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Abstract

1. A major challenge in ecological research is to identify the tolerance of ecological communities

to external perturbations. Modern Coexistence Theory (MCT) has been widely adopted

as a framework to investigate the tolerance to perturbations in relative reductions of per

capita growth rates, often using metrics that explicitly eliminate the independent role of

intrinsic growth rates. More recently, the Structural Approach (SA) was introduced to

investigate the tolerance of communities to perturbations in intrinsic growth rates as a

function of the strength of intraspecific and interspecific competition. Because the external

perturbations are likely to happen in both intrinsic growth rates and competition strengths,

no framework alone can fully disentangle the effects of external perturbations.

2. Here we combine MCT and SA to disentangle the tolerance in coexistence and priority

effects of a pair of competing species when subject to perturbations in intrinsic growth

rates and competition strengths. Through this combination, we reveal the emergence

of a key trade-off: increasing the tolerance to perturbations in intrinsic growth rates

typically decreases the tolerance in competition strengths, and vice versa. Furthermore,

this trade-off is stronger under coexistence than under priority effects.

3. We test this combined framework on competing pairs of 18 California annual plant species.

For both coexistence and priority effects, we find that the tolerance to perturbations

in intrinsic growth rates is maximized instead of that to perturbations in competition

strengths in the studied annual plant communities.

4. Synthesis. Our combined framework of MCT and SA illustrates that it is possible to

disentangle the impact of different external perturbations on the persistence of species.

Importantly, our findings show that species interactions may reveal whether communities

are dominated either by changes in intrinsic growth rates or competition strengths. Overall,

this combined framework can open a new perspective to understand and predict the

response of populations to changing environmental conditions.

Keywords: Coexistence, Competition Strengths, Intrinsic Growth Rates, Modern Coexistence

Theory, Priority Effects, Tolerance to Perturbations, Structural Approach.
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1 Introduction

Understanding the conditions leading to species coexistence and priority effects has long been a

central research topic in community ecology (Morin, 2009; Fukami, 2015; Vellend, 2016; Levine

et al., 2017). Coexistence occurs when multiple species persist within the same location for

a continuous period of time (Hofbauer & Sigmund, 1998; Case, 2000). In contrast, priority

effects occur when the dynamics of the community are governed by the order of species arrivals

(Chase, 2003; Fukami, 2015; Song et al., 2018a). The majority of theoretical studies have

addressed this topic by focusing on the necessary and/or sufficient conditions compatible with

coexistence or priority effects assuming that model parameters (e.g., intrinsic growth rates and

competition strengths) are fixed (Barabás et al., 2018) (but see Vandermeer 1975). Nonetheless,

model parameters (either mechanistic or phenomenological) change in response to unavoidable

external perturbations (Levins, 1968; Tucker & Fukami, 2014; Dirzo et al., 2014; Scheffers et al.,

2016), leading to the natural question of how robust coexistence and priority effects are to

changes in model parameters. Our ability to address this question has been shaped by two

different frameworks—Modern Coexistence Theory (Chesson, 2018) and the Structural Approach

(Saavedra et al., 2017b).

Modern Coexistence Theory (MCT) (Chesson, 2000, 2018) has been widely adopted as a

framework to investigate the conditions leading to species coexistence and has more recently

been extended to priority effects (Levine & HilleRisLambers, 2009; Mordecai et al., 2015; Fukami

et al., 2016; Ke & Letten, 2018; Grainger et al., 2019). In particular, MCT shows that coexistence

occurs when the effects of niche overlap exceed the effects of biasing the fitness ratio on the inferior

species. Likewise, MCT has shown that priority effects occur when the effects of destabilizing

mechanisms (such as positive frequency-dependence) exceed the effects of biasing the fitness

ratio for the superior competitor (Ke & Letten, 2018; Schreiber et al., 2019). Importantly,

MCT allows us to understand the robustness of coexistence to random perturbations in relative

reductions in per capita growth rates (Barabás et al., 2018). A pair of competitors can be

located in the parameter space (of relative reductions in per capita growth rate) relative to the

boundary between coexistence and exclusion. The further into the coexistence region a pair

lies, the more robust coexistence would be to changes in the average fitness or niche overlap

of the competitors. Analogous predictions can be made for priority effects. Yet, the metrics

in MCT (such as niche overlap and fitness ratio) are often calculated based on competition

coefficients scaled by intrinsic growth rates, which explicitly eliminate the independent role of

intrinsic growth rates (HilleRisLambers et al., 2012; Pérez-Ramos et al., 2019).

More recently, the Structural Approach (SA) (Saavedra et al., 2017b) was introduced to inves-

tigate the range of intrinsic growth rates compatible with coexistence and priority effects, as

a function of the absolute reductions in per capita growth rate (a.k.a. competition strengths)

(Cenci et al., 2018b). The region of coexistence is described by an angle anchored at the

origin of a plot whose x and y axes are the intrinsic growth rates of the two competitors. The
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wider the angle, the greater the range of intrinsic growth rate differences between competitors

compatible with coexistence. The angle becomes a solid angle or cone in a higher dimension

for communities containing more than two competitors (Song et al., 2018b). In this way, SA is

specifically designed to understand the robustness of a community—as a function of competition

strengths—to random changes in the intrinsic growth rates of the constituent species.

Because external perturbations are likely to happen in both the intrinsic growth rates and

competition strengths (either simultaneously or separately), here we argue for a combination of

MCT and SA focused on paramter changes (perturbations). SA and MCT measure different

aspects of the robustness of coexistence (priority effects): SA has thus far been developed

with only perturbations to the intrinsic growth rates in mind (the robustness as a function of

competition strengths); while MCT has been developed with the idea of potential simultaneous

changes in parameters, but merging them into a single parameter (relative reductions in per capita

growth rate). Note that intrinsic growth rates and competition strengths are phenomenological

summaries of different abiotic and biotic factors (Levins, 1968; MacArthur, 1970; Cadotte

& Tucker, 2017; Coulson et al., 2017), and they play different fundamental roles in shaping

the dynamics of multispecies systems (Song & Saavedra, 2018b,a; Cenci & Saavedra, 2018).

Therefore, achieving a combination of MCT and SA is challenging because the metrics in the two

approaches are not directly translatable (Appendix S5 in Saavedra et al. 2017b). Yet, instead

of translating their metrics, we propose to investigate how the angle describing the intrinsic

growth rates compatible with coexistence (priority effects) in SA changes as a fucntion of the

niche overlap and fitness ratio in MCT.

Our combination of MCT and SA focuses on 2-species competition dynamics. While SA can be

used for 2-species and multispecies communities within the same formalism (Saavedra et al.,

2017b), here we focus on 2-species dynamics given that the canonical formalism of MCT is

explicitly justified for 2-competing species (Barabás et al., 2018; Chesson, 2018; Spaak &

DeLaender, 2018; Song et al., 2019). Note that MCT can also be applied to multispecies

communities, but the formalism and definitions are different (Song et al., 2019; Barabás et al.,

2018). Nevertheless, the results obtained for 2-species communities are valuable for both

theoretical and empirical research (Case, 2000). From a theoretical perspective, the combination

of MCT and SA not only could allow us to disentangle the role played by intrinsic growth rates

and competition strengths in shaping coexistence and priority effects, but also could offer a new

perspective to understand the tolerance of ecological communities to the effects of simultaneous

external perturbations on different model parameters. From an empirical perspective, because

2-species dynamics has been and continues to represent the most feasible experimental system

(Levine & HilleRisLambers, 2009; Mayfield & Levine, 2010; Adler et al., 2013; Narwani et al.,

2013; Godoy et al., 2014; Kraft et al., 2015; Mordecai et al., 2015; Chu et al., 2016; Germain

et al., 2018; Bimler et al., 2018; Cardinaux et al., 2018; Li et al., 2018; Pérez-Ramos et al., 2019;

Grainger et al., 2019), this combination of theoretical tools can be easily applied to gain new

insights about the robustness of ecological communities to changing environmental conditions.
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The manuscript is organized as follows. First, building upon 2-competing species dynamics, we

briefly introduce the fundamentals of MCT and SA. We show why each framework alone cannot

fully disentangle the roles played by intrinsic growth rates and competition strengths. Then, we

show how the metrics from MCT—the stabilizing and equalizing mechanisms—relate to the solid

angle of SA. Achieving this combination of tools requires both advancing SA to simultaneously

vary multiple parameters (as in MCT) and revisiting MCT to untangle the contribution of model

parameters (as in SA). Importantly, we show that the equalizing mechanism (based on fitness

ratio) exhibits a key trade-off between tolerance to perturbations in intrinsic growth rates and

in competition strength. We show that this trade-off is stronger under coexistence than under

priority effects. Next, we apply our study to an empirical data set of annual plant assemblages.

We show that in these experimental systems, the tolerance to perturbations in intrinsic growth

rates (but not in competition strengths) is maximized. Last, we provide a discussion about the

limitations and future research avenues derived from our work.

2 Two-competing species dynamics

2.1 Dynamics

Many population dynamics of two-competing species have been proposed (e.g. Tilman 1982;

Case 1999; Turchin 2003). Arguably, the simplest dynamics is the classic Lotka-Volterra (LV)

dynamics (Case, 1999). The formulation of LV reads as (other equivalent parameterizations or

formalisms can be found in Appendix A)















dN1

dt
= N1(r1 − α11N1 − α12N2)

dN2

dt
= N2(r2 − α21N1 − α22N2),

(1)

where the variable Ni represents the abundance of species i, the parameters ri > 0 and αii > 0

correspond to the intrinsic growth rate and the self-regulation (or intra-specific competition) of

species i, respectively, and α12 > 0 and α21 > 0 are the corresponding interspecific competition

strengths (a.k.a. absolute reductions in per capita growth rate).

Importantly, despite the simplicity of LV dynamics, all the main results here apply to a much

larger class of two-competing species dynamics, including saturating competition dynamics

(Brauer & Castillo-Chavez, 2011), time discrete LV dynamics (Saavedra et al., 2017b), consumer-

resource dynamics (Letten et al., 2018; Song et al., 2019), and annual plant dynamics (Godoy &

Levine, 2014; Hart et al., 2019). Note that the strength of species competition in these dynamics

can also be expressed in terms of nonlinear functional responses (Cenci & Saavedra, 2018).
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2.2 Coexistence

The necessary and sufficient conditions for the coexistence of the two competing species are

given by the two following inequalities (Vandermeer, 1975; Song & Saavedra, 2018b),

α21

α11

<
r2

r1

<
α22

α12

. (2)

The two inequalities, α21/α11 < r2/r1 and r2/r1 < α22/α12, grant that species 1 and 2 can

mutually invade given r2/r1—what we call the ratio of intrinsic growth rates. In a 2-dimensional

system, this possibility grants that species can have positive abundance at equilibrium, viz.,

feasibility (Case, 2000). Consequently, these two inequalities imply the third inequality α21/α11 <

α22/α12, which ensures that the dynamics would converge to the equilibrium starting from any

initial species abundance, viz., global stability. Note that the third inequality can be deduced

from the first two inequalities, but the inverse is not true. Because these conditions guarantee

the existence of a unique, stable, feasible, fixed point, species coexistence is not determined by

the order of species arrival.

Traditionally, these inequalities have been graphically illustrated on the state (abundance) space

of the system given by Eq. (1) (Case, 2000). Following this classic representation, Figure 1 shows

how the parameters have to be combined such that the two non-trivial zero-growth isoclines fall

inside the coexistence area. For given generic values of K1 = r1/α11 and K2 = r2/α22—known as

carrying capacities, the inequality r2/r1 < α22/α12 is equivalent to having species 1 zero-growth

isocline crossing the N2 axis above species 2 zero-growth isocline, and similarly for the inequality

α21/α11 < r2/r1. The global stability condition α21/α11 < α22/α12 is equivalent to having the

slope of species 1 zero-growth isocline steeper than the one of species 2, so that they cross within

the coexistence area (Case, 2000). Note that the borders on the axes of Figure 1 (as well as

the region where the two zero-growth isoclines would cross outside the positive abundances

quadrant) correspond to the case of unfeasible equilibria, where one species out-competes the

other species—also known as border equilibria. Pure neutrality lies in the intersection between

the stability-instability border and the fitness equivalence line (Song et al., 2019).

2.3 Priority effects

Figure 1 also shows how the parameters should be combined such that the dynamics exhibit

priority effects (Case, 2000). Recall that priority effects in a 2-species LV system correspond to

the ecological case when the first arriving species (assumed to be at its carrying capacity) always

excludes the second arriving species that tries to invade (considered to have lower abundance)—

due to the instability of the feasible fixed point. Mathematically, priority effects are equivalent

to the existence of a feasible but unstable equilibrium point in this system. Thus, the necessary

and sufficient conditions to have priority effects are the opposite of the coexistence inequalities
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(Eq. 2):
α21

α11

>
r2

r1

>
α22

α12

. (3)

Similar to the coexistence case, we can geometrically interpret these priority effects inequalities

as follows. The inequality α21/α11 > r2/r1 is equivalent to have species 1 zero-growth isocline

crossing the N2 axis below species 2 zero-growth isoclines, and similarly for r2/r1 > α22/α12.

In turn, the dynamical instability condition α21/α11 > α22/α12 is equivalent to have the slope

of species 2 zero-growth isocline steeper than that of species 1—such that they cross within

the priority effects area. Note that there is a feasible equilibrium point (i.e., the isoclines cross

inside the positive quadrant of species abundances), but the equilibrium point is unstable.

3 Modern Coexistence Theory

3.1 Coexistence

To investigate the conditions leading to species coexistence, MCT (Chesson, 2013) has reformu-

lated the classic 2-species LV competition system (Eq. 1) as,















dN1

dt
= N1r1(1 − ᾱ11N1 − ᾱ12N2)

dN2

dt
= N2r2(1 − ᾱ21N1 − ᾱ22N2).

(4)

In Eq. (4), the intrinsic growth rates ri (dimension: time−1) are the same as the ones in Eq.

(1). However, the relative competition strength ᾱij (dimension: biomass−1 or abundance−1) is

different from αij (dimension: time−1·biomass−1 or time−1·abundance−1). Here, ᾱij represents

the per capita effect of species j on the per capita growth rate of species i relative to its intrinsic

growth rate (i.e., reductions in per capita growth rate relative to the maximum per capita growth

rate). In other words, ᾱij and αij represent the relative and absolute reductions in per capita

growth rate, respectively. These parameters are related by the formula ᾱij = αij/ri.

Note that mixing up these two parameterizations above (both are equally called competition

strengths in the literature) can lead to apparently contradictory results. For instance, MCT

states that two competing species will coexist as long as the species depress their own growth

more strongly than they depress the growth of the other species, which can be interpreted as

αii > αji (Chesson, 2013, 2018). However, if one considers r1 = 1 and r2 = 2, Eq. (2) becomes

α21/α11 > 1/2, and α12/α22 > 2, in which case, species 1 can depress its own growth less

strongly than it depresses the growth of the other species, and yet both species can coexist. The

statement of MCT holds only for the relative reductions in per capita growth rate defined by ᾱij ,

i.e., ᾱii > ᾱji, which embed the intrinsic growth rate into the competition strength. Similarly,

it has been stated that the role of intrinsic growth rates in coexistence does not appear to be

fundamental (Chesson, 2018). However, it can be proved that ᾱij are not sufficient to determine
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the dynamical behavior beyond 2-species population dynamics (Poincaré–Bendixson theorem

(Strogatz, 2014); see Appendix B for a detailed discussion).

Then, under MCT, the coexistence criteria (Eqn. 2) for a 2-species LV competition system is

given by

ρ <

√

ᾱ11ᾱ12

ᾱ22ᾱ21

<
1

ρ
, (5)

where ρ =
√

ᾱ12ᾱ21/ᾱ11ᾱ22 =
√

α12α21/α11α22 is called the niche overlap, and
√

ᾱ11ᾱ12/ᾱ22ā21

is called the fitness ratio (Chesson, 2018; Bartomeus & Godoy, 2018). Note again that the

fitness ratio apparently does not depend on the intrinsic growth rates ri, but recall that they are

implicitly embedded into ᾱij . Hence, the stability condition for stable coexistence is equivalent

to ρ < 1.

Consequently, MCT identifies two ecological mechanisms under which two species can achieve

coexistence: the equalizing mechanism (
√

ᾱ11ᾱ12/ᾱ22ā21 approaches 1) and the stabilizing

mechanism (ρ approaches 0). The stabilizing mechanism increases the range of fitness ratios

leading to coexistence, while the equalizing mechanism tends to center the fitness ratio within the

given range of niche overlap. Typically, these inequalities are represented by the blue area within

the 2-dimensional space made by the niche overlap and the fitness ratio axes (Fig. 2A). Hence,

the stabilizing mechanism can be seen on this fitness ratio-niche overlap space as horizontal

trajectories towards the left inside the coexistence area. In turn, the equalizing mechanism

can be seen as vertical trajectories in the direction of the fitness equivalence line inside the

coexistence area. Note, however, that changes in niche overlap are likely to restrict changes (of

both direction and magnitude) in fitness ratio, and vice versa (Song et al., 2019).

3.2 Priority effects

Importantly, the concepts of niche overlap and fitness ratio can be naturally extended to study

priority effects (Ke & Letten, 2018). Indeed the inequalities shown in Eq. (3) can also be read

as

ρ >

√

ᾱ11ᾱ12

ᾱ22ᾱ21

>
1

ρ
. (6)

Note that in the priority effects case, the niche overlap has to be larger than 1, i.e., ρ > 1.

Consequently, the definition of niche overlap (and the stabilizing mechanism) can be extended

to priority effects, but its interpretation is the opposite as in the coexistence case, i.e., ρ has to

be as large as possible to accommodate a larger magnitude of fitness ratio leading to priority

effects. Figure 2A shows the fitness ratio-niche overlap space for priority effects. Note that the

interpretation of the equalizing mechanism remains the same as in the coexistence case, i.e., the

mechanism centers the fitness ratio within the range given by the niche overlap (Ke & Letten,

2018).
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4 Structural Approach

Different from MCT, SA follows the classic formulation of the LV model and focuses on the

region of intrinsic growth rates compatible with species coexistence as a function of competition

strengths (a.k.a. absolute reductions in per capita growth rate) (Saavedra et al., 2017b). That

is, SA studies to what extent the intrinsic growth rates (ri) can change given the competition

strengths (αij) that are usually considered as being fixed (but see Saavedra et al. 2017a; Cenci

et al. 2018a for the application of SA to changing competition strengths). Following this approach,

the region of the ratio of intrinsic growth rates (r2/r1) compatible with species coexistence and

priority effects of two species is analytically described by Eq. (2) and Eq. (3), respectively. This

region, known as the feasibility domain, can be geometrically represented as a unit cone (Fig.

2B-C), and can be quantified by the normalized solid angle Ω of such cone (Song et al., 2018b):

Ω = arccos
Q1 + Q2

√

1 + Q2
1

√

1 + Q2
2

. (7)

We define Q1 = α21/α11 and Q2 = α12/α22, which represent the extent to which a species

depresses the competitor’s per capita growth rate relative to its own self-regulation. As shown

in Fig. 2B-C, the formula to compute the feasibility domain (normalized solid angle) Ω is the

same for both coexistence and priority effects—only the slopes are inverted (Appendix C for

the mathematical derivation). The feasibility domain Ω ranges from 0◦ to 90◦, where Ω = 90◦

corresponds to the ecological case where the coexistence of two species is basically impossible

and Ω = 90◦ corresponds to the case of non-competing species. Thus, the larger Ω, the larger

the random changes to the ratio of intrinsic growth rates a community can tolerate without

losing coexistence or priority effects.

5 Disentangling the roles

To disentangle the roles of intrinsic growth rates and competition strengths in shaping coexistence

and priority effects, we propose to combine the theoretical tools of MCT and SA. For this purpose,

we can rewrite the coexistence criteria (Eq. 2) for a 2-species LV competition system as

ρ <
r2

r1

√

Q2

Q1

<
1
ρ

. (8)

Thus, the niche overlap is now given by ρ =
√

Q1Q2 Note that the fitness ratio (r2/r1

√

Q2/Q1)

now explicitly expresses the intrinsic growth rates. Table 1 provides a summary of all model

parameters and their definition. Following this notation, the necessary and sufficient conditions

for coexistence (Eq. 2) can be rewritten as Q1 < r2/r1 < 1/Q2, and similarly, for priority effects

(Eq. 3) they read as Q1 > r2/r1 > 1/Q2. Consequently, the dynamical stability condition for

coexistence (i.e., the condition leading to the global stability of a feasible fixed point) is then
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given by Q1 · Q2 < 1, while the dynamical instability condition for priority effects is given by

Q1 ·Q2 > 1. Note that the exact case Q1 ·Q2 = 1 corresponds to the border between the stability

and instability areas.

5.1 Linking the stabilizing mechanism and SA

Under MCT, the stabilizing mechanism monotonically increases the range of the fitness ratio

compatible with species coexistence (Fig. 2A). In other words, the stabilizing mechanism leads

to the increase of relative reductions in per capita growth rate compatible with coexistence. It

has the opposite effect on priority effects (Fig. 2A). However, it is not immediately clear how the

stabilizing mechanism affects the tolerance to perturbations in intrinsic growth rates. To link

the stabilizing mechanism and SA, we need to ask the two following questions: How does the

niche overlap (ρ) relate to the feasibility domain (Ω) when both the fitness ratio (r2/r1

√

Q2/Q1)

and ratio of intrinsic growth rates (r2/r1) are fixed? How does the ratio of intrinsic growth rates

(r2/r1) affect the feasibility domain (Ω) under the stabilizing mechanism? Note that the ratio

r2/r1 corresponds to the initial location of a 2-species system within the parameter space of

intrinsic growth rates. Additionally, recall that the feasibility domain is derived from SA and

corresponds to the range of intrinsic growth rates compatible with coexistence or priority effects.

The mathematical link between the stabilizing mechanism of MCT and the angle of SA is

provided in Appendix D. In brief, their combination reveals that the stabilizing mechanism

always increases the range of intrinsic growth rates compatible with coexistence (Fig. 3). As

expected, it has the opposite effect on priority effects (Fig. 3). However, the magnitude of

these effects depends on the given ratio of intrinsic growth rates (assuming it remains fixed).

Specifically, the smaller the niche overlap (ρ), the larger the feasibility domain (Ω) of species

coexistence (and the opposite behavior for priority effects). Yet the difference in the effect

between a small and a large niche overlap (ρ) moves from linear to nonlinear the larger the

ratio of intrinsic growth rates (Fig. 3). That is, the effect of the stabilizing mechanism on the

feasibility domain (Ω) decreases as the ratio of intrinsic growth rates deviates from 1. Moreover,

all these effects are stronger under coexistence than under priority effects (Fig. 3). This difference

is explained by the fact that the stabilizing mechanism operates within a niche overlap between

0 and 1 for coexistence, and within a niche overlap larger than 1 for priority effects. These

statements are true for any fitness ratio and given ratio of intrinsic growth rates (Appendix

D). In sum, while explicitly ignored in previous applications of MCT, the ratio of intrinsic

growth rates is an important mediator of the extent to which the stabilizing mechanism affects

coexistence and priority effects.
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5.2 Linking the equalizing mechanism and SA

Under MCT, the equalizing mechanism centers the fitness ratio within a given range of niche

overlap for both coexistence and priority effects (Fig. 2A). Note that this is different from the

stabilizing mechanism, whose effects on coexistence and priority effects are the opposite. To link

the equalizing mechanism and SA, we need to ask the two following questions: (1) How does the

fitness ratio (r2/r1

√

Q2/Q1) need to vary to increase the feasibility domain (Ω) when both the

niche overlap (ρ) and ratio of intrinsic growth rates (r2/r1) are fixed? (2) How does the ratio of

intrinsic growth rates (r2/r1) affect Ω under the equalizing mechanism?

The mathematical link between the equalizing mechanism of MCT and the angle of SA is

provided in Appendix D. In brief, the equalizing mechanism has a non-monotonic effect on

the range of intrinsic growth rates compatible with coexistence and priority effects (Fig. 4).

Specifically, the size of the feasibility domain (Ω) reaches its maximum when the fitness ratio is

equal to r2/r1 (see horizontal black line in Fig. 4), but decreases as the fitness ratio deviates

from r2/r1 (see curves in Fig. 4). Recall that under MCT, the equalizing mechanism maximizes

the conditions compatible with coexistence and priority effects when the fitness ratio is equal to

1 (regardless of the value of r2/r1), which is known as fitness equivalence (see vertical red line in

Fig. 4). Thus, as long as r2/r1 6= 1, the equalizing mechanism has a non-monotonic effect on

the feasibility domain (Ω) under coexistence and priority effects. Moreover, the figure shows

that the range of fitness ratio compatible with feasible systems (i.e., Ω > 0) decreases the larger

the ratio of intrinsic growth rates (r2/r1), revealing a key tolerance trade-off (Appendix D).

Specifically, increasing the tolerance to perturbations in intrinsic growth rates (moving towards

increasing Ω) cannot be achieved at the same time as increasing the tolerance to perturbations

in competition strengths (moving towards fitness equivalence, viz., equalizing mechanism). This

implies that systems may be close to either fitness equivalence (fitness ratio = 1) or a large Ω

(fitness ratio = ratio of intrinsic growth rates), but not both. This supports recent work (Song

et al., 2019) showing that the equalizing and stabilizing mechanisms are strongly interconnected.

The results above can also be explained intuitively. It is known that the equalizing mechanism

counterbalances the ratio of intrinsic growth rates (r2/r1) via the ratio of competition strength

(
√

Q2/Q1). However, under changes in intrinsic growth rates, it is necessary to minimize the

niche overlap (ρ =
√

Q2Q1) in order to increase the likelihood of persistence. Only in the case

where r2/r1 = 1, both the ratio of competition strength (
√

Q2/Q1) and niche overlap (ρ) can

increase to achieve coexistence (Fig. 4). In all the other cases, what it takes to equalize fitness is

different from what it takes to find competition strengths that will allow for the greatest range

of intrinsic growth rates compatible with coexistence (or priority effects). Hence, the equalizing

mechanism imposes a trade-off between the tolerance to perturbations in competition strengths

and intrinsic growth rates. Importantly, the magnitude of the trade-off completely depends

on the given ratio of intrinsic growth rates (assuming it remains fixed) for both coexistence

and priority effects (Fig. 4). Note that regardless of the size of the feasibility domain, the
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starting ratio of intrinsic growth rates determines the amount of random perturbations that can

be tolerated. That is, a ratio of intrinsic growth rates in the middle of the feasibility domain

can be perturbed in any direction in a magnitude up to half the size of the feasibility domain.

Instead, a ratio of intrinsic growth rates close to the border of the feasibility domain can only be

perturbed in the opposite direction of that border (see Appendix E for illustrative examples).

Hence, under arbitrary perturbations, the location of the ratio of intrinsic growth rates shapes

the trade-off between tolerance to perturbations in intrinsic growth rates and perturbations in

competition strengths.

6 Application to empirical data

To illustrate how the combination of MCT and SA can allow us to disentangle the effect of

perturbations in intrinsic growth rates and competition strengths on coexistence and priority

effects, we applied our methods to a data set of a field system of annual plant competitors

occurring on serpentine soils in California, USA (Godoy & Levine, 2014; Kraft et al., 2015).

Specifically, the system consisted on the pairwise competition of all possible combinations from

18 annual plant species in experimental gardens by establishing a density gradient of each

competitor, and sowing all competitors as focal individuals into that density gradient. The

relationships between the fecundity of the focal individuals and the density of a surrounding

competitor were fitted to estimate intrinsic growth rates ri of individual species and pairwise

interaction strengths αij (Godoy & Levine, 2014; Saavedra et al., 2017b). A brief summary of

the fitting methods and translation to LV parameters can be found in Appendix F.

We tested two hypothesis derived from our combination of MCT and SA. First, we expected

that the effect of niche overlap (ρ) on the range of intrinsic growth rates (Ω) compatible with

coexistence should be larger than the range compatible with priority effects (per Fig. 3). Second,

if the tolerance to perturbations in intrinsic growth rates is maximized, then we should expect

to see their fitness ratio ( r2

r1

√

Q2

Q1
) equal to their ratio of intrinsic growth rates (r2

r1
). Instead, if

the tolerance to perturbations in competition strengths is maximized, then we should expect to

see their fitness ratio ( r2

r1

√

Q2

Q1
) equal to one (per Fig. 4).

Figure 5 corroborates our hypotheses. Focusing on our first hypothesis, we found that the

feasibility domain Ω is typically larger under coexistence than under priority effects (Fig. 5A).

Under coexistence, Ω increases as the niche overlap decreases, whereas under priority effects

we found the opposite pattern. Yet, as expected, the magnitude of such changes were stronger

under coexistence than under priority effects. Shifting our focus to our second hypothesis, we

found that under both coexistence and priority effects, the tolerance to perturbations in intrinsic

growth rates is maximized in the studied empirical systems. Figures 5B-C show that in the

majority of the systems, for both coexistence and priority effects, the fitness ratio is close to the

ratio of intrinsic growth rates (which corresponds to the 45-degree line). This observation is
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statistically confirmed with hypothesis testing (Wilcoxon signed-rank test, p < 10−4; Appendix

G). Moreover, in line with our expectations, we observed that the closer the empirical systems

are to the one-to-one relationship, the larger the value of Ω they display. Note that these

observations are not circulus in probando, because it is unclear a priori whether the tolerance

to perturbations in intrinsic growth rates or in competition strengths would be maximized in

these systems. Overall, these results reveal that it is possible to disentangle the effect of external

perturbations on empirical systems.

7 Discussion

Here we have combined the frameworks of MCT and SA to disentangle the effects of perturbations

in intrinsic growth rates and competition strengths (absolute reductions in per capita growth

rate) on coexistence and priority effects. Under this particular combination of theoretical tools,

we have confirmed that the stabilizing mechanism of MCT increases the range of intrinsic

growth rates compatible with coexistence, whereas it decreases the range for priority effects.

These effects on intrinsic growth rates are stronger under coexistence than under priority effects.

Importantly, we have demonstrated that the equalizing mechanism of MCT has a non-monotonic

effect on the range of intrinsic growth rates leading to coexistence (or priority effects), and

therefore can be used to disentangle the roles of intrinsic growth rates and competition strength.

However, the magnitude of all these effects is completely dependent on the given ratio of intrinsic

growth rates, introducing a key trade-off between increasing the range of intrinsic growth rates

and competition strengths compatible with coexistence or priority effects. That is, the tolerance

to different types of perturbations is not maximized at the same time.

Leveraging on the tolerance trade-off found in competing species, the studied empirical data

have revealed that the tolerance to perturbations in intrinsic growth rates (not in competition

strengths) appears to be maximized in annual plant communities. This result, of course, needs

to be take with caution as some of these experimental systems were not observed in the field.

This, however, opens a very exciting opportunity to investigate if the level of tolerance to

perturbations in intrinsic growth rates or competition strengths changes between systems that

have been coexisting for shorter or longer periods of time. As another example, one can ask

which conditions within the parameter space could allow systems to persist under different

habitats, which is an important question in the face of global warming (Alexander et al., 2015).

Similarly, turning the same question upside down, changes in the contributions of different

model parameters can be indicative of the direction of perturbations in an environment and the

consequent response of species. Because MCT has been widely used for 2-competing species

under a variety of ecosystems and successional stages (Levine & HilleRisLambers, 2009; Adler

et al., 2013; Narwani et al., 2013; Kraft et al., 2015; Mordecai et al., 2015; Chu et al., 2016;

Bimler et al., 2018; Cardinaux et al., 2018; Pérez-Ramos et al., 2019), our combined framework

can be immediately applied to gain new insights about these questions on empirical systems.
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It is also worth mentioning that the most fundamental limitation of our study is that our results

apply to 2-competing species only. This limitation is given by the canonical formalism of MCT

(Barabás et al., 2018; Chesson, 2018; Song et al., 2019). That is, the two-species definitions of

niche overlap and fitness ratio in MCT (Eq. 5) cannot be generalized to an arbitrary number of

competing species. Moreover, the current multispecies definitions in MCT are incompatible with

the 2-species definitions (Song et al., 2019). Thus, the dynamics of this 2-species LV system

are simple (necessary and sufficient conditions for coexistence and priority effects have been

known for a long time) and special (e.g., dynamical stability is equivalent to invasibility (Goh,

1977)). As a consequence, these dynamics do not capture many other components of species

coexistence, such as indirect effects (Saavedra et al., 2017b; Levine et al., 2017; AlAdwani &

Saavedra, 2019) and higher-order interactions (Grilli et al., 2017; Letten & Stouffer, 2019) in

multispecies communities. However, we speculate that the tolerance trade-off between intrinsic

growth rates and competition strengths may also be present in larger communities.

Overall, our findings illustrate the importance of disentangling the effect of external perturbations

on coexistence and priority effects, and calls for further theoretical and empirical investigation

about potential tolerance trade-offs shaping different ecological processes (Grainger et al., 2019).

For example, Figure 4 show that communities with the same niche overlap can exhibit exactly the

same maximum Ω despite displaying different ratios of intrinsic growth rates (see also Appendix

D). Yet, communities characterized by a large ratio of intrinsic growth rates can exhibit a

very different range of conditions compatible with coexistence (and/or priority effects) from

communities characterized by a small ratio (see Appendix E for details). Moreover, while we

have illustrated the combination of MCT and SA assuming that the ratio of intrinsic growth

rates remains fixed, future work can build on our framework to investigate the effect of relaxing

this condition on coexistence and priority effects. Similarly, while the tolerance trade-offs that

we have found indicate strong constraints between equalizing and stabilizing mechanisms, the

formalism followed in this study assumes that either niche overlap or fitness ratio can change

while the other remains fixed. Yet, the potential interdependency between these two processes

(Song et al., 2019) can make even more stringent the role of different model parameters in the

formation of species interactions and dynamics.
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Figure 1: Coexistence and priority effects. State (abundance) space of 2-competing
species. Species 1 zero-growth isocline is defined as r1 = α11N1 + α12N2, and its slope corre-
sponds to −α11/α12. We can write a symmetric equation for species 2. These isoclines (dot-
ted lines) correspond to the non-trivial set of abundances where species per capita growth
rate is zero. The intersection of these two isoclines defines an equilibrium point (N∗

1 ,N∗

2 ). The
carrying capacity Ki = ri/αii is the abundance that species i reaches when the competition
strength is zero (αij = 0). Within the state space we can define the coexistence area (top
blue region) and the priority-effect area (bottom orange region). That is, keeping the carrying
capacities fixed, depending on where the two isoclines cross, the two species can either exhibit
coexistence or priority effects. Note that the gray line divides the region of stability (top re-
gion) and instability (bottom region). The red line represents the fitness equivalence line, and
in dashed, its extension to priority effects.
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Figure 2: Modern Coexistence Theory and the Structural Approach. The dynamics
correspond to the Lotka-Volterra model (Eq. 1). Panel (A): MCT. Fitness ratio and niche
overlap space for coexistence and priority effects. The figure represents the four different out-
comes of the dynamical system as a function of the fitness ratio and niche overlap (fitness
ratio is on log ratio). The vertical red line is the border between the stability-instability area
(ρ = 1). The coexistence area is deduced from the inequalities in Eq. (5) (i.e. Eq. 8), while
priority effects are deduce from the inequalities in Eq. (6). The arrows illustrate the direction
in which the competition strengths need to move inside the fitness ratio and niche overlap
space in order to act as stabilizing and equalizing mechanisms. The gray line represents the
stability-instability border. Panels (B)-(C): Structural Approach. Quantifying structural sta-
bility of coexistence and priority effects under perturbations in intrinsic growth rates. For a
competition system, the full effective space of intrinsic growth rates is the quarter unit circle
in the positive quadrant (Song et al., 2018b), which is depicted in gray. The blue (orange)
area corresponds to the domain of coexistence (priority effects) within the effective parame-
ter space, as defined by Eqns. (2 and 3). Note that the two borders (depicted as purple and
green lines) switch between coexistence and priority effects. The feasibility domain (normal-
ized solid angle) Ω is defined as the angle between the two borders. The region Ω can be
increased as the borders move along with the directions of arrows. The red line represents the
fitness equivalence line, and in dashed, its extension to priority effects.
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Figure 3: Effect of stabilizing mechanism on coexistence and priority effects under

perturbations in intrinsic growth rates. Each line corresponds to a different ratio of in-
trinsic growth rates (r2/r1) at fixed fitness ratio (r2/r1

√

Q2/Q1). Following each line, we can
see that the stabilizing mechanism has a nonlinear positive effect on the feasibility domain
Ω for coexistence. The opposite pattern for priority effects. The magnitude of Ω decreases
for both coexistence and priority effects the more the ratio of intrinsic growth rates deviates
from 1. These effects are stronger under coexistence than under priority effects. For illustra-
tion purposes, we use a fitness ratio of 2. Note that all the qualitative results presented here
hold for any combination of parameters (Appendix D). The gray line represents the stability-
instability border.
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Figure 4: Effect of equalizing mechanisms on coexistence and priority effects under

perturbations in intrinsic growth rates. Focusing on the tolerance to perturbations in
competition strengths αij , it increases following the equalizing mechanism (white arrows),
and it is maximized at the fitness equivalence line (red line) (see Figure 2 for illustration).
Then, focusing on the tolerance to perturbations in intrinsic growth rates ri, it increases
following the black arrows, and it is maximized at the one-to-one relationship between fitness
ratio and the ratio of intrinsic growth rates (black line). The colors represent the normalized
angles Ω of each pair of plant competitors, and the increase of the tolerance to perturbations
in intrinsic growth rates can be visualized by the color gradient. Because the white arrows
and the black arrows are generally different, a key trade-off emerges between increasing the
tolerance to perturbations in intrinsic growth rates ri and competition strengths αij . For
illustration purposes, we use ρ = 0.1 in Panel A, and ρ = 10 in Panel B. Note that all the
qualitative results presented here hold for any combination of parameters (Appendix D).
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Figure 5: Disentangling the role of intrinsic growth rates and competition

strengths in annual plant assemblages. The panels illustrate the disentangled contri-
bution of intrinsic growth rates and competition strengths to coexistence and priority ef-
fects using parameters estimated from experimental data in annual plant systems (Godoy &
Levine, 2014; Kraft et al., 2015). Panel (A): The stabilizing mechanism (niche overlap, ρ) has
a stronger effect on Ω under coexistence than under priority effects. The size of the points
corresponds to the ratio of intrinsic growth rates (r2/r1) for each pair of plant competitors.

Panels (B-C): The equalizing mechanism (fitness ratio, r2

r1

√

Q2

Q1
) exhibits a key trade-off be-

tween maximizing tolerance to perturbations in intrinsic growth rates ri (moving towards
increasing Ω) and competition strengths (moving towards fitness equivalence). The black line
is the one-to-one relationship between fitness ratio and the ratio of intrinsic growth rates,
which theoretically maximizes Ω for a given level of niche overlap (Fig. 4). The red line cor-
responds to the fitness equivalence, which in general maximizes the tolerance to changes in
competition strengths. The sizes of the points are proportional to the normalized angles Ω of
each pair of plant competitors.
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Properties Definition

Feasibility The existence of an equilibrium point at which all species have a positive abundance
Global stability The capacity to converge to a unique equilibrium point regardless of the initial abundances

Model parameters

ri Intrinsic growth rate
αij Absolute reduction in per capita growth rate (competition strength)
ᾱij = αij/ri Relative reduction in per capita growth rate (relative competition strength)
Ki = ri/αii Carrying capacity
Qi = αji/αii Reduction in per capita growth rate relative to self-regulation

Important quantities

r2/r1 Ratio of intrinsic growth rates
ρ =

√

Q1Q2 Niche overlap
√

ᾱ11ᾱ12

ᾱ22ᾱ21
= r2

r1

√

Q2

Q1
Fitness ratio

Ω Feasibility domain (normalized solid angle)

Table 1: Summary of model parameters. The table presents a summary of the main parame-
ters and quantities used across the text.
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