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Abstract

With the rapid growth of the mobility-on-demand (MoD) market in recent years, ride-hailing
companies have become an important element of the urban mobility system. There are two
critical components in the operations of ride-hailing companies: driver-customer matching
and vehicle rebalancing. In most previous literature, each component is considered sepa-
rately, and performances of vehicle rebalancing models rely on the accuracy of future demand
predictions. To better immunize rebalancing decisions against demand uncertainty, a novel
approach, the matching-integrated vehicle rebalancing (MIVR) model, is proposed in this
paper to incorporate driver-customer matching into vehicle rebalancing problems to produce
better rebalancing strategies. The MIVR model treats the driver-customer matching compo-
nent at an aggregate level and minimizes a generalized cost including the total vehicle miles
traveled (VMT) and the number of unsatisfied requests. For further protection against un-
certainty, robust optimization (RO) techniques are introduced to construct a robust version
of the MIVR model. Problem-specific uncertainty sets are designed for the robust MIVR
model. The proposed MIVR model is tested against two benchmark vehicle rebalancing
models using real ride-hailing demand and travel time data from New York City (NYC).
The MIVR model is shown to have better performances by reducing customer wait times
compared to benchmark models under most scenarios. In addition, the robust MIVR model
produces better solutions by planning for demand uncertainty compared to the non-robust
(nominal) MIVR model.
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1. Introduction1

Advanced wireless communication and cloud computing technologies coupled with the2

growing popularity of shared mobility have led to a fast-growing Mobility-on-Demand (MoD)3

market in recent years [1]. Ride-hailing companies, also known as Transportation Network4

Companies (TNCs), such as Uber and Lyft have become ubiquitous forms of MoD in most5
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cities over the past decade. The number of worldwide active drivers for Uber grew from6

almost zero in 2010 to over 3 million in 2017, while Lyft, a relative latecomer to the market,7

had 1.4 million active drivers in the US and Toronto in 2017 [2]. Two of the primary8

innovations that allowed them to capture a significant market share from their established9

competitors, the taxi industry, were: 1) matching trip requests with drivers using a mobile10

app rather than curbside hailing or an in-advance booking system, and 2) responding to11

changes in demand by incentivizing or actively dispatching drivers to high-demand areas.12

These innovations have been identified as two important ride-hailing operations problems in13

the literature: the driver-customer matching problem and the vehicle rebalancing problem [3].14

One of the key technological competence requirements for efficient operation of ride-15

hailing platforms is the algorithmic approaches for optimally matching drivers and cus-16

tomers in real-time [4]. Given a list of available vehicles and trips requested by customers,17

the matching algorithm pairs drivers and customers according to specific objectives and fea-18

sibility constraints. Moreover, matching decisions need to be made quickly, typically within19

seconds. Researchers have been seeking solutions to improve the operational and computa-20

tional performance of the on-demand driver-customer matching problem.21

Because the spatial distributions of supply and demand in the ride-hailing system are22

often unbalanced, platforms can improve the operational performance by actively rebalancing23

idle vehicles to areas where the demand is expected to exceed supply based on estimates of24

future demand. Algorithms for rebalancing idle vehicles have been proposed for ride-hailing25

platforms to reduce wait times for customers [5, 6, 7, 8]. However, the performance of vehicle26

rebalancing algorithms depends on the accurate future demand estimations. Rebalancing27

decisions generated with inaccurate demand forecasts could have negative impacts on the28

system performance. Incorporating robustness into the vehicle rebalancing algorithm is29

one approach to protect solutions against demand uncertainty that arise from inaccurate30

estimates of future demand [7].31

While rebalancing and matching are often treated as separate operations in the litera-32

ture [3], both problems relate to dispatching idle vehicles, either to pick up customers or to33

increase supply in areas with high expected demand. A common objective for the driver-34

customer matching problem is minimizing the vehicle miles traveled (VMT) and unsatisfied35

requests [9, 10] while the primary objective for the vehicle rebalancing problem is minimizing36

the VMT and a functional term measuring the system-wide service availability for future37

demand [5, 6, 7].38

In the vehicle rebalancing problem, the overall goal for improving the system-wide service39

availability for incoming customers is to minimize the number of unsatisfied requests, which40

coincides with the objective of the driver-customer matching problem. The functional term in41

the objective of the vehicle rebalancing problem can therefore be treated as an approximation42

to represent the number of unsatisfied requests. However, the maximum system-wide service43

availability for incoming customers does not necessarily lead to the minimum number of44

unsatisfied requests if there are inaccurate future demand estimates. To immunize vehicle45

rebalancing decisions against the inherent demand uncertainty, we introduce the driver-46

customer matching component into the vehicle rebalancing problem in order to explicitly47

model the number of unsatisfied requests.48

Nonetheless, there is a methodological difference between driver-customer matching prob-49

lems and vehicle rebalancing problems. The driver-customer matching problem is typically50
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solved by an agent-based model, where each driver and customer are considered individually.51

For the vehicle rebalancing problem, most methods divide the study area into several sub-52

regions and the vehicle rebalancing problem is solved at an aggregate level, where vehicles53

are rebalanced between sub-regions.54

To resolve this methodological difference, we propose the matching-integrated vehicle55

rebalancing (MIVR) model where the area partitioning method is retained and the matching56

component is modeled at an aggregate level. The objective of the MIVR model is to minimize57

the total VMT and the number of unsatisfied requests. The aggregate matching component58

of the MIVR model provides a satisfying approximation of the vehicle pickup distance and59

the number of unsatisfied requests when using small regions.60

Figure 1 provides a toy example to illustrate the benefits of the MIVR model compared to61

an independent vehicle rebalancing (VR) model, where the service availability is represented62

by the absolute difference between estimated future demand and supply. Compared to the63

independent rebalancing scenario, the matching-integrated rebalancing scenario dispatches64

the idle vehicle to a location near sub-regions with estimated future demand. This “smart”65

rebalancing decision compensates for inaccurate future demand estimation by harmonizing66

vehicle pickup distance across different demand profiles.67

Scenario 1: Independent Rebalancing
Rebalancing Distance: 2
Expected Pickup Distance: 3.0

Scenario 2: Matching-integrated Rebalancing
Rebalancing Distance: 2
Expected Pickup Distance: 2.0

Rebalancing
Phase

Matching 
Phase

Figure 1: Example scenarios comparing regular VR decisions and the MIVR decisions. There are 16 unit
squares (sub-regions) and a trip request is equally likely to appear in any of the orange sub-regions in the
next time interval. For the independent rebalancing scenario, the rebalancing distance is 2 and the expected
pick-up distance is 3 (four possible pick-up distances 0, 3, 4, 5 with 1

4 probability on each case). For the
matching-integrated rebalancing scenario, the rebalancing distance is 2 and the expected pick-up distance is
2.0 (four possible pick-up distances 1, 2, 2, 3 with 1

4 probability on each case).

To further protect the vehicle rebalancing decisions against demand uncertainty, we in-68

troduce robust optimization (RO) techniques to construct a robust MIVR model. Problem-69

specific uncertainty sets are established to better reflect the uncertainty within ride-hailing70

demand.71
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In short, the ride-hailing matching process and RO techniques can be incorporated into72

the rebalancing procedure to produce better vehicle rebalancing decisions for platforms when73

facing demand uncertainty. The contributions of this paper can be summarized as follows:74

• Proposing the MIVR model to incorporate driver-customer matching information to75

improve vehicle rebalancing problems with explicit modeling of unsatisfied requests for76

the first time, to the best of authors’ knowledge.77

• Proposing the robust MIVR model to consider demand uncertainty and designing78

problem-specific uncertainty sets to better reflect the inherent demand uncertainty in79

the ride-hailing system.80

• Using simulations to show performance improvements of the MIVR model compared81

to an independent VR model and a state-of-the-art empty-car routing policy with real82

demand data and travel times from New York City (NYC). In high supply scenarios,83

a Pareto improvement can be found for the MIVR model when compared to the VR84

model at aggregate level regarding the overall VMT, the average customer wait time85

and the number of unsatisfied requests.86

• Comparing the nominal MIVR and the robust MIVR under multiple uncertain scenar-87

ios by solving a driver-customer matching problem with realized demand and vehicle88

distributions after rebalancing. The robust MIVR model is shown to perform better89

under demand uncertainty, especially in conditions of high supply relative to demand.90

The remainder of the paper is organized as follows. Section 2 reviews the relevant litera-91

ture. Section 3 describes the nominal and robust MIVR models and the robust counterpart.92

Section 4 includes the empirical study design and descriptions for data used in this paper.93

Benchmark comparisons, scenario testing results and robust solution performances are de-94

scribed in Section 5. Finally, Section 6 recaps the main contributions of this work, outlines95

the limitations and provides future research directions.96

2. Existing Literature97

2.1. Ride-hailing Matching and Rebalancing98

Ride-hailing matching is a variant of the classical Dial a Ride Problem, where customer99

trips are matched with vehicles such that generalized costs are minimized. These costs can100

include VMT, customer wait time, and penalties for poor service quality. Development of101

new algorithms for this problem is a very active field of research and the methods have been102

used by platform operators in practice [11]. Agatz et al. [4] provided a comprehensive survey103

of literature related to optimization of driver-to-passenger for dynamic ride sharing between104

travelers with similar itineraries. In a more recent survey, Mourad et al. [12] reviews research105

related to optimization of shared mobility systems more broadly, which includes ride-hailing.106

The authors identify demand uncertainty as a critical issue in modeling shared mobility sys-107

tems, and identify stochastic programming and multi-scenario optimization as two possible108

modeling techniques. Finally, Ho et al. [13] presents an overview of recent research relating to109
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the general Dial a Ride Problem. While this survey is focused on applications such as para-110

transit and demand-responsive transit, the taxonomy and solution techniques are applicable111

to ride-hailing problems. Like Mourad et al. [12], the authors find that the development112

of models and solution methods that include stochastic demand is an important research113

direction.114

Ride-hailing is one type of on-demand service platform, which is characterized by the115

waiting time sensitivity of customers and service providers without fixed work schedules.116

Other on-demand service platforms include food and goods delivery services such as Door-117

Dash and Uber Eats, and ride-pooling platforms. Several recent papers have examined the118

dynamics of on-demand service platforms. It has been shown that customers’ sensitivity119

to delay has a significant impact on optimial pricing and wage setting [14]. Another paper120

determines optimal prices and wages under different levels of demand, and calibrates param-121

eters using actual ride-hailing data [15]. Cachon et al. [16] develops a model for dynamic122

pricing in on-demand platforms, demonstrating that such policies benefit stakeholders by123

expanding access to service during periods of peak demand. Theoretical relationships be-124

tween pricing, demand and detour policies within ride-pooling platforms, which are similar125

to ride-hailing but with the possibility of shared trips, have also been investigated [17].126

Given the size and dynamic nature of the ride-hailing matching problem in large cities,127

many approaches involve metaheuristic methods to generate sub-optimal solutions [18, 19].128

Recently, researchers have investigated the role of matching radii and matching time periods129

on the optimal solution [20]. Lyu et al. [21] develops an online matching algorithm that130

considers multiple objectives, and provides a theoretical optimality guarantee for the online131

solution. Xu et al. [11] proposed a dynamic programming approach to matching that seeks to132

optimize matching decisions over a long time horizon. Their method, which did not consider133

demand uncertainty, has been adopted by a leading ride-hailing platform.134

Optimal rebalancing of idle ride-hailing vehicles has shown to substantially improve sys-135

tem performance. Typical considerations in designing a rebalancing algorithm are the dura-136

tion of the decision period and the costs included in the objective function. Chen and Levin137

[22] proposed a simple linear programming (LP) model to select vehicle rebalancing flows138

that minimize travel cost for five minute periods. Zhang et al. [23] showed that a stable139

predictive control algorithm could be used for dispatching and rebalancing an autonomous140

ride-hailing fleet in a discrete time system. At each decision period, a mixed-integer linear141

programming (MILP) is solved to minimize rebalancing travel time. Their method pro-142

duced significant reductions in peak wait times compared to the no rebalancing scenario.143

Similarly, Iglesias et al. [24] proposed a model predictive control algorithm for operating the144

ride-hailing system in real-time by leveraging short-term demand forecasts. They utilized145

the Long Short-Term Memory (LSTM) neural networks to forecast future customer demand146

for each origin and destination pair and their proposed algorithm outperformed a state-of-147

the-art rebalancing strategy by reducing up to 89.6% of the average customer wait time.148

Wallar et al. [5] developed an online vehicle rebalancing algorithm that discretized an area149

into optimal rebalancing sub-regions, resulting in an average wait time reduction of 37%150

compared to the scenario without rebalancing idle vehicles. Braverman et al. [25] formulates151

a fluid-based optimization model for idle vehicle rebalancing in ride-hailing systems. The152

authors use a nine-region network and real-life ride-hailing data to show how the fluid-based153

model results in a higher fraction of passengers served compared to benchmark models. We154
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include the Braverman et al. [25] model as a benchmark to test the results of our own model.155

Al-Kanj et al. [26] combined the matching and vehicle rebalancing into a single dynamic156

programming method for autonomous electric vehicles. Their approach employs incentives157

rather than centralized control to rebalance vehicles, meaning that rebalancing decisions158

made by the platform are subject to some amount of non-responsiveness by the passenger159

or vehicle. Dandl et al. [27] also solves for matching and rebalancing decisions in a single160

optimization model to inform a simulation that tests how demand forecasting accuracy affects161

the system performance. The authors use an agent-based model, where the objective function162

is a combination of penalties and rewards for matching and for reducing demand-supply163

imbalances. Their simulation assumes that all requests are served and customers will wait164

indefinitely for pickup. In contrast, our method includes matching information and explicitly165

models customer wait time and unsatisfied requests in order to make rebalancing decisions.166

In addition to optimization methods, machine learning (ML) approaches have been pro-167

posed to predict demand in rebalancing vehicles [6, 28]. There has also been considerable168

work on other practical methods, beyond explicit vehicle rebalancing, to achieve greater bal-169

ance between supply and demand in ride-hailing systems. These methods include dynamic170

pricing [16, 29], providing more information to drivers [30], reward schemes [31], alternative171

market structures [32] and carpooling incentives [33].172

2.2. Robust Optimization173

RO is a common approach to handle data uncertainty in optimization problems. The174

general approach is to specify a range for an uncertain parameter (the “uncertainty set”), and175

optimize over the worst-case realizations within the bounded uncertainty set. The method176

is therefore well suited to applications where there is considerable uncertainty related to the177

model input parameters, and when data uncertainties can lead to significant penalties or178

infeasibility in practice. The solution method for robust optimization problems involves gen-179

erating a deterministic equivalent, called the robust counterpart. Computational tractability180

of the robust counterpart has been a major practical difficulty [34]. A variety of uncertainty181

sets have been identified for which the robust counterpart to a robust optimization problem182

is reasonably tractable [35].183

The RO field has grown substantially over the past two decades. Seminal papers in the184

late 1990s [36, 37] and early 2000s [38] established the field. Comprehensive surveys on the185

early literature were done by Ben-Tal et al. [34] and Bertsimas et al. [35]. The development186

of the robust optimization technique has allowed researchers to tackle problems with data187

uncertainty in a range of fields. Examples can be found for renewable energy network design188

[39], supply chain operations [40] and health care logistics [41].189

2.3. Applications of RO in Ride-hailing Operations190

In recent years, robust optimization applications in transportation, and ride-hailing rebal-191

ancing more specifically, have attracted considerable research attention. Liu et al. [42] con-192

sidered uncertain local demand in their matching algorithm for ridesharing operations. Miao193

et al. [43] proposed an RO model for the taxi dispatching problem and tested it using NYC194

taxi data. They also proposed a data-driven approach to construct the uncertainty set based195

on historical demand data with a probability guarantee, building on previous data-driven196

RO theory proposed by Bertsimas et al. [44]. He et al. [45] tackled the robust ride-hailing197
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rebalancing problem using linear decision rules (LDR) to create a multi-period adaptive RO198

(ARO) model. Their ARO-based approach is heavily based upon theory developed by Bert-199

simas et al. [46]. To the best of authors’ knowledge, no existing papers have incorporated200

matching component and robust optimization techniques into vehicle rebalancing problems.201

This research gap is important to address given the prominent role of ride-hailing in urban202

transportation. Demonstrating how robustness and matching-integrated rebalancing can be203

combined in ride-hailing operations, and evaluating whether this combination of methods is204

advantageous, can help to improve future ride-hailing operations.205

3. Methodology206

3.1. Problem Description207

Given an operation period T , we first divide it into Ω identical time intervals indexed by208

k = 1, 2, ...,Ω, where the length of each time interval is ∆1. Figure 2 displays the framework209

of the MIVR model. The MIVR model is solved in a rolling-horizon manner, where decision210

variables are determined repeatedly at the beginning of each time interval. At the beginning211

of time interval k, κ future time intervals are incorporated in the MIVR model, and only212

the vehicle rebalancing decisions of the current time interval k are implemented. When213

proceeding to the next time interval, vehicle locations are observed and updated as the214

input for the MIVR model. Let (k, k + 1, ..., k + κ − 1) represent time intervals considered215

at time k, to simplify the notation, these time intervals are indexed by k = 1, 2, ..., κ. The216

study region is partitioned into n sub-regions, each sub-region i has an estimated demand217

rki ≥ 0 at time k. We define the following two sets: N = {1, ..., n} representing the set218

of sub-regions and K = {1, ..., κ} representing the set of time intervals considered in the219

problem.220

1 𝒌 − 𝟏
	∆

⋯ 𝒌 𝒌 + 𝟏 ⋯ ⋯ 𝒌 +𝜿 − 𝟏 ⋯ 𝛀

Past time intervals

Current decision time

Future time intervals

MIVR

Figure 2: MIVR model framework. Each time interval has length ∆. Grey intervals indicate past time
intervals that have been optimized. The green interval represents the current decision time interval and red
intervals stand for look-ahead time within the MIVR model.

The MIVR model introduces the driver-customer matching component into the vehicle re-221

balancing problem by considering interzonal matchings based on estimated demand. Within222

a time interval k, the vehicle rebalancing phase happens at the beginning of the interval and223

the driver-customer matching phase is conducted at the end of the interval. In the vehicle224

rebalancing phase, decision variables are represented by xkij ∈ N denoting the number of idle225

1The choice of ∆ should depend on the size of sub-regions.
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vehicles rebalanced from sub-region i to sub-region j at time k. Let Ski ∈ N indicate the226

number of available vehicles in sub-region i at time k for the matching phase. Let dkij, w
k
ij227

denote the travel distance and time from sub-region i to sub-region j at time k, respectively,228

which can be approximated by the distance and travel time between the centroids of two229

sub-regions. We define a parameter akij ∈ {0, 1} denoting whether an idle vehicle can be230

rebalanced from sub-region i to sub-region j at time k, where akij = 0 if rebalancing between231

sub-regions i, j is feasible at time k. The vehicle rebalancing from sub-region i to sub-region232

j at time k is feasible if wkij ≤ ∆, stipulating that the vehicle can be rebalanced to the des-233

tination sub-region j within time interval k. Then the feasibility constraint of rebalancing234

between sub-regions is given by:235

akij · xkij = 0 ∀i, j ∈ N, ∀k ∈ K. (1)

This constraint does not prevent long-distance rebalancing decisions that occur over236

several time periods, but rather limits the movement of rebalancing vehicles within a single237

time period to zones that are reachable within that time period.238

In the driver-customer matching phase, matching is considered between sub-regions with-239

out considering actual demand and detailed locations of customers and vehicles. Let ykij ∈ N240

denote the number of customers in sub-region i matched with vehicles in sub-region j at241

time k. It is worth mentioning that decision variables ykij of the matching component only242

serve as auxiliary variables in the MIVR model, which focuses on computing the rebalanc-243

ing decisions. When vehicle are rebalanced and requests are collected, the driver-customer244

matching problem can then be solved by a separate driver-customer matching problem given245

the realized demand. Let T ki ∈ N denote the number of unsatisfied requests in sub-region i246

at time k. Then constraints related to the matching phase are:247

n∑
j=1

ykji ≤ Ski ∀i ∈ N, ∀k ∈ K (2a)

n∑
j=1

ykij ≤ rki ∀i ∈ N, ∀k ∈ K (2b)

T ki = rki −
n∑
j=1

ykij ∀i ∈ N, ∀k ∈ K (2c)

Constraints (2a) and (2b) restrict the interzonal matching decisions by the number of248

available vehicles Ski and estimated demand rki . Constraints (2c) define the number of un-249

satisfied requests, which is equivalent to the number of customers who have not been as-250

signed drivers within the current matching phase. When matching customers and drivers,251

a maximum pickup time constraint is imposed to guarantee that customers do not experi-252

ence excessive wait times. Let w̄ denote customers’ maximum pickup time and parameter253

bkij ∈ {0, 1} denote whether customers in sub-region i can be matched with drivers in sub-254

region j at time k, where bkij = 0 indicates a feasible interzonal matching. The matching255

between customers in sub-region i and drivers in sub-region j at time k is feasible if wkji ≤ w̄,256

which enforces the maximum pickup time constraint. The matching feasibility constraint is257
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then258

bkij · ykij = 0 ∀i, j ∈ N, ∀k ∈ K. (3)

Next, we establish the connection between the two phases. Let V k
i , O

k
i ∈ N represent the259

number of vacant and occupied vehicles for sub-region i at the beginning of time interval260

k, respectively. The initial vehicle locations, V 1
i , O

1
i ,∀i ∈ N , are inputs for the MIVR261

model. Other inputs to the model are regional transition matrices P k, Qk, which describe262

the dynamics of occupied vehicles. The entry (i, j) for P k, P k
ij, denotes the probability that263

an occupied vehicle located in sub-region i at time k will be in sub-region j and stay occupied264

at time k+ 1. The entry (i, j) for Qk, Qk
ij, indicates the probability that an occupied vehicle265

starting in sub-region i at time k will be in sub-region j and become vacant at time k + 1.266

In reality, the regional transition matrices depend on the spatio-temporal demand flows267

as well as the operator’s dispatching and rebalancing strategies. The matching and rebalanc-268

ing decisions in the MIVR model are defined at interzonal level, and the regional transition269

matrices formulated with interzonal level decision variables are approximations to the real270

matrices. To reduce the model complexity, we further approximate the real regional transi-271

tion matrices with static matrices estimated from the historical data. The impact of utilizing272

static transition matrices will be elaborated in the results section. These matrices must273

satisfy the following constraints:274

n∑
j=1

(P k
ij +Qk

ij) = 1, ∀i ∈ N, ∀k ∈ K.

Then, we specify the following relationships between Ski , V
k
i , O

k
i and decision variables275

xkij, y
k
ij:276

n∑
j=1

xkij ≤ V k
i ∀i ∈ N, ∀k ∈ K (4a)

Ski = V k
i +

n∑
j=1

xkji −
n∑
j=1

xkij ∀i ∈ N, ∀k ∈ K (4b)

V k+1
i = Ski −

n∑
j=1

ykji +
n∑
j=1

Qk
jiO

k
j ∀i ∈ N, ∀k ∈ K \ {κ} (4c)

Ok+1
i =

n∑
j=1

ykji +
n∑
j=1

P k
jiO

k
j ∀i ∈ N, ∀k ∈ K \ {κ} (4d)

Where constraints (4a) ensure that the number of vehicles in sub-region i that can be277

rebalanced to other sub-regions is bounded by the number of vacant vehicles. Constraints278

(4b) show that the available vehicles in sub-region i at time k consist of vacant and rebalanced279

vehicles. Similarly, constraints (4c) indicate that the set of vacant vehicles in sub-region i280

at time k + 1 is comprised of currently vacant vehicles at time k and currently occupied281

vehicles that become vacant in the next time interval. The number of unmatched vehicles at282
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time k, denoted by Ski −
∑n

j=1 y
k
ji, is equal to the difference between the number of available283

vehicles and the number of vehicles dispatched for interzonal matching. The number of284

occupied vehicles at time k that become vacant at time k + 1 in sub-region i is represented285

by
∑n

j=1Q
k
jiO

k
j . Constraints (4d) state that occupied vehicles in sub-region i at time k + 1286

are comprised of currently vacant vehicles that become occupied in the next interval as287

well as currently occupied vehicles at time k. The number of vacant vehicles that become288

occupied in sub-region i at time k + 1 because of interzonal matching at time k is indicated289

by
∑n

j=1 y
k
ji. The number of occupied vehicles at time k that stay occupied at time k + 1 in290

sub-region i is enforced by
∑n

j=1 P
k
jiO

k
j .291

The objective for the MIVR model is minimizing the number of unsatisfied requests292

and the total vehicle travel distance, which consists of vehicle rebalancing distance and293

vehicle pickup distance. To construct the objective function as the generalized VMT for294

ride-hailing operations, we assume γ to be a parameter indicating the penalty VMT induced295

by each unsatisfied request. Let β represent a parameter that defines the relative weighting296

of rebalancing distance and pickup distance. The parameter β controls the trade-off between297

the total non-occupied VMT (from the system perspective) and the service quality (from298

the customer perspective). A larger β indicates a higher priority on minimizing the vehicle299

pickup distance, which leads to better service quality with a smaller customer wait time.300

When β = 1, the MIVR model purely minimizes the total VMT and the number of unsatisfied301

requests without explicitly putting any weight on the customer wait times2.302

(MIV R) min Z =
κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij + β ·

κ∑
k=1

n∑
i=1

n∑
j=1

ykijd
k
ji + γ ·

κ∑
k=1

n∑
i=1

T ki (5a)

s.t. Constraints (1), (2a)− (2c), (3), (4a)− (4d)

xkij, y
k
ij ∈ N ∀i, j ∈ N, ∀k ∈ K (5b)

Ski , V
k
i , O

k
i , T

k
i ∈ N ∀i ∈ N, ∀k ∈ K (5c)

The MIVR model is an integer linear programming (ILP) problem with integer variables303

xkij, y
k
ij, S

k
i , V k

i , Ok
i and T ki . ILP problems of this size and complexity can be difficult to304

solve in a reasonable time frame. To improve the computational performance of our model305

while producing satisfying results, we relax all integer variables in the problem to positive306

real numbers R+. The rebalancing decisions used for implementations can be generated by307

rounding down the solutions generated by the relaxed model. The approximated rebalancing308

decisions are guaranteed to be feasible regarding to constraints (4a), which impose an upper-309

bound on the number of vehicles that can be rebalanced.310

By incorporating matching decisions within vehicle rebalancing problem, the model also311

considers future matching distances in addition to the rebalancing distance, leading to312

“smarter” rebalancing decisions. Essentially, the MIVR reduces the cost of inaccurate de-313

mand estimation when rebalancing idle vehicles. Meanwhile, the MIVR model is a forward-314

2The MIVR model implicitly weights the customer wait times because of the correlation between the
vehicle pickup distance and wait times.

10



looking model by incorporating κ future time intervals into the model.315

3.2. Robust Optimization Model Formulation316

The estimation of the future demand rki is crucial for vehicle rebalancing problems in317

ride-hailing systems. Previous studies have assumed the number of customers in any sub-318

region followed a Poisson distribution [5, 6]. However, in most applications we have limited319

knowledge about the “true” distribution for the future demand. The assumption that com-320

plex customer behaviour can be described by a simple probability distribution might be too321

strong. Instead of imposing a probability distribution on the future demand, we introduce322

the robust optimization technique where the uncertain demand parameters are described by323

uncertainty sets rather than specific probability distributions. The uncertainty sets specify324

a range for the uncertain demand where the demand can lie anywhere in the range.325

First, we define the uncertainty set for the robust MIVR model. For the uncertainty in326

the demand originating in sub-region i within time interval k, we construct an uncertainty327

set U from the intersection of two different sets: a box uncertainty set Ũki and a polyhedral328

uncertainty set Ūk which constrains the total variation in demand across all sub-regions.329

The uncertainty set U was selected to reflect the actual range of demand variability across330

different sub-regions without producing solutions that are too conservative in practice.331

The box uncertainty set imposes upper and lower bounds of ρ standard deviations be-332

tween estimated regional demand and the mean regional demand at each time interval k.333

The parameter ρ is set according to the operator’s level of risk tolerance, with a higher ρ rep-334

resenting a lower tolerance for risk. The mean µki and standard deviation σki of the demand335

in sub-region i during time k are estimated with the historical data. The box uncertainty336

set for estimated demand rki is then337

Ũki (ρ) =

{
rki :

∣∣∣∣rki − µkiσki

∣∣∣∣ ≤ ρ

}
∀i ∈ N, ∀k ∈ K.

The polyhedral uncertainty set limits the total offset in the sum of the demand during a338

time interval across all sub-regions. This second restriction is intuitive; within a given time339

interval, demand may be above or below the mean in one region, but the total demand across340

the entire service area could be expected to remain at a similar level compared to previous341

days under most scenarios. Sub-regions with unusually high demand should be offset by other342

nearby sub-regions of low demand. The polyhedral uncertainty set for estimated demand rki343

is344

Ūk(Γ) =

{
(rk1 , ..., r

k
n) :

∣∣∣∣∣
n∑
i=1

(rki − µki )

∣∣∣∣∣ ≤ Γ

}
∀k ∈ K,

where Γ is the parameter to control the level of uncertainty for the polyhedral uncertainty345

set. It is worth noting that the construction of the uncertainty set indicates how much346

uncertainty the operator would like to tolerate in the operation. In reality, there exists347

scenarios where the total demand at certain time intervals exceed the historical mean by far,348

for instance ride-hailing demand after concerts or large events. It is wise for the ride-hailing349

operator to not take such unusual demand scenarios into consideration.350

The combined uncertainty set U for the estimated demand rki is:351
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U =

[
n⋂
i=1

κ⋂
k=1

Ũki (ρ)

]
∩

[
κ⋂
k=1

Uk(Γ)

]
By defining an uncertain parameter ζ ∈ Rnκ and letting rki = µki + ζki σ

k
i , we can write U352

as follows:353

U =
{
ζ : ‖ζ‖∞ ≤ ρ;

∣∣eT (ζk ◦ σk)
∣∣ ≤ Γ,∀k ∈ K

}
, (6)

where ζk, σk ∈ Rn are vectors for a specific time interval k, e ∈ Rn is a vector with all354

entries equal to one, and ζk ◦ σk indicates the element-wise product for vectors ζk and σk.355

The parameters ρ and Γ control the size of the uncertainty set for estimated demand, and356

can be adjusted based on the operators’ risk tolerance or desired probability guarantee for357

constraints involving uncertain parameters. Increasing the value of ρ and Γ leads to more358

conservative rebalancing decisions for the robust model.359

Combining the MIVR model with the uncertainty set described above, we propose a360

robust MIVR model:361

(P ) min
xkij ,y

k
ij

Z =

κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij + β ·

κ∑
k=1

n∑
i=1

n∑
j=1

ykijd
k
ji + γ ·

κ∑
k=1

n∑
i=1

T ki (7a)

s.t. Ski = V k
i +

n∑
j=1

xkji −
n∑
j=1

xkij ∀i ∈ N, ∀k ∈ K (7b)

V k+1
i = Ski −

n∑
j=1

ykji +
n∑
j=1

QkjiO
k
j ∀i ∈ N, ∀k ∈ K \ {κ} (7c)

Ok+1
i =

n∑
j=1

ykji +
n∑
j=1

P kjiO
k
j ∀i ∈ N, ∀k ∈ K \ {κ} (7d)

n∑
j=1

xkij ≤ V k
i ∀i ∈ N, ∀k ∈ K (7e)

n∑
j=1

ykji ≤ Ski ∀i ∈ N, ∀k ∈ K (7f)

n∑
j=1

ykij ≤ µki + ζki σ
k
i ∀i ∈ N, ∀k ∈ K, ∀ζ ∈ U (7g)

T ki = µki + ζki σ
k
i −

n∑
j=1

ykij ∀i ∈ N, ∀k ∈ K, ∀ζ ∈ U (7h)

bkij · ykij = 0 ∀i ∈ N, ∀k ∈ K (7i)

akij · xkij = 0 ∀i ∈ N, ∀k ∈ K (7j)

xkij , y
k
ij ≥ 0 ∀i, j ∈ N, ∀k ∈ K (7k)

Ski , V
k
i , O

k
i , T

k
i ≥ 0 ∀i ∈ N, ∀k ∈ K (7l)

12



The problem (P) becomes infeasible even with a small value of ρ if the coefficient of362

variation3 for uncertain demand is large for some sub-regions during certain time intervals.363

Particularly, the problem (P) is infeasible if ∃i ∈ N, ∃k ∈ K and ρ ≥ µki
σk
i
. Because when364

inequality ρ ≥ µki
σk
i

holds, the box uncertainty set Ũki (ρ) allows ζki to take values smaller365

than −µki
σk
i
, which leads to a negative uncertain demand, i.e., rki = µki + ζki σ

k
i < 0. The366

constraint (7g) is infeasible when the right-hand side is negative since the decision variable367

ykij is non-negative. To prevent infeasibility that can results from demand uncertainty, we add368

restrictions on the uncertainty set in the problem (P) to guarantee that estimated demand369

is non-negative:370

µki + ζki σ
k
i ≥ 0 ∀i ∈ N, ∀k ∈ K, ∀ζ ∈ U (8)

When modeling robust optimization problems, equality constraints with uncertain pa-371

rameters should be avoided as much as possible since they dramatically shrink the feasible372

region and often lead to infeasibility [47]. For the problem (P ) with uncertain parameter373

ζ, we must therefore reformulate equality constraints (7h). Equality constraints (7h) can374

be avoided by eliminating variable T ki through substitution. After this variable elimination375

step, objective function of problem (7a) becomes:376

min
xkij ,y

k
ij


κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij + β ·

κ∑
k=1

n∑
i=1

n∑
j=1

ykijd
k
ji + max

ζ∈U

γ · κ∑
k=1

n∑
i=1

(µki + ζki σ
k
i −

n∑
j=1

ykij)

 . (9)

The objective function (9) with min-max formulation can be reformulated by introducing377

an auxiliary variable ω:378

min Z = ω (10a)

s.t.
κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij +

κ∑
k=1

n∑
i=1

n∑
j=1

(β · dkji − γ)ykij + γ ·
κ∑
k=1

n∑
i=1

(µki + ζki σ
k
i ) ≤ ω ∀ζ ∈ U (10b)

However, robust counterparts for equivalent formulations of the same problem are not379

necessarily equivalent [47]. To reformulate the problem while maintaining an identical robust380

counterpart, we make variables T ki adaptive, meaning that both variables are “wait-and-see”4
381

variables relating to uncertain parameters ζ, i.e., T ki = T ki (ζ). Introducing adaptive vari-382

ables turns the initial RO problem into an Adaptive Robust Optimization (ARO) problem.383

A commonly-used approximation method for solving ARO problems is the application of384

Linear Decision Rules (LDRs), which has been shown to perform well in practice [34, 48].385

Also, if the coefficients for the variables to be eliminated in the equality constraint do not in-386

clude uncertain parameters and the constraint is linear in the uncertain parameters, making387

such variables adaptive and applying LDRs is equivalent to directly eliminating them [47].388

3Ratio of the standard deviation to the mean.
4The value of “wait-and-see” variables are determined only after the future demand is revealed.
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Substitutions with equality constraint (7h) satisfies both conditions, therefore we eliminate389

variables T ki in the problem (P ) to ensure no uncertain parameters appear in equality con-390

straints. The reformulation (P ′) is equivalent to an approximation for the original robust391

formulation (P ) together with restriction (8) on the uncertainty set by applying LDRs:392

(P ′) min Z = ω (11a)

s.t.

κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij +

κ∑
k=1

n∑
i=1

n∑
j=1

(β · dkji − γ)ykij + γ ·
κ∑
k=1

n∑
i=1

(µki + ζki σ
k
i ) ≤ ω ∀ζ ∈ U

(11b)

Constraints (7b)− (7g), (7i)− (7l), (8)

After the reformulation, uncertain parameters only appear in the constraints. The next393

step is to derive the robust counterpart for the robust MIVR model. Constraints (7g),394

(11b) and Equation (8) with uncertain parameter ζ can be written as the following generic395

formulation:396

L(·) + vT ζ ≤ c ∀ζ ∈ U , (12)

where L(·) indicates a function of decision variables in problem (P ′), v is a vector in397

dimension nκ and c is a scalar. The robust counterpart for the generic constraint (12) is398 

L(·) + ρ ‖θ0‖1 + Γ
∑κ

k=1(ηk1 + ηk2) ≤ c

(ηk
′

1 − ηk
′

2 )σk
′
i = θi,kk′ ∀i ∈ N, ∀k = k′ ∈ K

θi,kk′ = 0 ∀i ∈ N, ∀k 6= k′ ∈ K
ηk1 , η

k
2 ≥ 0 ∀k ∈ K∑κ

k=0 θk = v

(13)

Where θk ∈ Rnκ and θi,kk′ represents (ik)-th entry of vector θk′ , ∀k′ ∈ K. The full399

derivation of the generic robust counterpart of (12) can be found in Appendix A. Then we400

derive the robust counterpart for problem (P ′):401

(RC) min Z = ω (14a)

s.t. Constraints (7b)− (7f), (7i)− (7l)
κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij +

κ∑
k=1

n∑
i=1

n∑
j=1

(β · dkji − γ)ykij + γ ·
κ∑
k=1

n∑
i=1

µki + ρ ·
κ∑
k=1

n∑
i=1

θ̃i,k0

+ Γ ·
κ∑
k=1

(ηk1 + ηk2 ) ≤ ω (14b)

(ηk
′

1 − ηk
′

2 )σk
′
i = θi,kk′ ∀i ∈ N, ∀k = k′ ∈ K (14c)

θi,kk′ = 0 ∀i ∈ N, ∀k 6= k′ ∈ K (14d)
κ∑

k′=0

θi,kk′ = γ · σki ∀i ∈ N, ∀k ∈ K (14e)
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− θ̃i,k0 ≤ θ
i,k
0 ≤ θ̃

i,k
0 ∀i ∈ N, ∀k ∈ K (14f)

ηk1 , η
k
2 ≥ 0 ∀k ∈ K (14g)

n∑
j=1

ykij + ρ

κ∑
k′=1

n∑
i′=1

(τ i
′,k′

1,i,k + τ i
′,k′

2,i,k) + Γ

κ∑
k′=1

(τk
′

3,i,k + τk
′

4,i,k) ≤ µki ∀i ∈ N, ∀k ∈ K

(14h)

τ i
′,k′

1,i,k − τ
i′,k′

2,i,k + σk
′
i′ (τk

′
3,i,k − τk

′
4,i,k) = 0 ∀i′, i ∈ N, ∀k′, k ∈ K, (i′, k′) 6= (i, k) (14i)

τ i
′,k′

1,i,k − τ
i′,k′

2,i,k + σk
′
i′ (τk

′
3,i,k − τk

′
4,i,k) = −σki ∀i′ = i ∈ N, ∀k′ = k ∈ K (14j)

τ i
′,k′

1,i,k, τ
i′,k′

2,i,k ≥ 0 ∀i′, i ∈ N, ∀k′, k ∈ K (14k)

τk
′

3,i,k, τ
k′
4,i,k ≥ 0 ∀i ∈ N, ∀k′, k ∈ K (14l)

ρ

κ∑
k′=1

n∑
i′=1

(νi
′,k′

1,i,k + νi
′,k′

2,i,k) + Γ

κ∑
k′=1

(νk
′

3,i,k + νk
′

4,i,k) ≤ µki ∀i ∈ N, ∀k ∈ K (14m)

νi
′,k′

1,i,k − ν
i′,k′

2,i,k + σk
′
i′ (νk

′
3,i,k − νk

′
4,i,k) = 0 ∀i′, i ∈ N, ∀k′, k ∈ K, (i′, k′) 6= (i, k) (14n)

νi
′,k′

1,i,k − ν
i′,k′

2,i,k + σk
′
i′ (νk

′
3,i,k − νk

′
4,i,k) = −σki ∀i′ = i ∈ N, ∀k′ = k ∈ K (14o)

νi
′,k′

1,i,k, ν
i′,k′

2,i,k ≥ 0 ∀i′, i ∈ N, ∀k′, k ∈ K (14p)

νk
′

3,i,k, ν
k′
4,i,k ≥ 0 ∀i ∈ N, ∀k′, k ∈ K (14q)

The constraints (14b) - (14g) represent the robust counterpart of constraints (11b). Con-402

straints (14h) - (14l) are the robust counterpart of constraints (7g) while constraints (14m)403

- (14q) are the robust counterpart of Equation (8). Compared to problem (P ′), the robust404

counterpart (RC) introduces (4n2κ2 + 5nκ2 + 2nκ+ 2κ) new auxiliary continuous variables.405

Although the number of decision variables increases considerably in the robust counterpart,406

this LP problem can be solved efficiently even for large-scale instances.407

4. Empirical Study Design408

In this section, we describe a real-time ride-hailing simulator used to compare the MIVR409

model with an independent VR model. To justify the benefit of introducing the robust op-410

timization technique into the vehicle rebalancing problem, a separate matching problem is411

solved over multiple demand scenarios to evaluate robust solutions and compare the nom-412

inal MIVR model with the robust MIVR model. We also describe the data used in the413

experiments.414

4.1. Ride-hailing Simulator415

The ride-hailing simulator is used to compare the nominal MIVR model with a benchmark416

VR model described in Appendix B. The results produced by this simulator allow us to417

evaluate the impact of the MIVR model independent of the robust optimization component.418

The simulation framework is shown in Figure 3.419

Data Input. Data input for the ride-hailing simulator including the road network for420

the studied region with a shortest path distance matrix and a predecessor matrix, the set421

of n sub-regions N , a distance matrix dkij and travel time matrix wkij between centroids of422
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Demand Generation

Data Input Simulation 
Parameters

Vehicle 
Initialization

Vehicle 
Rebalancing Engine

Driver-Customer 
Matching Engine

Update 
Vehicle Locations

Simulator

Output 
Simulation Results

Figure 3: Ride-hailing simulation framework.

sub-regions, the set of Ω time intervals with length ∆, a mean µki of demand for each sub-423

region during each time interval, a full day of ride-hailing demand, and regional probability424

transition matrices for occupied vehicles P,Q and vacant vehicles Pv, Qv. Details of the P,Q425

matrix estimation methods are provided in Appendix D. Data sources are described in detail426

in Section 4.3.427

Simulation Parameters. Table 1 presents and explains the simulation parameters. Re-428

balancing decisions are solved with a model considering κ look-ahead time intervals.429

Simulation Parameter Explanation Base Case Value

α Cost parameter for regular rebalancing model 102

β Weight parameter for pickup distance 1

γ Cost parameter for unsatisfied requests 102

Tstart Start time of simulation 00:00

Tend End time of simulation 24:00

∆ Decision time interval length 300 (seconds)

δ Matching batch size 30 (seconds)

κ Number of time intervals considered in model 6

w̄ Maximum pickup time 300 (seconds)

w̃ Maximum wait time 300 (seconds)

Nv Number of vehicles 3000

v̄ Average vehicle speed 20 (mph)

Table 1: Simulation parameters and base case value.

Demand Generation. Due to privacy concerns, historical TNC trip datasets typically430
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do not provide exact addresses or coordinates for trip origins and destinations. Given the431

demand data at sub-regional level, we randomly assign road nodes within sub-regions as432

origins and destinations.433

Vehicle Initialization. At the start of the simulation period, the Nv vehicles are equally434

likely to be in any sub-region i. The initial location for a vehicle within a sub-region i is435

randomly assigned to a road node within i. All vehicles are considered to be available at the436

beginning of the simulation.437

Simulator. There are two main components contained in the simulator: the vehicle438

rebalancing engine and driver-customer matching engine. Vehicle locations are updated at439

the beginning of each simulation iteration. The simulator works as follows: at the beginning440

of current simulation iteration, vacant and occupied vehicle locations are updated and used as441

the input for vehicle rebalancing engine; vacant vehicles are rebalanced based on rebalancing442

decision variables for the current iteration; within each simulation iteration, the driver-443

customer matching engine can be run multiple times depend on the matching batch size444

(e.g., 30 seconds); vehicles with assigned customers become occupied and start to pick up445

customers and finish their trips.446

Driver-customer Matching Engine. The optimal assignment problem for matching drivers447

with customers in the simulator can be found in Appendix C. The objective of the optimal448

assignment problem is minimizing the number of unsatisfied requests while minimizing the449

pickup distance. The batch size of driver-customer matching engine is δ and customers will450

leave the ride-hailing system if they wait longer than the maximum wait time w̃.451

Simulation Results. We evaluated the simulation with the following vehicle-related indi-452

cators: number of served customers, non-occupied VMT and number of rebalancing trips.453

Customer wait time is used as the customer-related indicator to evaluate the simulation.454

The customer wait time includes two components: the time for the vehicle to be assigned to455

the customer, and the time for the assigned vehicle to travel to the pickup location.456

4.2. Robust Solution Evaluation457

Evaluating the solutions from the robust model requires multiple different demand sce-458

narios due to the stochastic inputs. We compare the average performance of the model across459

all demand scenarios in the study period for different uncertainty set sizes.460

To evaluate the model performance under each demand scenario, we solve a separate461

driver-customer matching problem after the demand is realized and the (nominal or ro-462

bust) rebalancing decision xkij (generated with estimated demand) is executed. The driver-463

customer matching problem solved here is identical to the one solved in the simulator. The464

overall pickup time and the number of unsatisfied customers are used as outputs to evaluate465

robust solutions.466

4.3. Data Description467

The study area used in the experiments is the island of Manhattan in NYC. We used the468

high-volume ride-hailing trip data collected by the NYC Taxi and Limousine Commission469

[49] as the demand data. The sub-regions used in the experiments are “taxi zones” defined470

within the high-volume ride-hailing trip dataset. There are 63 taxi zones on the island of471

Manhattan (N = 63).472
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For benchmark comparisons of the nominal MIVR model, weekdays in June 2019 were473

chosen as the analysis period. Only trips that began and ended on the island of Manhattan474

were included. The mean and standard deviation of daily trip count by zone are shown in475

Figure 4 to illustrate the overall demand pattern. Demand is generally concentrated around476

dense residential areas on the eastern and western sides of Manhattan. There was an average477

of 294,422 high-volume ride-hailing trips per weekday during the sample period.478

(a) Mean (b) Standard deviation

Figure 4: Average daily demand by zone (trips).

The full day of ride-hailing demand used in the simulation is from June 10, 2019. We chose479

a non-holiday Wednesday as it represents a typical day of demand from the study period.480

Figure 5 shows the comparison between the real demand and estimated demand5 aggregated481

into 5-minute time intervals. Based on the relationship between total real demand and total482

estimated demand, we identify four discrete demand scenarios over which the model can be483

tested:484

I Low demand with accurate estimation (0 - 6): overall demand is relatively low and485

consistent with the historical average for this period.486

II High demand with accurate estimation (6 - 10): overall demand is high and consistent487

with the historical average for this period.488

III Demand underestimation (11 - 17): the total demand exceeds the historical average for489

this period.490

IV Demand overestimation (20 - 24): the total demand is lower than the historical average491

for this period.492

It is worth mentioning that an accurate prediction of the total demand does not lead493

to accurate sub-regional demand predictions. Demand uncertainties exist in every demand494

scenario and the overall level of uncertainty is higher in scenarios where demand is under-495

estimated or overestimated. Simulation results for each demand scenario are shown in the496

5Mean demand µk
i is used as estimated demand.
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Scenario I

Scenario II
Scenario III

Scenario IV

Figure 5: Estimated and real demand with four different types of demand scenarios. The demand is aggre-
gated into 5-minute time intervals.

next section in order to illustrate the difference in model performance across two dimensions:497

demand level and prediction accuracy.498

For evaluations of the robust MIVR model, we utilized the actual demand data for the499

65 week days from April to June 2019 to reflect the real demand uncertainty. Mean µki and500

standard deviation σki used in the robust MIVR model are generated from the same period.501

The interzonal travel times for each time interval, wkij, were collected from real travel502

speed data provided by the Uber Movement database for the study period of June 2019 [50].503

Hourly link-level travel speed is available for every link with at least five unique trips during504

the hour. First, the average hourly speed across all days in the study period was determined.505

The average hourly link travel speed was then used as an input to find the shortest path travel506

time between each zone pair for each hour in the day. Dijkstra’s algorithm [51] was used507

to determine the shortest path between zone centroids. The regional transition probability508

matrices for occupied and vacant vehicles, P , Q, Pv and Qv, are generated based on the real509

travel time and demand data, and details are shown in Appendix D.510

5. Results511

All experiments in this paper are conducted on a 3.0 GHz AMD Threadripper 2970WX512

Processor with 128 GB Memory. The integer linear program and linear program in the513

experiments are solved with Gurobi 9.0 [52].514

Presentation and discussion of the results is organized into three subsections. Section 5.1515

compares the MIVR model to two benchmark models: the VR model described earlier, and516

a recent state-of-the-art rebalancing model [25]. Section 5.2 explores the sensitivity of the517

MIVR results to variation in the model inputs. Finally, Section 5.4 provides the results for518

the robust MIVR model.519

5.1. Benchmark Comparison520

First, we compare the MIVR model with the benchmark VR model described in Appendix521

B and a fluid-based empty-car routing policy (FERP) proposed by Braverman et al. [25]. The522

performance of each model is assessed with the ride-hailing simulator described in Section 4.523
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To ensure a fair comparison, each vehicle rebalancing model uses the same demand profile524

and initial vehicle locations for each scenario.525

5.1.1. Benchmark VR Model Comparison526

The base case scenario (full-day simulation) is tested with the simulation parameters527

shown in Table 1. The base case considers a scenario with 3000 vehicles, i.e., Nv = 3000,528

and 6 future time intervals in the vehicle rebalancing model, i.e., κ = 6. The base case529

scenario purely minimizes the number of unsatisfied requests and the total non-occupied530

VMT, i.e., β = 1. Both vehicle- and customer-related metrics are presented in Figure 6,531

where each figure shows the distributions for vehicles or customers for both MIVR and VR532

model results.533

As shown in Figure 6a, the MIVR model reduces the non-occupied travel distance on534

average when compared to the VR model. Also, the number of vehicles with extremely535

long travel distance is reduced when utilizing the MIVR model. Figure 6b displays the536

rebalancing trip distributions, indicating that the MIVR dispatches fewer vacant vehicles537

for rebalancing purposes. The distribution of the number of served customers per vehicle538

is shown in Figure 6c. Although the average number of customers served by each vehicle539

is identical for two models, vehicles utilization is more evenly distributed under the MIVR540

model compared to the VR model. Figure 6d compares the wait time between the MIVR and541
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(c) Number of customers served (per vehicle) distribution
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Figure 6: Vehicle- and customer-related metrics in the simulation for the base case.
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VR models. The average wait times are 65.5 and 68.5 seconds for each model, respectively.542

This occurs because the MIVR model reduces the number of customers with longer wait543

times. The fraction of unsatisfied requests for both models is less than 0.1%. Under the base544

case scenario, the MIVR model reduces customer wait time by 4.4% on average and total545

non-occupied VMT by 8.5%.546

To better understand the model performance relative to the magnitude of demand and547

the level of prediction accuracy, we compared the MIVR model with the VR model over the548

four demand scenarios described in Section 4.3. Figure 7 displays the non-occupied vehicle549

travel distance distributions and Figure 8 shows the customer wait time distribution over550

the four demand scenarios. For the low demand with accurate estimation (I) and demand551

underestimation (III) scenarios, the MIVR model outperforms the VR model by significantly552

reducing customer wait time while also reducing the average vehicle non-occupied travel553

distance. In the high demand with accurate estimation scenario (II), the MIVR model554

reduces customer wait time by proactively rebalancing vehicles more frequently than the VR555

model. In the demand overestimation scenario (IV), the MIVR model is outperformed by the556

VR model as the VR model leads to lower average customer wait time and average vehicle557

non-occupied travel distance. The detailed simulation results for each demand scenario can558

be found in Appendix E.559
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(a) Low demand with accurate estimation (0 - 6)
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Figure 7: Vehicle non-occupied travel distance distributions for different demand scenarios.

To summarize, the MIVR model dispatches more vacant vehicles than the VR model560
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(c) Demand underestimation (11 - 17)

0 50 100 150 200 250 300 350
Time (seconds)

0

200

400

600

800

1000

1200

1400

1600

Co
un

t

VR; mean = 54.8; stdev = 57.1
MIVR; mean = 61.3; stdev = 56.9

(d) Demand overestimation (20 - 24)

Figure 8: Customer wait time distributions for different demand scenarios.

when the level of estimated demand is high (given a specific fleet size Nv). On the other561

hand, fewer vehicles are dispatched by the MIVR model compared to the VR model when the562

level of estimated demand is low. This conclusion is further substantiated in Section 5.2.1,563

which discusses the results under different fleet sizes. We observe that the MIVR model is564

less proactive on dispatching vacant vehicles compared to the VR model when the fleet size565

is large relative to the level of demand.566

In this section, we have shown that the performance of rebalancing models, as measured567

by the average customer wait time, depends on the accuracy of demand prediction and the568

level of demand. When the error in demand prediction is low, the MIVR model reduces569

the average customer wait time compared to the VR model. Model performance is penal-570

ized when the error in demand prediction is high (the total demand is underestimated or571

overestimated). Additionally, a rebalancing model which dispatches more vacant vehicles572

suffers higher penalties due to inaccurate demand estimation. In the demand scenario III,573

the level of predicted demand is low and the MIVR model dispatches fewer vacant vehicles574

than the VR model. Therefore, the MIVR model performs better than the VR model by575

reacting less often to inaccurate demand estimation. In the demand scenario IV, the level576

of predicted demand is high and the MIVR model dispatches more vacant vehicles than the577

VR model. The MIVR model experiences a higher penalty due to inaccurate demand esti-578

mations because of a proactive rebalancing strategy; hence, it performs worse than the VR579
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model under these conditions. The demand scenario IV implies that the demand prediction580

serves a critical role in the performance MIVR model. These results therefore demonstrate581

the value of a robust MIVR model that explicitly considers demand uncertainty.582

5.1.2. Benchmark FERP Comparison583
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Figure 9: Benchmark comparison results between MIVR and FERP models.

To further evaluate the performance of proposed MIVR model, we compared our approach584

with a state-of-the-art method for solving the vehicle rebalancing problem [25]. Braverman585

et al. [25] formulated a fluid-based optimization problem to generate a static empty-car586

routing policy. To guarantee a fair comparison, we chose a two-hour time period (7AM -587

9AM) with historical demand and travel time data from June 2019 and 3000 vehicles to588

compute a static empty-car routing policy. We implemented the static routing policy in the589

simulator to dispatch vacant vehicles at each time interval instead of solving an optimization590

problem. Comparison results are shown in Figure 9.591

Figure 9a displays the distributions of non-occupied vehicle travel distance and Figure592

9b shows the vehicle rebalancing trip distributions. The MIVR model dispatches vacant593

vehicles more proactively than the FERP. The distributions of number of customers served594

per vehicle are presented in Figure 9c, where vehicles are utilized slightly more evenly by the595

MIVR model than the FERP. Figure 9d displays the customer wait time distributions. The596
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MIVR model reduces the average customer wait time by 18% while increasing total non-597

occupied VMT by 24%. The proportion of unsatisfied requests for both approaches is less598

than 0.1%, which is a result of the adequate supply of vehicles. The MIVR model optimizes599

rebalancing decisions during each time interval and the FERP maintains the same vehicle600

rebalancing policy throughout the simulation period. In general, the MIVR model provides601

better service quality for customers by producing a more proactive rebalancing strategy, but602

it also results in a somewhat higher non-occupied VMT.603

5.2. Scenario Testing604

Second, we test the sensitivity of the results when changing input parameters of the605

MIVR model, including the fleet size, Nv, the length of decision time interval, κ, the weight606

parameter for pickup distance, β, and the size of the sub-regions. To avoid the effect of inac-607

curate demand estimation when testing different scenarios6, we tested different scenarios with608

Nv, κ and β over a four-hour time period (6 AM - 10 AM) assuming perfect future demand609

predictions. Alternative scenarios are generated by changing the simulation parameters for610

the base case.611

5.2.1. Fleet size Nv612

Results for scenarios with varying fleet sizes, represented by Nv in the simulation pa-613

rameters, are shown in Figure 10. When there is a limited number of vehicles (Nv ≤ 4000)614

in the system, the MIVR model generates more rebalancing trips per vehicle compared to615

the VR model. When there are sufficient vehicles in the system (Nv = 5000 or 6000), the616

MIVR model dispatches fewer vacant vehicles and reduces the total non-occupied VMT com-617

pared to the VR model. This is intuitive; for the MIVR model, less rebalancing is needed618

when there is a higher concentration of idle vehicles since more passengers can be picked up619

(within the maximum wait time constraint) without significant rebalancing. Therefore, the620

MIVR model reduces the total non-occupied VMT. The MIVR model decreases the average621

customer wait time under all scenarios with different fleet sizes compared to the VR model.622

Customer wait time decreases significantly for the MIVR model when a larger fleet is avail-623

able. Even though rebalancing is not as critical for a large fleet, the MIVR model continues624

to minimize pickup distance and therefore customer wait time. The proportion of unsatisfied625

requests is marginally decreased for the MIVR model compared to the VR model, regardless626

of fleet size.627

The scenario testing with different fleet sizes implies the existence of the Pareto improve-628

ment at aggregate level for the MIVR model compared to the VR model. When a sufficient629

number of vehicles is available, the MIVR model reduces the total non-occupied VMT, aver-630

age vehicle rebalancing trips and average customer wait time while satisfying more requests631

compared to the VR model. For instance, when there are 6000 vehicles in the system (with632

κ = 6), the MIVR model reduces the total non-occupied VMT by 33%, average vehicle633

rebalancing trips by 22% and average customer wait time by 36% when compared to the VR634

model. Under this scenario, the MIVR model clearly outperforms the VR model, indicating635

that the Pareto improvement exists.636

6The effect of input parameters on the simulation results can be overshadowed by the effect induced by
inaccurate demand estimations when two have contradictory effects on certain performance metrics.
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Figure 10: Scenario testing results for different fleet size Nv.

5.2.2. Decision time interval length κ637
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Figure 11: Scenario testing results for different decision time interval length κ.

Figure 11 shows the results under scenarios with varying decision time intervals κ. Both638

models dispatch more vehicles when considering additional future time intervals (i.e. κ639

becomes large), and similar amount of vacant vehicles are dispatched by both models. Also,640

the total non-occupied VMT increases when considering more future time intervals for both641

models, and the MIVR model leads to less non-occupied VMT compared to the VR model642

for all scenarios. With respect to customer wait time, considering additional time intervals643

benefits both models and the MIVR model reduces wait times for all scenarios compared644

to the VR model. The MIVR outperforms the VR model on the proportion of unsatisfied645

requests for all scenarios.646

Note that selecting number of time intervals presents a trade-off between system perfor-647

mance and computation time. Increasing κ linearly increases the size of the problem, which648

may result in a solution time that is too long to use in practice. The average computation649

time for solving the MIVR model with κ = 6 is 3.8 seconds and the average computation650

time for the MIVR model with κ = 12 is 7.5 seconds. Platform operators must therefore651

choose a look-ahead window that is suited to their system size and computational capacity.652
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5.2.3. Weight parameter for pickup distance β653
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Figure 12: Sensitivity testing results for the weight parameter β in the MIVR model. Solid line indicates
the average customer wait time and dashed line represents the total non-occupied VMT.

The weight parameter β in the MIVR model controls the trade-off between the total654

non-occupied VMT and the service quality. In previous experiments, β = 1 was used as a655

base case, leading to a MIVR model which purely minimized the total non-occupied VMT656

and the number of unsatisfied requests. In this section, different values of β are tested based657

on the base case simulation setting assuming perfect future demand predictions, and the658

total non-occupied VMT and the average customer wait time are shown in Figure 12.659

When β becomes larger, the MIVR model puts more weight on the service quality (cus-660

tomer wait times), and the total non-occupied VMT gets larger. The average customer wait661

time monotonically decreases when β increases. By increasing the value of β to 3, the average662

wait time is reduced by 3% while increasing the total non-occupied VMT by 4%. However,663

the MIVR model becomes more vulnerable to the demand uncertainty when the value of β664

is large. This is because more vacant vehicles are rebalanced when β is large, where a larger665

penalty is induced by the inaccurate demand estimations. Therefore, the service quality can666

be diminished if β is too large.667

On the other hand, a negative weight is put on the service quality when β < 1, meaning668

that the service quality is sacrificed to reduce the total non-occupied VMT. For the scenario669

with β = 0.5, the total non-occupied VMT is reduced by 0.5% and the average wait time670

is increased by 4% compared to the base case. Since the vehicle rebalancing distance is671

highly correlated with customer wait time, reducing β does not significantly decrease the672

total non-occupied VMT.673

5.2.4. Sub-regional size674

The MIVR model performance relies on the size of sub-regions. Smaller sub-regions leads675

to more rebalancing options (decision variables) and a better overall model performance.676

However, the model complexity increases when considering smaller sub-regions. To quantify677

the effect of changing the size of sub-regions, we combined 63 taxi zones into 13 larger zones678

and ran simulations for the 13 large sub-regions. Comparison results are shown in Figure679

13.680

Figure 13a and 13b show the distributions of non-occupied vehicle travel distance and681

vehicle rebalancing trips. Fewer sub-regions with larger size reduces the opportunities for682
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Figure 13: Results comparison between simulations with 63 regular sub-regions and 13 large sub-regions.

rebalancing vacant vehicles between sub-regions. Therefore, both the average vehicle non-683

occupied VMT and rebalancing trips are significantly decreased. The distribution of number684

of customers served per vehicle is shown in Figure 13c, where vehicles are more evenly utilized685

by the MIVR model under a smaller sub-region size. Figure 13d displays the customer wait686

time distributions for both scenarios. Compared to the scenario with larger sub-regions, the687

scenario with 63 sub-regions leads to 20% and 23% reductions on the average customer wait688

time for the VR and the MIVR, respectively. Differences between the MIVR and VR models689

hold regardless of the size of the sub-regions.690

As for the computation complexity, the average running time for producing rebalancing691

decisions during each iteration by the MIVR model under a regular sub-region size is 3.95692

seconds. The average running time for the MIVR model under a larger sub-region size is693

0.18 seconds. Reducing the number of sub-regions from 63 to 13 saves approximately 95% of694

the computation time on generating rebalancing decisions. In general, the size of sub-regions695

should be chosen to balance computation complexity and model performance.696

5.3. Impact of Regional Transition Matrices697

In the MIVR model, we utilized static regional transition matrices P and Q, which are698

estimated from the historical data, to reflect the movement of occupied vehicles. However,699

the true regional transition matrices depend spatio-temporal demand flows and operators’700
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dispatching and rebalancing strategies. In this section, we will quantify the impact of ap-701

proximating true regional transition matrices with the historical data.702

To incorporate the true regional transition matrices in the model, we modified the sim-703

ulator by estimating regional transition matrices for occupied vehicles based on preceding704

matching decisions at the beginning of each simulation period. By using the previous match-705

ing decisions in the simulation, only regional transition matrices between the current time706

period k and the next time period k + 1 can be evaluated accurately. Therefore, we imple-707

mented a MIVR model with κ = 2 in the simulation, indicating that two time intervals were708

considered when making rebalancing decisions. Other simulation parameters are identical to709

the base case scenario. Such a modified simulator is able to produce rebalancing decisions710

based on the true regional transition matrices at each time interval.711

To quantify the impact of approximating regional transition matrices with the historical712

data, we compared results from the modified simulator to results from a standard simulator713

described in section 4.1 with κ = 2, which guarantees identical look-ahead windows in the714

MIVR model. Results are compared within a four-hour time period (8AM - 12PM) and715

detailed comparison results are shown in Figure 14.716
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Figure 14: Comparison results between simulators with dynamic and static regional transition matrices.
Dynamic indicates that regional transition matrices are estimated at the beginning of every simulation time
interval. Static implies that regional transition matrices estimated by the historical data are utilized.

Figure 14a shows the distributions of vehicle non-occupied travel distance. Utilizing true717
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regional demand matrices reduces the total non-occupied VMT by 1.9%. Distributions of718

vehicle rebalancing trips and number of customers served are displayed in Figure 14b and719

14c, where two simulators have identical performance on average. Figure 14d presents the720

distributions of customer wait time. Using true regional transition matrices reduces the721

average customer wait time by by 2.4%.722

The comparison results imply that approximating the true regional transition matrices723

with static matrices estimated from the historical data has a marginal impact on model724

performance. This is intuitive; the regional transition matrices are used for constructing a725

forward-looking vehicle rebalancing model. In the simulation, only the rebalancing decisions726

for the first time interval will be implemented, although rebalancing decisions for κ time727

periods are generated. When moving to the next time period, real-time information (e.g.,728

vehicle locations) is updated and a separate MIVR model considering κ time intervals is729

solved. Therefore, regional transition matrices have a limited impact on rebalancing decisions730

at the first time interval, which subsequently has a marginal impact on model performance.731

732

5.4. Robust Model Results733

To evaluate the robust optimization model, we tested multiple scenarios with different734

levels of uncertainty as defined by the uncertainty set size parameters ρ and Γ. Each robust735

solution was generated for the robust MIVR model considering 6 future time intervals, i.e.,736

κ = 6. The model parameters were set as β = 1, γ = 102 and w̄ = w̃ = 300. For the737

number of vehicles Nv, we considered the scenario with 3000 vehicles, indicating a sufficient738

supply (almost all customers can be served) given the demand profile, and 2000 vehicles,739

representing an insufficient supply. The initial vehicle distributions V1 and O1 are generated740

using the following process: each vehicle in the fleet with size Nv is either vacant or occupied741

with equal probability and is randomly assigned to a sub-region. To test the performance742

for different solutions, we utilized the real demand data from 9 AM - 9:30 AM for 65 work743

days from April to June 2019 and solved a driver-customer matching problem with realized744

demand and vehicle distributions after rebalancing. The performance of each solution was745

evaluated based on the average values of the total pickup time and the number of unsatisfied746

requests over the 65 demand scenarios. The solution generated by the nominal MIVR model747

was used as the benchmark for evaluating robust solutions. The performance of each robust748

solution is displayed as the percentage reduction in performance measurements compared to749

the nominal solution.750

For the scenario with insufficient supply (Nv = 2000 and a proportion of customers can751

not be served), Table 2 shows the results about the total pickup time and and Table 3752

displays the percentage reduction for the number of unsatisfied requests over the nominal753

MIVR model. Introducing uncertainty into the model generates solutions that outperform754

the nominal solution for all values of ρ and Γ. The uncertain parameter ρ significantly affects755

the total pickup time and the number of unsatisfied requests while the uncertain parameter756

Γ has limited impact on them. When a high level of uncertainty is considered in development757

of the robust MIVR model, more customers can be served with less total pickup time.758

For the scenario with sufficient number of vehicles (Nv = 3000 and almost all customers759

can be served), the percentage reduction of the total pickup time is shown in Table 4. The760

robust MIVR model benefits more when having a large fleet of vehicles in the system. The761
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ρ

Γ
0 1 2 3 4 5 6 7 8 9 10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

0.2 0.51 1.38 1.18 0.66 1.18 0.66 1.18 1.18 0.66 0.79 1.38

0.3 2.45 2.45 4.52 2.45 2.45 2.45 2.45 4.52 4.52 2.45 4.52

0.4 3.47 4.15 4.15 4.15 4.15 4.15 5.67 4.15 4.15 5.67 5.6

0.5 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 7.68 7.68 5.62

0.6 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89

0.7 8.78 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32

0.8 13.24 13.24 13.24 13.24 13.24 13.24 13.24 13.24 13.24 13.24 13.24

0.9 17.17 17.17 17.17 18.59 17.17 17.17 17.17 19.78 18.59 18.59 17.17

1.0 21.19 19.92 21.23 21.23 21.23 21.23 21.23 21.23 21.23 21.23 21.23

Table 2: Percentage reduction in the total pickup time compared to the nominal MIVR solution with
insufficient supply (Nv = 2000), for different values of ρ and Γ. Gray cells indicate uncertain scenarios with
the largest reduction in pickup time.

ρ

Γ
0 1 2 3 4 5 6 7 8 9 10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.41 0.21 0.2 0.21 0.2 0.21 0.21 0.2 0.2 0.41

0.3 0.17 0.17 0.61 0.17 0.17 0.17 0.17 0.61 0.61 0.17 0.61

0.4 0.14 0.14 0.14 0.14 0.14 0.14 0.22 0.14 0.14 0.22 0.3

0.5 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.3 0.3 0.08

0.6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

0.7 0.2 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

0.8 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46

0.9 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

1.0 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

Table 3: Percentage reduction in the number of unsatisfied requests compared to the nominal MIVR solution
with insufficient supply (Nv = 2000). Gray cells indicate uncertain scenarios with the largest reduction in
unsatisfied requests.

largest total pickup time reduction for the robust MIVR model with sufficient supply is762

41.03% compared to 21.23% for the scenario with insufficient supply. Under the scenario763

with sufficient supply, all customers can be served and introducing uncertainty into the model764

generates solutions that outperform the nominal solution for all values of ρ and Γ.765

The robust MIVR model protects the rebalancing decisions against demand uncertainty766

by restricting the number of rebalancing trips compared to the nominal MIVR model, which767

is shown in Figure 15. When dispatching fewer vacant vehicles compared to the nominal768

case, the penalty incurred due to inaccurate demand estimations is decreased and the system769

becomes more robust against the demand uncertainty, hence has less total pickup time.770
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ρ

Γ
0 1 2 3 4 5 6 7 8 9 10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5.23 4.19

0.2 6.4 6.4 6.4 7.44 7.01 7.27 6.67 6.45 6.4 6.4 6.4

0.3 12.51 12.51 12.51 12.0 12.51 12.0 12.0 12.0 12.0 12.51 12.51

0.4 16.23 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33

0.5 18.19 18.32 18.32 17.57 18.32 18.32 18.32 18.32 18.32 18.32 18.32

0.6 24.14 22.96 22.96 22.98 22.98 22.96 22.98 22.96 22.96 22.96 22.98

0.7 25.62 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18 25.18

0.8 30.89 29.39 29.22 29.13 31.44 29.39 30.98 29.82 29.4 29.73 29.39

0.9 39.82 36.55 38.02 38.92 36.6 36.44 37.16 36.44 38.1 36.44 36.44

1.0 38.22 39.1 39.49 39.01 39.01 40.41 39.49 39.41 41.03 40.47 40.93

Table 4: Percentage reduction in the total pickup time compared to the nominal MIVR solution with
sufficient supply (Nv = 3000), for different values of ρ and Γ.

The number of rebalancing trips is significantly restricted (less than 50% compared to the771

nominal MIVR model) when introducing a high level of uncertainty into the robust MIVR772

model under the sufficient supply scenario.773

Figure 16 shows the daily performance of the robust MIVR model compared to the774

nominal MIVR model. Under the insufficient supply scenario, even considering a low level775

of uncertainty (ρ = 0.1) can significantly improve the performance of the robust MIVR776

model (better performance than the nominal MIVR model for 83% of the 65 days tested).777
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(a) Insufficient supply scenario with fleet size Nv = 2000
(the nominal MIVR model conducts 864 vehicle rebalancing
trips)
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(b) Sufficient supply scenario with fleet size Nv = 3000
(the nominal MIVR model conducts 1228 vehicle rebalancing
trips)

Figure 15: Rebalancing trips for the robust MIVR model under multiple uncertain scenarios. Each cell
represents the percentage of rebalancing trips under a specific level of uncertainty compared to the number
rebalancing trips in the nominal MIVR model.

31



0 1 2 3 4 5 6 7 8 9 10
Uncertain Parameter 

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

Un
ce

rta
in

 P
ar

am
et

er
 

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 98 100 100 98 97

89 89 89 89 89 89 89 89 89 89 89

86 83 88 86 88 86 88 88 86 86 83

83 83 83 83 83 83 83 83 83 83 83

0 0 0 0 0 0 0 0 0 0 0

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Pe
rc

en
ta

ge
 (%

)

(a) Insufficient supply scenario with fleet size Nv = 2000
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(b) Sufficient supply scenario with fleet size Nv = 3000

Figure 16: Daily robust MIVR model performance under multiple uncertain scenarios. Each cell represents
the percentage of the 65 input days that the robust MIVR model performs strictly better than the nominal
MIVR model under a given level of uncertainty.

When incorporating a moderate level of uncertainty (ρ ≥ 0.5) into the model, the robust778

MIVR model outperforms the nominal MIVR model for every day of demand tested. When779

a sufficient supply of vehicles is available, the robust MIVR model performs better than the780

nominal MIVR model for every weekday tested over most uncertain scenarios.781

Overall, the robust MIVR model generates rebalancing decisions based on out-of-sample782

demand uncertainty defined by parameters ρ and Γ, and solutions are evaluated with real783

demand data reflecting in-sample demand uncertainty. The parameters ρ and Γ for uncer-784

tainty sets indicate the level of demand uncertainty that ride-hailing operators are willing to785

protect rebalancing decisions against. Based on experiment results, introducing robustness786

into the MIVR model and protecting rebalancing decisions against demand uncertainty im-787

prove the system performance effectively under insufficient and sufficient supply cases. The788

robust MIVR model performs even better when having sufficient number of vehicles in the789

system.790

6. Conclusions and future work791

In this paper, we formulate the MIVR model, which incorporates the driver-customer792

matching component into the consideration of vehicle rebalancing decisions made by ride-793

hailing operators, to protect rebalancing decisions against future demand uncertainty induced794

by inaccurate demand estimates. We evaluate the performance of our model by comparing795

against a benchmark VR model and a state-of-the-art model, named fluid-based empty-car796

routing policy (FERP), using actual ride-hailing trip data. Comparing to the VR model, the797

MIVR model reduces the average customer wait time and the total non-occupied VMT under798

most scenarios. When a large fleet is available, a Pareto improvement can be found regarding799

the overall non-occupied VMT, the average vehicle rebalancing trips, the average customer800

wait time and the number of unsatisfied requests. Comparing to the FERP, the MIVR model801

reduces the average customer wait time by generating a more proactive rebalancing strategy.802
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To further immunize solutions against demand uncertainty, we propose the robust MIVR803

model by introducing RO techniques. The robust MIVR is especially effective when the804

supply of ride-hailing vehicles is sufficient and most requests can be satisfied. Under both805

sufficient-supply and insufficient-supply cases, the robust MIVR model prevents rebalancing806

decisions from inaccurate demand estimation by rebalancing fewer vehicles. Additionally,807

introducing robustness into the MIVR model generates rebalancing decisions that performs808

better than decisions produced by the nominal MIVR model under most demand scenarios.809

The main limitations of this study are a result of approximations embedded in the MIVR810

model. First, we are only able to model trips aggregated to the zonal level given the data811

availability. While we simulate actual pickups and drop-off locations within those zones,812

future work could incorporate disaggregate data to test rebalancing and matching at the in-813

dividual address level. The model could be improved if these data were made available. We814

also assume static regional transition matrices estimated from the historical data. Though815

having limited impacts on model performances, matching and rebalancing decisions-based re-816

gional transition matrices can be considered in the model to better reflect vehicle trajectories817

across multiple time periods.818

This paper shows how internalization of matching costs can be used to protect rebalancing819

decisions against demand uncertainty and improve the efficiency of ride-hailing operations820

regarding customers (satisfy more customers with shorter wait times), and under what condi-821

tions the proposed method is beneficial. Furthermore, it illustrates how robust optimization822

complements the MIVR model by further limiting the risk of increased cost due to incor-823

rect demand estimations. Ride-hailing service operators should consider adopting the robust824

MIVR model for improved customer outcomes, such as wait time and unsatisfied requests,825

and reduced costs for operators.826

There are several future research directions we identified in this paper. First, the un-827

certainty set Ūk(Γ) has a limited impact on system performance. More effective and in-828

terpretable uncertainty sets could be designed to model the uncertainty in the ride-hailing829

system. Secondly, additional uncertainty variables could be considered besides the demand830

uncertainty, such as travel time. Thirdly, we used the historical average as the future de-831

mand estimates in this paper. Advanced demand prediction algorithms can be incorporated832

within the robust MIVR model to further improve operational performances. Lastly, the833

MIVR model could be extended to solve the vehicle rebalancing problem in the shared MoD834

system.835
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Appendix A. Derivation of The Robust Counterpart967

Given the following generic constraint968

L(·) + vT ζ ≤ c ∀ζ ∈ U , (A.1)

where L(·) indicates a function of decision variables in problem (P ′), v is a vector in969

dimension nκ and c is a scalar, it is equivalent to970

L(·) + max
ζ∈U

vT ζ ≤ c. (A.2)

By taking the convex conjugate of constraint (A.2) we derive the following equivalent971

constraint972

L(·) + δ∗(v | U) ≤ c, (A.3)

where δ(v | U) is an indicator function such that δ(v | U) = 0 if v ∈ U , otherwise973

δ(v | U) =∞. δ∗(v | U) is the convex conjugate of δ(v | U). Then we introduce Lemma 1 to974

help with deriving the robust counterpart [48].975

Lemma 1. For a constraint āTx+ δ∗(P Tx | Z) ≤ b, let Z1, ..., Zk be closed convex sets, such
that

⋂
i ri(Zi) 6= ∅7, and let Z = ∩ki=1Zi. Then,

δ∗(y | Z) = min
y1,...,yk

{
k∑
i=1

δ∗(yi | Zi) |
k∑
i=1

yi = y},

and the constraint becomes {
āTx+

∑k
i=1 δ

∗(yi | Zi) ≤ b∑k
i=1 y

i = P Tx

Let U0 = {ζ : ‖ζ‖∞ ≤ ρ} and Uk = {ζ :
∣∣eT (ζ ◦ Σk)

∣∣ ≤ Γ},∀k ∈ K, where Σk ∈ Rnκ
976

denotes a vector with (ik)-th entry equals to σki , ∀i ∈ N , and other entries equal to zero.977

The uncertainty set U can be written as: U = ∩κk=0Uk. By applying Lemma 1 to constraint978

(A.3), we develop the following robust counterpart for constraint (A.1):979 {
L(·) +

∑κ
k=0 δ

∗(θk | Uk) ≤ c∑κ
k=0 θk = v

(A.4)

7ri(Zi) indicates the relative interior of the set Zi.
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Which is equivalent to980 

L(·) + ρ ‖θ0‖1 + Γ
∑κ

k=1(ηk1 + ηk2) ≤ c

(ηk
′

1 − ηk
′

2 )σk
′
i = θi,kk′ ∀i ∈ N, ∀k = k′ ∈ K

θi,kk′ = 0 ∀i ∈ N, ∀k 6= k′ ∈ K
ηk1 , η

k
2 ≥ 0 ∀k ∈ K∑κ

k=0 θk = v

(A.5)

Where θk ∈ Rnκ and θi,kk′ represents (ik)-th entry of vector θk′ , ∀k′ ∈ K.981

Appendix B. Benchmark Vehicle Rebalancing (VR) Model982

In this section, we formulate a benchmark vehicle rebalancing (VR) model to test the983

performance of our MIVR model. With similar notations to the MIVR model, we introduce984

several additional parameters. Let P k
v , Q

k
v be regional transition matrices regarding vacant985

vehicles in time period k, which are learned from the historical data. P k
v,ij stands for the986

probability for a vacant vehicle in sub-region i at time k to be in sub-region j at time k + 1987

and becomes occupied. Similarly, Qk
v,ij denotes the probability for a vacant vehicle in sub-988

region i at time k to be in sub-region j at time k + 1 and remains vacant. Two regional989

transition matrices satisfy the following condition:990

n∑
j=1

(P k
v,ij +Qk

v,ij) = 1, ∀i ∈ N, ∀k ∈ K.

991

Then the benchmark VR model is:992

(V R) min
xkij

κ∑
k=1

n∑
i=1

n∑
j=1

xkijd
k
ij + α ·

κ∑
k=1

n∑
i=1

| Ski − rki | (B.1a)

s.t. Ski =
n∑
j=1

xkji −
n∑
j=1

xkij + V k
i ∀i ∈ N, ∀k ∈ K (B.1b)

V k+1
i =

n∑
j=1

Qkv,jiS
k
j +

n∑
j=1

QkjiO
k
j ∀i ∈ N, ∀k ∈ K \ {κ} (B.1c)

Ok+1
i =

n∑
j=1

P kv,jiS
k
j +

n∑
j=1

P kjiO
k
j ∀i ∈ N, ∀k ∈ K \ {κ} (B.1d)

n∑
j=1

xkij ≤ V k
i ∀i ∈ N, ∀k ∈ K (B.1e)

akij · xkij = 0 ∀i ∈ N, ∀k ∈ K (B.1f)

xkij ∈ R+ ∀i, j ∈ N, ∀k ∈ K (B.1g)

Ski , V
k
i , O

k
i ∈ R+ ∀i ∈ N, ∀k ∈ K (B.1h)
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Where the objective function (B.1a) consists of vehicle rebalancing cost and a service993

availability function with a weight parameter α to minimize the difference between available994

vehicles and estimated demand in each sub-region. Constraints (B.1b) to (B.1d) define the995

relationship between available vehicles Ski , vacant vehicles V k
i and occupied vehicles Ok

i . The996

maximum number of available vehicles that can be rebalanced is restricted by constraints997

(B.1e). Constraints (B.1f) impose the feasibility restrictions for rebalancing decisions, and998

the non-negativity of integer decision variables are guaranteed by constraints (B.1g) and999

(B.1h). To increase the computational efficiency while maintaining a satisfying solution, we1000

further relax integer decision variables xkij, S
k
i , V

k
i and Ok

i to positive real numbers R+.1001

The VR model proposed in this section is sufficient to show the benefit of integrating1002

matching into the VR problem. When having different VR models with the area partitioning1003

assumption, a matching-integrated version can always be constructed.1004

Appendix C. Optimal Assignment of Drivers to Customers1005

In this section, the driver-customer assignment problem implemented in the matching1006

engine of the simulator is described. Within each matching decision time interval δ, let1007

R = {r1, ..., rn} denote a set of waiting customers and V = {v1, ..., vm} represent a set of1008

vacant vehicles in the system. Between a customer ri and a vehicle vj, let τ(ri, vj) indicate1009

the minimum travel time for the vehicle to pick up the customer. The maximum pickup1010

time for customers is denoted by w̄. First, we construct a bipartite graph G = (V,E),1011

where V = R ∪ V and E = {e(ri, vj) : ∀ri ∈ R,∀vj ∈ V , τ(ri, vj) ≤ w̄}, meaning that1012

an edge exists between a vehicle and a customer if the customer can be picked up by the1013

vehicle within the maximum pickup time. The cost of each edge e(ri, vj) equals to the pickup1014

time, i.e., ce(ri,vj) = τ(ri, vj). The decision variables for the optimal assignment problem are1015

xe(ri,vj) ∈ {0, 1} for each edge e(ri, vj) ∈ E in the bipartite graph G, and yri ∈ {0, 1} for each1016

customer ri ∈ R. xe(ri,vj) = 1 indicates that the customer ri will be picked up by the vehicle1017

vj in the optimal assignment. yri = 1 implies that the customer ri will not be assigned1018

to any vehicles during the current decision time interval δ. Let I(ri) represent the set of1019

edges connected to a customer vertex ri in G. Similarly, let I(vj) indicate the set of edges1020

connected to a driver vertex vj in G. The optimal driver-customer assignment problem is:1021

min
∑

e(ri,vj)∈E

ce(ri,vj)xe(ri,vj) + γ ·
∑
ri∈R

yri (C.1a)

s.t.
∑

e(ri,vj)∈I(vj)

xe(ri,vj) ≤ 1 ∀vj ∈ V (C.1b)

∑
e(ri,vj)∈I(ri)

xe(ri,vj) + yri = 1 ∀ri ∈ R (C.1c)

xe(ri,vj) ∈ {0, 1} ∀e(ri, vj) ∈ E (C.1d)

yri ∈ {0, 1} ∀ri ∈ R (C.1e)

The objective function (C.1a) minimizes the summation of the total pickup time and1022

penalties for unsatisfied requests, where γ stands for the penalty VMT for each unsatisfied1023

customer. Constraints (C.1b) ensure that each vehicle can only be assigned to at most one1024
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customer. Constraints (C.1c) guarantee that each customer is either served by a vehicle or1025

remained waiting during the current matching period. Constraints (C.1d) and (C.1e) make1026

sure that the decision variables are binary. The optimal driver-customer assignment problem1027

can be solved efficiently by the off-the-shelf ILP solvers (e.g., Gurobi) in the simulation.1028

Appendix D. Estimation of Regional Transition Matrix1029

In this section, the process for estimating the regional transition probability matrices for1030

occupied and vacant vehicles, P , Q, Pv and Qv, with the real travel time and demand data1031

are described. There are several assumptions we made to generate these matrices:1032

• Given a travel time and distance between the origin and the destination of a request,1033

the vehicle travels with a constant speed.1034

• Given the origin and the destination of a request, the vehicle travels along the shortest1035

path with regards to travel time.1036

• For vacant vehicles within sub-regions, 100% of vehicles remain in the same sub-region.1037

The detailed procedure is described as follows. First, the list of sub-regions crossed by1038

the shortest path between each origin and destination pair was determined. The time spent1039

within each sub-region for each origin-destination pair was weighted by the total demand1040

to get the average time spent in each sub-region across all trips. For a given starting sub-1041

region, the interzonal shortest paths, sub-region durations and origin-destination demand1042

patterns were used to determine the likelihood of a given vehicle remaining in the starting1043

sub-region, transitioning to a nearby sub-region or making a dropoff within a time interval.1044

These probabilities were then used to populate P and Q. Because the taxi dataset only1045

contains information about occupied vehicles, assumptions were made for the vacant vehicle1046

zone transition probability matrices Pv and Qv.1047

Appendix E. Benchmark VR Comparison Results for Different Demand Sce-1048

narios1049

In this section, we provide the base case simulation results for four different demand1050

scenarios: low demand with accurate estimation in Figure E.17, high demand with accurate1051

estimation in Figure E.18, demand underestimation in Figure E.19 and demand overestima-1052

tion in Figure E.20.1053
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Figure E.17: Vehicle- and customer-related metrics in the simulation for the base case under the low demand
with accurate estimation scenario (0 - 6).
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Figure E.18: Vehicle- and customer-related metrics in the simulation for the base case under the high demand
with accurate estimation scenario (6 - 10).
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Figure E.19: Vehicle- and customer-related metrics in the simulation for the base case under demand under-
estimation scenario (11 - 17).
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Figure E.20: Vehicle- and customer-related metrics in the simulation for the base case under demand over-
estimation scenario (20 - 24).
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