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With the recent progress of techniques in computer vision
and processor design, vehicles are able to perform a greater
number of functions, and are reaching higher levels of au-
tonomy. As the list of autonomous tasks that the car is sup-
posed to perform grows, two design questions arise; how to
group these tasks intomodules, andwhich processors and
data buses should instantiate thesemodules and their links
in the physical architecture. Both questions are linked, as
the processing capacity of the processors influences how
centralized the architecture can be, and themodularization
influences the overall system latency as well. Furthermore,
our interest lies in designing architectures that perform the
tasks rapidly, while minimizing cost. This multi-objective
problem is intractable without architecture exploration and
an analysis tool. This paper presents a linear optimization
formulation to capture these tradeoffs, and to systemati-
cally find relevant architectures with optimal latency and
cost. The results show that enforcing all safety constraints
on the architecture leads to a worst case increase of 17% in
latency and 18% component cost per vehicle. The increase
in latency is significant at the scale of human driver reaction
times.
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SYMBOLS AND VAR IABLES
• Θ systemworst-case end-to-end latency [s]
• P path in the architecture, composed of both the functional components (tasks andmessages) and the physical

components (processors and buses) [-]
• rτi worst case response time for task τi [s]
• rτiτj worst case response time for message τiτj )
• Tτi activation period of task τi
• Tτiτj activation period of message τiτj
• lP latency of path p [s]
• xτimk assignment of task τi to modulemk [-]
• zmkπr assignment of modulemk to processor πr [-]
• dτiτjb assignment of message τiτj to bus b [-]
• yπkπl,τiτj linearization variable, equals to 1when two communicating tasks τi and τj are on different processors

(k 6= l)
• Aikr linearization variable, equals to 1when task τi is assigned to processor πr throughmodule k
• Uτiτjb linearization variable, equals to 1whenmessage τiτj is assigned to bus b
• C overall architecture cost
• Ck cost of component k
• Cyτi Clock cycle of task τi [-]
• RAMk RAMusage or capacity of component k [KB]
• ROMk ROMusage or capacity of component k [KB]
• sτiτj size of message τiτj [bytes]
• Raπk Clock Rate [MHz]
• Transmission time tb [s/bit]
• θ(τi) start time of task τi [s]
• ASIL(i)Automotive Safety Integrity Level (ASIL) level of task or processor i [-]
• Mnumber of modules the architecture should contain [-]
• N1 number of tasks in the architecture [-]
• N3 number of different, available processor types [-]

1 | INTRODUCTION
Advances in autonomous vehicle technologies are rapid. Whether autonomous vehicles (AV) will only result in vari-
ous technical demonstrators or in viable products for end users will depend on not only the advance of component
technologies, but also their organization into functional systems that possess attractive lifecycle properties such as
safety, reliability, producibility, and affordability. While much of the current focus of AV technology development is
on demonstrating functional capabilities, an important next step is to begin to determine which tradeoffs among the
elements of AV system architectureswill yield superior overall system performance. Several prototypeswere presented
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COLLIN ET AL. 3

during the 2007DARPAUrban challenge, giving the first insights onwhich architectures were promising1.
For instance, advances in the performance of computer vision algorithms and the ability for some algorithms to

successfully perform object recognition at sufficiently high rates is a key enabler in the creation of fully autonomous
vehicles. The performance of deep learning algorithms increases with the size of the training dataset and the depth of
the neural networks, resulting in these algorithms performingmore andmore operations2. The physical architecture of
the components supporting these algorithms therefore contains processors withmore computing power, in order to
perform the same tasks more effectively within the time required for vehicles to be considered autonomous.

This implies some important tradeoffs in system design. Distributing computational tasks on different processors
allows for parallelizing the computation, but the transfer of data between processors increases latency3 (time taken to
complete all required computations). If all the computational tasks are carried out on a single processor, processors
with high computing capabilities (and cost) will be required. As prototypes of functioning autonomous vehicles turn into
viable products going intomass production, quantifying this tradeoff between cost and latency becomes critical. Our
work aims to develop an approach for identifying architectures that can perform at acceptable levels of latency, but
are cost-effective for development andmanufacturing. In thework presented here, cost is viewed as the addition of
individual component costs, which allows a linear formulation of the system cost. This work aims to extend existing
methods from embedded systems design to a higher level, at the early phases of design. Unlike most of the existing
work in the area, cost considerations are introduced, in addition to the latency calculation, and the performance
impact of allowing a largely distributed system, as well as safety constraints, are evaluated. This allows the designer to
quantitatively assess the benefits of specific safetymeasures andweigh them against potential negative impacts on
latency, which is another safety relevant metric.

2 | FUNCTIONAL AND PHYSICAL ARCHITECTURES

As future cars aremeant to take over an increasing number of tasks from the driver, the embedded systems and the
network they form in the car are becoming a complex system. It is no longer the case that each subsystem performed
its own task in isolation from the others (for example locking the doors after the car started driving). Autonomous
cars have to be able to perform a long list of tasks, in various environments4, and the output of one task can be useful
information for the next. The list of potential hardware to perform these tasks is also long5. This paper presents a
method to formally design the architecture of embedded self-driving systems for autonomous cars.

The first step is to build a functional architecture of the car, and to understand how tasks interconnect. Several
functional architectures have already been proposed6,7. Our functional model is not limited to an abstract model, but it
assumes execution times and gives performance constraints on the algorithms that will be used to instantiate the tasks
listed in the functional architecture8 . The specific data reflects a realistic functional architecture used in industry for an
autonomous vehicle. The functional architecture is defined as a network of tasks, that communicate to one another via
messages, whereas processors and data buses are components of the physical architecture. The functional architecture
is the equivalent of a graph, where tasks are the nodes, messages are the edges, and the adjacencymatrix of the graph
would be the problem’s Design StructureMatrix (DSM)9. The design of such a functional architecture can be informed
by recent methods in network analysis such as Functional Dependency Network Analysis (FDNA)10 , in order to identify
the effects of a functional failure in a highly connected architecture such as the one presented here.

For example, Figure 1 shows that the Cognition 2 task cannot receive the latest information until seven other tasks
finish their calculations. It is worth noting that a part of the system, as described by this functional architecture, is
examined here, and that the control devices are not included in the selection process, for example. In order to create
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4 COLLIN ET AL.

redundancy in the system and increase safety, some tasks are replicated into a degeneracy task; both tasks require
the same input and outputs, but theymight be carried out by different algorithms or hardware solutions. Identifying
themost capability-carrying functions through a network analysis11 informs the design of a redundancy network of
tasks to improve performance and safety in the first stages of the design. For example, the task "Recognition 4", has
the degeneracy equivalent "Recognition 4 Degeneracy". The purpose of redundant tasks is to have a function that
takes over if the original function fails, whether because of a hardware or a software failure. Each task has an ASIL
(Automotive Safety Integrity Level) level, corresponding to how critical it is. A task and its degeneracy equivalent might
have different ASIL levels.

In order to transfer the safety considerations from the functional architecture to the physical ones, two safety
constraints are defined: a task and its degeneracy equivalent should not be allocated to the same processor, and all task
should bematched to a processor that has at least the same ASIL level12. The ASILmetric captures the robustness of a
component of the physical architecture in this model. Further robustness analyses, such as the SystemOperational
Dependency Analysis (SODA)13 can be employed to extend safety considerations, but are not considered in this work.

Latency is defined as the maximum path length in the functional network. In this asynchronous system, it can
represents the time between the recognition of an obstacle and a braking action, for example. It is a function of the
tasks themselves, the processors they are being computed on, and themessages they need to exchange, andwhether
these communications are inter-chip3. As an example of the cost-latency tradeoff, one could design a systemwhere all
tasks are on the same chip, reducing the latency due to inter-chip communication but this would require a processor
with very high capacities, and which would therefore be very expensive (the architecture would also be non-robust
to hardware failures). Using several processors linked to each other, the designer needs to specify which tasks should
be processed in parallel, while respecting the capacity constraints given by data buses, on themessages that the chips
need to exchange. The difference with a network flow problem is that, here, the capacity of the nodes and edges of the
network are not set initially.

An assumption of this work is that tasks can be freely assigned to a list of provided processors, in order to, in a first
instance, remove constraints to reach new, creative designs. A first avenue to explore the design space of physical and
functional allocations is to simply enumerate all possible architectures, evaluate the cost and latency of them, and plot
their performance to obtain a Pareto front14 . However, this approach becomes rapidly computationally intractable due
to the dimension of the design space in this type of problems.

The functional allocation problem is equivalent to partitioning the set of functions into an unknown number of sub-
sets15 . The sizeof thedesign space for k functions is therefore theBell numberB(k) =

∑k
m=0

1
m!

∑m
i=0(−1)i

(m
1

)
(m−

i)k , which, for k=24, amounts to approximately 4.46 ∗ 1017!
As for the physical allocation problem, if the grouping of tasks into m modules communicate through b buses,

and if processors, among the p possible, and buses, among the c possible, are to be chosen, (p
1

)m ∗
(c
1

)b have to be
enumerated and evaluated. For example, if m = 9, b = 22, p = 2 and c = 2, this represents 231 possibilities. As a full-
factorial enumeration and evaluation approach of the combination of the two problems is computationally prohibitive,
it is necessary to use optimization approaches to systematically and efficiently search for feasible and optimal solutions.

In this paper, we describe a multi-objective discrete optimization model that minimizes cost and latency. We
propose that this approach can serve as an initial step in exploring and identifying feasible and optimal architectures for
latency and cost metrics - two of the important attributes for autonomous driving systems. The rest of this paper is
organized as follows: In section 3 previous and relatedwork is reviewed; in section 4, the details of the optimization
formulation are presented, and the results obtained through this formulation are shown in section 5.
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3 | RELATED WORK
Architecture principles andmodels for embedded systems are common in the software and electrical engineering fields,
but literature is starting to emerge about how to use these principles at a higher level of the system, andmore generally
to optimize the architecture of embedded systems specifically for autonomous vehicles.

From an optimization perspective, Ma et al. (1982) give a general algorithm to allocate tasks on a distributed
system16 using binary assignment variables. With a similar point-of-view, other authors proposed ways to design
architectures of automotive systems with a computer science perspective17,18,19,20,21. Jo et al. (2014) apply the
distributed system architecture to this system, and go into the details of the algorithms behind the tasks themselves22.
Davare et al. (2007) try tominimize latency as a single objective, but they use different design variables.

Practical experiences of building autonomous vehicles, spurred by theDARPAurban challenge, have led to different
articulations of requirements to improve safety in autonomous vehicles23. It seems that the current approach from
the robotics field is to increase safety by improving each of the tasks or sensors individually24, for example including
pedestrian intent prediction in path planning25,26, whereas experts from the automotive industry have a functional
point-of-view on safety27,28. Increased safety can also take the form of enhanced communication between the car and
the driver, to increase transparency on the reasons why the car makes certain decisions, adding functions to the list
of tasks the car has to perform29. More elaborate validationmethods for safety include probabilistic modeling of the
egocar and other agents on the road30.

In our work, the optimization problem is formulated with assignment variables, and task attributes, such as ac-
tivation periods, are assumed to be fixed, in order to reduce the size of the design space and reduce the amount of
computation. Zheng et al. (2016) formulate a nonlinear optimization problem to link the software and hardware design,
andminimize latency, with reliability, security, and energy as design variables. In a more qualitative analysis, Meng and
Zhang (2017) also reflect on the sensor architecture and its performance as a function of the environment, especially
with regards to safety.

Our work tries to link the performance of the system (proxied by end-to-end latency) and the cost of individual
components, to create pareto-optimal, yet realistic, functional and physical architectures. This is therefore a multi-
objective problem, in addition to beingmultidisciplinary.

4 | LATENCY AND COST OPTIMIZATION
The design problem contains two steps; identifying which tasks need to be grouped together without exceeding the
computing power provided by available processors (similar to amulti-dimensional knapsack problem31), where objects
have to be chosen to put in which knapsack given several constraints on the knapsack capacities, with the final goal of
minimizing latency (similar to a scheduling problem32), where jobs are assigned to given resources at a particular time
tominimize the overall latency.

Figure 2 illustrates the impact of the physical architecture on the functional grouping, and vice-versa. The first
part of the optimization can be seen asmulti-dimensional knapsack where tasks need to be bucketed into processors
of different capacities. The second part of the problem involves the fact that tasks are linked, and they can precede
one another, which resembles scheduling problems. As perMartins’ (2013) topology of multidisciplinary optimization
formulations, the structure of the problem fits into the All-at-Once problem statement, where all the disciplines are
factored in the same optimization problem33.

In order to quantify the cost-latency tradeoff, the optimization problem is formulated as a linear, Mixed Integer
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Programming (MIP), multi-objective optimization problem, with constraints on the computational capacity of the
processors. Constraints related to safety requirements (of redundancy) are also included in our formulation. This
also allows us to investigate and quantify the impact of safety constraints. The linear formulation allows for using
branch-and-boundmethods that are implemented throughwidely used solvers. The design space can hence be explored,
and different pareto-optimal architectures can be found for minimizing latency and cost objectives.

As is shown in Figure 2, a module is a theoretical entity that regroups different tasks and that needs to be assigned
to a type of physical processor. It is an intermediate step to be able to vary both the functional and the physical allocation
at the same time. The grouping is performed by the optimization. M is an external variable that can be changed, and
decides how decentralized the architecture is allowed to be. For example, M=1would lead to all tasks being forced on
only onemodule, whereasM=7would allow the optimization to distribute the tasks on up to 7 different modules, even
though fewermight be used.

4.1 | System LatencyModel
The end-to-end latency is the time elapsed between any of the tasks that start at time t=0 and the last task to be finished.
The relevant scheduling theory results are detailed in34. It can be seen as the longest path between any of the tasks in
the left column of Figure 1 and the tasks in the right column. It is composed of the time needed to perform each task
on the path, as well as the time to transfer a message from one taks to the next one, should they be on two different
processors35.

The following equation is therefore used for latency (see also Figure 3):

Θ = max
P

∑

τi∈P
(rτi + Tτi ) +

∑

τiτj∈P
(rτiτj + Tτiτj ) (1)

where P is a possible path in the network, rτi (resp. rτiτj ) the worst case response time for task τi (resp. for
message τiτj ), and Tτi (resp. Tτiτj ) the activation period of task τi (resp. of message τiτj ). Throughout the model,
indices referring tomessages are composed of the two tasks that themessage is linking. For example,Tτiτj is the period
of themessage linking τi and τj .

Although this formulation does not capture all the details of the processes taking place in the transmission of
messages and the execution of tasks, it linearly links the hardware and logical attributes. It quantifies the tradeoffs
presented earlier between centralized and distributed architectures at the functional and physical levels22. As the
primary goal here is to relatively compare architectures, rather than to determine latency behavior of a single design at
high fidelity, we consider this worst-case simplifying formulation to be adequate.

A closed-form analytical expression to represent latency in a system composed of tasks and messages that can
preempt one another, with potentially buses with different protocols, is not possible36. As our purpose is to generate
early designs rapidly, the preference is given towards a formulation that leads to a solution of the optimization problem
in a reasonable amount of time, to be able to generate a Pareto front. The priorities of the different tasks are neglected
in our formulation, as this is usually done at a later stage of the design3.

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

COLLIN ET AL. 7

4.2 | Design Variables
As encountered in the cited previous work, as well as in the topology of systems architecture problems detailed
by Selva37, the model uses assignment variables which are binary; the variable is equal to 1 when the two items it
represents are associated. Latency is modeled as a continuous dependent variable. The formulation is aMixed Integer
Programming problem, that can be solved relatively fast with solvers.

τi represents task i, mk represents the kth module, and πr represents the rth choice in the list of potential
processors.
M represents the space of existing messages. Messages are designated by the name of the sender task followed by

the name of the receiver task. For example, if task 1 sends amessage to task 3, themessage will be denoted as τ1τ3.

• xτimk represents the assignment of a task to amodule
• zmkπr assignment of amodule to a processor
• dτiτjb represents the assignment of amessage to a bus

4.3 | Dependent Variables
• yπkπl,τiτj linearization variable, equals to 1when two communicating tasks are on different processors
• Aikr linearization variable, equals to 1when task τi is assigned to processor πr throughmodule k
• Uτiτjb linearization variable, equals to 1whenmessage τiτj is assigned to bus b

Parameters for the possible components of the physical and functional architecture are provided in Table 1. The
numbers chosen to carry out the optimization are deemed to be representative of the ones available in the industry, and
aremostly usedwith the purpose of illustrating the presentedmethod.

4.4 | OptimizationModel and Constraints
The cost model C takes into account the cost of the physical components present in a given architecture. The cost
expression is made up of two terms; the first one refers to the cost of processors, and the second one to the cost of
buses. The index k refers to the choice of physical processor.

C =
∑

m

∑

k

zmk ∗ Ck +
∑

b

∑

τiτj∈M
dτiτjb ∗ Cb (2)

The factor 1000 in (3) comes from time units (seconds), with results ranging from 0.3s to 0.4s, andwith cost values in
the 350-600 cost units range. In order to keep the problem properly scaled, this factor is used in the formulation of the
objective function J, which is a usual technique inmulti-objective optimization38.

min J = 1000 ∗Θ + C (3)
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s.t.
∑

m

xτm = 1 ∀τ (4)
∑

m

zmπ = 1 ∀m (5)

meaning that each task is assigned to exactly onemodule, and eachmodule to exactly one processor.

Processor capacity constraints
For eachmodule, the computation amount, which is the Clock Cycle of the task (Cyτ ) divided by its activation period
(Tτ ) (in MHz), the RAM Usage and the ROM Usage should not exceed the Clock Rate available, the RAM Capacity
and the ROM Capacity respectively of the assigned processor. RAMk (respectively ROMk) designates the RAM
(respectively ROM) usage or capacity of component k in KB.

∑

τ

xτm ∗ Cyτ/Tτ ≤
∑

π

zmπ ∗Raπk ∀m (6)
∑

τ

xτm ∗RAMτ ≤
∑

π

zmπ ∗RAMπ ∀m (7)
∑

τ

xτm ∗ROMτ ≤
∑

π

zmπ ∗ROMπ ∀m (8)

Bus capacity constraints
This constraint ensures that the bus used to transmit themessage between task i and task j can fit the number of bytes in
themessage. dτiτjb represents the assignment of message τiτj to bus b, sτiτj is the size of message τiτj , Tmkml,τiτj

is the activation period of message τiτj , and tb is the transmission time of bus b. The factor 8 comes from the conversion
from byte to bit.

∑

τi,τj

dτiτjb ∗ 8 ∗
smkml,τiτj

Tmkml,τiτj

≤ 1

tb
∀τiτj ∈M ∀mk 6= ml (9)

Task precedence constraint
This equation states that, in the worst case, a task j downstream of task i can only start once the following has happened:

• Task i can start.
• Timeworth one period of task i has passed, therefore guaranteeing the task has started at least once.
• Task i has been processed on the processor it is being allocated to, and this processing time depends on the task’s

clock cycle and the processor’s clock rate.
• Themessage going from task i to task j has been transmitted. The formula for this message induced latency comes

from bit-stuffing39, as is donewith CAN buses, using 11-bit identifiers for themessages. The numbers 55 and 10
come from counting the bits in the CAN protocol.

• The period of themessage has passed, therefore guaranteeing it has been transmitted at least once.
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θ(τj) ≥ θ(τi)

+ Tτi + Cyτi
∑

r

∑

k

Aikr ∗
1

Rar

+
∑

b

Uτiτjb ∗ (55 + 10sτiτj ) ∗ tb

+
∑

mk 6=ml

Tmkml,τiτj ∗ ymkml,τiτj ∀τiτj ∈M

(10)

Latency addition on the path

Θ ≥ θ(τi) + Tτi + Cyτi
∑

r

∑

k

Aikr ∗
1

Rar
∀τi (11)

Linearization constraints
∀mk 6= ml and τiτj ∈M

ymkml,τiτj ≤ xτimk (12)
ymkml,τiτj ≤ xτjml (13)
ymkml,τiτj ≥ xτimk + xτjml − 1 (14)

∀τi,mk, πr

Aikr ≤ xτimk (15)
Aikr ≤ zmkπr (16)
Aikr ≥ xτimk + zmkπr − 1 (17)

∀b, ∀mk 6= ml and τiτj ∈M

Uτiτjb ≤ ymkml,τiτj (18)
Uτiτjb ≤ dτiτjb (19)
Uτiτjb ≥ ymkml,τiτj + dτiτjb − 1 (20)

Safety Constraints
Defining safety in autonomous vehicles is a challenging task. For the purpose of retaining a computationally tractable
model, the safety notions are reduced here to two constraints on the functional and physical allocations. Through these
constraints, the scope of safety is limited to the intrinsic system reliability, rather than examining uncertainty in the
environment of the vehicle40. This assumes that the system only fails when the physical instantiation of a function (the
processor to which it is assigned) fails itself. This reflects the usual literature in fault-tolerant architectures analysis41,
however an avenue of future work is to analyze reasons for which the functions would fail to perform correctly, even
with functioning processor support. An example of such a failure would be the incapacity to recognize a pedestrian in
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10 COLLIN ET AL.

front of the car, without any hardware failure.
The recommendations from the ISO26262 are leveraged to generate constraints on the optimization problem

to represent safety28. Therefore, a task and its degeneracy equivalent are forced to be in different modules, and the
processor choice has to respect the ASIL level of themost critical task in themodule. This allows the architecture to
be resilient to physical component failure. For two specific tasks i and j that aremeant to be on different processors
(and therefore in different modules), this constraint materializes in equation (21). In equation (22), the ASIL level of
processor k neeeds to be at least as high as the ASIL level of task i.

xτimk + xτjmk ≤ 1 ∀mk (21)
∑

m

ASIL(i) ∗Aimk ≤ ASIL(k) ∀i ∀k (22)

5 | RESULTS

5.1 | Single Architecture Example
The functional architecture used in this problem represents the entire set of functions needed to drive a car, all the way
from sensing to controls. A level 4 or 5 of autonomy corresponds to all functions successfully carried out in most or
all situations27. The architecture contains 24 tasks, linked together by 32messages. Depending on the context the
car is driving in, city center withmany pedestrian or highwaywithout many traffic signs to read, some of the functions
in the architecture will bemore sollicited than others. For example, if a task is to read traffic signs correctly, it will be
activatedmore often in cities than on highways. However, the architecture considered here is valid for many different
environments, and does not assume a specific scenario - the context only influences howmuch these functions need to
be performed. Even though the latency equations are simplified, and the cost model only takes into account component
price, this framework represents the steps that can be taken in the autonomous vehicle industry to plan the future
compute power needed.

To generate all the following result, the Julia optimization package JuMP is used as a wrapper around the CPLEX
solver, usuallywell suited forMixed-IntegerPrograms. Table 2 shows the list of available processors - and their attributes
- used in this optimization. This data has been provided by industry stakeholders and is meant to represent the potential
tradeoffs that can occur in processor choice. This table illustrates that the cost is usually proportional to computing
capabilities of the processors. Indeed, for the same cost, having a higher ASIL level means having a lower capacity and
clock rate. A first preprocessing step to reduce computation times is to identify processors that are dominated in all
categories, and remove them from the list. For example, processor 10 and 14 have the same capacity attributes, an ASIL
level of 4, and processor 10 is more than twice as expensive as processor 14, and will therefore never be used. This
exercise prompts the designer tomake this type of decision, whichmight not have beenmade in a systematic manner
otherwise.

In one of the non-dominated architectures appearing on Figure 4, the degeneracy functions are assigned together
to a processor, which is separate from the rest of the physical architecture; this is themost natural solution to respect
the constraint expressed in equation (21). Many recognition functions are allocated individually, as they are heavier and
may use a processor on their own.

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

COLLIN ET AL. 11

5.2 | Pareto Fronts
The optimization is then run several times by weighing the two objectives cost and latency differently, to see which
architectures emerge. This corresponds to optimizing J = 1000 · λΘ + (1− λ)C for different values of the weight λ.
The resulting Pareto Fronts are shown in the following sections. The impact of allowing amore decentralized physical
architecture on our two objectives, as well as measure the effects of the safety constraints, are analyzed.

Impact of Task Distribution
Figure 4 shows the different architectures obtained by varyingM, the maximum number of modules allowed in the
solution. The first value ofM that leads to a feasible problem is 4: if M=1, the redundancy constraints make the problem
infeasible. If M=2 or 3, the ASIL constraints or the processor capacity constraints are causing the problem to be
infeasible. IncreasingM can only increase the quality of the solution, as the solver can decide to leave emptymodules,
nonetheless it also increases the computation time; the results shown arewithin 7% of optimality forM = 6 andM=
7, hence the seemingly lower performing architectures with a higherM -whereas the optimal value of the objective
in this configurationmight be the same. This graph shows that increasingM does not improve significantly either the
cost or latency of the architecture, meaning that somemodules are left empty, and therefore the solution can safely
be computedwith only 4modules, given our current input data, and expect a result close to optimality for all M. The
reason why the optimization is run only up until 7% of optimality is that the solver tended to remain in a local minimum
for a considerable amount of time before reaching a solution. This is to be expected as problems involving integers are
NP-complete, and the solution cannot be guaranteed to be reached in a polynomial amount of time. The usual tradeoff
between run time and quality of the solution appeared, and as this tool is meant for early design exploration, the authors
felt that cutting the results at this point provided us with enough information for this design stage, in an acceptable
amount of time. As the results forM = 4 andM= 5 are exact, and that the lower bound of the relaxed continuous linear
program forM= 6 and 7was very similar to these results, the design space can be exploredwith lowerM values, and
not miss significant improvements in the design. The optimization is iterated through several different parameter sets
quickly.

Given a value ofM, 10 different values of λ yield only 3 or 4 different architectures on the Pareto Front, meaning
that certain architectures satisfy the optimality for different weighing of cost and latency, and lead to superimposed
points on the Pareto front. In this case, with our specific set of input data, the computation to optimality only takes
about aminute.

The most expensive architecture, costing about 575 cost units, obtained by only optimizing latency, does not
decrease the latency significantly comparedwith the architectures costing 415-425 cost units. This is due to the fact
that usingmore expensive processorswith a larger capacity cannot decrease latency indefinitely, as some functions have
to wait for others to finish before they can start, and performing some tasks in parallel reduces latency. Forgoing this
most expensive architecture, as it wouldn’t be a realistic choice if another architecture can satisfy a similar low latency
for a much lower cost, the difference between the cheapest andmost expensive architecture is of about 100 cost units,
or 25%of the cost. Thismajor cost difference comes from the fact that the spread of cost in our list of processors is large,
some processors being almost two order of magnitudemore expensive than others. From the supplier’s perspective,
offering a performing processing architecture and reducing cost by a quarter while provides a competitive advantage
when advertising to car manufacturers. Currently, 5 % of the cost of car models sold with Advanced Driver Assistance
Systems (ADAS) stems from the added autonomy in the car42. This share is likely to increase in the future43, meaning
that the reduction in cost for this subsystemwill have an impact at the system level.

The architecture yielding the lowest end-to-end latency is alsomore than 10% faster than the architecture with the
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longest path, and lower cost. Although these numbers are much below average human reaction times for braking, about
1.5s44, a 0.03s difference in latency represents about 1mwhen driving at 100 km/h. Depending on the scenario the
car would need to be certified to drive in, this latency reduction might reduce the probability of crashing enough to
demonstrate safety. In terms of timemetrics for the system, this represents about three times the control period of an
assisted driving system, meaning that the latency computed in this work is themain driver of reaction delay, and that a
reduction in processing latency is significant and affects the behavior of the autonomous driving system. An avenue for
future work would be to test these different architectures in simulations representing different driving scenarios, to
quantify the impact of a latency reduction over time, in different settings.

As this work is meant for early design exploration, the gain in latency might not be significant enough to justify
the use of amore expensive architecture as a base design, andmore effort might be deployed in later design stages to
reduce the parameters of each function, such as clock cycle.

Impact of Safety Constraints

Figure 5 shows the performance of a 4-modules architecture with and without each safety constraint. The worst
performing architectures with regards to both latency and cost are the ones with all safety constraints enforced (blue
points in the upper right corner). Relaxing the ASIL constraints, given the state of our input list of components and
their ASIL capabilities, improves cost bymore than 15%, and latency by about 7%. However, relaxing the redundancy
constraints might reduce the cost to a lesser extent, but not if the ASIL constraint is already relaxed. In terms of safety,
reducing the end-to-end latency of the vehicle is crucial, however the designer has to weigh whether the current
decrease in latency justifies a higher risk of failure due to hardwaremalfunction.

6 | CONCLUSION

This work, linked with broader approaches of architecture and design for system level properties45,46, provides a rapid
way of generating physical architectures to support a functional architecture of tasks, taking into consideration both
cost and latency. Our results are specific to the characteristics of the functions and hardware used, however themethod
is applicable tomany hardware/software systems, beyond the automotive industry. The intent of thiswork is to highlight
amethod to design autonomous driving systems for latency, cost, and safety, rather than present specific results. For
parties interested in the specific numerical output of this method, a sensitivity analysis can be conducted to understand
the link between the results and the component library that is available to the designer. Safety under the form of
hardware constraints increases cost per architecture, but might also increase the latency of the system, therefore
decreasing safety in terms of reaction times. An interesting path for futureworkwould be to create a quantitativemodel
of hardware failure risk, and quantify this tradeoff. Furthermore, a more elaborate cost model, beyond the current
component costs and taking into account stages of the system from development to retirement, would extend this
model to a new application; the analysis of future component development, andwhich attributes and price points are
required to ensureminimal system latency and cost. Considering the lifetime of the system, a dynamic extension of this
model could be developed as well, in order to take into account the task attribute changes incurred by software updates,
or maintenance events for example.
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F IGURE 1 Example of a functional architecture for an autonomous car - blue tasks are degeneracy equivalents of
some yellow tasks, to improve safety through redundancy.

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

20 COLLIN ET AL.

F IGURE 2 Link between functional and physical architecture choices.
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F IGURE 3 Example of latency calculations for two different architectures. The latency is calculated for the path
between Sensor 1 and Actuator 1 in both cases. Adding a bus adds latency to themessage going from task τ1 to τ3. To
ease the notation in the figure, messages are here designated with their own index, as opposed to the tasks they are

linking, in the equations above;m3 would be designated as τ1τ3 in the provided latency formula.
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F IGURE 4 Results for different centralization levels - Safety constraints included. The results are calculated within
7% of optimality, meaning that there was a 7% gap between theMixed Integer Programming solution and the relaxed
continuous Linear Programming solution used for the branch-and-bound. As λ increases, the performancemoves to the

right.
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F IGURE 5 Allocations for 4modules, with andwithout safety requirements, zoom on the small latencies.

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

24 COLLIN ET AL.

L I S T OF TABLES
1 Parameters for the optimizationmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Available Processors and their Clock Rate, RAMCapacity, ROMCapacity, and Cost . . . . . . . . . . . . 26

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

COLLIN ET AL. 25
TABLE 1 Parameters for the optimizationmodel

Parameter Name Notation Units
Task τi

Activation Period Tτi seconds
Clock cycle Cyτi -
RAMusage RAMτi KB
ROMusage ROMτi KB
ASIL Level ASIL(i) (-)

Message τiτj
Activation Period Tπkπl,τiτj seconds

Size sτiτj bytes
Processor πk

Clock Rate Raπk MHz
RAM capacity RAMπk KB
ROMcapacity ROMπk KB
ASIL Level ASIL(k) (-)
Cost Ck -

Bus b
Transmission Time for a single bit tb seconds per bit

Cost Cb -
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TABLE 2 Available Processors and their Clock Rate, RAMCapacity, ROMCapacity, and Cost

Processor ID Attribute
Clock (MHz) RAM (KB) ROM (KB) ASIL Level (-) Cost (-)

1 2000 4000000 128000 2 118.18
2 2000 4000000 128000 2 109.09
3 400 2000 8000 4 109.09
4 240 1000 4000 4 109.09
5 180 512 8000 2 27.27
6 1200 1200000 77000 2 109.09
7 480 90000 77000 2 31.63
8 2000 4000000 128000 2 136.36
9 2000 4000000 128000 2 109.09
10 800 4000 16000 4 109.09
11 10 2000 1000 2 2.72
12 288 120000 12000 2 22.73
13 120 448 2000 4 18.18
14 800 4000 16000 4 45.45

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

338x451mm (72 x 72 DPI) 

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

274x365mm (180 x 180 DPI) 

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

134x188mm (300 x 300 DPI) 

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

90x122mm (300 x 300 DPI) 

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

John Wiley & Sons

Systems Engineering



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

For Peer Review

 

355x341mm (240 x 240 DPI) 

John Wiley & Sons

Systems Engineering


