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Abstract

Quantum computers hold the promise to solve specific problems significantly faster
than classical computers. However, to realize a practical quantum computer, the
quantum processor’s constituent components, their control, and their readout must
be very well-calibrated. Over the last few decades, infrastructure and protocols have
been developed to operate small-scale quantum processors efficiently. However, the
operation of medium- to large-scale quantum processors presents new engineer-
ing challenges. Among those challenges are efficient and high-fidelity multi-qubit
control and readout. In particular, qubit-state readout is a significant error source
in contemporary superconducting quantum processors. The fidelity of dispersive
qubit-state readout depends on the readout pulse shape and frequency as well as
the resulting qubit-state discriminator. For a single qubit, fast and high-fidelity read-
out is achieved with minor changes to the rising and falling edge of a rectangular
microwave pulse and a linear matched filter discriminator. However, in resource-
efficient, frequency-multiplexed readout of multiple qubits, optimizing the readout
pulse shape and discriminator becomes a computationally intensive task.

In this thesis, control and readout hardware and software tools for multiple
superconducting qubits are developed. First, I discuss the principles to engineer
microwave packages for multiple qubits. I designed and engineered a novel multi-
qubit package to enable efficient qubit control and readout and minimize errors due
to interactions between the quantum processor and its immediate environment.
Second, I demonstrate deep machine learning techniques to improve frequency-
multiplexed superconducting qubit readout pulse shapes and discrimination for a
five-qubit system. Compared with currently employed readout methods, these novel
techniques reduce the required measurement time, the readout resonator reset, and
the discrimination error rate by about 20% each. The developed readout techniques
are a significant step towards efficient implementations of near-term quantum al-
gorithms based on iterative optimization and quantum error correction protocols
necessary for future universal quantum processors.

Thesis Supervisor: William D. Oliver
Title: Professor of Electrical Engineering and Computer Science
Professor of Physics
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Quantum operations can alter the qubit state and thus the Bloch vector. 79
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2-2 Computational Complexity Classes. PSPACE contains all classes and

problems which require a polynomial amount of memory on a con-

ventional computer independent of the number of necessary compu-

tational steps to find or verify a solution. P describes the class of

classically efficient computable problems. Problems part of the com-

plexity class BQP are efficiently solvable by a quantum computer.

Class NP contains problems that are efficiently verifiable. The hard-

est problems are still efficiently verifiable from complexity class NP-

Complete. In 2019, Ran Raz and Avishay Tal identified the first

problem outside the complexity class NP that a quantum computer

can solve efficiently. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2-3 Physical Realization of Qubits. Shown are some of the most promi-

nent physical quantum mechanical systems used for qubit implemen-

tations ranging from photons to electrons to topological states. A

photonic qubit can, for example, be encoded as time bins, in the num-

ber of photons (#), or using its polarization states. Each quantum

mechanical system and its qubit implementation have advantages

and disadvantages. For instance, while Majorana qubits promise to

be resilient to many noise sources, a physical qubit has not been real-

ized yet. In this thesis, the focus is on superconducting qubits using

superconducting loops. Although quantum computing is still in its

infancy, the commercialization of quantum information processing

hardware and software has grown from a few to many companies

over the last decade. Together with trapped ions, superconducting

qubits are among the most established and industrially pursued qubit

modalities today. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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3-1 Quantum Harmonic and Anharmonic Oscillator. (a) A simple har-

monic resonator formed by a capacitor 𝐶 and an inductor 𝐿 is shown

in blue. The potential energy is the energy stored in the inductor

and assumes a parabolic shape with respect to the phase variable 𝜑,

related to the flux induced by the inductor. The energy levels are

equidistant, such that transitions cannot be addressed individually.

By replacing the inductor with a Josephson junction, the potential of

the oscillator becomes anharmonic, illustrated in red, which isolates

two energy levels to form a computational qubit basis. A Josephson

junction is a nonlinear inductor physically realized inserting a about

1 nm-thin insulating barrier (e.g., aluminum oxide AlOx) between

two superconductors (e.g., aluminum Al). (b) A well-studied design

to enable qubit readout is to off-resonantly, capacitively couple the

qubit, an anharmonic oscillator, to a readout resonator, a harmonic

oscillator. The readout resonator frequency can be probed to infer

the qubit state. (c) and (d) The transmission spectrum of a resonator

dispersively coupled to a qubit showing the characteristic qubit-state-

dependent dispersive shift of about 1 MHz. The amplitude of the

measured signal is shown in (c) and the corresponding signal phase

in (d). A qubit-state discriminator tries to distinguish the qubit-states

through the evaluation of the readout signal amplitude or phase. . . 109
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3-2 Qubit Control and Readout Electronics and Wiring. (a) Depicted is a

schematic of a microwave setup, including pulse generation and pro-

cessing. Microwave pulses are generated by microwave sources and

arbitrary waveform generators (AWG). IQ-mixers facilitate phase-

sensitive amplitude modulation. The control and readout lines are

attenuated and spectrally filtered at various stages. The readout

signal is first amplified by a Josephson traveling-wave parametric

amplifier (JTWPA) after passing through an isolator. The JTWPA is

equipped with a separate microwave source. Before the readout sig-

nal is further amplifed by a high-electron-mobility transistor (HEMT)

amplifier at the 3 K stage, the signal passes through additional iso-

lators and is bandpass filtered. At room temperature, the readout

signal is amplified once more before it is down-converted, low-pass

filtered, and digitized. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3-3 Dilution Refrigerator and Microwave Package. (a) Dilution refrigera-

tor with multiple temperature stages holding the qubit chip enclosed

in a microwave package. The microwave package interfaced with

through microwave lines is mounted on a cold finger in the mixing

chamber reaching a base temperature of approximately 10 mK. (b)

The next microwave package generation is highlighted with a blue

rectangle and discussed in the subsequent Chapter 4. The package

consists of a copper casing, a multilayer interposer to perform signal

fanout, a shielding cavity in the package center, and 24 microwave

connectors. (c) Previous microwave package generation with a gold-

plated copper casing and six control lines. . . . . . . . . . . . . . . . 119
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4-1 Microwave packages. (a) The purpose of a microwave package is

to shield the enclosed qubit chip from external radiation (purple os-

cillating arrow) and stray magnetic fields (rose lines). Meanwhile,

impedance-matched (transmitted green pulse and reflected blue pulse

at the input and output), minimal-crosstalk communication chan-

nels (crosstalk in green at input), and a thermal link to the dilution

refrigerator need to be provided. (b) Small sample package with

six control channels. (c) The individual components of the package

shown in panel (b). Inserted between the gold-plated copper base

and the lid is the main package part. Metallic waveguides for con-

trol of the quantum circuit are imprinted on a dielectric circuit board

(interposer) and 50Ω-impedance matched. The interposer routes

the coaxial control line signal to the quantum circuit via wirebonds.

The connectors to the control elements are coaxial connectors with

50Ω impedance enabling the transmission of microwave signals up

to about 18 GHz to 26 GHz. (d) Novel sample package with 24 con-

trol lines used to study and establish the reported microwave design

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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4-2 Microwave Simulations of a small Sample Package shown in Fig-

ure 4-1(b). (a) Gold-plated copper package (without lid) with wire-

bonded superconducting circuit chip. The green arrow indicates the

microwave input port. (b) Comparison of the transmission spectra

and conductivity loss with a solid pedestal (∆ = 0 mm, colored in

red), and a drilled out pedestal with four corner posts (∆ = 3.8 mm,

black). (c) Simulated transmission magnitude spectrum |𝑆21| of the

chip holding an interrupted transmission line resonator with a reso-

nance frequency at about 7.7 GHz mounted inside the package with

pedestal (red) and a drilled out pedestal (black). The package with

the drilled-out pedestal is free of any undesired package modes in

the band of interest. (d) E-field magnitude (V m−1) plots in the ZX-

and XY-plane at 5.9 GHz (indicated with an arrow in (c)). The pres-

ence of the pedestal enhances the E-field magnitude in the chip and

direct vicinity. (e) Simulated conductivity loss 1/𝑄cond due to the

normal conducting (𝜎 = 4.5× 109 S m−1) package, extracted from a

transmon qubit (approximated as linear resonator) in the center. The

conductivity loss depends on the gap size ∆ between the chip and the

pedestal (the four corner posts remain in place). . . . . . . . . . . . 129

4-3 Qubit Full-Wave EM Simulations. (a) Lithographically defined su-

perconducting qubit using aluminum and aluminum oxide on a pris-

tine silicon chip. Blue inset shows the superconducting qubit with

the Josephson junction in red, aluminum in turquoise, and silicon in

grey. (b) Illustrated are the qubit’s electric (E-field, left) and mag-

netic (H-field, right) fields. The electric field is more prominent than

the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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4-4 Interposer Design. (a) Interposer layout for a 24-line package fabri-

cated out of a three-layer Rogers 4350™controlled impedance glass-

reinforced ceramic laminate. Stripline-based waveguides with dense

via shielding are utilized to reduce signal crosstalk. (b) Schematic

diagram of the interposer stack configuration (not to scale). The

board consists of two Rogers 4350™cores bonded by a layer of FEP

film, indicated in purple. Through vias are used for grounding and

shielding, whereas blind vias are utilized for signal routing to mini-

mize parasitic resonances. (c) Picture of a 5 mm by 5 mm qubit chip

mount with signal launches in the periphery. Wirebonds are used

to provide signal connections and ground the device. (d) Single-

ended TDR measurement of the SMP-to-interposer connector tran-

sition. The reference plane of the connector is located at 0 ns. The

wirebond launch is left open (no chip connected), resulting in a steep

increase in impedance. (e) and (f) Measured nearest neighbor and

second nearest signal crosstalk. A high-port count network analyzer

using Keysight M9374A PXIe modules was used to obtain the full

scattering matrix. All transmission parameters corresponding to sig-

nal crosstalk information are overlaid on the plots. The purple back-

ground fading out with increasing frequency indicates the decreasing

relevance of modes as their frequency separation to the qubit tran-

sition frequency increases. Note that the separate group of traces

with increased isolation, as highlighted in (e) and (f), correspond to

crosstalk that is reduced at corners of the package, as indicated by

the pairs of blue lines in (a). . . . . . . . . . . . . . . . . . . . . . . . 138
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4-5 Wirebond Design. (a) Diagram of a chip (gray) with four transmis-

sion lines wirebonded to an interposer (beige) surrounding it. The

instigating line, indicated in purple, can lead to near-end (NEXT)

and far-end (FEXT) crosstalk in the disturbed line, shaded red and

blue. (b) Schematic representation of a wirebond interconnect and

its lumped element model. The flares located on the ends of the in-

terposer and chip’s transmission lines, as highlighted by the dashed

box in (a), correspond to the two tuning capacitors to the ground,

while the wirebond forms the series inductance. Note that the wire-

bonds used to connect the signal lines are spread out in a V-shape to

minimize mutual inductance. (c) Plot of maximum inductance com-

pensation versus cutoff frequency for Butterworth and Chebyshev fil-

ter designs, with 1 nH roughly corresponding to 1 mm in wirebond

length. (d) and (e) The effect of wirebond configuration on signal

crosstalk. A simplified model with the exact spatial dimensions as the

24-pin design is employed to simulate the relative reduction of signal

wirebond crosstalk with more grounding wirebonds. As the number

of grounding wirebonds increases, the electric field strength between

the chip ground and the package cavity rapidly decreases, resulting

in the suppressed coupling between adjacent signal wirebonds. . . . 141

4-6 Package Mode Measurements and Simulation. (a) Package modes

are probed at liquid nitrogen temperature using a multi-port vector

network analyzer. The scattering matrix elements corresponding to

transmission across the package cavity are measured via the ports

marked green in (b). The results are overlaid (gray) and averaged

(purple), with the relevant frequency range for the qubit indicated

by the fading purple background shading. (b) EM simulations reveal

eigenmodes at 11.1 GHz (orange) and 18.1 GHz (red) respectively,

which correspond well with the measured peaks as marked by the

correspondingly colored vertical lines in (a). . . . . . . . . . . . . . . 142
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4-7 Setup to Identify Package Modes. (a) Measurement setup used to

obtain the package mode profile. The control, readout, and probe

signals are combined and sent down the dilution refrigerator. The

readout signal is amplified by a Josephson traveling-wave paramet-

ric amplifier (JTWPA), a high-electron-mobility transistor (HEMT)

amplifier, and an amplifier at room temperature before being down-

converted and subsequently digitized. Note, the JTWPA can be by-

passed if necessary. (b) Superconducting qubit chip with six fixed-

frequency transmon qubits with individual readout resonators cou-

pling to a common transmission line. In the following panels, the

results of the qubit and resonator indicated with a yellow dashed

rectangle are explicated. (c) The qubit has an average qubit lifetime

of 𝑇1 ≈ 121.4 µs and coherence time of 𝑇 *
2 ≈ 53.2 µs measured in

intervals across a period of 12 hours. . . . . . . . . . . . . . . . . . . 146

4-8 Experimental Package Mode Evaluation using four Qubits. The Ram-

sey spectra are taken simultaneously from four different qubits while

a probe tone is injected through the central transmission line. Note

the similarity between the spurious modes (indicated by yellow ar-

rows) measured by qubits 1 and 3, as well as qubits 2 and 4. The

orange lines indicate qubit-related features, which shift depending

on the sensor qubit used. . . . . . . . . . . . . . . . . . . . . . . . . . 149
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4-9 Experimental Package Mode Characterization. (a) and (b) The mi-

crowave environment between 2 GHz and 20 GHz registered by the

qubit is mapped out using the qubit itself as a sensor. A continuous-

wave probe tone—added to the qubit readout and control signal—

excites the qubit microwave environment. Probe tone-dependent in-

direct and direct effects on the qubit are recorded using Ramsey spec-

troscopy. In the time-domain (a) and frequency-domain (b) panels,

the qubits, readout resonators, and the ground to third excited state

transition are identifiable as shifts in the Ramsey frequency. Further-

more, four features between 11 GHz and 18 GHz can be identified.

The following mode characterization procedure is exemplified on the

fourth mode, the expected package cavity mode shown augmented

again in (c) at 17.18 GHz. (d) The linewidth of a mode 𝜅/(2𝜋) is

the full width at half maximum (FWHM) of the Fourier transformed

frequency-dependent Ramsey scan, here 20 MHz. (e) The Ramsey

frequency change as the power of the probe tone—parked at the

mode’s resonance frequency of 17.189 GHz—is varied. The power is

measured at the signal generator. (f) The qubit dephasing resulting

from the varying probe tone power is extrapolated by performing fits

to 𝑇 *
2 experiments. The presented analysis yields a coupling rate of

𝑔/2𝜋 ≈ 17.73 MHz for Mode IV. Note, the Josephson traveling-wave

parametric amplifier (JTWPA) was bypassed for this experiment to

prevent interference with the probe tone. . . . . . . . . . . . . . . . 152
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4-10 Next-Generation Packaging. (a) Blueprint for scaling up the package

design to support NISQ devices. By dividing the cavity into subcells

corresponding to 5 mm×5 mm chip areas, each with the same num-

ber of signal launches, the crosstalk, and mode performance can be

preserved while increasing the number of pins. Qubit control and

readout are conducted via multi-coax Ardent connectors with eight

channels each. (b) Fins or spring-loaded pins above the qubit device

suppress spurious modes. . . . . . . . . . . . . . . . . . . . . . . . . 155

5-1 Matched Filter Threshold Discriminator. (a) A matched filter projects

the input data to a single dimension. The projection is optimized in

terms of signal-to-noise ratio. (b) The matched filter trace for a qubit

measurement. (b) Windowed matched filter (MF) kernel using a

boxcar filter (BC) to reduce the impact of qubit-state transitions. (c)

Histogram of matched-filtered qubit-state measurements. The dis-

crimination boundary is situated at the origin for a two-class system

complying with the assumed noise model for the described linear

matched filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5-2 Support Vector Machines (SVM). (a) The linear decision boundary

can be mathematically described as 𝑤𝑥− 𝑏 = 0. The margin width—

the distance between the two dashed lines is equal to 2/||𝑤||. De-

pending on which side of the discrimination boundary, the label is

either 1 or −1. The Linear SVM. (b) Linear SVM and (c) Nonlinear

SVM are used to discriminate the states of a single qubit. . . . . . . . 172
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5-3 Multi-Class Support Vector Machines (SVM). (a) A linear and (b)

nonlinear SVM are used to discriminate the states of three qubits

(eight states). (c) A SVM tasked to discriminate more than two

classes can show a diminished discrimination accuracy due to am-

biguous areas. For three classes, a plane should show three distinct

areas. However, dividing a plane with two lines generally results in

four areas, meaning one area is not assigned to a single class. . . . . 173

5-4 Neural Network Architecture. (a) Basic feedforward neural network

architecture with an input layer, two hidden layers, and an out-

put layer. (b) Neural network node values, apart from input layer

nodes, are determined by calculating the product between the pre-

vious layer’s node values 𝑥𝑙−1 and their associated weights 𝑤 plus a

bias value 𝑏. An activation function further processes the resulting

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5-5 Activation Functions. Activation functions 𝑓(𝑥) are shown in blue,

and their respective derivatives 𝑓 ′(𝑥) are shown in orange. (a) Linear,

(b) Rectified Linear Unit (ReLU), (c) Scaled Exponential Linear Unit

(SELU), and (d) Sigmoid are common activation functions used in

machine learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5-6 Markov Decision Process. Given a current state 𝑠𝑡 and reward 𝑟𝑡 at

time 𝑡, an agent decided on a next action 𝑎𝑡. Based upon the action

the state changes to 𝑠𝑡+1 and a reward 𝑟𝑡+1 can be associated with

the new state. The cycle continues until a specific number of cycles

or a particular reward is reached. To minimize computational effort,

the cycle can also be stopped once the agent’s progress has plateaued. 179

5-7 Proximal Policy Optimization Architecture. The algorithm is com-

posed of two deep feedforward neural networks. One neural net-

work (the policy network) generates a new action, whereas the sec-

ond neural network (value network) tries to associate an expected

reward to the proposed new action. . . . . . . . . . . . . . . . . . . . 186
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6-1 Measurement Setup and Chip. (a) Schematic of superconducting

qubit control and readout. The control and readout pulses, gener-

ated by an arbitrary waveform generator (AWG) and up-converted

to GHz frequencies using a local oscillator (LO), are sent through at-

tenuated signal lines to the readout resonator on the five-qubit chip.

The transmitted readout signal is amplified by a Josephson traveling-

wave parametric amplifier (JTWPA), a high-electron-mobility tran-

sistor (HEMT), and a room-temperature amplifier. Subsequently,

the signal is down-converted to MHz frequencies and digitized—in-

phase 𝐼 IF[𝑛] and quadrature 𝑄IF[𝑛] sequences at intermediate fre-

quencies (IF). Colored optical micrograph (b) and associated circuit

schematic (c) comprising five superconducting transmon qubits. The

qubit transition frequencies are tuned via a global flux bias. Each

qubit is capacitively coupled to a quarter-wave readout resonator

that couples inductively to a bandpass (Purcell) filtered feedline.

(d) The resonator frequencies 𝜔Res/2𝜋 are near 7 GHz with 𝜒/𝜅eff

ratios ranging from 0.12 to 0.19, where 𝜒 and 𝜅eff are respectively the

dispersive shift and the effective resonator decay rate through the

feedline. Table of the qubit lifetimes (𝑇1) and operating frequencies

(𝜔Qubit/2𝜋). Qubit color indicate the qubit operating frequency: red

(purple)→ lowest (highest) operating frequency. . . . . . . . . . . . 194
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6-2 Readout Data Statistics. (a) Magnitude of the time-bin weights of the

qubit-specific matched filter shapes derived using prepared ground

and excited states. A rectangular window (RW) is applied to each

matched filter kernel to reduce the impact of qubit-energy decays and

maximize qubit-state-assignment fidelities. The resulting matched

filter windows are shaded in gray. (b) Shown are the histograms

of the qubit-state-readout single-shot traces after applying the opti-

mized 1 µs-long matched filter. The dashed lines represent the opti-

mized thresholds with the states to the right attributed to the ground

state and left to the excited state. Using bimodal Gaussian fit func-

tions for the ground state (green) and trimodal Gaussian fit func-

tions for the excited state (blue) provides insight into the underlying

dynamics such as thermal excitation or qubit-energy decays (see Ta-

ble 6.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6-3 Time-dependent Qubit-State-Assignment Fidelity. Matched filter dis-

criminator for each qubit versus measurement time. The maximum

assignment fidelity ℱ𝑖(𝑡𝑖) for each qubit 𝑖 is reached after 𝑡1 = 1 µs,

𝑡2 = 2 µs, 𝑡3 = 0.5 µs, 𝑡4 = 0.8 µs, and 𝑡5 = 0.5 µs. . . . . . . . . . . . . 198

6-4 Support Vector Machine. Plotted are boxcar filtered single-shot traces

of ground (black) and excited states (gray) in the ℐ𝒬-plane. A linear

support vector machine trained on the two-dimensional data gener-

ates the qubit-specific colored discrimination boundary. . . . . . . . . 201

31



6-5 Architecture and Training of Fully-Connected Feedforward Neural

Network (FNN). (a) The FNN architecture used here comprises an

input layer, three hidden layers, and an output layer. For a 1 µs-

long measurement time, the input layer consists of 1,000 nodes.

1,000, 500, and 250 nodes form the first, second, and third hid-

den layer (the shown number of nodes per layer does not reflect the

reported implementation). The output layer scales as 2𝑁 (N denotes

the number of qubits). For five qubits, the output layer encompasses

32 nodes. The inset at the bottom shows a node as a part of the

hidden layer 𝑙. The node’s function depends on the following pa-

rameter inputs: the output values 𝑥𝑙−1
𝑛 of the prior layer 𝑙 − 1 and

a node-specific bias 𝑏. The output value 𝑥𝑙
𝑚 of node 𝑚 corresponds

to the weighted (weights 𝑤𝑛) sum of the inputs 𝑥𝑙−1
𝑛 and the bias

𝑏 after passing through an activation function, here a scaled expo-

nential linear unit (SELU), shown in blue. (b) Shown is the train-

ing performance for an FNN tasked to discriminate 𝑁 qubits with

𝑁 = 1, 2, . . . , 5. The generalization—the ratio of the geometric mean

test ℱ test
GM and training qubit-state-assignment fidelity ℱ train

GM —as the

number of epochs increases is shown in black using the left y-axis.

The associated standard deviation of the generalization is indicated

in gray. The number of epochs to achieve the maximum qubit-state-

assignment fidelity is indicated with a red vertical bar. The learning

rate 𝜂, shown in blue and using the right y-axis, is gradually reduced

as the number of epochs increases. . . . . . . . . . . . . . . . . . . . 204
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6-6 Measurement Data Processing and Discrimination. (a) 𝑀 -dimensional

data (𝑧IF[n]) processing for single-qubit (SQ) and multi-qubit (MQ)

discrimination. For single-qubit discrimination, 𝑧IF[n] is digitally de-

modulated at the intermediate frequency of a resonator 𝑖. There-

after, the signal 𝑧𝑖[n] can either be simplified with a boxcar filter (BF)

[ 1
𝑀

∑︀
𝑛 𝑧𝑖[n] = ℐ̄𝑖 + 𝑗𝒬̄] or kept as sequences ℐ𝑖[n] and 𝒬𝑖[n]. The

discriminators can either be trained with the spectator qubits exclu-

sively in their ground state (denoted by ∅) or in either their ground

or excited state (denoted by *). For multi-qubit discriminators, the

digitally demodulated signals 𝑧𝑖[n] at all resonator frequencies 𝑖 are

stacked up. The resulting data block is subsequently used for the

discriminator training. Alternatively, the discriminator can be tasked

to discriminate 𝑧IF[n] directly without any digital preprocessing. (b)

Comparison of the geometric mean qubit-state-assignment fidelity

for five qubits after a 1 µs-long measurement and 10,000 training in-

stances per qubit-state configuration. All single-qubit discriminators

are evaluated using training data with the spectator qubits in the

ground and all ground and excited state combinations. The matched

filter (MF) threshold discriminator [the matched filter is part of the

discriminator and thus not shown in (a)] is shown in two configu-

rations; the threshold set to 0 and the threshold optimized. The lin-

ear support vector machine (SVM) is applied to boxcar-filtered (BF)

and time-trace data of ℐ𝑖[n] and 𝒬𝑖[n]. The multi-qubit discrimina-

tors are evaluated utilizing digitally demodulated and unprocessed

data. Shown are a multi-qubit linear SVM, a recurrent neural net-

work (NN), a convolutional NN, and feedforward NN. . . . . . . . . 206
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6-7 Single-Qubit and Three-Qubit Discrimination. (a) Comparison of the

qubit-state-assignment fidelity for qubit 1. (b) Comparison of the

geometric mean qubit-state-assignment fidelity for qubit 1, 3, and

5. The analysis in (a) and (b) is conducted for a 1 µs-long measure-

ment and 10,000 training instances per qubit-state configuration. All

single-qubit discriminators are evaluated using training data with the

spectator qubits in the ground and all ground and excited state com-

binations. The matched filter (MF) threshold discriminator is evalu-

ated in two configurations; the threshold set to 0 and the threshold

optimized. The linear support vector machine (SVM) is applied to

boxcar-filtered (BF) and time-trace data of ℐ𝑖[n] and 𝒬𝑖[n]. The

multi-qubit discriminators are evaluated utilizing digitally demodu-

lated and unprocessed data. Shown are a multi-qubit linear SVM,

a recurrent neural network (NN), a convolutional NN, and feedfor-

ward NN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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6-8 Focused Measurement Data Processing and Discrimination. (a) Su-

perconducting qubit-state discrimination can be accomplished using

a single-qubit matched filter (MF) with kernel 𝑘𝑖[n] which serves as

a windowing function that projects the readout signals to a single

axis and subsequent discriminator threshold optimization (no pulse

applied, denoted by ∅, qubit initialized in the ground state: ∅ → |0⟩

and labeled as 0; 𝜋-pulse applied, denoted by 𝜋, qubit initialized in

the excited state: 𝜋 → |1⟩ and labeled as 1). (b) Single-qubit linear

support vector machines (SQ-LSVM), (c) multi-qubit LSVMs (MQ-

LSVM), and (d) fully-connected feedforward neural networks (NN)

are analyzed as alternatives to MFs. The qubit-state-assignment fi-

delity of the MF and LSVM is maximized if the intermediate fre-

quency signal (𝑧IF[n] = 𝐼 IF[n] + j𝑄IF[n]) is digitally demodulated

(e.g., for resonator 1: 𝑧IF[n].*−j𝜔IF
1 n = ℐ1[n] + j𝒬1[n] with .* indicat-

ing an element-wise multiplication). The training data is relabelled

to train five parallel single-qubit discriminators (MF, SQ-LSVM). The

training data can either be limited to measurements during which

spectator qubits are kept in their ground state (denoted by ∅) or in

all combinations of the ground and excited state (symbolized by *.

The MQ-LSVM as a single multi-qubit discriminator requires the dig-

itally demodulated data stacked up to form a single data block. The

feedforward neural networks does not require any digital demodula-

tion or preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 208
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6-9 Qubit-State-Assignment Fidelity. (a) Geometric mean qubit-state-

assignment fidelity ℱGM (Equation 6.4) for five qubits versus mea-

surement time for the matched filter (MF), single-qubit linear sup-

port vector machine (SQ-LSVM), multi-qubit linear SVM (MQ-LSVM),

and the fully-connected feedforward neural network (FNN). (b) ℱGM

versus the number of training instances for each of the 32 qubit-

state configurations evaluated after a measurement time of 1 µs [ver-

tical dashed-dotted line in (a)]. (c) Achievable assignment fidelity

ℱassignment per qubit when 𝑁 = {1, 2, . . . , 5} qubits are simultaneously

discriminated after a 1 µs-measurement time. For each 𝑁 -qubit dis-

crimination task, the spectator qubits are initialized in their ground

state. Single-qubit discrimination (𝑁 = 1): the first data point of

each of the five panels represents the single-qubit ℱassignment defined

by Equation 6.3. At the same time, the states of the four specta-

tor qubits are initialized in their ground state and not discriminated.

When employed as single-qubit discriminators, all methods perform

similarly. Two-qubit discrimination (𝑁 = 2): The following four data

points show ℱassignment when the state of each panel’s qubit is simul-

taneously discriminated with the state of one other qubit. N-qubit

discrimination (𝑁 > 2): the state of each panel’s qubit is simultane-

ously discriminated with the states of 𝑁 − 1 other qubits. For each

𝑁 -qubit discrimination task, the non-spectator qubits are indicated

with a colored square at the graph bottom. . . . . . . . . . . . . . . . 210
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6-10 Confusion Matrix. Confusion (assignment probability) matrix of the

feedforward neural network (FNN) (a) and matched filter (MF) (b).

The rows of the confusion matrix encompass the probability distri-

bution of the discriminator to assign each of the 32 qubit-state con-

figurations to the row’s prepared qubit-state configuration (no pulse

applied, qubit initialized in the ground state: ∅ → 0; 𝜋-pulse ap-

plied, qubit initialized in the excited state: 𝜋 → 1). The proba-

bilities of correctly classified states–on the diagonal–are shown in

blue, whereas the misclassification probabilities–the off-diagonals–

are shown in red. ℱN, introduced in Equation 6.5, represents a metric

to indicate the overlap between the confusion matrix and an identity

matrix (the ideal confusion matrix). ℱN = 1 if the confusion matrix

is an identity matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
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6-11 Qubit-State-Assignment Fidelity Analysis. (a) Difference between

the confusion (assignment probability) matrix of the feedforward

neural network (FNN) 𝒫FNN
assign and of the matched filter (MF) 𝒫MF

assign

[shown in Figure 6-10]. The rows of the confusion matrix encom-

pass the discriminator’s probability distribution to assign each of the

32 qubit-state configurations to the row’s prepared qubit-state con-

figuration (no pulse applied, qubit initialized in the ground state:

∅ → 0; 𝜋-pulse applied, qubit initialized in the excited state: 𝜋 → 1).

An increase (decrease) in the relative state-assignment probability is

marked in red (blue). Red diagonal and blue off-diagonal elements

indicate an improvement of the FNN over MF discrimination perfor-

mance. (b) The cutouts [bold frame in the lower right corner of (a)]

of the FNN, MF, and resulting relative confusion matrix display the

most prominent pattern that arises due to the discrimination of qubit

2. (c) The FNN and MF cross-fidelity matrices, as defined in Equa-

tion 6.7, indicate the discrimination correlation. The off-diagonals

are ideally 0. A positive (negative) matrix off-diagonal entry indi-

cates qubit-state assignment to be correlated (anti-correlated). . . . . 216

6-12 Training Wall-Clock Time. The data set acquisition for the matched

filter (MF) scales linearly and exponentially for the single-qubit LSVM

(SQ-LSVM), multi-qubit LSVM (MQ-LSVM), and feedforward neural

network (FNN). The discriminator training remains linear for the MF

while being exponential for the other three. . . . . . . . . . . . . . . 218
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7-1 Readout Pulse Shaping Introduction. (a) A basic rectangular readout

pulse (black dashed) with a normalized drive power 𝑝norm contrasted

by the cavity level excitation and reset (CLEAR) pulse (blue). The

CLEAR pulse distinguishes itself from a rectangular pulse by the ris-

ing and falling edges. A two-amplitude segment replaces each edge

to inject and deplete photons more rapidly, facilitating a shorter mea-

surement time. (b) Shown are the resulting photon counts for the

resonators in a five-qubit system for the rectangular pulse, shown in

(a), frequency-multiplexed probing the quantum system. The three

qubit-readout-pulse-shape sections (injection, stabilization, and re-

set) are indicated. The injection and reset sections are subject to an

optimization routine to minimize their duration. The length of the

middle part, the stabilization part, with a constant amplitude of
√
𝑝

depends on how much of the signal needs to be acquired to discrim-

inate the qubit states. As shown in (b), the photon number from a

rectangular pulse oscillates at first. In (c) and (d) are two possible

pathways presented to optimize readout pulse shapes. The readout

pulse shape can either be optimized by enforcing to reach a specific

photon number or delivering the maximally possible discrimination

fidelity as quickly as possible. In (c), the readout pulse shape is opti-

mized by targeting a specific photon number inferred by evaluating

the qubit’s dephasing rate with a Ramsey measurement. (d) Alter-

natively, the injection and stabilization part can be optimized by tar-

geting the maximally possible discrimination rate. To optimize the

reset, however, the photon number needs to be monitored. . . . . . . 234
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7-2 Single-Qubit Readout Pulse Shapes. (a), (b), and (c) show the pulse

shapes and photon number for the photon injection part. (d), (e),

and (f) present the pulse shapes and photon numbers for the photon

depletion section. (a) and (d) show the CLEAR pulse. (b) and (e)

the PPO pulse. (c) and (f) contains the expected photon numbers

of the rectangular, CLEAR, and PPO readout-resonator pulse. For a

single-qubit readout, both CLEAR and PPO outperform a rectangular

readout pulse. The pulse generated by CLEAR and PPO is virtually

indistinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7-3 Multi-Qubit Readout Pulse Shapes. (a) Injection segment of resonator-

readout-pulse shapes and (b) Reset segment of resonator-readout-

pulse shapes for five qubits. (c) Photon numbers versus pulse length

for a rectangular, CLEAR, and PPO-generate readout pulse. . . . . . . 241

7-4 𝐼𝑄-plane resonator trajectories for each resonator and each pulse

shape: rectangular, CLEAR, PPO-generated. Ground-state trajecto-

ries are shown in purple and orange for the excited state. The dashed

grey circle marks the target photon number of four photons. The in-

ner dashed circle indicates 0.1 photons. The ‘X’-markers are spaced

20 ns apart. Each trajectory starts and returns to its origin. Depend-

ing on the photon population dynamics, the trajectory changes its

shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
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7-5 Simulation of Readout Pulse Shape versus Measurement Time for

a Five-Qubit Chip. (a) Comparison of readout pulse shapes for a

single qubit. The typically employed pulse shape, a rectangular pulse

shape (gray, dashed), is compared with the cavity level excitation

and reset (CLEAR) (in blue) and a pulse shape tune-up using the

proximal policy optimization (PPO) algorithm (in orange), a deep

reinforcement learning algorithm. (b) Comparison of the duration

to simultaneously inject photons in 5 different readout resonators,

stabilize the photon counts during a waiting period, and return the

resonators close to their vacuum states. The waiting period is kept

constant for all three methods. In comparison with the rectangular

pulse (CLEAR), PPO reduces the injection window by 58% (22%)

and reset duration by 46% (17%). . . . . . . . . . . . . . . . . . . . 244
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Chapter 1

Introduction

Quantum computers hold the promise to perform specific computational problems

more efficiently than classical computers. The challenge of developing quantum

computer hardware is to balance the system’s isolation while maintaining efficient

control and readout channels. Towards the realization of quantum computers,

many milestones have already been achieved. However, many engineering chal-

lenges remain, and realizing a functional large-scale quantum computer is likely

years away. The focus of this thesis is on developing superconducting quantum

processor control hardware and software techniques using microwave design prin-

ciples and machine learning to maintain single-qubit operation performance for

multi-qubit systems. The thesis is divided into two parts:

I. The concepts and infrastructure of superconducting quantum computing

II. Machine learning tools and their applicability to superconducting qubit read-

out.

This introduction is an overview of the main concepts and results for these two

parts of the thesis. The chapter begins with a brief introduction to superconducting

quantum computing, then gives the main results of the design and characterization

of a superconducting microwave cavity, and concludes with an overview of machine

learning as applied to qubit readout and control. These topics are elaborated on in

the subsequent chapters of the thesis.
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1.1 Quantum Computing

Quantum computers are anticipated to solve particular computational tasks sub-

stantially faster than conventional computers [1, 2]. Depending on the task, such

quantum computers need to be composed of hundreds to millions of quantum bits

(qubits), the principal building blocks of a quantum processor. Today’s quantum

processors comprise tens of qubits and are not yet able to execute any meaningful

computations. However, within the past two years, a quantum processor with 53

working superconducting qubits [3] and a device with 76 photons [4] achieved

a major quantum computing milestone, termed quantum supremacy. Quantum

supremacy describes completing a computational task on a quantum processor that

cannot be performed on existing classical computers in a reasonable amount of

time [5]. Despite the importance of this milestone, the required technology to

build a universal and fault-tolerant quantum processor is likely at least a decade

away. Meanwhile, today’s noisy intermediate-scale quantum devices [5] offer proof

of concept demonstrations such as the simulation of molecular electronic configu-

rations [6]. An increase in the number of qubits has generally been accompanied

by an increase in errors that inhibits achieving a quantum advantage [5]. While

remarkable progress has been made in reducing qubit-error rates, closed-loop er-

ror correction protocols are likely necessary to implement fault-tolerant quantum

computation in large qubit networks [7]. Typically, these quantum error correction

protocols use syndrome measurements to detect if and where an error occurred.

Detected errors can then be corrected using a ‘feed-forward’ approach, in which

pulses are applied to the errant qubits to correct them. Among the most immi-

nent challenges towards demonstrating such error-corrected quantum processors

are accurate and resource-efficient qubit-state readout to identify and correct er-

rant qubits.
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1.2 Superconducting Quantum Computing

Various qubit modalities such as superconducting qubits [8], trapped ions [9],

trapped neutral atoms [10], spin qubits [11], or solid-state quantum emitters [12]

are actively pursued by academic and industrial teams to build quantum devices.

Each of these modalities has different applications with individual strengths and

drawbacks. This thesis focuses on superconducting qubits, particularly their mi-

crowave environment, and how to efficiently measure them using machine learning

as the number of qubits is increased.

Over the past two decades, superconducting qubits have emerged as one of the

leading candidates for building larger-scale quantum systems [8, 13]. Today, su-

perconducting qubits routinely reach coherence times in the range of 100 µs [14],

achieve gate times of a few tens of nanoseconds [3], and have exhibited single-

and two-qubit gates with fidelities exceeding the threshold for the most lenient

quantum error correction codes [15]. Moreover, the characteristics of qubits and

their surrounding circuit elements for control and readout can be engineered with

high precision using well-established fabrication techniques [16] leveraging stan-

dard tools developed for the semiconductor industry.

1.2.1 The Transmon Qubit

The transmon qubit [17] has emerged as one of the most popular qubit designs

due to its robust fabrication process, demonstrated operation and readout, and re-

producible coherence times around 100 µs [14]. It is closely related to a quantum

harmonic 𝐿𝐶-oscillator, which features equidistant energy levels. Coherent control

requires an isolated pair of energy levels that form a computational qubit basis [16],

and this motivates the need for anharmonic oscillators. The needed anharmonic-

ity is provided by a Josephson junction, a lithographically defined tunnel barrier

between two superconducting electrodes, which behaves as a non-linear inductor

without any significant dissipation [18]. The schematic transmon circuit is depicted

in Figure 1-1(a).
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Figure 1-1: Quantum Harmonic and Anharmonic Oscillator. (a) A simple harmonic
resonator formed by a capacitor 𝐶 and an inductor 𝐿 is shown in blue. The po-
tential energy is the energy stored in the inductor and assumes a parabolic shape
concerning the phase variable 𝜑, related to the flux induced by the inductor. The
energy levels are equidistant, such that transitions cannot be addressed individu-
ally. By replacing the inductor with a Josephson junction, which has a non-linear
inductance 𝐿J, the potential becomes anharmonic (shown in red), which isolates
two energy levels, |𝑔⟩ and |𝑒⟩, forming the computational basis and hence a super-
conducting quantum bit. (b) The transmission spectrum of a resonator dispersively
coupled to a qubit showing the characteristic qubit-state-dependent dispersive shift
of about 1 MHz.
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1.2.2 Superconducting Qubit Readout

Superconducting qubit-state readout is most commonly performed today using a

dispersive readout scheme [19, 20]. The readout device is a resonator weakly cou-

pled to the qubit at a detuned frequency, typically a few gigahertz. Due to a qubit-

state-dependent ‘dressing’ of the readout resonator, the qubit state can be inferred

by spectroscopically probing a dispersive shift. For example, in Figure 1-1(b), the

dispersive shift is about 1 MHz for a qubit-resonator detuning of about 2 GHz. After

a sequence of quantum gate operations or free evolution, a measurement process

is initiated by driving the readout resonator with a microwave pulse. After trans-

mission or reflection off the resonator, the signal acquires a qubit-state-dependent

phase shift or change in amplitude that can later be associated with a specific qubit

state. For a single superconducting qubit, this type of qubit-state discrimination has

been demonstrated to reach a classification accuracy of 99 % [21, 22]. However,

resource-efficient multi-qubit readout has not yet been demonstrated to reach such

a high accuracy due to an increase in nonidealities such as readout crosstalk.

1.2.3 Measurement Setup and Microwave Control

A typical microwave control and measurement setup is schematically depicted and

described in Figure 1-2(a). Room-temperature electronics such as arbitrary wave-

form generators and local oscillators feed microwave pulses to the cryostat through

coaxial cables. The measurement pulses that are transmitted through the qubit chip

are passed through a chain of amplifiers at different temperature stages: a quantum-

limited traveling-wave parametric amplifier [23] at about 20 mK, a low-noise high

electron mobility amplifier at about 3 K, and room-temperature amplifiers. Subse-

quently, the signal is down-converted to intermediate frequencies in the megahertz

range and digitized.

Quantum gates are performed by applying microwave drive pulses at or close to

the qubit transition frequency. As a result, the qubit undergoes coherent oscillations

between its two fundamental basis states, referred to as Rabi oscillations [8]. This
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Figure 1-2: Measurement Setup. (a) Qubit measurement and control setup. Control
and readout pulses generated by an arbitrary waveform generator (AWG) and up-
converted to gigahertz frequencies using a local oscillator (LO) are sent to the qubit
chip through attenuated signal lines. The readout signal upon interaction with the
qubit is amplified by a Josephson traveling-wave parametric amplifier (JTWPA), a
high-electron-mobility transistor (HEMT) amplifier, and a room-temperature am-
plifier before being down-converted to megahertz frequencies, in-phase 𝐼 IF and
quadrature 𝑄IF component at intermediate frequencies (IF), and digitized. (b)
The chip shown in (a) consists of five superconducting transmon qubits between
4.3 GHz and 5.2 GHz frequency-tunable via a global bias. The qubits are capaci-
tively coupled to individual quarter-wave readout resonators at about 7 GHz that
couple inductively to a bandpass (Purcell) filtered feedline line at the top of the
chip.
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oscillation can be stopped at any time to prepare the desired superposition state.

Microwave pulses inducing single-qubit rotations have a typical duration of about

20 ns.

1.3 Package Design for Superconducting Qubits

A microwave package defines the immediate qubit chip environment and facilitates

qubit control and readout channels. An approach to multi-port packaging and rele-

vant microwave design principles are discussed using a novel 24-port package with

enclosed transmon qubits. After a characterization of the package materials, sig-

nal transmission, and mode profile, the package’s mode profile is experimentally

inspected through a ‘hidden-mode’ survey [24] using four transmon qubits with

lifetimes reaching 120 µs. The considered loss channels enable the novel package

to support transmon qubits with lifetimes above 350 µs. While the qubits employed

in the following characterization are not lifetime-limited by the package, the limit

is within the same order of magnitude as the lifetime of state-of-the-art transmons.

This underscores the importance of further improvements in microwave engineer-

ing to minimize qubit energy loss channels. The subsequently discussed engineering

principles provide tools for the development of improved packaging for near-term

quantum processors [5].

The purpose of a microwave package is threefold: first, the package casing sup-

presses the coupling of the qubits to decoherence channels external to the package,

such as environmental electromagnetic noise; second, the package accommodates

qubit control channels to and from the enclosed quantum processor; and finally,

the package sinks excess thermal energy due to qubit control and readout oper-

ations. However, a microwave package—the immediate qubit environment—can

induce losses of its own if not carefully engineered. Thus, designing a microwave

package—from material choices to a signal interface—requires considering both the

suppression of external and package-induced loss channels.
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1.3.1 Microwave Package Materials & Geometry

Material-dependent losses can be of magnetic, conductive, or dielectric origin [25].

Energy loss channels couple to the qubit through its electric or magnetic dipole

moment. For transmon qubits, the electric dipole moment presently dominates

the loss [17]. Qubits are fabricated using high-𝑄 materials and substrates to reduce

loss. In addition, the device geometry is designed to reduce the electric field density

in lossy regions, such as surfaces and interfaces [26].

Commonly employed package materials include superconducting aluminum,

copper, and gold-plated copper. Superconducting aluminum forms a thin oxide

layer of approximately 2 nm [27], inducing some dielectric losses while keeping the

conductivity losses at a minimum. Like aluminum, copper forms an oxide layer [28]

leading to dielectric as well as conductivity loss due to its non-zero resistance [29].

Gold-plating limits the oxide formation at the cost of an increase in conductivity

losses by up to one order of magnitude [30].

The device package shown in Figure 1-3(b) is composed of a base and lid, both

milled from oxygen-free high-conductivity (OFHC) copper. To increase the package

fundamental mode frequency and suppress material-induced losses, the qubit chip

is suspended by at least 3 mm to form a cavity above and below it [26]. A layer of

aluminum with a target thickness of 500 nm is evaporated on the lid center cavity

surface to reduce conductivity losses and to help shield magnetic fields. Full-wave

EM simulations (COMSOL Multiphysics®) indicate the layer of aluminum on the

center cavity surface to reduce the material-induced loss channels by three orders

of magnitude. As such, the material-induced losses of the presented package are

negligible, enabling it to support qubits with lifetimes up to seconds.

1.3.2 Control and Readout Signals

The signal paths comprised in a package introduce various nonidealities, including

a distorted step response, insertion loss, and crosstalk, which can have a bearing

on qubit control. Good impedance matching leads to lower insertion losses and
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Figure 1-3: Microwave Packages. (a) The purpose of a microwave package is to
shield the enclosed qubit chip from external radiation (purple oscillating arrow)
and stray magnetic fields (top; red lines) while providing impedance-matched (left;
transmitted green pulse and reflected blue pulse at the input and output), low
crosstalk communication channels (center; crosstalk in green at input), and a ther-
mal link to the dilution refrigerator. (b) The presented microwave package consists
of a metal enclosing, microwave connectors, an interposer for signal fan out, and a
microwave cavity in the center surrounding the quantum chip.

improved signal integrity, critical for high-fidelity control and readout.

The developed package’s interposer, the communication interface between the

ports mounted on the package enclosing and the qubit chip, is constructed using a

three-layer, low-loss Rogers 4350™laminate composed of glass-woven hydrocarbon

and ceramics. The interposer uses symmetric striplines embedded in the printed

circuit board dielectric protected by via fences. EM simulations and time-domain

modeling are used to minimize impedance mismatches. The simulations ensure

that microwave connector transitions, composed of a grounding cage and a signal

via, as well as the wirebond launches, are properly impedance matched [31–33].

In the designed package, the crosstalk between directly neighboring control and

readout lines is suppressed to below −40 dB and next-nearest neighbors to −60 dB

up to 10 GHz.

1.3.3 Package Modes

In addition to crosstalk, suppressing package modes is key to a successful mi-

crowave package design. Package modes can arise due to the enclosing metal cav-
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ity, slotlines, two metallic planes separated by a dielectric gap, or the chip substrate

itself. These resonance modes can reduce the qubit lifetime and induce decoher-

ence. A two-level quantum system can model the coupling interaction between the

qubit and an EM cavity (the resonant mode) with a rate 𝑔. For a small detuning

∆ = |𝜔q − 𝜔m| ≪ 𝑔 between the qubit angular frequency 𝜔q and the package mode

angular frequency 𝜔m, their energy levels hybridize, and excitations are coherently

swapped between the qubit and the mode. However, since the package modes are

often lossy and have a low-quality factor 𝑄m, they lead to a reduction in the qubit

lifetime.

The dispersive Jaynes-Cummings model describes the coupling between a far-

detuned mode and a qubit in the dispersive approximation [8]. A mode coupling to

a qubit ac-Stark shifts the qubit transition frequency by an amount proportional to

the average number of photons present in the mode. Photon-number fluctuations of

a mode within a few GHz of the qubit transition frequency lead to pure dephasing.

Modes on the order of MHz detuning within the linewidth of the mode and qubit

can result in qubit energy decay due to the Purcell effect, thus reducing the qubit

lifetime.

To ensure high-fidelity qubit coherence, either the coupling of package modes to

the qubit needs to be suppressed, or their resonance frequency must be far detuned

from the qubit operational frequency spectrum.

A qubit-based technique to probe package modes is the hidden-mode experi-

ment [24], where a fixed-frequency qubit is used as a mode sensor. It is preferable

to use qubits with long coherence times and stable baseline Ramsey oscillations to

resolve subtler mode structures. A continuous-wave probe tone is injected into the

package, either through the readout line or a dedicated port, and swept through

the frequency range of interest. For each probe frequency, a 𝑇2 measurement is

performed using Ramsey interferometry on a fixed-frequency qubit. As the probe

frequency sweeps in resonance with a package mode, the package mode will be

populated by coupling the transmission line and the mode itself. Depending on

the mode photon number fluctuations, the coupling to the qubit, and its detuning,
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the qubit will dephase. The degree of induced dephasing can be inferred with a 𝑇2

measurement. Due to the wide-band nature of the mode-induced qubit energy level

shift, the ac-Stark effect, this technique provides the advantage of facilitating mode

measurements across a broad frequency range, typically several tens of GHz.

In the package shown in Figure 1-3(b), four package modes are identified be-

tween 2 GHz and 20 GHz. The designed package with these modes supports life-

times for transmon qubits in excess of 350 µs. While this is sufficient for current

devices with coherence times in the range of 100 µs, this result is problematic be-

cause, despite the absence of strong spurious modes up to 11 GHz, a comprehensive

survey reveals that the higher frequency modes can still have a significant limit-

ing effect on qubit lifetime [34]. Furthermore, these limits will likely be saturated

soon as qubit lifetimes increase, underscoring the need for further package design

improvements.

Looking forward, package design will become increasingly critical for larger

quantum devices due to their increased complexity. As the number of qubits in

today’s noisy intermediate-scale quantum devices [5] increases, the precise charac-

terization and suppression of electromagnetic modes and signal crosstalk become

even more relevant. These established principles for superconducting qubit pack-

ages are similarly pertinent for future work as packaging techniques are being ad-

vanced for systems in the range of 100 to 1000 qubits.

1.4 Machine Learning

The study of computational algorithms that can improve through experience is typi-

cally referred to as machine learning (ML) [35]. Without explicit instructions, these

algorithms strive to identify patterns in sample data and create an approximate

model of an underlying decision process. While many machine learning ideas are

decades old, they only recently became widely applicable due to the development

of sufficient classical computational resources. Machine learning is applied today in

applications such as image processing [36] or advanced games such as chess [37].
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Machine learning can be broadly divided into three categories: unsupervised,

supervised, and reinforcement learning. Unsupervised learning describes methods

tasked to extract an often defined number of patterns in a data set. Methods re-

quiring training data composed of input-label pairs (e.g., class or number as labels)

are coined supervised learning methods. Reinforcement learning describes a class

of tasks where an agent optimizes a task in an environment through interaction.

Therefore, the environment’s role is more of an ‘oracle’ than that of a ‘supervisor.’

This thesis focuses on supervised learning methods to improve superconduct-

ing qubit state discrimination and use reinforcement learning to generate system-

dependent readout pulse shapes.

1.4.1 Supervised Learning

Methods that learn an input-output mapping function using a trustworthy set of

input-output pairs (training set) are generally called supervised learning meth-

ods. Typically, a set of input-output pairs for training is acquired by the ‘super-

visor,’ hence the terminology. The quality of the learned mapping function can be

probed utilizing a second set of trusted input-output pairs (test set). Comparing the

method’s performance on the training versus the test set is termed ‘generalization.’

Support vector machines (SVM) [38] or artificial neural networks (ANN) [39]

are typically trained in a supervised fashion. SVMs are quadratic programs to max-

imize the distance between each data point and the decision boundaries separating

distinct classes. ANNs are mapping functions composed of connected units, neu-

rons, similar to biological neural networks. Customizing the neural network archi-

tecture, the arrangement of neurons, and the connections between them, enables

tailoring for specific tasks ranging from image processing [36] to natural language

processing [40].
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1.4.2 Reinforcement Learning

Reinforcement learning is a subset of machine learning in which an agent aims to

maximize a reward by choosing the appropriate action at a given state. Rather than

comparing predictions with labeled data sets like in supervised learning applica-

tions (e.g., image classification), reinforcement learning algorithms ‘learn’ through

the process of their agents directly interacting with the environment. Additionally,

reinforcement algorithms do not need to know how the underlying system functions

and can thus be model-free. Instead, reinforcement algorithms compute the reward

that a specific state-action pair will produce. The growth of reinforcement learning

research and applications has been shown through success in complex games such

as Chess and Go [37] and robot automation and planning [41].

This thesis demonstrates that a proximal policy optimization (PPO) algorithm [42]

proves advantageous over algorithms such as Deep-Q Network (DQN) algorithms [43],

Deep Deterministic Policy Gradient (DDPG) algorithms [44], or AlphaZero [37].

PPO algorithms identify the maximum possible improvement without unnecessary

risks by evaluating the acquired data. In contrast to a similar type of algorithm,

trust region policy optimization [45], PPO algorithms computationally simplified

the optimization task to first-order methods such as gradient descent. Two neu-

ral networks underlay this algorithm: one serves as a policy and one as a reward

estimator, which creates a new action, while the second estimates the associated

reward. These processes enable computationally efficient exploration of the sur-

rounding area to determine the next action-state pair.

1.5 Superconducting Qubit-State Discrimination

using Supervised Learning

As systems grow, simultaneous multi-qubit readout becomes a necessity to limit

system resource overhead. Many state-of-the-art qubit-state discriminators assume

ideal operating conditions or require considerable computational effort, limiting
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their applicability for high-fidelity multi-qubit readout. A novel approach to multi-

qubit readout using neural networks as multi-qubit state discriminators is presented

in this thesis. A comparison is made between the approach with contemporary

state-of-the-art methods employed on a 5-qubit superconducting qubit chip with

frequency-multiplexed readout. A fully connected feedforward neural network

(FNN) is found to significantly reduce the readout assignment error rate for the uti-

lized multi-qubit system by up to 20%. This work demonstrates an advantageous

building block to scaling up quantum processors while maintaining high-fidelity op-

erations and will impact the design of future fault-tolerant systems and near-term

devices of moderate size.

Superconducting qubit readout is generally performed under the paradigm of

circuit quantum electrodynamics (cQED) in the dispersive regime [19]. Here, the

qubit is coupled to a far-detuned cavity, such that the leading-order effect on the

cavity is the qubit-state-dependent frequency shift. As a result, a coherent mi-

crowave signal incident on the cavity will acquire a qubit-state-dependent phase

shift or change in amplitude upon transmission or reflection. In the dispersive

regime, the signal-to-noise ratio (SNR) of the phase-shifted signal is maximized at

a few tens of photons populating the readout cavity. It is not feasible for room-

temperature equipment to measure such weak signals without significant averag-

ing, which makes the need for amplification a necessity. The amplifier chain sig-

nificantly increases the signal-to-noise ratio. Subsequent heterodyne detection and

digitization of the amplified signal projects the information of the qubit state on the

in-phase and quadrature components of the output signal.

For a qubit with static coupling to its readout resonator, spontaneous decay and

excitation during the readout itself are typically the primary sources of qubit mea-

surement errors. Moving to multi-qubit systems, it becomes impractical for each

qubit to have its own dedicated set of readout electronics. Instead, qubit read-

out must be multiplexed, such that the readout signal contains state information on

multiple qubits, often spread in frequency. This can introduce errors where the state

of other qubits can alter the measurement signal from one qubit through crosstalk.
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Figure 1-4: Measurement Data Processing and Multi-Qubit-State Discrimination.
(a) Single-qubit matched filter (MF) with subsequent discriminator threshold op-
timization, (b) Single-qubit linear support vector machine (SQ-LSVM), (c) multi-
qubit LSVM (MQ-LSVM), and (d) feedforward neural network (FNN). The MF, as
well as the LSVMs assignment fidelity, is maximized if the intermediate frequency
(IF) input signal is digitally demodulated down to DC: 𝐼 IF → 𝐼DC, 𝑄IF → 𝑄DC.
During the discriminator training, the single-qubit discriminators (MF, SQ-LSVM)
require a relabelling step of the discriminators’ training data. The MF tune-up is
optimized when each discriminator utilizes training data that contains a single ex-
citation. The MQ-LSVM requires the DC data for each of the five qubits to be stacked
and combined into a single data block. The FNN does not require any preprocessing
such as digital demodulation, data stacking, label filtering, or data filtering as the
complexity of it all is embedded in the neural network itself.
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Crosstalk errors can also occur in multi-qubit systems due to intrinsic interactions

between the qubits themselves or between the qubits and nearby readout resonators

belonging to other qubits.

As a result of crosstalk, spontaneous decay/excitation, and other nonidealities,

multi-qubit heterodyne signals are difficult to distinguish. There has been signif-

icant progress in reducing error rates and measurement times [22, 46]; however,

managing, classifying, and extracting useful information from the heterodyne signal

in a scaleable manner remains an essential challenge towards improving readout as

systems grow in size.

1.5.1 Superconducting Qubit-State Discriminators

This thesis focuses on state discrimination for multiple qubits connected to the same

microwave transmission line. The labels are 5-bit strings, with each bit representing

the prepared state of a single qubit. For multi-qubit readout, the individual readout

tones are superposed using the same local oscillator in conjunction with a unique

intermediate frequency (IF). The transmitted or reflected multi-qubit signal is then

down-converted back to intermediate frequencies with 𝐼−𝑄 components (𝐼 IF, 𝑄IF),

optionally preprocessed, and classified as described in Figure 1-4.

Considerable signal processing goes into determining the qubit-state-dependent

phase because it is the main avenue to improved qubit readout fidelity. In the stan-

dard approach, an integration kernel (or filter) is applied. The integrated signal has

a value dependent on the signal phase, and hence, qubit states can be discriminated

by the integrated signal. For stationary noise, the optimal filter in terms of SNR is

a generalized matched filter [47], which creates a linear partition of the integrated

signal that distinguishes the qubit states. This is the approach used in contem-

porary, state-of-the-art single-qubit readout schemes [3, 46–48]. However, realistic

noise sources often do not satisfy the conditions required for optimal matched filter-

ing. Consequently, recent approaches have explored using support vector machines

(SVM) to learn the optimal, non-linear filter [21].
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Figure 1-5: Time-Dependent
Qubit-State Assignment Fidelity.
Five-qubit geometric mean
qubit-state assignment fidelity
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1/5 versus
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LSVM), as well as the feedforward
neural network (FNN).

In contrast to the matched filter and SVMs, a neural network can discriminate

the frequency-multiplexed signal directly. Training the network on the frequency-

multiplexed multi-qubit signal bypasses the need for digital demodulation and other

data processing stages, making more efficient use of the measurement output as il-

lustrated in Figure 1-4. Neural net classifiers have not yet been applied to supercon-

ducting qubit readout, although there exist demonstrations [49, 50] for trapped-ion

qubits, where an improvement was shown. However, trapped-ion qubits do not

share the same readout line as is typically the case for superconducting qubits.

1.5.2 Experimental Comparison of Qubit-State Discriminators

The focus is on classifiers used in a supervised learning scheme, trained to deter-

mine the state of all qubits from the output signal data. The data to train and

evaluate the discriminator performance was acquired using a 5-qubit chip shown in

Figure 1-2(b). For five qubits, all 32 possible qubit configurations (2N, where N is

the number of qubits) are sequentially initialized and recorded. The generated data

set contains 50,000 single-shot time-traces recorded over 2 µs for each qubit-state

configuration. The recorded data set is subsequently divided into a training and test

set (15,000 traces per qubit-state configuration for training and 35,000 for testing).

The training set serves to train the discriminators, and the test data set indicates

how well the trained discriminator generalizes to unseen data.

Figure 1-5 presents the performance results of four discriminators; two single-
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qubit discriminators—matched filter and single-qubit LSVM—as well as two multi-

qubit discriminators—multi-qubit LSVM and FNN. The geometric mean qubit-state

assignment fidelity is defined as ℱGM = (ℱ1ℱ2ℱ3ℱ4ℱ5)
1/5 where ℱ𝑖 = 1− [𝑃 (𝑔𝑖|𝑒𝑖)+

𝑃 (𝑒𝑖|𝑔𝑖)]/2 is the qubit-state assignment fidelity. 𝑃 (𝑔𝑖|𝑒𝑖) denotes the conditional

probability that qubit 𝑖 is assigned to the ground state 𝑔𝑖 when initialized in the

excited state 𝑒𝑖. Similarly, 𝑃 (𝑒𝑖|𝑔𝑖) represents the conditional probability that qubit

𝑖 is assigned to the excited state 𝑒𝑖 when initialized in the ground state 𝑔𝑖. The FNN

excels in assignment fidelity independent of the measurement duration. The FNN

reduces the qubit-state assignment error rate by up to 20% per qubit relative to the

matched filter, the most commonly employed qubit-state discrimination method.

The assignment fidelity is evaluated for different numbers of training samples

per qubit configuration. While single-qubit discriminators reach their optimal per-

formance at a few hundred training samples per qubit-state configuration, multi-

qubit discriminators are more demanding. The employed FNN starts saturating at

around 5,000 training samples per state configuration.

As the number of qubits per discriminator increases, the assignment fidelity does

not degrade as quickly for the FNN relative to the other methods. The neural net-

work appears to compensate for crosstalk and state transitions more effectively,

explaining the observed assignment fidelity improvement of neural network dis-

criminators. These results are published in Reference [51] and further described in

chapter 6.

1.6 Superconducting Qubit-Readout-Pulse Shaping

using Deep Reinforcement Learning

For a qubit dispersively coupled to a resonator, quick resonator ring-up and ring-

down ensure fast readout and reduces the residual photon number in the res-

onator, reducing qubit dephasing in future operations. In an efficient, frequency-

multiplexed readout of multiple qubits, effects such as drive crosstalk increase the
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complexity of optimal readout pulse shapes, requiring computationally intensive

methods to discover high-fidelity readout pulse shapes. In this thesis, a pulse shap-

ing optimization module using deep reinforcement learning (DRL) is investigated.

Using a multi-qubit simulator, the DRL pulse optimization module reduces the read-

out resonator population and reset time by about 20% relative to current methods.

Finally, the DRL method is experimentally compared with conventional readout

pulse shaping techniques applied to multi-qubit devices.

A superconducting qubit measurement can be divided into three components:

photon injection, waiting period, and resonator reset. The injection phase describes

the process of populating a readout cavity initially in the vacuum state with a target

photon number. The waiting period of a measurement depends on the strength of

the measurement (the qubit-resonator coupling), noise present in the system, and

the qubit-state discriminator. Finally, the resonator reset phase encompasses the

process to return the populated readout cavity to a photon number close to zero.

Quick readout resonator population and reset are significant in feedback applica-

tions such as for quantum error correction protocols and many near-term quantum

algorithms [52, 53]. Generally, readout resonator reset is realized by waiting for

several resonator decay time constants, which is a slow and inexact process.

Progress has been made by engineering readout pulses able to speed up the pro-

cess to both populate the resonator and evacuate the photons post measurement.

The cavity level excitation and reset (CLEAR) pulse can depopulate the resonator

two resonator decay time constants faster than the conventional approach [54].

Further improvements can be achieved using gradient ascent pulse engineering

(GRAPE) to optimize the readout pulse [55]. However, these methods mainly rely

on a simple rectangular pulse with modified flanks or a gradient-based optimization

approach that relies on an accurate description of the system and a robust initial

guess that is often difficult to identify [55].

Here, a readout pulse shaping module using deep reinforcement learning (DRL)

is being developed. Among the considered DRL algorithms are DQN, DDPG, PPO,

and AlphaZero. DQN algorithms require a discrete action space as the network
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produces a predicted Q-value for each possible action when provided a state. The

action space can be directly mapped to the discrete output space of the AWG. How-

ever, the vast action set size also makes the neural network approximation more

difficult and time-consuming to train due to the high number of output nodes.

In contrast, the DDPG algorithm, a model-free algorithm with a continuous ac-

tion space, can learn optimal policies in high-dimensional spaces more efficiently.

DDPG, however, can suffer from slow optimization due to vanishing or exploding

gradients. PPO is a more robust alternative to DDPG and can benefit from inex-

pensive sampling costs of the underlying system. AlphaZero was recently used for

the optimization of two-qubit gates [56]. However, the power of this algorithm

is accompanied by a significant computational effort. In a simulation, the PPO al-

gorithm outperformed the alternatively investigated approaches in simplicity and

robustness.

The readout measurement duration of contemporary and the PPO pulse shape

optimization module are compared on a simulated 5-qubit chip. The resulting pulse

shapes and measurement duration are presented in Figure 1-6. The PPO pulse

optimization module yielded a reduction of the injection time by 22% and a 17%

shorter reset time compared to the currently most advanced readout pulse shapes,

the cavity level excitation, and reset pulse.

1.7 Summary & Outline

Solid-state qubits with transition frequencies in the microwave regime, such as su-

perconducting qubits, are at the forefront of quantum computing. However, high-

fidelity, simultaneous control of superconducting qubits at even a moderate scale re-

mains a challenge. Among the significant error sources of contemporary supercon-

ducting quantum processors is qubit-state readout. For a single qubit, fast and high-

fidelity readout has been demonstrated. However, in resource-efficient, frequency-

multiplexed readout of multiple qubits, optimizing the readout pulse shape and

discriminator becomes a computationally intensive task.
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Figure 1-6: Simulation of Readout Pulse Shape versus Measurement Time for a
5-Qubit Chip. (a) Comparison of readout pulse shapes for a single qubit. The
typically employed pulse shape, a rectangular pulse shape (gray, dashed), is com-
pared with the cavity level excitation and reset (CLEAR) (in blue) and a pulse shape
tune-up using the proximal policy optimization (PPO) algorithm (in red), a deep re-
inforcement learning algorithm. (b) Comparison of the duration to simultaneously
inject photons in 5 different readout resonators, stabilize the photon counts dur-
ing a waiting period, and return the resonators close to their vacuum states. The
waiting period is kept constant for all three methods. In comparison with the rect-
angular pulse (CLEAR), PPO reduces the injection window by 58% (22%) and reset
duration by 46% (17%).

This thesis focuses on hardware design and software techniques using microwave

design principles and machine learning to achieve multi-qubit readout performing

on the level of single-qubit operations, as illustrated in Figure 1-7. Principles to en-

gineer microwave packages for multiple qubits to enable efficient control and read-

out while minimizing environment-induced errors are demonstrated using a novel

multi-qubit package. Deep machine learning techniques to improve superconduct-

ing qubit readout pulse shapes and discrimination are experimentally demonstrated

and compared to conventional methods. The presented techniques are a potential

building block step towards implementing quantum error correction protocols and

practical quantum computers.

After the concepts of quantum computing, Chapter 2, and in particular supercon-

ducting quantum computing, Chapter 3, have been introduced, microwave design

principles to engineer packages with efficient qubit control and readout are dis-

cussed in Chapter 4. The focus shifts in Chapter 5 to the basic methods and ideas

of machine learning before they are applied to readout discrimination in Chapter 6

and readout pulse shaping in Chapter 7. The thesis is concluded in Chapter 8.
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I. Microwave Packaging for Superconducting Qubits

II. Neural Network assisted
     Qubit State DiscriminationIII. Reinforcement Learning assisted 

      Qubit Readout Pulse Shaping

Figure 1-7: Thesis Overview. Displayed is a microwave package with an enclosed
qubit coupled via a resonator to a transmission line. The microwave package de-
fines the immediate qubit environment and serves as a heat sink. The green pulse
on the input side illustrates a readout pulse to probe the resonator state. The trans-
mitted signal, colored in orange, is measured and discriminated against. This thesis
focus on three aspects towards efficient multi-qubit readout and control: I. The
development of microwave packages, II. Machine-learning assisted qubit-state dis-
crimination, and III. Machine-learning assisted qubit-readout-pulse shaping.
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Chapter 2

Quantum Computing

The realization of practical large-scale quantum computers promises a new era of

computational capabilities. Quantum computers process information in a funda-

mentally different way than classical computers. The promise of quantum com-

putation lies in using unique features of quantum mechanics to provide enhanced

computational performance over classical computers for specific tasks, such as sim-

ulations of small-scale physical, chemical, or biological systems, financial services

and technology, or machine learning and optimization problems.

This chapter provides a brief introduction to quantum computing in Section 2.1.

After that, the computational power of quantum computers is put in context in Sec-

tion 2.2 before its development is compared with classical computers in Section 2.3.

Finally, a brief introduction to some of the most prominent qubit modalities and im-

minent challenges follows in Section 2.4.
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2.1 Introduction Into Quantum Computing

Quantum mechanics is a framework able to describe specific phenomena, such as

quantum entanglement. Classical physics cannot describe that. The idea to harness

the peculiar effects of quantum physics to process information originated in the

early 1980s [1, 2]. Intensive research since revealed that such quantum computing

devices promise to solve tasks such as factoring large numbers [3], combinatorial

searching [4], or simulations of quantum systems [5–7] significantly more efficient

than present-day Boolean logic-based computers (henceforward referred to as clas-

sical computers).

2.1.1 Qubits

The basic information unit of classical computing is a binary digit, or simply a bit. A

bit is an entity with two discrete states: 0 or a 1. A common physical implementation

to store a bit is a transistor [8]. State 0 can mean the transistor is off, and no current

is present. Consequently, state 1 means a current is flowing. These discrete states

are robust and can be measured.

Quantum bits (qubits) are the classical bit’s quantum analog. However, unlike

bits, qubits can be in a superposition of 0 and 1. The quantum state of a single qubit

can be written as a wave function

|Ψ⟩ = 𝛼 |0⟩+ 𝛽 |1⟩ , (2.1)

with complex probability amplitudes 𝛼 and 𝛽 constrained by |𝛼|2 + |𝛽|2 = 1. The

computational states |0⟩ and |1⟩ in bracket notation can be expressed as vectors

[10]𝑇 and [01]𝑇 . Graphically, such a quantum state can be represented by a Bloch

vector on the Bloch sphere [9] as illustrated in Figure 2-1.

For a quantum system with 𝑁 qubits, a complex superposition of all 2𝑁 permu-
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Figure 2-1: Bloch Sphere. The unit
sphere depicts the pure states of a
qubit. The north pole and south
pole along the Z-axis represent the
computational basis with |0⟩ and |1⟩.
The Bloch vector, shown in red, rep-
resents an arbitrary quantum state
|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩. 𝛼 and 𝛽 are com-
plex probability amplitudes with the
constraint |𝛼|2 + |𝛽|2 = 1. Quantum
operations can alter the qubit state
and thus the Bloch vector.

tations, results in a wave function of the system’s entire state

|Ψ⟩ = 𝑐1 |0 . . . 00⟩+ 𝑐2 |0 . . . 01⟩+ . . . . + 𝑐2𝑁 |1 . . . 11⟩ (2.2)

and
∑︀

𝑖 |𝑐𝑖|2 = 1. |0 . . . 00⟩ denotes the tensor product of 𝑁 qubits |0⟩ ⊗ . . . |0⟩ ⊗ |0⟩.

Measuring a qubit converts the quantum information into classical information.

The result of a measurement is a probabilistic projection of the qubit onto its com-

putational states 0 or 1, typically along the Z-axis. For an equal superposition, the

probability to measure 0 or 1 is 50 % for an equal superposition. Unlike in classi-

cal computing, the quantum information stored in the qubit cannot generally be

copied [10]. Hence, to infer the qubit’s probabilistic distribution and thus the de-

gree of superposition, multiple identically prepared states have to be measured.

Consequently, quantum computers rely on encoding information in fundamentally

different ways than classical computers.

2.1.2 Qubit Gates

To encode arbitrary quantum algorithms, a set of quantum operations are necessary.

A universal gate set represents a finite set of operations with which any possible

computational operation can be constructed. For example, classical computers can
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perform arbitrary Boolean logic [11] with merely a few types of logic gates. A

universal gate set can be formed with the NOT gate, a single-bit gate inverting

a bit, and the AND gate, a two-bit gate outputting 1 if both inputs are 1, and 0

otherwise.

Universal quantum computing requires such a universal gate set as well. How-

ever, while some quantum gates have a direct classical analog, most gates differ

from classical gates. A key difference is that all quantum gates are reversible. They

are so-called unitary gates. The quantum analog of the classical NOT gate is an

X-gate, swapping the states |0⟩ to |1⟩. On the Bloch sphere, this operation can be

visualized with a 180-degree rotation around the X-axis and is thus often referred

to as a 𝜋-pulse. Consequently, 180-degree rotations around the Y-axis and Z-axis

are called Y-gate and Z-gate. The X-, Y-, and Z-gate are commonly referred to as

Pauli gates [12].

In addition to the Pauli gates, Hadamard, S-, and T-gates are common quantum

algorithms as single-qubit gates [12]. Hadamard gates put a qubit initialized in a

computational basis state into an equal superposition. Similar to the Z-gate, S- and

T-gates are phase shift gates. Phase shift gates add a phase of exp{𝑖𝜑} to |1⟩ while

|0⟩ remains unaffected. 𝜑 is equal to 𝜋 for the Z-gate, 𝜋/2 for the S-gate, and 𝜋/4

for the T-gate.

To have a universal gate set, single-bit or single-qubit gates are not sufficient.

The quantum analog to the classical exclusive OR, abbreviated XOR-gate, is the

Controlled-NOT gate, or CNOT-gate, composed of a controlling qubit and a target

qubit [12]. If the controlling qubit is in state |0⟩, then the target qubit is not af-

fected. On the contrary, if the controlling qubit is in state |1⟩, then the target qubit

experiences an X-gate.

|1⟩
|10⟩ = |1⟩ ⊗ |0⟩ ⇒ product state

|1⟩
(2.3)

Note that the control and target qubit is entangled after a CNOT-gate is applied

for a control qubit in a superposition state. Entanglement is a unique feature of
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Table 2.1: Quantum Gates [13]. A universal quantum gate set can be formed of
single- and two-qubit gates. Common single-qubit gates are the three Pauli-gates,
the Hadamard gate, and the phase shifting gates S and T. A frequently used two-
qubit gate is the Controlled-NOT (CNOT) gate. The computational basis states are
expressed as |0⟩ =

[︀
1 0

]︀𝑇 and |1⟩ =
[︀
0 1

]︀𝑇 .

Gate Name Gate Symbol Matrix

Single Qubit Gates

Pauli-X (X) 𝑋

[︂
0 1
1 0

]︂
Pauli-Y (Y) 𝑌

[︂
0 −𝑖
𝑖 0

]︂
Pauli-Z (Z) 𝑍

[︂
1 0
0 −1

]︂
Hadamard (H) 𝐻

[︃
1√
2

1√
2

1√
2
− 1√

2

]︃
Phase (S) 𝑆

[︂
1 0
0 𝑖

]︂
𝜋/8 (T) 𝑇

[︂
1 0
0 𝑒𝑖𝜋/4

]︂

Two-qubit Gate Controlled-NOT (CNOT)

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦
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quantum physics. Thus, the previously separable quantum state can no longer be

factorized into two separate qubit components, as seen by comparing Equation 2.3

and Equation 2.4.

|1⟩ 𝐻
1√
2

(|01⟩ − |10⟩) ⇒ entangled state
|1⟩

1√
2

(|0⟩ − |1⟩)⊗ |1⟩

(2.4)

Universal quantum computation can be built from a small subset of these types

of single and two-qubit gates. Table 2.1 lists a set of quantum gates to create a

universal gate set. A commonly used universal gate set comprises single-qubit ro-

tations around X, Y, and Z, a single-qubit phase shift gate, and a CNOT-gate as the

two-qubit gate or CNOT-, H-, S- and T-gates [14].

2.1.3 Quantum Parallelism & Interference

Two subsequent fundamental principles substantiate the power of quantum com-

putation and distinguish itself from classical computers: Quantum parallelism and

interference.

Quantum Parallelism

A classical 𝑁 -bit state is uniquely defined. Processing two distinct 𝑁 -bit input states

can either be done subsequently or in parallel. Therefore, the computational effort

either doubles in time or hardware resources. The qubits in a quantum processor,

on the other hand, can be set into a single superposition state that simultaneously

carries aspects of all these 2𝑁 components. Consequently, no additional resources

are needed. This effect is referred to as quantum parallelism.

82



Quantum Interference

Quantum interference describes the effect of constructive and destructive interfer-

ence between quantum states and alters the probability amplitudes. Therefore,

specific quantum states become more likely to be measured than others. A quan-

tum algorithm intends to enhance the probability to measure the desired state—the

state that represents the best answer to a computational task—and thus biases the

measurement using the effect of quantum interference.

2.2 Complexity Theory

Computational problems are classified based on the best algorithms known today.

The different complexity classes arise due to the different scaling laws as a function

of problem size for the physical resources and the time requirements for these best-

known algorithms. For instance, computing devices comprise a fixed number of

physical memory units and a processor that can perform a certain number of com-

putational steps per time unit. The physical memory of a computing device places

an upper bound on the maximum, manageable problem complexity. The number

of elementary computational steps required to solve a task can be used as a quan-

titative measure of time. In general, computational tasks can be classified by their

memory consumption, their required temporal effort to evaluate a solution, and the

time needed to verify the proposed solution.

2.2.1 Classical Complexity Theory

Usually, one desires algorithms that scale polynomial in time and memory as a par-

ticular computational task’s complexity increases. The complexity class describing

problems with polynomial memory requirements that are independent of the re-

spective time complexity is referred to as PSPACE [15]. Computational problems

with algorithms able to compute solutions in polynomial time constitute the com-

putational complexity class P [15]. Problems in class P can be efficiently computed
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on a classical computer.

A computational task without a known algorithm that scales polynomial in time

is the traveling salesman problem. The traveling salesman describes the challenge

of identifying the shortest route between multiple cities to visit each city only once.

This task’s time consumption scales exponentially in the number of cities.

A classical computer is typically unable to solve problems with exponential time

requirements efficiently. However, once a solution is presented, it may only take

polynomial computational time to confirm the solution. For instance, factoring

an integer into two prime numbers is an exponentially hard problem, in general.

However, verifying the proposed solution involves a single multiplication that scales

polynomially in time. Problems with solutions that can be verified in polynomial

computational time form the NP complexity class (NP stands for Non-deterministic

Polynomial time) [15]. Among the problems that can be efficiently evaluated are

the problems in class P. If an efficient algorithm proposes a solution to a problem,

an efficient algorithm exists to verify the solution.

The most complex computational problems in NP are those for which the com-

putation is exponential in time. Therefore, the task is not in P and instead assigned

to the NP-Complete complexity class. For example, the traveling salesman is an

NP-Complete problem [15]. It is exponentially hard to find a solution, but it only

takes polynomial time to evaluate the proposed solution. A proposed solution can

be easily verified by depicting the proposed solution on a map and verifying that

the conditions are not violated.

It is an open question if algorithms exist that can solve NP-Complete problems in

polynomial time. If such algorithms exist, then NP would consequently collapse into

P, meaning they are the same complexity classes, N=NP [16]. The search for such

algorithms has continued for more than half a century. The inability to find such an

algorithm leads most computer scientists to believe that indeed N̸=NP [17]. Fig-

ure 2-2 summarizes the hierarchy of the four introduced complexity classes. Classi-

cal computers can efficiently solve computational tasks part of P.
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2.2.2 Quantum Complexity Theory

Classical computers can efficiently solve problems in the computational complexity

class P. A computational device able to solve exponentially challenging problems in

NP-Complete and even more complex problems could be tremendously beneficial

for scientific discovery and, in particular to optimization tasks. In the following,

the class of problems a quantum computer can solve efficiently is embedded in the

framework of the complexity classes P, NP, NP-Complete, and PSPACE.

Quantum computers outperform classical computers for specific problems, such

as factoring large integer numbers [3], a problem that is believed to be part of

NP [18]. A quantum computer’s advantage arises from exploiting the problem’s un-

derlying mathematical structure differently from classical computers. In addition,

the quantum computer can determine the prime factors of a large integer number

in polynomial time, which is exponentially faster than it takes classical computers

to perform the same task.

For example, Shor’s factoring algorithm shows that quantum computers can out-

perform classical computers on problems that feature a mathematical structure that

the working principles of quantum computers can exploit [19]. NP-Complete prob-

lems do not seem to exhibit these sort of favorable mathematical structures. There

is no evidence to date that suggests quantum algorithms exist that could outperform

classical algorithms for NP-Complete problems.

There exist other quantum algorithms able to generate minor speedups over

the best known classical algorithm for problems in N and NP [4]. Nevertheless,

it remains an open question whether quantum computers can efficiently solve NP-

Complete problems. There are proposals for quantum algorithms that may be able

to verify a proposed solution in polynomial time for problems outside of NP [20].

However, there is no evidence that quantum computers can outperform classical

computers on problems outside of PSPACE [21]. The problems quantum computers

can solve efficiently form the computational complexity class BQP, with BQP being

an abbreviation for Bounded-error Quantum Polynomial time [12].

85



Ran Raz & Avishay Tal (2019)

PSPACE
- Chess
- Go

NP-Complete
- Travelling salesman
- Sudoku

NP
- Graph isomorphism

BQP
- Factoring

P
- Testing if a number is prime

C
om

putational C
om

plexity

Efficiently solvable by 
classical computing

Efficiently solvable by 
quantum computing

I.

II.

I.
II.

Figure 2-2: Computational Complexity Classes. PSPACE contains all classes and
problems which require a polynomial amount of memory on a conventional com-
puter independent of the number of necessary computational steps to find or ver-
ify a solution. P describes the class of classically efficient computable problems.
Problems part of the complexity class BQP are efficiently solvable by a quantum
computer. Class NP contains problems that are efficiently verifiable. The hardest
problems are still efficiently verifiable from complexity class NP-Complete. In 2019,
Ran Raz and Avishay Tal identified the first problem outside the complexity class
NP that a quantum computer can solve efficiently.
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Quantum computers are more powerful than classical computers for specific

problems. However, there is no formal proof that the hierarchy shown in Figure 2-2

is manifestly true. Meaning, there does not exist proof yet describing the limits

of classical algorithms. Thus, a believed quantum advantage today may not be a

quantum advantage tomorrow.

2.3 Computing History

A closer look at the history of classical computing can help gauge the future devel-

opment of quantum computers. An overview listing some of the most relevant mile-

stones per decade can be found in Table 2.2. The development of modern electronic

computers started with the invention of the vacuum tube [22] at the beginning of

the twentieth century that eventually led to the construction of a large-scale compu-

tational system, the Electronic Numerical Integrator and Computer (ENIAC) [23],

about 40 years later. The first large-scale transistor-based computer, the Transis-

torized Experimental Computer Zero (TX-0) [24], was developed only ten years

after the conception of the transistor in 1947 [8]. In 1959, the first silicon-based

integrated circuit was demonstrated that led to the commercialization of the first

monolithic processor with 2300 transistors [25]; however, only two years passed

until the next generation doubled the number of transistors. This doubling of the

number of transistors approximately every two years continued and became known

as Moore’s Law [26]. As a result, today’s computer chips are composed of more

than a billion transistors. Although performance increases had previously followed

from this Moore’s law type scaling, physical limitations have slowed down these

improvements over the last decade.

In contrast, quantum computing is a much more recent technology. In the early

1980s, Richard Feynman suggested that quantum systems are fundamentally better

suited to simulate quantum systems than classical computers [2]. Researchers have

explored different algorithmic avenues that could provide such a quantum advan-
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Table 2.2: Computing Milestones Per Decade. Key decade milestones in the chronol-
ogy of classical and quantum computing development between 1900 and 2020.

1900 Invention of vacuum tube [22]

1910 First flip-flop circuit design [27]

1920 Demonstration of AND logic gate [28]

1930 First mechanical binary programmable com-
puter (Z1) [29]

1940 First electronic programmable computer
(ENIAC) [23]
& invention of transistor

1950 First transistor based computer (TX-0) [24]

1960 Transistor-transistor logic developed [30]

1970 2025 Transistors
(Intel 4004) [25]

1980 106 Transistors
(Intel 80486) [31]

1990 107 Transistors
(Hitachi SH-4) [31]

2000 108 Transistor, dual-core
(Intel Core 2 Duo) [31]

2010 109 Transistor, quad-core
(Intel Core i7) [31]

2020 1010 Transistors, octa-core
(Apple M1) [31]

Classical Computing

1980 Proposal of a
quantum computer [1, 2]

1990 Factoring algorithm [3] &
quantum error correction [32]

2000 12-qubit quantum
information processor [33]

2010 Quantum supremacy with 53
superconducting qubits [34]

2020 Quantum supremacy with
up to 76 photons [35]

Quantum Computing
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tage and the role of quantum states’ inherent fragility. David Deutsch proposed the

first simple quantum algorithm in 1985 [36]. A fundamental breakthrough was

Peter Shor’s proposed algorithm to factorize large numbers [3, 37], a challenging

problem for classical computers. Shortly after, again, Peter Shor and Robert Calder-

bank, and Andrew Steane developed the first protocols to detect and correct qubit

errors [32, 38, 39]. For the last five years, about a dozen industrial and academic

institutions have demonstrated quantum devices with more than ten qubits [34, 35,

40]. In 2019, a quantum advantage was demonstrated for the first time by a team

at Google [34]. A quantum advantage is achieved if a problem can be solved by a

quantum computer significantly faster than a classical computer [34].

Current quantum processors comprise tens of qubits that are not yet of the qual-

ity to execute valuable computations. However, in 2019 one of the largest pro-

grammable quantum processors with 53 working superconducting qubits achieved

a significant quantum computing milestone, quantum supremacy [34]. Towards

the end of 2020, a photonic quantum processor platform using up to 76 photons

reached the same milestone [35]. Quantum supremacy describes completing a

computational task on a quantum computer that cannot be performed on existing

classical computers in a reasonable amount of time [41]. Despite the importance

of this milestone, the required technology to build a universal and fault-tolerant

quantum processor is likely at least a decade away. In the meantime, today’s noisy

intermediate-scale quantum devices, often referred to as NISQ devices [41], offer

proof of concept demonstrations such as the simulation of molecular electronic con-

figurations [42].

2.4 Quantum Computing Challenges

A viable physical qubit consists of a pair of addressable quantum levels, offers chan-

nels to initialize and prepare specific quantum states, techniques to induce a unitary

evolution, and methods to measure the final qubit state. Furthermore, to build a

quantum processor, multiple qubits have to be coupled. Finally, control and read-
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out techniques need to be sufficiently sophisticated to maintain quantum coherence,

such that the quantum information is not degraded and lost.

As illustrated in Figure 2-3, nature provides numerous examples of quantum

mechanical two-level systems that potentially could serve as qubits. Examples of

quantum mechanical two-level systems or artificial atoms include the electronic

states of an ion, photon polarization states, or nuclear spins [12]. David DiVincenzo

articulated five fundamental requirements for any qubit technology to be a suitable

physical implementation for large-scale quantum computation [43]:

1. The physical system provides well-defined and characterized qubits.

2. The system allows the initialization of individual qubits.

3. There exists a mechanism to read out qubits.

4. A universal set of gate operations is available and can be performed.

5. The qubits can robustly present and store quantum information.

These criteria, known as the DiVincenzo Criteria, are in many ways adapted from

the conditions for operational classical computers and summarize the fundamental

requirements qubit technologies need to fulfill to guarantee successful quantum

computation.

2.4.1 Qubit Modalities

Various qubit modalities comply with DiVinceno’s Criteria, such as superconducting

qubits [44], trapped ions [45], trapped neutral atoms [46], spin qubits [47], or

solid-state quantum emitters [48]. Figure 2-3 shows some of the most prominent

qubit modalities pursued by research and industry. Each of these modalities has its

strength and drawbacks and hence applications.

For instance, atoms and atom-like quantum emitters play central roles in many

areas of photonics-based quantum information processing. In recent years, there

has been tremendous progress in developing quantum emitter systems based on
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operation at room temperature

deterministic creation

Qubit modality: Trapped ions
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Figure 2-3: Physical Realization of Qubits. Shown are some of the most prominent
physical quantum mechanical systems used for qubit implementations ranging from
photons to electrons to topological states. A photonic qubit can, for example, be en-
coded as time bins, in the number of photons (#), or using its polarization states.
Each quantum mechanical system and its qubit implementation have advantages
and disadvantages. For instance, while Majorana qubits promise to be resilient to
many noise sources, a physical qubit has not been realized yet. In this thesis, the
focus is on superconducting qubits using superconducting loops. Although quan-
tum computing is still in its infancy, the commercialization of quantum information
processing hardware and software has grown from a few to many companies over
the last decade. Together with trapped ions, superconducting qubits are among the
most established and industrially pursued qubit modalities today.
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crystallographic defects in wide-bandgap semiconductors ranging from diamond [49,

50] to silicon carbide [51] to III-nitrides [52, 53]. Today, solid-state quantum emit-

ters embedded in photonic structures [54, 55] or circuits [48] are among the most

promising candidates for quantum repeaters, nanoscale sensors, and single-photon

sources.

Superconducting qubits are at the forefront of large-scale quantum comput-

ers [34]. Over the past two decades, superconducting qubits have emerged as a

leading quantum computing platform [44, 56]. Today, individual qubits with co-

herence times exceeding 100 µs [57], gate times of a few tens of nanoseconds [34],

and individual single- and two-qubit gate operation fidelities above the most lenient

thresholds for quantum error correction have been demonstrated for devices with

up to 50 qubits [34, 58]. However, considerable work is still needed to retain and

even further improve these fidelities as systems increase in size and complexity [59].

This thesis focuses on superconducting qubits, particularly their microwave environ-

ment, and how to efficiently interact with them and interpret their response using

machine learning as the number of qubits is scaled up.

2.4.2 Qubit Coherence

The DiVincenzo Criteria articulated the requirements for a qubit technology to qual-

ify as a viable candidate for the physical implementation of a quantum computer. To

satisfy DiVincenco’s Criterion 2-4, a communication channel between the qubit and

a control instance is needed to execute qubit operations and measurements. The

requirement of this channel limits the degree to which unintentional interactions

between the qubit and its environment can be suppressed. Therefore, a measurable

qubit always couples to the environment to some extent. The coupling causes the

qubit at some point in time to lose its initial well-defined quantum information to

the environment, thus resulting in an unrecognizable qubit state. Consequently, an

initialized qubit is unable to store quantum information for an indefinite amount of

time. DiVincenzo’s fifth criterion describes the minimum required time window a
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qubit can be read out without losing the quantum information completely.

There are two fundamental ways in which a qubit loses quantum informa-

tion [12]. The first is energy relaxation. A qubit in an excited state relaxes even-

tually back to the ground state and loses its energy to the environment. The re-

laxation process can be graphically illustrated on the Bloch sphere as a flip of the

Bloch vector to the ground state |0⟩, the north pole. This time is referred to as

𝑇1 or longitudinal relaxation rate Γ1 , 𝑇−1
1 . Secondly, a qubit can lose quantum

information is through a loss of phase coherence, also known as decoherence. De-

coherence, the transverse relaxation rate Γ2, is a combination of pure dephasing

Γφ and energy relaxation—a phase breaking process. Γφ is the average time af-

ter which environmental noise moved the qubit state around the equator on the

Bloch sphere in a random non-repetitive way to an unrecognizable extent. For two-

level systems weakly coupled to noise sources, the dynamics can be described by

Γ2 , 1/𝑇 *
2 = Γ1/2 + Γφ following the Bloch-Redfield formalism [60, 61]. In conclu-

sion, a qubit can lose quantum information via two mechanisms, energy relaxation

and loss of phase coherence after time 𝑇1 and 𝑇 *
2 , respectively. The fifth DiVincenzo

Criterion requires these two mechanisms to be sufficiently suppressed to guarantee

the manipulation of the quantum information via gates.

2.4.3 Gate Time and Fidelity

Just as with classical computers, quantum computers require a sufficiently high

clock speed, the time required to perform a quantum operation, the gate time with

which we can operate the quantum computer. A key figure of merit is the number

of gates one can perform within the qubit’s lifetime. The more gates one can im-

plement before an error occurs, the larger an algorithm one can run. A qubit with

a long lifetime and little interaction with the environment is not as easy to control

and causes longer gate times. In contrast, qubits that are strongly interacting with

the controlling fields tend to interact more strongly with the environment and are

short-lived. The number of gates one can perform, on average, before an error oc-
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curs may not differ much between these two cases. However, one of these qubit

modalities may have a much faster clock speed than the other one, which is, in

general, the preferred configuration.

Decoherence is not the only limitation qubits can experience but also errors due

to control errors and imperfections in the pulses used to drive a gate operation. The

concept of gate fidelity is a rigorous, more general characterization of how well a

gate operation on a qubit works. The gate fidelity is a comparison of the expected

ideal with the resulting output state [12]. Gate errors may be fundamentally differ-

ent, depending on the initialized qubit’s starting point on the Bloch sphere. There-

fore, the gate performance needs to be measured concerning the initial qubit state

set that spans the entire qubit state space, in the case of a single qubit gate, the

Bloch sphere. Any location on the Bloch sphere, as a two-dimensional surface, can

represent two distinct vector components. Therefore, it is sufficient to map out the

single-qubit gate fidelity with two orthogonal qubit state inputs [12].

Generally, 𝑁 qubits acting in 22𝑁 dimensions require 22𝑁 orthogonal qubit states.

To evaluate the gate fidelity of an 𝑁 -qubit gate, it is sufficient to apply the 𝑁 -qubit

gate on 22𝑁 orthogonal qubit states, measure them out and compare the resulting

the expected ideal output state. The gate fidelity is then the average performance

over the entire qubit state space. It is referred to as process tomography [12],

representing a complete description of errors during a gate operation. Although

single and coupled qubit gates are the only gates of importance, reality requires that

process tomography needs to consider all present qubits due to leakage between

them. Considering that the implementation of process tomography of an 𝑁 -qubit

gate requires 22𝑁 input states and hence the same amount of measurements, it

becomes evident that due to the poor scaling with the number of qubits, process

tomography can be impractical. Furthermore, process tomography is sensitive to

all errors and does not solely determine the gate operation’s quality.

An alternative approach is randomized benchmarking [62]. Randomized bench-

marking characterizes the performance of the gate operation by including a random

but known assortment of other gates in the evaluation as a type of normalization.
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The system is characterized by applying a random but known gate sequence and

comparing the expected ideal with the resulting output state. After that, adding

the gate of interest to the random gate sequence and the information of the per-

formance of the entirely random gate sequence allows deducting the error rate

contribution due to the gate operation of interest. Repeating this approach with an

increasing number of gates yields an improved estimate of the average error gate

rate and the requested gate fidelity.

Randomized benchmarking is, in comparison with process tomography, more

efficient and insensitive to initialization and measurement errors but, in return,

provides only a net error rate without any information on specific error channels.

A perfect match of the actual operation and the flawless operation results in a gate

fidelity of 100%, such as an exact 𝜋-rotation around the x-axis of the Bloch sphere

in case of an X-gate. It is not possible to achieve perfect gate fidelities in general.

Nevertheless, it is required to improve the gate performance to surpass a minimum

value, called the threshold, to enable efficient quantum error correction and limit

the required resource overhead.

2.4.4 Quantum Error Correction

Error-free transmission of information is physically impossible. Therefore, to mini-

mize the influence of errors, signal loss and noise are required to be minimized. In

classical communication, loss of information is a minor issue since the number of in-

formation carriers can be arbitrarily increased. Furthermore, the influence of noise

is exceedingly negligible in digital communication because signals are constantly

corrected to the closest discrete bit value (0 or 1).

Quantum information processing is particularly prone to errors due to the high

sensitivity to the environment. The detrimental interaction between the qubit and

the environment can be mitigated with error correction protocols. For a practical

quantum processor, the error probability per gate and qubit must be kept below a

certain threshold for quantum error correction protocols to work. This threshold is
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reached when on average less than 10,000 operations are necessary to encounter

the first error [12].

Motivated by classical error correction, the redundancy of information repetition

codes is the most fundamental error correction code for quantum information pro-

cessing. The no-cloning theorem [10] forbids simple copying of information; hence

a serial, repetitive transmission of the same quantum information and a final statis-

tical analysis yields with increased probability the correct result, so-called majority

voting [32]. In addition to such active error correction, passive error correction

can reduce the susceptibility of qubit errors, particularly systematic and coherent

stochastic errors [12].

Typically, active quantum error correction protocols use syndrome measure-

ments to detect if and where an error occurred. Detected errors can then be cor-

rected using a feed-forward approach, in which pulses are applied to the errant

qubits to correct the error [12]. Therefore, accurate and resource-efficient qubit-

state readout is fundamental to identifying errant qubits and thus quantum error

correction. Moreover, qubit readout needs to be fast relative to the qubit lifetime

such that several rounds of error correction can be conducted. Most qubit modali-

ties do not yet offer methods to determine a qubit state with sufficiently high accu-

racy and speed.

2.5 Summary

Universal quantum computation aims to perform specific computational problems

such as integer factorization [3] or database search [4] in a significantly more effi-

cient way than classical computers. The challenge of developing quantum computer

hardware is to balance the system’s isolation while maintaining efficient control and

readout channels. Towards the realization of quantum computers, many milestones

have already been achieved. However, many engineering challenges remain, and

realizing a functional large-scale quantum computer is likely years away. This the-

sis focuses on scaling up quantum processors’ control and readout using microwave
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design principles and machine learning. The developed readout techniques are a

significant step towards efficient implementations of near-term quantum algorithms

based on iterative optimization and quantum error correction protocols necessary

for future practical universal quantum processors.
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Chapter 3

Superconducting Quantum

Computing

The superconducting qubit modality is a leading candidate towards the realization

of quantum information processors. Over the last two decades, the fabrication, de-

sign, and control of superconducting qubits have considerably improved, resulting

in exponential improvements of coherence properties [1]. The increase in qubit

performance has enabled the demonstration of several significant milestones in the

pursuit of scalable quantum computation. Among others, multi-qubit control and

entanglement techniques [2, 3], improved quantum gate fidelities [4], and better

readout schemes [5, 6] have enabled the demonstration of a quantum advantage

using a quantum processor with 53 operational qubits [7].

Here, we introduce the fundamentals of superconducting circuits and discuss

commonly employed experimental techniques and operation principles in the mi-

crowave regime. First, the basics of superconducting qubits are discussed in Sec-

tion 3.1 before their readout and control are covered in Section 3.2. Finally, the ex-

perimental infrastructure to operate superconducting quantum circuits is presented

in Section 3.3.

105



3.1 Superconducting Qubits

The building blocks of superconducting quantum computing hardware are super-

conducting qubits, solid-state artificial atoms with level transitions in the microwave

regime [8]. The transmon qubit [9] has emerged as one of the most popular qubit

designs due to its robust fabrication process, demonstrated operation and readout,

and reproducible lifetimes and coherence times in the order of several tens of mi-

crosenconds [10]. It is closely related to a harmonic 𝐿𝐶-oscillator, which features

equidistant energy levels, illustrated in Figure 3-1(a). Coherent control requires an

isolated pair of energy levels that form a computational qubit basis [11], and this

motivates the need for anharmonic oscillators. The necessary anharmonicity is pro-

vided by the Josephson junction—a lithographically defined tunnel barrier between

two superconducting electrodes—that behaves as a nonlinear inductor without any

significant dissipation [12].

3.1.1 From Linear LC Circuits to Quantum Harmonic Oscillators

A classical linear 𝐿𝐶 resonant circuit is a simple harmonic oscillator. The system

energy oscillates between electrical energy stored in the capacitor 𝐶 and magnetic

energy in the inductor 𝐿. The energy terms of each element depend on the voltage

𝑉 (𝑡) and current 𝐼(𝑡) of the capacitor and inductor and are calculated as

𝐸(𝑡) =

∫︁ 𝑡

−∞
𝑉 (𝑡′)𝐼(𝑡′)𝑑𝑡′. (3.1)

The energy terms for the capacitor and inductor expressed in terms of branch fluxes

Φ(𝑡) =
∫︀ 𝑡

−∞ 𝑉 (𝑡′)𝑑𝑡′ or the charge on the capacitor 𝑄(𝑡) = 𝐶Φ̇(𝑡) are

𝒯𝐶 =
𝑄2

2𝐶
, (3.2)

and

𝒰𝐿 =
Φ2

2𝐿
. (3.3)
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The Hamiltonian describes the total energy of a system. Consequently, the

Hamiltonian for a classical 𝐿𝐶 circuit is the sum of the electrical and magnetic

energy and defined as

𝐻 =
𝑄2

2𝐶
+

Φ2

2𝐿
. (3.4)

A similar mathematical construct describes a quantum 𝐿𝐶 oscillator but with

the charge 𝑄 and flux Φ promoted to quantum operators 𝑄̂ and Φ̂.

𝐻 =
𝑄̂2

2𝐶
+

Φ̂2

2𝐿
. (3.5)

Note, quantum operators are indicated by a ‘hat.’ 𝑄̂ and Φ̂ do not commute [Φ̂, 𝑄̂] =

Φ̂𝑄̂− 𝑄̂Φ̂ = 𝑖~. Therefore, it is not possible to simultaneously measure the flux and

charge of a quantum circuit with absolute precision.

Superconducting Quantum Harmonic Oscillator

A superconductor is a material that has no DC (direct current) resistance. Metals

such as aluminum with a nonzero resistance at room temperature turn supercon-

ducting below its critical temperature 𝑇c, which is about 1.2 K for aluminum. Metals

in a non-superconducting state are called ‘normal.’ The carriers of such lossless cur-

rents are Cooper-pairs comprising two electrons each [13]. An 𝐿𝐶 circuit is, by

definition, lossless. The Hamiltonian in Equation 3.5 can be expressed in terms of

its physical implementation using superconductors. Defining a reduced flux opera-

tor 𝜑 = 2𝜋Φ̂/Φ0 with the superconducting magnetic flux quantum Φ0 = ℎ
2𝑒

and the

reduced charge 𝑛̂ = 𝑄̂/2𝑒 with the elementary charge 𝑒, the quantum-mechanical

Hamiltonian follows as

𝐻 = 4𝐸C𝑛̂
2 +

1

2
𝐸L𝜑

2. (3.6)

with the inductive 𝐸L = (Φ0/2𝜋)2/𝐿 and charging energy 𝐸C = 𝑒2/(2𝐶). The

charging energy represents the energy necessary to add a single electron to a su-

perconducting island.

The Hamiltonian describing a quantum harmonic oscillator (QHO), with a single
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particle (e.g., a photon) in a one-dimensional quadratic potential, is equivalent

to Equation 3.6. 𝑛̂ and 𝜑 can be transformed into a creation 𝑎̂† and annihilation

operator 𝑎̂. Adding a particle to a system is described by the creation operator.

Consequently, the creation operator’s complex conjugate, the annihilation operator,

captures the system’s particle number reduction. The quantum harmonic oscillator

for a resonance frequency 𝜔r = 1/
√
𝐿𝐶 is defined as

𝐻 = ~𝜔𝑟

(︂
𝑎†𝑎 +

1

2

)︂
. (3.7)

with the Planck constant ℎ = 2𝜋~. Each particle added to the system requires an

energy ~𝜔r.

Two energy levels need to be uniquely addressable to employ a quantum system

as a qubit: meaning, the energy levels of a multi-level quantum system need to

differ such that ~𝜔0→1 ̸= ~𝜔1→2. As depicted in Figure 3-1, Quantum harmonic

oscillators have equidistant energy levels with an energy spacing of ~𝜔r, and thus,

are impractical qubits.

3.1.2 Josephson Junctions

Introducing a nonlinearity in an 𝐿𝐶 circuit changes the description from a harmonic

to an anharmonic oscillator. The quantized energy levels of an anharmonic oscil-

lator are no longer equidistant. A nonlinearity can be introduced using Josephson

junctions [14]. A Josephson junction is a dissipation-free circuit element that is

physically formed between two superconducting materials separated by a thin in-

sulating barrier of about 1 nm, as illustrated in Figure 3-1. The thickness enables

Cooper pairs to tunnel between the superconductors coherently. The Josephson

equations for 𝐼(𝑡), the current through the junction, and 𝑉 (𝑡), the voltage across

the junction, are

𝐼(𝑡) = 𝐼c sin(𝜑(𝑡)), (3.8)
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Figure 3-1: Quantum Harmonic and Anharmonic Oscillator. (a) A simple harmonic
resonator formed by a capacitor 𝐶 and an inductor 𝐿 is shown in blue. The po-
tential energy is the energy stored in the inductor and assumes a parabolic shape
with respect to the phase variable 𝜑, related to the flux induced by the inductor.
The energy levels are equidistant, such that transitions cannot be addressed indi-
vidually. By replacing the inductor with a Josephson junction, the potential of the
oscillator becomes anharmonic, illustrated in red, which isolates two energy levels
to form a computational qubit basis. A Josephson junction is a nonlinear inductor
physically realized inserting a about 1 nm-thin insulating barrier (e.g., aluminum
oxide AlOx) between two superconductors (e.g., aluminum Al). (b) A well-studied
design to enable qubit readout is to off-resonantly, capacitively couple the qubit,
an anharmonic oscillator, to a readout resonator, a harmonic oscillator. The read-
out resonator frequency can be probed to infer the qubit state. (c) and (d) The
transmission spectrum of a resonator dispersively coupled to a qubit showing the
characteristic qubit-state-dependent dispersive shift of about 1 MHz. The amplitude
of the measured signal is shown in (c) and the corresponding signal phase in (d). A
qubit-state discriminator tries to distinguish the qubit-states through the evaluation
of the readout signal amplitude or phase.
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and

𝑉 (𝑡) =
~
2𝑒

𝜕𝜑

𝜕𝑡
. (3.9)

where 𝐼c = 2𝑒𝐸J/~ is defined as the critical current of the junction and 𝜑(𝑡) is the

phase difference across the junction. The zero-voltage current is bounded by 𝐼c.

The Josephson energy 𝐸J depends on the superconductor material, temperature,

and applied magnetic field. Even without a voltage difference across the junction,

a current flows for a non-zero phase difference. This effect is known as the DC

Josephson effect. Applying a DC voltage results in an oscillatory current, referred

to as the AC Josephson effect.

The inductance due to the Josephson effect can be derived using the relation

𝑉 = 𝐿 (𝜕𝐼/𝜕𝑡) resulting in

𝐿J =
Φ0

2𝜋𝐼c cos(𝜑)
=

𝐿J0

cos(𝜑)
(3.10)

with the Josephson inductance 𝐿J0 = Φ0/2𝜋𝐼c. Using Equation 3.1, the energy of a

Josephson junction yields an energy of 𝐸(𝜑) = −𝐸J cos(𝜑).

3.1.3 The Transmon Qubit

The Cooper pair box is a relatively simple superconducting qubit modality. A Cooper

pair box consists of a superconducting island connect to a reservoir via a Josephson

junction [15]. The states of a Cooper pair box are associated with the number of

excess Cooper pairs on the island. The Hamiltonian is defined as

𝐻 = 4𝐸C(𝑛̂− 𝑛𝑔)
2 − 𝐸J cos(𝜑), (3.11)

with the Cooper pair number operator 𝑛̂ accounting for the number of excess

Cooper pairs on one of the islands, the effective offset charge 𝑛𝑔, and the reduced

flux 𝜑. The capacitive energy 𝐸C = 𝑒2/2𝐶Σ where 𝐶Σ = 𝐶S + 𝐶J represents the

total capacitance which is the sum of the cpacitance formed due to the Josephson

junction 𝐶J and the shunt capacitance. In the charge basis, the Hamiltonian can be
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written as

𝐻 = 4𝐸C(𝑛̂− 𝑛𝑔)
2 − 𝐸J

2

∑︁
𝑛

(|𝑛⟩ ⟨𝑛 + 1|+ |𝑛 + 1⟩ ⟨𝑛|). (3.12)

The operation regime for a Cooper pair box is 𝐸J ≪ 𝐸C. Cooper pair boxes

are sensitive to charge noise [16]. Operating the qubit at so-called ‘sweet spots’

𝑛𝑔 = ±0.5 where the charge dispersion slope is zero can suppress the effects of

flux noise [17]. While the coherence times are significantly improved if the Cooper

pair box is operated at the sweet spot, the necessary flux bias can vary due to sys-

tem fluctuations. Adding a large shunt capacitor reduces the sensitivity to charge

noise [9]. A Cooper pair box with a large shunt capacitance is called a transmis-

sion line shunted plasma oscillation (transmon) qubit. The Hamiltonian for the

transmon qubit is equivalent to the one for the Cooper pair box. The large shunt

capacitance alters the qubit’s capacitive energy and thus the operation regime. The

operation regime 𝐸J/𝐸C is significantly increased. The sensitivity to charge noise

decreases exponentially as the ratio 𝐸J/𝐸C increases. However, as the ratio is being

increased the anharmonicity 𝛼 = 𝜔1→2 − 𝜔0→1 shrinks linearly.

The transition frequency of a transmon is 𝜔q = 1/
√
𝐿J𝐶Σ ≈

√
8𝐸J𝐸C. The

Josephson junction can be replaced with a pair of parallel Josephson junctions

to alter the transition frequency. Such a layout is known as a DC superconduct-

ing quantum interference device (SQUID). The effective critical current and con-

sequently the Josephson energy can be changed by an applied magnetic flux Φext

through the SQUID. The junctions can be the same or intentionally different. A tun-

able transmon with differing Josephson junctions is an asymmetric transmon and is

less sensitive to flux noise relative to its symmetric counterpart [18]. The degree of

asymmetry is captured by 𝑑 = (𝐸J2/𝐸J1 − 1)/(𝐸J2/𝐸J1 + 1). The Josephson energy

for an asymmetric transmon is

𝐸 ′
J = (𝐸J1 + 𝐸J2)

√︃
cos2

(︂
𝜋Φext

Φ0

)︂
+ 𝑑2 sin2

(︂
𝜋Φext

Φ0

)︂
. (3.13)
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leading to the following Hamiltonian

𝐻 = 4𝐸C(𝑛̂− 𝑛𝑔)
2 − 𝐸 ′

J cos𝜑 (3.14)

describing a frequency tunable asymmetric transmon qubit. The external flux Φext

alters the transmon transition frequency as follows

𝜔q(Φext) =
√︀

8𝐸 ′
J𝐸C. (3.15)

The insensitivity to noise makes the transmon one of the most frequently-used

superconducting qubit modalities. However, the relatively low anharmonicity of

100 MHz to 300 MHz can result in undesired excitations of the second excited state.

3.1.4 Sample Design and Fabrication Techniques

By varying the relative strengths of the energies associated with the inductance,

capacitance, and tunnel elements in the circuit, various architectures of supercon-

ducting qubits can be realized [19], each featuring their unique noise susceptibility

and operation regime [8].

Superconducting quantum circuits are generally fabricated on hundreds of mi-

crometer thick, commercially available, high-purity, and low-loss silicon or sapphire

substrates [12]. The chip metallization (superconducting materials, such as alu-

minum, niobium, or titanium nitride) is deposited by thermal evaporation or mag-

netron sputtering and structured by optical and electron-beam lithography. The

AlOx dielectric for Josephson junctions is formed by controlled in-situ oxidization

of an aluminum film. The properties and mutual couplings of circuit elements can

be individually tailored and fabricated in a reproducible manner due to their macro-

scopic physical sizes (millimeter-scale) [11].
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3.1.5 Microwave Regime

Superconducting circuits behave quantum coherently when cooled to milli-Kelvin

temperatures. This is mainly due to the absence of conductivity losses in the su-

perconductor at these very low temperatures. Superconducting circuits are fabri-

cated with elementary superconductors such as aluminum, niobium, or related com-

pounds such as NbN with critical temperatures between 1 K and 16 K. The circuit

operation temperature is small compared to the superconducting gap (≥ 50 GHz),

which further suppresses the losses induced by residual unpaired electrons (quasi-

particles). The sample operation temperature is 𝑇 ∼ 10 mK, achieved by 4He/3He-

dilution refrigerators, further discussed in Section 3.3. It corresponds to a frequency

of 𝑓 = 𝑘B𝑇/ℎ ∼ 0.2 GHz (where 𝑘B and ℎ are the Boltzmann and Planck constant,

respectively), such that frequency transitions in the 5 GHz regime are only weakly

thermally populated. The circuit can approximately be considered to remain in its

ground-state in the absence of any controls.

3.2 Superconducting Qubit Control and Readout

Superconducting qubits are typically controlled through a resonant interaction with

an electromagnetic pulse. However, in the dispersive regime, qubit readout is con-

ducted off-resonantly relative to the qubit but on resonance with the associated

readout resonator. The basis of superconducting qubit control and readout are dis-

cussed in the following subsections.

3.2.1 Superconducting Qubit Gates

Qubit excitation and quantum gates are performed by applying microwave drive

pulses at or close to the qubit transition frequency. The qubit undergoes coherent

oscillations between its two fundamental basis states, referred to as Rabi oscilla-

tions, which can be stopped at any time to prepare the desired superposition state.

By tuning the phase of the applied microwave pulses, rotations around any axis
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in the equatorial plane of the Bloch sphere can be initiated. Access to rotations

around the vertical 𝑍-axis of the Bloch sphere can be performed by tuning the qubit

frequency or simply waiting and making use of the Larmor precession, which is a

rotation of the Bloch sphere to the intrinsic time evolution of the qubit state [20].

Microwave pulses inducing single-qubit rotations have a typical duration of about

20 ns. They are frequently amplitude modulated by a Gaussian envelope to achieve

a localized pulse in Fourier space.

3.2.2 Superconducting Qubit Readout

Today, superconducting qubit state measurements are most commonly performed

using a dispersive readout scheme [5, 6]. The readout device is a resonator that is

weakly coupled to the qubit at a detuned frequency. Due to a qubit state-dependent

‘dressing’ of the readout resonator, the qubit state can be inferred by spectroscop-

ically probing a dispersive shift of about 1 MHz in its resonance frequency [6].

This scheme enables a quantum non-demolition measurement, where the qubit

is mapped onto one of its basis states that correspond to the measurement out-

come [21].

Readout pulses with a carrier frequency at or close to the resonance frequency

are typically about 0.1 µs to 2 µs long and lead to a population of the resonator with

up to several tens of photons. The readout signal acquires a qubit-state-dependent

dispersive shift upon interaction with the readout resonator. The dispersively-

shifted signal carries the information of the qubit-state and can be classically pro-

cessed to identify the qubit state [see Chapter 6 for more details].

3.2.3 Circuit Quantum Electrodynamics

The Jaynes-Cummings Hamiltonian can describe the dynamics of a two-level sys-

tem located in a cavity by [5]

𝐻𝐽𝐶 = 𝜔𝑟

(︂
𝑎̂†𝑎̂ +

1

2

)︂
+

𝜔𝑎

2
𝜎̂𝑧 + 𝑔(𝑎̂𝜎̂+ + 𝑎̂†𝜎̂−), (3.16)
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with the two-level transition frequency 𝜔𝑎, the cavity frequency 𝜔r, and the Pauli-𝑍

operator 𝜎̂𝑧. The coherent interaction between the two-level system and cavity is

described by the last term 𝑔(𝑎̂𝜎̂++ 𝑎̂†𝜎̂−). The coupling strength between the system

and cavity is expressed by 𝑔. The oscillation of energy between the two-level system

and the cavity is 𝜎̂+ = |0⟩ ⟨1| and 𝜎̂− = |1⟩ ⟨0|. Leakage from the cavity is expressed

by the cavity leakage rate 𝜅. Similarly, the rate at which energy is emitted from the

two-level system and not absorbed by the cavity is referred to as 𝛾.

For a situation in which the coupling between the cavity and two-level system

exceeds the leakage rates of the cavity and two-level system, the coupled system is

said to be in the strong coupling regime [𝑔 ≫ 𝜅 and 𝑔 ≫ 𝛾]. In the strong coupling

regime, energy oscillates between the two-level system and cavity at a frequency of

𝑔/2𝜋.

If the cavity and the transition frequency of the two-level system are sufficiently

detuned ∆ = |𝜔𝑎 − 𝜔𝑟| ≫ 𝑔, their coupling is in the dispersive limit. Expanding in

𝑔 to the second-order, the Jaynes-Cummings Hamiltonian in the dispersive regime

can be approximated as

𝐻JC, disp ≈ 𝜔𝑟

(︂
𝑎̂†𝑎̂ +

1

2

)︂
+

[︂
𝜔𝑎 + 2

𝑔2

∆

(︂
𝑎̂†𝑎̂ +

1

2

)︂]︂
1

2
𝜎̂𝑧. (3.17)

The cavity experiences a frequency shift by 𝜒 = 𝑔2/∆ depending on the state of the

two-level system. For an excited two-level system, the shift is positive. In contrast,

for the two-level system in the ground state, a negative shift follows. Additional

details on the dispersive Jaynes-Cummings Hamiltonian and mathematical concepts

to describe the system dynamics are in Appendix A.

The Hamiltonian for a general cavity and two-level system can be directly ap-

plied to the situation of a qubit coupling to a readout resonator inducing a dis-

persive shift 𝜒 = 𝑔2/∆. Finally, to remain in the dispersive regime, the number

of photons populating the readout resonator should not exceed a so-called critical

photon number. The critical photon number is defined as 𝑛crit = Δ2

4𝑔2
and depends

on the frequency separation between the resonator and qubit ∆ = |𝜔𝑟 − 𝜔𝑞| and
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their coupling strength 𝑔.

3.3 Experimental Infrastructure

The material composition and thermal environment of a qubit define its feasible op-

erational frequency range. Superconducting qubits are generally designed to have

transition frequencies between 2 GHz and 10 GHz [12]. The qubits are shielded

and cooled in a 3He-4He dilution refrigerator to minimize thermal excitations. To-

day’s commercially available dilution refrigerators reach a base temperature around

10 mK, well below the temperature corresponding to the transition frequency of the

qubit (which is around 240 mK for a 5 GHz qubit) and the critical temperature of su-

perconductors used for qubit design (e.g., 1.2 K for aluminum). The device package

is mounted on the mixing chamber plate, the coldest stage in the refrigerator.

In thermal equilibrium, the excitation probability of a qubit can be expressed

with the Boltzmann factor exp{(−ℎ𝜈/𝑘B𝑇 )} (𝜈: qubit transition frequency, 𝑇 : qubit

temperature, ℎ: Planck constant, 𝑘B: Boltzmann constant). However, thermal equi-

librium with 10 mK is generally not reached due to the influx of thermal photons

from higher temperature stages of the refrigerator via the signal lines. With state-of-

the-art attenuation and filtering [22], superconducting qubits have achieved effec-

tive temperatures of 35 mK, corresponding to an excited state thermal population

of 0.1% at 5 GHz [10].

A typical microwave measurement setup is schematically depicted in Figure 3-

2. Room temperature electronics feed microwave pulses to the cryostat through

coaxial cables with a characteristic impedance matched to 50Ω. The signals pass

a series of attenuators that are thermally anchored to the different temperature

stages, typically at 3 K, 800 mK, and at the base temperature of ∼ 10 mK respec-

tively, to sequentially reduce the room-temperature Johnson-Nyquist noise, which

forms a decoherence channel for qubits.

The control and readout signal can either be generated with advanced arbitrary

waveform generators (AWG) at the target frequency directly or generated at an
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Figure 3-2: Qubit Control and Readout Electronics and Wiring. (a) Depicted is a
schematic of a microwave setup, including pulse generation and processing. Mi-
crowave pulses are generated by microwave sources and arbitrary waveform gener-
ators (AWG). IQ-mixers facilitate phase-sensitive amplitude modulation. The con-
trol and readout lines are attenuated and spectrally filtered at various stages. The
readout signal is first amplified by a Josephson traveling-wave parametric amplifier
(JTWPA) after passing through an isolator. The JTWPA is equipped with a separate
microwave source. Before the readout signal is further amplifed by a high-electron-
mobility transistor (HEMT) amplifier at the 3 K stage, the signal passes through
additional isolators and is bandpass filtered. At room temperature, the readout
signal is amplified once more before it is down-converted, low-pass filtered, and
digitized.
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intermediate frequency and upconverted via single-sideband modulation. In Fig-

ure 3-2, the qubit control signals are directly generated, whereas the readout signal

is upconverted using a local oscillator (LO). For a single pulse, separate real and

imaginary parts of the complex readout signal, 𝑅𝐼(𝑡) and 𝑅𝑄(𝑡), are fed into an

𝐼𝑄-mixer along with a local oscillator frequency 𝜔LO. The output of the mixer and

readout signal is

𝑅in = 𝑅𝐼(𝑡) cos (𝜔LO𝑡)−𝑅𝑄(𝑡) sin (𝜔LO𝑡) = Re
{︀

(𝑅𝐼(𝑡) + 𝑖𝑅𝑄(𝑡))𝑒𝑖𝜔LO𝑡
}︀
. (3.18)

The readout probe tone signals transmitted through the sample are passed through

microwave isolators before reaching a quantum-limited amplifier such as a traveling

wave parametric amplifier (JTWPA) [23]. The JTWPA amplifies microwave signals

of individual photons by about 20 dB in broadband of ∼ 2 GHz. It works close to a

regime where only the minimum amount of noise dictated by quantum mechanics is

added to the amplified signal, known as quantum-limited amplification. Such sensi-

tive amplification enables a single-shot readout of a set of qubits and facilitates the

implementation of real-time quantum feedback [24]. The isolators prevent leakage

of the pump tone required to operate the JTWPA back to the sample. The JTWPA

is operated through a separate microwave source. After passing a low-noise high

electron-mobility amplifier (HEMT) at the outputs, thermalized to 3 K, the signal

is further amplified at room temperature before being processed in room temper-

ature microwave electronics. The transmitted readout signal is downconverted to

intermediate frequencies using the same LO that was used for upconversion. The

readout signal at intermediate frequencies is subsequently low-pass filtered and dig-

itized. Finally, the digitized readout signal is classically discriminated to assign a

qubit state label.

3.3.1 Microwave Package Engineering

Superconducting quantum chips are mounted into a microwave package thermally

attached to the cold stage of a dilution refrigerator. It defines the immediate elec-
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(b)

(c)

2cm

Figure 3-3: Dilution Refrigerator and Microwave Package. (a) Dilution refriger-
ator with multiple temperature stages holding the qubit chip enclosed in a mi-
crowave package. The microwave package interfaced with through microwave lines
is mounted on a cold finger in the mixing chamber reaching a base temperature of
approximately 10 mK. (b) The next microwave package generation is highlighted
with a blue rectangle and discussed in the subsequent Chapter 4. The package con-
sists of a copper casing, a multilayer interposer to perform signal fanout, a shielding
cavity in the package center, and 24 microwave connectors. (c) Previous microwave
package generation with a gold-plated copper casing and six control lines.

tromagnetic environment of the qubits and connects the quantum circuit to the

coaxial control lines. While the microwave electronics for qubit control are mostly

commercially available, the fabrication of superconducting quantum circuits and

surrounding packages have not yet reached the stage of commercialization.

A microwave package’s primary purpose is to simultaneously shield the quantum

circuit from the environment while enabling efficient control and thermalization.

There are two kinds of general package architectures. The package can either act as

a 3D cavity with an engineered mode spectrum and a high-quality resonance mode

used for qubit readout [25, 26], or merely provide an electromagnetic environment
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with suppressed spurious modes in the frequency spectrum of interest [27, 28].

This thesis focuses on the second type, further discussed in the following Chapter 4

and shown in Figure 3-3.

3.4 Summary

Over the past two decades, superconducting qubits have emerged as a leading quan-

tum computing platform [21, 29]. Superconducting circuits are operated in the mi-

crowave regime, enabling a high degree of control and providing a rich toolbox of

experimental techniques. Today, individual qubits with coherence times exceeding

100 µs [10], gate times of a few tens of nanoseconds [7], and single- and two-qubit

gate operation fidelities above the most lenient thresholds for quantum error cor-

rection have been demonstrated for devices with up to 50 qubits [1, 7]. However,

considerable work is still needed to retain and even further improve these fidelities

as systems increase in size and complexity [30]. Among the imminent challenges

are scalable control hardware and software tools. In this thesis, microwave package

hardware for multi-qubit systems and software tools to improve multi-qubit readout

are developed.
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Chapter 4

Package Design for Superconducting

Qubits

Solid-state qubits that rely on microwave control to operate are among the leading

candidates for realizing practical near-term quantum processors. However, signifi-

cant engineering challenges constrain these devices from scaling up further. In par-

ticular, qubits require a precisely engineered microwave environment to suppress

energy decay and corresponding information loss. For instance, the corruption of

information can occur due to lossy package modes interacting with the qubit. Fur-

thermore, as the number of qubits increases, quantum processor packages must be

adapted to support an increasing number of control lines without creating addi-

tional loss channels.

This chapter discusses a ground-up approach to package design that addresses

these challenges in the context of a multi-qubit quantum processor. First, Sec-

tion 4.2 discusses the geometry and materials of microwave packages and their

impact on qubit coherence times. Next, Section 4.3 focuses on maintaining high

simultaneous control fidelity and coherence times for a system with many control

lines. Finally, in Section 4.4, a comprehensive evaluation of the package-related loss

channels is performed, demonstrating that lossy package modes can lead to coher-

ence limits within an order of magnitude of today’s state-of-the-art qubit coherence

times, underscoring the importance of high-performance package engineering.
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4.1 Microwave Packaging

Despite the rapid progress towards building practical quantum processors using su-

perconducting qubits [1], the susceptibility of these artificial atoms to noise remains

a significant engineering challenge to system scaling. Microwave packaging is a part

of this challenge. In particular, package designs, such as displayed in Figure 4-1,

must support increasing qubit numbers while also preserving qubit coherence and

high-fidelity quantum operations.

Qubits interacting with their environment can lead to energy decay and de-

phasing. Qubit coherence generally improves as the qubit is decoupled from the

environment, but it becomes more difficult to control and read out. Ideally, the

qubit would couple exclusively to the control and readout environment.

Qubit energy decay is mediated by various loss channels, such as quasiparti-

cles, vortices, surface dielectric dissipation, conductivity losses, or dissipation into

spurious package modes near the qubit transition frequency. The quality factor 𝑄𝑖

expresses the inverse ‘lossiness’ of an individual loss channel 𝑖. The participation

ratio 𝑝𝑖, a unitless factor, associates each loss channel with a normalized interaction

strength between itself and the qubit [2, 3] so that the participation ratios of all

loss channels sum to 1. Modeling the qubit as a harmonic oscillator—a reasonable

approximation for weakly anharmonic qubits like the transmon [4] and capaci-

tively shunted flux qubits [5]—the energy exchange rate can then be expressed as

Γ1 = 𝜔/𝑄 = 𝜔
∑︀

𝑖 𝑝𝑖/𝑄𝑖.

The transition frequency between the ground and excited state of the qubit can

be affected by its electromagnetic (EM) environment. Fluctuating EM fields de-

tuned from the qubit transition frequency—if coupled to the qubit—can induce

qubit energy-level shifts that cause a change in the phase accumulation rate, result-

ing in pure dephasing of a qubit superposition state.

A microwave package’s primary purpose is to simultaneously shield the quantum

circuit from the environment while enabling efficient control and thermalization, as

illustrated in Figure 4-1(a). There are two kinds of general package architectures.
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Figure 4-1: Microwave packages. (a) The purpose of a microwave package is to
shield the enclosed qubit chip from external radiation (purple oscillating arrow)
and stray magnetic fields (rose lines). Meanwhile, impedance-matched (transmit-
ted green pulse and reflected blue pulse at the input and output), minimal-crosstalk
communication channels (crosstalk in green at input), and a thermal link to the di-
lution refrigerator need to be provided. (b) Small sample package with six control
channels. (c) The individual components of the package shown in panel (b). In-
serted between the gold-plated copper base and the lid is the main package part.
Metallic waveguides for control of the quantum circuit are imprinted on a dielectric
circuit board (interposer) and 50Ω-impedance matched. The interposer routes the
coaxial control line signal to the quantum circuit via wirebonds. The connectors
to the control elements are coaxial connectors with 50Ω impedance enabling the
transmission of microwave signals up to about 18 GHz to 26 GHz. (d) Novel sample
package with 24 control lines used to study and establish the reported microwave
design principles.

The package can either act as a 3D cavity with an engineered mode spectrum and a

high-quality resonance mode used for qubit readout [6] or merely provide an elec-

tromagnetic environment with suppressed spurious modes in the frequency spec-

trum of interest. These 3D cavities—typically formed out of aluminum or copper—

enable coherent interactions between microwave photons and the qubits. The 3D

cavity architecture ensures a qubit environment free of spurious electromagnetic

modes and therefore yields high coherence at the cost of control and scalability.

On the other hand, and the focus here, the package can have the sole purpose of

providing a clean electromagnetic environment.
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4.2 Microwave Package Materials & Geometry

Material-dependent losses can be of magnetic (1/𝑄𝑚), conductive (1/𝑄𝑐), or di-

electric (1/𝑄𝑑) origin [7]. Energy loss channels couple to the qubit through its

electric or magnetic dipole moment. For transmon qubits, the electric dipole mo-

ment presently dominates, as shown in Figure 4-3 [4]. Qubits are fabricated using

high-𝑄 materials and substrates to reduce loss. In addition, the device geometry is

designed to reduce the electric field density in lossy regions, such as surfaces and

interfaces [8].

Many qubit architectures are sensitive to magnetic fields, in particular those

with a tunable transition frequency. Consequently, magnetic metals or materials

with magnetic compounds are generally avoided. However, to shield qubits from

magnetic field fluctuations, materials with high magnetic permeability, such as mu-

metal, can be used either as part of the dilution refrigerator infrastructure or pack-

age casing. An alternative approach incorporates type-I superconductors such as

aluminum, tin, or lead in the package body. Once such a material turns supercon-

ducting, it expels the magnetic field from its core due to the Meissner effect, so

long as the magnetic field does not exceed a specific material- and temperature-

dependent threshold.

Conductivity losses arise when the electric field of the qubit induces a current

in nearby normal conductors with finite conductivity. The loss depends on the con-

ductivity 𝜎 of the material and scales as 1/𝑄𝑐 ∝ 1/
√
𝜎. Losses also arise due to

atomic defects in bulk dielectrics hosted on those interfaces absorbing EM energy.

Dielectric losses are proportional to the imaginary dielectric coefficient Im(𝜖) of the

material 1/𝑄𝑑 ∝ Im(𝜖).

Commonly employed package materials include superconducting aluminum,

copper, and gold-plated copper. Superconducting aluminum forms a thin oxide

layer of approximately 2 nm [10], inducing some dielectric losses while keeping the

conductivity losses at a minimum. Like aluminum, copper forms an oxide layer [11]

leading to dielectric as well as conductivity loss due to its non-zero resistance [12].
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Figure 4-2: Microwave Simulations of a small Sample Package shown in Figure 4-
1(b). (a) Gold-plated copper package (without lid) with wire-bonded supercon-
ducting circuit chip. The green arrow indicates the microwave input port. (b)
Comparison of the transmission spectra and conductivity loss with a solid pedestal
(∆ = 0 mm, colored in red), and a drilled out pedestal with four corner posts
(∆ = 3.8 mm, black). (c) Simulated transmission magnitude spectrum |𝑆21| of
the chip holding an interrupted transmission line resonator with a resonance fre-
quency at about 7.7 GHz mounted inside the package with pedestal (red) and a
drilled out pedestal (black). The package with the drilled-out pedestal is free
of any undesired package modes in the band of interest. (d) E-field magnitude
(V/m) plots in the ZX- and XY-plane at 5.9 GHz (indicated with an arrow in (c)).
The presence of the pedestal enhances the E-field magnitude in the chip and di-
rect vicinity. (e) Simulated conductivity loss 1/𝑄cond due to the normal conducting
(𝜎 = 4.5× 109 S m−1 [9]) package, extracted from a transmon qubit (approximated
as linear resonator) in the center. The conductivity loss depends on the gap size ∆
between the chip and the pedestal (the four corner posts remain in place).
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Gold-plating limits the oxide formation at the cost of an increase in conductivity

losses by up to one order of magnitude [13].

The 3D finite element simulation software COMSOL Multiphysics® is used to

analyze the microwave properties of the package shown in Figure 4-1(b). The

package model is schematically depicted in Figure 4-2(a), holding the interposer

and a chip with an interrupted transmission line resonator. Ideally, one expects a

pronounced peak at the resonance frequency of this resonator at about 7.7 GHz and

no transmission away from resonance. However, when measured inside the sample

package, the transmission spectrum of the resonator chip is convoluted with a broad

package mode centered at about 19 GHz, mediating a non-zero baseline transmis-

sion. Between 2 GHz to 10 GHz, the frequency range of interest, the transmission

through the sample package is non-zero and gradually increases with frequency

due to a package mode at about 19 GHz. The packaged resonator chip transmission

spectrum is composed of the resonator resonance peak and the package-dependent

baseline transmission. Package modes depend on the package cavity geometry and

increase in frequency with decreasing cavity dimensions lower bounded by the chip

dimensions. The simulated transmission magnitude spectrum |𝑆21| of the supercon-

ducting quantum circuit is shown in Figure 4-2(c).

Figure 4-2(b) shows schematic drawings of two sample package versions, one

with the chip sitting on a solid pedestal (red) and one where the chip is supported by

four corner posts (black) with the pedestal drilled out to a depth of ∆ = 3.8 mm [14,

15]. The response of the on-chip resonator is visible in both simulated transmission

magnitude spectra |𝑆21| (red and black lines in Figure 4-2(c)). The simulation of

the package with pedestal (red) reveals pronounced package modes in the relevant

frequency range, which provides a potential qubit loss channel. The modes are

suppressed in the version (black) with the pedestal drilled out, indicating an elec-

tromagnetic sample environment without spurious modes in the frequency range

of interest. Figure 4-2(d) shows the electric field magnitude distribution at one of

the box modes at 5.9 GHz. For the package with a solid pedestal, the electric field is

strongly enhanced inside and in the vicinity of the chip.
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Figure 4-3: Qubit Full-Wave EM Sim-
ulations. (a) Lithographically defined
superconducting qubit using aluminum
and aluminum oxide on a pristine silicon
chip. Blue inset shows the superconduct-
ing qubit with the Josephson junction in
red, aluminum in turquoise, and silicon in
grey. (b) Illustrated are the qubit’s elec-
tric (E-field, left) and magnetic (H-field,
right) fields. The electric field is more
prominent than the magnetic field

The overall transmission magnitude in the qubit target frequency range of 2 GHz

to 6 GHz is decreased for the variant with the drilled out pedestal, showing that

fewer energy couples into the sample package. Consequently, the unwanted cou-

pling of the qubit to the package mode is decreased for the version with the drilled-

out pedestal.

Normal metal near the sample forms a loss channel due to finite conductivity.

The conductivity loss 𝑄−1
cond is simulated using a surface participation model. The

simulation estimates the conductivity loss of a typically sized transmon qubit with

a ‘+’-shaped capacitor [16], defined on a chip mounted in the presented package,

as a function of the distance ∆ between sample and pedestal, see Figure 4-2(e).

Electric and magnetic fields for such a qubit are shown in Figure 4-3. While the

conductivity loss assumes a maximum for ∆ = 0 mm, it saturates at ∆ ≈ 3 mm

and is suppressed by about three orders of magnitude. The extracted conductivity

loss for a package with a solid pedestal is 𝑄cond = 4.5× 106. Some of the highest

experimentally achieved qubit lifetimes of 𝑇1 ≈ 150 µs [17] correspond to a quality

factor of 𝑄 ≈ 4.5× 106 implying that conductivity loss cannot be neglected for

long-lived qubits.

The device package demonstrated in this thesis, shown in Figure 4-1(d), is com-

posed of a base and lid, both milled from oxygen-free high conductivity (OFHC)

copper. A layer of aluminum with a target thickness of 500 nm is evaporated on the

lid center cavity surface to reduce conductivity losses. The qubit chip is suspended
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Table 4.1: Comparison of qubit losses induced by different casing materials for the
presented package geometry. The values are obtained with EM simulations of a
𝜈 = 5 GHz transmon qubit. The qubit is located in the corner of a 5 mm×5 mm chip
to estimate the maximum impact of package materials-induced losses. The 𝑇1-limit
is estimated as 1/(1/𝑄𝑐 + 1/𝑄𝑑) · 1/(2𝜋𝜈). The following material-dependent char-
acteristics are assumed: Copper (Cu) has a conductivity of 5× 1010 S m [12] and an
oxide thickness of 10 nm [11]; Aluminum (Al) has a conductivity of infinity and an
oxide thickness of 2 nm [10]; Gold (Au) has a conductivity of 5× 109 S m [13] and
no oxide layer.

Center Cavity Conductivity Loss Dielectric Loss 𝑇1-limit
1/𝑄𝑐 1/𝑄𝑑 (s)

Bare Cu 2× 10−9 1× 10−12 0.020
Al-evaporated Cu − 5× 10−12 5.830
Au-plated Cu 5× 10−9 − 0.006

by at least 3 mm to form a cavity above and below it following the results to increase

the package fundamental mode frequency and suppress material-induced losses, as

shown in Figure 4-2(e) and Reference [8].

Full-wave EM simulations (COMSOL Multiphysics®) indicate the layer of alu-

minum on the center cavity surface to reduce the material-induced loss channels by

three orders of magnitude. As such, the material-induced losses of the presented

package are negligible, enabling it to support qubits with lifetimes up to seconds,

see Table 4.1.

A device package needs to provide an efficient thermal link to the dilution re-

frigerator to ensure the qubits reach and remain close to the base temperature. The

accumulated thermal energy due to all sources, including the material loss chan-

nels, should not significantly heat the qubits. Furthermore, as the number of qubits

increases, the efficiency of the thermal link has to increase accordingly. Electrical

connections remove heat to the wiring and attenuation at cryogenic temperatures—

where non-equilibrium electrons can thermalize—and by mechanical (phonon) con-

nections to the package.

The loss channel contributions of the material have to be balanced with its

thermal conductivity. For example, the thermal conductivity of copper decreases
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linearly with temperature and reaches a value of approximately 0.5 W cm−1 K−1

at 20 mK [18]. On the other hand, the thermal conductivity of superconducting

aluminum decreases exponentially faster at similar temperatures [19] and can be

estimated to be around 0.025 W cm−1 K−1 at 20 mK. However, at cryogenic temper-

atures, heat flow from the chip is almost entirely dominated by Kapitza boundary

resistance interfaces [20].

In the presented package, the qubit chip is kept in place with aluminum wire-

bonds and pressed down on copper posts located in the corners of the qubit chip.

A more efficient thermal link could be formed using conductive adhesives such

as silver paste or polymeric adhesives. However, adhesives are avoided as their

conductivity is typically more than three orders of magnitude smaller than copper,

resulting in a measurable increase in conductivity losses [21].

4.3 Control and Readout Signals

A package’s signal paths introduce various challenging factors, including a distorted

step response and insertion loss (Section 4.3) and crosstalk (Section 4.3), which can

diminish a qubit’s controllability. Subsequently, the engineering considerations for

waveguides imprinted within the interposer (Section 4.3.1) and wirebonds (Sec-

tion 4.3.2) connected to the qubit chip are described.

Step Response and Insertion Loss

Good impedance matching leads to lower insertion losses and improved signal in-

tegrity, critical for high-fidelity control and readout. For a linear time-invariant

system, the ideal temporal response for a step-like input is instantaneous and step-

like as well. There are two related measures. First, the rise-time is the duration

until the signal reached the desired amplitude. Second, the settling time is the

time that elapses for the signal to stabilize at the output, typically after ringing or

repeated oscillations. For one-qubit gates, these distortions can lead to under and

over-rotations and reduce gate fidelity. In two-qubit gates, such as the controlled-
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phase gate, deviations from the carefully shaped flux pulses can lead to leakage

away from the computational subspace [22]. Furthermore, a long settling time

will make the action of the gate depending on the history of pulses applied [23,

24]. While a nonideal step response can be straightforwardly compensated for by

an arbitrary waveform generator using predistortion, prolonged distortions require

greater memory depth. Therefore, near-ideal impedance matching is vital.

The frequency response of the system determines the step response. In general,

the characteristic impedance of a transmission line is 𝑍 =
√︀

(𝑅 + 𝑖𝜔𝐿) / (𝐺 + 𝑖𝜔𝐶),

where 𝑅 is the series resistance of the line, 𝐺 the parallel conductance of the dielec-

tric, 𝐶 the parallel capacitance, 𝐿 the inductance, and 𝜔 is the angular frequency

of the signal. Thus, for example, frequency dependence can arise in the case of

nonzero resistance, skin effects—which reduce the effective inductance at higher

frequencies [25]—and the frequency-dependent nature of the permittivity of the

dielectric, which can cause 𝐶 to vary.

Decreasing the resistance in the signal lines and return path, either by employing

superconductors or high conductivity materials, lowers this frequency dependence

and can effectively reduce the settling and rise times of the system [26]. Further-

more, in the equivalent time-domain picture, poor forward and backward matching

cause repeated signal reflections in the system that lead to frequency-dependent

standing waves, leading to ringing in combination with unmatched reactance in the

system. As a result, geometric transitions and waveguides within the signal chain

must be designed to ensure a consistent impedance.

Crosstalk

Second, crosstalk—the undesired transfer of a signal between separate communica-

tion lines—needs to be suppressed in a package. Control signals that leak to nearby

qubits can induce unwanted gate operations, resulting in reduced computational

performance. Furthermore, these errors may be frequency-dependent and chal-

lenging to compensate for if the qubits add significant non-linearity to the system.

Such errors are particularly harmful to standard quantum error correction codes,
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which presume local and uncorrelated errors [27].

Crosstalk decreases as the physical distance between signal lines increases. In-

teractions between adjacent lines are classified into two distinct categories: near-

end crosstalk (NEXT)—measured at the same end as the interfering transmitter—

and far-end crosstalk (FEXT)—measured at the opposite end [illustrated in Fig-

ure 4-5 (a)]. Coupling between adjacent lines occurs through their mutual capaci-

tance and inductance. Capacitive coupling induces a positive current on both ends

of the disturbed line, while inductive coupling leads to a current moving parallel

to the instigating line. As a result, the crosstalk can interfere with the desired con-

trol signal on both ends of the signal line depending on the ratio of capacitive and

inductive couplings.

4.3.1 Interposer Design

There are three basic transmission line designs: coplanar waveguides, microstrips,

and striplines [7]. Compared to coplanar waveguides and microstrips, symmetrical

buried striplines are surrounded by a homogeneous dielectric. This environment

leads to the same capacitive and inductive coupling to the top and bottom ground

plane, canceling the forward-propagating current and thereby suppressing far-end

crosstalk at the cost of higher fabrication complexity. Furthermore, the top and

bottom ground planes shield the fully buried signal line from the far-field environ-

ment [28].

The presented interposer is constructed using a three-layer, low-loss Rogers

4350™laminate composed of glass-woven hydrocarbon and ceramics. The lami-

nate is composed of two Rogers 4350™cores, each with a thickness of 0.338 mm,

and bonded using a layer of thermoplastic Fluorinated Ethylene Propylene (FEP)

film. The loss tangent of Rogers 4350™laminates is relatively low (specified to be

0.0037 at 10 GHz and room temperature). The stack consists of three copper layers,

with signal routing being performed in the center layer and both connector and

wirebond launches patterned on the top. Blind vias are used to route signals be-
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tween the top and middle layers to prevent parasitic stub resonances, as shown in

Figure 4-4(b).

The package is equipped with Rosenberger non-magnetic, gold-plated SMP-type

connectors. The employed connectors have a manufacturer-specified insertion loss

of ≤ 0.1
√︀

𝑓(GHz)dB and offer a frequency range of DC-40 GHz, covering the oper-

ating range of most superconducting qubits.

The interposer uses symmetric copper striplines embedded in the printed circuit

board (PCB) dielectric protected by via-fences. EM simulations and time-domain

modeling is employed to minimize impedance mismatches. The simulations ensure

that microwave connector transitions, composed of a grounding cage and a signal

via, as well as the wirebond launches, are properly impedance matched [29–31].

The connector transitions are characterized using time-domain reflectometry

(TDR) on a 14 GHz bandwidth Keysight E5063 network analyzer. As a result, the

connector launch is well matched to the waveguide, as shown in Figure 4-4(d). The

interposer waveguide has a measured impedance of 53.5Ω, leading to a voltage

standing wave ratio of 1.07 and a mismatch loss of 0.05 dB (0.1 % of the incoming

power is reflected).

The crosstalk is further suppressed using via-fences—rows of metalized holes

drilled through the substrate material to shield in-plane EM-field coupling between

pairs of signal lines. As opposed to guarding structures, which are grounded mi-

crostrips between signal lines that provide limited isolation beyond a few hundred

MHz [32], fences also work at higher frequencies. The shielding effectiveness at a

particular frequency 𝜈 depends on the via spacing. The spacing between vias should

remain small compared to the wavelength 𝜆 = 𝑣m/𝜈 with the material-dependent

wave velocity of the waveguide, 𝑣m. As a rule of thumb, the spacing should not

exceed 𝜆/20 to ensure that the via-fence appears solid to an impinging wave [33]

and to minimize loading on the signal-carrying line, which can affect signal in-

tegrity [34].

The self-resonance frequency of the vias must also be taken into consideration.

A via’s intrinsic shunt inductance [35] is approximately 𝐿 ≈ 𝑐1ℎ (1 + ln(4ℎ/𝑑)),
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with constant 𝑐1 = 1.95× 10−6 H m−1, height ℎ and diameter 𝑑, and a parasitic

capacitance 𝐶 ≈ 𝑐2𝜖rℎ𝑑1/(𝑑1 − 𝑑2), where 𝑐2 = 5.6× 10−11 F m−1, 𝑑1 is the diameter

of the antipad (gap opening in the surrounding ground plane), 𝑑2 is the diameter

of the via pad, and 𝜖r is the relative permittivity of the dielectric. These lumped

elements lead to a self-resonance for a single via typically in the range of a few

hundred MHz to a few GHz. Furthermore, the combination of the vias’ conductivity

and the capacitance formed between the two large ground planes can result in a

resonant mode. In both cases, many vias can ameliorate these issues and increase

the resonance frequency beyond the qubit frequency operation range.

Employing the introduced via-fence, the crosstalk between directly neighboring

control and readout lines is suppressed to below−40 dB and next-nearest neighbors

to −60 dB up to 10 GHz, presented in Figure 4-4(e) and (f).

4.3.2 Wirebonding Considerations

Thermosonically bonded 25 µm-diameter aluminum wirebonds are employed to al-

low reconfigurable connections and enable rapid prototyping (gold wirebonds can

similarly be used as an alternative). This also ensures compatibility with 3D-

integrated multi-chip modules that use a silicon interposer to fan-out signals to

pads for wirebonding [36]. Alternatively, vertical spring-loaded contacts can be di-

rectly fanned out into coaxial cables [37] or connected to a multi-layer PCB [14].

The device can also be directly clamped onto the PCB [38] like flip-chip ball grid

array packaging used in conventional room-temperature electronics [39, 40]. How-

ever, dielectric losses induced by the proximity of the PCB substrate and surface

roughness may reduce qubit coherence [36]. Inserting a pristine silicon or sap-

phire interposer between the PCB interposer and qubit chip [1, 36] can reduce such

performance-limiting effects. These interposer stacks can be constructed using su-

perconducting indium bump-bonds and superconducting through-silicon vias [41],

enabling the construction of multi-chip modules and off-chip resonators [36]. As in

the demonstrated package, a combination of these interconnect techniques can be
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Figure 4-4: Interposer Design. (a) Interposer layout for a 24-line package fabri-
cated out of a three-layer Rogers 4350™controlled impedance glass-reinforced ce-
ramic laminate. Stripline-based waveguides with dense via shielding are utilized
to reduce signal crosstalk. (b) Schematic diagram of the interposer stack configu-
ration (not to scale). The board consists of two Rogers 4350™cores bonded by a
layer of FEP film, indicated in purple. Through vias are used for grounding and
shielding, whereas blind vias are utilized for signal routing to minimize parasitic
resonances. (c) Picture of a 5 mm by 5 mm qubit chip mount with signal launches
in the periphery. Wirebonds are used to provide signal connections and ground
the device. (d) Single-ended TDR measurement of the SMP-to-interposer connector
transition. The reference plane of the connector is located at 0 ns. The wirebond
launch is left open (no chip connected), resulting in a steep increase in impedance.
(e) and (f) Measured nearest neighbor and second nearest signal crosstalk. A high-
port count network analyzer using Keysight M9374A PXIe modules was used to
obtain the full scattering matrix. All transmission parameters corresponding to sig-
nal crosstalk information are overlaid on the plots. The purple background fading
out with increasing frequency indicates the decreasing relevance of modes as their
frequency separation to the qubit transition frequency increases. Note that the
separate group of traces with increased isolation, as highlighted in (e) and (f), cor-
respond to crosstalk that is reduced at corners of the package, as indicated by the
pairs of blue lines in (a).
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utilized, such as using an interposer with fixed-length wirebonding to the PCB.

Its parasitic inductance dominates the wirebond impedance. For a wirebond

with a 25 µm-wide diameter, the inductance approximately scales as 1 nH per 1 mm

in length [15]. Taking into account the effect of a ground plane at a distance

ℎ, the inductance of a wirebond with a diameter 𝑑 and length ℓ is approximately

𝐿 ≈ 𝜇0ℓ arcosh(2h/d)/(2𝜋) with the vacuum permeability 𝜇0 [42]. Similarly, the

parasitic capacitance of the wirebond can modeled by a wire and a uniform metal

sheet as 𝐶 = 2𝜋ℓ𝜖0/(arcosh(h/d)) with 𝜖0 being the permittivity of vacuum [43, 44].

For wirebonds 1 mm in length, the inductance is around 1 nH and the capaci-

tance is in the range of 20 fF. A 1 mm-long wirebond—modeled as a transmission

line—yields a characteristic impedance of 𝑍 =
√︀

𝐿/𝐶 = 223Ω and a reflection

coefficient of Γ = (𝑍 − 𝑍0)/(𝑍 + 𝑍0) ≈ 0.63. Reducing the impedance mismatch

requires shorter wirebonds, several wirebonds in parallel, or measures to decrease

the parasitic capacitance.

Mutual coupling between parallel wirebonds hinders the combined inductance

from decreasing as quickly as the inverse of the number of wirebonds: about five

parallel 1 mm long wirebonds are required to reduce the impedance to the range of

50Ω. The parasitic inductance can be reduced by positioning signal launches close

to the edge of the chip, thus shortening the wirebond, and by using several parallel

wirebonds for each signal connection, spreading them in a V-shape to minimize

mutual inductance.

In applications that need a low insertion loss, or when the length of the wirebond

cannot be minimized, an impedance matching structure can be used [45]. The

capacitance is tuned using capacitive structures, such as flares or ‘matching dots,’

which are empty metal pads on the interposer that can be galvanically connected

to change the capacitance [46].

For basic applications without a bandwidth-limit, an inductor-capacitor struc-

ture can be utilized with an impedance of 𝑍 =
√︀
𝐿parasitic/(𝐶parasitic + 𝐶tuning). The

passband can be increased using a third-order, capacitor-inductor-capacitor low

pass filter. For a given design cutoff frequency (typically set above the qubit fre-
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quency operating range), there is a maximum inductance that can be accommo-

dated in this way due to the broadband requirement. As shown in Figure 4-5(b),

a Butterworth filter can compensate for a wirebond with an inductance 1.6 nH at a

cutoff frequency of 10 GHz (corresponding to a length of approximately 1.6 mm). In

contrast, a Chebyshev configuration can compensate for around 0.6 nH.

The physical distance and the exposure of wirebonds contribute significantly to

signal crosstalk. Combining the parasitic inductance and capacitance of the wire-

bond and the capacitance formed between the chip and the package ground form

a resonance mode. An impedance ladder model predicts that such crosstalk falls

off exponentially with distance at low frequencies but reaches unity at the reso-

nance frequency of the aforementioned mode [15]. As a result, pulling back the

ground plane below the chip to decrease the capacitance (for example, designing

a cavity underneath the qubit chip) and increasing wirebond density to lessen the

inductance reduce signal crosstalk.

EM simulations confirm the formation of a coupling channel due to a resonance

mode between the chip and the chip mount, as visualized in Figure 4-5 (c) as a

high electric field density surrounding the chip. Without grounding wirebonds, the

demonstrated particular model, which uses a square 5 mm× 5 mm chip, predicts a

maximum crosstalk of −8 dB that peaks around 5.5 GHz. Increasing the grounding

wirebond density drives up the resonance frequency of this mode. It exponentially

suppresses the crosstalk, with both far- and near-end coupling dropping to below

−40 dB up to 8 GHz when four wirebonds are employed between signal lines, as

shown in Figure 4-5 (d). In the demonstrated package, two wirebonds between

each pair of signal lines suppress crosstalk to less than −30 dB, at which the per-

formance limitation is negligible relative to other system limitations imposed by

on-chip and interposer crosstalk.
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Figure 4-5: Wirebond Design. (a) Diagram of a chip (gray) with four transmission
lines wirebonded to an interposer (beige) surrounding it. The instigating line, in-
dicated in purple, can lead to near-end (NEXT) and far-end (FEXT) crosstalk in the
disturbed line, shaded red and blue. (b) Schematic representation of a wirebond
interconnect and its lumped element model. The flares located on the ends of the
interposer and chip’s transmission lines, as highlighted by the dashed box in (a),
correspond to the two tuning capacitors to the ground, while the wirebond forms
the series inductance. Note that the wirebonds used to connect the signal lines are
spread out in a V-shape to minimize mutual inductance. (c) Plot of maximum induc-
tance compensation versus cutoff frequency for Butterworth and Chebyshev filter
designs, with 1 nH roughly corresponding to 1 mm in wirebond length. (d) and (e)
The effect of wirebond configuration on signal crosstalk. A simplified model with
the exact spatial dimensions as the 24-pin design is employed to simulate the rela-
tive reduction of signal wirebond crosstalk with more grounding wirebonds. As the
number of grounding wirebonds increases, the electric field strength between the
chip ground and the package cavity rapidly decreases, resulting in the suppressed
coupling between adjacent signal wirebonds.
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Figure 4-6: Package Mode Measurements
and Simulation. (a) Package modes are
probed at liquid nitrogen temperature
using a multi-port vector network ana-
lyzer. The scattering matrix elements
corresponding to transmission across the
package cavity are measured via the ports
marked green in (b). The results are
overlaid (gray) and averaged (purple),
with the relevant frequency range for
the qubit indicated by the fading purple
background shading. (b) EM simulations
reveal eigenmodes at 11.1 GHz (orange)
and 18.1 GHz (red) respectively, which
correspond well with the measured peaks
as marked by the correspondingly colored
vertical lines in (a).
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4.4 Package Modes

In addition to crosstalk, suppressing package modes is key to a successful design.

These resonance modes can reduce the qubit lifetime and induce decoherence. A

two-level quantum system can model the interaction —the qubit—coupled to an EM

cavity—the resonant mode—with a rate 𝑔. For a small detuning ∆ = |𝜔q− 𝜔m| ≪ 𝑔

between the qubit frequency 𝜔q and the package mode frequency 𝜔m, their energy

levels hybridize, and excitations are coherently swapped between the qubit and the

mode. However, since the package modes are often lossy—i.e., have a low-quality

factor 𝑄m—they lead to a reduction in the qubit lifetime.

The Jaynes-Cummings model can describe the coupling between a far-detuned

mode and a qubit in the dispersive approximation [47]. A mode coupling to a

qubit ac-Stark shifts the qubit transition frequency by an amount proportional to

the average number of photons 𝑛̄ present in the mode. Fluctuating photon numbers

fluctuate the qubit frequency and induce pure dephasing of the qubit at a rate

Γφ =
𝜅

1 + 𝜅2Δ2

4
𝑔4

𝑛̄ (4.1)
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with 𝜅 = 𝜔m/𝑄m, the decay rate of the mode [48].

Wide-band fluctuations within several GHz of the qubit transition frequency lead

to pure dephasing. Moreover, modes on the order of MHz detuned from the qubit

transition frequency can also lead to qubit energy decay due to the Purcell effect,

thus reducing the qubit lifetime. If the coupling of the resonant mode to the qubit is

small compared to the frequency separation between them, the qubit energy decay

rate is

𝛾Purcell
pkg mode =

𝑔2𝜅

(𝜔m − 𝜔q)2
. (4.2)

The cavity and interposer geometries often necessary in the design of a package

can support resonant modes. However, to ensure high-fidelity qubit performance,

either the coupling of these package modes to the qubit needs to be suppressed, or

their resonance frequency must be far detuned from the qubit operational frequency

spectrum.

4.4.1 Box Modes

The first class of these modes, referred to as box modes, arises in the enclosing

metal cavity and interacts directly with the qubit. A box-like cavity is often used to

reduce radiative losses from the qubit and significantly cut down on the number of

environmental modes at the expense of 𝑄-enhancement of the modes that remain.

Furthermore, the walls of this cavity should be offset from the qubits to reduce

material-induced losses, as introduced in Section 4.2, including the ‘floor’ below

the chip. As a result, the space above and below the chip forms resonant cavities.

The frequencies of the transverse electric and magnetic mode (TEnml and TMnml) in

a rectangular cavity are given as
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𝑓𝑛𝑚𝑙 =
𝑐

2𝜋
√
𝜇r𝜖r

√︃(︁𝑛𝜋
𝑏

)︁2

+
(︁𝑚𝜋

𝑎

)︁2

+

(︂
𝑙𝜋

𝑑

)︂2

(4.3)

where TE101 and TM110 are the lowest frequency modes, 𝜇r is the relative perme-

ability, 𝜖r is the relative permittivity, 𝑐 is the speed of light, and 𝑎, 𝑏, 𝑑 are the three

dimensions of the cavity. The components 𝜇r, 𝜖r, and 𝑐 depend on the mode carrying

medium, typically the dielectric. The inclusion of any media with an 𝜖r above the

vacuum permittivity shifts the resonance frequency down. Higher electric field den-

sities around these dielectrics, caused by structures such as wirebonds, can further

reduce the mode frequency by increasing the effective dielectric constant [7].

4.4.2 Interposer-Based Modes

Modes also arise within the package interposer. For example, slotlines, composed of

two metallic planes separated by a dielectric gap, support a quasi-transverse electric

mode propagating along it. Slotline modes arise when there is a high impedance

between two ground planes, for example, due to poor galvanic contact between

cavity components (such as the lid and the body of the package) and the gap sepa-

rating the chip and the interposer. Furthermore, the gaps between the signal trace

and the ground planes on coplanar waveguides support slotline modes that can be

excited by discontinuities or asymmetries [49], such as T-junctions and sharp bends

on the order of the signal wavelength [50].

Similarly, modes can form due to impedance mismatches or open transmission

lines with frequencies 𝑓 = 𝑐/(ℓ
√
𝜖r) on the order of a few GHz for waveguides

with length ℓ in the range of centimeters. In the presented package, transmission

lines that are not terminated have quarter-wave modes ranging from 1.15 GHz to

1.38 GHz and can couple to the qubits through unused bond pads. This coupling

can be suppressed by grounding unused bond pads using wirebonds.
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4.4.3 Chip-Based Modes

Spurious modes also arise from the device substrate, which has a higher 𝜖r than vac-

uum. For a silicon qubit chip, the first eigenmode (TM110) is expected at 12.41 GHz

for a 5 mm×5 mm chip, while for dimensions of 10 mm×10 mm, the first eigenmode

drops to 6.20 GHz. These modes can couple very strongly to the qubit due to their

physical proximity. One approach to suppress the chip modes is through a change

of geometry from a square to a rectangular shape. For example, a 20 mm×5 mm

device, which has the same area as the 10 mm×10 mm layout, has its lowest eigen-

mode at 9.04 GHz. Alternatively, through-silicon vias in the qubit chip can be used

to pin the resonating modes. Metallization on the chip edge can also enforce the

cavity boundary conditions regardless of the surrounding environment to provide a

predictable mode environment.

4.4.4 Mode Characterization

A combination of two techniques can be used to identify package modes. First, using

a multi-port network analyzer, the average transmission parameters for geometri-

cally opposing ports—different sides relative to the interposer aperture—result in

a transmission spectrum as displayed in Figure 4-6(a). This method relies on the

coupling between signal launches in an unpopulated chip cavity (package and in-

terposer without a chip) and the resonances to resolve spurious modes in the sys-

tem. A package eigenmode can be resolved in this way because crosstalk across the

interposer aperture—typically less than −100 dB—is significantly weaker than the

transmission induced by the package eigenmode itself. The signal-to-noise ratio is

further improved by measuring in liquid nitrogen at about 77 K, which increases the

quality factor of the resonance modes. Measuring across a single pair of connectors

does not paint a complete picture. Still, by taking a large number of scattering

parameters, modes around 11 GHz and 18 GHz in the presented package can be

resolved. In the underlying case, the mode profile is mapped out by construct-

ing the full scattering matrix of the package using repeated measurements on a
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Figure 4-7: Setup to Identify Package
Modes. (a) Measurement setup used to
obtain the package mode profile. The
control, readout, and probe signals are
combined and sent down the dilution re-
frigerator. The readout signal is amplified
by a Josephson traveling-wave paramet-
ric amplifier (JTWPA), a high-electron-
mobility transistor (HEMT) amplifier, and
an amplifier at room temperature before
being down-converted and subsequently
digitized. Note, the JTWPA can be by-
passed if necessary. (b) Superconducting
qubit chip with six fixed-frequency trans-
mon qubits with individual readout res-
onators coupling to a common transmis-
sion line. In the following panels, the re-
sults of the qubit and resonator indicated
with a yellow dashed rectangle are expli-
cated. (c) The qubit has an average qubit
lifetime of 𝑇1 ≈ 121.4 µs and coherence
time of 𝑇 *

2 ≈ 53.2 µs measured in inter-
vals across a period of 12 hours.
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20-port network analyzer and averaging the 144 traces that correspond to trans-

mission across the package cavity. The two dominant peaks in the experimental

results are in agreement with the 3D EM simulations of the entire design, shown

in Figure 4-6(b), which revealed two high-𝑄 eigenmodes at 11.1 GHz and 18.1 GHz

respectively.

Detecting modes using a transmission spectrum has two main restrictions. First,

the qubit may couple to resonance modes not visible to signal launches on the cavity

periphery, such as chip modes and resonances resulting from device wirebonding.

Conversely, the method may detect modes that do not affect qubit operation, such

as resonances localized within the interposer. Second, due to the indirect nature

of the transmission measurements, the plot in Figure 4-6(a) can only be used as

a qualitative tool. The relative amplitudes of the peaks and the mode’s coupling

strength to the qubits cannot be accurately established.

A second qubit-based technique for probing package modes is the hidden-mode
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experiment [51], where a fixed-frequency qubit can be used as a mode sensor. It

is preferable to use qubits with a long coherence time and stable baseline Ramsey

oscillations to resolve subtler mode structures. A continuous-wave probe tone is

injected into the package, either through the readout line or a dedicated port, and

swept through the frequency range of interest. For each probe frequency, a 𝑇2 mea-

surement is performed using Ramsey interferometry on a fixed-frequency qubit. As

the probe frequency sweeps in resonance with a package mode, the package mode

will be populated by coupling the transmission line and the mode itself. Depending

on the mode photon number fluctuations, the coupling to the qubit, and its detun-

ing, the qubit will dephase. The degree of induced dephasing can be inferred with

a 𝑇2 measurement. Due to the wide-band nature of the mode-induced qubit energy

level shift, the ac-Stark effect, this technique provides the advantage of facilitating

mode measurements across a broad frequency range, typically several tens of GHz.

4.4.5 Measurement Setup

The measurement setup used to perform the hidden mode experiment is depicted

in Figure 4-7(a). First, control pulses for the qubits are created using two sepa-

rate Keysight M3202A PXI arbitrary waveform generators with sampling rates of

1 GSa/s. Next, the in-phase and quadrature signals are upconverted to the qubit

transition frequency using an IQ-mixer, which acts as a single-sideband mixer. Next,

the probe tone is created using a separate signal generator. Finally, the control,

readout, and probe tones are combined and sent to the dilution refrigerator via a

single microwave line.

There is a total of 60 dB of attenuation distributed within the dilution refrigera-

tor wiring to reduce thermal noise from room temperature and the higher tempera-

ture stages of the refrigerator. The signal has to pass through the readout resonator

to reach the qubit, which acts as a filter. A control pulse length ranging from 100 ns

to 150 ns is used to excite the various qubits.

The state of the qubit is determined via dispersive readout. The frequency of
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the resonators coupled to each qubit change slightly depending on the qubit state.

This difference can be measured by sending a measurement tone near the corre-

sponding resonator frequency down the central transmission line and recording the

transmitted signal.

The signal can be first boosted using a traveling-wave parametric amplifier

(TWPA) which has a gain of up to 30 dB, a very low noise temperature, and a wide

bandwidth that enables multiplexed readout [52]. The TWPA requires a pump tone,

which is sourced from a signal generator at room temperature. The microwave line

carrying the pump tone is attenuated by 50 dB and fed into the TWPA via a set

of a directional coupler and isolator located at the 10 mK stage of the refrigerator.

Next, the signal is further amplified by a Low Noise Factory high-electron-mobility

transistor (HEMT) amplifier thermally anchored to the 3 K stage.

At room temperature, the readout signal is fed into a heterodyne detector. Next,

the down-converted in-phase and quadrature signals are digitized with a Keysight

M3102A PXI Analog to Digital Converter with a 500 MSa/s sampling rate. Finally,

the signal is integrated into the internal field-programmable gate array (FPGA) of

the digitizer to extract the occupation probability of the qubit in a given state.

4.4.6 Chip Design

Figure 4-7(b) depicts a device composed of six superconducting high-coherence

transmon qubits used to characterize the package modes. A simple two-port de-

vice is chosen to limit the interference of the device with the hidden-mode survey.

These fixed-frequency qubits are weakly coupled to a readout resonator coupled

to a shared transmission line. The readout and control signals for all six qubits

are frequency-multiplexed and combined with a probe tone from a tunable coher-

ent source. While the probe tone can be injected into the package through control

lines, unused signal launches, or a bandpass filter designed to limit qubit energy de-

cays due to the Purcell effect [53], the underlying experiment utilizes a transmission

line. A transmission line enables a homogeneous coupling to potential modes across
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Figure 4-8: Experimental Package Mode Evaluation using four Qubits. The Ramsey
spectra are taken simultaneously from four different qubits while a probe tone is
injected through the central transmission line. Note the similarity between the
spurious modes (indicated by yellow arrows) measured by qubits 1 and 3, as well
as qubits 2 and 4. The orange lines indicate qubit-related features, which shift
depending on the sensor qubit used.

the frequency spectrum. Furthermore, as the magnitude as the measured Ramsey

frequency shift is roughly proportional to 1/∆, the probe power is kept proportional

to ∆—the frequency difference between the probe tone and the qubit—to resolve

modes evenly across the spectrum of interest.

The device reported in the main text has a geometry of 5 mm by 5 mm and

was fabricated following a similar process as described in [5] on a high resistivity

275 µm (001) Si wafer (>3500Ω cm). The chip consists of aluminum superconduct-

ing coplanar waveguides (CPW) and six superconducting fixed-frequency transmon

qubits around 3 GHz. The qubits are capacitively coupled to individual quarter-

wave resonators that couple again inductively to a 50Ω feedline in the chip’s center.

The resonator lengths are varied to frequency multiplex the resonances in the range

of 6.69 GHz to 6.81 GHz with a spacing of approximately 25 MHz.
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4.4.7 Spatial Mode Characterization

An extension of the mode characterization performed in the main text is using a

multi-qubit device to resolve spatially dependent modes. For example, different res-

onances in the package may couple to the qubits with different strengths depending

on their electric field distribution. Such a technique is beneficial in identifying spu-

rious modes that may be hidden from any given sensor qubit, particularly when the

device area and field variability increase.

Qubit 2 is selected for Figure 4-9 as it had the longest coherence time to pro-

vide the best resolution in performing the Ramsey sweep. Here, the experiment is

extended by performing simultaneous readout on four qubits (the remaining two

qubits were not operational due to issues unrelated to the package). Conducting

this multiplexed experiment came at the cost of a beating effect in the Ramsey

oscillations of qubit 1 and 3, as seen by the two lines persistent throughout the

probe frequency sweep. The beating is a consequence of spurious tones arising

from instrumentation in the underlying particular multiplexed readout configura-

tion. However, the relevant frequency shifts can still be identified.

The multi-qubit hidden mode survey in Figure 8 reveals several spurious modes

positioned at the same frequency across all qubits. For example, the mode at

11.65 GHz more strongly affects qubits 1 and 3, while the mode at 14.3 GHz in-

terferes with qubits 2 and 4, suggesting spatially-dependent coupling strengths.

On the other hand, the mode at 12.94 GHz and the fundamental package mode

at 17.18 GHz couple to all qubits and do not reveal a spatially-dependent coupling

strength. Finally, several features between 2 GHz to 9 GHz (highlighted with or-

ange vertical lines) vary in frequency depending on the sensor qubit used. These

are qubit-dependent; namely, they are associated with the qubit |0⟩ to |1⟩ and |0⟩ to

|3⟩ transitions, as well as the respective readout resonators located around 7 GHz.

We attribute this to the chip layout: each set is located on one side of the device,

separated by a transmission line. The different coupling strengths are likely due

to asymmetries in chip placement. For example, an offset that causes stronger
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Table 4.2: Identified Package Modes. The four identified package modes between
2 GHz and 20 GHz. The table contains the mode’s resonance frequency 𝜔𝑚/(2𝜋), the
mode linewidth 𝜅/(2𝜋), coupling strength to the qubit 𝑔/(2𝜋) as extrapolated using
Equation 4.5, and the resulting qubit energy relaxation time 𝑇Purcell

pkg mode = 1/𝛾Purcell
pkg mode

(Equation 4.2).

Mode 𝜔𝑚/(2𝜋) 𝜅/(2𝜋) 𝑔/(2𝜋) 𝑇Purcell
pkg mode

(GHz) (MHz) (MHz) (ms)

I 11.65 25 13.05 2.77
II 12.94 53 14.15 1.48
III 14.30 81 18.23 0.73
IV 17.18 20 17.73 5.08

capacitive coupling between the chip and the interposer aperture on one side will

affect the two sets of qubits differently.

This measurement only revealed two distinct mode profiles due to the symmet-

ric arrangement of the chip. However, a measurement of this type may be beneficial

in probing the mode structure of more complex devices. In larger chips, spurious

modes can arise locally within the chip substrate, and qubits at different locations

within the package may couple to these modes with varying strengths. Understand-

ing the spatial distribution of modes is needed to ensure the consistent performance

of all qubits on the device.

Four package modes are identified between 2 GHz and 20 GHz. The linewidth

𝜅 of each spurious mode—a measure of its lossiness—can be determined directly

by performing a fine frequency sweep of the hidden-mode experiment. Thus, the

coupling strength can be calculated, as shown in Figure 4-9(c) for the fourth mode.

The ac-Stark shift is proportional to the average number of photons ∆Stark = 𝛼𝑛̄

with a factor 𝛼. Similarly, the mode induced dephasing is proportional to 𝛽𝑛̄ with a

proportionality factor 𝛽. The measured Γ*
2 is given by

Γ*
2 = Γmode +

1

𝑇 *
2,intrinsic

= 𝛽𝑛̄ +
1

𝑇 *
2,intrinsic

. (4.4)
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Figure 4-9: Experimental Package Mode Characterization. (a) and (b) The mi-
crowave environment between 2 GHz and 20 GHz registered by the qubit is mapped
out using the qubit itself as a sensor. A continuous-wave probe tone—added to the
qubit readout and control signal—excites the qubit microwave environment. Probe
tone-dependent indirect and direct effects on the qubit are recorded using Ramsey
spectroscopy. In the time-domain (a) and frequency-domain (b) panels, the qubits,
readout resonators, and the ground to third excited state transition are identifiable
as shifts in the Ramsey frequency. Furthermore, four features between 11 GHz and
18 GHz can be identified. The following mode characterization procedure is exem-
plified on the fourth mode, the expected package cavity mode shown augmented
again in (c) at 17.18 GHz. (d) The linewidth of a mode 𝜅/(2𝜋) is the full width at
half maximum (FWHM) of the Fourier transformed frequency-dependent Ramsey
scan, here 20 MHz. (e) The Ramsey frequency change as the power of the probe
tone—parked at the mode’s resonance frequency of 17.189 GHz—is varied. The
power is measured at the signal generator. (f) The qubit dephasing resulting from
the varying probe tone power is extrapolated by performing fits to 𝑇 *

2 experiments.
The presented analysis yields a coupling rate of 𝑔/2𝜋 ≈ 17.73 MHz for Mode IV.
Note, the Josephson traveling-wave parametric amplifier (JTWPA) was bypassed
for this experiment to prevent interference with the probe tone.
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The linear change in the Ramsey frequency against the input power feeding the

mode enables the extrapolating of the absolute value of the slope, 𝛼, displayed in

Figure 4-9(d). The slope’s sign depends on whether the qubit drive tone is set above

or below the qubit frequency for the measurement. Similarly, 𝛽 is the slope of the

Ramsey decay rate as the input power is increased. Combined, one can calculate

the qubit-mode coupling strength

𝑔 =

√︃
𝛽𝜅(𝜔m − 𝜔q)

4|𝛼|
, (4.5)

This method is demonstrated by performing a power sweep for Mode IV [Figure 4-

9(b)] and yields a coupling strength 𝑔/2𝜋 of 17.73 MHz. Furthermore, the Purcell

limit caused by the mode can be calculated using Equation 4.2 to be 5.09 ms. Ta-

ble 4.2 summarizes the identified modes and their characteristics. Extrapolating

the limit these package modes (pkg mode) impose on the lifetime of the presented

qubits, using

𝑇Purcell
pkg mode = 1

⧸︁∑︁
𝑖

𝛾Purcell
pkg modei

, (4.6)

𝑇Purcell
pkg mode = 384 µs is obtained for the modes I-IV. While this is sufficient for current

devices with coherence times in the range of 10 µs to 100 µs, this result needs to

be highlighted. Despite the absence of strong spurious modes up to 11 GHz in

the discussed package, a comprehensive survey reveals that the higher frequency

modes can still have a diminishing effect on qubit lifetime. These limits will likely

be saturated soon as qubit lifetimes increase, underscoring the need for further

package design improvements.
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4.5 Summary & Conclusion

The approach to package design was validated by using a newly engineered pack-

age to examine various elements that can affect superconducting qubit coherence.

A comprehensive characterization of the effect of package modes on superconduct-

ing transmon qubits corroborated with results from simulation tools and room-

temperature measurements is presented. The main findings are summarized in

Table 4.3. For the presented particular qubit design and configuration, the package

limits the qubit lifetime to approximately 𝑇 pkg
limit = 1/(𝛾Purcell

pkg mode + 𝛾material) = 384 µs.

This lifetime is due almost entirely to qubit loss to hidden package modes via the

Purcell effect (1/𝛾Purcell
pkg mode = 384 µs). Package material losses (1/𝛾material = 9.87 s)

contribute only at the 15 ns level. While the package does not limit the lifetime

of the measured qubits, the estimated lifetime limit is within the same order of

magnitude as other loss channels. Constructing packages with larger devices and

qubit lifetimes that are likely achievable soon will require a thorough engineering

approach that focuses on mode and signal line engineering.

Looking forward, package design will become increasingly critical for larger

quantum devices due to their increased complexity. As the number of qubits in

today’s noisy intermediate-scale quantum (NISQ) devices [54] increases, the pre-

cise characterization and suppression of electromagnetic modes and signal crosstalk

become even more critical. These established principles for superconducting qubit

packages are similarly pertinent for future work as packaging techniques are being

advanced for systems in the range of 100 to 1000 qubits.

Here, a modular package design is proposed. In particular, a 24-line package,

which is designed for chips of dimensions 5 mm by 5 mm, can be up-scaled in a

modular fashion for larger devices by subdividing the enclosing microwave cavity

or pinning antinodes of the lowest mode via out-of-plane wires [55, 56]. Figure 4-

10 depicts the modular approach for four subcells and 48-lines. The subdivision

of the central cavity with fins as well as of the 10 mm by 10 mm qubit chip using

through-silicon vias [41] prevent the formation of modes in the qubit frequency
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(a) (b)

1cm

Figure 4-10: Next-Generation Packaging. (a) Blueprint for scaling up the package
design to support NISQ devices. By dividing the cavity into subcells correspond-
ing to 5 mm×5 mm chip areas, each with the same number of signal launches, the
crosstalk, and mode performance can be preserved while increasing the number of
pins. Qubit control and readout are conducted via multi-coax Ardent connectors
with eight channels each. (b) Fins or spring-loaded pins above the qubit device
suppress spurious modes.
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operation spectrum. The center aperture of the interposer is extended to provide

48 signal ports to the larger qubit chip. The signal transmission performance of the

interposer is maintained as the distance between neighboring signal lines and their

specific length is not altered. To efficiently connect the microwave package to the

control signals, high-density, spring-loaded multi-coax connectors or waveguides

built into flexible PCB ribbon cables [57] can be employed.

While current state-of-the-art packages still employ wirebonds to connect a multi-

chip stack and the device package [1], several promising candidates such as pogo

pins [37], direct chip-to-interposer connections, 3D-integrated packaging [58], and

the aforementioned out-of-plane wiring [55] may provide a larger-scale intercon-

nect solution. Such wiring techniques are directly compatible with the proposed

modular package design. However, with a higher density, these techniques will face

even more significant challenges in signal crosstalk, requiring precise impedance

matching and the use of shielding structures. Combining these factors will necessi-

tate thorough simulation and design characterization, building on those presented

in this thesis.
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Chapter 5

Machine Learning

Algorithms tasked to learn from data are attributed to the field of machine learning.

The algorithm aims to identify a pattern in the data to optimize a decision process.

The decision process can range from simple classification to complex optimal be-

havior in an unknown environment. In this thesis, the focus is on machine learning

algorithms to improve superconducting qubit readout.

The following chapter is a basic introduction to machine learning and the tools

used in this thesis. Of the three categories generally constituting machine learning—

unsupervised, supervised, and reinforcement learning—the chapter focuses on su-

pervised and reinforcement learning. In Sections 5.2-5.4, supervised learning meth-

ods ranging from matched filters to neural networks are presented to improve su-

perconducting qubit-state discrimination. Section 5.5 focuses on reinforcement

learning. Finally, deep reinforcement learning is discussed to improve supercon-

ducting qubit readout pulse shaping in Section 5.6.
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5.1 Machine Learning Categories

The study of computational algorithms with the ability to improve through expe-

rience is typically referred to as machine learning [1]. These algorithms strive to

identify patterns in sample data and create an approximate model of an underlying

decision process without explicit instructions. While many machine learning ideas

are several decades old, they only recently became widely applicable due to the

development of sufficient computational resources and are applied today in many

areas such as image processing [2], natural language processing [3], or playing

advanced games such as chess [4].

Machine learning can be broadly divided into three categories: unsupervised,

supervised, and reinforcement learning [1].

5.1.1 Unsupervised Learning

The class of unsupervised learning algorithms comprises approaches to identify pat-

terns in unlabelled data. Such methods typically relate new data points with the

previously processed ones to recognize underlying patterns. However, the resulting

interpretation and performance evaluation of unsupervised learning techniques can

at times be cumbersome.

5.1.2 Supervised Learning

In supervised learning, trusted data-label pairs, the training set, are utilized to make

predictions on the labels of an unseen dataset. Typically, the input-output pairs

for training are acquired by the ‘supervisor,’ hence the terminology. For complex

predictions, the training of a supervised learning model can require large amounts

of training instances. The quality of the learned mapping function can be probed

utilizing an additional set of trusted input-output pairs, the test set. Comparing the

performance of a supervised learning method on the training set compared to the

test set is referred to as generalization.
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5.1.3 Reinforcement Learning

Reinforcement learning algorithms aim to have a so-called agent learn appropriate

actions given a specific situation of the particular environment. The agent improves

the behavior by maximizing a reward. An essential aspect of the algorithm’s success

rate is the balance between exploration and exploitation. Unlike in unsupervised or

supervised learning techniques, the agent learns from interacting with the environ-

ment instead of a prepared dataset.

In this thesis, the focus is first on supervised learning methods to optimize the

classification of qubit-state readout data. Secondly, reinforcement learning algo-

rithms are discussed and how such methods can be used to optimize qubit-readout

pulses. The developed tools to optimize qubit-readout pulse shaping and qubit-state

discrimination replace the current manual qubit-readout calibration process with a

process governed by machine learning.

5.1.4 Supervised Learning for Qubit-State Discrimination

A qubit-state measurement is a multi-dimensional complex vector. Each dimension

represents a time-bin. The dimensionality can be reduced with filters. A frequently-

used filter is a rectangular window filter (boxcar filter) that projects the complex

vector onto a real and imaginary part. Matched filters project the complex vector

to a single real scalar value. Generally, discriminators using filtered data are com-

putationally more efficient at the cost of a reduced discrimination accuracy relative

to discriminators using unfiltered multi-dimensional data. In the following section,

discriminators using filtered data are discussed first. Next, a focus is put on support

vector machines before neural networks are discussed.

5.2 Matched Filter

A matched filter is the optimal linear filter in terms of the signal-to-noise ratio

(SNR) in the presence of additive stochastic noise [5]. The matched filter aims
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to reduce the noisy measurement data to a single scalar to differentiate a ground-

state and excited-state measurement. In the absence of state transitions during the

qubit measurements, a linear matched filter is optimal in SNR and measurement fi-

delity [6]. The scalar values of the output of the matched filter can be discriminated

by employing a simple threshold as the discriminator boundary. While such classi-

fiers are not classical machine learning algorithms, the filter tune-up and threshold

optimization require a ‘training’ step using a set of labeled measurement data.

A discrete qubit measurement signal 𝑠|𝑖⟩[𝑛] with qubit either in the ground (𝑖 = 0)

or excited-state (𝑖 = 1) can be modeled as 𝑠|𝑖⟩[𝑛] ∝ 𝛼|𝑖⟩[𝑛] + 𝜉[𝑛]. The resonator

response for the qubit in the ground-state is 𝛼|0⟩[𝑛] and for the qubit in the excited-

state 𝛼|1⟩[𝑛]. The measurement signal is a linear combination of the resonator re-

sponse and a zero-mean stochastic noise term 𝜉[𝑛] [6, 7]. The filtered measurement

signal with filter kernel 𝑘[𝑛] is described as

𝑆|𝑖⟩ =
∑︁
𝑛

𝑘𝑛𝑠|𝑖⟩𝑛. (5.1)

The mean difference ⟨∆𝑆⟩ between the ground-state signal 𝑆|0⟩ and excited-state

signal 𝑆|1⟩ follows as

⟨∆𝑆⟩ = ⟨𝑆|0⟩ − 𝑆|1⟩⟩ =
∑︁
𝑛

𝑘𝑛⟨𝛼|0⟩𝑛 − 𝛼|1⟩𝑛⟩. (5.2)

The variance of the average difference ⟨∆𝑆⟩ is consequently

𝑁2 = var(∆𝑆) =
∑︁
𝑛

𝑘2
𝑛

[︀
var

(︀
𝛼|0⟩𝑛 − 𝛼|1⟩𝑛

)︀
+ var(𝜉𝑛)

]︀
. (5.3)

The optimal filter kernel elements 𝑘𝑛 can be derived as follows,

𝜕

𝜕𝑘𝑛

|∆𝑆|
𝑁

= 0 → solve for 𝑘𝑛 ⇒ 𝑘𝑛 =
⟨𝛼|0⟩𝑛 − 𝛼|1⟩𝑛⟩

var
(︀
𝛼|0⟩𝑛 − 𝛼|1⟩𝑛

)︀
+ var(𝜉𝑛)

(5.4)

A more thorough derivation of the optimal kernel element is presented in Ap-

pendix C.

170



(a)

Q
-Q

ua
dr

at
ur

e 
(m

V
)

3

2

1

0

-1

-1 0 1 2 3-2-3
I-Quadrature (mV)

-2

-3

(c)

P
ro

ba
bi

li
ty

 D
is

tr
ib

ut
io

n 0.020

0.015

0.010

0.005

0.000
-2 0 2
Ĩ-Quadrature (mV)

(b)

A
m

pl
it

ud
e 

(m
V

)

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

Measurement Time (μs)

MF
BC
MF×BC

0

π

Figure 5-1: Matched Filter Threshold Discriminator. (a) A matched filter projects
the input data to a single dimension. The projection is optimized in terms of signal-
to-noise ratio. (b) The matched filter trace for a qubit measurement. (b) Windowed
matched filter (MF) kernel using a boxcar filter (BC) to reduce the impact of qubit-
state transitions. (c) Histogram of matched-filtered qubit-state measurements. The
discrimination boundary is situated at the origin for a two-class system complying
with the assumed noise model for the described linear matched filter.

For superconducting qubit measurements, the assumption of negligible state

transitions is often violated. Therefore, the derived kernel needs to be filtered by an

additional window function. The rectangular window function balances the maxi-

mum qubit-state assignment fidelity by reducing the considered measurement data

to limit the increasing probability of state transitions, as depicted in Figure 5-1(b).

Therefore, a matched filter is only approximately optimal when the measurement

time is considerably shorter than the qubit-state lifetime. As a consequence, more

advanced discriminators with fewer underlying assumptions may provide improved

discrimination fidelities.

5.3 Support Vector Machine

Support vector machines (SVMs)—known for their robustness and good generalization—

are fundamental two-class discriminators that draw a single decision boundary,

called a hyperplane, in a supervised learning scheme [8, 9]. The margin between

the classes and the hyperplane can be maximized by penalizing misclassified data
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Figure 5-2: Support Vector Machines (SVM). (a) The linear decision boundary can
be mathematically described as 𝑤𝑥 − 𝑏 = 0. The margin width—the distance be-
tween the two dashed lines is equal to 2/||𝑤||. Depending on which side of the
discrimination boundary, the label is either 1 or −1. The Linear SVM. (b) Linear
SVM and (c) Nonlinear SVM are used to discriminate the states of a single qubit.

points and data points within the margin boundaries. The penalty for data points

within the margin boundaries can be varied using a regularization term. A lenient

penalty results in a so-called soft-margin SVM, which can better cope with not lin-

early separable problems. The generalized equation to optimize a soft-margin SVM

with output values 𝑦 = 1 for the first class and 𝑦 = −1 for the second is

min
𝑤,𝑏,𝜉

||𝑤||2

2
+ 𝐶

𝑁∑︁
𝑛=1

𝜉𝑛 subject to 𝑦(𝑖)
(︀
𝑤𝑇𝑥(𝑖) + 𝑏

)︀
≥ 1− 𝜉𝑖, 𝑖 ∈ 1, . . . , 𝑁, (5.5)

where 𝑤 is a vector normal to the decision boundary, 𝑏 is a parameter to determine

the offset of the decision boundary from the origin, 𝜉 is a positive slack variable

(slack variables are introduced to allow specific constraints to be violated), and 𝐶

is a parameter to indicate the ‘softness’ of the SVM. For a soft-margin SVM, C>0;

and if C=0, then the SVM is referred to a hard-margin SVM. The SVM and the

optimization parameters are graphically illustrated in Figure 5-2.

The hyperplane dimension equals one less than the number of features–the input

data’s dimensions. The location of a new data point relative to the hyperplane

decides the associated label. Unfortunately, this deterministic decision process is not
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Figure 5-3: Multi-Class Support Vector Machines (SVM). (a) A linear and (b) non-
linear SVM are used to discriminate the states of three qubits (eight states). (c) A
SVM tasked to discriminate more than two classes can show a diminished discrim-
ination accuracy due to ambiguous areas. For three classes, a plane should show
three distinct areas. However, dividing a plane with two lines generally results in
four areas, meaning one area is not assigned to a single class.

probabilistic, and the information on the probability of label association is thus not

directly accessible. While hyperplane separations only work for linearly-separable

data, nonlinear SVMs map the data points to higher dimensions via a nonlinear

transformation and find a hyperplane in that higher-order feature space.

5.3.1 Multi-Class Support Vector Machine

Several SVMs can be trained in concert for multi-class discrimination to divide the

feature space into areas associated with distinct classes [10]. For an N-class (𝑁 > 2)

classification task, the number of necessary hyperplanes is at least 𝑁−1 if each class

is discriminated against the rest, referred to as ‘one-versus-all.’ Each class requires

a hyperplane separating itself from the remaining collective of classes. However,

separating space in more than two classes results in ambiguous areas that cannot

be associated with a single class [1], as illustrated in Figure 5-3(c).
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Figure 5-4: Neural Network Architecture.
(a) Basic feedforward neural network ar-
chitecture with an input layer, two hid-
den layers, and an output layer. (b) Neu-
ral network node values, apart from in-
put layer nodes, are determined by calcu-
lating the product between the previous
layer’s node values 𝑥𝑙−1 and their associ-
ated weights 𝑤 plus a bias value 𝑏. An
activation function further processes the
resulting value.
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5.4 Neural Networks

Neural networks are inspired by biology and consist of layers comprising nodes.

Typically, a neural network consists of an input layer composed of several nodes—

the number of nodes depends on the input data dimension—and an output layer

that contains the computed output values. In between the input and output layer

are layers of neurons—so-called hidden layers as their output value is not directly

accessible—with unique tasks per layer. A neuron’s input and output channels are

called edges, illustrated in Figure 5-4(a). Each neuron can be described as a mathe-

matical function of incoming weighted parameters—typically output values of other

neurons—and external parameters. The function output generally passes through a

typically nonlinear filter, often referred to as an activation function, before serving

as an input to other neurons, depicted in Figure 5-4(b). Varying the connectiv-

ity, neuron functions, and the activation function at each neuron output provides a

flexible toolset to engineer a broad spectrum of neural network types. Supervised

training of such a network can optimize the weights for each neuron input and ex-

ternal parameter to arbitrarily approximate any function. Training a neural network

is, in its essence, the training of the weights of all nodes’ input values and their bias

terms to achieve a particular objective, such as optimal qubit-state discrimination.
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Figure 5-5: Activation Functions. Activation functions 𝑓(𝑥) are shown in blue, and
their respective derivatives 𝑓 ′(𝑥) are shown in orange. (a) Linear, (b) Rectified
Linear Unit (ReLU), (c) Scaled Exponential Linear Unit (SELU), and (d) Sigmoid
are common activation functions used in machine learning.

5.4.1 Activation Functions

The linear activation function returns the activation function’s input value di-

rectly to the output. The linear character of this activation function makes it im-

practical for most neural network applications. nonlinear activation functions are

preferred.

The Rectified Linear Unit (ReLU) is a commonly used default activation func-

tion. The ReLU function outputs the input value only if the input value exceeds zero

and outputs zero otherwise. ReLU functions are commonly used due to their simple

structure resulting in computationally efficient optimization routines.

Scaled Exponential Linear Unit (SELU) [11] are similar to ReLU activation

functions. SELU’s differ from ReLUs if the input to the activation function is nega-

tive. While ReLU’s output is zero for 𝑥 < 0, a SELU outputs 𝑒−𝑥 − 1. This seemingly

minor change reduces the risk of a node dying due to the activation function out-

putting zero. With a SELU, negative inputs can be processed and remain distinct.

Moreover, SELU’s preserve the mean and variance from the previous layer and are

thus self-normalizing.

Sigmoid activation functions are common in the output layer of neural net-

works used for binary classification. Typically, sigmoid functions are used for single

node output layers. Softmax activation functions are used for multi-node outputs

and thus multi-class classification and prediction tasks. Mathematically, the sigmoid
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function is expressed as 𝑓(𝑥) = 1/(1 + 𝑒𝑥) whereas the softmax function is equal to

𝑓(𝑥) = 𝑒𝑥/
∑︀

𝑖 𝑒
𝑥𝑖.

5.4.2 Neural Network Training

The training phase is a critical element of any machine learning algorithm. During

the training phase, the neural network is altered such that a defined loss function

is minimized. The loss function maps the neural network’s output value to a ‘cost’

value. The lower the cost value, the better the neural network is calibrated. Mul-

tiple training cycles, referred to as epochs, are required to ensure the neural net-

work’s output converges to the desired objective and minimizes the loss function.

The number of epochs to reach a convergence plateau depends on the correction

factor per cycle, the learning rate. A common strategy is to have a learning rate of

0.001—a typical value for neural networks—and gradually decrease it as the per-

formance starts plateauing.

Similar to most optimization routines, neural networks are susceptible to overfit-

ting, and thus, the generalization is reduced. The more parameters to be optimized,

the more critical it is to choose an appropriate number of training instances to pre-

vent under- or overfitting. Several potential regularization techniques can be used

to prevent overfitting. One example is to include a regularizer in the loss function.

A regularizer penalizes the model for updating too large individual weights. Ran-

domly dividing the entire training set into normalized sub-training units, termed

batches [12], is an alternative approach to regularization. Instead of updating the

neural network after each training instance, the neural network is updated after

each batch is processed. The choice of batch size affects the wall-clock-training

time and generalization, or in other words, how well the discriminator performs on

unseen data compared to the training set.
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5.4.3 Neural Network Archetypes

Several neural network archetypes are analyzed to identify the most useful one in

improving the qubit-state assignment fidelity and measurement time of multi-qubit

devices. Fully-connected feedforward neural networks (FNN), also called multi-

layered perceptron—among the most elementary neural networks—convolutional

neural networks (CNN)—among the most successful image classification methods

in use today—and long short-term memory (LSTM) recurrent neural networks—

among the most successful architectures in language processing are explored here.

Feed forward neural networks (FFN) [13] are among straightforward neural

networks. Information is fed into an input layer and transferred through hidden

layers to an output layer. Generally, two adjacent layers are fully connected, mean-

ing every neuron of one layer is connected to every neuron of the adjacent layers.

FNNs are typically trained through back-propagation, giving the network trusted

input-output pairs.

Convolutional neural networks (CNN) [2] are primarily used for image pro-

cessing and thus quite different from most other networks. Generally, CNNs start

with a rasterized scan of the input data. The resulting scanned cells can be overlap-

ping and are then fed through a convolutional layer. Unlike nodes in FNNs that are

often connected to all nodes of the previous layer, the nodes of the convolutional

layer focus only on nearby cells. The raster scan and convolution can be repeated.

Typically, subsequent convolutional layers decrease in size. In addition to convolu-

tional layers, CNNs employ so-called pooling layers. Pooling layers filter out details.

For example, the input of a pooling layer may output only the maximum value of

the input cell. The convolutional and pooling layer take a local approach to data

processing. To globally process the convoluted and pooled data, CNNs frequently

finish with an FNN.

Long short-term memory (LSTM) networks [14] are composed of nodes com-

prising a memory unit and three gates (input, output, and forget). The gates control

the flow of information. The input gate determines how much information from the
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previous layer is stored in the current cell. Consequently, the output gate controls

the outflow of information. Finally, the forget gate controls the loss of information.

At times, the network performance can be improved if some information is ignored.

In general, LSTMs are challenging to train as there are three gates and associated

weights to be trained for each node.

In this thesis, the three presented neural network archetypes are used for qubit-

state discrimination. As discussed in the next Chapter 6, the feedforward neural

network outperforms its alternatives.

5.5 Reinforcement Learning

Reinforcement learning describes algorithms with an agent aiming to maximize a

reward for an action taken in a specific environment. The agent optimizes the

actions by interacting with the environment rather than analyzing labeled datasets.

A key aspect of reinforcement learning is that the agent does not need to know the

underlying system’s dynamics, and thus, is independent of a specific model. Instead,

the agent generates the necessary model of the environment through the reward

for specific actions. The action alters the state of the agent in the environment.

Typically, the agent attempts to create a target state through actions optimized via

a reward depending on the last created state, as illustrated in Figure 5-6. The

effect an action has on the environment and the resulting state is referred to as

state-action pairs. Reinforcement learning has gained attraction due to its success

in complicated environments such as Chess and Go [15, 16] and robot automation

and planning [17].

Reinforcement learning tasks are generally composed of four components. First,

the environment defines the playground for an agent. It defines the states an agent

can be in and what action is necessary to reach particular states. The agent is of-

ten only familiar with the direct vicinity and thus has to explore the environment

to evaluate appropriate actions to optimize its state. Second, a so-called policy

describes a set of guidelines to pick the following action optimally. The policy is

178



Agent

Environment

Action at
State st

tReward r

st+1

t+1r

Figure 5-6: Markov Decision Process. Given a current state 𝑠𝑡 and reward 𝑟𝑡 at time
𝑡, an agent decided on a next action 𝑎𝑡. Based upon the action the state changes to
𝑠𝑡+1 and a reward 𝑟𝑡+1 can be associated with the new state. The cycle continues
until a specific number of cycles or a particular reward is reached. To minimize
computational effort, the cycle can also be stopped once the agent’s progress has
plateaued.

learned indirectly or directly through the interaction with the environment. Third, a

reward is generated depending on the agent’s goal and current state in the environ-

ment. The agent aims to maximize the reward and updates the policy accordingly.

The type of reward depends on the environment, can be negative or positive, and

may not be readily available after each action. Lastly, future values and potential

rewards are estimated through a value function. The value function expresses the

total reward an agent can expect depending on its current state and policy. The

quality of a value function determines the optimization efficiency. A good value

function can circumvent local optima and more efficiently reach a global optimum.

The quality of a value function can be improved through the exploration of the

environment.

5.5.1 Markov Decision Processes

Reinforcement learning can be mathematically described by finite Markov decision

processes (MDP). For each time step 𝑡, the environment provides the agent with

179



a current state 𝑠𝑡 and reward 𝑟𝑡. The reward values the prior action 𝑎𝑡−1 taken

by the agent. The agent learns to understand the environment through the state-

action pairs and improves its internal mapping based on the received reward. The

next action is taken with that information and learned policy in mind. This routine

continues until the desired state, or a specific number of cycles, is reached. For

MDP models, the transitions are probabilistic, and each action only depends on the

previous step.

In the generalized MDP framework, the value function is often encoded in the

form of the Bellman equation [18], defined as

𝑉 (𝑠) = max
𝑎

(𝑟(𝑠, 𝑎) + 𝛾
∑︁
𝑠′

𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′)), (5.6)

with the value 𝑠 determined by the possible action 𝑎 maximizing both the reward

𝑟 and future value discounted by factor 𝛾. The Bellman equation can be used to

either optimize the value function indirectly through value iteration to infer an

optimal policy or directly by using policy iteration.

5.5.2 Value Iteration

Optimal policies for the MDP problem can be found with value iteration. Value

iteration aims to determine the optimal value function 𝑉 (𝑠). The agent improves

at optimizing the value function as experience is being gained. Consequently, the

agent needs to explore many states and some even multiple times. While this is

time-consuming and computationally expensive, knowing an optimal value function

enables one to infer an optimal policy simply by tapping into that value function.

With the optimal value function at hand, a deterministic policy Π can be generated

using the algorithm presented in 1.
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Algorithm 1 Value Iteration [19]

Randomly initialize 𝑉 (𝑠) for all 𝑠 ∈ 𝑆.
Initialize ∆ > 0 as a small threshold to determine if the value function has con-
verged.
loop

𝛿 ← 0
for 𝑠 ∈ 𝑆 do

𝑣 ← 𝑉 (𝑠)
𝑉 (𝑠)← max𝑎(𝑟(𝑠, 𝑎) + 𝛾

∑︀
𝑠′ 𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′))

𝛿 ← 𝑚𝑎𝑥(𝛿, |𝑣 − 𝑉 (𝑠)|
until ∆ > 𝛿
Π′(𝑠) = argmax𝑎(𝑟(𝑠, 𝑎) + 𝛾

∑︀
𝑠′ 𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′))

5.5.3 Policy Iteration

Alternatively, policy iteration can determine the optimal policy directly with the

algorithm presented in 2. Policy iteration differs from value iteration. In policy iter-

ation, actions are selected from a current policy compared to computing the value

of every available action and post-selecting an action. Moreover, the optimal pol-

icy is continually optimized in policy iteration. Value iteration presents an optimal

policy as its very last step. Policy iteration excels in environments with a continu-

ous action space. Determining a value for each state in a continuous environment

is impossible. For discrete action spaces, however, value iteration techniques are

typically more efficient [19].

5.5.4 Exploration and Exploitation

To guarantee the success of any reinforcement learning algorithm, exploration and

exploitation need to be balanced. Depending on the algorithm, a larger action-

state space needs to be explored. Furthermore, an algorithm needs to be sensitive

enough to realize when a state is worth exploiting. However, exploiting a state is

risky as the particular state might be simply a local optimum. Therefore, sufficient

exploration and conscious exploitation are fundamental to the algorithm’s success.

A common strategy to balance exploration and exploitation is 𝜖-greedy action

selection. An action is randomly taken with probability 𝜖 or following the generated
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Algorithm 2 Policy Iteration [19]

Randomly initialize 𝑉 (𝑠) and Π(𝑠) ∈ 𝐴 for all 𝑠 ∈ 𝑆.
Initialize ∆ > 0 as a small threshold to determine value function has convergence.

(a) Policy Evaluation
loop

𝛿 ← 0
for 𝑠 ∈ 𝑆 do

𝑣 ← 𝑉 (𝑠)
𝑉 (𝑠)← max𝑎(𝑟(𝑠,Π(𝑠)) + 𝛾

∑︀
𝑠′ 𝑃 (𝑠′|𝑠,Π(𝑠))𝑉 (𝑠′))

𝛿 ← 𝑚𝑎𝑥(𝛿, |𝑣 − 𝑉 (𝑠)|
until ∆ > 𝛿

(b) Policy Improvement
policy-stable← true
for 𝑠 ∈ 𝑆 do

old-action← Π(𝑠)
Π(𝑠)← argmax𝑎(𝑟(𝑠, 𝑎) + 𝛾

∑︀
𝑠′ 𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′))

if old-action ̸= Π(𝑠) then
policy-stable← false

if policy-stable = false then
Go to (a)
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policy with probability 1− 𝜖. Over time, 𝜖 is reduced to account for the exploration

progress. With a decreasing 𝜖, the algorithm starts to exploit the state increasingly.

5.6 Deep Reinforcement Learning Algorithms

The environment and state-action-space are often too large to explore. Therefore,

value or policy iteration approaches can fail. Deep neural networks can be used

to approximate the value function or policy distribution to remedy this issue. Re-

inforcement learning algorithms using deep neural networks as approximators are

classified as deep reinforcement learning algorithms.

5.6.1 AlphaZero

AlphaZero is a famous deep reinforcement learning algorithm due to its success in

outperforming human master players in games such as Chess or Go [15, 16]. Aston-

ishing about AlphaZero is that its training did not include human gameplay samples

for training. In quantum computing, AlphaZero has been employed in combination

with quantum optimal control to calibrate two-qubit gates in simulation [20].

AlphaZero is centered around deep neural networks in conjunction with a deep

look-ahead in a guided tree search. Such a setup enables a predictive hidden-

variable approximation of the state-action pairs. Monte Carlo Tree Search (MCTS)

is used to look ahead and evaluate different strategies. The capability to look ahead

is limited for many reinforcement learning algorithms to a single step. At the same

time, AlphaZero can evaluate nearly an arbitrary number of steps into the future

and is only limited by computational resources. The computational effort remains

manageable because MCTS can efficiently explore state-action pairs due to its prob-

abilistic approach. Many other algorithms randomly pick initial actions to explore

their environment and can thus be less efficient. The efficiency of MCTS due to its

probabilistic approach comes at the price of a more sophisticated model requiring

more frequent updates and computational resources.
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5.6.2 Deep-Q Network

Deep-Q Network (DQN) algorithms [21] are an extension of the popular Q-Learning

algorithm that allows one to explore more significant state and action spaces and

take advantage of modern deep neural network techniques and hardware optimiza-

tions. In tabular Q-Learning settings, the aim is to find an optimal policy by creating

a Q-table that holds a value for each state-action pair. Each table entry signifies the

current value of a pair by acting in that given state and the agent’s future value

by making decisions from that new state-action pair. With enough iterations, all

optimal values for the Q-table are computed. When the table is complete, an agent

can simply find an optimal solution by performing table look-ups and selecting the

action that produces the largest Q-value at each state.

The primary issue with tabular Q-Learning approaches is the reliance on storing

the Q-table in memory and the algorithm’s necessity to explore many state-action

pairs. This becomes infeasible for environments with extensive and precise states

and action spaces. Deep Q-Networks replace the Q-table with a deep neural net-

work that takes in a state input and outputs the approximated Q-values for each

action. The past network predictions are stored in a replay buffer for sampling or

to prioritize samples with higher rewards periodically [22]. This algorithm requires

a discrete action-space as the network produces a predicted Q-value for each pos-

sible action when provided a state. The hardware output and input channels are

typically discrete and can be directly mapped to the action space.

5.6.3 Deep Deterministic Policy Gradient

While Deep-Q Learning is a robust deep reinforcement learning tool, it is potentially

limited in performance because it requires a discrete action space which can be

challenging to train. In contrast, the Deep Deterministic Policy Gradient (DDPG) al-

gorithm, a model-free algorithm that can learn optimal policies in high dimensional

and uses continuous action-spaces [23]. DDPG utilizes an actor-critic method, in

which an ‘Actor’ agent uses the current state to approximate an optimal continuous
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action. In contrast, the ‘Critic’ agent approximates the expected reward for the new

state-action pair. Actor-critic methods work well compared to single action-value

methods like DQN because they require less computation to operate in vastly larger

action spaces. The separation into two processes increases overall stability [19].

Similar to DQN, deep neural network approximators can be used for the Actor and

Critic.

5.6.4 Proximal Policy Optimization

Proximal policy optimization (PPO) algorithms [24] intend to identify the maxi-

mum possible improvement without unnecessary risks through an evaluation of the

acquired data. Two neural networks underlay this algorithm; one serves as a policy

and one as a reward estimator. The search for an optimal improvement step is an it-

erative process. First, a single iteration determines a maximum step size to explore

the area around the current state, the trust region, before an optimal next step is

defined inside this region. For conservative implementations, the following action

clips the optimal steps if necessary. The area is explored using the two networks

without direct interactions with the environment. The policy neural network cre-

ates a new action while the second neural network estimates the associated reward.

This process enables computationally efficient exploration of the surrounding area

to determine the next action-state pair. In contrast to a similar type of algorithms—

trust region policy optimization [25]—PPO algorithms computationally simplified

this optimization task to first-order methods such as gradient descent.

PPO belongs to a class of reinforcement learning algorithms called policy gradi-

ent methods. Meaning, the algorithm aims to learn optimal policies directly instead

of inferring them from optimal value functions. PPO trains a stochastic policy in

an on-policy way. This means that it explores by sampling actions according to the

latest version of its stochastic policy. The amount of randomness in action selection

depends on both initial conditions and the training procedure. The policy typically

becomes progressively less random throughout training, as the update rule encour-
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Figure 5-7: Proximal Policy Optimiza-
tion Architecture. The algorithm is
composed of two deep feedforward
neural networks. One neural network
(the policy network) generates a new
action, whereas the second neural net-
work (value network) tries to asso-
ciate an expected reward to the pro-
posed new action. Estimated Reward

Empty State

Policy NN

Generated Pulse 

Reward NN

ages it to exploit rewards that it has already found. This may cause the policy to

get trapped in local optima.

Actor-Critic Approach

PPO utilizes a so-called actor-critic approach. An ‘actor’ agent approximates an op-

timal continuous action using the current state. A ‘critic’ agent, on the other hand,

approximates an expected value to the proposed new state-action pair. The PPO

algorithm with the actor and critic agent is shown in Figure 5-7. Actor-critic meth-

ods remain computationally efficient even for vast numbers of action-state pairs.

Furthermore, the separation of the tasks into two agents increases the overall opti-

mization robustness [19].

5.7 Summary

This thesis focuses first on qubit-state discrimination and then on qubit-readout

pulse shaping. For qubit-state discrimination, a feedforward neural network is used

to discriminate multi-qubit readout-states. As elaborated, the qubit transition dy-

namics often violate the noise model underlying matched filters. SVMs, on the other

hand, can process single-qubit data but are underperforming on multi-qubit data.

Consequently, neural networks are better multi-qubit discriminators as there are no

restrictions on the underlying noise model nor the number of classes that can be

distinguished.
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The proximal policy optimization (PPO) algorithm [24] is used to create qubit-

readout pulses. PPO algorithms identify the maximum possible improvement with-

out unnecessary risks by evaluating the acquired data. In contrast to a similar type

of algorithm, trust region policy optimization [25], PPO algorithms computationally

simplified the optimization task to first-order methods such as gradient descent. As

shown in Figure 5-7, two neural networks underlay this algorithm: one serves as a

policy and one as a reward estimator, which creates a new action. At the same time,

the second estimates the associated reward. These processes enable computation-

ally efficient exploration of the surrounding area to determine the next action-state

pair.
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Chapter 6

Superconducting

Qubit-State Discrimination

using Supervised Learning

For contemporary quantum processors, an increase from a few to many qubits is

generally accompanied by the challenge of maintaining low control and readout

error rates. In multi-qubit architectures, signal crosstalk induces computational

errors. Beyond merely measuring the computational output, multi-qubit readout

plays a key role, for instance, for near-term algorithms or error correction proto-

cols. State-of-the-art qubit-state discriminators assume ideal operating conditions

or require considerable computational effort, limiting their applicability for accu-

rate multi-qubit readout. In this Chapter, a holistic approach using neural networks

to read out multiple qubits simultaneously is pursued. This approach leads to a

reduction of crosstalk-induced errors by up to one order of magnitude and enables

multi-qubit readout performance on the level of single-qubit readout.

This chapter introduces superconducting qubit readout in Section 6.1 before

different discriminators are discussed in Section 6.2. Finally, the performance of the

discriminators is analyzed in Section 6.3 in the context of superconducting multi-

qubit readout.
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Qubit errors arise during all stages of the circuit model: initialization [1, 2],

computation [3, 4], and readout [5]. In many implementations, qubit readout plays

a key role beyond merely measuring the computational output. For example, quan-

tum error correction protocols require repeated readout of syndrome qubits [6–

8]. Even without error correction, many of the noisy intermediate-scale quantum

(NISQ) [9] era algorithms involve an iterative optimization that generates a tar-

get quantum state based on prior trial-state measurements of qubits [10, 11]. In

addition, diagnosing qubit-readout errors in post-processing requires computation-

ally expensive statistical analyses of repeated computation and measurement [12–

14]. Thus, developing accurate and resource-efficient qubit-state readout is a key

to realize practical quantum information processing tasks.

In this chapter, deep neural networks (DNNs) as qubit-state discriminators are

evaluated by their applicability relative to contemporary methods used for super-

conducting qubits. Nonlinear filters such as DNNs can better cope with system-

dependent nonidealities, such as readout crosstalk. A quantum system comprising

five frequency-tunable transmon qubits is used for simultaneous readout via a com-

mon feedline using a standard frequency multiplexing approach to evaluate these

different qubit-state discriminator techniques. In contrast to single-qubit readout,

such a multi-qubit system is subject to nonidealities, such as readout crosstalk, that

may benefit from more sophisticated discriminators.

It has been shown that neural networks can learn the quantum evolution of a sin-

gle superconducting qubit using merely measurement data without introducing the

rules of quantum mechanics [15]. Statistical learning algorithms have been applied

to superconducting qubit readout in the form of support vector machines [13], hid-

den Markov models [16], or a reservoir computing approach [17]. Using DNNs, im-

proved single-qubit readout fidelity has previously been demonstrated for trapped-

ions and spin qubits [18, 19]. In this chapter, the application of neural networks

is extended to superconducting qubit readout and, more generally, to dispersive

qubit readout. Furthermore, readout discrimination using a DNN of multiple qubits

read-out on a single feedline is demonstrated.
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6.1 Superconducting Qubit-State Discrimination

As described in Chapter 3.2, superconducting qubit readout is generally performed

today under the paradigm of circuit quantum electrodynamics (cQED) in the dis-

persive regime [20]. Here, the qubit is coupled to a far-detuned resonator, such

that their interaction can be treated perturbatively. The leading-order effect on

the resonator is a qubit-state-dependent frequency shift 𝐻̂disp = 𝜒𝑎̂†𝑎̂𝜎̂𝑧, where

𝑎̂ is the resonator lowering operator, 𝜎̂𝑧 the Pauli-Z operator describing the qubit

state, and 𝜒 the dispersive frequency shift. As a result, a coherent microwave sig-

nal incident on the resonator acquires a qubit-state-dependent phase shift upon

transmission or reflection. The readout resonator population (𝑎̂†𝑎̂) has to remain

below a critical photon number, typically tens to hundreds of photons, to remain in

the dispersive readout regime. Low-noise cryogenic preamplification—a Josephson

traveling-wave parametric amplifier (JTWPA) [21] at the mixing chamber (20 mK)

and a high-electron-mobility transistor (HEMT) at 3 K— are used to improve the

signal-to-noise ratio (SNR). Subsequent heterodyne detection and digitization of

the amplified signal imprints the information of the qubit state in the in-phase (I)

and quadrature (Q) components of the output signal, as depicted in Figure 6-1(a).

For multi-qubit systems, there are three main qubit-state-readout approaches.

First, each qubit can be measured with a separate readout resonator, feedline, and

amplifier chain—a resource-intensive approach with minimal crosstalk. Alterna-

tively, more resource-efficient readout architectures have several qubits coupled to

a single readout resonator [22] or use frequency-multiplexed readout signals from

multiple readout resonators [23] sharing a single feedline and amplifier chain [24].

Finally, many contemporary architectures have added Purcell filters to reduce resid-

ual off-resonant energy decay from the qubits to the resonators [25, 26].

For a qubit with static coupling to its readout resonator, energy decay and exci-

tation during the readout are typically the primary sources of qubit measurement

errors. In addition, a frequency-multiplexed readout signal contains state informa-

tion on multiple qubits and is susceptible to crosstalk-induced qubit-state-readout
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Figure 6-1: Measurement Setup and Chip. (a) Schematic of superconducting qubit
control and readout. The control and readout pulses, generated by an arbitrary
waveform generator (AWG) and up-converted to GHz frequencies using a local
oscillator (LO), are sent through attenuated signal lines to the readout resonator
on the five-qubit chip. The transmitted readout signal is amplified by a Joseph-
son traveling-wave parametric amplifier (JTWPA), a high-electron-mobility transis-
tor (HEMT), and a room-temperature amplifier. Subsequently, the signal is down-
converted to MHz frequencies and digitized—in-phase 𝐼 IF[𝑛] and quadrature 𝑄IF[𝑛]
sequences at intermediate frequencies (IF). Colored optical micrograph (b) and
associated circuit schematic (c) comprising five superconducting transmon qubits.
The qubit transition frequencies are tuned via a global flux bias. Each qubit is ca-
pacitively coupled to a quarter-wave readout resonator that couples inductively to a
bandpass (Purcell) filtered feedline. (d) The resonator frequencies 𝜔Res/2𝜋 are near
7 GHz with 𝜒/𝜅eff ratios ranging from 0.12 to 0.19, where 𝜒 and 𝜅eff are respectively
the dispersive shift and the effective resonator decay rate through the feedline. Ta-
ble of the qubit lifetimes (𝑇1) and operating frequencies (𝜔Qubit/2𝜋). Qubit color
indicate the qubit operating frequency: red (purple) → lowest (highest) operating
frequency.
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errors. Such crosstalk errors occur due to intrinsic interactions between the qubits

themselves, qubits coupling parasitically to the readout resonators associated with

other qubits, or insufficient spectral separation between readout frequencies [27].

As a result of crosstalk, state transitions due to decoherence, and other non-

idealities [28], the discrimination complexity of heterodyne signals scales with the

number of qubits, making state discrimination more challenging. There has been

significant progress in reducing error rates and measurement times for both single-

and multi-qubit devices [27, 29]. However, managing, classifying, and extracting

useful information from the measured signal remains a fundamental challenge in

light of the complex error mechanisms, such as crosstalk, introduced by multiplexed

readout at scale.

For this thesis, the focus is on multiple frequency-tunable transmon qubits [30]

arranged in a linear array with operating frequencies 𝜔Qubit/2𝜋 between 4.3 GHz

and 5.2 GHz and qubit lifetimes 𝑇1 ranging from 7 µs to 40 µs (see Appendix B for

additional details). The qubits are connected via individual co-planar waveguide

resonators to the same Purcell filtered feedline, as depicted in Figure 6-1(b,c). The

frequency-multiplexed readout tone comprises superimposed baseband signals at

intermediate frequencies (IF) between 10 MHz to 150 MHz up-converted to the in-

dividual readout resonator frequencies 𝜔Res. After passing the feedline, the trans-

mitted and phase-shifted tones are down-converted to IF. Up- and down-conversion

is conducted with a shared local oscillator at 7.127 GHz. Lastly, the down-converted

I- and Q-components of the signal are digitized with a 2 ns sampling period. The

resulting sequences, 𝐼 IF[𝑛] and 𝑄IF[𝑛], are subsequently digitally processed—the

focus of this Chapter—to extract the individual qubit states.

6.2 Superconducting Qubit-State Discriminators

Here, supervised machine learning methods to improve superconducting qubit-state

readout are employed [Chapter 5 covers the field of machine learning in more de-

tail]. This requires a classifier capable of distinguishing the qubit-state-dependent
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phase shift encoded in the discrete-time 𝐼 IF[n] and 𝑄IF[n] sequences. This section

will also review the current approaches to state discrimination (which are used as

comparative benchmarks).

6.2.1 Boxcar Filter

Boxcar filters average the equal-weighted digitally-demodulated elements of the

𝐼 IF[n] and 𝑄IF[n] discrete-time readout signal. The digital demodulation em-

ployed here is further elaborated in Subsection 6.2.5. Each boxcar filtered digitally-

demodulated sequence ℐ[n] and 𝒬[n] results in a single two-dimensional data

point in the ℐ𝒬-plane [5]. Subsequently, the resulting data set can be further pro-

cessed and discriminated, such as, for example, with a support vector machine, as

shown in Figure 6-4.

6.2.2 Matched Filter (MF) Threshold Discriminator

Matched filter (MF) windows are generalized windowing functions with each ele-

ment optimized to maximize the SNR within a given system noise model [31]. The

boxcar window is the simplest example of a filter in the absence of such a noise

model. For additive stationary noise independent of the qubit state and diagonal

Gaussian covariance matrices, the optimal filter 𝑘𝑖[n] in terms of the SNR uses a

‘window’ or ‘kernel,’ proportional to the difference between the mean ground- and

excited-state-readout signal normalized by its standard deviation, referred to as a

‘matched filter’ in Ref. [32], ‘mode matched filter’ in Ref. [27], or as ‘Fisher’s lin-

ear discriminant’ in the context of statistics and machine learning [33] [further

described in Chapter 5.2]. Applying such a matched filter reduces each readout

single-shot measurement to a single one-dimensional value dependent on the qubit-

state-dependent phase, allowing the qubit states to be discriminated by a simple

threshold classifier. Here, a discriminator composed of a matched filter [32] and

subsequently optimized threshold is referred to as MF.

While MFs are computationally efficient and provably optimal (for stationary
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Figure 6-2: Readout Data Statistics. (a) Magnitude of the time-bin weights of
the qubit-specific matched filter shapes derived using prepared ground and excited
states. A rectangular window (RW) is applied to each matched filter kernel to
reduce the impact of qubit-energy decays and maximize qubit-state-assignment fi-
delities. The resulting matched filter windows are shaded in gray. (b) Shown are
the histograms of the qubit-state-readout single-shot traces after applying the opti-
mized 1 µs-long matched filter. The dashed lines represent the optimized thresholds
with the states to the right attributed to the ground state and left to the excited
state. Using bimodal Gaussian fit functions for the ground state (green) and tri-
modal Gaussian fit functions for the excited state (blue) provides insight into the
underlying dynamics such as thermal excitation or qubit-energy decays (see Ta-
ble 6.1).

noise) for single qubits, as shown in Appendix C, the computational complexity to

derive multi-qubit MFs scales exponentially in the number of qubits, N [34]. Con-

sequently, in practice, multi-qubit readout is conducted per qubit with individually

optimized single-qubit MFs—the approach used for many contemporary single- and

multi-qubit readout schemes [14, 27, 32, 35, 36] and does not account for noise

sources and nonidealities present in multi-qubit systems.

In the discussed matched filter implementation, as illustrated in Figure 6-2(a),

each matched filter kernel is multiplied with a rectangular window to limit the

impact of nonidealities such as qubit-energy decay. Summing up the element-wise

product of the windowed matched filter kernel 𝑘𝑖[n] and the readout signal, ℐ𝑖[n]
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Figure 6-3: Time-dependent Qubit-State-
Assignment Fidelity. Matched filter dis-
criminator for each qubit versus measure-
ment time. The maximum assignment fi-
delity ℱ𝑖(𝑡𝑖) for each qubit 𝑖 is reached
after 𝑡1 = 1 µs, 𝑡2 = 2 µs, 𝑡3 = 0.5 µs,
𝑡4 = 0.8 µs, and 𝑡5 = 0.5 µs.
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and 𝒬𝑖[n], yields a distribution along a single dimension (here, along ℐ𝑖). After

matched filter summation, an optimized threshold partitions the one-dimensional

projection into a ground- and excited-state class, depicted in Figure 6-2(b). The

assignment fidelities for each matched filter for varying measurement times are

shown in Figure 6-3. Finally, the concatenation of the one-bit labels assigned by

each single-qubit discriminator yields the assigned five-qubit-state label. Note, the

demodulation step at intermediate frequencies using e−j𝜔IF
i n with 𝜔IF

𝑖 (as described

in Chapter 3.2 and Ref. [5]) can be incorporated in the kernel tune-up.

Under the assumption of symmetric noise, the achievable assignment fidelity

depends on the separation 𝑅 between the ground- and excited-state-readout signals

𝑆0 and 𝑆1 and is referred to as the Fisher criterion [37]. The separation 𝑅 is defined

as

𝑅 = (⟨𝑆0⟩ − ⟨𝑆1⟩)2/var(𝑆), (6.1)

with a symmetric variance, var(𝑆) = var(𝑆0) = var(𝑆1) (⟨𝑓⟩ denotes the mean value

of 𝑓). For Gaussian distributed states and diagonal covariance matrices, 𝑅 can be

maximized using the introduced matched filter kernel 𝑘 ∝ ⟨𝑆0 − 𝑆1⟩/[var(𝑆0) +

var(𝑆1)] [32, 33]. For a system with additive stationary noise independent of the

qubit state and diagonal Gaussian covariance matrices, the maximally achievable
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assignment fidelity is

ℱach =
1

2

[︁
1 + erf

(︁√︀
𝑅/8

)︁]︁
, (6.2)

with erf(𝑧), the Gauss error function of 𝑧.

The qubit-readout-state histograms that result after the matched filters are fit

with Gaussian functions are shown in Figure 6-2(b). For the fit functions, the

variance for the ground and excited state are kept identical to evaluate the ex-

pected achievable discrimination fidelity ℱach, as presented in Table 6.1. Fitting

the ground state with a bimodal and the excited state with a trimodal Gaussian

fit reveals aspects of the state transition dynamics such as thermal excitations or

qubit-energy decays. The product of the label and achievable fidelity provides an

estimation of the upper boundary for the matched filter (MF) discriminator qubit-

state-assignment fidelity ℱMF, as shown in the last column of Table 6.1.

In the used experimental setup [described in Appendix B.1] the highest qubit-

state-assignment fidelity for MFs is achieved using time traces recorded with the

other qubits (spectator qubits) initialized in their ground states, as depicted in Fig-

ure 6-6(b) for five qubits and in Figure 6-7 for a one and three qubits. This obser-

vation is a consequence of the simple noise model presumed for the MF, and thus,

the MF discriminator does not capture multi-qubit readout crosstalk. In this thesis,

the MF is used as a baseline to compare the following methods.

6.2.3 Support Vector Machine (SVM)

Support vector machines (SVM) are quadratic programs [38, 39] with the objec-

tive to maximize the distance between each data point and a decision boundary,

a learned hyperplane separating two distinct classes. SVMs are a purely geometric

approach to discrimination. For a single superconducting qubit, it has been reported

that SVMs generate decision boundaries superior to that of MFs, as realistic noise

deviates from the simple single-qubit noise model assumed for the MF [13].

Similar to the MF approach, multi-qubit-state discrimination can be conducted

using a SVM classifier per qubit-readout signal, as exemplified using boxcar filtered
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Table 6.1: Matched Filter Statistics. Numerical values extracted from Gaussian fits
to readout data distribution after a 1 µs-measurement time using a matched filter,
as illustrated in Figure 6-2(a,b). The peak ratio of bimodal Gaussian fits (with
equal variance) to the readout-traces histograms of qubits initialized in the ground
state (no pulse applied: ∅) provide insight in the thermal excitation probability
𝒫(1|∅). Comparing the peak ratios for trimodal Gaussian fits to the readout-traces
histograms of qubits initialized in the excited state (𝜋-pulse applied: 𝜋) indicate
the conditional probability for qubit-energy decays 𝒫(0|𝜋) and second-excited state
population 𝒫(2|𝜋). ℱlabel = 1 − (𝒫(1|∅) + 𝒫(0|𝜋))/2 denotes a lower boundary for
the initialization fidelity and thus the label accuracy using the conditional state tran-
sition rates. ℱ𝜋 represents the fitted 𝜋-pulse fidelities resulting in the preparation
fidelities ℱprep = (1+[1−2𝒫(1|∅)]ℱ𝜋)/2. ⟨𝑆0⟩, ⟨𝑆1⟩, and var(𝑆) are the mean ground
state, mean excited state, and variance of both states used to derive the Fisher cri-
terion 𝑅 and achievable assignment fidelity ℱach (see Equation 6.1, 6.2). ℱMF, the
product of ℱlabel and ℱach, is an estimate for an upper qubit-state-assignment fidelity
bound for a classifier composed of a matched filter and the subsequent optimized
threshold, here referred to as MF.

Qubit 𝒫(1𝑖|∅𝑖) 𝒫(2𝑖|∅𝑖) 𝒫(0𝑖|𝜋𝑖) 𝒫(2𝑖|𝜋𝑖) ℱlabel ℱ𝜋 ℱprep

1 0.005 ≪0.001 0.038 0.001 0.979 0.999 0.995
2 0.003 ≪0.001 0.106 0.019 16 0.977 0.986
3 0.006 ≪0.001 0.057 0.052 0.968 0.965 0.977
4 0.009 0.018 0.051 0.734 0.961 0.970 0.976
5 0.003 ≪0.001 0.036 ≪0.001 0.981 0.976 0.985

Qubit ⟨𝑆0⟩ ⟨𝑆1⟩ var(𝑆) 𝑅 ℱach ℱMF

1 1.061 -17 0.388 26.817 0.995 0.974
2 0.523 -1.145 0.963 3.001 0.807 0.773
3 0.731 -1.181 0.355 28.927 0.996 0.965
4 1.003 -0.101 0.247 19.953 0.987 0.950
5 0.852 -1.164 0.348 33.614 0.998 0.979
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Figure 6-4: Support Vector Machine. Plotted are boxcar filtered single-shot traces
of ground (black) and excited states (gray) in the ℐ𝒬-plane. A linear support vector
machine trained on the two-dimensional data generates the qubit-specific colored
discrimination boundary.

readout traces shown in Figure 6-4. However, in contrast to the MF tune-up, the

highest assignment fidelity is achieved when the SVMs are trained using qubit-

state measurement traces with the spectator qubits prepared in all combinations of

ground and excited states.

Alternatively, multi-qubit states can be discriminated by a single SVM com-

posed of several hyperplanes that partition the complete multidimensional ℐ𝒬-

space, shown in Figure 6-8(c). Such a multi-qubit SVM can be tuned using a

‘one-versus-all’ strategy. As a result, 2𝑁 (N, the number of qubits) two-class dis-

crimination problems with a single qubit state as one class and the remaining qubit

states as the other are solved. The analysis reveals that linear SVMs (LSVM) used

as parallel single- and multi-qubit discriminators outperform their nonlinear coun-

terparts in robustness, computational efficiency, and assignment fidelity.

The scikit-learn library is used to implement single-qubit and multi-qubit lin-

ear and nonlinear SVMs in Python [40]. The LinearSVC is employed to implement

linear and SVC for nonlinear soft-margin SVMs with regularization parameters opti-

mized per discriminator to deliver the maximally achievable qubit-state-assignment

fidelity. In general, the training wall-clock-time for a SVM implemented using Lin-

earSVC is significantly reduced relative to the training time required for SVC SVMs.

However, Nonlinear SVMs can only be implemented in SVC, as LinearSVC does

not offer the kernel trick (described in Chapter 5.3). In addition to the resulting

unfavorable scaling of the training wall-clock-time of nonlinear SVMs, the multi-
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dimensional optimization problem, if tasked to discriminate multiple qubit states,

mainly resulted in suboptimal hyperplanes and poor generalization. Consequently,

the assignment fidelity was drastically reduced, as displayed below in the discrimi-

nator performance overview in Figure 6-7. Therefore, the study of nonlinear SVMs

is limited to a basic characterization due to the lack of qubit-state-assignment fi-

delity robustness and the training-time requirements (for five qubits more than one

day). Henceforth, the focus is on linear soft-margin SVMs as parallel single-qubit

or multi-qubit discriminators (in the one-versus-all mode).

6.2.4 Neural Networks

Neural networks are mapping functions composed of arbitrarily connected nodes

arranged in layers [41], as illustrated in Figure 6-5(a) and (b). Different neural

network archetypes can be generated depending on the layer organization and the

functions governing the connections between nodes.

In this thesis, three of the most common and successful NNs are investigated:

fully-connected feedforward neural networks (FNN), which are among the most el-

ementary neural networks, convolutional neural networks (CNN) known for their

success as image classifiers, and long short-term memory recurrent neural networks

(LSTM) popular in language processing. The fully-connected FNN with three hid-

den layers excelled in assignment fidelity compared to the other neural network

types.

The fully-connected feedforward neural network (FNN) (implemented using the

PyTorch library [42]) outperforms the other network architectures in qubit-state-

assignment fidelity. The number of nodes composing the input layer depends on

the measurement time and the size of the discrete time-bins—here 2 ns. For a 1 µs-

long measurement time, the input layer contains 1,000 nodes with the in-phase

and quadrature components alternating. The dimension of the first hidden layer is

equal to, the second hidden layer is half of, and the third hidden layer is a quarter

of the input layer dimension. Finally, the output layer consists of 2𝑁 nodes, with
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N being the number of qubits (32 for the five-qubit readout focused on here). The

activation function, the nonlinear filter acting on the hidden layer nodes, is a scaled

exponential linear unit (SELU) [43], instead of the common rectified linear unit

(ReLU) [44] due to its improved robustness and learning rate. The output layer is

filtered using a softmax function softmax(𝑥𝑖) = exp(𝑥𝑖)/
∑︀

𝑗 exp(𝑥𝑗). The network

is trained (validation-training set ratio of 0.35) using the Adam optimizer [45] with

categorical cross-entropy as the loss function.

Multiple training cycles, referred to as epochs, are required to ensure the dis-

criminator output converges to the maximum qubit-state-assignment fidelity. The

number of epochs to reach a convergence plateau depends on the correction fac-

tor per cycle, the so-called learning rate. It starts with a more aggressive learn-

ing rate of 0.001—a typical value for neural networks—and gradually decreases

as the qubit-state-assignment fidelity starts plateauing around 250 epochs. Further-

more, the entire training set is randomly divided into normalized sub-training units,

termed batches [46]. The batch size specifies after how many training samples the

neural network weights are updated. The choice of batch size affects the wall-

clock-training time and generalization, or in other words, how well the discrimina-

tor performs on unseen data compared to the training set. A batch size of 1,024

was found to achieve a good balance between assignment fidelity, generalization,

and wall-clock-training time. An average wall-clock-training time of about half an

hour for five qubits is recorded. The learning rate, generalization, and the optimal

number of epochs as the number of qubits increases are shown in Figure 6-5(c).

In contrast to the MF and LSVM, the FNN can directly discriminate the frequency-

multiplexed multi-qubit readout sequences 𝐼 IF[n] and 𝑄IF[n] without demodula-

tion or filtering. Thus, training the network directly on the multiplexed readout

signal bypasses the need for further preprocessing stages, suggesting a more effi-

cient use of the measurement output, as illustrated in Figure 6-8(d). In addition,

fewer independent operations in the readout chain may reduce the possibility of

systematic errors.
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Figure 6-5: Architecture and Training of Fully-Connected Feedforward Neural Net-
work (FNN). (a) The FNN architecture used here comprises an input layer, three
hidden layers, and an output layer. For a 1 µs-long measurement time, the input
layer consists of 1,000 nodes. 1,000, 500, and 250 nodes form the first, second,
and third hidden layer (the shown number of nodes per layer does not reflect the
reported implementation). The output layer scales as 2𝑁 (N denotes the number of
qubits). For five qubits, the output layer encompasses 32 nodes. The inset at the
bottom shows a node as a part of the hidden layer 𝑙. The node’s function depends
on the following parameter inputs: the output values 𝑥𝑙−1

𝑛 of the prior layer 𝑙−1 and
a node-specific bias 𝑏. The output value 𝑥𝑙

𝑚 of node 𝑚 corresponds to the weighted
(weights 𝑤𝑛) sum of the inputs 𝑥𝑙−1

𝑛 and the bias 𝑏 after passing through an acti-
vation function, here a scaled exponential linear unit (SELU), shown in blue. (b)
Shown is the training performance for an FNN tasked to discriminate 𝑁 qubits with
𝑁 = 1, 2, . . . , 5. The generalization—the ratio of the geometric mean test ℱ test

GM and
training qubit-state-assignment fidelity ℱ train

GM —as the number of epochs increases
is shown in black using the left y-axis. The associated standard deviation of the
generalization is indicated in gray. The number of epochs to achieve the maximum
qubit-state-assignment fidelity is indicated with a red vertical bar. The learning rate
𝜂, shown in blue and using the right y-axis, is gradually reduced as the number of
epochs increases.
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6.2.5 Discriminator Comparison

In addition to a specific choice of discriminator, the to-be-discriminated data can

be differently prepared. Typically, the discrete time readout signals at intermediate

frequency, 𝑧IF[n] = 𝐼 IF[n] + 𝑗𝑄IF[n], are digitally demodulated following the steps

outlined in Figure 6-6(a) and Ref [5]. The signal components ℐ𝑖[n] = Re (𝑧𝑖[n])

and 𝒬𝑖[n] = Im (𝑧𝑖[n]) can be boxcar filtered [5] or kept as a sequences ℐ𝑖[n] and

𝒬𝑖[n]. For digitally demodulated data and multi-qubit discrimination, 𝑧IF[n] are

demodulated at each intermediate frequency. The resulting digitally demodulated

time traces need to be stacked up to form a single data block before being used as

the input to the multi-qubit discriminator.

Furthermore, the training data set can be composed of all the qubit states’ per-

mutations or a specific subset. Here, the focus is on either training discriminators

with qubits not involved in the training process, the spectator qubits, in all combi-

nations of the ground and excited state (indicated as *), or kept in the ground state

(denoted by ∅).

The comparison is conducted for a measurement time of 1 µs after which four

out of five qubits have reached their maximum assignment fidelity for matched

filters, as shown below in Figure 6-3. For five qubits, a 1 µs-long measurement time,

and 10,000 training instances, a comparison of the qubit-state-assignment fidelity

of the above introduced single- and multi-qubit discriminator approaches is shown

in Figure 6-6(b). Optimizing the threshold of MFs and using training data with the

spectator qubits in the ground state increases the qubit-state-assignment fidelity.

Single-qubit linear SVMs perform best if tasked to discriminate vectorized digitally-

demodulated data and trained with a data set with all qubit-state combinations

represented. Multi-qubit linear SVMs appear to perform better if tasked to dis-

criminate digitally demodulated readout signals. On the contrary, neural networks

perform the best if unprocessed data is used. The feedforward neural network

outperforms its counterparts, the recurrent and convolutional neural network, in

achieving qubit-state-assignment fidelity.
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Figure 6-6: Measurement Data Processing and Discrimination. (a) 𝑀 -dimensional
data (𝑧IF[n]) processing for single-qubit (SQ) and multi-qubit (MQ) discrimination.
For single-qubit discrimination, 𝑧IF[n] is digitally demodulated at the intermediate
frequency of a resonator 𝑖. Thereafter, the signal 𝑧𝑖[n] can either be simplified with
a boxcar filter (BF) [ 1

𝑀

∑︀
𝑛 𝑧𝑖[n] = ℐ̄𝑖 + 𝑗𝒬̄] or kept as sequences ℐ𝑖[n] and 𝒬𝑖[n].

The discriminators can either be trained with the spectator qubits exclusively in
their ground state (denoted by ∅) or in either their ground or excited state (de-
noted by *). For multi-qubit discriminators, the digitally demodulated signals 𝑧𝑖[n]
at all resonator frequencies 𝑖 are stacked up. The resulting data block is subse-
quently used for the discriminator training. Alternatively, the discriminator can be
tasked to discriminate 𝑧IF[n] directly without any digital preprocessing. (b) Com-
parison of the geometric mean qubit-state-assignment fidelity for five qubits after a
1 µs-long measurement and 10,000 training instances per qubit-state configuration.
All single-qubit discriminators are evaluated using training data with the spectator
qubits in the ground and all ground and excited state combinations. The matched
filter (MF) threshold discriminator [the matched filter is part of the discriminator
and thus not shown in (a)] is shown in two configurations; the threshold set to 0
and the threshold optimized. The linear support vector machine (SVM) is applied
to boxcar-filtered (BF) and time-trace data of ℐ𝑖[n] and 𝒬𝑖[n]. The multi-qubit
discriminators are evaluated utilizing digitally demodulated and unprocessed data.
Shown are a multi-qubit linear SVM, a recurrent neural network (NN), a convolu-
tional NN, and feedforward NN.
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Figure 6-7: Single-Qubit and Three-Qubit Discrimination. (a) Comparison of the
qubit-state-assignment fidelity for qubit 1. (b) Comparison of the geometric mean
qubit-state-assignment fidelity for qubit 1, 3, and 5. The analysis in (a) and (b)
is conducted for a 1 µs-long measurement and 10,000 training instances per qubit-
state configuration. All single-qubit discriminators are evaluated using training data
with the spectator qubits in the ground and all ground and excited state combina-
tions. The matched filter (MF) threshold discriminator is evaluated in two con-
figurations; the threshold set to 0 and the threshold optimized. The linear support
vector machine (SVM) is applied to boxcar-filtered (BF) and time-trace data of ℐ𝑖[n]
and 𝒬𝑖[n]. The multi-qubit discriminators are evaluated utilizing digitally demodu-
lated and unprocessed data. Shown are a multi-qubit linear SVM, a recurrent neural
network (NN), a convolutional NN, and feedforward NN.
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Figure 6-8: Focused Measurement Data Processing and Discrimination. (a) Su-
perconducting qubit-state discrimination can be accomplished using a single-qubit
matched filter (MF) with kernel 𝑘𝑖[n] which serves as a windowing function that
projects the readout signals to a single axis and subsequent discriminator thresh-
old optimization (no pulse applied, denoted by ∅, qubit initialized in the ground
state: ∅ → |0⟩ and labeled as 0; 𝜋-pulse applied, denoted by 𝜋, qubit initialized
in the excited state: 𝜋 → |1⟩ and labeled as 1). (b) Single-qubit linear support
vector machines (SQ-LSVM), (c) multi-qubit LSVMs (MQ-LSVM), and (d) fully-
connected feedforward neural networks (NN) are analyzed as alternatives to MFs.
The qubit-state-assignment fidelity of the MF and LSVM is maximized if the inter-
mediate frequency signal (𝑧IF[n] = 𝐼 IF[n] + j𝑄IF[n]) is digitally demodulated (e.g.,
for resonator 1: 𝑧IF[n].*−j𝜔IF

1 n = ℐ1[n] + j𝒬1[n] with .* indicating an element-wise
multiplication). The training data is relabelled to train five parallel single-qubit
discriminators (MF, SQ-LSVM). The training data can either be limited to measure-
ments during which spectator qubits are kept in their ground state (denoted by ∅)
or in all combinations of the ground and excited state (symbolized by *. The MQ-
LSVM as a single multi-qubit discriminator requires the digitally demodulated data
stacked up to form a single data block. The feedforward neural networks does not
require any digital demodulation or preprocessing.
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6.3 Experimental Comparison of

Qubit-State Discriminators

Figure 6-6 compares the performance of parallelized single-qubit MFs, parallelized

single-qubit LSVMs (SQ-LSVM), multi-qubit LSVM (MQ-LSVM), and FNN discrimi-

nator using the introduced five-qubit chip. These approaches are the best perform-

ing discriminators per classifier type. The same qubit-readout sequences 𝐼 IF[n] and

𝑄IF[n] with varying amounts of preprocessing [Figure 6-8]—are used for all ap-

proaches. The discrimination results, a five-bit string with each bit representing

the assigned state of a qubit, are compared. The qubit-state-assignment fidelity for

qubit 𝑖 is

ℱ𝑖 = 1− [𝑃 (0𝑖|𝜋𝑖) + 𝑃 (1𝑖|∅𝑖)]/2, (6.3)

where 𝑃 (0𝑖|𝜋𝑖) is the conditional probability of assigning the ground state with label

0 to qubit 𝑖 when prepared in the excited state with a 𝜋-pulse applied. 𝑃 (1𝑖|∅𝑖) is the

conditional probability of assigning the excited state with label 1 to qubit 𝑖 when

prepared in the ground state (no pulse applied: ∅).

The data to train and evaluate the discriminator performance was acquired using

the five-qubit chip introduced in Figure 6-1(b,c). For five qubits, all 32 qubit-state

permutations are sequentially initialized, and the measurement output is recorded.

The generated data set contains 50,000 single-shot sequences 𝐼 IF[n] and 𝑄IF[n]

recorded over 2 µs for each qubit-state configuration. The recorded data set is sub-

sequently divided into a randomized training and test set (15,000 traces per qubit-

state configuration for training and 35,000 for testing). All of the following results

are evaluated using 35,000 single-shot measurements per qubit-state configuration.

The assignment fidelity per qubit using the geometric mean assignment fidelity

is quantified as,

ℱGM = (ℱ1ℱ2ℱ3ℱ4ℱ5)
1/5, (6.4)

with each qubit-state-assignment fidelity defined by Equation 6.3. Both SVM ap-

proaches raise the assignment fidelity relative to the MF, with the parallelized
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Figure 6-9: Qubit-State-Assignment Fidelity. (a) Geometric mean qubit-state-
assignment fidelity ℱGM (Equation 6.4) for five qubits versus measurement time
for the matched filter (MF), single-qubit linear support vector machine (SQ-LSVM),
multi-qubit linear SVM (MQ-LSVM), and the fully-connected feedforward neural
network (FNN). (b) ℱGM versus the number of training instances for each of the
32 qubit-state configurations evaluated after a measurement time of 1 µs [verti-
cal dashed-dotted line in (a)]. (c) Achievable assignment fidelity ℱassignment per
qubit when 𝑁 = {1, 2, . . . , 5} qubits are simultaneously discriminated after a 1 µs-
measurement time. For each 𝑁 -qubit discrimination task, the spectator qubits are
initialized in their ground state. Single-qubit discrimination (𝑁 = 1): the first data
point of each of the five panels represents the single-qubit ℱassignment defined by
Equation 6.3. At the same time, the states of the four spectator qubits are initial-
ized in their ground state and not discriminated. When employed as single-qubit
discriminators, all methods perform similarly. Two-qubit discrimination (𝑁 = 2):
The following four data points show ℱassignment when the state of each panel’s qubit
is simultaneously discriminated with the state of one other qubit. N-qubit discrim-
ination (𝑁 > 2): the state of each panel’s qubit is simultaneously discriminated
with the states of 𝑁 − 1 other qubits. For each 𝑁 -qubit discrimination task, the
non-spectator qubits are indicated with a colored square at the graph bottom.
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single-qubit SVM outperforming the multi-qubit approach by 0.3 % after a 1 µs-

measurement time. For multi-class discriminators such as the MQ-LSVM, geomet-

ric constraints result in ambiguous regions without a unique class assigned [47],

which leads to poor performance relative to the other approaches. After a 1 µs-

long measurement time, the FNN, compared to the MF, increases the qubit-state-

assignment fidelity from 0.885 to 0.913—a reduction of the single-qubit assignment

error [1 − (1 − ℱFNN)/(1 − ℱMF)] by 0.244. Compared to the SQ-LSVM, the FNN

increases the qubit-state-assignment fidelity from 0.905 to 0.913 and thus reduces

the single-qubit assignment error by 0.084. The FNN yields the highest qubit-state-

assignment fidelity regardless of measurement time [Figure 6-9(a)].

Next, the assignment fidelity for different numbers of training samples per qubit

configuration, presented in Figure 6-9(b), is evaluated. The assignment fidelity

of five parallel single-qubit discriminators (MF, SQ-LSVM) saturates around 1,000

training samples per qubit-state configuration. The assignment fidelity of the FNN

exceeds that of parallelized single-qubit discriminators after 2,500 training samples

and saturates around 10,000 training samples per qubit-state configuration. It is

estimated that the multi-qubit LSVM plateaus after approximately 40,000 training

samples per qubit-state configuration. The FNN architecture here is solely opti-

mized to maximize the qubit-state-assignment fidelity, with no consideration of the

size of training data required. Thus, these results should not be taken as an indi-

cation that DNN approaches will generically perform poorly for small training sets.

The remaining discriminator analysis is conducted after a 1 µs-measurement time

and 10,000 training samples per qubit-state configuration.

The assignment fidelity per qubit discriminated individually and in parallel with

up to 𝑁 = 5 qubits is presented in Figure 6-9(c). For 𝑁 -qubit discrimination tasks

with 𝑁 > 2, the FNN starts outperforming its discriminator alternatives. Except for

qubit 2, the per-qubit-assignment fidelity decreases with an increasing number of

discriminated qubits. A more substantial assignment fidelity decrease can be ob-

served if the resonators involved in the discrimination are closer in frequency, sug-

gesting the occurrence of readout crosstalk. In addition to readout crosstalk, qubit
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3 reveals control crosstalk with qubit 1 and 5, the qubits closest in frequency. Un-

der the assumption of additive stationary noise independent of the qubit state and

diagonal Gaussian covariance matrices, the estimated upper qubit-state-assignment

fidelity bound per qubit for MFs [13] including the label confidence listed in Ta-

ble 6.2. ℱMF
2 is primarily reduced due to 𝑇1-events and limited qubit-state separa-

tion in the ℐ𝒬-plane. The different discriminators yield a similar assignment fidelity

within a few tenths of a percent of the upper MF assignment fidelity bound—except

for qubit 2, where it is off by a few percent—when tasked to discriminate a single

qubit, as shown in Table 6.2. The small discrepancy between this upper bound and

the achieved assignment fidelity suggests that the noise sources affecting single-

qubit readout in the presented devices are reasonably well approximated by addi-

tive stationary noise independent of the qubit state and diagonal Gaussian covari-

ance matrices. As the number of simultaneously discriminated qubits increases,

the assignment fidelity increasingly deviates from ℱMF
𝑖 , revealing system dynamics

unaccounted for by the Gaussian noise model.
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6.3.1 Confusion Matrix

The confusion matrix, a matrix 𝒫assign with the qubit-state-assignment probability

distribution for each prepared qubit-state configuration as rows, provides further

insight into the underlying error mechanisms. The confusion matrix is the identity

matrix if each prepared state is correctly labeled and assigned. In practice, in addi-

tion to misclassification, the preparation of states can be imperfect. The estimated

mean state preparation fidelities for each qubit are (see Table 6.1): ℱprep
1 ≈ 0.995,

ℱprep
2 ≈ 0.986, ℱprep

3 ≈ 0.977, ℱprep
4 ≈ 0.976, and ℱprep

5 ≈ 0.985.

To gain a deeper understanding of the qubit-state-assignment probabilities, the

metric of confusion matrices are analyzed. Figure 6-10(a) and (b) illustrate the

confusion matrix for the FNN and MF discriminator. For an ideal confusion matrix

with all prepared states agreeing with the assigned state, the confusion matrix is

an identity matrix. To evaluate the overlap between an identity matrix (entries

represented as a Kronecker delta 𝛿𝑖𝑗 with i and j representing the indices of the

matrix row and column) and a confusion matrix (with entries 𝑐𝑖𝑗), the following

metric based on the Frobenius norm is proposed

||A||F =

√︃∑︁
𝑖

∑︁
𝑗

|𝑐𝑖𝑗 − 𝛿𝑖𝑗|2. (6.5)

To bound the Frobenius norm between 1 and 0, the Frobenius norm is normal-

ized by the maximum value of Equation 6.5 (
√

2𝑁+1). The normalized Frobenius

norm is equal to 0 if the confusion matrix is exactly an identity matrix. An alter-

native representation more closely related to the fidelity metric can be expressed

as

ℱN = 1− ||A||F√
2𝑁+1

. (6.6)

The MF achieves ℱN = 0.644, whereas the FNN yields a value of ℱN = 0.691, a

relative improvement of 7.3 %.

Next, the qubit-state-dependent assignment probability of the FNN relative to

the MF is expressed as the difference between their respective confusion matrices,
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Figure 6-10: Confusion Matrix. Confusion (assignment probability) matrix of the
feedforward neural network (FNN) (a) and matched filter (MF) (b). The rows of
the confusion matrix encompass the probability distribution of the discriminator
to assign each of the 32 qubit-state configurations to the row’s prepared qubit-state
configuration (no pulse applied, qubit initialized in the ground state: ∅ → 0; 𝜋-pulse
applied, qubit initialized in the excited state: 𝜋 → 1). The probabilities of correctly
classified states–on the diagonal–are shown in blue, whereas the misclassification
probabilities–the off-diagonals–are shown in red. ℱN, introduced in Equation 6.5,
represents a metric to indicate the overlap between the confusion matrix and an
identity matrix (the ideal confusion matrix). ℱN = 1 if the confusion matrix is an
identity matrix.
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Figure 6-11: Qubit-State-Assignment Fidelity Analysis. (a) Difference between
the confusion (assignment probability) matrix of the feedforward neural network
(FNN) 𝒫FNN

assign and of the matched filter (MF) 𝒫MF
assign [shown in Figure 6-10]. The

rows of the confusion matrix encompass the discriminator’s probability distribution
to assign each of the 32 qubit-state configurations to the row’s prepared qubit-state
configuration (no pulse applied, qubit initialized in the ground state: ∅ → 0; 𝜋-
pulse applied, qubit initialized in the excited state: 𝜋 → 1). An increase (decrease)
in the relative state-assignment probability is marked in red (blue). Red diagonal
and blue off-diagonal elements indicate an improvement of the FNN over MF dis-
crimination performance. (b) The cutouts [bold frame in the lower right corner of
(a)] of the FNN, MF, and resulting relative confusion matrix display the most promi-
nent pattern that arises due to the discrimination of qubit 2. (c) The FNN and MF
cross-fidelity matrices, as defined in Equation 6.7, indicate the discrimination cor-
relation. The off-diagonals are ideally 0. A positive (negative) matrix off-diagonal
entry indicates qubit-state assignment to be correlated (anti-correlated).

𝒫FNN
assign and 𝒫MF

assign, shown in Figure 6-11(a). The FNN generally reduces the erro-

neous off-diagonal assignment probabilities relative to the MF. The most significant

exception being the lower off-diagonal elements corresponding to decay of qubit 2,

as presented in Figure 6-11(c).

Deviations from the ideal confusion matrix occur due to initialization errors,

state transitions during the measurement, or readout crosstalk. Typically, the qubit-

state misclassifications in the lower off-diagonal block outweigh those of the upper

off-diagonal due to the greater likelihood of decay events at cryogenic temperatures.

Here, for a 1 µs-long measurement, qubit 2—the qubit with the shortest lifetime—
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Table 6.3: Readout Crosstalk. Mean absolute value, ⟨| · |⟩, of the qubit-state-
assignment correlations between readout resonators 𝑖 and 𝑗 (𝑖 ̸= 𝑗) extracted from
the cross-fidelity matrix ℱCF when using a MF or FNN discriminator.

⟨|ℱCF
𝑗=𝑖±1|⟩ ⟨|ℱCF

𝑗=𝑖±2|⟩ ⟨|ℱCF
𝑗=𝑖±3|⟩ ⟨|ℱCF

𝑗=𝑖±4|⟩

MF 0.020 0.015 0.006 ∼0
FNN 0.002 0.005 0.002 ∼0

has a 15 % probability of 𝑇1-decay, such that for a significant portion of the training

measurements with qubit 2 excited, the final state of qubit 2 is the ground state.

As shown in Figure 6-11(c), the FNN is more likely to assign a ground-state

label to qubit 2 than an excited-state label, whereas the MF reveals the reverse

trend. This suggests that the assignment probabilities of the FNN agree better with

the expected error model. However, the pattern of the MF assignment probability

can be attributed to a training bias. Since measurements with qubit 2 prepared

in the excited state and corrupted by a 𝑇1-decay reveal a similar integrated signal

pattern as measurements with qubit 2 prepared in the ground state, the thresh-

old optimizer overcompensates to correctly classify 𝑇1-decay corrupted excited-state

measurements at the cost of misclassification of ground-state measurements. This

results in the misclassification pattern seen in Figure 6-11(c) for 𝒫MF
assign.

From the confusion matrix, the probability distribution of the non-zero Ham-

ming distance can be extracted. The hamming distance expresses the number of

misassigned qubits per qubit-state configuration. The assignment errors of the FNN

(MF) are 85.8 % (83.8 %) single-qubit, 13.2 % (15.0 %) two-qubit, and 0.8 % (1.0 %)

three-qubit errors. The reduction of assignment errors for the FNN compared to the

MF is universal and not specific to a unique Hamming distance error, indicating a

consistent reduction of crosstalk sensitivity.

The cross-fidelity matrix, which describes correlations between the assignment

fidelities of individual qubits [27], is studied to study crosstalk further. The cross-

fidelity ℱCF
𝑖𝑗 is defined as

ℱCF
𝑖𝑗 = ⟨1− [𝑃 (1𝑖|∅𝑗) + 𝑃 (0𝑖|𝜋𝑗)]⟩, (6.7)
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Figure 6-12: Training Wall-Clock Time.
The data set acquisition for the matched
filter (MF) scales linearly and exponen-
tially for the single-qubit LSVM (SQ-
LSVM), multi-qubit LSVM (MQ-LSVM),
and feedforward neural network (FNN).
The discriminator training remains linear
for the MF while being exponential for the
other three.
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where ∅𝑗 (𝜋𝑗) represent the preparation of qubit 𝑗 in the ground (excited) state

and 0𝑖 (1𝑖) the subsequent assignment to the ground (excited) state (⟨𝑓⟩ denotes

the mean value of a function 𝑓). A positive (negative) off-diagonal indicates a

correlation (anti-correlation) between the two qubits. Such correlations can occur

due to readout crosstalk. The off-diagonal entries for the FNN are all less than one

percent, and are drastically reduced relative to the MF, as shown in Figure 6-11(c).

Relative to the MF, the mean cross-fidelity, ⟨|ℱCF
𝑖𝑗 |⟩, for nearest neighbors (𝑗 = 𝑖±1)

is reduced by one order of magnitude from ⟨|ℱMF CF
𝑗=𝑖±1 |⟩ = 0.02 to ⟨|ℱFNN CF

𝑗=𝑖±1 |⟩ =

0.002. For neighboring readout resonators, the spectral overlap is maximized, and

thus readout crosstalk most likely to occur. In general, relative to the MF, the FNN

reduces the mean cross-fidelity for all 𝑗 ̸= 𝑖, as presented in Table 6.3. The FNN’s

reduction of assignment correlations by up to one order of magnitude corroborates

the claim of the FNN’s diminishing readout-crosstalk-related discrimination errors.

6.3.2 Training Effort

Frequency-multiplexed qubit readout is typical in today’s most advanced NISQ de-

vices [14, 27, 36, 48, 49]. While it is resource-efficient in operation, tuning up

discriminators to compensate for system nonidealities such as readout crosstalk is

computationally demanding. For the discussed five-qubit system, the train and test

218



data set collection—a total of 50,000 3 µs-long single-shot measurements for the 32

qubit-state permutations—required a wall-clock time of 28 minutes and generated

an hdf5 file with a size of 18 GB. The analysis reveals that 10,000 training and

3,500 validation and test instances, each 1.5 µs-long, are sufficient, which reduces

the data acquisition time and file size by 1/6.

The initial discriminator training time as the number of qubits scales in addition

to the training data set acquisition is shown in Figure 6-12. While the FNN approach

requires a more involved initial discrimination effort, recalibration is expected to be

significantly more efficient thanks to transfer learning [46]. The FNN will require

only a minimal effort for recalibration, while the other methods demand the same

effort for each recalibration round.

6.4 Conclusion

An approach to multi-qubit readout using neural networks as multi-qubit state dis-

criminators was demonstrated. The approach is more crosstalk-resilient than other

contemporary approaches. A fully-connected FNN increases the readout assignment

fidelity for a multi-qubit system compared to contemporary methods. The FNN com-

pensates system-nonidealities such as readout crosstalk more effectively relative to

alternatives such as matched filters (MFs) or support vector machines (SVMs). The

assignment error rate is diminished by up to 25 % and crosstalk-induced discrimi-

nation errors are suppressed by up to one order of magnitude. The relative assign-

ment fidelity improvement of the FNN over its contemporary alternatives grows as

the number of simultaneously read-out and multiplexed qubits increases.

While FNNs are initially more resource-intensive in training, re-calibration can

be significantly more efficient due to transfer learning [46]. Periodic re-calibration

of control and readout parameters is necessary as quantum systems drift in time. For

a marginal drift, neural networks can be updated at a fraction of the initial resource

requirements. Furthermore, to speed up qubit readout, the techniques developed

here can be transitioned to dedicated hardware such as field-programmable gate
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arrays (FPGA) [19].

The FNN multi-qubit-state discrimination approach was tested on a quantum

system with five superconducting qubits and frequency-multiplexed readout. While

the readout fidelity of Qubit 2 was relatively marginal, four qubits revealed multi-

qubit readout fidelities comparable with contemporary multi-qubit systems, albeit

with measurement times around 1 µs, as shown in Figure 6-3, much longer than

the state of the art of 100 ns for single-qubit systems [29]. An improvement in

assignment fidelity using the FNN as a simultaneous discriminator for all qubits

was demonstrated. The next step is to test the performance of FNNs on higher-

fidelity multi-qubit systems with measurement times below 100 ns to assess if the

advantage is retained on already high-performing devices.

FNNs offer a readout-state discrimination approach tailored to the underlying

system. They can be readily employed to more general discrimination tasks than

were considered here, such as multi-level readout in a qudit architecture [50–53].

Neural networks used for multi-qubit readout discrimination present a potential

building block to scaling quantum processors while maintaining high-fidelity read-

out.
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Chapter 7

Superconducting

Qubit-Readout-Pulse Shaping

using Deep Reinforcement Learning

Qubit readout performance of resource-efficient quantum processors with multiple

superconducting qubits is often not on par with single-qubit readout—nonidealities

such as crosstalk limit the readout performance. In addition to the design lay-

out of the qubits and resonators, qubit-state discrimination [as described in Chap-

ter 6] and qubit-readout pulse shaping can mitigate and compensate for some of

these nonidealities. One of the imminent milestones in quantum computing is the

realization of error-corrected quantum processors. Fast and accurate readout is

necessary to engineer error-corrected quantum processors. This chapter focuses

on multi-qubit readout pulse shaping using deep reinforcement learning. Relative

to conventional readout methods, the simulations reveal that deep reinforcement

learning facilitates significantly shorter measurement times.

After a brief recap of superconducting qubit readout in Section 7.1, contem-

porary techniques and the proposed technique using deep reinforcement learning

to tune up qubit-readout pulses are discussed in Section 7.2. These qubit-readout

pulse shaping techniques are compared using a multi-qubit model. Finally, the re-

sults and simulation details are presented in Section 7.3.
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7.1 Superconducting Qubit-Readout-Pulse Shaping

The final step of each quantum computation is qubit-readout. The accuracy of qubit

readout, however, impacts the performance of quantum processors beyond the final

stage. For example, quantum error correction protocols require repeated readout

of syndrome qubits while the computation is still in progress [1–3]. While error-

corrected quantum processors are not readily available yet, algorithms that can

be implemented on contemporary noisy intermediate-scale quantum (NISQ) sys-

tems [4] require iterative readout routines to optimize a target quantum state [5,

6]. The number of computational steps is limited by the qubit coherence time.

Therefore, qubit readout must be significantly faster than the quantum processor’s

coherence time, typically well below one microsecond for superconducting qubits.

The necessary qubit-readout measurement time depends on the system design, the

control setup, the pulse shape, and the readout discriminator, as discussed in Chap-

ter 6. The focus here is on readout pulse shapes, particularly on qubit-readout-pulse

shapes for multi-qubit systems using deep reinforcement learning.

As introduced in Chapter 3.2, superconducting qubit readout is generally per-

formed in the dispersive regime [7]. In the dispersive regime, where the resonator

frequency is far-detuned from the qubit, a probe signal at the resonator frequency,

transmitted or reflected off the resonator, acquires a qubit-state dependent phase or

amplitude shift 𝜒. To remain in the dispersive regime, the readout resonator pop-

ulation has to remain below a critical photon number, typically tens to hundreds

of photons. The dephasing of the qubit accelerates with rising photon numbers

populating the resonator [8]. However, faster qubit-state measurements require

higher photon population numbers. Therefore, a photon population number has to

be carefully chosen to balance these two effects. The leakage rate of the resonator

depends on the resonator linewidth 𝜅 and resonance frequency 𝜔𝑟. The higher

the quality factor 𝑄 = 𝜔𝑟/𝜅, the lower the leakage and the slower the potential

measurement. However, for low-𝑄 resonators, the qubit can suffer from dephasing

through the resonator. The dephasing can be partially mitigated with bandpass fil-
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ters, often referred to as Purcell filters [9]. For fast measurements, in addition to a

low-𝑄 resonator, it is critical for the leaking photons to acquire the dispersive shift

sufficiently fast to enable qubit-state discrimination. It can be shown that the ratio

between the dispersive shift and the resonator linewidth should be 𝜒/𝜅 = 1/2 [10].

A discrimination fidelity of 99.2% after a measurement time of 88 ns is state-of-the-

art.

Resource-efficient readout designs for multi-qubit systems are often based on

frequency-multiplexed readout signals from multiple readout resonators [11] shar-

ing a single feedline and amplifier chain [12]. Therefore, for frequency-multiplexed

readout architectures, the qubit readout pulse shapes are frequency-multiplexed as

well. Additionally, many contemporary architectures utilize the aforementioned

Purcell filters to limit residual off-resonant energy decay from the qubits to the

resonators [13, 14]. Consequently, qubit readout can suffer from crosstalk due to

the shared bandpass-filtered feedline, making multi-qubit-readout pulse shaping a

complicated endeavor.

For systems with multiple superconducting qubits, readout crosstalk is a com-

bination of (1) interactions between the generated readout probe signals, (2) pho-

ton population due to a residual coupling to a probe tone or neighboring read-

out resonators, (3) coupling between readout resonator and neighboring qubits,

and (4) interactions between reflected/transmitted readout signals in the ampli-

fier chain, mixers, or during analog demodulation and digitization. Fast read-

out, such as necessary for ancilla qubits as part of a quantum error correction

protocol [3, 15], requires wide resonator linewidths 𝜅. The qubit transition fre-

quency constrains the frequency spacing between readout resonators, the number

of frequency-multiplexed probe tones, and the readout amplifier chain bandwidth.

Readout crosstalk is proportional to the spectral overlap between resonators, and

thus, the wider the resonator spectra, the more readout crosstalk [16]. Therefore,

readout crosstalk is expected to be a particularly significant error source for fast

frequency-multiplexed qubit readout.

For this thesis, the focus is on multiple frequency-tunable transmon qubits [17]
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arranged in a linear array with operating frequencies 𝜔Qubit/2𝜋 between 4.3 GHz

and 5.2 GHz (see Appendix B.2 for additional details). The qubits are connected

via individual co-planar waveguide resonators to the same Purcell filtered feedline,

as illustrated in Figure 6-1(b,c). Deep reinforcement learning (DRL) [introduced

in Chapter 5.1.3] improves readout pulse shapes. Here, reinforcement learning

algorithms ‘learn’ a task by interacting with the quantum system itself, and thus a

model that describes the system dynamics is unnecessary [18]. In the past, DRL

has been used to calibrate a two-qubit gate in simulation [19].

7.2 Superconducting Qubit-Readout-Pulse Shapes

Generally, qubit-readout pulse shaping aims to inject photons into a resonator and

to deplete the photons at the end of the measurement as rapidly as possible. The

section between photon injection and depletion depends on the system and the em-

ployed qubit-state discriminator. These three sections have to be optimized such

that the qubit-dephasing remains limited. For single qubits, the so-called cavity

level excitation and reset (CLEAR) pulse, a rectangular pulse with modified pulse

flanks, can inject and deplete photons from a resonator optimally from an empiri-

cal perspective [20]. A rectangular and a CLEAR pulse, including the three pulse

shaping sections, are depicted in Fig 7-1(a). The CLEAR pulse method has been

shown to reduce the resonator depletion time by a factor of two compared to a

passive reset. A passive reset depends on the cavity leakage rate 𝜅 while no pulse

is applied. Hence the terminology ‘passive.’ Readout pulse shaping methods have

not been demonstrated for multi-qubit systems. Therefore, the efficacy of CLEAR

for multi-qubit systems is unclear. This chapter addresses this open question.

7.2.1 Rectangular Qubit-Readout Pulse

The most straightforward readout pulse shape is a rectangular qubit-readout pulse,

as depicted in Figure 7-1(a). The rectangular pulse width defines the measure-
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ment time and does not account for the resonator reset time during which the

resonator returns to the vacuum state. The second parameter, the rectangular pulse

amplitude, is constant. Therefore, the optimized amplitude compromises fast in-

jection and stabilizing the photon number such that the qubit dephasing remains

limited. Rectangular readout pulses can be used for the final qubit-readout stage

after all quantum computations are completed. However, for measurements during

the computation, more sophisticated readout pulses are necessary to shorten the

measurement time and resonator-reset time.

7.2.2 Cavity Level Excitation and Reset Qubit-Readout Pulse

Progress has been made by engineering readout pulses able to speed up the process

to both populate the resonator and evacuate the photons post measurement. The

cavity level excitation and reset (CLEAR) pulse can depopulate the resonator twice

as fast compared to a rectangular pulse [20]. The CLEAR pulse is a rectangular

pulse with modified pulse flanks, as illustrated in Figure 7-1(a). Two short segments

of equal length replace both edges. The four amplitude values can be empirically

optimized for a single qubit depending on the target photon population number.

The pulse amplitudes corresponding to different photon target values need to be

optimized separately. As the drive power increases, the resonator response becomes

nonlinear, and thus the optimization more complicated.

Further improvements can be achieved using gradient ascent pulse engineering

(GRAPE) to optimize the readout pulse [21]. However, these methods mainly rely

on a simple rectangular pulse with modified flanks or a gradient-based optimization

approach that relies on an accurate description of the system and a robust initial

guess that is often difficult to identify [21].

For single-qubit readout, the CLEAR pulse suffices. However, for a system with

𝑁 resonators, 4𝑁 segments have to be optimized at best, and 4𝑁 segments at worst

if crosstalk needs to be compensated. Therefore, the optimization routine becomes

increasingly demanding as the number of resonators is increased.
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Figure 7-1: Readout Pulse Shaping Introduction. (a) A basic rectangular readout
pulse (black dashed) with a normalized drive power 𝑝norm contrasted by the cavity
level excitation and reset (CLEAR) pulse (blue). The CLEAR pulse distinguishes
itself from a rectangular pulse by the rising and falling edges. A two-amplitude
segment replaces each edge to inject and deplete photons more rapidly, facilitating
a shorter measurement time. (b) Shown are the resulting photon counts for the
resonators in a five-qubit system for the rectangular pulse, shown in (a), frequency-
multiplexed probing the quantum system. The three qubit-readout-pulse-shape sec-
tions (injection, stabilization, and reset) are indicated. The injection and reset sec-
tions are subject to an optimization routine to minimize their duration. The length
of the middle part, the stabilization part, with a constant amplitude of

√
𝑝 depends

on how much of the signal needs to be acquired to discriminate the qubit states. As
shown in (b), the photon number from a rectangular pulse oscillates at first. In (c)
and (d) are two possible pathways presented to optimize readout pulse shapes. The
readout pulse shape can either be optimized by enforcing to reach a specific photon
number or delivering the maximally possible discrimination fidelity as quickly as
possible. In (c), the readout pulse shape is optimized by targeting a specific photon
number inferred by evaluating the qubit’s dephasing rate with a Ramsey measure-
ment. (d) Alternatively, the injection and stabilization part can be optimized by
targeting the maximally possible discrimination rate. To optimize the reset, how-
ever, the photon number needs to be monitored.
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Bayesian Optimization for CLEAR Amplitudes

Bayesian optimization is used to optimize the four amplitude segments. Bayesian

optimization is an effective black-box optimization scheme attempting to generate a

probabilistic model of the underlying system dynamics. The sequentially generated

model enables the identification of suitable parameters more efficiently and robustly

than standard optimization techniques such as example Nelder-Mead [22].

A disadvantage of Bayesian Optimization is that it scales poorly with the number

of to-be-optimized segments. Specifically, each update to the posterior probability

distribution makes use of all parameter-observation pairs. Therefore, more compli-

cated environments, such as multi-qubit systems, naturally require more optimiza-

tion steps to be slowed down gradually.

7.2.3 Reinforcement-Learning-Generated Qubit-Readout Pulse

For complex systems, such as multi-qubit readout, with vast numbers of different

possible states (pulses), deep neural networks are often used to approximate po-

tential actions (new pulses) and the correspondingly expected rewards (fidelity).

Several reinforcement learning algorithms are investigated to efficiently tune multi-

qubit readout pulses [described in Chapter ]. Such deep reinforcement algorithms

have offered many new avenues, such as, for example, AlphaZero, which was re-

cently used for the optimization of two-qubit gates [19]. However, the power of

this algorithm is accompanied by a significant computational effort.

The qubit-readout pulse can be mathematically modeled as an 𝑁 -dimensional

vector with each element representing a pulse amplitude. For qubit-readout pulse

shaping, the possible number of readout pulse shapes is referred to as the action

space. This action space per single dimension is bounded by the available ampli-

tudes determined by the available hardware, particularly the arbitrary wave gener-

ator. The number of available states is nearly continuous and thus modeled as such.

Finally, the reward function can depend on the number of photons in the resonator

or qubit-state discrimination fidelity.
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A model-free algorithm with a continuous action space can learn optimal poli-

cies in high-dimensional spaces more efficiently. The proximal policy optimization

(PPO) algorithm [23] is a relatively robust DRL technique that benefits from in-

expensive sampling costs of the underlying system. For instance, PPO is compu-

tationally more efficient and delivers more robust results than Deep-Q Network

algorithms, an algorithm considered here [24]. A model based on PPO with its

actor-critic approach comprises two separate neural networks, as shown in Fig-

ure 5-7. Two feedforward neural networks with two hidden layers comprising 64

nodes are employed as actor and critic networks in the underlying implementa-

tion. The actor generates new qubit-readout-pulse shapes where the critic network

tries to associate them with an expected reward. These two networks, in concert,

enable a relatively computationally efficient approach to multi-qubit readout pulse

shaping.

7.3 Qubit-Readout-Pulse Shaping Simulations

Qubit-readout-pulse shaping optimization can be divided into two separate parts:

photon injection and photon depletion. Photon injection can be optimized using

either a target photon number or the qubit-state discrimination fidelity as the opti-

mization metric. Photon depletion, on the other hand, is optimized using the pho-

ton number. The number of photons populating a resonator can be inferred through

the dephasing rate of a qubit. The different methods are presented in Figure 7-1.

In simulations using the formalism presented in Appendix A, the discrimination

fidelity is not directly accessible. Therefore, a target photon number is used for

injection and reset. The photon number is directly proportional to the readout

probe tone driving power in the linear dispersive regime.

For simplicity, the stabilization section of the readout pulse is kept constant for

all pulse shapes and is not part of the optimization. Moreover, inspired by the idea

of CLEAR [20], only half the injection section is being optimized, while the second

part is kept constant, during which the photon number stabilizes.
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The optimizer can pick amplitudes between −√𝑝 and
√
𝑝 with a resolution of

210 for the readout-resonator reset pulse segment. The resolution depends on the

employed hardware. The amplitude is mapped to the closest available discrete

amplitude for methods outputting continuous amplitudes, such as CLEAR or PPO.

To ensure realistic pulse shapes in simulation, the pulse shapes are filtered with a

Gaussian filter with a standard deviation of 𝜎 = 5 encompassing system-dependent

factors such as a nonideal step response [21, 25].

For CLEAR pulses tuned-up using Bayesian optimization, 250 random initial

points and 2,500 optimization points are used. As each optimization episode is

significantly faster for the PPO-generated pulses, the upper limit is set to 51,200

training episodes.

Readout-Resonator Photon Injection

The necessary qubit-readout measurement time depends on the photon injection

efficiency. In general, the faster photons are injected, the faster a qubit’s state can

be determined. As shown in Figure 7-1(b), for a rectangular readout pulse, the

photon number dynamics reveal two oscillations; one due to the pulse itself and

the other due to crosstalk.

Generally, readout-pulse shapes should not depend on the qubit states: the read-

out pulse shape is the same whether the qubit is in the ground or excited state.

For the optimization of the injection segment of a readout-resonator pulse, the

range of potential amplitudes is changed to 0 and 2
√
𝑃 . To ensure the qubit-

resonator interaction remains dispersive, amplitudes resulting in photon numbers

exceeding the critical photon number [as discussed in Chapter 3.2 and calculated

in Appendix B.2] are penalized by a tunable penalty term Φ > 100.

To identify optimal photon-injection pulses in simulation, the reward function

is set as the sum of the absolute difference between a resonator’s photon count 𝑛𝑟

and the target photon number 𝑛̂𝑟, which depends on the normalized drive power.

For a pulse of length 𝐿, the algorithm evaluates the stability of the photon num-

ber for the last 𝐿′ nanoseconds. A photon number is deemed stable as long as it
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remains within ±0.1 photons of the target photon number for 𝐿′ nanoseconds. Vio-

lations of the introduced conditions reduced the reward for all resonators 𝑟 ∈ 𝑅 =

{𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} as

Reward =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Φ, if ∀𝑟 ∈ 𝑅,

∀𝑙 ∈ [𝐿− 𝐿′, 𝐿],

and |𝑛̂𝑟 − 𝑛𝑙
𝑟| ≤ 0.1,

−Φ−
∑︀
𝑟∈𝑅

(︂
𝐿∑︀

𝑙=𝐿−𝐿′
|𝑛̂𝑟 − 𝑛𝑙

𝑟|
)︂
, otherwise.

(7.1)

The stable photon count length 𝐿′ is set to 100 ns.

Readout-Resonator Photon Depletion

A passive readout-resonator reset can be time-consuming and unnecessarily de-

phases the qubit. While this may not matter for the final readout, it matters for

periodic readout while quantum computations are in progress, such as for quantum

error correction protocols [3].

For passive decay, the time-dependent photon number in a resonator 𝑟 can be

expressed as 𝑛𝑟 = 𝑒−𝜅𝑡𝑝norm [20], with the resonator linewidth 𝜅 and 𝑝norm denoting

the ratio of the applied qubit-readout-pulse power and the power required to inject

a single photon in the readout resonator 𝑝 = 𝑝norm𝑃1 photon. Active readout-resonator

reset aims to reduce the decay time relative to the passive exponential decay. A

resonator is considered sufficiently close to its vacuum state and only thermally

populated once the photon number dropped below a threshold of 0.1 photon. In

addition to reducing the readout-resonator reset time, the readout-resonator-reset

pulse needs to be independent of the qubit state.

To optimize the readout-resonator reset, the reward function for each readout

resonator 𝑟 ∈ 𝑅 = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5} is defined as the negative sum of the photons
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populating the readout resonator and defined as

Reward =

⎧⎪⎨⎪⎩0, if ∀𝑟 ∈ 𝑅, 𝑛𝑟 ≤ 0.1,

−
∑︀

𝑟∈𝑅 𝑛𝑟, otherwise.
(7.2)

If the readout-resonator reset is tuned-up separately from the photon injection,

the readout resonator is populated using a 3 µs-long rectangular readout pulse with

a drive power of
√
𝑝 to inject 𝑝norm = 4. Note, this injection phase is longer than

needed to ensure all five resonators have reached equilibrium.

7.3.1 Single-Qubit Simulation

First, the different algorithms and pulse shapes are tested on a single-qubit system.

The qubit and resonator parameters described in Appendix B.2 for Qubit 1 are used.

In Figure 7-2, the pulse shapes of the CLEAR and PPO pulse are shown for the

photon injection and reset part. Furthermore, the resulting photon numbers are

compared with a rectangular readout pulse. The rectangular readout pulse requires

1470 ns to reach a stable photon number count and about 700 ns to reset. The CLEAR

and PPO pulse are nearly indistinguishable. The injection phase is reduced by 62.6 %

relative to the rectangular readout pulse to 550 ns. The readout resonator reset is

260 ns for the CLEAR pulse and 250 ns for the PPO-generated pulse, a reduction of

62.9 % and 64.3 % respectively. The difference of 10 ns between the CLEAR and PPO

pulse is due to the defined shape with both amplitudes lasting for the same amount

of time.

For single-qubit readout, the CLEAR pulse and PPO-generated pulse are effec-

tively the same. The pulses start with a high pulse amplitude to overshoot and

compensate during the injection segment. Similarly, the opposite shape behavior is

observed for the reset segment. The injection and reset amplitude level tend to use

the extreme amplitude levels at ±√𝑝. These observations agree with prior work

confirming that overshooting the particular target photon number, followed by a

correction, is typically faster than a rectangular pulse [12, 20, 26].
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Figure 7-2: Single-Qubit Readout Pulse Shapes. (a), (b), and (c) show the pulse
shapes and photon number for the photon injection part. (d), (e), and (f) present
the pulse shapes and photon numbers for the photon depletion section. (a) and (d)
show the CLEAR pulse. (b) and (e) the PPO pulse. (c) and (f) contains the expected
photon numbers of the rectangular, CLEAR, and PPO readout-resonator pulse. For a
single-qubit readout, both CLEAR and PPO outperform a rectangular readout pulse.
The pulse generated by CLEAR and PPO is virtually indistinguishable.
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7.3.2 Multi-Qubit Simulation

For the five-qubit simulations using frequency-multiplexed readout, the system pa-

rameters discussed in Appendix B.2 are used.

Figure 7-3 shows the pulse shapes and corresponding photon numbers for a rect-

angular, CLEAR, and PPO-generated pulse. A rectangular qubit-readout pulse needs

1610 ns to stabilize all five resonators. The CLEAR pulse in comparison, achieves the

same in 780 ns, a 51.6 % reduction. For a pulse shape generated using PPO, an addi-

tional speed-up can be generated and the photons injected in 600 ns, reducing the

injection phase by 62.7 % relative to a rectangular readout pulse. All five resonators
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number of four photons. The inner dashed circle indicates 0.1 photons. The ‘X’-
markers are spaced 20 ns apart. Each trajectory starts and returns to its origin.
Depending on the photon population dynamics, the trajectory changes its shape.

are reset after 700 ns. To reset the resonator, CLEAR requires 460 ns, a reduction

of 34.3 %. Similar to injection, PPO can further reduce the reset time to 380 ns,

reducing the reset time by 45.7 %.

While the pulse shapes still follow the single-qubit CLEAR trend—overshooting

and correcting—the pulse amplitudes no longer span the maximally allowed range.

There are two explanations. First, for all resonators, the reset pulse length is the

same. The resonator that requires the longest to be depleted defines that reset

pulse length. Therefore, resonators that could be reset more rapidly can choose

less aggressive amplitudes. Second, crosstalk from off-resonant pulses or parasitic

coupling between resonators or non-paired qubits could affect the pulse shapes.

The PPO-generated pulses are visibly more complicated. The pulses often fluctuate

between the maximal amplitudes causing photon number fluctuations.
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Table 7.1: Summary of Simulation Results. Listed is the injection and reset pulse
length for the case of single-qubit and five-qubit readout. The investigated readout
pulse shapes are rectangular, CLEAR, and PPO-generated.

Single-Qubit Multi-Qubit
Injection Reset Injection Reset

Rectangular 1470 ns 700 ns 1610 ns 700 ns

CLEAR 550 ns 260 ns 780 ns 460 ns
vs. Rectangular −62.6% −62.9% −51.6% −34.3%

PPO 550 ns 250 ns 600 ns 380 ns
vs. Rectangular −62.6% −64.3% −62.7% −45.7%
vs. CLEAR −62.9 % −23.1 % −17.4 %

As illustrated in Figure 7-3(c), the total readout pulse shapes are 2310 ns for

a rectangular, 1440 ns for the CLEAR, and 980 ns for a PPO-generated pulse. The

individual pulse lengths are summarized in Table 7.1.

The trajectories in the 𝐼𝑄-plane, shown in Figure 7-4, can provide further insight

into the underlying system dynamics. The 𝐼𝑄-trajectory depends on the qubit-state.

The path towards the target photon number is more efficient for CLEAR and PPO-

generated pulses. The trajectories of resonators 2 and 4 shine light on the reasons

why PPO-generated pulses outperform CLEAR pulses.

7.4 Conclusion

For a qubit dispersively coupled to a resonator, rapid resonator ring-up and ring-

down ensure fast readout and limited qubit dephasing. In an efficient, frequency-

multiplexed readout of multiple qubits, effects such as drive crosstalk increase the

complexity of optimal readout pulse shapes. Computationally intensive methods

are typically required to discover high-fidelity readout pulse shapes.

In this thesis, a pulse shaping optimization module using deep reinforcement

learning (DRL) was developed. The readout measurement duration of contempo-
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Figure 7-5: Simulation of Readout Pulse Shape versus Measurement Time for a Five-
Qubit Chip. (a) Comparison of readout pulse shapes for a single qubit. The typically
employed pulse shape, a rectangular pulse shape (gray, dashed), is compared with
the cavity level excitation and reset (CLEAR) (in blue) and a pulse shape tune-up
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ing a waiting period, and return the resonators close to their vacuum states. The
waiting period is kept constant for all three methods. In comparison with the rect-
angular pulse (CLEAR), PPO reduces the injection window by 58% (22%) and reset
duration by 46% (17%).

rary and the PPO pulse shape optimization module was compared on a simulated

five-qubit chip. The resulting pulse shapes and measurement duration are pre-

sented in Figure 7-5. The PPO pulse optimization module yielded a reduction of

the injection time by 22% and a 17% shorter reset time compared to the currently

most advanced readout pulse shapes, the cavity level excitation and reset (CLEAR)

pulse [20]. Interestingly, for single-qubit readout, the suggested readout pulse

shape was nearly identical with the CLEAR pulse, suggesting that CLEAR pulses

are optimal for single-qubit readout. However, for multi-qubit readout, better-

performing readout pulse shapes exist, as demonstrated in this thesis.

The experimental verification of the simulated reduction in measurement time

is currently in progress. The experiment is conducted with a system comprised

of five superconducting qubits, as described in Appendix B.2. In the experiment,

PPO-generated readout pulse shapes are compared with rectangular and CLEAR

pulses. This proof of concept demonstration could significantly improve readout

performance and facilitate practical quantum error correction schemes.
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Chapter 8

Summary & Outlook

Before universal quantum computers [1] can become a reality, several more mile-

stones have to be achieved and engineering challenges overcome. With the ac-

complishment of quantum supremacy [2, 3], error-corrected quantum computing

is the next declared milestone towards practical quantum computing hardware.

While small-scale quantum systems perform on a level sufficient for the most le-

nient quantum error correction protocols [4], the qubit performance and control

fidelity generally decrease as the number of qubits increases. In addition to scaling

up the quantum processor and operation protocols, control hardware and software

will become a bottleneck to handle hundreds to even thousands of qubits. Several

blueprints have been presented on how to realize practical quantum processors us-

ing different qubit modalities [5, 6]. It remains to be seen if industrial and academic

institutions will deliver on their promise to engineer a practical quantum computer

before the end of this decade.

In this thesis, three tools were established to overcome some obstacles on the

path from a few to many qubits. The three tools focus on efficient readout and

control of many superconducting qubits. First, a multi-qubit microwave package

was engineered to investigate and establish the design principles necessary for ef-

ficient qubit control and readout with minimal impact on the qubit performance.

Next, deep machine learning techniques were developed to improve superconduct-

ing qubit readout pulse shapes and discrimination of qubit states.
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8.1 Package Design for Superconducting Qubit

Using a newly engineered microwave package, presented in Chapter 4 and Refer-

ences [7, 8], microwave package design principles were developed by systemati-

cally examining various elements that can affect superconducting qubit coherence.

A comprehensive characterization of the effect of package modes on superconduct-

ing transmon qubits was presented and corroborated with results from simulations

and room-temperature measurements. For the utilized qubit design and configu-

ration, the package limits the qubit lifetime to approximately 𝑇 pkg
limit = 384 µs. This

lifetime is due almost entirely to qubit loss to hidden package modes via the Purcell

effect. Package material losses contribute only at the 15 ns level. While the package

does not limit the lifetime of the measured qubits, the estimated lifetime limit is

within the same order of magnitude as other loss channels. Constructing packages

with larger devices and qubit lifetimes that are likely achievable shortly will require

a thorough engineering approach that focuses on mode and signal line engineering.

While many contemporary packages still employ wirebonds to provide signal

connections between a multi-chip stack and the device package [2], several promis-

ing candidates such as pogo pins [9], out-of-plane wiring [10], direct chip-to-

interposer links, and 3D-integrated packaging [11] may potentially provide a larger-

scale interconnect solution. With a greater wire density, these techniques will face

even more challenges in signal crosstalk, requiring precise impedance matching and

the use of shielding structures. Combining these factors will necessitate thorough

simulation and design characterization, building on those presented in this thesis.

Package design will become increasingly critical for larger quantum devices

due to their increased complexity. The precise characterization and suppression

of electromagnetic modes and signal crosstalk become even more critical as the

number of qubits in today’s noisy intermediate-scale quantum (NISQ) devices is in-

creased [12]. These established principles for superconducting qubit packages are

similarly pertinent for future work as packaging techniques are being advanced for

systems in the range of 100 to 1000 qubits.
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8.2 Machine Learning assisted

Superconducting Qubit Readout

Qubit-state readout is a significant error source in contemporary superconducting

quantum processors [13]. The fidelity of dispersive qubit-state readout depends

on the readout pulse shape and resulting phase-shifted readout signal discrimina-

tor [14]. For a single qubit, fast and high-fidelity readout is achieved with mi-

nor changes to the rising and falling edge of a rectangular pulse [15] and a lin-

ear matched filter discriminator [16]. However, in resource-efficient, frequency-

multiplexed readout of multiple qubits, optimizing the readout pulse shape and

discriminator becomes a computationally intensive task. This thesis provides nec-

essary components for robust and high-fidelity multi-qubit readout. Deep machine

learning techniques to improve superconducting qubit readout pulse shapes and

discrimination were experimentally demonstrated and compared with conventional

methods. The presented readout techniques mark a significant step towards imple-

menting quantum error correction protocols, hence realizing universal quantum

computers.

8.2.1 Superconducting Qubit-State Discrimination

using Supervised Learning

In Chapter 6 and Reference [17], an approach to multi-qubit readout using neural

networks as multi-qubit state discriminators was presented. It was shown that neu-

ral networks are more crosstalk-resilient than other contemporary approaches. A

fully-connected FNN increases the readout assignment fidelity for a multi-qubit sys-

tem compared to contemporary methods. The FNN compensates system-nonidealities

such as readout crosstalk more effectively relative to alternatives such as matched

filters (MFs) or support vector machines (SVMs). The assignment error rate is di-

minished by up to 25 % and crosstalk-induced discrimination errors are suppressed

by up to one order of magnitude. The relative assignment fidelity improvement of
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the FNN over its contemporary alternatives grows as the number of simultaneously

read out and frequency-multiplexed qubits increases.

While FNNs are initially more resource-intensive in training, re-calibration can

be significantly more efficient due to transfer learning [18]. Periodic re-calibration

of control and readout parameters is necessary as quantum systems drift in time. For

a marginal drift, neural networks can be updated at a fraction of the initial resource

requirements. Furthermore, to speed up qubit readout, the techniques developed

here can be transitioned to dedicated hardware such as field-programmable gate

arrays (FPGA) [19].

FNNs offer a readout-state discrimination approach tailored to the underlying

system. They can be readily employed to more general discrimination tasks than is

considered in this thesis, such as multi-level readout in a qudit architecture [20–

22]. Neural network-assisted discrimination of multiple qubit-states presents a

potential flexible building block to scaling quantum processors while maintaining

high-fidelity readout.

8.2.2 Superconducting Qubit-Readout-Pulse Shaping

using Deep Reinforcement Learning

In an efficient, frequency-multiplexed readout of multiple qubits, effects such as

drive cross-talk increase the complexity of optimal readout pulse shapes, requiring

computationally intensive methods to discover high-fidelity pulse shapes. In Chap-

ter 7 and Reference [23], existing readout optimization methods were extended

to operate in multi-qubit environments. Furthermore, a new pulse shaping opti-

mization module using deep reinforcement learning was presented. Compared to

conventional readout methods in a simulated environment, the new module re-

duces the required readout pulse lengths by over 63% in single-qubit environments

and over 57% in multi-qubit environments. The experimental verification of the

simulated reduction in measurement time is currently in progress. PPO-generated

readout pulse shapes are compared to rectangular and CLEAR pulses using a multi-
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qubit device in the experiment. The presented pulse shaping module can be readily

generalized to other control tasks in quantum computing.

Using machine learning to improve multi-qubit-state readout, the presented ap-

proaches were demonstrated on a quantum system with five superconducting qubits

and frequency-multiplexed readout with reasonable readout integration times. The

next step will be to test the performance of these techniques on higher-fidelity multi-

qubit systems with measurement times below 100 ns [16] to assess if the advantage

will be retained on already high-performing devices. Furthermore, the temporal

performance of the presented methods as system parameters drift will need to be

investigated. The temporal robustness and effort to re-calibrate will provide further

insight into the practicability of the presented techniques.

8.3 Global Calibration Module

Today, calibrating quantum computers is a tedious endeavor. Cross-talk between

qubits and control signals is a fundamental roadblock for scaling up quantum com-

puters from a few qubits to hundreds of qubits. The presence of multiple control

signals distorts the individual control signal pulse shapes that eventually creates

qubit errors. The current method of calibrating quantum computers does not ad-

dress this signal cross-talk as control signals are independently calibrated for each

constituent qubit. The design of control pulse shapes typically starts with a system-

dependent ansatz that is subsequently fine-tuned by monitoring the response of

each qubit. For a quantum computer with a few hundred qubits, a new method of

controlling the qubits is necessary to perform accurate quantum computation.

The developed readout pulse shaping module using deep reinforcement learn-

ing can be expanded to a global calibration control module. Making the calibration

procedure global addresses system nonidealities such as control signal crosstalk,

as demonstrated for multi-qubit readout [17]. A global calibration control module

comprises three components: central processing, pulse generation, and measure-
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ment unit. The previously developed pulse generation module and the readout

methods will enable the central processing unit to communicate with the system in

a closed-loop fashion.

The current calibration control methods prevent superconducting quantum com-

puting from scaling up and demonstrating more complex quantum algorithms. An

efficient, global, and general calibration control module using gradient-based op-

timization combined with deep reinforcement learning could address some of the

challenges and enable more complex quantum algorithms.
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Appendix A

Cavity Bloch Equation Formulation

A.1 Dispersive Jaynes-Cummings Hamiltonian

The coherent interaction between superconducting qubits and microwave photons

is described by the mathematical framework of circuit quantum electrodynamics

(cQED) [1–3]. In particular, the interaction of a superconducting qubit and readout

resonator can be described by the Jaynes-Cummings model in the dispersive limit.

The Jaynes-Cummings Hamiltonian operating in the dispersive regime for cQED is

defined as

𝐻JC, disp ≈ 𝜔𝑟

(︂
𝑎̂†𝑎̂ +

1

2

)︂
+

(︂
𝜔𝑞 + 2𝜒

[︂
𝑎̂†𝑎̂ +

1

2

]︂)︂
𝜎̂𝑧

2
(A.1)

with the readout resonator frequency 𝜔𝑟, the qubit transition frequency 𝜔𝑞, the

dispersive shift 𝜒, the Pauli-Z operator 𝜎̂𝑧, and the creation 𝑎̂† and annihilation

operator 𝑎̂. Note, operators are indicated with a ·̂.

A driving field at frequency 𝜔𝑑 can be expressed by

𝐻D = 𝜖(𝑡)(𝑎̂†𝑒−𝑖𝜔𝑑𝑡 + 𝑎̂𝑒𝑖𝜔𝑑𝑡), (A.2)

where 𝜖(𝑡) denotes the time dependent drive amplitude of the field [4]. If the

resonator is driven at the bare resonator frequency 𝜔𝑟, the readout resonator popu-

lation can be treated as independent of the qubit state (⇒ 𝜔𝑑 = 𝜔𝑟).
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While the interaction between the qubit and resonator is predominantly linear

for small photon numbers, the so-called Kerr-nonlinearity can matter for moderate

photon numbers. The Kerr-nonlinearity is a qubit-induced resonator shift. For a

qubit in the ground state, the resonator is shifted lower in frequency. For an excited

qubit, the resonator frequency is raised. The Kerr-nonlinearity 𝐾 induces a shift

quadratic in the number of photons (𝑎̂†𝑎̂ is the photon number operator) as can be

seen in the following Hamiltonian

𝐻K = 𝐾(𝑎†𝑎)2. (A.3)

The complete Hamiltonian describing a driven resonator interacting with a qubit

in the dispersive regime can be expressed by

𝐻JC, disp = 𝜔𝑟𝑎̂
†𝑎̂ +

(︂
𝜔𝑞 + 2𝜒

[︂
𝑎̂†𝑎̂ +

1

2

]︂)︂
𝜎̂𝑧

2
,

𝐻D = 𝜖(𝑡)(𝑎̂†𝑒−𝑖𝜔𝑑𝑡 + 𝑎̂𝑒𝑖𝜔𝑑𝑡),

𝐻K = 𝐾(𝑎̂†𝑎̂)2,

𝐻 = 𝐻JC, disp + 𝐻D + 𝐻K.

(A.4)

A.2 Master Equation

Measuring the state of a qubit requires the resonator to leak the information. Leak-

age is typically a non-unitary process. The resonator photon decay dynamics with

decay rate 𝜅 can be included in the model using master equations. Master equa-

tions are a common mathematical framework to represent the coupling of quantum

systems with their environment. A Lindblad master equation for a density matrix 𝜌

and Hamiltonian 𝐻 can be expressed as

𝜌̇ = −𝑖[𝐻, 𝜌] + 𝜅𝒟[𝑎̂]𝜌. (A.5)
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where𝒟[𝑎̂]𝜌 = 𝑎̂𝜌𝑎̂†−{𝑎̂†𝑎̂, 𝜌}/2 = 𝑎̂𝜌𝑎̂†−𝑎̂†𝑎̂𝜌/2−𝜌𝑎̂†𝑎̂/2 is the dissipator describing

the leakage.

The master equation solver provided by QuTip [5] can be computationally cum-

bersome. For moderately-sized problems with a few qubits, the computations can

already be tedious. The Bloch equation formulation, however, provides a suffi-

ciently accurate and fast alternative.

A.3 Cavity Bloch Equation

The cavity Bloch equation formulation expresses the temporal dynamics of a quan-

tum system [6]. To study qubit measurements, the photon number operator 𝑎̂†𝑎̂

and resonator state operator 𝑎̂ are sufficient.

For an arbitrary operator 𝐴, the cavity Bloch equation is

𝜕

𝜕𝑡
⟨𝐴⟩ = Tr{𝐴𝜌̇} = −𝑖⟨[𝐴,𝐻]𝜌⟩+ 𝜅⟨𝒟[𝑎̂]𝐴⟩. (A.6)

The cavity Bloch equation for the evolution of the resonator state operator 𝑎̂

and photon count operator 𝑎̂†𝑎̂ using the Hamiltonian from Equation A.4 can now

be computed. For 𝑎̂, the equation is

𝜕

𝜕𝑡
⟨𝑎̂⟩ = −𝑖⟨[𝑎̂, 𝐻]𝜌⟩+ 𝜅⟨𝒟[𝑎̂]𝑎̂⟩

= −𝑖∆− 𝑖𝜒⟨𝑎̂𝜎̂𝑧⟩+ 𝑖𝜖(𝑡)− 𝑖𝐾⟨𝑎̂⟩ − 𝑖𝐾⟨𝑎̂†𝑎̂𝑎̂⟩ − 𝜅

2
⟨𝑎̂⟩,

(A.7)

with the difference between the resonator and drive frequency ∆ = |𝜔𝑟 − 𝜔𝑑|.

Consequently, the dynamics of the photon number operator 𝑎̂†𝑎̂ are

𝜕

𝜕𝑡
⟨𝑎̂†𝑎̂⟩ = −𝑖⟨[𝑎̂†𝑎̂, 𝐻]𝜌⟩+ 𝜅⟨𝒟[𝑎̂]𝑎̂†𝑎̂⟩

= −2𝜖(𝑡) Im{⟨𝑎̂⟩} − 𝜅⟨𝑎̂†𝑎̂⟩.
(A.8)
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A.4 Frequency-Multiplexed Readout

The mathematical framework introduced in Section A.3 can be extended to charac-

terize a multi-qubit system with 𝑄 qubits, 𝑅 resonators, and frequency-multiplexed

readout. The dynamics for each resonator state operator 𝑎̂𝑛 are described by

𝜕

𝜕𝑡
⟨𝑎̂𝑛⟩ =

∑︁
𝑛∈𝑅

∑︁
𝑚∈𝑄

−𝑖∆𝑛,𝑚 + 𝑖𝜖𝑛(𝑡))− 𝜅𝑛

2
⟨𝑎̂𝑛⟩

− 𝑖𝜒𝑛,𝑚⟨𝑎̂𝑛𝜎̂𝑧 𝑚⟩ − 𝑖𝐾𝑛,𝑚⟨𝑎̂𝑛⟩ − 𝑖𝐾𝑛,𝑚⟨(𝑎̂†𝑎̂)𝑛𝑎̂𝑛⟩).
(A.9)

The first line of Equation A.9 describes the driving and leakage of the resonator.

The driving at off-resonant frequencies targeting other resonators induces control

crosstalk. The qubit-induced resonator frequency shifts are expressed in the second

line. In addition to the resonator frequency shifts induced by the target qubit, neigh-

boring qubits can induce qubit-state-dependent shifts as well. While the coupling

to neighboring qubits is diminished, their effect is not negligible.

The photon number operator (𝑎̂†𝑎̂)𝑛 for resonator 𝑛 is defined as

𝜕

𝜕𝑡
⟨(𝑎̂†𝑎̂)𝑛⟩ = −2𝜖𝑛(𝑡) Im{⟨𝑎̂𝑛⟩} − 𝜅⟨(𝑎̂†𝑎̂)𝑛⟩. (A.10)

The introduced cavity Bloch equations are used to simulate a five-qubit system with

experimentally evaluated parameters described in Appendix B.2. The simulator

is utilied to evaluate qubit-readout pulse shapes. As described in Chapter 7, the

qubit-readout pulse shapes become increasingly complex as the number of qubits is

increased. The suspected reason is crosstalk that the presented simulator captures

in two aspects: control crosstalk and resonators coupling to qubits in the vicinity.

The simulator takes all present drive fields into account. However, the simulator is

simplified only to consider resonators coupling to their target and nearest-neighbor

qubit.
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Appendix B

Experimental Infrastructure

B.1 Measurement Setup

Qubit control and readout pulses—envelopes with cosine-shaped rising and falling

edges encompassing a plateau—are programmed in Labber [1]. They are created

using three—two for control and one for readout—Keysight M3202A PXI arbi-

trary waveform generators (AWG) with a sampling rate of 1 GSa s−1. Next, the

in-phase (I) and quadrature (Q) components of the signals at MHz frequencies are

up-converted to the qubit transition frequency using an IQ-mixer and a local oscilla-

tor (LO) (Rohde and Schwarz SGS100A) per AWG. Finally, the control and readout

tones are combined and sent to the qubit chip in the dilution refrigerator via a single

microwave line attenuated by 60 dB.

The qubit chip is mounted in a microwave package following design principles

described in Chapter 4. A coil—centered above the qubit chip—is mounted in the

device package. A global flux bias Φ is applied through that coil to the super-

conducting quantum interference devices (SQUID) of the qubits using a Yokogawa

GS200.

The readout signal, upon acquisition of a qubit-state-dependent phase shift, is

first amplified using a Josephson traveling-wave parametric amplifier (JTWPA) with

near quantum-limited performance over a bandwidth of more than 2 GHz and a

1 dB compression point of approximately −100 dBm [2]. An Agilent E8267D signal
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generator provides the pump tone for the JTWPA. The microwave line carrying the

pump tone is attenuated by 50 dB and fed into the JTWPA via a set of directional

couplers and isolators located in the mixing chamber of the refrigerator. The signal

is further amplified by a high-electron-mobility transistor (HEMT) amplifier that is

thermally anchored to the 3 K stage.

At room temperature, the readout signal is amplified, IQ-mixed with the LO

at 7.127 GHz, and fed into a heterodyne detector. Next, the I- and Q-components

of the readout signal are digitized with a Keysight M3102A PXI Analog to Digital

Converter (ADC) at a sampling rate of 500 MSa s−1. The subsequent digital signal

processing to distinguish qubit states is the focus of Chapter 6.

B.2 Superconducting Chip with Five Transmon Qubits

The quantum system comprised of five superconducting qubits is fabricated on

a (001) silicon substrate (>3500Ω cm) by dry etching a molecular-beam epitaxy

(MBE) grown aluminum film in an optical lithography process before being diced

into 5× 5 mm2 chips, as described in [3].

The superconducting chip consists of coplanar waveguides and five frequency-

tunable transmon qubits [4]. The target qubit transition frequencies alternate

between 4.3 GHz and 5.2 GHz. The qubits are detuned (→ operating frequency)

to limit qubit-qubit and control crosstalk. The capacitive nearest-neighbor (next-

nearest-neighbor) qubit-qubit coupling rate, 𝐽𝑛𝑛 (𝐽𝑛𝑛𝑛), is designed (using COM-

SOL Multiphysics®) to be 𝐽𝑛𝑛/2𝜋 ≈ 14 MHz (𝐽𝑛𝑛𝑛/2𝜋 < 1 MHz) and at the qubit

operating frequency < 0.3 MHz (< 0.01 MHz) [5]. Each qubit couples capacitively

to a quarter-wave resonator that couples inductively to a shared bandpass (Pur-

cell) filtered feedline. Neighboring readout resonator frequencies differ by about

50 MHz. The qubit and resonator operation parameters are included in Table B.1

and Table B.2.
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Table B.1: Superconducting Chip—Qubit Details. Chip comprising five supercon-
ducting frequency-tunable transmon qubits with alternating transition frequencies.
A normalized magnetic flux bias Φ/Φ0 (magnetic flux quantum Φ0) detunes the
qubits from their idling to their operating frequency. The qubit anharmonicities 𝛼
are in the moderate transmon regime. The qubit lifetimes 𝑇1, Ramsey coherence
times 𝑇2R, and spin-echo relaxation times 𝑇2E are measured at the qubit operating
frequency.

Qubit 𝜔Qubit/2𝜋 Bias 𝛼/2𝜋 𝑇1 𝑇2R 𝑇2E

Idle Biased (︁
Φ
Φ0

)︁
(MHz) (µs)

(GHz)

1 5.249 5.092 0.124 -212 40.8 1.3 7.4
2 4.708 4.404 0.160 -216 6.4 0.6 4.1
3 5.202 5.000 0.166 -204 21.4 1.0 7.2
4 4.560 4.309 0.154 -214 11.8 0.8 5.4
5 5.196 5.165 0.085 -200 23.4 7.6 31.8

Table B.2: Superconducting Chip—Resonator Details. Chip comprising five super-
conducting readout resonators at bare resonance frequencies of about 7 GHz. Sig-
nals are up-converted from MHz intermediate frequencies (IF) using a common
local oscillator at 𝜔LO/2𝜋 = 7.127 GHz. Each resonator couples to a designated
qubit with strength 𝑔, leading to a dispersive shift 𝜒. The effective resonator decay
rate through the Purcell filter is 𝜅eff . The qubit-resonator interaction remains in
the dispersive regime for readout resonator photon populations below the critical
photon number 𝑛crit.

Resonator 𝜔Res/2𝜋 𝜔IF/2𝜋 𝑔/2𝜋 𝜒/2𝜋 𝜅eff/2𝜋 𝑛crit

(GHz) (MHz) (MHz)

1 7.06 -65 116.3 0.83 4.29 33.8
2 7.10 -26 143.3 0.51 4.25 55.3
3 7.15 24 125.7 0.77 4.41 34.9
4 7.20 70 133.1 0.49 3.33 56.9
5 7.25 127 125.4 0.80 6.90 33.0
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Appendix C

Alternative Matched Filter Derivation

C.1 Derivation of Matched Filter

To reduce the computational discrimination effort, the elements of a measured

single-shot readout trace are often summed up before a discriminator is applied.

Filtering the readout traces before they are summed up further simplifies the dis-

crimination process. Filtering in this context means multiplying each element of a

discrete signal 𝑠|𝑖⟩[𝑛] by a window or kernel weight 𝑘𝑛. If the weights are all unity

over a particular range and zero otherwise, the filter is a boxcar filter.

A discrete qubit measurement signal 𝑠|𝑖⟩[𝑛] with qubit either in the ground (𝑖 = 0)

or excited-state (𝑖 = 1) can be modeled as 𝑠|𝑖⟩[𝑛] ∝ 𝛼|𝑖⟩[𝑛] + 𝜉[𝑛]. The resonator

response for the qubit in the ground-state is 𝛼|0⟩[𝑛] and for the qubit in the excited-

state 𝛼|1⟩[𝑛]. The measurement signal is a linear combination of the resonator re-

sponse and a zero-mean stochastic noise term 𝜉[𝑛] [1, 2]. The filtered measurement

signal with filter kernel 𝑘[𝑛] is described as

𝑆|𝑖⟩ =
∑︁
𝑛

𝑘𝑛𝑠|𝑖⟩𝑛. (C.1)

The average difference ⟨∆𝑆⟩ between the ground-state signal 𝑆|0⟩ and excited-state
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signal 𝑆|1⟩ follows as

⟨∆𝑆⟩ = ⟨𝑆|0⟩ − 𝑆|1⟩⟩ =
∑︁
𝑛

𝑘𝑛⟨𝛼|0⟩′𝑛 − 𝛼|1⟩′𝑛⟩. (C.2)

The variance of the average difference ⟨∆𝑆⟩ is consequently

var(∆𝑆) =
∑︁
𝑛

𝑘2
𝑛

[︀
var

(︀
𝛼|0⟩′𝑛 − 𝛼|1⟩′𝑛

)︀
+ var(𝜉𝑛)

]︀
. (C.3)

To maximize the SNR, the filter kernel 𝑘[𝑛] can be derived taking the deriva-

tive of the squared mean value divided by the variance as follows (an alternative

derivation is presented in Appendix C)

0 =
𝜕

𝜕𝑘𝑖

|⟨𝑆⟩|2

var(∆𝑆)

= ⟨𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖⟩var(∆𝑆)− 2𝑘𝑖
[︀
var

(︀
𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖

)︀
+ var(𝜉𝑖)

]︀
⟨𝑆⟩

= ⟨𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖⟩
∑︁
𝑛

𝑘2
𝑛

[︀
var

(︀
𝛼|0⟩𝑛 − 𝛼|1⟩𝑛

)︀
+ var(𝜉𝑛)

]︀
− 𝑘𝑖

[︀
var

(︀
𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖

)︀
+ var(𝜉𝑖)

]︀∑︁
𝑛

𝑘𝑛⟨𝛼|0⟩𝑛 − 𝛼|1⟩𝑛⟩

=
∑︁
𝑛,𝑖̸=𝑛

⟨𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖⟩𝑘2
𝑛

[︀
var

(︀
𝛼|0⟩𝑛 − 𝛼|1⟩𝑛

)︀
+ var(𝜉𝑛)

]︀
− 𝑘𝑖

[︀
var

(︀
𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖

)︀
+ var(𝜉𝑖)

]︀
𝑘𝑛⟨𝛼|0⟩𝑛 − 𝛼|1⟩𝑛⟩

solving for 𝑘𝑖

𝑘𝑖 =
⟨𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖⟩[︀

var
(︀
𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖

)︀
+ var(𝜉𝑖)

]︀ ∑︀
𝑛,𝑖 ̸=𝑛 𝑘

2
𝑛

[︀
var

(︀
𝛼|0⟩𝑛 − 𝛼|1⟩𝑛

)︀
+ var(𝜉𝑛)

]︀∑︀
𝑛,𝑖̸=𝑛 𝑘𝑛⟨𝛼|0⟩𝑛 − 𝛼|1⟩𝑛⟩

(C.4)

Dropping the scaling factor independent of 𝑖, the kernel weights are

𝑘𝑖 =
⟨𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖⟩[︀

var
(︀
𝛼|0⟩ 𝑖 − 𝛼|1⟩ 𝑖

)︀
+ var(𝜉𝑖)

]︀ (C.5)
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Table C.1: Definition of used Terminology. Derivation of a matched filter to discrim-
inate qubit states [3]. The noise source affecting the measurement is assumed to be
additive and stochastic.

input signal (n dimensional): 𝑥[n]

output signal (1 dimensional) with projection 𝑤[n]: 𝑦 = 𝑤T[n]𝑥[𝑛]
Class 1 (𝑁1 samples), mean value: 𝑚1[n] = 1

𝑁1

∑︀
𝑖∈𝐶1

𝑥𝑖[n]
Class 2 (𝑁2 samples), mean value: 𝑚2[n] = 1

𝑁2

∑︀
𝑖∈𝐶2

𝑥𝑖[n]
Class 1 (𝑁1 samples), mean value after projection: 𝑚1 = 𝑤T[n] 1

𝑁1

∑︀
𝑖∈𝐶1

𝑥𝑖[n]
Class 2 (𝑁2 samples), mean value after projection: 𝑚2 = 𝑤T[n] 1

𝑁2

∑︀
𝑖∈𝐶2

𝑥𝑖[n]
Class 1 (𝑁1 samples), variance after projection: 𝑣1 =

∑︀
𝑖∈𝐶1

(𝑦𝑛 −𝑚1)
2

Class 2 (𝑁2 samples), variance after projection: 𝑣2 =
∑︀

𝑖∈𝐶2
(𝑦𝑛 −𝑚2)

2

Class distance after projection (Fisher criterion): 𝐹 (𝑤[n]) = (𝑚2−𝑚1)2

(𝑣1+𝑣2)

Maximize Fisher criterion→ maximize SNR:

C.2 Alternative Derivation of Matched Filter

(explicitly in 𝑤[n]) 𝐹 (𝑤[n]) =
𝑤T[n]𝑀[n]𝑤[n]

𝑤T[n]𝑉1[n]𝑤[n] + 𝑤T[n]𝑉2[n]𝑤[n]
(C.6)

where

𝑉1[𝑛] =
∑︀

𝑖∈𝐶1
(𝑥𝑖[n]−𝑚1[n])(𝑥𝑖[n]−𝑚1[n])T,

𝑉2[𝑛] =
∑︀

𝑖∈𝐶2
(𝑥𝑖[n]−𝑚2[n])(𝑥𝑖[n]−𝑚2[n])T, and

𝑀[n] = (𝑚2[n]−𝑚1[n])(𝑚2[n]−𝑚1[n])T.

Maximize explicit equation with respect to 𝑤[n]:

𝜕𝐹 (𝑤[n])

𝜕𝑤[n]
=

2
(︀
𝑤T[n] (𝑉1[n] + 𝑉2[n])𝑤[n]

)︀
𝑀[n]𝑤[n]

−2
(︀
𝑤T[n]𝑀[n]𝑤[n]

)︀
(𝑉1[n] + 𝑉2[n])𝑤[n]

(𝑤T[n]𝑉1[n]𝑤[n] + 𝑤T[n]𝑉2[n]𝑤[n])2

(C.7)

0 =
𝜕𝐹 (𝑤[n])

𝜕𝑤[n]

=
(︀
𝑤T[n] (𝑉1[n] + 𝑉2[n])𝑤[n]

)︀
𝑀[n]𝑤[n]

=
(︀
𝑤T[n]𝑀[n]𝑤[n]

)︀
(𝑉1[n] + 𝑉2[n])𝑤[n]

(C.8)
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(︀
𝑤T[n] (𝑉1[n] + 𝑉2[n])𝑤[n]

)︀
and

(︀
𝑤T[n] (𝑀[n])𝑤[n]

)︀
are scalar factors. The

magnitude of 𝑤[n] does not matter for discrimination. Therefore, scalar factors can

be dropped.

After dropping the scalar factors, and using

𝑀[n]𝑤[n]
|𝑀[n]𝑤[n]|

=
𝑚2[n]−𝑚1[n]
|𝑚2[n]−𝑚1[n]|

, (C.9)

replacing the vector 𝑀[n]𝑤[n] with 𝑚2[n]−𝑚1[n], and multiplying both sides with

(𝑉1[n] + 𝑉2[n])−1, the optimal weight is

𝑤opt[n] ∝ 𝑚2[n]−𝑚1[n]
𝑉1[n] + 𝑉2[n]

(C.10)

C.3 Matched Filter for Qubit-State Discrimination

Following the derivation of the matched filter 𝑤opt[n] ∝ 𝑚2[n]−𝑚1[n]
𝑉1[n]+𝑉2[n] , the average

and variance of the measured signal in a known state (𝑖 ∈ 𝑁𝑔 ground-state mea-

surement 𝑠𝑔𝑖[n] = ℐ𝑔𝑖[n] + 𝑗𝒬𝑔𝑖[n]; 𝑖 ∈ 𝑁𝑒 excited-state measurement 𝑠𝑒𝑖[n] =

ℐ𝑒𝑖[n] + 𝑗𝒬𝑒𝑖[n]) can be used to generate the matched filter kernel.

𝐾MF
ℐ,𝒬[2n] ≈ 𝑆𝑒[2n]− 𝑆𝑔[2n]

𝑉𝑔[2n] + 𝑉𝑒[2n]
, (C.11)

with

𝑆𝑔[2n] = 1
𝑁𝑔

∑︀𝑁𝑔

𝑖

⎡⎣ℐ𝑔𝑖[n]

𝒬𝑔𝑖[n]

⎤⎦ 𝑉𝑔[2n] = 1
𝑁𝑔

∑︀𝑁𝑔

𝑖

⎛⎝⎡⎣ℐ𝑔𝑖[n]

𝒬𝑔𝑖[n]

⎤⎦− 𝑆𝑔[2n]

⎞⎠
𝑆𝑒[2n] = 1

𝑁𝑒

∑︀𝑁𝑒

𝑖

⎡⎣ℐ𝑒𝑖[n]

𝒬𝑒𝑖[n]

⎤⎦ 𝑉𝑒[2n] = 1
𝑁𝑒

∑︀𝑁𝑒

𝑖

⎛⎝⎡⎣ℐ𝑒𝑖[n]

𝒬𝑒𝑖[n]

⎤⎦− 𝑆𝑒[2n]

⎞⎠
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