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1 Introduction 

Accurate quantitative chemical kinetic models are useful in many applications, ranging from design of 
chemical processes to building a consensus for international treaties (e.g. the Montreal Protocol that 
regulates production of ozone-destroying chemicals). The key components of most kinetic models are 
the list of reactions (with stoichiometric coefficients ν), the function that describes the reaction rates 
r(C,T), where rm represents the net flux of the mth reaction, and the corresponding instantaneous rate of 
change of the species ω = ν r where ωn represents the instantaneous rate of change of the concentration 
of the nth chemical species at position x,y,z and time t due to chemical reactions.[1,2] (N.B. Various 
symbols are used in the literature instead of ω. Sometimes the matrix of stoichiometric coefficients ν is 
denoted S.)  In the rate function, Cm is the local instantaneous concentration of the mth chemical 
species, and T is the temperature. This ‘chemical source term’ ω is combined with other terms that 
represent transport of the species, energy, and momentum to build a model for the reacting system. 
The model can then be used to understand, optimize, and engineer the system. 

If the feed is simple (only a few species, not many impurities) and the chemistry is very specific, the 
reaction kinetics can sometimes be accurately represented over the full range of interesting conditions 
using a simple rate law. For example, perhaps the nth species only participates in a single reaction, well-
represented by an Arrhenius rate law, then  

ωn = Ae–Ea/RT{CiCj – CmCn/Keq }  Eq. (1) 

In a very simple case like this, just a few laboratory experiments varying a handful of species 
concentrations and temperature might be sufficient to determine the small number of parameters that 
appear in ω (in this case A, Ea, and Keq(T)). These are the types of simple systems that typically appear in 
undergraduate kinetics textbooks, and several simple systems of this type are indeed important in 
industrial practice. For these very simple ‘textbook systems’ the chemical engineering community knows 
exactly how to proceed. 
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However, very often the feed is complicated and the chemistry is unselective, so that there are a large 
number of reactions occurring simultaneously in the system, including secondary reactions of the 
primary products.[3]  In these cases we are often unsure which molecules and reactive intermediates 
are present, and which reactions each of these species is involved in. It is not obvious how to model 
such complicated chemistry. There are two different main approaches: the conventional/historical 
postdictive approach (typically using small models) and the more recent predictive approach (often 
using very large detailed models), both described below. 

 

A. The postdictive approach to complicated chemistry 

The conventional/historical postdictive approach, which dominated during the 20th century, can be 
summarized: “don’t attempt to model all that chemistry detail, instead write a simple fitting model for ω 
that only involves a few species, and only has a few adjustable parameters”. Examples of these simple 
models include the classic A  B  C models in textbooks and power-law rate expressions such as 

    ωn = keff[A]α[B]β[C]γ     Eq. (2) 

Levenspiel was a strong advocate for this simple-model postdictive approach, which he called the CRE 
approach [4], though of course Chemical Reaction Engineering includes many other approaches as well. 
Models like this have the important advantage that a small number of experimental data can be 
sufficient to determine the small number of parameters in the model. (Though of course just because 
the number of data are much larger than the number of parameters does not mean all the rate 
parameters can be determined from the available data, see for example [5,6].) A simple rate expression 
is also very convenient for solving reactor simulations and for mathematical [101,102,103] and 
numerical analysis (though the numerical aspect of the problem is much less important today, with 
modern computers, than it was in the 20th century). We call this model ‘postdictive’ since one normally 
must complete experiments to test if the proposed functional form actually fits, and to determine the 
numerical values of the parameters, before one has a model that can be used to predict anything. 

The simple-model predictive approach has been used successfully in many cases and it is the most 
commonly used modeling approach in industry, but it has several important weaknesses. First, the 
simple models usually have little relation with the true reaction kinetics occurring in the system, and the 
model parameters (e.g. keff α, β, γ in Eq. 2) do not have any clear relationship with the true elementary-
step rate coefficients k(T). This means even if we knew or could estimate the true value of ki(T) for some 
of the reactions occurring in the reactor, that knowledge would not help us build/improve the kinetic 
model – since elementary-step rate coefficients ki(T) do not appear at all in the model!  

The parameters in a rate expression like Eq. 2 should be viewed as empirical fitting parameters, not 
fundamental rate coefficients. Usually the parameter values are not transferrable to other systems; any 
significant change (e.g. adding an additive to the feed stream or the catalyst, significantly changing the 

This article is protected by copyright. All rights reserved.



3 
 

residence time or temperature) requires new experiments and a new fit. Because the simple model does 
not faithfully represent the true underlying chemistry, the model predictions tend to deviate from the 
system behavior as one moves away from the reaction conditions where the fitting data were obtained. 
Better extrapolative power would be expected if the rate expression conforms to the actual 
chemistry.[7] So while simple postdictive models can be excellent for interpolation around the training 
data, they are not reliable for extrapolation to new reaction conditions.  

Often the parameter values in the expression for ω change as the process is scaled up, an indication that 
the parameters in the chemistry model include transport/mixing effects as well as the intrinsic 
chemistry. Indeed, this weakness of the conventional approach is a primary reason why pilot plant 
studies are required – when using simplistic fitting models, one usually cannot rely on a rate function ω 
determined at the laboratory scale. The fundamental reason is that the species A,B,C in Eq. (2) were 
usually chosen by the user because they were easy to measure in the reactor feed or effluent, not 
because A,B,C are the true key species controlling the chemistry. Commonly there are other 
unmeasured but much more reactive species X,Y,Z present inside the reactor that control the reaction 
rate, and the concentrations of X,Y,Z in different locations inside the reactor depend on many factors 
including the temperature distribution and mixing/flow/diffusion, not just on the measured [A],[B],[C] in 
the feed or effluent. The conventional/historical postdictive approach only requires a correlation 
between [A],[B],[C] and ωn that holds with sufficient accuracy at the specific conditions encountered in 
this pilot plant. It is not seeking a general rate formula accurate at all possible reaction conditions. 

The conventional/historical approach is fundamentally “postdictive”: one needs to have experimental 
data on the system, at conditions close to the conditions of interest, before one can make any 
quantitative predictions, i.e. one needs to have measured the data before one can predict it. With this 
approach, pilot-plant experiments (to measure training data needed to determine the effective 
parameters in the model) are usually required as part of the design process. This is a big disadvantage of 
the conventional approach, since it implies a very significant commitment of money and time before 
one has a reliable model, and so can rationally decide whether or not to commercialize a new process. 

Because the conventional postdictive approach has already been discussed thoroughly in textbooks and 
journals, for the remainder of this article we focus instead on the alternative ‘predictive’ modeling 
approach, which can provide a way to predict kinetics even before doing any experiments, and so 
perhaps avoid the need for expensive pilot plant experimentation.  

 

B. The high-fidelity ‘predictive’ modeling approach 

In principle, we could achieve higher fidelity using more detailed chemistry models. Instead of using the 
simple fitting forms used in conventional approaches, one could instead use elementary-step rate 
equations, Eqs. (3) and (4), which are thought to be accurate over a wide range of conditions. 
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   ωj(C,T,…)= Σ νmj rm    Eq. (3) 

          𝑟𝑟𝑚𝑚 = 𝑘𝑘𝑚𝑚∏ (𝛾𝛾𝑛𝑛𝐶𝐶𝑛𝑛)−𝜈𝜈𝑚𝑚𝑚𝑚𝐻𝐻(−𝜈𝜈𝑚𝑚𝑚𝑚)𝑁𝑁
𝑛𝑛=1 − 𝑘𝑘𝑚𝑚

𝐾𝐾𝑚𝑚
∏ (𝛾𝛾𝑛𝑛𝐶𝐶𝑛𝑛)𝜈𝜈𝑚𝑚𝑚𝑚𝐻𝐻(𝜈𝜈𝑚𝑚𝑚𝑚)𝑁𝑁
𝑛𝑛=1             Eq. (4) 

In these equations, rm is the net rate of the mth elementary-step reaction, km is its rate coefficient and 
Km is its equilibrium constant (in concentration units). H is the Heaviside function. νmj is the 
stoichiometry of the jth species in the mth reaction, with the convention that reactants are assigned 
negative values. The γ’s are activity coefficients (=1 for ideal mixtures). 

An example contrasting the conventional/historical postdictive approach with this more detailed 
predictive approach for propane pyrolysis is given in Table 1. The larger model built on the physical rate 
law for the actual reactions occurring in the system is expected to have more fidelity to what is really 
happening in the system, and so better power of extrapolation, than an empirical fit to ω. 

As discussed in the Perspective by 2018 Wilhelm Award winner Linda Broadbelt [3], it is now often 
possible to write down all the important reactions in a detailed kinetic model using various automatic 
mechanism generation software packages [8-17]. These computer-generated reaction mechanisms are 
intended to include not just the molecules in the feed and the product streams, but also all the 
important reactive intermediates, as well as multiple side channels leading to byproducts (though 
sometimes some of the species are intentionally lumped [17]). The computer-generated reaction 
mechanisms can be quite large, often involving hundreds or thousands of reactions and a similarly large 
number of species. The corresponding reactor simulations typically include a differential-algebraic 
equation for each of the many state variables. These complicated simulations usually need to be solved 
using specialized numerical techniques because the system of equations is stiff. In the past solving such 
large simulations was very difficult, but with modern algorithms, software, and computers solving the 
simulation is often not the main challenge today.  

Instead, the principal difficulty with the predictive approach – and the main reason why chemical 
engineers instead usually choose the postdictive approach despite its failings – is the need to determine 
or accurately estimate the large number of k’s in the model (and also the thermochemical parameters K 
and γ). For any system with more than a few dozen reactions, it is expensive or even completely 
impractical to determine all the rate parameters from experiments. Globally-optimal least-squares 
fitting to kinetic data is possible only for systems with 10 or fewer adjustable parameters [6,107-108]. A 
few more parameters can be used if one does not need a guarantee of global optimality, but the fitting 
process often runs into problems [4]. Because kinetic models are so non-linear, and because the 
observables are usually only weakly sensitive to some of the parameters, least-squares fits to kinetic 
data are typically ill-determined, i.e. several different sets of rate parameters could fit the limited 
experimental data equally well. To some extent this problem can be alleviated by using orthogonal 
experiments to try to break the covariance of coupled parameters; good software for this sort of effort 
has been developed by the PrIMe project [5]. However, even for relatively small very heavily studied 
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reaction mechanisms such as combustion of H2, the experimental data alone are insufficient to 
determine all the rate parameters [18]. Even if were possible to determine the parameters 
experimentally, the need for an extensive experimental campaign to measure rate parameters for each 
proposed new process would add significant cost and significantly slow the development of the new 
process. 

However, there is a way out of this conundrum: we do not need to determine all the rate parameters 
from experiment. For many decades we have been able to estimate rate coefficients from analogy, 
correlations, or using the functional group approximation and linear free-energy relationships. Famous 
methods of this type have been described by Evans & Polanyi, Hammett, and Benson [19]. At the time 
those methods were derived, all the estimates were based in some way on experimentally measured 
rate coefficients. Typically they were only accurate for reactions quite similar to those already 
measured. But for many of the most important reaction types there are several rate measurements in 
the literature, so these techniques allow one to fill in many (but not all) of the rate parameters in a 
detailed kinetic model. 

As discussed below, it is now possible to compute many rate coefficients and thermochemical 
parameters from first principles, using a combination of quantum chemistry, statistical mechanics, and 
rate theory, with accuracies comparable to experimental measurements. This provides a rapid 
inexpensive way to fill in the missing rate parameters. These calculations give us access to many more 
types of reactions than have ever been measured experimentally.  

For example, in a recent high-fidelity model for H2 combustion, it was found that including a large 
number of rate [20] and transport [21] parameters coming purely from quantum chemistry calculations, 
not inferred at all from experimental data, significantly improved the predictions of important 
properties such as flame speed [18]. Combining this new capability to compute model parameters from 
first principles with automatic reaction mechanism generation software [3, 8-17] makes it possible to 
predict the course of chemical reactions before doing any experiments, and to understand processes 
that are happening in an experimental system even if they are impractical to measure. This new 
predictive capability has many implications for the future of Reaction Engineering, for industrial practice, 
and for how chemical engineers should be educated, some of which are highlighted below. 

Although it is now possible to predict chemical kinetics, this capability will only have real-world impact if 
it is practical for chemical engineers to make these predictions on a reasonable timescale, and the value 
of the predictions will greatly depend on their accuracy. These issues are discussed further below. 

C. Mixed predictive-postdictive models 

The weaknesses of the conventional/historical purely-postdictive approach have been known for many 
decades, but only recently has it become practical to compute large numbers of high-accuracy rate 
coefficients from first principles (and then only for limited types of reactions). Over the past >30 years a 
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variety of modeling approaches have been proposed which combine features of both approaches, to try 
to achieve higher fidelity even when it is impossible to predict all the parameter values to desirable 
accuracy. One profitable direction has been to use what is known about the chemistry to construct 
functional forms for ω(C,T) which have the correct qualitative behavior and capture some of the 
correlations between the parameters; a classic example is the use of LHHW functional forms for ω 
instead of the less chemically-realistic power-law model shown in Eq. (2).  

In other cases a realistic detailed-model structure has been employed, even though it is not practical to 
predict all the parameter values to sufficient accuracy before doing experiments. So then experiments 
are used to adjust a few of the parameters in the model (e.g. often the top N most-sensitive parameters 
are adjusted to fit the experimental data). Sometimes this approach reduces the number of experiments 
required to achieve acceptable accuracy, and in any case it is expected to increase the range of validity 
of the model (i.e. to improve its extrapolative power).  

This century, many models have been published where some of the parameters are from the literature, 
some are estimates-by-analogy (e.g. using Benson’s methods []), some are computed from first-
principles, and some are obtained by fitting to experimental data. Sometimes these mixed models are 
very accurate, but even relatively inaccurate models can be very helpful in guiding future 
experimentation. Although these models are helpful in many ways, we note that it takes special effort to 
document the disparate origins and uncertainties of all these parameters, and it can be challenging to 
reliably estimate the uncertainties in predictions made using such a model. 

We do not have the space here to comprehensively review these approaches, which have led to many 
very useful kinetic models, and are often the best available modeling option. We note only that hybrid 
approaches are most economically valuable if they allow one to avoid the need for expensive pilot plant 
experimentation, instead using only cheaper laboratory experiments. But achieving this requires 
demonstrating that the model predictions are accurate enough they can be relied on, which can be very 
challenging. Even if these models do not provide immediate economic benefits, they can be very helpful 
for advancing understanding of important systems with complicated chemical kinetics. For the most 
important reaction systems, where the societal value of an accurate kinetic model can be very high, it is 
not unusual for dozens of models to be developed, each building on learnings from earlier iterations. 

 

 

2 Technical Issues 

A. Computations & Workflow: predictive detailed-model approach 

The detailed-model approach typically starts with a small “seed” kinetic model, and gradually grows it by 
adding additional reactions and chemical species. Usually the corresponding rate and thermochemical 
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parameter values initially come from estimation methods (e.g. group-additivity for thermochemistry; 
linear-free-energy estimates for rate parameters [19]), but these parameters are not very accurate, so 
some of the values are refined using quantum chemistry. Only rarely have all the parameters in the 
chemistry model been computed from first-principles [22]. Often the people building the kinetic models 
are different from the people performing the quantum chemistry calculations, so the sequencing of the 
work has often been inefficient, driven primarily by practical considerations such as personnel 
availability and funding cycles. However, the increasing automation of steps in the workflow have 
partially ameliorated this problem: there are now several well-developed software packages for 
constructing reaction mechanisms [e.g. 8-16, 99], and there has also been continuous progress in 
automating the quantum chemistry calculations [22-28,94,95], making it increasingly practical for a 
single person to both build the kinetic model and refine its parameters. For example, in one recent study 
all the thermochemical parameters of all the molecules in a large kinetic model were automatically 
computed using high level quantum chemistry [23].  Several groups are developing the capability to do 
automatic calculations of the rate coefficients as well [24-28]. There have also been significant advances 
in methods for computing solvation effects.[29,30] There have also been continuing improvements in 
methods for estimating rate and thermochemistry parameters (including solvation and pressure-
dependence of rate coefficients) [31-37] and in algorithms for solving kinetic simulations [38-46].  We 
suggest an efficient workflow combining all these software components to build predictive models in 
Figure 1. 

Fig. 1 Proposed workflow for automated development of predictive models for reaction 
chemistry 
 
 

B. Limits on the Scope of Systems that can be Predicted Today 
 

In order to predict important observables (e.g. conversion and selectivities to different products and by-
products) with a kinetic model, we must be able to (1) construct the model, (2) predict values of the 
parameters in the model, (3) estimate the initial state of the system (including the feed composition), 
and (4) solve the model. In various cases each of these four requirements can be challenging, as 
discussed here:  

1. Model construction is difficult if the reacting mixtures are very complex and the chemistry is not 
specific. In that case, the physical system will have a huge number of distinct species (e.g. 
molecules, surface-bound intermediates) each reacting in multiple ways. A model which is 
faithful to this complexity will be extremely large; in some cases more than a million reactions 
are expected to be important. (If one considers conformational changes to be reactions, as in 
protein folding or some polymer problems, the complexity is orders of magnitude worse.[47]) 
The process of constructing models this large can run into computer memory limitations [12,48, 
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96] and be slow enough that it needs parallelization [49]. This sort of problem is often 
encountered in systems where molecular weight growth (e.g. coke or soot formation, 
polymerization) is significant, because then the complexity of the molecules in the system, and 
the number of important reactions per molecule, increases as the reaction proceeds. Often it 
can take a very large number of reaction steps to get from the starting material to the 
macromolecular products of interest, and all these steps must be included in the model. Even if 
molecular weight growth is unimportant, unselective reactions of large molecules (e.g. 
degradation reactions driven by OH radicals or strong acids) also lead to a huge number of 
reactions & reactive intermediates in the model. The number of isomers grows combinatorially 
with the size of the molecules. So modeling methods which work very well for molecules in the 
gasoline range (6-8 carbons) may be impractical for molecules in the diesel range (14-24 
carbons), because the heavier feed typically contains many more distinct molecules, and each 
heavy feed molecule can react to form a large number of reactive intermediates. The full-detail 
modeling approach, where the state of the system includes the concentration of every distinct 
molecule, is therefore unfeasible for heavier feeds such as bitumen, biomass, and waste plastic.  
To try to address this problem, various reduced-model representations of the large molecules 
have been proposed (Structure-Oriented Lumping [50], the Fragment method [51], method of 
moments [52], probability density functions [53]) but there remain many technical 
challenges.[98] 
 

2. The existence of quick and reasonably reliable estimates for thermochemistry and reaction 
barriers greatly facilitates the construction of useful predictive models, e.g. by allowing one to 
rule out species or reactions that will not be energetically accessible at the reaction conditions. 
One can also use the estimated parameter values to construct an initial model; sensitivity and 
uncertainty analyses of that initial model can identify which parameter values need to be 
refined (e.g. by quantum chemistry calculations) to significantly tighten the error bars on the 
predictions.  
 
Often good estimation procedures are available for well-studied chemistry, and for many of 
those well-studied systems it is already known which quantum chemistry methods are suitable / 
give accurate predictions of rate parameters. However, if the system to be modeled is very 
different from systems that have been studied previously, it can be challenging to develop 
reliable or even plausible estimates of the rate parameters, and the performance of different 
quantum chemistry methods on this new system may be unknown. At the time this is written, 
well-tested accurate quantum chemistry methods exist for most small closed shell organic 
molecules and for simple organic free radicals. But it is hard to accurately compute rate and 
thermo parameters for large molecules, for electronically-excited molecules, and for systems 
involving multiple transition metal atoms (due to strong electron correlation and many low-lying 
electronically excited states) or heavy elements (with significant relativistic and spin-orbit 
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effects). There is an abundance of prior work on hydrocarbon chemistry and significant prior 
work on certain types of organic chemistry, so in those cases estimation methods already exist 
for many of the rate and thermochemical parameters that appear in the models, and it is often 
known which quantum chemistry methods are particularly good or bad for computing these 
reactions. On the other hand, if one were to study a system containing iodine, sulfur, boron, 
bismuth and tellurium atoms, there would be no reliable estimation methods and one would 
have to compute almost every proposed species and reaction quantum mechanically. Additional 
work (and probably experimental validation) would also be required to determine which 
quantum chemistry methods are suitable for this less-studied system. 
 
Although reliable thermochemistry estimation procedures exist for many organic molecules, 
often based on methods developed by Benson and co-workers [19], these methods have limited 
scope. For example, the predictions for the thermochemistry of molecules containing fused 
rings or multiple substitutions on an aromatic ring are still unreliable, despite significant efforts 
to improve them [54-56]. Also, the group values are unknown for many common functional 
groups involving heteroatoms, though in recent years many of these values have been filled in 
using quantum chemistry calculations [57-60].  Several researchers have proposed replacing 
Benson-type estimates with machine-learning models, this has shown some promise, but so far 
these models also have limited scope and significant uncertainties [35, 61-63].  
  

3. Estimating the initial state of the system is often challenging. In heterogeneous catalysis, we 
often do not know the morphology of the catalytic surface during the reaction, much less which 
of the different surface sites are actually active for the reaction of interest. How to use the 
limited available information available on the catalyst to develop a quantitative estimate of the 
state of the catalytic surface is the subject of ongoing research. Note that even for freshly-
prepared catalysts, the active sites are usually occupied by something, they are not completely 
vacant, and indeed it is commonly observed that different pre-treatment or ‘activation’ of a 
catalyst leads to different measured conversions. 
 
If we are performing reactions on complicated feeds such as biomass, petroleum fractions, or 
waste plastic, we generally do not know the molecular composition of the feed, though we 
usually have some partial information. However, there are well-developed “feed 
reconstruction” methods [64, 104-106] for constructing a reasonable estimate of the feed 
composition. 
 

4. Convenient affordable methods exist to solve most simple kinetic models (e.g. <100 chemical 
species) in common idealized reactors, in packages such as CHEMKIN [65] and CANTERA [66]. 
Typically the idealized reactors are 0-d or 1-d, sometimes 2-d, but not three-dimensional (3-d). If 
the chemistry equations are not too stiff they can be solved using explicit methods, which have 
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been scaled to run efficiently on supercomputers even for 3-d systems [44]. But often kinetic 
model equations are very stiff because of the short lifetimes of some of the reactive 
intermediates. Also often the reactor model is formulated as a system of differential-algebraic 
equations (DAE), which often must be solved using stiff-solver techniques and which sometimes 
can be problematic (e.g. high-index equations, non-unique solutions). 
 
The standard way to solve these stiff models is to first discretize the spatial degrees of freedom 
(most commonly using the finite volume formulation) and then use operator splitting to 
separate the transport and the chemistry terms in the discretized equations. Operator splitting 
allows one to solve the chemistry equations in different finite volumes in parallel, and to use 
specialized numerical methods for the transport terms. Today Strang splitting [67] is the most 
popular operator-splitting approach, but this can run into problems particularly for steady-state 
solutions [45,68] so in some cases other splitting methods can have advantages.[69] The 
operator-split stiff chemistry equations are usually solved using methods that require 
construction of the Jacobian of the chemistry terms. This often works well for systems with even 
several thousand chemical species. But solving the model equations using Jacobian-based 
methods can be very challenging if the system involves more than about 10,000 species (since 
then in each finite volume one must repeatedly construct and solve an ill-conditioned Jacobian 
involving more than 100 million entries, at significant computational cost and also incurring 
some numerical error due to the poor conditioning). If the model is formulated cleverly [38], the 
Jacobian can be quite sparse, and taking advantage of this sparsity can provide significant speed-
up and also improve numerical accuracy. Several methods have been proposed to accelerate the 
solution of the chemistry equations. One line of work has been to just accelerate the numerical 
procedure, e.g. by using GPUs instead of CPUs [39,40] or by using better pre-conditioning and 
other numerical methods.[41,42] Other methods avoid the need for constructing a Jacobian at 
all, instead using specialized Jacobian-free stiff ODE solvers [41,43]. Yet other methods modify 
the model to reduce its stiffness enough so that Jacobian-free explicit ODE solvers can be 
employed.[70]  
 
Another large body of work has been focused on simplifying the chemistry models (“model 
reduction”) to make it easier to solve them. One method is to judiciously delete species and 
reactions from the large detailed model (‘skeletalization’).[71] Alternatively, one can rewrite the 
model in terms of a smaller set of state variables which may not represent the concentrations of 
individual species (e.g. one approach is to use eigenvectors of the Jacobian as the state 
variables).[72,100] In systems where the chemical composition or temperature varies 
dramatically it can be advantageous to use different chemical kinetic models to evaluate ω in 
different spatial locations or at different times (‘adaptive chemistry’).[73,74] Some of these 
model-reduction methods are so fast that they can be applied ‘on-the-fly’ whenever an 
evaluation of r is required.[75-79]  
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Today it is often more difficult to build an accurate chemical kinetic model than it is to solve it, 
but in some cases (e.g. if the reactor must be modeled in 3-d, or if it is important to accurately 
capture the turbulence-chemistry interaction, or if the number of species is extremely large), 
solving the model can still be the bottleneck. 
 

C. Accuracy 
 

1. Model vs. Data comparisons 

Assessing the accuracy of a model’s predictions is challenging whether one uses a predictive, 
postdictive, or hybrid approach.  

In cases where a postdictive approach is employed, one usually needs to use most of the available 
pilot plant experimental data to train the model, so there are very few independent “test data” 
available for checking the accuracy of the model. Also, pilot plants are typically not as well 
controlled as laboratory instruments, so if there is a discrepancy between the model prediction and 
measured data point, it is often not clear whether to attribute that to imperfect knowledge of the 
reaction conditions, to an error in the model, or to the error bars on the experimental data. Even if it 
is decided that the discrepancy is primarily due to model error, it may not be clear whether that 
error arose because a poor functional form was used to fit the data, or because insufficient (and/or 
inaccurate) training data were used to determine the model parameters. And of course, the fact 
that one test data point is consistent or inconsistent with the model prediction does not provide 
much information about whether some other observable measured at some other reaction 
condition would be accurately predicted by the model. 

With the predictive approach, the model predicts a very large number of observables, but typically 
only a few of these are actually measured in an experiment. If those limited measurements are 
consistent with the model predictions within the experimental error bars, one says the model has 
been “validated” at those specific reaction conditions, but that does not mean the other predictions 
of the model are sure to be correct, nor that the model predictions would be accurate at a different 
reaction condition. If the measurements are very different from the predictions, with deviations 
much larger than the expected experimental errors, one can conclusively say that the model 
predictions are incorrect for those specific observables at that specific reaction condition. In 
practice, being conclusive can be more difficult than it might appear at first glance, since none of the 
parameters in the model are known with perfect accuracy. One often has a handful of less-
interesting (e.g. experiment-specific) parameters in the model which one wishes to optimize first 
before making the model-vs.-data comparison. In principle that should be done using global 
optimization techniques [6] since kinetic models are typically nonlinear and nonconvex. 
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However, even if one can clearly judge whether or not one prediction of a model is consistent with 
the available experimental data, this is not sufficient to draw general conclusions about the accuracy 
of the model’s other predictions.  

 

2. Uncertainty in Model Predictions due to Parameter Uncertainty 

If one can estimate the uncertainties in the parameters in the kinetic model, one can, in principle, 
propagate those uncertainties through to the model’s predictions. This makes it possible to assign 
uncertainties to each prediction. If this process assigns a very large uncertainty on some prediction, 
the user is warned not to have much confidence in that prediction. Uncertainty and related 
sensitivity analyses can be very helpful at identifying which parameters in the model should be 
improved. 

It is challenging to accurately estimate the uncertainties of all the model parameters in a detailed 
model, a pre-requisite for performing uncertainty analysis. Some methods such as machine learning 
provide uncertainty estimates automatically, but these estimates are usually too optimistic.[61,63] 
Often, the uncertainties in different parameter values are highly correlated, so one needs to know 
not only the error bar on each parameter, but also each parameter’s covariance with several others. 
This problem is endemic in large kinetic models, because several parameters are estimated based on 
the same underlying functional group values or linear free energy relationships. Recent papers have 
highlighted the importance of accounting for this type of correlation when computing uncertainties 
in the predictions.[80,81]  

Less obviously, some types of experimentally-derived parameters are intrinsically correlated, 
because e.g. Arrhenius A and Ea values are both derived from the same measured k(T), [82] and 
individual-molecule thermochemistry is often derived from measurements of ∆Hrxn or Keq for a 
reaction involving several species. Any errors in the measured k(T), ∆Hrxn, or Keq will affect several 
parameters, and those errors will be correlated. Correctly accounting for these correlations in the 
parameter uncertainties and using other independent measurements (or high-accuracy quantum 
calculations) to break the correlations can significantly tighten the error bars.[5,83]  

Similarly, the errors in parameters derived from quantum chemistry calculations are also often 
correlated. For example, if one uses a quantum chemistry method that systematically 
underestimates the stability of C-C triple bonds, all of the thermochemistry values for molecules 
containing triple bonds computed using that method will be off in the same direction. This issue is 
well-known, and is the reason Bond-Additivity Corrections [84,85] and other adjustments are 
commonly employed when computing thermochemistry. However, if the quantum chemistry 
method miscomputes triple bonds, the computed barriers for reactions forming or consuming triple 
bonds are also likely to have systematic errors, and need some additional corrections. 
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At present in the literature there is a very small set of thermochemical and kinetic parameters with 
well-established uncertainties (sometimes even accounting for correlations), a larger set with 
guessed uncertainties, and a much larger set of published values or estimation procedures with no 
uncertainty estimates at all. Significant effort will be required to overcome this serious deficiency. In 
part what is required is a change in culture in the broad kinetic community, including funding 
agencies and journal reviewers, to encourage/require error bars and uncertainty estimates be 
attached to every published rate coefficient and thermochemical parameter. 

 

3. Prediction Errors due to Model Truncation 

An even more difficult problem is that it is possible that the kinetic model completely omitted an 
important reaction or species, in which case it would make incorrect predictions even if all the 
model parameters were known perfectly. Error due to omitting a reaction is called “Model 
Truncation Error”[86] to distinguish it from the more well-studied “Parameter Error” discussed 
above. At present we do not have good ways to estimate the magnitude of the Model Truncation 
Error, but we can detect it if we observe that adding additional species and reactions to a kinetic 
model significantly changes its predictions. The whole effort to automate reaction mechanism 
generation can be seen as an attempt to overcome the Model Truncation Error in hand-built models 
for complicated systems. Overcoming Model Truncation Error is often not hard for simple room-
temperature laboratory systems starting from pure materials and run to low converstions, since 
there are a limited number of possible reactions with barriers low enough to be important at low T. 
However, controlling this error can be very difficult for systems with complicated feed mixtures run 
to high conversions with less selective chemistry. 

 

4. Accuracy/Errors Depend on Reaction Conditions 

Our goal is for the model to accurately emulate the true species production rate, i.e. we want the 
difference 

 ||ωmodel(C,T) – ωtrue(C,T)|| 

to be small. Clearly the Parameter Error and Model Truncation Error both depend on the 
instantaneous local reaction conditions (C,T). A chemical kinetic model can predict the conversion 
and all the major products to acceptable accuracy at certain reaction conditions but be completely 
wrong at other conditions. This suggests that each model should be published along with its ‘range 
of validity’, to warn users not to use the model where it is inaccurate. However, at present it is 
challenging to identify the true range of validity of a kinetic model; usually all one can say is that the 
model has been experimentally validated at a few specific conditions. For an early attempt to 
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develop a systematic algorithm for identifying the range of validity of computer-constructed models, 
considering only Model Truncation Error, see Song et al.[87]  

3 Some Examples 

A. Overview. Why Small Molecules & High Temperature? 

       The detailed-model approach, with key parameters computed using quantum chemistry, has been 
able to predict the chemistry of several reaction systems even before experimental data were 
available.[88,89] In these cases, the conventional postdictive approach would be impossible, since there 
were no experimental data available to use to determine the model parameters.  

To date, the detailed-model predictive chemistry approach has been most successful for high-
temperature gas-phase systems comprised of relatively small molecules. Small molecules are easier to 
model because they each participate in a smaller number of reactions (fewer reactive sites, forming 
fewer reactive intermediates), and because CPU time required for high-accuracy quantum chemistry 
techniques scales very poorly with the number of atoms involved in a reaction. It is currently difficult to 
compute highly accurate rate coefficients for any reactions containing more than about 40 atoms. 
Existing quantum chemistry software is designed for computing reactions for isolated molecules, which 
is not too different from a molecule in the gas phase; correcting for condensed-phase effects increases 
the computational cost and reduces the accuracy.  

High-temperature systems are often easier to model accurately than low-temperature systems, 
because the high-temperature systems are much less sensitive to small errors in computed or estimated 
energies. Consider a reaction where there is an error δE in the computed or estimated enthalpy of 
formation of one of the reactants. Since the reaction barrier is computed as (ETS – Ereactants), this error will 
cause the activation energy Ea to be off by about -δE. Similarly, the computed ∆Hrxn depends on the 
computed (Eproducts – Ereactants), so this error will cause computed ∆Grxn to be off by about -δE. 
Consequently the error δE will cause errors in the computed k and Keq used in the model.  If δE is the 
only important error,  

kmodel = A exp(-Ea,model/RT) ≈ A exp((-(Ea,true - δE))/RT) ≈ ktrue exp(δE/RT) 

Keq,model = exp(-∆Grxn,model/RT) ≈ exp(-(∆Grxn,true - δE)/RT) ≈ Keq,true exp(δE/RT) 

With many quantum chemistry methods the uncertainties in computed energies |δE| > 4 kJ/mole, so if 
T < 500 K the quantity in the exponential (δE/RT) is >1, and both k and Keq have uncertainty ranges of at 
least an order of magnitude. Such large errors in k’s and Keq’s can cause the chemical kinetic model to 
behave quite differently from the true system, e.g. it might mispredict which products dominate, and 
the model might predict some reactions to run backwards from their actual reaction direction. Starting 
from such a poor zero-order model makes it very challenging to identify what should be done to 
improve the model. But if T > 1000 K and |δE| ~ 4 kJ/mole, (δE/RT) is < ½, and so the full uncertainty 
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ranges of k and Keq are all less than a factor of 3. With such modest errors in the nominal parameter 
values, one can usually use sensitivity analysis to correctly identify a small number of important 
parameters, giving good direction to efforts to refine the model. As a consequence, it is often easier to 
give semi-quantitative predictions for high-temperature reaction systems (e.g. steam-cracking, pyrolysis, 
combustion, steam methane reforming) than it is for room-temperature systems (e.g. environmental, 
biological, and most synthetic organic chemistry).  

Sometimes, of course, one can be lucky, e.g. it is not unusual for some observables to be predicted more 
accurately than one would expect, due to cancellation of errors. For example, your estimation method 
might give the wrong thermochemistry for a certain functional group, but if that particular functional 
group is conserved through the rate-controlling reaction steps, that error would not affect the important 
Keq’s. Similarly, sometimes branching ratios between similar reactions are computed accurately even 
though the absolute rate coefficients are inaccurate, because the key competing reactions are mis-
estimated by a similar factor. Often the errors in the conversion and the product selectivities are very 
different, since the conversion is sensitive to the absolute concentration of reactive species (e.g. 
radicals, active sites of a catalyst), but the selectivities are not. Sometimes this systematic error-
cancellation in certain observables can be detected by uncertainty analyses [80,81]. But of course there 
are other cases where the errors in individual parameters combine in ways that make it quite difficult to 
accurately predict the observable of greatest interest. 

B. Example #1: Methane Pyrolysis 

Methane pyrolysis to manufacture ethyne and ethene (plus syngas) was developed in the 1950’s and 
has been commercially practiced for decades. As the price differential between C2’s and methane has 
increased in some locations, there has been increased interest in improving this process. Also, there is 
considerable current interest in methane pyrolysis as way to produce H2 from natural gas without the 
CO2 emissions associated with steam methane reforming. In both embodiments, the feasibility and 
economics of the process depends on the product slate: if the carbon-bearing products are valuable, or 
at least easy to handle, the economics can be favorable, but if carbonaceous solids are formed at an 
inconvenient location (e.g. plugging the reactor with coke) the process is much less appealing. 

While ‘methane pyrolysis’ suggests that the important chemistry involves methane and other very small 
molecules, in fact both the conversion and the product distribution are sensitive to reactions of much 
heavier species present as minor components in the reacting mixture. Matheu et al. [90] showed that 
under the conditions of the experiments of Back et al.,[91] the key reactions involved C5 species, 
especially cyclopentadienyl radicals, formed as minor byproducts through a multi-step reaction 
sequence from the methane. The slow formation of C5 is the primary cause of the long observed 
experimental induction time of about 20 minutes – an extraordinarily long time at the very high 
temperature of the experiments. After the C5 is formed, it catalytically forms radicals, driving very rapid 
conversion of the methane. Matheu et al. used methods of predictive modeling quite similar to what 
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one would use today before experiments were performed, but in that case the experimental product 
data had been known for decades before the model was constructed. 

In a more recent study, Gudiyella et al. [92] modeled a series of pilot plant experiments using a wide 
variety of feed compositions (mostly methane + X, but also some others) and several reaction 
conditions. The pilot plant reactor can be modeled fairly accurately as a series of simple CSTR and PFR 
reactors, but the system is extremely inhomogeneous: temperature inside the reactor varies by more 
than 1500 K from the hottest section to the quench zone.  The Gudiyella et al. study is more accurately 
described as ‘predictive’ than Matheu’s studies because Gudiyella did not have access to experimental 
data from the pilot plant until after they had built the chemical kinetic model, comprised of 664 
chemical species and 8,121 reactions (clearly a big detailed model). Although it contains ~30,000  
parameters with predicted values, the Gudiyella et al. reactor model is not 100% predictive, since they 
used the experimentally measured rise in cooling water temperature in the pilot plant to calibrate one 
of the heat transfer parameters used in the model. But all the chemistry parameters are pure 
predictions.  

The accuracy of the Gudiyella model can be judged by its predictions of the yield of C2H2, the main 
desired product, compared with the pilot plant measurements, see Fig. 2. Particularly noteworthy is how 
well the model predicts the changes in the yield of desired products as the feed composition is changed, 
in some cases quite dramatically. Those interested in this chemistry should also see the follow-on study 
of Chu et al. [93]. In Chu’s study, more of the rate and thermo parameters were computed using high 
accuracy quantum chemistry methods, more reactions of high-molecular-weight species were included, 
and the chemical kinetic model was tested against much more detailed data from laboratory 
experiments, including measurements of minor byproducts up to C12H8. It is impressive that it is now 
possible to accurately predict the yield of C12 byproducts from a C1 feed – there are quite a large 
number of elementary-step reactions between C1 and C12, and the reaction network is complex 
including autocatalytic cycles. Apparently the computer program successfully identified at least the main 
reaction pathways connecting the reactants and products, and computed or estimated the crucial k’s 
and Keq’s to adequate accuracy. 

 

C. Example #2: Octane Improvers from Biomass 

There is considerable interest in figuring out how best to use biomass as a transportation fuel, both to 
reduce greenhouse gas emissions from fossil fuel, and to monetize waste biomass to improve the rural 
economy. Since biomass is much more expensive to collect and transport than fossil fuels such as 
petroleum, it suffers from an economic disadvantage. But perhaps a fuel derived from biomass could 
have performance advantages that compensate for the poor economics? One variant on this idea is to 
use molecules derived from biomass as octane improvers in gasoline spark-ignited engines. Higher 
octane allows higher piston compression ratio, and so higher efficiency, making it possible for smaller, 
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lighter, cheaper engines to provide the same vehicle performance (acceleration). Ethanol and isobutanol 
are two commercial examples of octane-increasing gasoline components derived from biomass (plant 
starch). Many researchers are studying other octane-improving molecules derived from biomass, ideally 
from the non-food components of plants such as cellulose or lignin. 

Zhang et al. [88] studied one class of biomass-derived molecules, substituted phenols derived from 
biomass pyrolysis. There are many different phenols which could be made this way; the key unknown 
question at the time of the study was which phenols were most effective at increasing octane. Zhang et 
al. constructed a model for the reactions occurring in the end gas of an engine cylinder at the conditions 
of the RON 100 test. Zhang et al. assumed a fuel containing 2% of any of six different phenols in butane, 
in a stoichiometric mixture with air. This system can be modeled as a simple homogeneous reactor, but 
with a strong time-variation in the pressure, local temperature, and local density due to the piston 
motion and the combustion occurring in other parts of the cylinder (as well as heat release from the 
partial oxidation occurring in the gases being modeled). The oxidation kinetics are even more nonlinear 
than the methane pyrolysis chemistry described in example #1, with a variety of coupled autocatalytic 
cycles forming radicals, each with high temperature sensitivity. In the engine case the main interest is to 
know the ignition delay (i.e. the induction period), since this correlates directly with the research octane 
number (RON). 

The model built by Zhang et al. contained 1,465 species and 27,248 reactions. The model was built 
before the experimental data (measured in engine tests) were available; these are pure predictions. The 
goal is to predict ∆RON: how much adding 2% of each phenol to the base fuel changes the octane 
number. The correlation between the predicted changes in ignition delays and the experimental ∆RON 
numbers are shown in Fig. 3. The scales are chosen to be representative of the relationship between the 
two quantities.[88] The experimental RON measurements have uncertainties of about 0.5 of a RON unit. 
The model predictions are not quantitatively accurate, but appear to be sufficient to correctly identify 
the best additive and its approximate economic value as a octane-increasing gasoline additive. 

 

4 Implications for the Future of Reaction Engineering 
A. The Value of Predictive Mode 

The nascent ability to do reaction engineering in “predictive mode”, where a useful chemical kinetic 
model can be constructed, all its parameters computed, and the model solved, even before any 
experiments are performed, has the potential to dramatically change chemical engineering practice.  

At present, most reaction engineering is done using the conventional postdictive simple-model 
paradigm. Someone considering developing a new chemical reaction process with that paradigm knows 
the models may not be reliable, and expects to spend a lot of money and time doing pilot-plant 
experiments before they will be able to evaluate whether or not the proposed process is feasible or 
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economically attractive.  (In contrast with reactions, many proposed separations can be evaluated 
satisfactorily using computer models calibrated by laboratory experiments, without the need for pilot 
plant experimentation.) This need for a significant investment of money and time, with no guarantee of 
success, is a significant barrier to innovation. Because it is so expensive and risky to try to develop a new 
chemical reaction process, many reaction processes engineered in the 1950s and 1960s are still 
commercially practiced, even though they almost certainly are not optimal today. Working in “predictive 
mode” using the detailed-model paradigm may make it cost-effective to change or optimize some of 
these processes. Even if it is not practical to predict accurate values for all the parameters in the model, 
the models can be very helpful for guiding the thinking of the researchers involved. In some cases the 
model allows one to infer upper limits on the performance of a process even if one does not know all 
the parameters accurately [97]. Knowing this upper bound can allow one to assess whether there is 
room for significant improvement in an existing process.  

There are also many important processes which cannot be addressed effectively using the postdictive 
paradigm because it is impossible or too expensive to perform the experiments needed to determine 
the effective parameters. For example, many processes in the environment and in geochemistry occur 
on such long timescales that they are experimentally inaccessible – but it still may be possible to model 
them using “predictive mode”.  

In other cases, experiments are possible, but so expensive that model predictions might be preferred. 
For example, it would be very interesting to know which of all the many possible biofuel and solar fuel 
compositions would perform best in a high-efficiency jet engine, as a possible method of sustainable 
low-carbon civil aviation. Unfortunately, it is expensive to test even a single new fuel composition, in 
part because one needs to synthesize/manufacture a large volume of the new proposed fuel in order to 
perform the test, and also because of the high capital cost and significant operational/maintenance 
costs of running experiments with an instrumented advanced jet engine. The cost of such an 
experimental campaign to determine the best future jet fuel out of all the feasible compositions would 
be in the billions of dollars – not impossible, indeed probably worthwhile given the value to society of 
finding the right solution - but certainly a lot more than the budget available to most R&D managers. 

Of course, while predictive mode is expected to gradually become more important, there are also many 
situations where the conventional postdictive approach (based heavily on fitting experiments) will 
continue to be preferred. For some systems it is not practical to build a sufficiently accurate predictive 
model, and in other cases the experimental data needed to build an empirical model are easy and 
inexpensive to obtain. Examples of the former include low-temperature reactions involving transition-
metal-containing heterogeneous catalysts (since currently there is no affordable quantum chemistry 
method to predict the reaction barriers to sufficient accuracy) or systems with poorly characterized 
catalysts or feeds. Examples of the latter include systems amenable to high-throughput 
experimentation, particularly microfluidic systems where there is no difficulty in ensuring good mixing 
and temperature uniformity, so the inferred empirical rate expression ω(C,T) is free of artifacts due to 
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inhomogeneity. In a few systems there is a vast amount of experimental data freely available (e.g. from 
sensors in chemical plants), and it may be more convenient and accurate to use rather complicated 
empirical models derived using Machine Learning methods instead of using any of the kinetic modeling 
approaches discussed in this paper. 

So for the next few decades, chemical engineers will need to be able to work using several rather 
different modeling paradigms. 

B. Change in Focus of Reaction Engineering 

Historically and still today, the focus of Reaction Engineering has been mostly on the reactor design and 
related transport/mixing issues, not on the reaction chemistry. This is reasonable if one expects to 
model the reactions using a simplistic A  B  C model, with all the rate parameters derived from 
fitting to experiments. However, this classic approach typically does not take advantage of the chemical 
knowledge already available, nor of our growing ability to accurately and inexpensively compute key 
parameters from first principles. Also, because of the efforts of many chemical engineers over the last 
100 years, the conventional reaction engineering step is now often quite straightforward, not the 
intellectual and computational challenge it was in the 20th century.  

This all suggests that it is time for the focus of Reaction Engineering to shift, to try to bring in more 
chemistry knowledge, including methods for rapidly computing rate parameters from first principles. 
This will allow our field to address a broad range of important questions that were sometimes 
considered out-of-scope in academic Reaction Engineering, e.g. 

1) What would happen if the feed composition was changed to include a new molecule (e.g. an 
additive)? 

2) What would happen if the feed were changed to different molecules? 
3) Can we predict what would happen if the catalyst were changed?  
4) Is there a fundamental reason why my process always makes undesired impurity X? If not, what 

should I do to prevent production of X? 
5) How could one change the process conditions, the catalyst, and the feed to obtain optimal 

results (high yield, low impurities, low energy input, low emissions)? Is the current process stuck 
in a local optimum, but not the globally optimal process? 

These are often the main questions in industry, in part because today’s methods of Reaction Engineering 
have already resolved many of the questions about reactor design and local optimization of a process. 
These new questions should be the focus of a new century of Reaction Engineering research. 

C. How to make this big shift in the Focus of Reaction Engineering? 

Current undergraduate Chemical Engineers are generally well-trained in the conventional simple-model 
postdictive paradigm, and comfortable taking advantage of the well-developed methods for reactor 

This article is protected by copyright. All rights reserved.



20 
 

design. So they are well-prepared to tackle the problems that formed the focus of classical Reaction 
Engineering using simple models for the chemistry.  

However, most undergraduate chemical engineers have gaps in their education that make it difficult for 
them to use the higher-fidelity predictive (or hybrid) approaches to modeling chemistry. To start with, 
most chemical engineers are not that comfortable with chemistry details. Perhaps they only took two or 
three semesters of chemistry as freshmen and sophomore undergraduates, and probably many 
chemical engineers haven’t opened a chemistry textbook since turning age 21. Similarly, most of today’s 
practicing chemical engineers have probably never computed a rate coefficient from first principles, and 
don’t have familiarity with modern software for kinetic modeling, constructing reaction mechanisms, or 
estimating rate parameters. Even fewer have experience using machine learning techniques for 
estimating molecular and reaction parameters from large data sets.  

To effectively take advantage of the new approach, not only do the predictive-kinetics techniques need 
to be well-developed and demonstrated, with convenient software, but also a significant effort will be 
required in education and training, including changes to the curriculum of Reaction Engineering. Today 
almost all practicing reaction engineers are doing their design and simulation work on the computer, 
and many have access to excellent software for solving large chemical kinetic models in all the 
conventional reactor types. Most also have access to excellent software for optimization and for fitting.  
In most cases the main challenge is therefore how to obtain/construct the kinetic model: once one has a 
good chemistry model, the design problem can be straightforwardly solved on the computer. 

However, our current curriculum almost completely ignores this issue – usually the kinetic model and 
rate parameters are given in the problem statement – and instead we teach the students how to solve 
reaction engineering problems by hand, often by making a lot of approximations. There is certainly a lot 
of pedagogical value in doing a calculation by hand, but it is a shame to spend a lot of time teaching 
calculation methods that students will never actually do in practice, while ignoring the key problem they 
will actually face. Of course, making a major change in curriculum is always difficult, and great care is 
needed since the current chemical engineering curriculum has proven its value over many decades. But 
unless the chemical engineering curriculum changes, it will be hard to change how Reaction Engineering 
is done in practice. 

Some may say that it is not the chemical engineer’s job to develop the chemistry model, instead have a 
chemist do that. This is an option, but most of today’s chemists are even less prepared to build and use 
large computer models for chemical kinetics than the engineers. Besides, we Reaction Engineers are the 
ones who ‘own’ the problem of designing a reaction systems; it behooves us to learn how to solve the 
Reaction Engineering problem in the best way possible, even if it involves the use of new tools and 
techniques, and even if it requires more attention to chemistry. 

5 Summary 
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Recent advances in capabilities for constructing accurate reaction mechanisms (described in the AIChE 
Perspective by the 2018 Wilhelm Award winner [3] and elsewhere [8-16, 99]), combined with advances 
in quantum chemistry, rate theory, numerical methods, machine learning, and in computer power, have 
now made it possible to address many Reaction Engineering problems using much more accurate 
models.  These detailed kinetic models have much higher fidelity to the actual chemistry occurring in the 
system than was practical in the past. Iterative computer construction of the reaction mechanisms 
provides a systematic method for reducing the Model Truncation Error due to omission in the model of 
some of the reactions and intermediates that exist in the real system. Good initial estimates of the 
parameters, followed by iterative refinement of the most sensitive parameters, allows a systematic way 
to reduce the effects of Parameter Error on the model predictions.  For some systems, all the key model 
parameters can be computed/estimated accurately before doing any experiments, allowing a complete 
change in paradigm to ‘predictive mode’, with many advantages especially for design of new systems. 
For systems where this approach is feasible, it is highly recommended. At present this works very well 
for high-temperature gas-phase systems, as shown in the Examples, but there is reason to believe it will 
soon be practical to use this approach at somewhat lower temperatures and in liquid phase systems. 

However, for many important systems it is not yet possible/practical to accurately compute/estimate all 
the important parameters. In some cases this is due to the large number of species in the system.  To 
some extent this complexity issue can be overcome by better use of supercomputers, but for systems 
containing large molecules and unselective reactions different modeling approaches are 
needed.[50,51,98] A more fundamental and important challenge is the lack of high-accuracy methods 
for computing the barriers of reactions on heterogeneous catalysts. There are also similar problems with 
computing ionic reactions in condensed phase to high accuracy. Hopefully ongoing improvements in 
quantum chemistry techniques and in methods for including condensed-phase effects on reaction 
parameters, along with the continued growth in computing power, will soon make it practical to predict 
these reactions to the same high accuracy as is now possible for reactions of neutral organic molecules 
and radicals. 

However, even after it becomes practical to accurately compute the barrier for any specific reaction, 
there will still be significant uncertainties due to incomplete knowledge of the boundary conditions: 
feed composition, initial morphology and condition of the catalyst. In some cases, the catalyst is known 
to change morphology during the reaction, making the simulations even more challenging. Because of 
these issues, it will remain difficult to make accurate predictions for some systems, including many 
catalytic systems, long after it becomes routine to use supercomputers to enumerate all the reactions 
and accurately compute all the rate parameters on well-ordered surfaces.  

Here we have highlighted some of the many technical as well as pedagogical/training challenges that 
must be overcome as Reaction Engineering transitions away from reliance on highly empirical 
postdictive reaction rate models (based on expensive experimentation often in pilot plants), to instead 
use higher-fidelity detailed chemistry models using more fundamental rate parameters. We hope this 
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presentation of both the current capabilities of Predictive Kinetics and its remaining challenges will 
inspire future efforts to achieve its promise. 
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Table 1  “conventional postdictive” vs. “detailed predictive” rate expressions for propane cracking 

Conventional (postdictive) 

rC3H6 = A1 exp(-E1/RT) [C3H6]α1 [C2H4]β1 [H2]γ1  

rC2H4 = A2 exp(-E2/RT) [C3H6]α2 [C2H4]β2 [H2]γ2 

rH2 = A3 exp(-E2/RT) [C3H6]α2 [C2H4]β2 [H2]γ2 

3 state variables and equations. 15 parameters to fit. 

Detailed (predictive) 

C3H8 = C2H5 + CH3    (rxn 1) 
C2H5 = H + C2H4         (rxn 2) 
CH3 + C3H8 = nC3H7 + CH4 (rxn 3) 
CH3 + C3H8 = iC3H7 + CH4 (rxn 4) 
H + C3H8 = nC3H7 + H2  (rxn 5) 
H + C3H8 = iC3H7 + H2  (rxn 6) 
nC3H7 = CH3 + C2H4  (rxn 7) 
iC3H7 = C3H6 + H  (rxn 8) 
C3H6 = H + C3H5  (rxn 9) 
CH3 + CH3 = C2H6  (rxn 10) 
CH3 + C3H5 = C4H8  (rxn 11) 
CH3 + H = CH4   (rxn 12) 
13 state variables and equations. 12 k(T,P)’s, 13 NASA polynomials: 206 parameters. Too many to 
determine by fitting to experimental data. 
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Fig. 1 Proposed workflow for automated development of predictive models for reaction 
chemistry, where the quantum calculations reduce Parameter Errors and the reaction 
mechanism expansions by RMG reduce the Mechanism Truncation Error. At the time this is 
written, the steps in the solid arrow are fully automated, but the steps with dashed arrows are 
only semi-automated. Several groups are working to make the loop fully automatic, so it would 
be practical to go through the full cycle hundreds or thousands of time, to automatically build 
accurate predictive chemical kinetic models. 
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Fig. 2   Predicted vs. Measured Yields of the C2H2 product in the high-temperature pyrolysis of natural 
gas and several other feeds at various pilot plant reaction conditions, from a model constructed using 
RMG in summer 2017. The dashed lines indicates a plus or minus 50% discrepancy between the 
prediction and the measurement. In all cases the predicted C2H2 yields are within a factor of 2 of what 
was measured in the pilot plant, and in most cases the predictions are within 30% of the measured 
yields. For updated models with many more predictions and comparisons with both pilot plant and 
laboratory experiments, and full discussion, see [92,93]. 
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Fig. 3  Predicted changes in ignition delays in the end gas in RON100 engine test vs. experimentally 
measured changes in RON due to addition of 2% of each phenol. The predictive chemical kinetic model 
correctly identifies which of the six phenols is the best for delaying unwanted ignition (knock) and so 
increasing the octane number of gasoline. 
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