinematic pick-

and-place manipulation: the robot manipulator should inspect the environment, detect the

object, pick it up and place it to the desired configuration. This type of tasks can be easily

described using natural language, for example “put the mugs upright on the mug shelf,”

“hang the mugs on the rack by their handles” or “place the shoes onto the shoe rack.”

Although this type of tasks is trivial for human, it remains challenging for existing

robot manipulation pipelines. In particular, we want the robot manipulator to handle many

different objects, including previously unseen ones. For instance in the “put the mugs

upright on the mug shelf” task, the robot should be able to manipulate many different

mugs, despite significant geometry variations among them, as shown in Fig. 3-1. This

manipulation skill is obviously within the capability of the human, and it is of significant

importance to both industrial applications and interactive assistant robots.

Robot pick-and-place manipulation has been pursued for decades [56, 100, 134]. How-

ever, existing methods typically restrict to a small set of known objects with offline-captured
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(a) (b) .

Figure 3-1: In this chapter, we consider manipulation tasks such as kitchen cleanup under
the assumption of rigid objects. Then, cleaning up a kitchen becomes a series of kinematic
pick-and-place manipulation. Existing pick-and-place pipelines typically restrict to a small
set of known objects with offline-captured geometric templates. In this work, we would
like our robot to handle a variety of objects with significant shape variations and unknown
instances. For example, we might want the robot to organize bottles in (a) into the cabinet
in (b). The manipulation pipeline should handle many different bottles here.

high-quality geometric templates. On the other hand, a lot of works [45, 86, 96, 132, 151]

address robotic grasping for arbitrary objects, and they have shown surprising generaliza-

tion to different objects. However, existing methods have not demonstrated pick and place

manipulation: most of these robot grasping pipelines would only drop the grasped object

into a “target bin”. This is not suitable for our tasks such as “put the mugs upright on the

mug shelf”.

In this chapter, we focus on pose-aware robotic pick and place at a category level.

We want the robot to not only pick up many different mugs, but also place them onto a

mug shelf. Since picking up the object has been addressed by many existing grasping

algorithms [45, 86, 96, 132, 151], the challenge becomes how to perform object placement.

In particular, we need to define the target configuration for many different objects, under

the significant shape variation among them. For instance, we need to specify the target

configuration for mugs in the “put the mugs upright on the mug shelf”, which should be

compatible with many different mug instances.

This is exactly the challenge discussed in Chapter 1.1. In particular, we need a cost
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Figure 3-2: We propose kPAM, a framework for defining and accomplishing category level
manipulation tasks. The key distinction of kPAM is the use of semantic 3D keypoints as
the object representation (a), which enables flexible specification of manipulation targets
as geometric costs/constraints on keypoints. Using this framework we can handle wide
intra-class shape variation (a) and reliably accomplish category-level manipulation tasks
such as perceiving (b), grasping (c), and (d) placing any mug on a rack by its handle. A
video demo for this task is available on this link.

function c built upon the state representation x that encodes the desired configuration of

the objects. Perhaps a straightforward solution would be using 6-DOF pose as the state

x, and this state can be estimated using many existing pose estimation algorithms. With

this pose-based state representation, we can define the desired object configuration as a

target pose, and the cost c is the difference between the current pose and target pose of the

object. However, as detailed in Sec 3.4, representing an object with a parameterized pose

defined on a fixed geometric template may not adequately capture large intra-class shape

or topology variations, and can lead to physical infeasibility for certain instances in the

category.

In this chapter we propose kPAM1: a novel formulation of the category-level pick and

1kPAM stands for KeyPoint Affordances Manipulation
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place manipulation which uses semantic 3D keypoints as the object (state) representation.

An illustrate is provided in Fig. 3-2. This keypoint representation enables a simple and

interpretable specification of the manipulation target as geometric costs and constraints on

the keypoints, which flexibly generalizes existing pose-based manipulation targets. Using

this formulation, we contribute a manipulation pipeline that factors the problem into 1) in-

stance segmentation, 2) 3D keypoint detection, 3) optimization-based robot action planning

4) geometric grasping and action execution. This factorization allows us to leverage well-

established solutions for these submodules and combine them into a general and effective

manipulation pipeline. We demonstrate our method on several hardware robot manipula-

tion tasks. We show its generalization to a variety of objects and this generalization can

achieve accuracy at the level of 1 centimeter.

This chapter is organized as follows. Sec. 3.2 discusses the related works. Sec. 3.3

describes our manipulation formulation. Sec. 3.3.1 introduces the formulation using a con-

crete example, while Sec. 3.3.2 describes the general formulation. Sec. 3.4 compares our

formulation with pose-based pick and place pipelines to highlight the flexibility and gener-

ality of our method. Sec. 3.5 demonstrates our methods on several pose-aware manipulation

tasks and shows generalization to novel instances. Sec. 3.6 concludes.

3.2 Related Works

3.2.1 6-DOF Pose Representations for Pick-and-Place Manipulation

The default solution to the pick and place of a known object is to estimate its 6 DOF pose.

The robot then moves the object from its estimated pose to the target pose. Pose estima-

tion is extensively studied in the computer vision community, as reviewed in Sec. 2.2.1.

Several datasets [142, 147] are annotated with pre-aligned geometric templates, and pose

estimators [115, 142] trained on these datasets can produce a category-level pose estima-

tion. Consequently, a straightforward approach to category-level pose-aware manipulation

is to combine single object pick and place pipelines with these perception systems.

However, pose estimation can be ambiguous under large intra-category shape varia-
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tions, and moving the object to the specified target pose for the geometric template can

lead to incorrect or physically infeasible states for different instances within a category of

objects. For example knowing the pose and size of a coffee mug relative to some canoni-

cal mug is not sufficient to successfully hang it on a rack by its handle. A more technical

discussion is presented in Sec. 3.4.

3.2.2 Grasping Algorithms

Grasping algorithms enable finding stable grasp poses that allow robots to reliably pick

up objects. As reviewed in Sec. 2.2.2, robot grasping planning is extensively studied and

many contributions [45, 86, 96, 151] demonstrate surprising generalization in the Amazon

Picking Challenge. However, in this chapter we would like the robot to achieve purposeful

manipulation by moving the object within a category to some target configuration. This is

a task that requires much more than just being able to find a grasp on the object, and is out

of scope for the robot grasping algorithms.

3.2.3 End-to-End Reinforcement Learning

As reviewed in Sec. 2.2.3, there have been impressive contributions [3, 44] in end-to-end

reinforcement learning with applications to robotic manipulation. In particular, [44] has

demonstrated robotic pick and place across different instances and is the most related to

our work. These end-to-end methods encode a manipulation task into a reward function

and train the policy using trial-and-error.

However, in order to accomplish the category level pose-aware manipulation task, these

end-to-end methods lack a general, flexible, and interpretable way to specify the desired

configuration, which is required for the reward function. In [44], the target configura-

tion is implemented specific to the demonstrated task and object category. Extending it to

other desired configurations, object categories and tasks is not obvious. In this way, using

end-to-end reinforcement learning allows the policy to be learned from experience with-

out worrying about the details of shape variation, but only transfers the burden of shape

variation to the choice and implementation of the reward function. Our proposed object
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Figure 3-3: An overview of our manipulation formulation using the “put mugs upright on
the table” task as an example: (a) we train a category level keypoint detector that produces
two keypoints: pbottom_center and ptop_center. The axis of the mug vmug_axis is a unit vector
from pbottom_center to ptop_center. (b) Given an observed mug, its two keypoints on bottom
center and top center are detected. The rigid transform Taction, which represents the robotic
pick-and-place action, is solved to move the bottom center of the mug to the target location
ptarget and align the mug axis with the target direction vtarget_axis.

representation of 3D keypoints could be used as a solution to this problem.

3.3 Manipulation Formulation

In this section, we describe our formulation of the category level manipulation problem.

Sec. 3.3.1 describes the approach using a concrete example and Sec. 3.3.2 presents the

general formulation.

3.3.1 Concrete Motivating Example

Consider the task of “put the mug upright on the table". We want to come up with a ma-

nipulation policy that will accomplish this task for mugs with different size, shape, texture
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and topology.

To accomplish this task, we pick 2 semantic keypoints on the mugs: the bottom center

pbottom_center and the top center ptop_center, as shown in Fig. 3-3 (a). Additionally, we as-

sume we have a keypoint detector, discussed in Section 3.3.2, that takes raw observations

(typically RGBD images or point clouds) and outputs the 3D locations of the specified

keypoints. Note that there is no restriction that the keypoints be on the object surface, as

evidenced by keypoint ptop_center in Fig. 3-3 (a). The 3D keypoints are usually expressed

in the camera frame, but they can be transformed to an arbitrary frame using the known

camera extrinsics. In the following text, we use p ∈ R3×N to denote the detected keypoint

positions in world frame, where pi is the ith detected keypoint, and N is the total number of

keypoints. In this example N = 2.

For robotic pick-and-place of mostly rigid objects, we represent the robot action as

a rigid transform Taction on the manipulated object. Thus, the keypoints associated with

the manipulated object will be transformed as Taction p ∈ R3×N using the robot action. In

practice, this action Taction is implemented by first grasping the object using the algorithm

detailed in Sec. 3.3.2 and then planning and executing a trajectory which ends with the

object in the desired target location. This trajectory may require approaching the target

from a specific direction, for example in the “mug upright on the table” task the mug must

approach the table from above.

Given the above analysis, the manipulation task we want to accomplish can be formu-

lated as: find a rigid transformation Taction such that

1. The transformed mug bottom center keypoint should be placed at some target loca-

tion:

||Taction pbottom_center− ptarget||= 0 (3.1)

2. The transformed direction from the mug bottom center to the top center should be

aligned with the upright direction. This is encoded by adding a cost to the objective

function

||1−〈vtarget_axis, rot(Taction)vmug_axis〉||2 (3.2)

where rot(T ) is the rotational component of the rigid transformation T , the target
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|1�dot(vtarget axis, rot(Taction)vmug axis)|2 (2)

where rot(T ) is the rotational component of the rigid transformation T , the target
orientation vtarget axis = [0,0,1]T , and

vmug axis = normalize(ptop center � pbottom center) (3)

An illustration is presented in Fig. 2 (b). The problem above is an inverse kinematic
problem with Taction as the decision variable, a constraint given by Equ. (1) and cost
given by Equ. (2). This inverse kinematic problem can be reliably solved using off-the-
shelf optimization solvers such as [5].

3.2 General Formulation

As illustrated using the mug example in Sec. 3.1, we factor the manipulation policy
into 3 subproblems; 1) category level 3D keypoint detection, 2) an optimization prob-
lem to find the robot action Taction and 3) grasping the object (detailed in Sec. 5.2) and
executing the desired robot action Taction. The manipulation goal is defined as a set of
optimization costs and/or constraints expressed in terms of the keypoints. We empha-
size that there is no explicit pose estimation in our manipulation policy. By completely
avoiding pose estimation we do not need to define a template and align it to obser-
vations, a step which is not easy to accomplish across the large variations seen in a
category of objects. In this way we also circumvent many of the challenges involved
with pose estimation based approaches. For instance the symmetry of the mugs in the
example of Sec. 3.1 is handled naturally without any explicit labelling of the symmetry
axis as in [24].

The optimization used to find the desired robot action T ⇤
action can in general be writ-

ten as

minimize:
Taction2SE(3)

f (Taction; p)

subject to:
g(Taction; p) = 0
h(Taction; p)  0

(4)

where f is a scalar cost function, g and h are the equality and inequality constraints, re-
spectively. The robot action Taction is the decision variable of the optimization problem,
and the detected keypoint locations enter the optimization parametrically.

In addition to the constraints used in Sec. 3.1, a wide variety of costs and constraints
can be used in the optimization (4). This allows the user to flexibly specify a wide vari-
ety of manipulation tasks. In practice we found that this specification was rich enough to
cover all of our desired use cases. Although an exhaustive list is infeasible, we present
several costs/constraints used in our experiments:
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Figure 3-4: An overview of the category level pick and place pipeline using our manip-
ulation formulation. Given a RGBD image with instance segmentation, the semantic 3D
keypoints of the object in question are detected. We then feed these 3D keypoints into an
optimization based planning algorithm to compute the robot pick and place actions, which
is represented by a rigid transformation Taction. Finally, we use an object-agnostic grasp
planner to pick up the object and apply the computed robot action.

orientation vtarget_axis = [0,0,1]T , and

vmug_axis =
ptop_center− pbottom_center

||ptop_center− pbottom_center||
(3.3)

An illustration is presented in Fig. 3-3 (b). The above problem is an inverse kinematics

problem with Taction as the decision variable, a constraint given by Eq. (3.1) and cost given

by Eq. (3.2). This inverse kinematics problem can be reliably solved using off-the-shelf

optimization solvers such as [131]. We then pick up the object using robotic grasping

algorithms [45,87,96] and execute a robot trajectory which applies the manipulation action

Taction to the grasped object.

3.3.2 General Formulation

For an arbitrary category level manipulation task we can represent an object using task-

relevant semantic 3D keypoints. The task is then specified via geometric costs and con-

straints on these keypoints, which affords a flexible way of formulating the manipulation

problem. The user selects keypoints, e.g. ptop_center and pbottom_center in the example of

Sec. 3.3.1, together with costs and constraints, e.g. (3.1) and (3.2), which fully specify the

task. Once we have chosen this as the problem specification, there exist natural formula-
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tions for each remaining piece of the manipulation pipeline. This allows us to factor the

manipulation policy into 4 subproblems: 1) object instance segmentation 2) category level

3D keypoint detection, 3) a kinematic optimization problem to determine the manipula-

tion action Taction and 4) grasping the object and executing the desired manipulation action

Taction. An illustration of our complete manipulation pipeline is shown in Fig. 3-4. In the

following sections, we describe each component of our manipulation pipeline in detail.

Instance Segmentation and Keypoint Detection As discussed in Section 3.3.1 the kPAM

pipeline requires being able to detect category-level 3D keypoints from RGBD images of

specific object instances. Here we present a specific approach we used to the keypoint

detection problem, but note that any technique that can detect these 3D keypoints could be

used instead.

We use the state-of-the-art integral network [127] for 3D keypoint detection. For each

keypoint, the network produces a probability heatmap and a depth prediction map as the

raw outputs. The 2-D image coordinates and depth value are extracted using the integral

operation [127]. The 3-D keypoints are recovered using the calibrated camera intrinsic

parameters. These keypoints are then transformed into world frame using the camera ex-

trinsics.

We collect the training data for keypoint detection using a pipeline similar to Label-

Fusion [90]. Given a scene containing the object of interest we first perform a 3D recon-

struction. Then we manually label the keypoints on the 3D reconstruction. We note that

this does not require pre-built object meshes. Keypoint locations in image space can be re-

covered by projecting the 3D keypoint annotations into the camera image using the known

camera calibration. Training dataset statistics are provided in Fig. 3-8 (c). In total labeling

our 117 training scenes took less than four hours of manual annotation time and resulted

in over 100,000 labeled images. Even with this relatively small amount of human label-

ing time we were able to achieve centimeter accurate keypoint detections, enabling us to

accomplish challenging tasks requiring high precision, see Section 3.5.

The keypoint detection network [127] requires object instance segmentation as the in-

put, and we integrate Mask R-CNN [49] into our manipulation pipeline to accomplish this

step. The training data mentioned above for the keypoint detector [127] can also be used to
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train the instance segmentation network [49]. Please refer to the supplemental material for

more detail.

kPAM Optimization The optimization used to find the desired robot action T ∗action can in

general be written as

minimize:
Taction∈SE(3)

f (Taction; p)

subject to:

g(Taction; p) = 0

h(Taction; p)≤ 0

(3.4)

where f is a scalar cost function, g and h are the equality and inequality constraints, respec-

tively. The robot action Taction is the decision variable of the optimization problem, and the

detected keypoint locations enter the optimization parametrically.

In addition to the constraints used in Sec. 3.3.1, a wide variety of costs and constraints

can be used in the optimization (3.4). This allows the user to flexibly specify a wide variety

of manipulation tasks. In practice we found that this specification was rich enough to cover

all of our desired use cases. Although an exhaustive list is infeasible, we present several

costs/constraints used in our experiments:

1. L2 distance cost between the transformed keypoint with its nominal target location:

||Taction pi− ptarget_i||2 (3.5)

This is a relaxation of the target position constraint presented in Sec. 3.3.1.

2. Half space constraint on the keypoint:

〈plane,Taction pi〉 ≤ bplane (3.6)

where nplane ∈ R3 and bplane ∈ R defines the separating plane of the half space. Using

the mug in Sec. 3.3.1 as an example, this constraint can be used to ensure all the

keypoints are above the table to avoid penetration.
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3. The point-to-plane distance cost of the keypoint

||〈nplane,Taction pi〉−bplane||2 (3.7)

where nplane ∈ R3 and bplane ∈ R defines the plane that the keypoint pi should be in

contact with. By using this cost with keypoints that should be placed on the contact

surface, for instance the pbottom_center of the mug in Sec. 3.3.1, the optimization (3.4)

can prevent the object from floating in the air.

4. The robot action Taction should be within the robot’s workspace and avoid collisions.

Robot Grasping Robotic grasping algorithms [45, 87, 96] can be used to apply the ab-

stracted robot action Taction ∈ SE(3) produced by the kPAM optimization (3.4) to the ma-

nipulated object. If the object is rigid and the grasping is tight (no relative motion between

the gripper and object), applying a rigid transformation to the robot gripper will apply the

same transformation to the manipulated object. These grasping algorithms [45, 87, 96] are

object-agnostic and can robustly generalize to novel instances within a given category.

For the purposes of this work we developed a grasp planner which uses the detected

keypoints, together with local dense geometric information from a pointcloud, to find high-

quality grasps. This local geometric information is incorporated with an algorithm similar

to the baseline method of [151]. In general the keypoints used to specify the manipulation

task aren’t sufficient to determine a good grasp on the object. Thus incorporating local

dense geometric information from a depth image or pointcloud can be advantageous. This

geometric information is readily available from the RGBD image used for keypoint detec-

tion, and doesn’t require object meshes. Our grasp planner leverages the detected keypoints

to reduce the search space of grasps, allowing us to focus our search on, for example, the

heel of a shoe or the rim of a mug. Once we know which aspect of the local geometry to

focus on, a high-quality grasp can be found by any variety of geometric or learning-based

grasping algorithms [45, 86, 96].

We stress that keypoints are a sparse representation of the object sufficient for de-

scribing the manipulation task. However grasping, which depends on the detailed local

geoemetry, can benefit from denser RGBD and pointcloud data. This doesn’t detract from
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Figure 3-5: A pose representation cannot capture large intra-category variations. Here we
show different alignment results from a shoe template (blue) to a boot observation (red).
(a) and (b) are produced by [37] with variation on the random seed, and the estimated trans-
formation consists of a rigid pose and a global scale. In (c), the estimated transformation
is a fully non-rigid deformation field in [97]. In these examples, the shoe template and
transformations can not capture the geometry of the boot observation. Additionally, there
may exist multiple suboptimal alignments which make the pose estimator ambiguous. The
subsequent robotic pick and place action from these estimations are different, despite these
alignments being reasonable geometrically.

keypoints as an object representation for manipulation, but rather shows the benefits of

different representations for different pieces of the manipulation pipeline.

3.4 Comparison and Discussions

In this section we compare our approach, as outlined in Sec. 3.3, to existing robotic pick

and place methods that use pose as the object representation.

3.4.1 Keypoint Representation vs Pose Representation

At the foundation of existing pose-estimation methods is the assumption that the geome-

try of the object can be represented as a parameterized transformation defined on a fixed

template. Commonly used parameterized pose families include rigid, affine, articulated or

general deformable. For a given observation (typically an RGBD image or pointcloud),

these pose estimators produce a parameterized transformation that aligns the geometric

template to the observation.
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Reference 
(pose and keypoints) 

Keypoint-based 
transfer 

Pose-based 
transfer (not “on rack”) (“on rack”) 

(a) (b) (c) 

(d) (e) (f) 

(penetrating) (on table) 

Figure 3-6: A comparison of the keypoint based manipulation with pose based manip-
ulation for two different tasks involving mugs. The first row considers the mug on rack
task, where a mug must be hung on a rack by its handle. (a) Shows a reference mug in
the goal state, (b) and (c) show a scaled down mug instance that could be encountered at
test time. (b) uses keypoint based optimization with a constraint on the handle keypoint to
find the target state for the mug. The optimized goal state successfully achieves the task
of hanging the mug on the rack. In contrast (c) shows the scaled mug instance at the pose
defined by (a), which leads to the handle of the mug completely missing the rack, a failure
of the task. The second row shows the task of putting a mug on a table. Again (a) shows
a reference mug in a goal state, (b) - (c) show a scaled up mug that could be encountered
at test time. (b) uses keypoint based optimization with costs/constraints on the bottom and
top keypoints to place the mug in a valid goal state. (c) directly uses the pose from (a) on
the new mug instance which leads to an invalid goal state where the mug is penetrating the
table.

However, the pose representation is not able to capture large intra-category shape vari-

ation. An illustration is presented in Fig. 3-5, where we try to align a shoe template (blue)

to a boot observation (red). Fig. 3-5 (a) and (b) are produced by [37] where the estimated

transformation consists of a rigid pose and a global scale. Fig. 3-5 (c) is produced by [97]

and the estimated transformation is a fully non-rigid deformation field. In these examples,

the shoe template and transformations cannot capture the geometry of the boot observa-

tion. Additionally, there may exist multiple suboptimal alignments which make the pose

estimator ambiguous, as shown in Fig. 3-5. Feeding these ambiguous estimations into a

pose-based manipulation pipeline will produce different pick and place actions and final

configurations of the manipulated object.
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In contrast, we use semantic 3D keypoints as a sparse but task-specific object represen-

tation for the manipulation task. Many existing works demonstrate accurate 3D keypoint

detection that generalizes to novel instances within the category. We leverage these contri-

butions to build a robust and flexible manipulation pipeline.

Conceptually, a pose representation can also be transformed into keypoint representa-

tion given keypoint annotations on the template. However, in practice the transformed key-

points can be inaccurate as the template and the pose cannot fully capture the geometry of

new instances. Using the shoe keypoint annotation in Fig. 3-7 as an example, transforming

the keypoints p5 and p6 to a boot using the shoe to boot alignment in Fig 3-5 would result

in erroneous keypoint detections. A general non-rigid kinematic model (and the associated

estimator) that can handle large variations of shape and topology, such as in the example

of Fig. 3-5, remains an open problem. Our method avoids this problem by sidestepping the

geometric alignment phase and directly detecting the 3D keypoint locations.

3.4.2 Keypoint Target vs Pose Target

For existing pose-based pick and place pipelines, the manipulation task is defined as a target

pose of the objects. For a given scene where the pose of each object has been estimated,

these pipelines grasp the object in question and use the robot to move the objects from their

current pose to the target pose.

The proposed method can be regarded as a generalization of the pose-based pick and

place algorithms. If we detect 3 or more keypoints and assign their target positions as

the manipulation goal, then this is equivalent to pose-based manipulation. In addition,

our method can specify more flexible manipulation problems with explicit geometric con-

straints, such as the bottom of the cup must be on the table and its orientation must be

aligned with the upright direction, see Sec. 3.3.1. The proposed method also naturally

generalizes to other objects within the given category, as the keypoint representation ig-

nores many task-irrelevant geometric details.

On the contrary a pose target is object-specific and defining a target pose at the category

level can lead to manipulation actions that are physically infeasible. Consider the mug on
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Figure 3-7: An overview of our experiments. (a) and (b) are the semantic keypoints we
used for the manipulation of shoes and mugs. We use three manipulation tasks to evaluate
our pipeline: (c) put shoes on a shelf; (d) put mugs on a mug shelf; (e) hang mugs on a rack
by the mug handles. The video of these experiments are available on this link.

table task from Section 3.3.1. Fig. 3-6 (d) shows the target pose for the reference mug

model. Directly applying this pose to the scaled mug instance in Fig. 3-6 (f) leads to

physically infeasible state where the mug is penetrating the table. In contrast, using the

optimization formulation of Section 3.3 results in the mug resting stably on the table, shown

in Fig. 3-6 (e).

In addition to leading to states which are physically infeasible, pose-based targets at a

category level can also lead to poses which are physically feasible but fail to accomplish

the manipulation task. Figures 3-6 (a) - (c) show the mug on rack task. In this task the

goal is to hang a mug on a rack by its handle. Fig. 3-6 (a) shows the reference model

in the goal state. Fig. 3-6 (c) shows the result of applying the pose based target to the

scaled down mug instance. As can be seen even though the pose unambiguously matches

the target pose exactly, this state doesn’t accomplish the manipulation task since the mug

handle completely misses the rack. Fig. 3-6 (b) shows the result of our kPAM approach.

Simply by adding a constraint that handle center keypoint should be on the rack, a valid

goal state is returned by the kPAM optimization.
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# test 
objects

# Trials Placed on shelf Heel Error (cm) Toe Error (cm)

20 100 98% 1.09 ± (1.29) 4.34 ± (3.05)

Initial
Orientation

# test objects # Trials Placed upright on 
shelf

< 3cm 
error

< 5cm 
error

Upright 40 80 100% 97.5% 100%

Horizontal 19 38 97.3% 89.4% 94.7%

Mug Size # test objects # Trials Success Rate

Regular 25 100 100%

Small 5 20 50%

(d) Shoes on Rack

(e) Mugs on Shelf

(f) Mugs on Rack

(a) Test Shoes

(b) Test Mugs

Object Type # train objects # scenes # images

Shoe 10 43 39,403

Mug 21 74 70,094

(c) Training dataset statistics

Figure 3-8: Quantitative results from the 3 hardware experiments. (a) and (b) show some
of the test objects for the experiments. (c) statistics of the training data (d) We report the
average heel and toe errors (along the horizontal direction) from their desired locations
as well as the standard deviation. (e) The reported errors for the mug on shelf task are
the distance from the bottom center keypoint to the target location of that keypoint in the
optimization program. (f) reports success rates for the mug on rack task for different sized
mugs. Mugs with handles having either height or width less than 2cm are classified as
“small” (more details in supplementary material). A trial was deemed successful if the
mug ended up hanging on the rack by the mug handle. Videos of the experiments are
available on this link.

3.5 Experiments

In this section, we demonstrate a variety of pose-aware pick and place tasks using our

keypoint-based manipulation pipeline. The particular novelty of these demonstrations is

that our method is able to handle large intra-category variations without any instance-wise

tuning or specification. We utilize a 7-DOF robot arm (Kuka IIWA LBR) mounted with a

Schunk WSG 50 parallel jaw gripper. An RGBD sensor (Primesense Carmine 1.09) is also

mounted on the end effector. The video demo on this link best demonstrates our solution

to these tasks. More details about the experimental setup are in the Appendix A.
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3.5.1 Put Shoes on a Shoe Rack

Task Description Our first manipulation task is to put shoes on a shoe rack, as shown in

Fig. 3-7 (c). We use shoes with different appearance and geometry to evaluate the generality

and robustness of our manipulation policy. The six keypoints used in this manipulation task

are illustrated in Fig 3-7 (a), and the costs and constraints in the optimization (3.4) are

1. The L2 distance cost (3.5) between keypoints p1, p2, p3 and p4 to their nominal

target locations.

2. The sole of the shoe should be in contact with the rack surface. In particular, the

point-to-plane cost (3.7) is used to penalize the deviation of keypoints p2, p3 and p4

from the supporting surface.

3. All the keypoints should be above the supporting surface to avoid penetration. A

half-space constraint (3.6) is used to enforce this condition.

Experimental Results The shoe keypoint detection network was trained on a labeled

dataset of 10 shoes, detailed in Figure 3-8 (c). Experiments were conducted with a held out

test set of 20 shoes with large variations in shape, size and visual appearance (more details

in the video and supplemental material). For each shoe we ran 5 trials of the manipulation

task. Each trial consisted of a single shoe being placed on the table in front of the robot.

Using the kPAM pipeline the robot would pick up the shoe and place it on a shoe rack. The

shoe rack was marked so that the horizontal deviation of the shoe’s toe and heel bottom

keypoints (p1 and p4 respectively in Fig. 3-7) from their nominal target locations could be

determined. Quantitative results are given in Fig. 3-8 (d). Out of 100 trials only twice did

the pipeline fail to place the shoe on the rack. Both failures were due to inaccurate keypoint

detections. One led to a failed grasping and another to an incorrect Taction. For trials which

ended up with the shoe on the rack average errors for the heel and toe keypoint locations

are given in Fig. 3-8 (d). During the course of our experiments we noticed that the majority

of these errors come from the fact that when the robot grasps the shoe by the heel the

closing of the gripper often results in the object shifting from the position it was in when

the RGBD image used for keypoint detection was captured. This accounts for the majority
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(a) (b) 

Figure 3-9: An interesting failure case of our pipeline performing the “put mugs on a shelf
task”. The input RGBD image is shown in (a), and the keypoint detector confuses the mug
top with bottom. As a result, the pipline places the mug to the target configuration upside
down.

of the errors observed in the final heel and toe keypoint locations. The keypoint detections

and resulting Taction would have almost always results in heel and toe errors of less than 1

cm if we were able to exactly apply Taction to the object. Since our experimental setup relies

on a wrist mounted camera we are not able to re-perceive the object after grasping it. We

believe that these errors could be further reduced by adding an external camera that would

allow us to re-run our keypoint detection after grasping the object to account for any object

movement during the grasp. Overall kPAM approach was very successful at the shoes on

rack task with a greater than 97% success rate.

3.5.2 Put Mugs upright on a Shelf

Task Description We also perform a real-world demonstration of the “put mugs upright

on a shelf" task described in Sec. 3.3.1, as shown in Fig. 3-7 (d). The keypoints used in this

task are illustrated in Fig. 3-7 (b). The costs and constraints for this task include the target

position constraint (3.1) and the axis alignment constraint (3.2). If a target orientation is

also specified w.r.t the yaw axis of the mug, we also add an L2 cost (3.5) between the

phandle_center keypoint with its target location. This task is similar to the mugs task in [44].

Experimental Results The mug keypoint detection network was trained on a dataset of

21 standard sized mugs, detailed in Fig. 3-8 (c). Experiments for the mug on shelf task

were conducted using a held out test set of 40 mugs with large variations in shape, size and
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visual appearance (more details in the video and supplemental material). All mugs could

be grasped when in the upright orientation, but due to the limited stroke of our gripper

(7.5cm when fully open) only 19 of these mugs could be grasped when lying horizontally.

For mugs in that could be grasped horizontally we ran two trials with the mug starting

from a horizontal orientation, and two trials with the mug in a vertical orientation. For

the remaining mugs we ran two trials for each mug with the mug starting in an upright

orientation. Quantative performance was evaluated by recording whether the mug ended

up upright on the shelf, and the distance of the mug’s bottom center keypoint to the target

location. Results are shown in Fig. 3-8 (e). Overall our system was very reliable, managing

to place the mug on the shelf within 5cm of the target location in all but 2 trials. In one of

these failures the mug was placed upside down. In this case the mug was laying horizontally

on the table and the RGB image used in keypoint detection was taken from a side-on profile

where the handle is occluded and it is very difficult to tell the top from the bottom of the

mug. This led our keypoint detector to mix up the top and bottom of the mug, causing it to

be placed upside down as shown in Fig. 3-9. The keypoint detection error is understandable

in this case since it is very difficult to distinguish the top from the bottom of this mug in

the single RGBD image. In addition this particular instance was a small kids sized mug,

whereas all the training data for mugs contained only regular sized mugs.

Overall the accuracy in the mug on shelf task was very high, with 97% of upright trials,

and 88% of horizontal trials resulting in bottom keypoint final location errors of less than

3cm. Qualitatively the majority of this error arose from the object moving slightly during

the grasping process with the rest attributed to the keypoint detection.

3.5.3 Hang the Mugs on the Rack by their Handles

Task Description To demonstrate the accuracy and robustness of our method we tasked

the robot with autonomously hanging mugs on a rack by their handle. An illustration of

this task is provided in Fig. 3-7 (f). The relatively small mug handles (2-3 centimeters)

challenge the accuracy of our manipulation pipeline. The costs and constraints in this task

are
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1. The target location constraint (3.1) between phandle_center to its target location on the

rack axis.

2. The keypoint L2 distance cost (3.5) from ptop_center and pbottom_center to their nominal

target locations.

In order to avoid collisions between the mug and an intermediate goal for the mug was

specified. Using the notation of (3.4) this intermediate goal Tapproach was gotten by shifting

Taction away from the rack by 10cm along the direction of the target peg. We then executed

the final placement by moving the end effector in a straight line connecting Tapproach to

Taction.

Experimental Results For the mug on rack experiments we used the same keypoint de-

tection network as for the mug on shelf experiments. Experiments were conducted using a

held out test set of 30 mugs with large variation in shape, texture and topology. Of these 5

were very small mugs whose handles had a minimum dimension (either height or width) of

less than 2cm (see the supplementary material for more details). We note that the training

data did not contain any such “small” mugs. Each trial consisted of placing a single mug

on the table in front of the robot. Then the kPAM pipeline was run and a trial was recorded

as successful if the mug ended up hanging on the rack by its handle. 5 trials were run for

each mug. Quantitative results are given in Fig. 3-8 (e). For regular sized mugs we were

able to hang them on the rack with a 100% success rate. The small mugs were much more

challenging but we still achieved a 50% success rate. The small mugs have very tiny han-

dles, which stresses the accuracy of the entire system. In particular the total error of the

keypoint detection, grasping and execution needed to successfully complete the task was

on the order of 1-1.5 cm. Two main factors contributed to failures in the mug on rack task.

The first, similar to the case of shoe on rack task, is that during grasping the closing of the

gripper often moves the object from the location at which it was perceived. Even a small

disturbance (i.e. < 1cm) can lead to a failure in the mug on rack task since the required

tolerances are very small. The second contributing factor to failures is inaccurate keypoint

detections. Again an inaccurate detection of even 0.5-1cm can be sufficient for the mug

handle to miss the rack entirely. As discussed previously, the movement of the object dur-
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ing grasping could be alleviated by the addition of an external camera that would allow us

to re-perceive the object after grasping.

3.6 Conclusion

In this chapter we propose a novel formulation of category-level manipulation which uses

semantic 3D keypoints as the object representation. Using keypoints to represent the object

enables us to simply and interpretably specify the manipulation target as geometric costs

and constraints on the keypoints, which flexibly generalizes existing pose-based manipula-

tion methods. This formulation naturally allows us to factor the manipulation policy into

the 3D keypoint detection, optimization-based robot action planning and grasping based

action execution. By factoring the problem we are able to leverage advances in these sub-

problems and combine them into a general and effective perception-to-action manipulation

pipeline. Through extensive hardware experiments, we demonstrate that our pipeline is

robust to large intra-category shape variation and can accomplish manipulation tasks re-

quiring centimeter level precision.
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Chapter 4

kPAM-SC: Generalizable Manipulation

Planning using Shape Completion

4.1 Introduction

In Chapter 3, we propose a keypoint-based object (state) representation and demonstrate it

on several challenging manipulation tasks. Chapter 3 mainly focuses on the reasoning of

desired object configurations which generalizes to new objects. In this chapter, we study

the generalizable manipulation planning problem: the pipeline should compute robot tra-

jectories that move a set of objects to their target configuration while satisfying physical

feasibility constraints. In contrast to existing works that assume known object templates,

we are interested in manipulation planning for a category of objects with potentially un-

known instances and large intra-category shape variations. To achieve it, we need an object

representation with which the manipulation planner can reason about both the physical

feasibility and desired object configuration, while being generalizable to novel instances.

Existing manipulation planners [39, 58, 117, 133] are built upon the 6-DOF pose rep-

resentation of the manipulated objects. However as detailed in Chapter 3, 6-DOF pose

cannot handle large intra-category shape variations. Consequently, in Chapter 3 we pro-

pose an object representation consists of semantic 3D keypoints, which provides a concise

way to specify the target configuration for many objects. Although this approach has suc-

cessfully accomplished several challenging manipulation tasks, it lacks the complete and
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dense geometric information of the object. Thus, the kPAM pipeline in Chapter 3 cannot

reason about physical properties such as the collision, static equilibrium, visibility, and

grasp stability of the planned robot action, despite their practical importance in robotic

applications. As a result, we need to manually specify various intermediate robot configu-

rations to ensure the robot action is feasible, which can be labor-intensive and sub-optimal.

Furthermore, the pipeline can be overly confident in physically infeasible robot trajectories

and send them for execution, which is rather dangerous.

Building on Chapter 3, in this chapter we resolve this limitation with a new hybrid

object representation which combines both (i) semantic 3D keypoints and (ii) full dense

geometry (a point cloud or mesh). The dense geometry is obtained by leveraging well-

established shape completion algorithms [92, 104, 155], which generalize well to novel

object instances. With the combined dense geometry and keypoints as the object represen-

tation, we formulate the manipulation task as a motion planning problem that can encode

both the object target configuration and physical feasibility for a category of objects. This

motion planning problem can be solved by a variety of existing planners and the resulting

robot trajectories can move the objects to their target configuration in a physically feasible

way. The entire perception-to-action manipulation pipeline is robust to large intra-category

shape variation. Extensive hardware experiments demonstrate our method can reliably ac-

complish manipulation tasks with never-before-seen objects in a category.

The contribution of this chapter is twofold. Conceptually, we introduce a hybrid object

representation consists of dense geometry and keypoints as the interface between the per-

ception module and planner. This representation has similar functionalities with existing

6-DOF pose representation with templates, while the generalizability to novel instances

makes it a promising alternative. On the perspective of implementation, we contribute a

novel integration of shape completion with the keypoint detection and manipulation plan-

ning. This integration enables many existing manipulation planners, either optimization-

based methods [117, 133] or sampling-based approaches [39, 125], to handle a category of

objects in a unified and precise way.

This chapter is organized as follows. Sec. 4.2 reviews the related works. Sec. 4.3

discusses the overall manipulation pipeline and its components. Sec. 4.4 presents experi-
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Figure 4-1: An overview of the proposed hybrid object representation for category-level
manipulation planning. We exploit a hybrid object representation consists of semantic
keypoints and dense geometry. The semantic keypoint are used to specify the desired object
target configuration, while the dense geometry is used to ensure the physical feasibility of
the planned robot action. Benefit from advances in learning based keypoint detection and
shape completion, the proposed object representation can be obtained from raw images,
and the resulting perception-to-action pipeline generalizes to novel instances within the
given category.

mental results on a hardware robot and show our method is able to reason about physical

feasibility for a category of objects despite large intra-category shape variation. Sec. 4.5

concludes this chapter.

4.2 Related Work

4.2.1 Pose-based Manipulation Planning

For most manipulation planner, the object pose is the default interface between the from

the perception module: the perception module estimates the pose from raw sensor inputs;

the planner takes the estimated pose as input and plans robot actions. it is typically as-

sumed that the planner has access to the geometric template of the object. Researchers

have made various contributions on the manipulation planning algorithms, as reviewed in

Sec. 2.1. System contributions [16, 61] integrate state-of-the-art pose estimators with tra-

jectory planners to build fully functional manipulation pipelines and solve real-world tasks

such as packing and assembly.
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However as mentioned in Sec. 3.4, pose estimation can be ambiguous under large intra-

category shape variations, and using one geometric template for motion planning and object

target specification can lead to physically infeasiblity for other instances. Thus, pose-based

object representation is not suitable for manipulation planning of many different objects.

4.2.2 Grasping and Manipulation with Shape Completion

Robot grasp planning is the task of computing a stable grasp pose that allows the robot

to reliably pick up the object. A detailed discussion of grasp planning algorithms is pre-

sented in Sec. 2.2.2. As the geometry obtained from typical RGBD sensors are noisy and

incomplete, several works on grasp planning [85, 106, 138, 140, 143] combine shape com-

pletion with grasping planning for improved performance and robustness. Some of these

methods [85, 140] estimate the grasp quality based on geometric information such as an-

tipodal points or surface normal, using the completed geometry instead of raw sensory ob-

servation. [106] also shows shape completion can improve the performance of robot object

searching.

In this work, we are interested in category-level robotic manipulation planning. This

task requires reasoning about both the desired object configuration and physical feasibility,

and is out of the scope for the above-mentioned methods.

4.3 Manipulation Pipeline

As illustrated in Fig. 4-2, we use the hybrid object representation consists of dense ge-

ometry and keypoints as the interface between the perception and planning modules. The

semantic keypoints are designated manually and used to specify the object target configura-

tion, while the dense geometry is used to ensure the physical feasibility of the planned robot

action. The perception part includes shape completion and keypoint detection, which is de-

tailed in Sec. 4.3.1. The manipulation planning and grasp planning that use the perceived

results are presented in Sec. 4.3.2 and Sec. 4.3.3, respectively.
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Figure 4-2: An overview of the manipulation pipeline. The hybrid object representation
consists of dense geometry and keypoint is used as the interface between the perception
module and manipulation planner. Given a RGBD image with instance segmentation, we
perform shape completion and keypoint detection to obtain dense geometry and 3D key-
points, respectively. Then, the perception result is used to plan robot trajectories that move
the objects to their desired configurations while satisfying physical constraints. Semantic
keypoints are used to specify the object target configuration, while dense geometry is used
to ensure the physical feasibility of the planned robot action.

4.3.1 Perception

The task of perception is to produce the proposed hybrid object representation from raw

sensor inputs, which consists of 3D keypoints and dense geometry (point cloud or mesh).

For 3D keypoints we adopt the method in our previous work kPAM [88], and this subsection

would mainly focus on the perception of dense geometry. For dense geometry, we leverage

recent advances in shape completion to obtain a complete point cloud or mesh of the object.

Note that although we present specific approaches used in our pipeline, any technique for

keypoint detection and shape completion can be used instead.

We use the state-of-the-art ShapeHD network [155] for 3D shape completion. ShapeHD

is a fully convolutional network that takes RGBD images as input and predicts 3D volu-

metric occupancy. Then the completed point cloud can be extracted by taking the occupied

voxel. If the object mesh is required, triangulation algorithms such as marching cubes can

be used. The completed geometry are aligned with the observed object (viewer-centered

in [155]) and expressed in the camera frame, we can further transform it into the world

frame using the calibrated camera extrinsic parameters.
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The shape completion network requires training data consists of RGBD images and

corresponding ground-truth 3D occupancy volumes. We collect training data using a self-

supervised method similar to LabelFusion [90]. Given a scene containing one object of

interest we first perform 3D reconstruction of that scene. Then, we perform background

subtraction to obtain the reconstructed mesh of the object. Finally, we can get the occu-

pancy volume by transforming the reconstructed mesh into camera frame and voxelization.

Note that the data generation procedure does not require pre-built object template or human

annotation. In our experiment, we scan 117 training scenes and collect over 100,000 pairs

of RGBD images and ground-truth 3D occupancy volumes within four hours. Even with

small amount of data we were able to achieve reliable and generalizable shape completion,

some qualitative results are shown in Sec. 4.4.2.

4.3.2 Manipulation Planning

The manipulation planning module produces the robot trajectories given the perception

result. As mentioned in Sec. 4.3, we represent an object o j by its 3D semantic keypoints

p j ∈ R3×N and dense geometry (point cloud or mesh), where 1 ≤ j ≤ M and M is the

number of objects.

Following many existing works [39, 47, 125], we assume that the robot can change the

state of an object only if the object is grasped by the robot. Furthermore, we assume the

object is rigid and the grasp is tight. In other words, there is no relative motion between

the gripper and the grasped object. Both the semantic keypoints and dense geometry would

move with the robot end-effector during grasping. To achieve this, we need a grasp planner

which is discussed in Sec. 4.3.3.

Given the object representation, the concatenated configuration for robot and objects at

time t is defined as X t = [ot
1, ...,o

t
M,qt ], where 1 ≤ t ≤ T , T is the number of time knots
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and qt is the robot joint configuration. The general planning problem can be written as

minimize:
X1,...,XT

f (X1, ...,XT ) (4.1)

subject to: g(X1, ...,XT )≤ 0 (4.2)

h(X1, ...,XT ) = 0 (4.3)

where f is the objective function, g and h are the concentrated inequality and equality

constraints. If optimization-based planning algorithms [117, 131] are used to solve the

problem (4.1), f , g and h should be differentiable. On the other hand, many sampling-based

planners [62,75] or TAMP algorithms [39,60] only need a binary predicate on whether the

constraint is satisfied.

Using the proposed object representation consist of semantic 3D keypoints and dense

geometry, the key benefit is that the motion planner can handle a category of objects with-

out instance-wise tuning. In the following text, we discuss several important costs and

constraints that are related to the object representation.

Object Target Configuration Let pt
j be the keypoints of the object o j at the time t, where

1≤ t ≤ T . The target configuration of an object o j can be represented as a set of costs and

constraints on its semantic keypoint pT
j , where T is the terminal time knot. For instance, to

place the mug at some target location ptarget as illustrated in Fig. 4-1, we need an equality

constraint

||pT
bottom_center− ptarget||= 0 (4.4)

where pT
bottom_center is the mug bottom-center keypoint expressed at time T . Note that this

constraint can handle mugs with different size, shape and topology. Many other costs and

constraints can be used to specify the object target configuration. Please refer to kPAM [88]

for more details.

Collision Avoidance The dense geometry information from shape completion can be used

to ensure the planned trajectory is collision-free. Specifically, let Br denote the set of rigid

bodies of the objects, robot and environment, where the geometry of objects are obtained
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using shape completion. We need to ensure

signed_distance(X t ;bi,b j)≥ δsafe (4.5)

for bi ∈ Br, b j ∈ Br, i 6= j, 1≤ t ≤ T (4.6)

where δsafe is a threshold, signed_distance(X t ;bi,b j) is the signed distance [117] between

the pair of rigid body (bi,b j) at the configuration X t . Practically, it is usually unnecessary

to check the collision of every rigid body pairs, as most rigid bodies except the grasped

object and robot end-effector have limited movement.

Geometric Predicates In many planning algorithms [48, 133], geometric predicates are

used to model the geometric relationship between the objects and the environment. Al-

though these predicates are typically proposed in the context of known objects with ge-

ometric templates, they can benefit from shape completion and naturally generalize to a

category of objects. Here we summarize several examples used in these manipulation plan-

ners.

• The static stability constraint enforces that the object placement surfaces are aligned

with one of the environment placement regions. To use this predicate, it is required to

extract the surfaces on the object that afford placing from the object dense geometry.

Please refer to [48] for more details.

• The visibility constraint requires the line segments from the sensor to the object are

not blocked by other objects or the robot. In other words, the manipulate object

should not block or be blocked by other objects.

• The containment constraint enforces the convex hull of an object is included in a

container. This constraint needs the convex hull of the object, which can be computed

using the dense geometry from shape completion.

4.3.3 Grasping

The grasp planning module is responsible to compute a grasp pose that allows the robot to

stably pick up and transfer the object. Various algorithms [45, 87, 96] have been proposed
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Figure 4-3: An overview of our experiments. (a) and (b) are the shoes and mugs used
to test the manipulation pipeline. Note that both the shoes and mugs contain substantial
intra-category shape variation. We use three manipulation tasks to evaluate our method:
(c) put shoes on a shelf; (d) put mugs in a container; (e) hang mugs on a rack by the mug
handles. Readers are recommended to visit our this link to watch the video demo.

for grasp planning. Some of them [85,140,143] are built upon shape completion and can be

easily integrated into our pipeline. These algorithms are object-agnostic and can robustly

generalize to novel instances within a given category.

4.4 Results

In this section, we demonstrate a variety of manipulation tasks using our pipeline. The

particular novelty of these demonstrations is that our method can automatically plan robot

trajectories that handle large intra-category variations without any instance-wise tuning or

specification. The video demo and source code are available on our this link.

4.4.1 Experiment Setup and Implementation Details

We use 8 shoes and 10 mugs to test the manipulation pipeline, as illustrated in Fig. 4-

3. Note that both shoes and mugs have substantial intra-category shape variation. The
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Figure 4-4: The qualitative results for shape completion. (a) is the input RGB image. (b)
and (c) are the dense geometry from shape completion in two viewing directions. (d) com-
pares the point cloud from depth image and shape completion: the depth image point cloud
is in blue while shape completion is in red. Although the completed geometry contains
small holes and defects, the accuracy is sufficient for many manipulation tasks.

Table 4.1: Training Data Statistics

Object Type # Train Objects # Scenes # Images

Shoe 12 51 41056

Mug 21 74 70094

keypoints same as Chapter 3 are used to define the target configuration of the shoe and mug.

The statistics of the training objects is shown in Table 4.1. The robot setup is identical to

Chapter 3.

The drake library [131], which implements optimization based motion planning, is used

for manipulation planning. The costs and constraints include object target configuration

and collision avoidance. For the purpose of this work, we use a fixed contact-mode se-

quence consists of picking, transferring and placing of the object, as the scheduling of

contact-mode sequences is the main focus of task-level planning. We emphasize that the

proposed object representation and manipulation pipeline are agnostic to the concrete plan-

ning algorithm that solves (4.1). Many motion planners, either optimization-based meth-

ods [117, 133] or sampling-based approaches [39, 125], can be plugged in and used.
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Figure 4-5: Pose representation cannot capture large intra-category variations. (a) and (b)
show two alignment results by [37] (variation on the random seed), where we attempt to
register the mug template (d) into the observation (c). Using these pose estimation results
for manipulation planning can lead to physically infeasibility, as the rigid transformation
defined on the mug template (d) cannot capture the geometry of mug (c). Additionally,
there may exist multiple suboptimal alignments which make the pose estimator ambiguous.

4.4.2 Perception and Comparison with Pose Estimation

In this subsection, we provide results of shape completion and compare it with the widely-

used 6-DOF pose representation. Fig. 4-4 shows several completed dense geometry for

representative mugs. The network takes input from images in Fig. 4-4 (a) and produces

the dense geometries in Fig. 4-4 (b) and (c). Fig. 4-4 (d) compares the point cloud from

depth images and shape completion. Although the completed geometry contains small

holes and defects, the accuracy is sufficient for many manipulation tasks. Note that the

network generalizes to instances with substantial variations on geometry and topology.

In contrast, pose estimation can be ambiguous and fail to capture large shape variations.

An illustration is provided in Fig. 4-5. where the pose estimator in [37] is used to align

two mugs. Using dense geometry from pose estimation can lead to undetected physically

infeasibility, as shown in Sec. 4.4.5.

4.4.3 Manipulation Task Specifications

We use the following three manipulation tasks to test our pipeline:

1) Put shoes on a shelf: The first manipulation task is to put shoes on a shoe shelf, as

shown in Fig. 4-3 (c). The final shoe configuration should be in alignment with the shelf.
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Table 4.2: Robot Experiment Statistics

Task #Trails #Failure #Planning 
Failure

#Grasp 
Failure

#Execution 
Failure

shoe2shelf 50 14 12 2 0

mug2container 50 10 9 0 1

mug2rack 50 15 10 0 5

Table 4.3: False-Negative (Overly Confident, see Sec. 4.4.5) Statistics

Manipulation 
Pipeline #Trails #False Negative 

(Overly Confident)
False Negative 

Rate
6-DoF Pose 50 19 38%

kPAM 50 9 18%
Ours 50 1 2%

The manipulation pipeline has the pre-built template of the robot and the shoe rack, but

need to deal with shoes with different appearance and geometry.

2) Place mugs into a container: The second manipulation task is to place mugs into a

box without colliding with it, as shown in Fig. 4-3 (d). The mug should be upright and its

handle should be aligned with the container.

3) Hang mugs on a rack: The last manipulation task is to hang mugs onto a mug rack by

the mug handle, as shown in Fig. 4-3 (e). The geometry and position of the mug rack are

available to the pipeline.

Note that although task 1) and 3) have been performed in Chapter 3, it uses various

manually-specified robot trajectories. This manual specification has two major limitations:

1) it is labor-intensive and can hardly scale to more complex environments and manip-

ulation tasks; 2) the pipeline tends to be overly confident, as it cannot detect physical

infeasibility without dense geometry. A comparison is made in Sec. 4.4.5.

4.4.4 Result and Failure Mode

The video demo is on this link. The statistics about three different tasks is summarized

in Table. 4.2. Most failure cases result from the failure of the motion planner. Since the
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motion planner used in this work uses non-convex optimization internally, it can be trapped

in bad local minima without a good initialization. This problem can be resolved by us-

ing sampling-based motion planners such as RRT or RRT*. These planners are globally

optimal, although they need longer running time.

The grasp failure in Table. 4.2 means (1) the robot fails to grasp the object; or (2)

the relative motion between the gripper and the grasped object is too large. The relative

motion may occur during the grasping, or when the object is not rigid. This problem could

be alleviated by the addition of an external camera that would allow us to re-perceive the

object after grasping.

The execution failure in Table. 4.2 refers to the situations such that (1) the robot makes

collision (despite the planning is successful); or (2) the object is not placed into the target

configuration. This problem necessitates the execution monitoring described in [24].

4.4.5 Comparison with Alternative Pipelines

In this subsection, we compare our method with two alternative manipulation pipelines: 1)

a manipulation pipeline based on 6-DOF pose with a geometric template; 2) the original

kPAM pipeline. For the 6-DOF pose based manipulation pipeline, we use the same pose

estimator as the baseline (Fig. 4) in kPAM: first initialize the alignment with detected key-

points, then perform ICP fitting between the observed point cloud and geometric template

to get the 6-DOF pose.

Without an accurate characterization of the dense geometry, these alternatives suffer

from false-negative (overly-confidence): the resulted robot trajectory can be physically in-

feasible even if the pipeline claims both the perception and planning succeed. Note that this

false-negative is much more adversarial than the planning failure in Table. 4.2 (Sec. 4.4.4).

When the planner fails the pipeline would be stopped and it is still safe. In contrast, when

false-negative happens the unsafe trajectory would be sent to the robot for execution, which

is rather dangerous.

Table. 4.3 summarizes the false-negative rate of all three methods on the “mug2container”

task. We mark a trail as “false-negative” if the pipeline claims perception and planning suc-
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ceeds, but the resulted trajectory leads to a collision. The false-negative rates of the two

alternatives are much higher than our method, which implies our method is much safer.

This highlights the benefit of accurate characterization of dense geometry and the integra-

tion of shape completion into the manipulation pipeline.

4.5 Conclusions

In this chapter, we focus on manipulation planning of a category of objects, where the

robot should move a set of objects to their target configuration while satisfying physical

feasibility. This is challenging for existing manipulation planners as they assume known

object templates and 6-DOF pose estimation, which doesn’t generalize of novel instances

within the category. Thus, we propose a new hybrid object representation consists of se-

mantic keypoints and dense geometry as the interface between the perception module and

planning module. On the perspective of implementation, we contribute a novel integration

of shape completion with keypoint detector and manipulation planner. In this way, both

the perception and planning module generalizes to novel instance. Extensive hardware

experiments demonstrate our manipulation pipeline is robust to large intra-category shape

variation.
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Chapter 5

kPAM 2.0: Feedback Control for

Generalizable Manipulation

5.1 Introduction

In this chapter we focus on generalizable, closed-loop manipulation for contact-rich tasks.

We have seen pick-and-place manipulation that can handle a variety of objects in our pre-

vious works (Chapter 3 and 4). However, these prior works are open-loop: once the action

has been planned, the robot would close the eye and simply follow the action. Open-loop

manipulation policies are not suitable for tasks such as using a screwdriver or peg-hole

insertion, where the control action must be regulated online with both visual and proprio-

ceptive measurements. In this chapter, we aims at a manipulation framework that is capable

of performing these types of contact-rich tasks, while being generalizable to a category of

objects with potentially unknown instances with different shapes, sizes, and appearances.

Furthermore, the framework should be able to handle different initial object configurations

and robot grasp poses for practical applicability.

Contributions on visuomotor policy learning exploit neural network policies trained

with data-driven algorithms [31,77,139,156], and many interesting manipulation behaviours

emerge from them. However, how to efficiently generalize the trained policy to unseen

objects, different initial object configurations, camera positions and/or robot grasp poses

remains an active research problem. On the other hand, several vision-based closed-loop
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(a) (d)(c)(b)

Figure 5-1: In this chapter we explore generalizable, perception-to-action robotic manipu-
lation for contact-rich tasks that can automatically handle a category of objects with large
intra-category shape variation. Here we demonstrate: (a) wiping a whiteboard using erasers
with different shape and size; (b)-(d) Peg-hole insertion for (b) 0.2 [mm] tight tolerance
pegs and holes, (c) LEGO blocks and (d) USB ports. The particular novelty of these
demonstrations is that our method automatically handle objects under significant intra-
category shape variation (top row) without any instance-wise tuning, for each task (a)-(d).
The video demo is on https://sites.google.com/view/generalizable-feedback/home.

manipulation pipelines [56, 61, 100] use 6-DOF pose as the object representation. They

build a feedback loop on top of a real-time pose estimator. However, as detailed in Sec. 4

of Chapter 3, representing an object with a parameterized pose defined on a fixed geometric

template, as these works do, may not adequately capture large intra-class shape or topology

variations. Thus, in Chapter 3 (kPAM) we use semantic 3D keypoints as the object rep-

resentation instead of 6-DOF pose. kPAM assumes an arbitrary rigid transformation can

be applied to the object. This assumption is not true for contact-rich tasks in this work:

although peg-hole insertion is eventually a rigid transformation of the peg, it is not easy to

“apply” this rigid transformation.

In this chapter, we contribute a novel manipulation framework that is capable of precise,

contact-rich manipulation for a category of objects, despite large intra-category variations

in shapes, sizes and appearances. To achieve this, we adopt and extend the keypoint-based

object representation in Chapter 3 for pick-and-place. We first augment keypoints with

local orientation information. Using the oriented keypoint, we propose a novel object-

centric action representation as the linear/angular velocity or force/torque of an oriented
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keypoint. This action representation enables closed-loop policies and contact-rich tasks,

despite intra-category shape and size variations of manipulated objects. Using the object

and action representation, we further introduce the processing of force/torque measurement

for a category of objects, the re-targeting to different initial object configuration, and sig-

nificant simplification of the kPAM pick-and-place pipeline. Moreover, our framework is

also agnostic to robot grasp poses, enabling flexible integration with grasp planners.

Another desirable property of our framework is the extendibility. As shown in Sec. 5.3.2,

our framework includes a perception module and a feedback agent, establishes their inter-

faces but leaves the room for their actual implementation. Thus, various existing model-

based or data-driven algorithms for perception and control can potentially be plugged into

our framework and automatically generalize to new objects and task setups, as long as the

proposed object and action representation are used as their input/output.

Our framework is instantiated and implemented on a hardware robot. We demonstrate

several contact-rich manipulation tasks that requires precision and dexterity for a category

of objects, such as peg-hole insertion for pegs and holes with significant shape variations

and tight clearance.

This chapter is organized as follows. Sec. 5.2 review related works. Sec. 5.3 describes

our formulation of the closed-loop manipulation framework. Sec. 5.4 show the orientation

information can significantly simplify the kPAM pipeline for category-level pick-and-place

manipulation. Sec. 5.5 discusses our implementation of the perception module. Sec. 5.6

presents hardware experiments on several challenging tasks, specifically showing general-

ization of our method. Sec. 5.7 concludes.

5.2 Related Work

5.2.1 Object Representation for Closed-Loop Manipulation

Several teams [56, 61, 100] incorporate real-time pose estimators into closed-loop manipu-

lation pipelines and show impressive manipulation demos. To generalize these pipelines

to a category of objects, a straightforward approach would be combining them with a
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category-level pose estimator such as [115, 142]. However, as detailed in the Chapter 3,

pose estimation can be ambiguous under large intra-category shape variations; directly

feeding an estimated pose into a manipulation pipeline can lead to physical infeasibility for

other instances in the category.

On the other hand, many contributions propose to train a visuomotor policy using data-

driven algorithms [4,31,32,77,116,139,154,156]. The state representation in these methods

is usually an internal state of the policy neural network (or the “image state"). As reviewed

in Sec. 2.2.3, many interesting manipulation behaviours emerge in these approaches. Com-

pared with these methods, the key advantage of our framework is the automatic general-

ization to new object instance, camera position, initial object configuration and robot grasp

pose. On the other hand, many of these data-driven algorithms can be integrated into our

framework and that would be a promising future direction.

5.2.2 Robotic Manipulation with Proprioceptive Feedback

There have been impressive works [2, 112, 130] on robot control with applications to sev-

eral industrially important tasks, as reviewed in Sec. 2.1. By using joint torque sensors

and/or 6-DOF force/torque sensors along with other proprioceptive sensors, the robot can

perform many impressive tasks, for instance peg-hole insertion with very tight tolerance

(H7h7) [130] or polishing an non-flat surface with smooth motion and force trajectories [2].

However, these approaches typically assume perfect knowledge of the geometry and object

location. In this way, these methods eliminate the inaccuracy caused by perception and

grasping. For many tasks these pre-requisites can be hard to satisfy.

5.2.3 Pick-and-Place Manipulation at a Category Level

Several works [109, 149] focus on pick-and-place manipulation for a category of objects.

The kPAM pipeline in Chapter 3 proposed to use semantic 3D keypoint as the object rep-

resentation. KETO [109] extends kPAM [88] with self-supervised keypoint learning, It

demonstrates robotic tool manipulations such as hammering and pushing. Form2Fit [149]

uses shape descriptors to perform object placement in robot assembly.
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In this chapter, we focus on generalizable manipulation with closed-loop feedback for

contact-rich scenarios. Using an open-loop policy, as the aforementioned works [109,149]

do, typically cannot accomplish these tasks. A comparison is made in the Sec. 5.6.2 of our

experiment.

5.3 Manipulation Framework

In this section, we discuss our formulation of generalizable manipulation framework. Sec. 5.3.1

describes the approach using a concrete example, and Sec. 5.3.2 presents the general for-

mulation. The subsequent sections discuss the details and extensions of the general formu-

lation.

5.3.1 Concrete Motivating Example

Consider the task of peg-hole insertion, as illustrated in Fig. 5-2 (a). We want to come up

with a manipulation policy that automatically generalizes to a different peg in Fig. 5-2 (b),

and a different robot grasp pose in Fig. 5-2 (c).

In Chapter 3, we propose to represent the object by a set of semantic 3D keypoints. The

motivation is: keypoint is well defined within a category while 6-DOF pose cannot capture

large shape variation (see Sec. 4 of Chapter 3 for details). We adopt this idea and choose

two keypoints: the ppeg_end that is attached to the peg and the phole_top that is attached to

the hole, as shown in Fig. 5-2 (d). Similar to kPAM, we assume that we have a keypoint

detector, for instance a deep network trained with supervised data, that can produce these

specified keypoints in real-time.

These two keypoints provide the location information. However, the peg-hole insertion

task also depends on the relative orientation of the peg and hole. Thus, we augment the

keypoint with orientation information, as if a rigid coordinate is attached to each keypoint,

as shown in Fig. 5-2 (e). For the peg-hole insertion task, we let the z axis of the ppeg_end,

phole_top be the axis of the peg and hole, respectively. The x axis of ppeg_end, phole_top can be

chosen arbitrarily, but when the x axes of ppeg_end and phole_top are aligned the peg should

be able to insert into the hole.
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Figure 5-2: The object representation using peg-hole insertion as an example. We
would like the manipulation pipeline generalize to (b) a different peg; and (c) a different
robot grasp pose. We adopt the semantic 3D keypoint proposed in kPAM [88] as a local
but task-specific object representation, as shown in (d). Since the task depends on the
local relative orientation between the peg and hole, we augment keypoint with orientation
information, as if a rigid coordinate is attached to each keypoint shown in (e).

The coordinate in Fig. 5-2 (e) is also used to illustrate 6-DOF pose in the literature. The

key difference between the oriented keypoint and 6-DOF pose is: oriented keypoint is a

local but task-specific characterization of the object geometry, while pose with geometric

template is global. The choice of a local object representation is inspired by the observa-

tion that in many manipulation tasks, only a local object part interacts with the environment

and is important for the task. For instance, the ppeg_end keypoint only characterizes a local

object part that will be engaged with the hole, and it does not imply task-irrelevant geomet-

ric details such as the handle grasped by the robot. This locality enables generalization to

novel objects as the unrelated geometric details are ignored.

As illustrated in Fig. 5-3, with the oriented keypoint we propose to represent the robot

action as either 1) the desired linear and angular velocity of the ppeg_end keypoint, as shown

in Fig. 5-3 (a); or 2) the desired force and torque at the ppeg_end keypoint, as shown in

Fig. 5-3 (b). Note that these two object-centric action representations are agnostic to the

robot grasp pose, since these actions are defined only w.r.t the object (not the robot). Under

the assumption of no relative motion between the peg and the robot gripper (the grasp is

tight), these actions can be mapped to joint space commands, as described in Sec. 5.3.5.

Suppose we have implemented an agent (which can be a hand-written controller or a

neural network policy) using the object and action representations mentioned above as the
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Figure 5-3: Overview of the object-centric action space. The action can be: (a) the
desired linear/angular velocity of an oriented keypoint; (b) the desired force/torque of an
oriented keypoint. Note that the action space is agnostic to the robot grasp pose.

input and output, together with a perception module that produces the required keypoints

in real-time and a joint-level controller that maps the agent output to joint command, then

the resulting manipulation policy would automatically generalize to different objects and

robot grasp poses, for instance the ones in Fig. 5-2 (a), (b) and (c). Even if the policy

doesn’t directly transfer due to unmodeled factors, it would be a good initialization for

many data-driven or model-based algorithms [71, 78, 119].

Closed-Loop Manipulation Policy

Pick-and-Place
(Sec. 4.3)

Joint Space 
Control 

(Sec. 4.2.5)

Agent
Hand Written

Imitation Learning

iLQG

…

Keypoint Perception
Visual+Kinematic (Sec. 4.4)

External Camera

Motion Capture

…

Figure 5-4: Overview of the manipulation framework. The closed-loop policy consists
of 1) a perception module that produces oriented keypoint in real time; 2) an agent with
the state and action space shown in Fig. 5-2 and Fig. 5-3, respectively; 3) a joint-space
controller that maps agent outputs to joint-space commands. Note that many different
implementations of the perception module and agent can be used within our framework
and the resulting pipeline automatically generalize to new objects and task setups. For
many applications the objects are randomly placed initially. In this scenario, we perform a
kinematic pick-and-place to move the object to some desired initial condition (for instance
moving the peg right above the hole), from where the closed-loop policy starts operating,
as detailed in Sec. 5.4.
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5.3.2 General Formulation

We can think of a robot as a programmable force/motion generator [52]. We propose to

represent the task-specific motion profile as the motion of a set of oriented keypoints, and

the force profile as the spatial force/torque w.r.t some keypoints.

Thus, given a category-level manipulation problem we propose to solve it in the follow-

ing manner. First the modeler selects a set of 3D oriented keypoints that capture the task-

specific force/motion profile. Once we have chosen keypoints, the manipulation framework

can be factored into: 1) the perception module that outputs the oriented keypoint from sen-

sory inputs; 2) the agent that takes the perceived keypoint as input and produces the desired

linear/angular velocity or force/torque of an oriented keypoint as output; 3) the low-level

controller that maps the agent output to joint-space command. An illustration is shown

in Fig. 5-4. The framework can be extended with force/torque measurements and gener-

alization to different initial object configurations, as shown in Sec. 5.3.3 and Sec. 5.3.4,

respectively. For many applications, objects are randomly placed initially. In this case,

we perform a kinematic pick-and-place to move the object to some desired initial con-

figurations, from where the closed-loop policy starts, as shown in Sec. 5.4. To make the

overall manipulation operation generalizable, all these extensions must work for a category

of objects.

It should be emphasized that our framework establishes the interfaces of the perception

module or closed-loop agent, but leaves the room for their instantiation. The only require-

ment is that for the perception module it should output oriented keypoints in real time, and

for the agent it should use the state and action space mentioned above. There are many solu-

tions for both of them. For instance, in our experiment a wrist-mounted camera is used for

visual keypoint detection and the robotic kinematics is used for realtime keypoint tracking

(see Sec. 5.5). Alternatively, external cameras or motion capture markers can also be used

for keypoint perception. Similarly one might explore various model-based or data-driven

controllers as the feedback agent according to the task in hand. As long as these perception

and control module use the proposed object and action representation as the input/output,

they can be plugged into our framework and the resulting policy automatically generalize
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Figure 5-5: The processing of force/torque measurement in our formulation. For
a wrist-mounted force/torque sensor, its raw measurements fmeasured and τmeasured vary
with the object geometry and grasp pose. Thus, we propose to transform them to an ori-
ented keypoint (ppeg_end here), as the transformed measurement captures the task-specific
force/torque profile. The closed-loop agent takes the transformed force/torque measure-
ment as input would generalize w.r.t object geometry.

to novel objects and task setups.

5.3.3 Force/Torque Measurement

Some robots are equipped with wrist-mounted force/torque sensors or joint torque sensors.

For contact-rich manipulation tasks, it’s beneficial use this information as the input of the

agent. However, the raw output from these sensors varies with the object geometry and

robot grasp pose, as shown in Fig. 5-5. As a result, directly feeding these measurements

into the agent does not generalize automatically.

The solution to this problem is to transform the measured force/torque to the kinematic

frame of an oriented keypoint, as shown in Fig 5-5. Using the peg-hole insertion as an

example, we can transform the force/torque measurement from the robot wrist to the co-

ordinate of ppeg_end, as if a “virtual sensor” is mounted at ppeg_end. In this way, we can

expect similar force/torque profiles across different objects and robot grasp pose, as shown

in Fig 5-5.

If the robot is equipped with a joint torque sensor, we can also estimate the force/torque

on ppeg_end using robot kinematics by assuming that the robot has no other contact. Let

Jpeg_end be the Jacobian that maps robot joint velocity to the linear/angular velocity of
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ppeg_end, the force/torque festimated ∈ R6 can be estimated as

festimated = argmin f |JT
peg_end f − τexternal|2 (5.1)

where τexternal is the measured external joint torque. Here we assume the gravity has already

been compensated.

5.3.4 Generalization w.r.t Global Rigid Transformation

Suppose we want to re-target the peg-hole insertion policy to the hole at a different location.

Intuitively, this re-targeting is essentially a rigid transformation of the manipulation policy.

Can we somehow “apply" this transformation directly?

In our framework, both the agent input (oriented keypoints and force/torque w.r.t key-

points) and output (linear/angular velocity or force/torque of an oriented keypoint) are ex-

pressed in 3D space. In other words, we can apply a rigid transformation to both the agent

input and output. This property provides generalization w.r.t the global rigid transforma-

tion. Before feeding the input to the agent, we can transform the input from the world frame

to some “nominal frame”. After agent computation, we can transform its output back to

the world frame. The “nominal frame” can be chosen arbitrary, for instance in the peg-hole

insertion task we can align it with the initial configuration of phole_top. Thus, the global

rigid transformation is transparent to the agent.

In contrast, many existing contributions [31,33,77,154] work with input/output in joint

space and/or image space (raw image or 2D keypoint), on which a rigid transformation

cannot be applied. Thus, re-targeting agents in these methods to new initial object config-

urations and camera positions might need re-training.

5.3.5 Joint Space Control

The agent output is the desired linear/angular velocity or force/torque of an oriented key-

point p. An important observation is: if we assume the object is rigid and grasp is tight

(grasped object is static w.r.t the gripper), then the object can be regarded as part of the
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robot, thus standard joint-space controllers can be used map these agent outputs to joint-

space commands. This generalizes the “object attachment" in the context of collision-free

manipulation planning [24].

With this observation, we discuss several possible implementations of joint-space con-

troller according to the robot interface. Let Jp be the Jacobian the maps the joint velocity

q̇ to the linear/angular velocity of p. One straightforward method to transform the com-

manded velocity vp into joint space velocity command q̇desired is

q̇desired = argminq̇|Jpq̇− vp|2 + reg(q) (5.2)

where reg(q̇) is a regularizer term. If the robot driver accepts joint velocity commands, we

can send q̇desired to the robot directly. Similarly, the desired force/torque Fp can also be

transformed into joint space using Jp by

τdesired = JT
p Fp +g (5.3)

where g is the gravitational force in joint space. Here we ignore the inertia and Coriolis

force of the robot.

Since standard joint-space controllers can map the agent output to joint commands,

some more sophisticated controllers can also be used and might provide better tracking

performance, for instance the task-space impedance controller described in [98]. The de-

tailed discussion is omitted as they are out of the scope of this paper.

5.4 Pick-and-Place Manipulation

In many applications, the objects are randomly placed initially, potentially in a clutter. For

this scenario, we use a two step manipulation scheme: the robot first perform a kinematic

pick-and-place to move the object to some desired initial configuration (for instance moving

the peg right above the hole), then the closed-loop policy discussed in Sec. 5.3 starts from

that initial configuration. To make the entire manipulation operation generalizable, this

pick-and-place step should also works for a category of objects. kPAM in Chapter 3 is
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Figure 5-6: Overview of kPAM [88] for category-level pick-and-place and its simpli-
fication with oriented keypoint. kPAM is used as a pre-step for the closed-loop policy in
our framework. Using the original mug demo of kPAM as an example: (a) In kPAM the
object is represented by a set of semantic 3D keypoints. (b) The rigid transformation Taction,
which represents the robot pick-and-place action, is solved to move pbottom_center to the tar-
get location ptarget and align the mug axis with the target direction vtarget_axis. (c) In this pa-
per we propose to add orientation information to the pbottom_center keypoint. (d) The desired
configuration of the mug can be encoded as the target configuration of pbottom_center, and
Taction is the relative transform between pbottom_center and its target configuration. Note that
this formulation also generalizes to mugs with different shape, size and topology. Please
refer to Sec. 5.4 for more details.

proposed for this task and used as a sub-step. Here we briefly review it and show how

the orientation information of the keypoint can be used to significantly simplify the kPAM

framework, as illustrated in Fig. 5-6.

In kPAM, each object is represented by a set of semantic 3D keypoints p ∈ R3×N . For

instance, we can represent the mug by two keypoint ptop_center and pbottom_center, as shown

in Fig. 5-6 (a). To place the mug upright at some target location ptarget , we need to plan a

robot action Taction such that

||Taction pbottom_center− ptarget||= 0 (5.4)

||rotation(Taction)vmug_axis− (0,0,1)T ||= 0 (5.5)

where: vmug_axis = normalized(ptop_center−pbottom_center) (5.6)
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Alternatively, we can add orientation information to the pbottom_center keypoint as shown

in Fig. 5-6 (c): the z axis of pbottom_center is aligned with vmug_axis in Eq. (4.6), while the x

axis of pbottom_center is chosen randomly since the mug is symmetric. Then, the target con-

figuration of the mug can be represented as a target configuration of pbottom_center, as shown

in Fig. 5-6 (d). The robot pick-and-place action Taction is the relative transformation be-

tween pbottom_center and its target configuration. Note that this formulation also generalizes

to mugs with different shape, size and topology.

By adding the orientation information to keypoint, in many applications (for example all

the demos in kPAM) we can avoid setting up costs/constraints and solving an optimization

problem to find Taction, although for complex object it might be beneficial to represent it

with many keypoints (with or without orientation) and define object target configuration

using costs/constraints similar to Eq. (4.4) and (4.5).

5.5 Perception Implementation

In this section, we discuss the implementation details of keypoint perception used in our ex-

periment. We stress that our framework is not restricted to this perception implementation,

and we will discuss the trade off with an alternative.

We use robot kinematics to track the oriented keypoint in real-time and feed it as the

input to the closed-loop agent. Suppose we know the oriented keypoint relative to the

robot gripper, then when robot moves we can compute the oriented keypoint in the world

frame using the forward kinematics. Here we assume the object is rigid and the grasp is

tight (no relative motion between the object and the gripper), which is well satisfied in our

experiment.

We use a robot wrist-mounted camera to perform the “single-shot” visual perception:

After moving the camera to a suitable location, we capture an input image and perform ob-

ject detection, keypoint detection and grasp planning using the method and neural networks

described in Chapter 3 (see Appendix for more details). The raw output of the keypoint net-

work we used is 3D keypoints (not oriented), and the orientation (the axis of the coordinate)

is computed with the relative direction of two 3D keypoints and heuristics. Given visual
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perception results, we execute robot grasping and compute the keypoints expressed in the

robot gripper frame, using the keypoints in the world frame (from camera perception) and

the robot gripper pose (from robot kinematics). After grasping, we use robot kinematics

for real-time keypoint tracking and feed the result into the closed-loop agent, as mentioned

above. Other objects (and keypoints on these objects) are assumed static. Benefit from the

automatically keypoint annotation pipeline using multiview consistency in kPAM, it only

takes four hours to annotate the training data for all experiments.

An alternative perception implementation would be using external cameras for realtime

keypoint tracking. Compared with it, our method is more robust to occlusion, since our

kinematics-based perception can tolerate complete occlusion while no vision-based tracker

can. Besides, it is also more robust to symmetric objects. Consider a round peg rotating

relative to its axis, it is very hard for visual perception to detect this motion while the

perception with robot kinematics still works.

On the other hand, the object might move relative to the gripper when the external

force on the object is large (although we haven’t observe it in our experiment), and external

cameras can resolve this issue. Furthermore, using external cameras in our framework can

potentially benefit from end-to-end learning, if a neural network is used as the agent similar

to [33]. Since our main focus is the overall manipulation formulation and its generalization,

the exploration of external cameras and these trade-offs are out of our scope.

5.6 Results

We prototype our framework on a hardware robot and demonstrate a variety of contact-rich

manipulation tasks. The particular novelty of these demonstrations is that our method is

able to handle objects with large intra-category shape variations without any instance-wise

tuning. The overview of the experiment is shown in Fig. 5-1. The video demo is available

on this link.

We use a 7-DOF Kuka IIWA arm mounted with a Schunk WSG 50 parallel jaw gripper

and a RGBD sensor (Primesense Carmine 1.09). More details regarding hardware setup is

provided in Appendix. The torque measured by the Kuka IIWA arm is used to compute the
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force/torque measurement as the input to the agent, as shown in Sec. 5.3.3.

5.6.1 Task Description

Whiteboard wiping: The robot must detect the whiteboard eraser, pick it up and use it

to erase a small whiteboard, as shown in Fig. 5-1 (a). We use two oriented keypoints for

this task: pfront and pcenter as shown in Fig. 5-7 (a). For a successful wiping, the x-y plane

trajectory of pfront should be aligned with the edge of the whiteboard, while the z axis force

on pcenter must be regulated to ensure the eraser is in contact with the whiteboard. We set

the nominal z axis force to be 10 [N] and implement the agent as the hybrid force/motion

controller [112] to control the force on z axis and position on other dimensions. The robot

needs to deal with whiteboard erasers with significant shapes and sizes variation.

Peg-hole insertion: The robot must detect the peg and hole, pick up the peg and insert it

into the hole. We use three groups of objects: 1) 3D-printed pegs and holes with 0.2 [mm]

clearance, as shown in Fig. 5-1 (b); 2) LEGO blocks as shown in Fig. 5-1 (c); 3) The USB

drive and ports in Fig. 5-1 (d). The same code is used for all three object groups, and we

trained three networks for the detection of printed peg-holes, LEGO blocks and USB ports,

respectively. The impedance controller in [95] is used as the agent.

Due to the graspability limitation of the USB drive, we pre-fix it to the robot gripper,

while the USB port as the “hole" is detected from the visual perception.

5.6.2 Experimental Result

The failure rates of our method are summarized in Table 5.1. For the wiping task, we mark

a trial as failure if 1) the discrepancy between pfront with the whiteboard edge is larger than

2 [cm]; or 2) the z axis force on pcenter is less than 5 [N] (the nominal value is 10 [N]).

For the peg-hole insertion task, we mark a trial as a failure if the peg is not inserted into

the hole. Our method is first compared with an open-loop baseline: for wiping task the

open-loop policy simply replays the trajectory of pfront, for the peg-hole insertion the open-

loop policy always commands a downward motion. This baseline is similar to the policy in

kPAM [88], Form2Fit [149] and KETO [109]. Our method has a much lower failure rate,
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Figure 5-7: The specified keypoints used in our experiment. (a) Two keypoints are
detected for the whiteboard wiping task. (b) Two keypoints are detected for the peg, one
keypoint is detected for the hole. For the manipulation of LEGO blocks in Fig. 5-1 (c), the
ppeg_top for another LEGO block is used as phole_top. Please refer to Sec. 5.6.1 for more
details.

as shown in Table. 5.1.

For the wiping task, it is crucial to measure and regulate the contact force in a closed-

loop manner else the eraser would not touch the whiteboard. Thus, an open-loop policy

typically cannot successfully erase texts on the whiteboard.

For the peg-hole insertion task, the typical accuracy of visual keypoint detection is

about 5 [mm] when the distance between the object and camera is about 80 [cm]. The

perception error is much larger than the clearance (0.2 [mm] for printed pegs and holes,

almost zero for LEGO blocks and USB ports), which requires the agent to correct itself

using closed-loop feedback with the measured keypoints and force/torque. For the printed

pegs and holes, the agent can tolerate about 5-10 [mm] visual perception error, thus the

failure rate is decent and much lower than the open-loop kinematic policy. However, if the

perception error is too large the feedback agent wouldn’t be able to correct it, as shown

in Fig. 5-8 (b). The LEGO blocks have large chamfers, which makes the insertion much

easier.

On the other hand, the USB port is much more demanding on the perception accuracy

(roughly 3 [mm] error on the shorter side of USB would result in failure). We use a two-
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Figure 5-8: Typical failure modes. (a) Grasp failure. (b) The keypoint detection error is
too large such that the closed-loop agent can’t correct it with feedback.

Table 5.1: #Failure/#Trial (Failure Rate) Comparison

Task Kinematic 
Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

step perception scheme: the first coarse step roughly locates the object; then we move the

wrist-mount camera closer to the object and perform the second, more accurate perception.

In this way, we can reduce the perception error to 2 [mm].

To demonstrate the superiority of our keypoint formulation over pose-based methods,

we implement a pose estimator and test it on our setups. The pose estimator is the same as

the baseline (Fig. 4) in kPAM [38]: first initialize the alignment with detected keypoints,

then perform ICP fitting between the observed point cloud and geometric template to get the

6-DOF pose. As demonstrated in kPAM (Fig. 5 of kPAM), a valid 6-DOF pose trajectory

for one object can lead to physical infeasibility for another instance. For this reason, many

trials would fail kinematically and usually require manual safety stop, as summarized in

Table 5.2. The failure rate is much higher than our approach.
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Table 5.2: Summary for Pose-Based Baseline

Task Kinematic 
Failure Rate Note on Failure

Whiteboard
wiping

10/25 (40%)
Eraser collide into table;
Eraser not aligned with 

whiteboard edge

Printed peg-hole 25/45 (55%) Peg collide into hole;
No overlapping between peg and 
hole (alignment error too large)

LEGO block 9/25  (36%)

USB port 17/20 (85%)

Task Our Method Open-Loop Baseline
Whiteboard wiping 1/25 (4%) 16/20 (80%)

Printed peg-hole 12/45 (26%) 19/20 (95%)

LEGO block 2/25 (8%) 7/20 (35%)

USB port 9/20 (45%) 20/20 (100%)

5.7 Conclusion

In this chapter, we explore generalizable, perception-to-action robotic manipulation with

closed-loop feedback for contact-rich tasks. We adopt the 3D keypoint representation pro-

posed for pick-and-place, and extend it to closed-loop policies with contact-rich tasks. We

first augment keypoints with local orientation information, and propose a novel object-

centric action space as the linear/angular velocity or force/torque of an oriented keypoint.

Using this object and action representation, we present a new manipulation formulation

that incorporates of the force/torque measurement, keypoint perception using visual and

proprioceptive sensors, and the generalizable pick-and-place manipulation with oriented

keypoint. Moreover, the pipeline is agnostic to the robot grasp pose and initial object con-

figuration, which makes it flexible for integration and deployment. Extensive hardware

experiments demonstrate our method can accomplish contact-rich manipulation tasks that

require precision and dexterity for a category of objects with large intra-category shape

variation.
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Part II

Robustness Characterization
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The manipulation pipelines described in Part I are based on the breakthrough of deep

neural networks, which make human-level performance possible on narrow perception

tasks (such as object recognition and keypoint detection). While these networks enable

interesting perception-to-action manipulation behaviors, their vulnerability to adversarial

attacks and distributional mismatches can lead to the failure of the entire manipulation

pipeline. As the robot interacts with the world physically, failures can be dangerous and

expensive. For example, we have broken the robot gripper finger twice during our de-

velopment of the kPAM pipeline, despite the significant effort on software and hardware

safety monitoring. Thus, we need to understand the risk of the system before deployment

at scale (for instance the Amazon scale). This is our first motivation to study the robustness

evaluation problem in Part II.

Our second motivation is that we also need to address the challenge of representation

in robustness evaluation, similar to the pipeline development in Part I. The robot will be

deployed in unstructured environments (such as kitchens with a diverse set of objects).

Many factors of the environment would impact the robustness of the manipulator. Some of

them have natural parameterizations, such as the camera pose and illumination condition.

However, some other factors might be hard to represent. For instance, in Chapter 3 we have

learned that it is surprisingly hard to define a parametric model of the object geometry that

can capture the shape of “all possible mugs”. Without this parametric model, we do not

have a continuous parameter space as the input domain for robustness evaluation, which

is a prerequisite for existing algorithms. In other words, we do not have a continuous

input domain when investigating how does the mug geometry impact the robustness of the

manipulation pipeline.

Initially, we plan to use the keypoints in Chapter 3 as the object geometric representa-

tion for robustness evaluation, as shown in Fig. 5-9. However this approach does not work

well, because the keypoint representation loses geometric information, and the missing

geometric information might impact the robustness. This inspires us to use a complete ge-

ometric representation, similar to Chapter 4. In particular, we can over-parameterize each

object geometry instance as a voxel grid, which generalizes well to different objects. In

this case, the challenge becomes how to represent the underlying space or distribution of
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Figure 5-9: (a) Initially, we plan to use the keypoints in Chapter 3 as the object geometric
representation for robustness evaluation. For example, we might use 8 corner keypoints to
represent the geometry of a box. (b) However, one challenge with the keypoint representa-
tion is that it cannot capture the complete geometric information for complex the objects,
such as the mug here. Furthermore, the missing geometric information might impact the
robustness.

the object geometry. The space of “all possible mugs” is obviously a large space, but it is

much smaller than the voxel space, as realistic object shapes only occupy a tiny portion of

the voxel space. If we draw a random sample from the voxel space, it is very unlikely that

this sample would look like a realistic object, and we should not expect the robot to handle

it. Another prominent example is the textures of the object, that we might want to ensure

a manipulator can handle “all textures of a mug”. We can over-parameterize each object

texture instance as an image (texture map), but the space of “all object textures” is again

much smaller than the pixel space.

In Part II of this thesis, we aim to address this challenge and perform a robustness

evaluation of the pipeline we developed. In Chapter 6, we present the preliminaries about

the risk-based framework. In this framework, we prioritize finding the most likely failure

modes and characterizing a system’s safety by its probability of failure. Existing works

in this risk-based framework assume continuous, easily parameterizable input domains.

However as mentioned above, for our problems the robustness might depend on complex

factors such as the object textures/shapes. To resolve this limitation, in Chapter 7 we for-

mulate the robustness evaluation as failure search and failure rate estimation problems on a

semi-empirical input distribution. To efficiently solve those problems, we proposed an aux-

iliary graph over those samples, which transforms the failure search/rare-event into search

problems on a graph. In Chapter 8, we apply the resulting algorithm to the robustness eval-

uation of the robot manipulation that we develop. It is emphasized that although we use
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the manipulation pipeline as an example, our formulation and algorithm can be applied to

a variety of other autonomous systems.
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Chapter 6

Preliminary: The Risk Based

Framework

6.1 Introduction

In this chapter, we review the risk-based framework to evaluate the robustness of safety-

critical autonomous systems. The review in this chapter assumes that a continuous, easily-

parametrizable input domain is available for robustness evaluation. In the next chapters,

we will discuss how to address more complex input domains (such as object textures and

shape), which is necessary for the systems that we’re interested in.

The failures of these safety-critical systems can be extremely costly, for instance the

collision of autonomous cars. This necessitates moving beyond the standard metric of

measuring the average performance, which is ubiquitous in evaluating “less critical” appli-

cations such as the face recognition. As such, several communities have adapted existing

tools for testing safety-critical softwares to deep neural networks and autonomous systems

built upon these networks.

One of these tools is the formal verification [51,64,83,110,145]. These methods attempt

to find a proof of the “correctness” of an autonomous system. Let g : X −→ {0,1} be the

binary specification function such that g(x) = 0 means the system behaves incorrectly. The

goal of formal verification is to prove that the set G= {x : g(x)= 0} is empty, in other words

the system behaviors are always correct. However, there is a scalability limitation for these
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formal verification algorithms. It is extremely difficult, if not impossible, to formally verify

a modern deep network due to its size and complexity. Verifying a robot manipulator or

autonomous driving system built upon deep networks can only be more challenging, since

they involve other components. Moreover, formal verification algorithms usually require

re-implementing the system in a formal language (such as Coq), which can be very difficult

for complex systems.

As it is hard to guarantee the system behaviors are always correct, researchers [101,

122, 137, 144] have considered probabilistic robustness evaluation, which is a relaxation

of the “always correct” specification. The underlying idea is that system is allowed to

fail, but only at an extremely low probability. If the failure rate of a robot manipulator

or autonomous vehicle is lower than the probability of an earthquake, then we should be

confident in their safety. In this situation, we’re using the failure probability as the risk of

an autonomous system.

Real-world experiments are the most straightforward method for characterizing the sys-

tem failure rate. However as argued in [101], real-world experiments have two major limi-

tations: 1) testing these systems in the real world can be very dangerous; 2) it requires pro-

hibitive amounts of time due to the rare nature of serious accidents. For example, a recent

study [29] argues that autonomous cars need to drive “hundreds of millions of miles and,

under some scenarios, hundreds of billions of miles to create enough data to demonstrate

their safety.” The challenge of real-world experiments motivates the use of simulation in

robustness evaluation. Before deploying the system into the real world, we should first un-

derstand its failure mode and risk with simulated environments. The simulator avoids the

danger of physical failure while allowing parallelized, faster-than-real-time evaluations.

Furthermore, active control of the simulation environment allows us to prioritize the situa-

tion that the system is more likely to fail. On the other hand, a good simulator is required to

ensure the simulated result transfers to the real world. As we’re interested in systems built

upon deep networks for visual perception, the simulator should contain a good renderer to

produce input images to the systems’ perception modules.

In this chapter, we discuss several existing contributions [101,122,137,144] about prob-

abilistic robustness evaluation in simulated environments. In Sec. 6.2, we would consider
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the detailed mathematical formulation of the risk framework. Due to the rare nature of fail-

ures, the robustness evaluation is formulated as rare-event simulation problems. In Sec. 6.3,

we review the multi-level splitting algorithm which is used to solve rare-event simulation

problems.

6.2 Mathematical Formulation

Mathematically, it is assumed a risk function r : X −→ R that measures the safety of an input

x ∈ X , so that high value of r(x) corresponds to dangerous situations. The input domain X

collects all factors that affect the risk of the agent. Existing works usually assume X is a

subset of Rn with rather simple geometry, such as the pixel-space disturbance for an image

classifier [64] or the car initial position for a driving policy [101]. Given this risk function,

the problems that we would like to solve are:

Failure Search (Falsification): Find a collection of x1, ...xk such that

r(xi)≥ rthreshold, where 1≤ i≤ k (6.1)

where rthreshold is a threshold for the risk.

Failure Rate Estimation: Compute the failure rate

pfailure = Ppx [r(X )≥ rthreshold] (6.2)

where X is a random variable in X with px(·) as the prior distribution.

The failure examples found in Problem. 6.1 would be used to improve the system ro-

bustness. If the system is a neural network, we can add the failure examples into the training

set and re-train the network. The failure rate estimated in Problem. 6.2 is a characteriza-

tion of system safety. We should ensure the failure rate is extremely low before the actual

deployment. Solving Problem. 6.1 and 6.2 requires the following three components:

Simulator: Because evaluating a safety-critical algorithm in the real world is slow and

dangerous, we require the ability to simulate in a virtual world. To evaluate the risk func-
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tion f (x), we need to perform a simulation of the system under input condition x and check

whether the system behaves correctly. In other words, the evaluation of f requires simula-

tion of the system, which can be computationally expensive.

Input space and prior distribution: We need to collect factors that affect the system ro-

bustness and use it as the input domain X . We also need a prior distribution px with which

we can sample from and evaluate the density. This is easy for factors with natural param-

eterizations, for instance [101] evaluates an autonomous driving pipeline with respect to

car initial position/velocity. However this can be challenging for other factors, for instance

we might want to evaluate an autonomous car with respect to the space/distribution of “all

possible human clothing”. We contribute a novel formulation to address it in Chapter 7.

Search algorithm: With the simulator and prior distribution, one straightforward method

to solve Problem. 6.1 and 6.2 is brute-force simulation. We can simulate many times and

collect the failure simulation from them for the failure search Problem. 6.1. Similarly, we

can estimate the failure rate by the Naive Monte Carlo algorithm: perform many simula-

tions and count how many of them exceed the risk threshold. However when the system is

robust (the failure rate is low), finding failure cases must be regarded as a rare-event simu-

lation and naive algorithms can be extremely inefficient. Thus, existing works propose to

use the multi-level splitting algorithm, which is discussed in Sec. 6.3.

6.3 Multi-Level Splitting Algorithm

In this section, we review the multi-level splitting algorithm for the failure rate estimation

in Problem. (6.2). We start with the simplest form, which requires manually specifying the

levels r0,r1, ...,rk, where r0 =−∞, rk = rthreshold and ri+1 > ri. The failure rate in Eq. (6.2)

can be factored as

pfailure = Ppx [r(X )≥ rk] (6.3)

= (Πk−1
i=0 Ppx [r(X )≥ ri+1|r(X )≥ ri])Ppx [r(X )≥ r0] (6.4)

= Π
k−1
i=0 Ppx [r(X )≥ ri+1|r(X )≥ ri] (6.5)
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Figure 6-1: A 2-dimensional illustration of the multi-level splitting algorithm. The goal
is to compute the probability of the green region with a 2D prior distribution, for instance
a Gaussian. This can be hard for the naive Monte-Carlo algorithm. Thus, the multi-level
splitting algorithm constructs a list of larger regions that eventually converges to the target
region, for instance the red and blue ones. In this way, we can factor the probability of the
green region as the product of a series of conditional probability in Eq. (6.3), which is the
probability to reach the next smaller region conditioned on drawing a sample in the current
region. These conditional probability terms are easier to estimate.

where levels should be selected such that the probability Ppx [r(X ) ≥ ri+1|r(X ) ≥ ri] is

sufficient large. A 2-dimensional illustration is provided in Fig. 6-1. In this figure, the goal

is to compute the probability of the green region, which can be hard for the naive Monte-

Carlo algorithm. Thus, the algorithm constructs a list of larger regions that eventually

converges to the target region. The Ppx [r(X ) ≥ ri+1|r(X ) ≥ ri] term in Eq. (6.3) is the

probability to reach the next region i+1 conditioned on drawing a sample in region i.

If we can draw i.i.d samples from each of the distribution pi(x) ∝ px(x)1(r(x) ≥ ri),

then we can estimate the conditional probability Ppx [r(X ) ≥ ri+1|r(X ) ≥ ri] using naive

Monte-Carlo estimation (counting how many of the i.i.d samples have a risk larger than

ri+1). Thus, we need algorithms that can efficiently draw samples from the un-normalized

distribution pi(x) ∝ px(x)1(r(x) ≥ ri). There are two main categories of algorithms for

sampling from pi(x) ∝ px(x)1(r(x) ≥ ri): the cross-entropy (CE) algorithm and Markov

Chain Monte Carlo (MCMC). Both of them have been applied to the robustness evaluation

of neural networks or autonomous agents [101, 137]. Here we would focus on the MCMC

algorithm, while the discussion about CE can be founded in [101].

The MCMC algorithm is summarized in Algorithm 1. The underlying idea is to con-

struct a Markov chain whose stationary distribution is the one that we would like to sample
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Algorithm 1: MCMC algorithm to sample from px(x)1(r(x)≥ ri)

Result: A sample from px(x)1(r(x)≥ ri)
Input: initial point x0; proposal distribution g(·|·);
Set t = 0;
while t < iteration_limit do

Generate a random candidate x′ according to g(·|xt);

Compute the acceptance rate A(x′,xt) = min(1, px(x′)1(r(x′)≥ri)g(x′|xt)
px(xt)1(r(xt)≥ri)g(xt |x′));

Generate a uniform random number u ∈ [0,1];
if u≤ A(x′,xt) then

Set xt+1 = x′;
else

Set xt+1 = xt ;
end
Set t = t +1;

end
Return xt as the result;

from. Given an initial point x0, we iteratively simulate the Markov chain. In each itera-

tion, we first generate a candidate x′. Then, we would decide whether we should accept

the transition to the candidate or reject it. This is achieved by computing an accept rate A

which needs to satisfy the detailed balance condition [137]. Once this condition is satis-

fied, the stationary distribution of this Markov chain would be pi(x) ∝ px(x)1(r(x) ≥ ri).

As a result, the current state xt of the Markov chain can be regarded as a sample from

pi(x) ∝ px(x)1(r(x) ≥ ri), if we simulate this Markov chain for an infinity number of it-

erations. This cannot be achieved in practice, thus we simulate the Markov chain until

mixing.

The multi-level splitting algorithm built upon MCMC is summarized in Algorithm 2.

We would maintain a set of samples Xt = {xt
1, ...x

t
Np
} for each iteration t, where particles in

Xt have a risk larger than rt . The initial sample set X0 is drawn from the prior distribution

px(·). In each iteration t, we first compute Ppx [r(X ) ≥ rt |r(X ) ≥ rt−1] by counting how

many samples in Xt−1 have a risk larger than rt . Then we would perform many MCMC

simulates to obtain the set Xt . For each MCMC simulation, we use an initial point sampled

from X ′t , which is the subset of Xt−1 with risk larger than rt .

In practice, however, it is better to choose the levels online instead of specifying them
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Algorithm 2: Multi-level splitting algorithm to estimate Ppx [r(X )≥ rthreshold]

Result: An estimate of Ppx [r(X )≥ rthreshold]
Input: a prior distribution px(·); levels r1, ..,rK; particle number Np;
Generate Np samples X0 = {x0

1, ...x
0
Np
} from px(·);

Set t = 1, p = 1;
while t ≤ K do

Select particles from Xt−1 with risk larger than rt , let them be
X ′t = {xt−1

1 , ...xt−1
Nt
};

Nt ←− sizeof(X ′t );
p←− p×Nt/Np;
Xt ←− {};
for i in range(Np) do

Sample a random point x′i from X ′t ;
Run MCMC simulation with risk level rt and initial point x′i, obtain a
sample xi;

Append xi into Xt .
end
Set t = t +1;

end
Return p as the result;

manually, because the manual specification of levels might lead to no particles in Xt−1 has

a risk larger than rt (“early kill”). Thus, we choose the level rt online from the particle set

Xt−1 as the α-quantile of the particle risks in Xt−1. In this way, there are always particles

that remain in X ′t with risks larger than the threshold rt .

To sample from px(x)1(r(x) ≥ ri) in the MCMC algorithm (Algorithm. 1), we need

a proposal distribution g(·|·) which provides hints about where to search with the current

xk. Usually g(·|·) is a Gaussian distribution with xk as the center (mean), which intuitively

exploits the locality (continuity): searching in the vicinity of the high-risk particle xk would

be more likely to yield another high-risk x′. Some works [122] shape the covariance of

the Gaussian or exploit the gradient of the risk r, while they still exploited the locality.

This is the reason why MCMC is more efficient than the naive Monte-Carlo. If we use a

uniform distribution in X as the proposal distribution g(·|·), the algorithm falls back to naive

Monte-Carlo. An 2D illustration of MCMC algorithm with Gaussian proposal distribution

is shown in Fig 6-2. Intuitively, we perform Gaussian random walk initialized at x0 and

constrained to the region defined by r(x)≥ ri. If the random walk is performed for a long
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Figure 6-2: 2-dimensional illustration of the MCMC simulation in Algorithm. 1 with
Gaussian proposal distribution. Intuitively, we perform Gaussian random walk initialized
at x0 and constrained to the region defined by r(x)≥ ri. If the random walk is performed for
a long time, then the distribution of xt would be the target distribution (thus not dependent
on the initial point x0).

time, then the distribution of xt would be the target distribution (thus not dependent on the

initial point x0).

In the following text, we will explore the robustness evaluation with challenging input

domains (such as object textures and shapes). This locality idea plays an important role in

our problem formulation and algorithm development.
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Chapter 7

Robustness Evaluation using

Semi-Empirical Distributions

7.1 Introduction

In Chapter 6, we review existing contributions [101,122,137,144] on the risk-based frame-

work. These works assume a continuous, easily-parameterizable input domain as the search

space for robustness evaluation. For example, [137] evaluates the robustness of image clas-

sification networks with respect to the pixel-wise disturbance. However, this assumption

can be invalid when evaluating a robot manipulator, which is an autonomous system de-

ployed in unstructured working environments. Many factors of the environment would

impact the robustness. Some of them have natural representations (parameterizations),

such as the camera pose and illumination condition. However, some other factors are more

challenging, such as the geometry of the object. As mentioned in Sec. 3.4, it is surprisingly

hard to define a parametric model of the object geometry that can capture the shape of “all

possible mugs”. As a result, we do not have a continuous input domain when investigat-

ing how does the object geometry impact the robustness. In this chapter, we address this

challenge and answer how to represent the object geometry for robustness evaluation.

In Chapter 3, we use keypoints as the object geometry representation for developing the

manipulation pipeline. However, keypoints are not suitable for robustness evaluation: the

keypoint representation loses geometric information, and the missing geometric informa-
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(a) Object Shape Instance 
by Voxel Representation

(b) Probability Density 
Function in Voxel Space

Figure 7-1: To keep all the geometric information for robustness evaluation, we propose
to over-parameterize each object shape instance as a voxel grid, as shown in (a). However,
with this voxel representation the challenge becomes how to represent the object geometry
distribution, since realistic object shapes only occupy a very small portion of the voxel
space. Thus, we might need a probabilistic density function in the voxel space which gives
high probability to realistic objects, as shown in (b).

tion might impact the robustness. This inspires us to over-parameterize each object shape

instance as a voxel grid to keep all the information, as shown in Fig. 7-1 (a). However, with

this voxel representation, the challenge becomes how to represent the object geometry dis-

tribution. Realistic object shapes only occupy a very small portion of the voxel space. If we

draw a random sample from the voxel space, it is very unlikely that this sample would look

like a realistic object, and we should not expect the robot manipulator to handle it. Thus,

we might need a probabilistic density function in the voxel space which gives high prob-

ability to realistic objects, as shown in Fig. 7-1 (b). Similarly, we can over-parameterize

each object texture instance as an image (texture map), but it is challenging to represent the

object texture distribution.

One method to address these hard distributions is to use generative models (such as

GANs [41]). These generative models learn generators that map simple distributions in the

feature space to those texture/shape distributions. With this generative model, we can apply

existing algorithms in Chapter 6 to the continuous feature space. However, these generative

models can yield unrealistic samples (see [84] for a detailed study), although many of the

generated results are almost indistinguishable from authentic ones. As a result, we can

discover unrealistic failure cases that would never be encountered in the real world, and this

phenomenon can be exploited by the attacking algorithms. An experimental comparison is
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made in Sec. 7.5.

In this chapter, we propose to directly materialize these texture/shape distributions as

empirical distributions (sets of offline-collected samples). Thus, we model factors that af-

fect the system robustness as a structured distribution over variables (e.g. the camera pose),

combined with an empirical distribution, that describe the visual properties. We then for-

mulate robustness evaluation as failure search and failure rate estimation problems on this

combined distribution. Compared to the generative model formulation, our method will

not produce arbitrarily unrealistic failure examples. One major challenge of this represen-

tation is the lack of continuity structures among the discrete samples. To address this, we

formulate a weighted graph over the empirical dataset using the distance in a learned latent

space as the edge weights. This graph structure connects discrete samples and transforms

the search/rare-event problems into more efficient graph-based exploration. Moreover, fail-

ure rate estimation with the proposed graph converges to the ground-truth asymptotically,

despite the using of learned features in the graph representation. We’ve performed a proof-

of-concept experiment on an MNIST image classifier. In the next chapter, we will apply it

to the robustness evaluation of the manipulation pipeline.

7.2 Related Work

7.2.1 Adversarial Examples

The investigation about neural network robustness is generally motivated by the fact that the

neural network might fail on particular adversarial inputs, usually in surprising ways [129].

Thus, many contributions aim to discover and characterize those adversarial examples, as

reviewed in Sec. 2.3.

Existing works on adversarial examples are typically restricted to continuous, easily

parameterizable input domains. However, many factors with a significant impact on ro-

bustness might not have natural parameterizations. Some works [124] address this problem

by learning a generative model and performing attacks in the learned feature distribution,

which is usually a Gaussian. However, this might lead to discovering un-realistic input that
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might never be encountered in the real world. Consequently, if we compute the failure rate

with those learned distributions the estimation can be incorrect.

7.2.2 Formal Methods

Formal methods consider whether a neural network or autonomous system can ever vio-

late a safety specification. They either return a proof that there is no such violation or a

counterexample. Researchers have formulated the formal verification of neural networks

as a satisfiability [64, 150] problem. To improve the efficiency, many works proposed var-

ious approximate solutions [55, 107, 146] in this framework. These problems are usually

NP-hard [64] and many of those approaches require special network structure [64, 83]. As

a result, scaling them to common image-based neural networks is not easy. Furthermore,

when these verification algorithms yield a counterexample, it doesn’t produce how likely

will this counterexample occurs. Thus, it is hard to assess the robustness unless a proof of

no violation is given.

7.2.3 Failure Rate Estimation by Rare-Event Simulation

An alternative strategy of robustness evaluation is to characterize the risk of neural net-

works (or systems with networks inside) as the probability of failure, under some prior

distributions of the environments. For a well-implemented neural network the failure rate

can be very small, thus we can view it as a rare-event simulation problem. Rare-event

simulation has a long history and has made a major impact on various domains, please

refer to [59] for a detailed study. In the past years, researchers also have applied rare-event

algorithms, such as the cross-entropy method and MCMC simulation, to the robustness

evaluation of neural networks and autonomous systems [101, 122, 137, 144]. These works

typically assume a continuous, easily parameterizable input domain. In this work, we aim

at more challenging inputs such as “the space/distribution of all possible human clothing”,

where a natural parameterization is not available.
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Figure 7-2: We propose to over-parameterize each object shape instance as a voxel grid
and approximate the object shape distribution as an empirical distribution. For example, we
would use a set of offline-collected mug shapes to represent the distribution of “all possible
mugs that a manipulator can encounter”.

7.2.4 Robust Training

Many contributions [17, 81, 145] aim to train an agent that is robust to particular types of

adversarial attacks. The improvement of robustness is either observed empirically [81, 82]

or guaranteed theoretically [17,145]. These robust training approaches focus on the training

phase, typically requiring alternating the training protocol such as loss function or data

augmentation techniques. On the other hand, this paper aims at evaluating a well-trained

network (agent). These two types of works complement each other.

7.3 Problem Formulation

To incorporate more complex factors such as the object texture/shape distributions into the

robustness evaluation, we adopt the risk-based framework in Chapter 6. We assume a risk

function r : X×Y −→ R that measures the safety of an input (x,y). The input is divided into

two parts. x ∈ X concatenates all inputs with natural, continuous parameterizations. We

can think of X as a subset of Rn with simple geometry, and it is easy to define a structured

prior distribution on X . For instance, X might include the camera pose when evaluating a

robot manipulator.

On the other hand, y collects complex factors such as object texture and shape. As

mentioned in Sec. 7.1, it is challenging to define prior distributions of those factors. For

example, we can over-parameterize each object shape instance as a voxel grid, but the
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distribution of realistic object shapes is not easy as it only occupies a small portion of the

voxel space. If we draw a random sample from the voxel space, it is very unlikely that this

sample would look like a realistic object, and we should not expect the robot manipulator

to handle it. Similarly, it is challenging to define the object texture distribution, which only

occupies a small portion of the pixel space.

To address this challenge, we propose to approximate prior distributions in the Y space

by empirical distributions. Practically, we would collect a set of M samples {y1, ...,yM} as

a discrete approximation of the Y space. Then, the prior distribution in Y space is approx-

imated by an empirical distribution. For instance, we would use a set of offline-collected

mug shapes to represent the distribution of “all possible mugs that a manipulator can en-

counter”, as shown in Fig. 7-2. Due to the complexity of the object shape/texture distribu-

tions, our sample-based approximation might have a very high cardinality. Without loss of

generality, we focus on the uniform distribution py(y = yi) = 1/M. Using the sample-based

representation, the problems that we would like to study become:

Failure Search: Find a collection of (x1,y1), ...(xk,yk) pairs such that

r(xi,yi)≥ rthreshold, where xi ∈ X and yi ∈ {y1, ...,yM} (7.1)

Failure Rate Estimation: Compute the failure rate

pfailure = Ppxy[r(X ,Y )≥ rthreshold] (7.2)

where: pxy(·) = px(·)py(·) (7.3)

py(y = yi) = 1/M for yi ∈ {y1, ...,yM} (7.4)

The main advantage of this formulation is the interpretability: we know that {y1, ...,yM}
are all authentic, thus our method will not produce arbitrarily unrealistic failure examples.

On the other hand, using samples to represent the distribution preserves all the available

information, as we can only access those distributions by sampling.

This sample-based representation is very similar to the usual test set, thus it is natural

to ask “can we iterate through {y1, ...,yM} like a test set?" For example, we can compute
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Figure 7-3: The authenticity of the generated sample from a GAN generator is not guar-
anteed and they can be unrealistic. If we perform feature-space interpolation between two
realistic samples from a GAN (such as (a) and (c) in the figure), then we might get a unreal-
istic sample in the middle (such as (b)). This can be exploited by the robustness evaluation
algorithm, as detailed in Sec. 7.3.1.

Ppxy[r(X ,Y )] in Eq. (7.2) as ΣiP[r(X ,yi) ≥ rthreshold]/M. The problem is that for each

particular yi, we must search over the X space or compute P[r(X ,yi) ≥ rthreshold]. When

the evaluated agent is robust, both of them can be hard and expensive. For example, in

our experiments we need about 108 network forward evaluation for a yi. This can lead to a

substantial computational burden when M is large.

7.3.1 Comparison with Generative Model Representation

An alternative approach, which we compare our method against, would be to materialize

the distribution in the Y space using generative models, such as GAN [41] or VAE [25].

Mathematically, we would train a generator G : Rnz −→ Y that maps from the feature space

Rnz to Y .The training requires a collection of y1, ...,yk from the space Y , which can be re-

garded as samples from a prior distribution py(·) over the space Y . These generative models

are trained to map a simple distribution in the feature space pz(·) to the prior distribution

py(·). For instance, many works on image/shape synthesis [10, 153] train GANs that map

feature space Gaussian distributions to image/shape distributions. If we have trained such

a generative model, our problems can be transformed into

Failure Search: Find a collection of (x1,z1), ...(xk,zk) with (xi,zi) ∈ (X×Rnz), such that

rGAN(xi,zi) = r(xi,G(zi))≥ rthreshold, where 1≤ i≤ k (7.5)
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where rthreshold is a threshold for the risk.

Failure Rate Estimation: Compute the failure rate

pfailure = Ppxz[rGAN(X ,Z )≥ rthreshold] (7.6)

where X ,Z are random variables in X×Rnz with pxz(·) = px(·)pz(·) as the prior distribu-

tion. pz(·) is usually the feature space Guassian distribution.

The above problems are defined in continuous input domains, thus we can exploit al-

gorithms in Chapter 6 to solve them. However, the authenticity of the generated sample

y = G(z) is not guaranteed and they can be unrealistic, even for well-trained models such

as [10]. If we perform feature-space interpolation between two realistic samples from a

GAN (such as Fig. 7-3 (a) and (c)), then we might get a unrealistic sample in the middle

(such as Fig. 7-3 (b)).

This is actually consistent with the incredible success of generative models [10, 153]

yielding images that are almost authentic. When we use a generative model in a robust-

ness evaluation algorithm, we are actively searching this model for adversarial cases; to be

useful, the generative model should almost never produce a bad example. We compare our

method against the generative model approach in Sec. 7.5.1.

7.4 Graph Structure in the Discrete Samples

In this section, we discuss the algorithm to solve the failure search and failure rate estima-

tion in Eq. (7.1) and (7.2). We will start with the discussion of the failure search problem

for clarity.

In Sec. 7.3 we propose sample-based representation as {y1, ...,yM}. One issue associ-

ated with this representation is that we lose all the structure. To be more specific, the risk

evaluated using y1 provides no hint about the risk we expect for y2, since they are just two

samples without explicit correlation. This is in contrast to the continuous-space search in

Eq. (6.1). In these continuous setups, the risk of a particular x1 ∈ X provides a hint about

the risk in the vicinity of x1. If we sample another x2 in the vicinity of a high-risk x1, then
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Algorithm 3: Failure search based on graph representation
Input: initial y0; continuous space search algorithm; neighbourhood N(·) for each
y ∈ Y ;

Set t = 0; visited = /0; result = /0;
while t < iteration_limit do

if visited = /0 then
Set ynext = y0;

else
Select a y′ from visited for expansion according to the risk;
Select a ynext from N(y′);

end
Invoke the continuous space algorithm on ynext, which produces:

1) x1, ...,xm with r(x j,ynext)≥ rthreshold;
2) the risk rynext of ynext, for example rynext = maxx r(x,ynext);

Append (x1,ynext), ...,(xm,ynext) to result;
Append (ynext,rynext) to visited;
Set t = t +1;

end

it would be more likely that x2 also has a high risk. This heuristic is also critical to the con-

tinuous space rare-event simulation algorithm in Sec. 6.3 with the MCMC simulation in

Algorithm 1. In MCMC, the proposal distribution g(·|·) is typically selected as a Gaussian

distribution with the current high risk xk as the center, which encourages the search in the

vicinity of xk.

Inspired by this heuristic, we proposed to exploit the locality in the large sample set

{y1, ...,yM}. Suppose we have a distance function D : Y ×Y −→ R that measures the “simi-

larity” of two points in Y . Then we can exploit locality in the failure search problem; if we

have found y1 with a high risk, then points that are “similar” to y1 are also likely to have

high risk values, where “similar” means small distance according to D. The risk is only

defined on (x,y) pairs, and we can define the risk for y from that. For instance, we might

define a “maximum risk” as rmax(y) = maxx r(x,y).

We propose to represent D using a simple Euclidean distance in a learned latent “feature-

space". In particular, we would train an encoder E : Y −→ Rnz that maps the Y space into

a nz-dimensional feature space. Let z1, ...,zM be the encoded feature vector of y1, ...,yM.

Then, the distance D between two yi and y j is the L2 distance between zi and z j. Using
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Algorithm 4: Multi-level splitting algorithm for Ppxy(·)[r(X ,Y )≥ rthreshold]

Result: An estimate of Ppxy(·)[r(X ,Y )≥ rthreshold]

Input: a prior distribution pxy(·); levels r1, ..,rK; particle number Np;
Generate Np samples X0 = {(x0

1,y
0
1), ...(x

0
Np
,y0

Np
)} from pxy(·);

Set t = 1, p = 1;
while t ≤ K do

Select particles from Xt−1 with risk larger than rt , let them be
X ′t = {(xt−1

1 ,yt−1
1 ), ...(xt−1

Nt
,yt−1

Nt
)};

p←− p×Nt/Np;
Xt ←− {};
for i in range(Np) do

Sample a random point (x′i,y
′
i) from X ′t ;

Run MCMC simulation with risk level rt and initial point (x′i,y
′
i), obtain a

sample (xi,yi);
Append (xi,yi) into Xt .

end
Set t = t +1;

end
Return p as the result;

this feature space distance, we would build a nearest neighbour graph over Y using existing

nearest-neighbour algorithms. In this graph, each yi would maintain a neighbourhood set

N(yi)⊂ {y1, ...,yM}, which collects points that are “similiar” to yi.

With this graph, the failure search problem is transformed into a graph search problem,

as summarized in Algorithm (3). We need a vertex risk function to characterize the risk

of yi, which will be used to determine whether this yi should be expanded for searching in

its vicinity. We can use the maximum risk rmax(y) = maxx r(x,y) or mean risk rmax(y) =

EX ∼px r(X ,y). A continuous space algorithm is required to find x1, ...,xm and compute the

vertex risk function. This requires searching over the X space and can be very expensive,

especially when the evaluated agent is robust.

7.4.1 Graph-based Rare-Event Simulation

The graph structure mentioned above can also be used for rare-event simulation in Prob-

lem (7.2). We will use the multi-level splitting algorithm described in Chapter 6. How-

ever, for the problem that we are interested in, the search space is the product space
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X ×{y1, ...,yM}. Thus, each particle in the multi-level splitting will be a (x,y) pair, as

shown in Algorithm 4.

Algorithm 5: MCMC to sample from px(x)py(y)1(r(x,y)≥ ri)

Result: A sample from px(x)py(y)1(r(x,y)≥ ri)
Input: initial point x0,y0; proposal distribution gxy(·|·) = gx(·|·)gy(·|·);
Set t = 0;
while t < iteration_limit do

Generate a random candidate x′,y′ according to g(·|xt ,yt);

Compute the acceptance rate A = min(1, px(x′)py(y′)1(r(x′,y′)≥ri)gx(x′|xt)gy(y′|yt)
px(xt)py(yt)1(r(xt ,yt)≥ri)gx(xt |x′)gy(yt |y′));

Generate a uniform random number u ∈ [0,1];
if u≤ A then

Set xt+1 = x′,yt+t = y′;
else

Set xt+1 = xt ,yt+1 = yt ;
end
Set t = t +1;

end
Return xt ,yt as the result;

The multi-level splitting in Algorithm 4 requires MCMC simulation internally, and we

need a proposal distribution gxy(·|·) for MCMC in order to draw samples from px(x)py(y)1(r(x,y)≥
ri). This graph can also be used to construct this proposal distribution gxy(·|·). The MCMC

algorithm for (X ,Y ) space with the graph-based proposal distribution is summarized in Al-

gorithm 5. We need a gy(y j|yi) which is the transition probability in space Y from yi to y j.

We can define it as

gy(y j|yi) =

 1/N(yi), if yi ∈ N(yi)

0, otherwise
(7.7)

In our experiment, we use a proposal distribution that is a random switching between ex-

ploring on X and Y . This is similar to coordinate descent in an optimization algorithm.

This proposal distribution gy(·|yi) means we would search the neighbors of yi with a

uniform probability, which exploits the locality in the vicinity of yi. We can also use other

variants, for instance prioritizing points with smaller distances or blending Eq. (7.7) with

a uniform distribution over Y . Moreover, it can be shown [59] that the MCMC simulation
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Figure 7-4: A 2-dimensional illustration of the graph-based MCMC simulation and its
comparison with continuous MCMC in Chapter 6. As shown in (a), the continuous MCMC
with a Gaussian proposal distribution is equivalent to Gaussian random walk contained in
the region r(x) > ri. Alternatively, we can discretize the 2d place as a grid, as shown in
(b). This grid is a graph where each point has 4 neighbours (up, down, left right). We can
perform MCMC on this graph with a proposal distribution that choose a neighbour point
randomly, as described in Eq. (7.7).

converges to the target distribution given sufficient iterations for mixing, thus each level

in the multi-level splitting algorithm converges asymptotically to the ground-truth. As a

result, the failure rate estimation also converges asymptotically to the ground truth, despite

the fact that we exploit learned features to provide hints about the locality.

A 2D illustration of the graph-based MCMC is shown in Fig. 7-4, with comparison to

the continuous MCMC in Chapter 6. As shown in Fig. 7-4 (a), continuous MCMC with

a Gaussian proposal distribution is equivalent to Gaussian random walk contained in the

region r(x)> ri. Alternatively, we can discretize the 2d place as a grid. This grid is a graph

where each point has 4 neighbours (up, down, left right). We can perform MCMC on this

grid, which might look like Fig. 7-4 (b) with a proposal distribution that choose a neighbour

point randomly, as described in Eq. (7.7). In practice, we would perform MCMC on graphs

embedded in high-dimensional feature spaces, which can be hard to visualize.

7.5 Proof-of-Concept Experiment on MNIST

We first evaluate our method on the MNIST image classification task. In particular, we

train an image classifier and evaluate its robustness. The Y space consists of 10000 MNIST
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images. The X space is the pixel-space disturbance with L∞-norm constrained to be less

than ρ . All MNIST images in the Y space are correctly classified without disturbance. We

apply pixel-space disturbance as a data augmentation technique in the training of the neural

network classifier, to make the network more robust to the attack and reduce the failure rate.

The risk function r : X ×Y −→ R is the maximum score of incorrect labels minus the score

of the correct label.

We evaluate both the failure search and failure rate estimation on this problem. For

failure search, we use the continuous-space multi-level splitting described in Algorithm. 1

as the internal continuous space search in Algorithm 3. When using this continuous-space

multi-level splitting on a particular yi ∈ Y , it produces a set of x1, ...,xm with risk larger

than the threshold and a failure rate estimation P[r(X ,yi) > rthreshold]. The failure search

in Algorithm (3) requires a risk value for yi, and we use the maximum risk over all the

encountered x during the continuous-space multi-level splitting algorithm.

For both rare-event simulation and failure search, we need to build a graph for the Y

space. We train a separate VAE [25] to extract the feature and build a nearest-neighbor

graph on top of that. Our failure search and rare-event simulation are compared with base-

lines which use the random search in the Y space instead of the graph-based search. We use

the same amount of computational resources for both our method and the baseline, mea-

sured in terms of the network forward evaluation counts. Note that our method is “black-

box”: we do not need to access the internal structure of the neural network or evaluate its

gradient.

The experimental result is shown in Fig. 7-5. Each data point is computed from 10

independent runs. We tune the disturbance L∞-norm radius ρ to control the failure rates,

and compare the performance of the proposed method and baseline at different levels of

failure rates. Fig. 7-5 (a) show the number of discovered high-risk images (y) in failure

search with at least one x such that r(x,y) > rthreshold. From the figure, our method can

discover more failure cases than the baseline. Fig. 7-5 (b) shows the relative variance

comparison between our method and baseline on the failure rate estimation problem. Our

method has a consistently lower variance. Some high-risk MNIST images discovered by

our method are shown in Fig. 7-6 (a).
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Figure 7-5: The failure search and failure rate estimation result on the MNIST experiment
in Sec. 7.5. (a) Our method can discover more failure cases (the image y with at least one
x such that r(x,y) > rthreshold) than the baseline. (b) Our method achieves a much smaller
variance on the failure rate estimation problem than the baseline.

7.5.1 Comparison with Generative Model based Formulation

Our sample-based representation of the Y space is compared with the representation using

generative models. In particular, our method is compared with the following two baselines:

GAN_1: We train a GAN [41] generator that maps the feature space Rnz to image space,

and use the continuous MCMC algorithm on X ×Rnz . To evaluate the risk function we

need the ground-truth label of the generated images. Thus, our GAN will also take the

label as the inputs (in addition to the Gaussian noise). This is known as conditional GAN

in existing work [93].

GAN_2: We use the same network as GAN_1. However, we weight each generated image

by the normalized score from the GAN discriminator. In other words, we use the GAN

discriminator score as an un-normalized prior distribution which encourages the search

algorithm to find authentic MNIST samples. On the other hand, this leads to a roughly

doubled computational burden due to the evaluation of the discriminator.

Almost all failure examples found by GAN_1 are not realistic. Examples of the discov-

ered high-risk images is shown in Fig. 7-6. Fig. 7-6 (a) is the high-risk samples discovered

by the proposed method, while (b) the result of the GAN_1 baseline. These images are not

cherry-picked. The GAN_1 baseline tends to produce unrealistic failure cases, which is not
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(a)

(b)

Figure 7-6: Examples of discovered failure cases for (a) the proposed method; and (b) the
GAN_1 baseline in Sec. 7.5.1. The generative model baseline tends to produce un-realistic
failure cases.

meaningful in practice.

The GAN_2 baseline is much stronger than the GAN_1 and some of the failure cases

found by GAN_2 are realistic. To quantify this, we randomly select 20 failure images found

by GAN_2 and ask 34 human subjects to label them as “Real”, “Unknown” or “Fake”. The

result is shown in Table. 7.1. From the table, about 1/3 to 1/2 of the generated images are

designated as authentic. Examples of the “Real”, “Unknown” or “Fake” images are shown

in Fig. 7-7. On the other hand, the GAN_2 baseline cannot guarantee the generated failure

cases are realistic. Moreover, the failure rate estimation from GAN_2 is much larger than

the result from our formulation, as shown in Fig. 7-8. This is because many failure images

are not realistic, and these unrealistic failures can be designated with high risk. As a result,

the failure rate estimation from the GAN baseline might not corresponds to the actual risk

of the image classifier.
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(a) (b) (c)
Figure 7-7: Examples of the high-risk images discovered by the GAN_2 baseline in
Sec. 7.5.1. (a), (b) and (c) are examples of “Real”, “Unkown” or “Fake” images. The
quantitative result is in Table. 7.1.

(e) Human Inspection Statistics
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Table 7.1: Human inspection statistics of the failure images found by the GAN_2 baseline
(34 human subjects, 20 failure images, 680 answers in total).
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Figure 7-8: The GAN_2 baseline produce failure rates that is much larger than our for-
mulation, this is because many failure images are not realistic and designated with high
risk.

7.6 Conclusion

In this chapter, we study the robustness evaluation of complex systems with respect to

challenging input domain such as the object shapes/textures. We propose to directly rep-

resent these spaces by samples, and formulate the robustness evaluation as failure search

or rare-event simulation problems with respect to semi-empirical distributions. We further

propose to build a graph over the samples, which transforms the failure search and failure

rate estimation into graph search problems. Importantly, failure rate estimation by rare-

event simulation with the proposed graph structure converges to ground-truth failure rate

asymptotically, despite the graph exploits learned features.
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Chapter 8

Application to a Robot Manipulation

Pipeline

In this chapter, we perform a robustness evaluation of the kPAM manipulation pipeline that

is presented in Chapter 3. Sec 8.1 focuses on evaluating the keypoint perception module,

and Sec. 8.2 studies the failure rate of the entire pipeline. The robustness of the keypoint

perception module depends on complex factors such as the object texture, which is ad-

dressed using the algorithm discussed in Chapter 7. The entire manipulation pipeline has

some binary failure modes, which cannot be addressed in the risk-based framework. To

resolve it, we propose a factorized verification scheme in Sec. 8.2.

8.1 Robustness Evaluation of Keypoint Perception

In this section, we conduct a probabilistic robustness evaluation of the keypoint detection

network, which is the perception module of the kPAM robot manipulator pipeline in Chap-

ter 3. The network takes input as raw RGBD images and produces a list of 3D keypoints

expressed in the camera frame. After keypoint perception, the pipeline would perform

kPAM action planning, grasp planning and action execution. These remaining modules do

not involve deep neural networks, thus the robotics community has a better understanding

of their failure modes. The robustness of the keypoint detector depends on the geometry

and appearance (texture) of the object, which will be addressed using the failure search and
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rare-event simulation algorithms discussed in Chapter 7.

The risk-based formulation requires a larger collection of samples as the underlying

representation of the object texture/shape distributions. For example, if Amazon would like

to understand the robustness of their box manipulation pipeline, then they should collect

all possible boxes that they have ever encountered in production. This data collection

procedure, however, is not aligned with our main focus of the algorithmic contribution, and

the required engineering effort is out of our capability. Thus, we simplify the data collection

by only investigating the robustness with respect to different object textures. In other words,

we keep the geometry model fixed during the robustness evaluation. Furthermore, we

use an open-source image dataset as the texture maps of the object, instead of collecting

a large-scale object texture dataset. On the other hand, it is emphasized that the actual

deployment of this algorithm requires the data collection as a modeling procedure. The

failure samples and failure rate are meaningful only if the input distribution matches the

real-world situations.

In Sec. 8.1.1 we discuss the detailed formulation and experimental setup. The evalua-

tion pipeline requires an efficient render customized for texture switching, which is dis-

cussed Sec. 8.1.2. The evaluation result and comparison with baseline is presented in

Sec. 8.1.3.

8.1.1 Experimental Setup

We formulate the robustness evaluation as the risk framework in Chapter 7. As mentioned

above, we focus on the textures as our space Y . For the geometry, we use a simple mug

model with only 80 vertices to ensure the efficiency of rendering, as shown in Fig. 8-1 (a).

We use the 1000 MNIST images to represent the object textures distribution, an example is

shown in Fig. 8-1 (b). The continuous X space collects a variety of physical parameters: the

object pose, camera pose, object scale and illumination parameters. We assume the mug

always lies on the table, and its pose has 4 dimensions (2 planar translations, the rotation

about z axis and the mug axis). The camera pose is a 6-DoF rigid transformation, but it

is constrained such that the object is within the camera field of view. To ensure this, we
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(c)(a) (b)

Figure 8-1: The OpenGL based renderer used to evaluate the keypoint detection neural
network. (c) shows the rendered mug image using the mug mesh model in (a) and texture
image in (b). This renderer is optimized for texture switching, as detailed in Sec. 8.1.2.

would first sample to object pose, then sample to the camera position. To determine the

camera orientation, we would sample a point on the table in the vicinity of the mug, and

let the camera look at that point. Finally, the camera is allowed to rotate with respect to its

own axis.

The risk function r : X ×Y −→ R is the L2 distance between the predicted keypoint and

the ground-truth. To evaluate this risk function for a given input (x,y), we need to first

render the camera image with the texture y and physical parameters x. Then, we would

feed the rendered image into the keypoint detection network to obtain the prediction, and

compare it with the ground truth. The ground-truth keypoint can be computed using the

physical parameter x.

8.1.2 Implementation Details

The robustness evaluation pipeline requires a render that produces an RGBD image input

given the texture y ∈ Y and physical parameter x ∈ X . Many off-the-shelf renderers such

as Unreal/Blender/Unity are available, and they can render high-quality photo-realistic im-

ages. However, our algorithm in Chapter 7 requires the random walk in the Y space, which

means the object texture is changed at each iteration. These off-the-shelf renderers are not

optimized for fast switching of textures (and object geometry). In contrast, they assume

one texture is used for a lot of rendering and they perform many pre-computation steps

(for example, the lighting map) for a given texture. As a result, these renderers are very

inefficient for our application.
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Figure 8-2: The failure search and failure rate estimation results on the keypoint perception
experiment in Sec. 8.1.3. (a) Our method can discover more failure textures (the image y
with at least one x such that r(x,y)> rthreshold) than the baseline. (b) Our method achieves
a much smaller variance on the failure rate estimation than the baseline.

To resolve this issue, we use an OpenGL-based renderer customized to our problem. An

example of the rendered images is shown in Fig. 8-1 (c). This renderer uses a simple phong-

shading, and all the texture maps used to represent the Y space are cached in memory. As

a result, we can achieve more than 600 [FPS] rendering on a Nvidia 2080 Ti GPU, despite

the switching of object textures. On the other hand, the image produced by this simple

renderer is not as realistic as off-the-shelf renderers such as Unreal/Blender. Implementing

a high-quality renderer which supports fast texture switching is not aligned with our focus

of the algorithmic contribution, and is left for future work.

The keypoint detection network we evaluated is adapted from the one on the robot

(described in Sec. 3.5). To improve the efficiency, we reduce the input/output dimension,

replace resnet34 backbone with a hand-written CNN, and use direct keypoint regression

instead of the confidence map regression. As a result, the average accuracy decreases from

0.4 [cm] to 1.3 [cm], while the evaluation speed increases to 800 [FPS] from about 50

[FPS].

8.1.3 Results

We evaluate both failure search and rare-event estimation on the keypoint perception net-

work. Our method is compared with a baseline that replaces the graph-based search with a
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Table 8.1: Failure Rate Estimation Statistics

Proposed Baseline Perception Module
Failure Rate 0.00542 0.00478 6.71e-5

Generative
Model

Non-Isotropic 
Gaussian

Isotropic 
Gaussian

Failure Rate 0.00542 0.00529 0.00517

Threshold [cm] 3.5 4.0 4.5 5.0
Naive 2.62'!" 6.56'!# N. A. N. A.

Proposed 2.54 ± 0.23 '!" 6.71 ± 0.93 '!# 1.21 ± 0.23 '!# 5.45 ± 1.58 '!$
Baseline 2.68 ± 0.19 '!" 6.84 ± 1.34 '!# 1.58 ± 0.60 '!# 6.59 ± 4.17 '!$

random search. We compare our method with the baseline on different thresholds of key-

point errors. The algorithms for both failure search and rare-event estimation are the same

as ones in Sec. 7.5.

Fig. 8-2 (a) shows the number of high-risk textures found by both algorithms, where a

texture y is designated as high-risk if at least one x∈ X is found such that r(x,y)≥ rthreshold.

From the figure, our method can found more failure textures than the baseline. At a large

failure threshold of keypoint error, our method can found about 10x more failure textures

than the baseline. Fig. 8-2 (b) shows the relative variance comparison between our method

and baseline on failure rate estimation. Table. 8.1 shows the statistics of the failure rate

estimation. For the “Naive” method in the table, we perform naive Monte-Carlo simulation

until the number of discovered failure causes reach 100. For the proposed method and the

baseline, we perform 10 individual runs and compute the empirical variance. From the

figure and table, our method has a consistently lower variance than the baseline.

8.2 Robustness Evaluation of Manipulation Pipeline

In addition to evaluating the visual perception module, it is desirable to evaluate the robust-

ness of the whole system, as argued in [101]. In particular, we want to estimate the failure

rate of the whole system (instead of its sub-components) under the prior distribution in the

joint X ×Y space. The underlying motivation is that sub-components might interact with

each other in a rather complex way. Verifying each component independently might not be

able to capture the failure caused by this interaction.

The algorithms described in Chapter 6 and Chapter 7 are black-box. They do not require

information about system internal structures other than a (black-box) risk function r : X ×
Y −→ R. Thus, theoretically we only need a new risk function to evaluate the robustness of
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Figure 8-3: The robustness evaluation pipeline for the manipulation system. Given an
input (x,y) ∈ X×Y , we would render the image, perform object detection which produces
keypoint z ∈ Z. Then, the kPAM action planning and execution are only dependent on the
keypoint.

the entire manipulation pipeline. This is exactly what [101] proposed. They use the time-

to-collision as the risk of an autonomous driving pipeline while treating the driving policy

(which contains perception, planning and control modules) as a black box.

However, we cannot directly apply this technique to the manipulation pipeline, because

some failure modes of a robot manipulator are intrinsically binary. Using the motion plan-

ners in Chapter 3 and 4 as an example. These planners would either find a valid robot

trajectory or fail. We can easily obtain a binary success flag, but it is very hard to write

down a continuous risk, which is necessary for the algorithm in Chapter 7 and 6.

To resolve this limitation, we exploit the staged structure of the manipulator pipeline

and use a factorized, component-wise robustness evaluation pipeline. The visual perception

is evaluated by the Multi-level splitting algorithm in Chapter 6, while other components are

evaluated using naive Monte-Carlo simulation. On the other hand, we still want to get the

failure rate of the whole system. This requires careful interfacing between the robustness

evaluation of sub-components, as detailed below.

8.2.1 Component-Wise Verification with Whole-System Failure Rate

Consider the probabilistic robustness evaluation of the kPAM manipulation pipeline de-

picted in Fig. 8-3. The parameter space (X ,Y ) is the same as the one in Sec. 8.1.1. Given

an input (x,y) ∈ X×Y , we render a scene image, perform keypoint detection, run grasping

and kPAM action planning. Then, we compare the placed keypoint location with the de-

sired keypoint location. A manipulation attempt is designated as a failure if either 1) any

sub-component fails, or 2) the placed keypoint location is too far away from the desired

location.
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The robot manipulation is a staged pipeline. We separate the pipeline into two parts, as

shown in Fig 8-3. One of them is the visual perception, which will be evaluated using the

multi-level splitting algorithm in Sec. 8.1. The other part includes all other components.

As mentioned in Sec. 8.2, this part contains binary failure modes (such as the failure of the

motion planer) and we would evaluate it using naive Monte-Carlo simulation. However,

we still want to compute the failure rate of the entire pipeline under the prior distribution

pxy(·), which can be factored as

Ppxy(·)[pipeline fails] = Ppxy(·)[pipeline fails|perception works]Ppxy(·)[perception works]

(8.1)

+Ppxy(·)[pipeline fails|perception fails]Ppxy(·)[perception fails] (8.2)

here we need an auxiliary definition of “perception failure”. We can define it as the L2

distance between perceived keypoints and ground-truth is greater than 4 [cm]. Among

terms in Eq. 8.1, we have

Ppxy(·)[perception works]≈ 1 and Ppxy(·)[perception works]≤ 1 (8.3)

Ppxy(·)[pipeline fails|perception fails]≈ 1 (8.4)

and Ppxy(·)[pipeline fails|perception fails]≤ 1 (8.5)

Thus, we can approximate (and upper bound) Ppxy(·)[pipeline fails] as

Ppxy(·)[pipeline fails]≤ Ppxy(·)[pipeline fails|perception works] (8.6)

+Ppxy(·)[perception fails] (8.7)

where the term Ppxy(·)[perception fails] has already been computed in Sec. 8.1. Thus, we

only need to evaluate Ppxy(·)[pipeline fails|perception works].
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As shown in Fig. 8-3, after keypoint perception the remaining components are only

dependent on the perceived keypoints. In other words, if we can sample from the un-

normalized “correct” keypoint distribution Q(z)=Epxy(·)[p(z|x,y)1(keypoint perception works)],

then the evaluation is independent of the rendering and neural network evaluation.

Because the keypoint perception is very likely to succeed, it is very easy to sample from

this distribution. However, to avoid performing the rendering and neural network evalua-

tion during the robustness evaluation of the planning && execution module, we would use

a generative model to approximate this distribution. In particular, we would marginalize

the y terms in Q(z) = Epxy(·)[p(z|x,y)1(keypoint perception works)] and learn a conditional

distribution PZ|X(·|X = x) using a generative model (Q(z) = Epx(·)[PZ|X(·|X = x)]). This

generative model only works with low-dimensional data instead of images, thus can be

much more efficient. To compute Ppxy(·)[pipeline fails|perception works], we would draw

many samples from this generative model and test whether the pipeline works.

8.2.2 Experimental Results

We train a GAN to approximate the conditional keypoint distribution PZ|X(·|X = x). The

GAN network’s inputs include the pose/shape of the mug and Gaussian white noise. The

network produces the position of the keypoint relative to its ground-truth. In other words,

the GAN network learns the error distribution of keypoints conditioned on the input x. This

network requires training data in the form of (x,z) tuples. From the discussion above, we

only need to approximate the keypoint distribution when the error is less than a threshold

(4 [cm]). Thus, the generation of the training data can be performed very easily. Once the

GAN network is trained, we can sample a (x,z) pair by first drawing a x sample from the

prior distribution px(·), then sample z from the PZ|X(·|X = x) distribution approximated by

the GAN.

With the method to sample the (x,z) pairs, we can evaluate the planning && execu-

tion component of the pipeline, which only needs keypoints as the input. This component

consists of: 1) planning a trajectory to reach the object; 2) computing a grasp pose; and

3) planning a trajectory to the desired configuration. The failure is defined as either 1) the

120



Generative Model
(Planning && Execution)

Baseline
(Planning && Execution) Perception

Failure Rate 0.00742 0.00678 6.71e-5

Table 8.2: The failure rate of the planning && execution module with/without a learned
input keypoint distribution (“Generative”/“Baseline”). The incorporation of keypoint dis-
tribution leads to a higher failure rate estimation than the baseline. On the other hand, the
failure rate is much larger than the failure rate of keypoint perception. Thus, the failure of
the system is dominated by the failure of the planning && execution module.

GAN Non-Isotropic Gaussian Isotropic Gaussain
Failure Rate 0.00742 0.00729 0.00717

Table 8.3: The failure rate of the planning && execution module with different generative
models.

planner doesn’t find a trajectory, or 2) the placement keypoint location is too far away from

its goal (the threshold is 4 [cm]). We run the naive Monte-Carlo evaluation until 100 failure

cases have been discovered.

The experimental result is summarized in Table 8.2. We compare it with a baseline

that doesn’t account for the keypoint distribution (in other words, the keypoint z is the

ground-truth location directly computed from physical parameter x). From the table, the

incorporation of keypoint distribution leads to a higher failure rate estimation than the

baseline. This implies the baseline might underestimate the failure rate. On the other hand,

we can see this failure rate is much larger than the failure rate of the keypoint perception.

Thus, the failure of the whole system is dominated by the failure of the planning &&

execution module, which is consistent with our observation on the robot.

We also compare the GAN modeling of the keypoint error distribution with some other

much simpler generative models. The result is shown in Table 8.3. For the non-isotropic

Gaussian model, we assume the conditional keypoint error distribution does not depends on

x and approximates the keypoint error distribution as a 3-dimensional Gaussian distribution.

For the isotropic Gaussian model, we use three 1-dimensional Gaussian distributions to

approximate the keypoint error distribution. From the table, we observe the difference is

not noticeable. This might imply a very simple generative model can capture the keypoint

error distribution.
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Figure 8-4: The failure rate of the planning && execution module with different numbers
of retry.

To improve the robustness and reduce the failure rate, a simple method is to retry once

the planning && execution module fails. Fig. 8-4 shows the failure rate with the increased

number of retry. From the figure, with only one additional retry the failure rate is 17x

smaller. With three retry attempts, the failure rate of the planning && execution module is

3.52e−5, which is comparable to the failure rate of the perception module. This implies the

whole-system failure rate is about 1e−4 from Eq. (8.1).
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Chapter 9

Discussion

This thesis tackles the challenge caused by the diverse, unstructured environments, in which

the robot manipulator would be deployed. In this chapter, we first summarize the contribu-

tions and explain how the works in the preceding chapters fit together to address the overall

question of this thesis. Then, we discuss the trade-off between various state representations

proposed in this thesis and existing works. Finally, we close by proposing some directions

for future work.

9.1 Summary of Contributions

This thesis approaches the challenge of the state representation and take steps toward a

generalizable, dexterous and robust manipulation pipeline. We start by considering the ex-

ample problem of cleaning up a kitchen, as mentioned in Chapter 1. The kitchen might

contain a variety of different objects with potentially unknown instances, and the manipu-

lator should automatically generalize to them. This is out of the capability of existing robot

manipulators, as they can only handle known objects with detailed template models.

Initially, we plan to accomplish this kitchen cleanup task by pose estimation. The

author is very familiar with this topic and has made several contributions [36, 37] on pose

estimation algorithms. However, we run into several challenges such as the topological

inconsistency and shape mismatches among different objects. This inspires us that the

pose might not be an ideal object representation. In other words, it is surprisingly hard to
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define a parametric model of the object geometry that can capture the shape of “all possible

mugs”. Due to the lack of this parametric model, we cannot perform parameter (pose)

estimation.

To address this challenge, in kPAM (Chapter 3) we propose to use semantic 3D key-

points as an object representation. Using this object representation, we contribute a novel

formulation of the generalizable pick-and-place manipulation that factors the problem into

1) 3D keypoint detection, 2) optimization-based robot action planning, and 3) geometric

grasping and action execution. This factorization allows us to leverage well-established so-

lutions for these submodules and combine them into a general and effective manipulation

pipeline. kPAM-SC (Chapter 4) extends kPAM with the reasoning of physical feasibility

such as collision, static equilibrium, visibility and grasp stability. The keypoint representa-

tion is not sufficient for this task, as it lacks the dense and complete geometric information

of the object. Thus, we propose to integrate 3D shape completion algorithms into the

pipeline.

kPAM 2.0 (Chapter 5) improves the pipeline in terms of the dexterity. In particular, we

aim at a manipulation framework that is capable of performing contact-rich tasks, while be-

ing generalizable to objects with different shapes, sizes, and appearances. To achieve this,

we first augment the keypoint representation in Chapter 3 with local orientation informa-

tion. Using this oriented keypoint, we propose a novel object-centric action representation

as the linear/angular velocity or force/torque of an oriented keypoint. This action represen-

tation enables closed-loop policies and contact-rich tasks, despite intra-category shape and

size variations of manipulated objects. We experimentally demonstrate our framework on

several challenging contact-rich manipulation tasks.

Part II of this thesis focuses on the robustness of the manipulator. Our motivation to

investigate the pipeline robustness is twofold: 1) cyber-physical systems such as manip-

ulators should be highly reliable to avoid causing damage to humans and properties; 2)

we also need to address the challenge of representation when considering the robustness,

similar to the pipeline development. As mentioned above, the lack of a parametric model

of the object geometries (such as “all possible mugs”) motivates us to exploit keypoints to

develop a capable manipulation pipeline. In the context of the robustness evaluation, the
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lack of the parametric model implies we do not have a continuous parameter space as the

input domain, which is a prerequisite for existing robustness evaluation algorithms. Given

this challenge, a natural question to ask is “can we use the keypoint representation for ro-

bustness evaluation?” To be more specific, can we represent the mugs as a set of keypoints,

and perform a robustness evaluation with respect to the input space of keypoints? How-

ever, this approach does not work, because the information contained in keypoints is not

sufficient for robustness evaluation. Keypoints only characterize several local object parts,

but the geometry information missed by keypoints might also affect the robustness.

It is hard to define concise, natural parameterizations for the object geometry, but it

can be over-parameterized. For example, we can use voxel grids to represent each object

shape instance, although the space of voxel grids is much larger than “all possible mugs”.

Similarly, we can use an image (texture map) to represent each object texture instance,

although the pixel space is again much larger than “all possible mug textures”. To evaluate

the robustness of the manipulator with respect to “all possible mug textures”, we need to

use a subspace of the pixel space as the input domain. Thus, the question becomes how to

represent the “all possible mug textures” as a sub-space of the pixel space?

In the Part II of this thesis, we proposed to approximate these complex spaces (dis-

tributions) as samples, as we can only access them by sampling. For example, we would

represent “all possible mug textures” as a large collection of mug textures, which is a subset

of the pixel space. Then, we model factors that affect the system robustness as a structured

distribution over variables (e.g. the object pose), combined with an empirical distribution,

that describe the visual properties. We then formulate the robustness evaluation as failure

search and failure rate estimation problems on this combined distribution. One major chal-

lenge of this representation is the lack of continuity structures among the discrete samples.

To address this, we formulate a weighted graph over the empirical dataset using the dis-

tance in a learned latent space as the edge weights. This graph structure connects discrete

samples and transforms the search/rare-event problems into more efficient graph-based ex-

ploration. Our method is applied to the manipulation pipeline we developed, and it can

potentially benefit many other cyber-physical systems such as the self-driving car

The contribution of this thesis is twofold. Conceptually, we address the challenge
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caused by the unstructured environments and propose several object representations in the

development and robustness evaluation of the manipulation pipeline. Systemically, we take

steps toward a generalizable, dexterous and robust manipulator by building a capable ma-

nipulation pipeline and evaluate its robustness.

9.2 Environment Representation for Manipulation

The most important environment for a robot manipulator is obviously the objects. However,

it is surprisingly hard to define a parametric model of the object geometry that can capture

“all possible mugs”. 6-DOF pose (or deformable pose) with geometric templates might be

able to capture many mug instances, but it is not hard to find an “adversarial mug” which

is hard to represent. Furthermore, a continuous parameterization of the object geometry

cannot handle topology inconsistency, as detailed in Sec. 3.4.

This challenge prevails in both the development of the manipulation pipeline and its

robustness evaluation. For pipeline development, the lack of a precise, complete paramet-

ric model implies we cannot perform parameter (pose) estimation. Regarding robustness

evaluation, the lack the parametric model means we don not have a continuous input do-

main as the search space. As a result, researchers have proposed a variety of state (object)

representations to address this challenge. In the following text, we would discuss some of

them and make comparisons from several perspectives.

9.2.1 Information Contained in the Representation

The state representation can be regarded as an information extraction from the raw sensor

data. The raw sensor input (such as the image or point cloud) contains all the information

that is available, but it is not easy to directly use them. If we extract a state representation

from the raw sensor input, for instance estimating the pose from the image input, then the

information contained in the state (pose) might be easier to interpret and use. On the other

hand, the information contained in the state might be incomplete. For example, if the object

pose is used as the state, then we lose the appearance information of the object, although it

is available from the image input.

126



Some researchers [77, 78] believe it is better to exploit all the information contained in

the raw sensory input, as more information does not hurt. Thus, it is argued that the loss

of information would potentially lead to performance deterioration. On the other hand,

during our development of the manipulation pipeline we found that lots of information is

not useful and should be ignored. Using the kPAM pipeline in Chapter 3 as an example:

once the keypoint is detected, we won’t need to know the appearance of the object anymore.

In other words, conditioned on the keypoint information, the manipulation pipeline should

be independent of the object texture. Thus, we ignore the object texture after keypoint

detection, although this texture information is available in the RGBD image input. Actually,

ignoring the task un-related information is the underlying reason why our pipeline can

generalize to different objects and task setups.

The required information depends on the task. For example, we can typically ignore

the object appearance during pipeline development. However, this is not true for robustness

evaluation. Let’s consider the keypoint perception module in our pipeline. Although theo-

retically the keypoint location should not depend on the object appearance, in practice the

appearance would impact the robustness of neural networks. Thus, to evaluate the robust-

ness of the manipulator we must consider how to represent the object appearance (texture)

instead of simply ignoring it.

9.2.2 Learned Representation vs. Hand-Crafted Representation

The state representation in many data-driven algorithms [3,15,77,78] is not explicit defined.

They use an implicit state instead, which is usually an internal feature of the neural network.

These neural networks are typically trained using imitation learning [78] or reinforcement

learning [118, 119] algorithms. The learning procedure requires training data in the form

of human demonstrations and/or trial-and-error attempts.

One major advantage of these data-driven algorithms is that almost no prior knowledge

is required. As a result, these algorithms can be applied to a variety of tasks in many

different fields. As long as an efficient simulator or a large human-demonstration dataset

is available, many data-driven algorithms [118,119] can be easily used in a black-box way.
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A lot of interesting manipulation behaviors automatically emerges from these data-driven

algorithms [4, 130].

On the other hand, it is hard to interpret the implicit representation (a neural network

internal feature). This is exactly why generative models (GANs) are not ideal in our in-

vestigation of robustness evaluation. Performing search in the learned feature space would

lead to unrealistic failure cases and un-interpretable failure rate estimation. From the per-

spective of pipeline development, the learned feature makes it hard to incorporate prior

knowledge. For example, in Chapter 5 we use keypoints to tell the policy which part of the

object is relevant to the manipulation task, which part is not (for instance, the peg handle

shape is not relevant to the peg-hole insertion task). It is hard to incorporate this prior into

implicit state representations such as [4, 77].

9.2.3 Dense Representation vs. Sparse Representation

In this section, we review the dense descriptor proposed in Dense Object Net [34], which

is a representative dense object representation. This representation will be compared with

the sparse keypoint representation proposed in this thesis to highlight the trade-off.

In [33, 34], each pixel is assigned a descriptor by a neural network. Thus, the object

representation contains dense, global visual information of the object. In contrast, the

keypoint (oriented or not) proposed in this thesis only characterizes a set of sparse, local

object parts that are relevant to the manipulation task. The pixel-wise descriptor in [34]

is trained such that the L2-distance in the feature spaces implies correspondence. [34] also

develops a pipeline that trains the dense descriptor in a self-supervised way.

Dense object net [34] uses the learned descriptor to accomplish the “grasp a specific

point of an object” manipulation task (such as the “pick-up a shoe at its heel” in [34]).

They would first record a descriptor value for a particular shoe heel. Then given an input

image, they would extract the dense descriptor, find the pixel (descriptor) that is closest

to the recorded descriptor, and perform robot grasping at that pixel. We can think of the

object representation in this task is actually the 2D keypoint (pixel) instead of the dense de-

scriptor. The dense descriptor is an intermediate object representation which is transformed
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into 2D keypoints eventually. A similar transformation is also exploited in a following-up

work [33]. The neural network policy in [33] takes 2D keypoints as the input, where 2D

keypoints are obtained from the dense descriptor.

The discussion above highlights two advantages of the sparse keypoint representation:

1) the dimension is much lower; 2) only task-relevant information (such as the “shoe heel”

location) is contained in the keypoint representation. This motivates us to use keypoints

directly for both pick-and-place and contact-rich manipulation. On the other hand, our

method requires manual labeling of the training data (ground-truth keypoint locations,

please refer to the Appendix for more details), while the network in [34] can be trained

in a self-supervised way.

Dense object representation, such as the dense descriptor and complete object geome-

try, usually contains more information. However as mentioned in Sec. 9.2.1, many manip-

ulation tasks are not dependent on this additional information. Moreover, the perception

algorithm for dense object representation might be more challenging. On the other hand,

this additional information can be helpful for some tasks. For example, in Chapter 4 we

use the complete object geometry for the reasoning of physical feasibility.

9.3 Future Directions

Although this thesis has made progress toward a generalizable, dexterous and robust robot

manipulation pipeline, much more remains to be done. Among them, the most important

one is scaling up the system implementation. Both the robot manipulation and robustness

evaluation experiments are still research prototypes. The manipulation pipeline only han-

dles tens of the objects at a failure rate of 1%. This is not sufficient for deployment at

scale (for instance the Amazon scale). The robustness evaluation experiment is limited to

1) an unrealistic renderer; 2) only considering the variation of object textures, and 3) using

an open-source dataset to emulate the object textures. For the actual deployment, these

limitations should be addressed.
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Appendix A

Implementation Details of kPAM

A.1 Dataset Generation and Annotation

In order to reduce the human annotation time required for dataset labelling we use a data

collection pipeline similar to that used in [34]. The main idea is to collect many RGBD

images of a static scene and perform a dense 3D reconstruction. Then, similarly to [90], we

can label the 3D reconstruction and propagate these labels back to the individual RGBD

frames. This 3D to 2D labelling approach allows us to generate over 100,000 labelled

images with only a few hours of human annotation time.

A.1.1 3D Reconstruction and Masking

Here we give a brief overview of the approach used to generate the 3D reconstruction,

more details can be found in [34]. Our data is made up of 3D reconstructions of a static

scene. Using our the wrist mounted camera on the robot we move the robot’s end-effector to

capture a variety of RGBD images of the static scene. Using the robot’s forward kinematics

we know the camera pose corresponding to each image which allows us to use TSDF

fusion [19] to obtain a dense 3D reconstruction. After discarding images that were taken

from very similar poses we are left with approximately 400 RGBD images per scene.

The next step is to detect which parts of the 3D reconstruction correspond to the object

of interest. This is done using the change detection method of [30]. In our particular case
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(a) Mugs composite image (b) Shoes composite image

Figure A-1: Multi object composite images used in instance segmentation training

all of the reconstructions were of a tabletop scene in front of the robot. Since our recon-

structions are globally aligned (due to the fact that we use the robot’s forward kinematics

to compute camera poses) we can simply crop the 3D reconstruction to the area above the

table. At this point we have the portion of the 3D reconstruction that corresponds to the

object of interest. This, together with the fact that we have camera poses, allows us to eas-

ily render binary masks (which segments the object from the background) for each RGBD

image.

A.1.2 Instance Segmentation

In order to train our instance segmentation network we require training images with pix-

elwise semantic labels. Using the background subtraction technique detailed in Section

A.1.1 we have pixelwise labels for all the images in our 3D reconstructions. However,

these images contain only a single object. We need our instance segmentation network to

be able to handle multiple objects at test time. Similar to [120] we augment our training

data by creating multi-object composite images from our single object annotated images.

This is done by simply pasting the cropped part of the image corresponding to the object

in question on top of an existing background. This process can be repeated to generate

composite images with arbitrary numbers of object. Four our experiments we generated

images with between 1 and 7 objects. Examples of such images are shown in Figure A-1.
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Figure A-2: A screenshot from our custom keypoint annotation tool based on [89] while
annotating a shoe scene.

A.1.3 Keypoint Detection

We developed a custom labelling tool based on the Director [89] visualizer for annotating

keypoint locations in the 3D reconstruction. Using this tool annotating a 3D reconstruction

takes on the order of 1-2 minutes depending on the number of keypoints to be labelled (3

for mugs, 6 for the shoes). Once the 3D reconstruction is annotated we can backproject

these labels into each of the 400 individual RGBD frames corresponding to that scene. The

fact that we only have to annotate the 3D reconstruction vastly improves the efficiency of

our data generation and labelling approach. As detailed in Figure 3-8 we labelled a total of

117 scenes, 43 of which were shoes and 74 of which were mugs. Annotating these scenes

took only a few hours and resulted in over 100,000 labelled images.

A.2 Instance Segmentation Network

For the instance segmentation we used the official Mask R-CNN implementation [91].

We used a R-101-FPN backbone that was pretrained on imagenet. We then fine-tuned

on a dataset of 10,000 images generated using the procedure outlined in Section A.1.2.

The network was trained for 40,000 iterations using the default training schedule from the

official implementatation [91].
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A.3 Keypoint Detection Network

We modify the integral network [127] for 3D keypoint detection. The network takes images

cropped by the bounding box from MaskRCNN as the input. The network produces the

probability distribution map gi(u,v) that represents how likely keypoint i is to occur at

pixel (u,v), with ∑u,v gi(u,v) = 1. We then compute the expected values of these spatial

distributions to recover a pixel coordinate of the keypoint i:

[ui,vi]
T = ∑

u,v
[u ·gi(u,v),v ·gi(u,v)]T (A.1)

For the z coordinates (depth) of the keypoint, we also predict a depth value at every

pixel denoted as di(u,v). The depth of the keypoint i can be computed as

zi = ∑
u,v

di(u,v) ·gi(u,v) (A.2)

Given the training images with annotated pixel coordinate and depth for each keypoint,

we use the integral loss and heatmap regression loss (see Section 2 of [127] for details) to

train the network. We use a network with a 34 layers Resnet as the backbone. The network

is trained on a dataset generated using the procedure described in Section A.1.3.
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Appendix B

Implementation Details of kPAM 2.0

B.1 Experiment Setup

We use a 7-DOF Kuka IIWA arm mounted with a 1-DOF Schunk WSG gripper and a

Primesense RGBD sensor. Agents in our experiment use the desired keypoint linear/angular

velocity as the action representation. The joint torque measured by the Kuka IIWA arm is

used to compute the force/torque measurement as the input to the agent.

We use the two-step manipulation scheme for all the experiments: the robot first per-

form a kinematic pick-and-place to singulate the object and move it to some desired initial

configuration (for instance move the peg right above the hole), then the closed-loop policy

starts from that initial configuration. For the pick-and-place manipulation, we hard-code

an intermediate robot pose similar to kPAM [88].

B.2 Description of Objects

In this section, we provide a detailed description of the objects in our experiment.

Whiteboard wiping: For this experiment we have 11 erasers available on Amazon, where

4 of them have exactly the same shape but different colors. The erasers height roughly

ranges from 1.5 [cm] to 7 [cm], length ranges from 15 [cm] to 30 [cm]. All the erasers are

handled by the same policy.

We perform 3 trials for each eraser, except those 4 identical shape ones. For those 4
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erasers, we perform 1 trial for each of them.

Printed peg-hole: For this experiment we have 9 peg-hole pairs made by 3D printing. The

diameters ranges from 1.5 [cm] to 2.5 [cm]. The peg height ranges from 2.5 [cm] to 15

[cm]. All peg-hole pairs have a tolerance of 0.2 [mm] (which is roughly the best accuracy

achieved by our 3D printer).

LEGO block: We have 5 types of LEGO blocks in this experiment: 1x1, 1x2, 1x3, 1x4,

2x2. For each type there are many instances with different colors and slightly different

tolerance (some are a little bit tighter than the others).

USB drive-port: We have 4 USB drive-port pairs in this experiment. We have 1 use drive

and 3 plates with USB port, where one of those 3 plates has 2 USB ports on it. Those plates

have a significant shape variation, where a pose estimator use plate as the template is very

likely to fail on another.

We perform 5 trials for each peg-hole pairs in the printed peg-hole, LEGO blocks and

USB. Those 9+5+4=18 pairs are evaluated with the same manipulation policy.

For the open-loop baseline, we reduce the number of trials to 20 per task for safety

reason: the open-loop policy is much more likely to generate a large force in short period.

As a result, the force monitor might be too late to shut down the policy. We’ve once broken

the finger of the parallel gripper while evaluating this baseline. For this baseline, we also

test each object with a roughly the same repetitions.

B.3 Visual Perception Implementation

As mentioned in the paper, we use robot kinematics for real-time keypoint tracking. To

initialize the keypoint tracking, we need to run object detection, keypoint detection and

grasping planning. We use a wrist-mounted camera for those perception tasks.

For object detection and keypoint detection, we use exactly the same neural network

structure, data collection pipeline and annotation tools as kPAM [88], and their implemen-

tation details are provided in the appendix of kPAM. The keypoint neural network produces

3D keypoints (not oriented). Thus, we compute the axis of oriented keypoints by the rela-

tive direction of two 3D keypoints. We also use heuristics to reduce the number of required
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3D keypoints annotations. For instance we assume the pfront keypoint has an opposite x

axis as the pcenter keypoint in the whiteboard experiment. In this way, we only need one

“auxiliary” 3D keypoint (instead of two) for the x axis of the pfront and pcenter keypoints.

For grasp planning, we follow kPAM [88] to use a grasp planner which uses the detected

keypoints, together with local dense geometric information from a pointcloud, to find high

quality grasps. This local geometric information is incorporated with an algorithm similar

to the baseline method of [151].

B.4 Controller Implementation

The agent produces keypoint velocity command as the output. For the whiteboard exper-

iment where we would like to regulate the z-axis force, we would first convert the z-axis

desired force into a command velocity as

vcommand_z = Kz( fmeasured_z− fdesired_z) (B.1)

where fmeasured_z is a low-pass filtered force measurement. After this conversion we only

have keypoint velocity command.

The keypoint velocity command is further converted into joint velocity command, using

Equ. (2) in the paper. The joint velocity commands is then sent to the robot driver. The

agent runs at 50 Hz, however there exists some jitter as the agent is a python process in

a docker container. The converter that maps keypoint velocity into joint velocity runs at

200 Hz, and the converted velocity is filtered to avoid excessively large velocity. The robot

driver runs at 1000 Hz and it might also perform some filtering internally (the detailed

information about the Kuka robot driver is not available to us).

B.5 Visual Perception Accuracy Statistics

In this section, w evaluate the accuracy of keypoint detection and its correlation with the

success of trials. To do this, we annotated keypoints in our printed peg-hole experiment.
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We divided the keypoints into two groups: if a peg-hole insertion succeeds, we place all

keypoints detected in this trail to the “success” group. The “fail” group is defined similarly.

The statistics is shown in the following table.

Table B.1: Accuracy Statistics for Keypoint Perception.

overall
success

keypoints
fail

keypoints
mean error [cm] 0.51 0.43 0.73
max error [cm] 1.14 0.62 1.14
min error [cm] 0.27 0.27 0.51

From the table, we can see the keypoint detection is generally rather accurate with

a mean error of 0.51 [cm] and maximum error 1.14 [cm]. The “success” group has a

mean accuracy of 0.43 [cm], which is smaller than the 0.73 [cm] mean error of the “fail”

group. This implies the keypoint accuracy has a strong correlation with the success of trials.

From the table, the maximum keypoint error that can be tolerated in the printed peg-hole

experiment is about 0.62 [cm]. However, this does not guarantee the success of insertion

as we have observed failure trials with a smaller keypoint error.
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