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Abstract

This paper studies the behavioral foundations of non-Bayesian models of learning over
social networks and develops a taxonomy of conditions for information aggregation in a general
framework. As our main behavioral assumption, we postulate that agents follow social learning
rules that satisfy “imperfect recall,” according to which they treat the current beliefs of their
neighbors as sufficient statistics for the entire history of their observations. We augment this
assumption with various restrictions on how agents process the information provided by their
neighbors and obtain representation theorems for the corresponding learning rules (including the
canonical model of DeGroot). We then obtain general long-run learning results that are not tied
to the learning rules’ specific functional forms, thus identifying the fundamental forces that lead
to learning, non-learning, and mislearning in social networks. Our results illustrate that, in the
presence of imperfect recall, long-run aggregation of information is closely linked to (i) the rate at
which agents discount their neighbors’ information over time, (ii) the curvature of agents’ social
learning rules, and (iii) whether their initial tendencies are amplified or moderated as a result of
social interactions.
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1 Introduction

The standard model of rational learning maintains that individuals use Bayes’ rule to incorporate

any new piece of information into their beliefs. In addition to its normative appeal, this Bayesian

paradigm serves as a highly useful benchmark by providing a well-grounded model of learning.

Despite these advantages, a growing body of evidence has scrutinized this framework on the basis

of its unrealistic cognitive demand on individuals, especially when they make inferences in complex

environments consisting of a large number of other decision-makers. Indeed, the complexity

involved in Bayesian learning becomes particularly prohibitive in real-world social networks where

people have to make inferences about a wide range of parameters while only observing the actions of

a handful of individuals.

To address these issues, a growing literature has adopted an alternative paradigm by assuming

non-Bayesian behavior on the part of the agents. These models, which for the most part build on

the linear model of DeGroot (1974), impose relatively simple functional forms on agents’ learning

rules, thus capturing the richness of the network interactions while maintaining analytical and

computational tractability. Such heuristic non-Bayesian models, however, can in turn be challenged

on several grounds. First, in many instances, the suggested heuristics are at best only loosely

connected to the behavioral assumptions that are used to motivate them. Second, although Bayesian

learning is a well-defined concept, deviations from the Bayesian benchmark are bound to be ad hoc

and arbitrary. Third, it is often unclear whether the predictions of such heuristic models rely on

ancillary behavioral assumptions baked into their specific functional forms or are illustrative of more

robust and fundamental forces.

In this paper, we address these challenges by taking an axiomatic approach towards social

learning: rather than assuming a specific functional form for agents’ social learning rules, we use

a general framework to uncover the structure of social learning rules under a variety of behavioral

assumptions. This approach not only enables us to provide a systematic way of capturing deviations

from Bayesian inference but also reveals fundamental forces that are central to information

aggregation and may be obscured by the restrictions built into the functional forms commonly used

in the literature. In particular, we obtain general long-run learning results that are not tied to the

specific functional form of the learning rules and identify the forces that lead to learning, non-

learning, and mislearning in social networks.

We consider an environment in which agents obtain information about an underlying state

through private signals and communication with other agents in their social clique. As our main

behavioral assumption, we postulate that agents follow social learning rules that satisfy imperfect

recall, according to which they treat the current beliefs of their neighbors as sufficient statistics for all

the information available to them while ignoring how or why these opinions were formed. Besides

being a prevalent assumption in the models of non-Bayesian learning such as DeGroot’s, imperfect

recall is a formalization of the idea that real-world individuals do not fully account for the information

buried in the entire past history of actions or the complex dynamics of beliefs over social networks.

We then supplement this assumption by a variety of additional assumptions on agents’ behavior to

obtain sharp characterizations of its implications.
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We start our analysis by imposing three natural restrictions on how agents process their neighbors’

information to obtain a simple learning rule that will serve as a benchmark for the rest of our

results. First, we assume that agents’ social learning rules are label neutral, which means that

relabeling the underlying states has no bearing on how agents process information. Second, we

assume that individuals do not discard their neighbors’ most recent observations by requiring their

social learning rules to be increasing in their neighbors’ last period beliefs, a property we refer

to as monotonicity. Third, we require agents’ learning rules to satisfy independence of irrelevant

alternatives (IIA): each agent treats her neighbors’ beliefs about any subset of states as sufficient

statistics for their collective information regarding those states. Besides their simplicity and intuitive

appeal, these three restrictions are satisfied by Bayesian agents when the social network satisfies

certain structural properties.1

As our first result, we show that, in conjunction with imperfect recall, these three restrictions

lead to a unique representation of agents’ social learning rules up to a set of constants: at any given

time period, each agent linearly combines the log-likelihood ratios of her private signal with the log-

likelihood ratios of her and her neighbors’ beliefs in the previous period. Given its functional form,

we refer to this learning rule as log-linear learning.

Our representation theorem reveals that all other non-Bayesian models of social learning that

satisfy imperfect recall (such as DeGroot’s model) must violate at least one of the other three

restrictions. To further clarify this point, we then shift our focus to DeGroot’s model and show that this

learning rule indeed violates the IIA assumption. In fact, we provide a second representation theorem

by establishing that DeGroot’s model is the unique learning rule that satisfies imperfect recall, label

neutrality, monotonicity, and a fourth, alternative restriction, which we refer to as separability. This

assumption, which serves as an alternative notion of independence to IIA, requires the posterior

belief that each agent assigns to any given state to be independent of her neighbors’ opinions about

any other state.

Given the different functional forms and distinct foundations of the log-linear and DeGroot

learning models, it is not surprising that agents who follow these two rules process information

differently and, as a result, have distinct beliefs at any given (finite) time. Nonetheless, we show

that the two learning rules have analogous implications for agents’ long-run beliefs. In particular, we

show that agents asymptotically learn the underlying state in either model as long as social learning

rules satisfy two key conditions. The first condition requires the weights that agents use to take their

neighbors’ information into account to decay to zero at a sufficiently slow rate, if at all. The role of

this condition is to ensure a continuous flow of information from agents who observe informative

signals to those who may not. The second condition, which we refer to as unanimity, requires

each agent to adopt the common belief of her neighbors whenever they all agree with one another.

Unanimity guarantees that independent pieces of information that are revealed to agents over time

are incorporated into their beliefs using roughly equal weights, thus enabling agents to accumulate

information over time.

Motivated by the parallels between the log-linear and DeGroot learning rules’ long-run properties,

1We provide a formal representation of these structural properties in Section 3.
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we then develop a taxonomy of conditions for asymptotic learning, non-learning, and mislearning

that is not tied to the specific functional form of agents’ learning rules, thus identifying the key

underlying forces that shape long-run beliefs in the presence of imperfect recall.

We achieve this by replacing IIA and separability with a weaker notion of independence and

obtaining a general class of learning rules that encompasses the log-linear and DeGroot models as

special cases. According to this notion, which we refer to as weak separability, each agent’s posterior

likelihood ratio over a pair of states can be expressed as the ratio of some homogeneous mapping

ψ applied to her neighbors’ beliefs on the same two states at the previous time period, with each

choice ofψ leading to a distinct learning rule. We then identify two characteristics of weakly-separable

learning rules that — once the continuous flow of information among agents is ensured — determine

the long-run outcomes of social learning: (i) the degree of homogeneity of ψ, which determines

whether the underlying learning rule is unanimous, and (ii) its logarithmic curvature (defined as the

curvature in the log-log scale), which measures the learning rule’s departure from the benchmark of

log-linear learning.

We underscore the role of the degree of homogeneity of ψ in shaping agents’ long-run beliefs

by establishing that learning is guaranteed only if ψ is homogeneous of degree 1 — a condition

that is equivalent to unanimity for weakly-separable learning rules. More specifically, we show

that individuals asymptotically mislearn the underlying state (i.e., become confident that a false

state is true) with positive probability if ψ is a homogeneous function of a degree greater than 1.

Agents who follow such learning rules overweigh evidence they encounter early on at the expense

of the more recent pieces of information; consequently, every round of social interaction reinforces

individuals’ initial tendencies, hence potentially driving them to asymptotic mislearning. We also

obtain a diametrically opposite result by establishing that whenever ψ is homogeneous of a degree

less than 1, agents remain uncertain forever about the underlying state, as they downplay the already

accumulated information in favor of their more recent signals. These results thus demonstrate the

importance of unanimity as a condition for successful aggregation of information in the long run.

But, as our next result shows, the unanimity of learning rules is not sufficient for the asymptotic

aggregation of information over the social network; rather, information aggregation also requires a

restriction on the curvatures of agents’ social learning rules. This restriction is formally captured by

the requirement that the logarithmic curvature of ψ falls within the interval [−1, 1], with the log-linear

learning rule serving as the benchmark with logarithmic curvature equal to 0. We show that when

this condition is violated, the distortion in how each agent aggregates her neighbors’ information

(relative to the benchmark of log-linear learning) is so large that she may mislearn the underlying

state or remain uncertain forever, even if agents’ social learning rules are unanimous. Taken together,

our results provide a set of conditions that lead to asymptotic learning, non-learning, and mislearning

in the presence of imperfect recall.

We conclude the paper by characterizing the speed of information aggregation, defined as the rate

at which individuals rule out the incorrect states. Our result illustrates that this rate is determined by

(i) the detailed structure of the social network and (ii) how information is dispersed among different

agents in the society. More specifically, we show that the rate of learning is given by the long-run
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average of agents’ relative entropies, which measure the informativeness of their private observations,

weighted by a novel notion of network centrality that measures each agent’s importance as a source

of information at a given time. A key consequence of this result is that, in the presence of non-

trivial social interactions, reallocating signals across various agents may have a first-order effect on

the speed of information aggregation, even if the total information content of agents’ observations is

kept constant.

Our paper belongs to the literature that studies non-Bayesian learning over social networks,

such as DeMarzo, Vayanos, and Zwiebel (2003) and Golub and Jackson (2010, 2012). The standard

approach in this literature is to analyze belief dynamics while imposing a specific functional form

on agents’ social learning rules. We part ways with these papers by taking an axiomatic approach

and studying the broader class of learning rules that are subject to imperfect recall. This approach

enables us to not only determine the restrictions that give rise to various non-Bayesian models of

social learning within this class but also obtain general and novel long-run learning results.

In parallel to the non-Bayesian literature, a large body of work has focused on Bayesian learning

over social networks. Going back to the works of Banerjee (1992) and Bikhchandani, Hirshleifer, and

Welch (1992), this literature explores the implications of Bayesian inference in an environment where

individuals can only observe the actions and/or beliefs of a subset of other agents.2 Our work is

related to a recent stream of papers that study how specific departures from the Bayesian paradigm

alter the predictions of these models. For example, Eyster and Rabin (2010, 2014) study the long-run

aggregation of information when people fail to appreciate redundancies in the information content

of others’ actions. Similarly, Rahimian, Molavi, and Jadbabaie (2014) consider a model in which an

individual does not account for the fact that her neighbors’ beliefs are in turn affected by their own

social interactions, whereas Li and Tan (2017) assume that each agent updates her belief as if her local

neighborhood is the entire society. We contribute to this literature by focusing on imperfect recall as

our main behavioral assumption and studying its implications for agents’ long-run beliefs.

Our result on the rate of learning is related to the work of Harel, Mossel, Strack, and Tamuz (2017),

who characterize the speed of learning for Bayesian agents located on a social network. It is also

reminiscent of the work of Golub and Jackson (2010), who relate agents’ eigenvector centralities to

their asymptotic beliefs in the DeGroot model. We complement this result by showing that when

agents use non-stationary learning rules, the rate of learning depends on a novel notion of network

centrality that is defined recursively over both time and space.

The rest of the paper is organized as follows. The formal setup is presented in Section 2, where

we also introduce the notion of imperfect recall as our main behavioral assumption. In Section 3, we

present our first representation theorem for the log-linear learning rule, followed by the foundations

of the DeGroot model. We then focus on the long-run implications of various learning rules in

Section 4 and provide a taxonomy of conditions for information aggregation. The rate of learning

is characterized in Section 5. Proofs are provided in the Appendix, while an Online Appendix contains

several omitted proofs and some additional results.

2See Golub and Sadler (2016) for a survey of the social learning literature, covering both Bayesian and non-Bayesian
paradigms.
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2 Setup

Consider a collection of n individuals, denoted by N = {1, 2 . . . , n}, who are attempting to learn an

underlying state of the world θ. The underlying state is drawn at t = 0 from some finite set Θ according

to the uniform distribution.

Even though the realized state is unobservable, individuals make repeated noisy observations

about θ in discrete time. At each time period t ∈ N and conditional on the realization of state θ,

agent i observes a private signal ωit that is drawn from a finite set S according to the potentially

time-dependent distribution `θit ∈ ∆S. The realized signals are conditionally independent across

individuals and over time. We assume that `θit has full support over S for all θ ∈ Θ, but we do not

require an individual’s private signals to be informative about the state. In particular, agent imay face

an identification problem in the sense of not being able to distinguish between two or more states.3

In addition to her private signals, each agent observes the beliefs of a subset of other agents,

whom we refer to as her neighbors. More specifically, at the beginning of time period t and before

observing the realization of her private signal ωit, agent i observes the beliefs held by her neighbors at

the previous time period.4 This form of social interactions can be represented by a directed graph on

n vertices, which we refer to as the social network. Each vertex of this graph corresponds to an agent

and a directed edge is present from vertex j to vertex i if agent i can observe the beliefs of agent j.

Throughout the paper, we use Ni to denote the set consisting of agent i and her neighbors.

We assume that the underlying social network is strongly connected; that is, we assume that

there exists a directed path from each vertex to any other vertex. This assumption ensures that

the information available to any given agent can potentially flow to other individuals in the social

network. We define the social network’s diameter as the length of the shortest (directed) path between

the two individuals who are farthest from one another.

2.1 Social Learning Rules

At any given period, agents use their private observations and the information provided to them

by their neighbors to update their beliefs about the underlying state. In particular, each agent first

combines her prior belief with the information provided to her by her neighbors to obtain an interim

belief. Following the observation of her private signal, she updates this interim belief in a Bayesian

fashion to form her posterior belief. The belief of agent i at the end of period t is thus given by

µit+1 = BU
(
fit(µ

t
i);ωit+1

)
, (1)

where µti = (µjτ )j∈Ni,0≤τ≤t is the history of beliefs of i and her neighbors up to period t and

BU(µ;ω) denotes the Bayesian update of µ conditional on the observation of signal ω. The function

3For instance, there may exist a pair of states θ 6= θ̂ such that `θit = `θ̂it for all t. When studying conditions for long-run
learning in Section 4, we require that agents’ observations are collectively informative by assuming that, for any distinct pair
of states, there exists an agent with access to private signals that enable her to distinguish the two states in the long run.

4The observational learning literature for the most part assumes that agents can observe their neighbors’ actions, as
opposed to their beliefs. We abstract from actions and simply assume that individuals have access to their neighbors’ beliefs.
The observability of beliefs is equivalent to that of actions whenever the action space is “rich” enough that an individual’s
actions fully reveal her beliefs.
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fit : ∆Θ|Ni|(t+1) → ∆Θ, which we refer to as the social learning rule of agent i, is a continuous

mapping that captures how she incorporates the information provided by her neighbors into her

belief.5 Throughout the paper, we assume that agents share a (common) uniform prior belief over

Θ at t = 0.

Although each agent incorporates her private signals into her beliefs in a Bayesian fashion, our

flexible specification of social learning rules allows agents to follow alternative (and hence potentially

non-Bayesian) updating rules for processing their neighbors’ information. The disparity between the

ways agents process their private and social information in (1) is imposed for two reasons. First, it

is natural to expect that agents find it easier to rationally process their private signals compared to

the information provided by other individuals: whereas each agent’s private signals are distributed

according to a distribution known to her, her neighbors’ beliefs may encompass multiple pieces

of potentially redundant information, which she may find hard to disentangle without complete

knowledge of the social network or other agents’ signal structures. Second and more importantly,

the assumption that agents incorporate their private signals into their beliefs in a Bayesian fashion

serves as a natural benchmark for our forthcoming results; it guarantees that any deviation from the

predictions of Bayesian learning is driven by the nature of agents’ social learning rules, as opposed to

how they process their private signals.

2.2 Imperfect Recall

We now introduce our main behavioral assumption on agents’ social learning rules by assuming

that agents take the current beliefs of their neighbors as sufficient statistics for all the information

available to them while ignoring how or why those opinions were formed. Formally:

Imperfect Recall (IR). fit(µti) is independent of µjτ for all j and all τ ≤ t− 1.

The restriction imposed by imperfect recall represents a departure from Bayesian rationality. For

instance, in a social network consisting of two Bayesian agents, agent i can make inferences about j’s

latest private signal only by comparing j’s current belief to her belief in the previous period; yet such

a comparison is ruled out by the imperfect recall assumption. More generally, Bayesian inference

requires agents to (i) keep track of the entire history of their neighbors’ beliefs, (ii) determine the

source of all the information they have observed so far, and (iii) extract any piece of new information

not already incorporated into their beliefs in the previous time periods, while only observing the

evolution of their neighbors’ opinions. Such complicated inference problems — which are only

intensified if agents are also uncertain about the social network structure — require a high level of

sophistication on the part of the agents. In contrast, under IR, even though agent imay use a different

learning rule at any given time instance t, she simply treats her neighbors’ most recent opinions as

sufficient statistics for all the information available to her while ignoring the rest of the history.

We remark that the deviation from Bayesian rationality captured by imperfect recall is a fairly

standard notion of bounded rationality that is (implicitly or explicitly) imposed in a wide range of

5With some abuse of notation, we treat the social learning function fit as if its domain is ∆Θn(t+1) (as opposed to
∆Θ|Ni|(t+1)) with the understanding that fit does not depend on the beliefs of agents who are not i’s neighbors.
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non-Bayesian learning models in the literature. Most notably, the DeGroot model and its different

variations (e.g., Golub and Jackson (2010) and Chandrasekhar, Larreguy, and Xandri (2016)) rely on

imperfect recall by assuming that agents only use their neighbors’ reports from the previous period.

3 Foundations

In this section, we supplement the assumption of imperfect recall by a variety of other restrictions on

agents’ behavior and obtain representation theorems for agents’ social learning rules. This approach

not only enables us to identify the behavioral assumptions that underpin various learning rules but

also provides us with a systematic way of uncovering the forces that shape the agents’ long-run beliefs

in the presence of imperfect recall, an issue that we will study in detail in Section 4.

3.1 Log-Linear Learning

We start our analysis by imposing three simple restrictions — other than imperfect recall — on how

agents process their neighbors’ information to obtain a learning rule that will serve as a benchmark

for the rest of our results. Besides their simplicity and intuitive appeal, these three restrictions are

satisfied by Bayesian agents when the social network satisfies certain structural properties.6 As our

first result, we establish that there exist a unique social learning rule (up to a set of constants) that

satisfies all four restrictions. According to this learning rule, which we refer to as log-linear learning,

each agent linearly combines the log-likelihood ratios of her private signal with the log-likelihood

ratios of her and her neighbors’ beliefs in the previous period.

As the first restriction, we require that relabeling the underlying states has no bearing on how

agents process information. For any permutation σ : Θ→ Θ on the set of states, let permσ : ∆Θ→ ∆Θ

denote the operator that maps a belief to the corresponding belief after relabeling the states according

to σ; that is, permσ(µ)(θ) = µ(σ(θ)) for all θ.

Label Neutrality (LN). For any permutation σ : Θ→ Θ and all histories µti,

permσ

(
fit(µ

t
i)
)

= fit
(
permσ(µti)

)
,

where permσ(µti) = (permσ(µjτ ))j∈Ni,0≤τ≤t.

Under label-neutral learning rules, any asymmetry in how an individual updates her opinion

about different states is only due to asymmetries in her, or her neighbors’ subjective beliefs about

those states as opposed to how different states are labeled.

The next restriction requires agents to respond to an increase in their neighbors’ beliefs on a given

state by increasing their own posterior beliefs on that state in the next period. Formally:

Monotonicity. If for some j ∈ Ni observation histories µti and νti satisfy (i) µt−1
i = νt−1

i , (ii) µkt = νkt

for all k ∈ Ni\{j}, (iii) µjt(θ) > νjt(θ), and (iv) µjt(θ̂) ≤ νjt(θ̂) for all θ̂ 6= θ, then fit(µti)(θ) > fit(ν
t
i )(θ).

6See Subsection 3.3 for a sufficient condition on the structure of the social network under which the learning rules
employed by Bayesian agents satisfy these three restrictions.
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Monotonicity captures the idea that keeping the history of observations µt−1
i and the time t reports

of agents k 6= j fixed, agent i interprets an increase in µjt(θ) as evidence that either agent j has

observed a private signal in favor of θ at period t or that j’s neighbors whose beliefs are unobservable

to i have provided j with such information. Under either interpretation, agent i finds an increase in

µjt(θ) as more evidence in favor of θ and hence increases the belief she assigns to that state.

To state our next restriction on agents’ social learning rules, let condΘ̄ : ∆Θ → ∆Θ denote the

operator that maps a belief to the corresponding belief conditioned on the subset of states Θ̄ ⊆ Θ;

that is, condΘ̄(µ)(θ) = µ(θ|Θ̄).

Independence of Irrelevant Alternatives (IIA). For any subset of states Θ̄ ⊆ Θ and all histories µti,

condΘ̄

(
fit(µ

t
i)
)

= fit
(
condΘ̄(µti)

)
, (2)

where condΘ̄(µti) = (condΘ̄(µjτ ))j∈Ni,0≤τ≤t.

The above restriction requires the conditional belief of agent i after aggregating her neighbors’

opinions to be identical to the belief obtained by aggregating her neighbors’ conditional beliefs using

the same social learning rule. Thus, under IIA, i’s conditional posterior belief exclusively depends on

the history of her and her neighbors’ beliefs on the states in the conditioning set Θ̄ and is independent

of beliefs assigned by any individual to θ 6∈ Θ̄ in any of the previous time periods. Put differently, as

far as agent i is concerned, her neighbors’ beliefs about states in Θ̄ are sufficient statistics for their

collective information regarding all θ ∈ Θ̄.

With the above three restrictions in hand, we now provide a characterization of agents’ social

learning rules:

Theorem 1. Suppose |Θ| ≥ 3. If agents’ social learning rules satisfy IR, LN, monotonicity, and IIA, there

exist constants aijt > 0 such that

log
fit(µ

t
i)(θ)

fit(µti)(θ̂)
=
∑
j∈Ni

aijt log
µjt(θ)

µjt(θ̂)
(3)

for all θ, θ̂ ∈ Θ.

The significance of this characterization is twofold. First, it shows that the restrictions imposed

by IR, LN, monotonicity, and IIA yield a unique representation of agents’ social learning rules up to a

set of constants. Second, Theorem 1 establishes that all other non-Bayesian models of social learning

in which agents interact with one another repeatedly and satisfy imperfect recall (such as DeGroot’s

model) violate at least one of the other three restrictions.

It is instructive to elaborate on the role of each assumption in determining the functional form of

the social learning rule in (3). Imperfect recall requires i’s posterior belief at time t+1 to solely depend

on other agents’ beliefs at time t. The log-linear nature of the learning rule, on the other hand, is a

consequence of LN and IIA. In particular, IIA guarantees that the ratio of i’s posterior beliefs on any

two states only depends on her and her neighbors’ likelihood ratios for those two states.7 Given that

7Note that when |Θ| = 2, IIA is trivially satisfied and hence does not impose any restrictions on agents’ social learning
rules. Consequently, our representation theorem requires Θ to consist of at least three elements.
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such independence holds for any pair of states, LN implies that the only possible functional form has

to be linear in agents’ log-likelihood ratios. In addition, label neutrality guarantees that constants

aijt do not depend on the pair of states θ and θ̂ under consideration. Finally, the positivity of these

constants is an immediate implication of the monotonicity assumption.

A key implication of the representation in Theorem 1 is that under IR, LN, monotonicity, and IIA

agents’ belief dynamics are given by

log
µit+1(θ)

µit+1(θ̂)
= log

`θit+1(ωit+1)

`θ̂it+1(ωit+1)
+
∑
j∈Ni

aijt log
µjt(θ)

µjt(θ̂)
(4)

for all θ, θ̂ ∈ Θ. Thus, at every period, agent i linearly combines the log-likelihood ratios of her private

signal with the log-likelihood ratios of her and her neighbors’ beliefs in the previous time period, with

aijt representing the weight that i assigns to the belief of agent j in her neighborhood at time t.

Note that the representation in (4) does not impose any restrictions on constants aijt besides

positivity. However, as we show in Section 4, whether the above learning rule results in the long-run

aggregation of information depends on the weights that agents assign to their neighbors’ beliefs.

We also emphasize that the assumption that agents incorporate their private signals into their

beliefs in a Bayesian fashion does not play a crucial rule in our characterization. More specifically,

altering the way agents process the information content of their private signals only impacts the way

the first term on the right-hand side of (4) interacts with the rest of the expression while preserving

the log-linear structure of the learning rule fit.

As a final remark, we note that the log-linear learning rule characterized in Theorem 1 coincides

with the “Bayesian Peer Influence” heuristic of Levy and Razin (2016), who show that individuals who

treat their marginal information sources as (conditionally) independent follow a learning rule similar

to (3) with corresponding weights given by aijt = 1. Our result provides a distinct foundation for

log-linear updating by demonstrating the importance of the imperfect recall and IIA assumptions.

3.2 DeGroot Learning

A key implication of Theorem 1 is that any learning rule that satisfies imperfect recall but is distinct

from (3) has to violate either LN, IIA, or monotonicity. One such model is the learning model of

DeGroot (1974), which serves as the canonical model of non-Bayesian social learning in the literature.

Under DeGroot learning and its many variants, agents update their beliefs by linearly combining their

viewpoints with their neighbors’ opinions in the previous time period. As such, it is immediate to

see that DeGroot learning satisfies imperfect recall. Furthermore, as long as the linear weights used

by the agents to incorporate their neighbors’ beliefs are positive and independent of the underlying

state θ, monotonicity and label neutrality are trivially satisfied. Consequently, by Theorem 1, DeGroot

learning has to violate IIA. In fact, this can be easily verified by noting that no linear function fit

can satisfy condition (2) when Θ contains more than two elements. To further clarify this point, we

propose the following new restriction on agents’ social learning rules as an alternative to IIA:

Separability. fit(µti)(θ) does not depend on µjτ (θ̂) for any θ̂ 6= θ and all j and τ ≤ t.

9
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According to separability, the posterior belief that agent i assigns to any given state θ only depends

on her and her neighbors’ beliefs about θ and is independent of their opinions about any other state.

Thus, separability imposes a different form of “independence” on agents’ social learning rules than

IIA, which requires the ratio of beliefs assigned to states θ and θ̂ to be a function of other agents’

likelihood ratios of the same pair of states. We have the following representation theorem:

Theorem 2. Suppose |Θ| ≥ 3. If agents’ learning rules satisfy IR, LN, monotonicity, and separability,

there exists a set of constants aijt > 0 and cit ≥ 0 such that

fit(µ
t
i)(θ) = cit +

∑
j∈Ni

aijtµj(θ) (5)

for all θ ∈ Θ.

Therefore, replacing IIA with separability results in a learning rule according to which each agent’s

belief depends linearly on her neighbors’ opinions in the previous time period, in line with DeGroot’s

model.8 As in the log-linear learning rule, LN guarantees that the weights that each agent assigns

to her neighbors’ beliefs are independent of the underlying state θ, while monotonicity implies that

these weights are strictly positive for all j ∈ Ni.9

Just like Theorem 1, Theorem 2 imposes few restrictions, other than positivity, on the weights aijt
used by the agents to incorporate their neighbors’ beliefs.10 We return to these weights in Section 4,

where we study how their various specifications determine the extent of information aggregation in

the long run.

3.3 Bayesian Learning

We conclude this section by clarifying the relationship between the above-mentioned restrictions and

Bayesian learning. More specifically, we provide a sufficient condition on the structure of the social

network under which learning rules employed by Bayesian agents satisfy LN, IIA, and monotonicity.

We also show that, under the same condition, Bayesian learning takes a log-linear functional form

similar to the non-Bayesian learning rule studied in Subsection 3.1. As already argued, however, the

learning rules employed by Bayesian agents do not satisfy imperfect recall.

Recall that the underlying social network is assumed to be strongly connected with at least one

directed path from each agent to any other agent. We say two directed paths from agent j to agent i

are vertex independent if they do not have any vertices (other than i and j) in common.

Assumption 1. For any distinct ordered pair of vertices (i, j), if there are two or more vertex-

independent paths from j to i, then j is a neighbor of i.
8The specification of the DeGroot model frequently used in the literature assumes that agents set their beliefs as a convex

combination of their neighbors’ beliefs. In our setting, this translates to assuming that
∑
j∈Ni aijt = 1 and cit = 0 for all

agents i. Also see Lehrer and Wagner (1981) for a characterization similar to ours, albeit under a different set of restrictions.
9Like IIA, separability is trivially satisfied whenever the state space consists of only two elements. The assumption that

|Θ| ≥ 3 in Theorem 2 thus ensures that separability imposes a meaningful restriction on the learning rules.
10Sharper characterizations of these weights can be obtained by imposing more stringent restrictions on agents’ social

learning rules. For instance, one can tighten the definition of imperfect recall by requiring agent i’s learning rule fit to be
independent of not only her neighbors’ reports from previous periods but also the time index t. This would lead to learning
rules in which weights in (3) and (5) are time-invariant. See an earlier version of our work (Molavi, Tahbaz-Salehi, and
Jadbabaie, 2016) for formal statements of our representation theorems under this more stringent restriction.

10
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Figure 1. This figure depicts various strongly connected social networks that satisfy Assumption 1. Arrows
indicate the direction over which information can flow from one agent to another, whereas undirected edges
indicate a bidirectional flow of information between two agents.

Figure 1 depicts a few examples of social networks that satisfy this assumption. Intuitively,

Assumption 1 guarantees that if the information available to agent j can reach agent i via multiple

paths, then either (i) agent i can directly observe j’s beliefs and hence is able to discern any potential

correlation in the reports of i’s neighbors that are attributable to j; or (ii) the various paths from j to

i are not independent, which implies that i can rely on some other agent k 6= i, j to perform such a

deduction on her behalf.11 We can now state the following result:

Theorem 3. Suppose the social network structure is common knowledge and satisfies Assumption 1.

Under the common knowledge of Bayesian rationality,

(a) there exists a collection of learning rules (f1t, . . . , fnt)
∞
t=0 independent of agents’ beliefs and signal

structures such that µit+1 = BU
(
fit(µ

t
i);ωit+1

)
for all i and all t;

(b) the learning rule fit satisfies LN, IIA, and monotonicity for all agents i and all times t;

(c) there exist coefficients ait,jτ independent of the beliefs and signal structures such that

log
fit(µ

t
i)(θ)

fit(µti)(θ̂)
=

t∑
τ=1

∑
j∈Ni

ait+1,jτ log
µjτ (θ)

µjτ (θ̂)
(6)

for all agents i, all times t, and all pairs of states θ, θ̂ ∈ Θ.

Statement (a) of the theorem establishes that whenever the social network satisfies Assumption 1,

Bayesian updating has a representation in the form of equation (1): each agent combines her prior

belief with the information provided to her by her neighbors using a mapping that is independent of

agents’ beliefs and signal structures (though in general this mapping depends on the structure of the

underlying social network). More importantly for our purposes, statements (b) and (c) of Theorem 3

establish a sufficient condition under which the learning rule employed by a Bayesian agent satisfies

the three key restrictions of LN, IIA, and monotonicity and takes a log-linear functional form akin

to the (non-Bayesian) log-linear learning rule in equation (3). The key distinction between the two

learning rules is that while Bayesian agents may use their neighbors’ entire history of reports, non-

Bayesian agents who are subject to imperfect recall only rely on their neighbors’ reports in the very

last period.

11The existence of such an agent k is a consequence of what is known as Menger’s Theorem in graph theory (McCuaig,
1984). See the proof of Theorem 3 for details.
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Note that monotonicity — as defined in Subsection 3.1 and established in part (b) of the theorem

— requires agent i to respond to an increase in her neighbors’ beliefs by increasing her own posterior

belief on the corresponding state in the next period. In the context of equation (6), this requirement

translates to ait+1,jt > 0 for all t and all j ∈ Ni. This, however, does not mean that i’s posterior belief is

also increasing in her neighbors’ earlier reports from τ < t. In fact, as our characterization of weights

ait+1,jτ in the proof of Theorem 3 illustrates, Bayesian agents may assign negative weights to reports

from τ < t in order to account for potential informational redundancies in their neighborhoods.

This observation is in line with some of the results in the observational learning literature, such as

Acemoglu et al. (2011) and Eyster and Rabin (2014), that show that Bayesian agents may revise their

beliefs downwards in response to an increase in their predecessors’ reports.

One consequence of the restriction imposed on the social network by Assumption 1 is that

Bayesian learning takes a log-linear form for all information structures. That is, if the social network

satisfies Assumption 1, agents’ belief dynamics are given by

log
µit+1(θ)

µit+1(θ̂)
= log

`θit+1(ωit+1)

`θ̂it+1(ωit+1)
+

t∑
τ=1

∑
j∈Ni

ait+1,jτ log
µjτ (θ)

µjτ (θ̂)
, (7)

with weights ait+1,jτ that are independent of agents’ signal structures. We note that Bayesian learning

takes a similar representation if instead one restricts the distributions from which agents’ private

signals are drawn to be normal while allowing for a general social network. The key difference

between the two cases is that whereas under Assumption 1 the weights in (7) are independent of the

distribution of private signals, the corresponding weights when the signals are normally distributed

may depend on the agents’ signal structures.12 Still, without any restriction on either the signal

structure or the social network, Bayesian belief dynamic may take a considerably more complex form

that does not lend itself to a log-linear representation in the form of (7).13

4 Information Aggregation

In this section, we study whether the social network can serve as a mechanism for the propagation

and aggregation of information dispersed among the agents when they rely on learning rules that

satisfy imperfect recall. As a first step, we determine the conditions under which the log-linear

and DeGroot learning rules characterized in Theorems 1 and 2 lead to the long-run learning of the

underlying state. We then develop a taxonomy of results on agents’ asymptotic beliefs in a more

general setting.

Throughout this section, we restrict our attention to environments in which agents’ signal

structures do not change with time; that is, `θit = `θi for all states θ and all time t. But more importantly,

we require that for any pair of states θ 6= θ̂ there exists an agent i such that `θi 6= `θ̂i . This assumption

guarantees that agents’ observations are collectively informative about the underlying state, even if

they face identification problems in isolation.

12In particular, if agents have normal priors and all signals are normally distributed, beliefs remain normal at all times
irrespective of the social network structure (Mossel, Olsman, and Tamuz, 2016). Consequently, agents’ belief dynamics can
be cast in the form of (7), but with weights that depend on signal precisions. See Online Appendix D for details.

13For a discussion of the complexity of Bayesian learning, see Jadbabaie, Mossel, and Rahimian (2017).
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We also define the following property of agents’ learning rules, which, as our subsequent results

illustrate, plays a crucial role in the successful aggregation of agents’ information in the long run:

Definition 1. Social learning rule fit : ∆Θn → ∆Θ satisfying imperfect recall is unanimous if

fit(µ, . . . , µ) = µ for all µ ∈ ∆Θ.

Under a unanimous learning rule fit, agent i adopts the common belief of her neighbors whenever

they all agree with one another. Under the log-linear or DeGroot learning rules, unanimity of fit is

equivalent to assuming that the weights in (3) and (5), respectively, satisfy
∑

j∈Ni aijt = 1.14

4.1 Log-Linear Learning

We start our analysis by studying the long-run implications of the log-linear learning rule (3), which

serves as the benchmark rule for the rest of our results. Recall from our earlier discussion that each

agent i may face an identification problem in isolation (for instance, when `θi = `θ̂i for a pair of states

θ 6= θ̂). In such an environment, agent i can successfully learn the state only if she has access to a

continuous flow of information from agents with no such identification problems. This suggests that

the long-run aggregation of information hinges on how weights aijt used by the agents to incorporate

their neighbors’ reports into their beliefs vary over time.

We discipline the long-run behavior of these weights by assuming that there exist a sequence λt ∈
(0, 1) and constants a, a ∈ (0, 1) such that

aijt ≥ λta, (8)∑
k 6=i

aikt ≤ λta (9)

for all t and all pairs of agents i 6= j such that j ∈ Ni. By imposing upper and lower bounds on

aijt, the above inequalities guarantee that if the weights that agents assign to their neighbors’ beliefs

decay to zero, they do so at a common rate λt. Such a restriction enables us to express our results in

terms of a simple sequence that governs the long-run behavior of agents’ learning rules. Note that

inequalities (8) and (9) are trivially satisfied (with a constant sequence λt = λ) whenever weights aijt
remain uniformly bounded away from zero for all j ∈ Ni and all t. Nonetheless, with some abuse of

terminology, we refer to λt as the rate of decay of weights aijt. We can now state the following result:

Theorem 4. Suppose agents follow the log-linear learning rule (3) with weights that decay at rate λt. If

learning rules are unanimous and limt→∞ tλt =∞, then all agents learn the state almost surely.

This result thus illustrates that, under log-linear learning, the information dispersed throughout

the social network is fully aggregated as long as (i) agents rely on unanimous social learning rules and

(ii) the rate of decay of the weights they assign to their neighbors’ beliefs is slower than 1/t. Learning

is complete despite the fact that individuals may face identification problems in isolation, do not

make any deductions about how their neighbors obtained their opinions, do not account for potential

14In the case of the DeGroot learning rule in (5), since
∑
θ∈Θ fit(µ

t
i)(θ) = 1, the restriction

∑
j∈Ni aijt = 1 also implies

that cit = 0.
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redundancies in different information sources, and may be unaware of the intricate details of the

social network.

To see the intuition underlying Theorem 4, it is instructive to first consider an environment in

which agents do not face identification problems individually and compare their beliefs to a Bayesian

agent with access to all the realized signals throughout the social network. At any given time, such a

Bayesian agent assigns an equal weight to any independent piece of information by simply adding up

the log-likelihood ratios corresponding to the signals. Such an updating is clearly impossible when

individuals cannot observe each others’ private signals and have to rely on the non-Bayesian learning

rule in (4) to update their beliefs. In particular, under (4), the log-likelihood ratio of an agent’s belief at

any given time is a weighted sum of the log-likelihood ratios corresponding to the signals that reach

her up to that time, either via direct observation or through the reports of her neighbors. Nonetheless,

unanimity guarantees that the effective weights that each agent assigns to various independent pieces

of information satisfy two key long-run properties. First, it ensures that the sum of the weights

assigned to independent pieces of information diverges as t → ∞. Second, it implies that the share

of this total weight that goes to any single piece of information converges to zero. While the first

property guarantees that each agent keeps accumulating more and more information over time, the

second property ensures that no specific piece of information is assigned an outsized weight in the

long run. Together, these properties guarantee that all agents eventually uncover the state, despite

imperfect recall and partial observability of signals.15

In addition to unanimity, Theorem 4 also imposes a restriction on how fast the weights aijt in (3)

can decay to zero. The need for such a requirement is fairly straightforward: individuals who face

identification problems can learn the underlying state only by relying on the information provided

by their neighbors, yet a rapid dismissal of their neighbors’ reports would mean that such individuals

would not accumulate enough information to resolve their identification problems. The following

partial converse to Theorem 4 formalizes this intuition:

Proposition 1. Suppose agents follow unanimous log-linear learning rules with weights that decay at

rate λt = 1/tα for some α > 1 + 1/δ, where δ denotes the diameter of the social network. There exist

signal structures under which a subset of agents remain uncertain forever almost surely.

Thus, when the weights that agents assign to their neighbors’ reports decay to zero at a rate that is

faster than 1/t(1+1/δ), information aggregation may fail in the long run despite the fact that agents

have access to enough information to collectively uncover the underlying state. Such a failure is

due to the fact that a too rapid dismissal of other agents’ reports hinders the flow of information

from individuals with informative signals to those who face identification problems. Importantly,

Proposition 1 illustrates that the critical rate of decay beyond which learning may fail is closely tied

to how far information may have to travel from one agent to another, formally captured via the social

network’s diameter.
15The key role played by unanimity in asymptotic learning is not specific to the log-linear learning rule (3). Rather, as we

show in our subsequent results, the predictions of Theorem 4 generalize to a larger class of learning rules. We also discuss
how the absence of unanimity may result in mislearning or non-learning in the long run. Also see Online Appendix C for a
generalization of Theorem 4 to a collection of learning rules fit that, even though not unanimous for all t, are asymptotically
unanimous.
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Proposition 1 also demonstrates the sharpness of the assumption imposed in Theorem 4 on how

fast the weights that agents assign to their neighbors’ beliefs can decay to zero. Recall from Theorem

4 that learning is successful for any network and information structure as long as the weights that

agents assign to their neighbors’ beliefs decay to zero at a rate that is slower than 1/t. Proposition 1

illustrates that the rate 1/t in this statement cannot be replaced by 1/t1+ε for any ε > 0: given any

ε > 0, there exist a social network (with a large enough diameter) and signal structures given which

learning fails when the weights decay to zero at rate 1/t1+ε.

We conclude this discussion by nothing that the requirement limt→∞ tλt = ∞ in Theorem 4 is

automatically satisfied whenever agents use time-invariant learning rules (that is, when aijt = aij for

all j ∈ Ni and all t), in which case unanimity is all that is required for the long-run aggregation of

information. We thus have the following corollary to Theorem 4.

Corollary 1. Suppose agents follow the log-linear learning rule (3) with weights that are time-

invariant. If learning rules are unanimous, then all agents learn the state almost surely.

4.2 DeGroot Learning

We next turn to studying the long-run implications of the DeGroot learning rule characterized in

Theorem 2. Recall from the previous section that replacing IIA with separability results in a learning

rule according to which agent i linearly combines the beliefs of her neighbors j ∈ Ni with weights

aijt > 0. Our next result, which generalizes the main result of Jadbabaie et al. (2012) and proves a

conjecture of Liu et al. (2014), characterizes the conditions under which such a learning rule leads to

the long-run aggregation of information.

Theorem 5. Suppose agents follow the DeGroot learning rule (5) with weights that decay at rate λt. If

learning rules are unanimous and limt→∞ tλt =∞, then all agents learn the state almost surely.

Contrasting this result with Theorem 4 highlights that, despite their different behavioral

foundations which may lead to different sets of beliefs at any given finite time, the DeGroot and log-

linear learning rules result in asymptotic learning under analogous sets of conditions. In particular,

aside from the restriction on the rate of decay λt, the unanimity of agents’ learning rules serves

as a sufficient condition for the successful aggregation of information. In the next subsection, we

show that the long-run convergence of beliefs for agents who follow these two learning rules is no

coincidence and is a more general phenomenon.

The above result also illustrates that, as in Theorem 4 for the log-linear learning rule, asymptotic

learning is independent of the specific values of the weights that each individual assigns to her

neighbors’ beliefs: as long as weights aijt in (5) do not decay too rapidly, the continuous flow of

information over the network guarantees that all agents will eventually uncover the underlying state.

As a final remark, we note that if agents’ learning rules do not change over time, Theorem 5 reduces

to the following counterpart to Corollary 1:

Corollary 2. Suppose agents follow the DeGroot learning rule (5) with weights that are time-invariant.

If learning rules are unanimous, then all agents learn the state almost surely.
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4.3 Beyond Functional Forms

In the remainder of this section, we present a set of long-run learning results that generalize our

earlier results and illustrate the limits to the successful aggregation of information in the presence

of imperfect recall. We achieve this by replacing IIA and separability with a weaker notion of

independence and obtaining a general class of learning rules that encompasses the log-linear and

DeGroot rules as special cases. To simplify the analysis and emphasize the features that are unrelated

to whether information can flow from one agent to others, we restrict our attention to environments

in which agents’ learning rules are time-invariant, in which case we can drop the time index t.

Definition 2. Agent i’s social learning rule satisfying IR is weakly separable if there exists a smooth,

homogeneous, and increasing function ψi : [0, 1]n → R+ such that

fi(µ)(θ)

fi(µ)(θ̂)
=
ψi(µ(θ))

ψi(µ(θ̂))
(10)

for all belief profiles µ ∈ ∆Θn and all θ, θ̂ ∈ Θ.

In other words, in determining the relative likelihoods of two given states, agent i relies solely on

the ratio of the aggregates of her neighbors’ beliefs about those two states, where beliefs about each

state are aggregated using the same homogeneous function ψi. Thus, any learning rule in this class

has a representation of the form

fi(µ)(θ) =
ψi(µ(θ))∑
θ̂∈Θ ψi(µ(θ̂))

for all θ ∈ Θ, (11)

with the log-linear and DeGroot learning rules as two special cases. In fact, our representation

Theorems 1 and 2 establish that time-invariant log-linear and DeGroot learning rules belong to

the class of weakly-separable learning rules with ψi(x) =
∏
j∈Ni x

aij
j and ψi(x) =

∑
j∈Ni aijxj ,

respectively. The unanimity of a weakly-separable learning rule fi is in turn determined by the

degree of homogeneity of the corresponding ψi: the former is unanimous if and only if the degree

of homogeneity of the latter is equal to 1.

Weak separability therefore imposes a less stringent requirement on agents’ social learning rules

than either IIA or separability; yet the weak-separability assumption has enough bite to allow us to

provide a taxonomy of how different features of agents’ social learning rules determine their long-run

beliefs. In our next result, we focus on the role of the degree of homogeneity of ψi in the aggregation

of information by showing that the violation of the unanimity assumption imposed in the previous

subsections can result in asymptotic mislearning or non-learning.

Theorem 6. Suppose agents’ social learning rules belong to the class of weakly-separable learning rules.

(a) If ψi’s are homogeneous of degree ρ > 1, all agents mislearn the state with positive probability.

(b) If ψi’s are homogeneous of degree ρ < 1, all agents remain uncertain forever with probability one.

Statement (a) establishes that when individuals rely on weakly-separable learning rules with

corresponding ψi’s that are homogeneous of a degree greater than 1, they may assign probability one
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to a false state as t → ∞ in spite of having access to enough information to (collectively) uncover the

underlying state. This result is a consequence of the fact that agents end up assigning progressively

larger weights to their earlier observations at the expense of the signals they receive later on. Thus,

they may mislearn the state by herding on misleading signals they observe early on. In contrast,

statement (b) of the theorem establishes that when the degree of homogeneity of ψi is strictly smaller

than 1, agents never reach certainty, even in the long run. This is due to the fact that when ρ < 1,

agents downplay their past observations in favor of their most recent ones and as a result never

accumulate enough information to uncover the underlying state.

Taken together, the two parts of Theorem 6 illustrate that the long-run aggregation of information

fails with positive probability as long as ρ 6= 1, as agents do not properly combine their most

recent signals with the information they have already accumulated. This result thus illustrates the

importance of the unanimity assumption, imposed in Theorems 4 and 5 and Corollaries 1 and 2, for

asymptotic learning.

In what follows, we study the dynamics of beliefs when agents employ weakly-separable learning

rules with ρ = 1. The outcome of social learning in such an environment turns out to depend on

a measure of the curvatures of agents’ social learning rules. We define the logarithmic curvature of

agent i’s social learning rule (in the direction of j and l) as

κ
(jl)
i (x) = −

(
∂2 logψi(x)

∂ log xj∂ log xl

)/(
∂ logψi(x)

∂ log xj

∂ logψi(x)

∂ log xl

)
, (12)

where j 6= l are agents in i’s neighborhood. This quantity measures the extent to which i’s learning

rule departs from the benchmark of log-linear learning. In particular, it is easy to verify that κ(jl)
i (x) =

0 for all j, l ∈ Ni and all x ∈ [0, 1]n whenever agent i follows the log-linear learning rule in (3). As κi
deviates from 0 in either direction, the functional form used by agent i to aggregate her neighbors’

beliefs moves further away from the log-linear benchmark. The following example further clarifies

this point:

Example 1. Suppose agent i employs a weakly-separable learning rule whose corresponding ψi is

homogeneous of degree ρ = 1 and takes a CES functional form given by

ψi(x) =

∑
j∈Ni

aijx
ξ
j

1/ξ

, (13)

where aij ’s are some positive constants and ξ ∈ R. Note that the (time-invariant) log-linear and

DeGroot models belong to this class of learning rules, with ξ → 0 and ξ = 1, respectively. It is also

easy to verify that the logarithmic curvature of agent i’s learning rule is κ(jl)
i (x) = ξ for all pairs of

agents j, l ∈ Ni and all x ∈ [0, 1]n. Therefore, any learning rule in this class for which ξ > 0 (such as the

DeGroot learning rule) exhibits more logarithmic curvature compared to the benchmark of log-linear

learning. In contrast, learning rules with a negative ξ exhibit less logarithmic curvature compared to

the log-linear learning rule. One important special case is the case of the harmonic learning rule with

ξ = −1. Under such a learning rule, agent i sets her posterior likelihood ratio of two states as the ratio

of harmonic means of her neighbors’ beliefs on those states.
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With the above notion in hand, we can state the following result:

Theorem 7. Suppose agents’ social learning rules belong to the class of weakly-separable learning rules

and are unanimous.

(a) All agents learn the underlying state almost surely if the logarithmic curvatures of their learning

rules fall within the interval [−1, 1].

(b) There exist social networks, signal structures, and learning rules with logarithmic curvatures less

than−1 for which all agents mislearn the state with strictly positive probability.

(c) There exist social networks, signal structures, and learning rules with logarithmic curvatures

greater than 1 for which agents learn the underlying state almost never.

Part (a) of this theorem illustrates that for agents to learn the underlying state, it is sufficient that

their learning rules satisfy two key conditions. First, unanimity ensures that the effective weights that

any given agent assigns to each independent piece of information are of the same order of magnitude,

thus guaranteeing that information from early periods is neither discarded nor given an outsized

significance as t → ∞. Second, the restriction on the learning rules’ logarithmic curvatures ensures

that the learning rules’ functional forms do not deviate significantly from the benchmark of log-linear

learning (which exhibits a logarithmic curvature equal to zero throughout its domain).

The latter two parts of Theorem 7 establish that the restriction on the learning rules’ logarithmic

curvature cannot be dispensed with, thus illustrating that unanimity is not, in and of itself, sufficient

for the long-run aggregation of information. More specifically, they illustrate that agents may not

learn the state or may mislearn it if the logarithmic curvature falls outside of the [−1, 1] interval. Parts

(b) and (c) of the theorem also highlight that the DeGroot and harmonic learning rules correspond

to the two extremes in the class of weakly-separable learning rules for which long-run aggregation of

information is guaranteed to be successful.

The intuition for the role of curvature in asymptotic learning can be best understood by

considering the special case of a symmetric environment with two states and focusing on the

dynamics of agents’ interim beliefs ζit = fi(µt) — i.e., beliefs that are formed after observing other

agents’ reports but before observing one’s own private signal. In particular, suppose that agents

interact over the complete social network depicted in the left panel of Figure 1 and rely on identical

unanimous weakly-separable learning rules. Assuming that agent j is the only agent with informative

signals, the dynamics of agent i’s (interim) beliefs can be expressed as

log
ζit+1(θ)

ζit+1(θ̂)
= ϕ

(
log

`θj(ωjt+1)

`θ̂j(ωjt+1)
; ζit(θ)

)
+ log

ζit(θ)

ζit(θ̂)
,

whereϕ is a transformation ofψ. In particular, the former is a non-linear function of its first argument

whenever the latter has a non-zero logarithmic curvature.16 Contrasting the above equation with

the dynamics of log-linear learning in (4) clarifies how the curvature of ψ (acting via that of ϕ) can

16See the proof of Theorem 7 for details. Also note that due to the symmetric nature of the environment, the interim
beliefs of all agents coincide at all times; that is, ζit = ζjt for all i and j.
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function as an impediment to learning: when ψ exhibits large (positive or negative) logarithmic

curvature, it may be the case that the expected value of ϕ(log(`θj(ωjt)/`
θ̂
j(ωjt))) is negative despite the

fact that the expected value of log(`θj(ωjt)/`
θ̂
j(ωjt)) is necessarily positive when the realized state is θ.

Consequently, significant departures from the benchmark of log-linear learning can transform a drift

towards learning into a drift in the opposite direction.

To summarize, Theorems 6 and 7 provide a fairly complete picture of the forces that underpin

learning, non-learning, and mislearning in the class of weakly-separable learning rules. In particular,

they clearly indicate that the long-run aggregation of information under the log-linear and DeGroot

learning rules (established in Corollaries 1 and 2, respectively) is not due to these rules’ specific

functional forms. Rather, what matters for asymptotic learning is that (i) agents’ learning rules satisfy

some weak notion of independence across different states (as captured by (10)), (ii) the learning

rules are unanimous, and (iii) the logarithmic curvatures of agents’ learning rules are confined to the

interval [−1, 1]. Crucially, our results also establish that if either the unanimity or curvature conditions

are violated, agents may remain uncertain forever about the underlying state or assign probability one

to a false state as t→∞.

5 Rate of Information Aggregation

Our results in Section 4 illustrate the conditions that lead the agents to eventually uncover the

underlying state. These results, however, are silent about the precision of agents’ beliefs away from

the limit. In this section, we provide a refinement of our learning theorems and characterize the rate at

which information is aggregated throughout the society. For concreteness, we restrict our attention to

the benchmark rule of log-linear learning characterized in (3). In view of Theorem 4, we also assume

that agents’ learning rules are unanimous at all times, with corresponding weights that decay to zero

at a rate that is slower than 1/t. We explore the implications of relaxing the latter assumption at the

end of this section.

5.1 Information and Centrality

We start by defining a measure for the expected informativeness of each agent’s private signals. For

any given pair of states θ, θ̂ ∈ Θ, let

hi(θ, θ̂) =
∑
ω∈S

`θi (ω) log
`θi (ω)

`θ̂i (ω)

denote the relative entropy of θwith respect to θ̂ in agent i’s signal structure. Loosely speaking, hi(θ, θ̂),

which is always non-negative, measures the expected informativeness of agent i’s private signals

about states θ and θ̂when the underlying state is θ. In particular, if hi(θ, θ̂) is strictly positive, observing

a sufficiently long sequence of signals generated by `θi enables i to rule out θ̂ with an arbitrarily large

confidence. In contrast, if hi(θ, θ̂) = 0, agent i’s private observations provide her with no information

that is conducive to disentangling θ̂ from θ.

While relative entropy serves as a measure for the informativeness of agents’ signals at any given

period, the fact that information has to be relayed over the social network means that the collection
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{hi(θ, θ̂) : (θ, θ̂) ∈Θ2, i ∈ N} may not be a sufficient statistic for the speed at which agents learn the

underlying state. Rather, the speed of learning may also depend on the extent to which information

travels from one agent to another.

To account for the differential roles of various agents in relaying information, we define a novel

notion of network centrality that generalizes the well-known concept of eigenvector centrality to a

sequence of (potentially time-varying) unanimous learning rules:

Definition 3. The Kolmogorov centrality of agent i at time t is

vit =

n∑
j=1

ajitvjt+1, (14)

where ajit is the weight that agent j assigns to agent i’s belief at time t and
∑n

i=1 vit = 1 for all t.

The Kolmogorov centrality, which is defined recursively over both time and space, is a measure

of an agent’s importance as a source of information: agent i is more central in the social network at

time t if agents who are more central at time t+ 1 assign a higher weight to her time-t belief.17 In this

sense, vit captures the extent to which agent i’s time-t information propagates throughout the social

network over time. Furthermore, as is evident from the recursive definition in (14), the Kolmogorov

centrality of an agent at any given time t depends not only on the weights that individuals assign to

their neighbors at that time but also on the weights used in all subsequent time periods τ > t.

We note that Kolmogorov centrality reduces to the well-known concept of eigenvector centrality

when agents rely on learning rules that do not change over time. In particular, when the weights in

learning rule (4) are time invariant, that is, aijt = aij for all t, equation (14) reduces to vi =
∑n

j=1 ajivj ,

the solution to which coincides with the agents’ eigenvector centralities.18

Proposition 2. Suppose agents’ learning rules are unanimous with corresponding weights that decay

at rate λt. If limt→∞ tλt = ∞, there exists a unique collection of Kolmogorov centralities vit satisfying

(14). Furthermore, lim inft→∞ vit > 0 for all i.

In other words, as long as the weights that agents assign to their neighbors’ beliefs do not decay

too rapidly over time, Kolmogorov centrality is a well-defined concept, is uniquely determined for any

given agent at all times, and remains bounded away from zero even as t→∞.

5.2 Learning Rate

With the above notions of signal informativeness and network centrality in hand, we now proceed to

study the rate of information aggregation.

Let eθit =
∑

θ̂ 6=θ µit(θ̂) denote the belief that agent i assigns at time t to states other than the

underlying state θ. Recall from Theorem 4 that, for any realization θ of the state, eθit → 0 almost

17Our notion of Kolmogorov centrality is closely related to what is known as a sequence of absolute probability vectors
corresponding to a sequence of stochastic matrices, a notion that first appeared in Kolmogorov (1936).

18As in the definition of eigenvector centrality, the requirement
∑n
i=1 vit = 1 for all t in Definition 3 is a simple

normalization, as equation (14) only defines the centralities up to a constant.
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surely if the learning rules are unanimous and weights aijt decay to zero at a rate that is slower than

1/t. Define

γθi = lim inf
t→∞

1

t
| log eθit|.

This quantity, which is inversely proportional to the number of time periods it takes for agent i’s

beliefs on the false states to fall below some given threshold, is finite and positive if agent i learns

the underlying state exponentially fast. We have the following result:

Theorem 8. Let θ denote the underlying state, and suppose agents follow the log-linear learning rule

(3) with weights that decay at rate λt. If learning rules are unanimous and limt→∞ tλt =∞, then

γθi = min
θ̂ 6=θ

lim inf
t→∞

1

t

t∑
τ=1

n∑
j=1

vjτhj(θ, θ̂) (15)

almost surely, where vjτ is agent j’s Kolmogorov centrality at time τ .

As a first observation, note that the above characterization guarantees that γθi is non-zero

and finite, thus establishing that agent i learns the underlying state exponentially fast. This is

a consequence of the facts that agents’ centralities remain bounded away from zero (shown in

Proposition 2) and that there exists an agent j who can distinguish θ̂ from θ in the long run. The

significance of Theorem 8, however, lies in characterizing the dependence of the rate of learning on

the information available to agents — as measured by the relative entropies of their signals — and

how this information is distributed among them — as summarized by their centralities.

The characterization in (15) has an intuitive interpretation. The relative entropy of each

agent’s signal structure is weighted by her Kolmogorov centralities. This captures the fact that the

informativeness of each agent’s signal structure impacts the rate of learning via the effective (direct

and indirect) attention she receives from other agents in the social network in all future periods. On

the other hand, the minimization over θ̂ 6= θ illustrates that the speed of learning is determined by the

rate at which agents rule out the state θ̂ that is hardest to distinguish from the realized state θ. This is

due to the fact that learning is complete only if agents can rule out all incorrect states.

5.3 Sub-Exponential Learning

We conclude this section by illustrating how relaxing the restriction on the rate of decay of the weights

that agents assign to their neighbors’ reports (captured via the sequence λt) may result in learning at

a sub-exponential rate.

Recall from our discussion above that Theorems 4 and 8 imply that if λt decays to zero at a rate

that is slower than 1/t, agents not only learn the state but also do so exponentially fast. At the same

time, in Proposition 1 we established that when λt decays to zero at a rate that is faster than 1/t1+1/δ,

information may never get aggregated in a social network with diameter δ. Our next result explores

the gap between these two critical rates. For tractability, we focus our attention on the complete social

network, in which each agent has access to the beliefs of all other agents in the society and follows

the learning rule (3) with weights aijt = λt/n for all i 6= j, where λt = 1/tα and α is some non-negative
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constant. Note that, in view of our previous results, it is sufficient to consider the case of α ∈ (1, 2), as

the complete social network has diameter δ = 1.

Proposition 3. Suppose agents use unanimous log-linear learning rules and that aijt = λt/n for all

i 6= j, where λt = 1/tα and α ∈ (1, 2). If agent i faces an identification problem for the realized state θ,

then lim inft→∞
1

t2−α | log eθit| = cα almost surely for some positive constant cα.

This result thus establishes that when the weights that agents assign to their neighbors’ reports

decay to zero at a rate that is faster than 1/t but slower than 1/t2, information is eventually aggregated

but at a significantly slower pace compared to the case in which tλt → ∞. The above result also

indicates that the belief that agent i assigns to the false states converges to zero more slowly, the faster

agents discount their neighbors’ beliefs over time. In particular, learning occurs at an increasingly

slow pace as α increases from 1 to 2 and fails altogether once α exceeds the critical value of 1+1/δ = 2

(as established in Proposition 1).

A Proofs

Notation. Throughout the proofs, we use P to denote the joint probability distribution over the set

of states and the set of all signals observed by agents in all time periods. We use Pθ({ωit}t≥1,i∈N ) to

denote the probability of observing {ωit}t≥1,i∈N given the event that the realized state is θ and use Eθ

to denote the expectation operator corresponding to Pθ. We write Eθt as shorthand for Eθ[·|Ft], where

Ft denotes the σ-field generated by ({ωiτ}1≤τ≤t,i∈N ). Finally, we use At = [aijt] to denote the matrix

of weights that agents assign to their neighbors’ log-likelihood ratios (as in learning rule (3)) or beliefs

(as in learning rule (5)) at time t, with the convention that aijt = 0 if j 6∈ Ni.

Lemma A.1. Let At denote a sequence of stochastic weight matrices, satisfying inequalities (8) and (9),

where limt→∞ tλt =∞. There exists a unique sequence of probability vectors vt with a uniform positive

lower bound such that

v′t+1AtAt−1 . . . Aτ = v′τ (16)

for all pairs of integers t ≥ τ .

Proof. We first show that there exists a sequence of probability vectors vτ uniformly bounded away

from zero such that

lim
t→∞

AtAt−1 . . . Aτ = 1v′τ (17)

for all τ , where 1 denotes the vector of all ones. By assumption, there exist constants a, a ∈ (0, 1) and a

sequence λt ∈ (0, 1) such that aijt ≥ λta and
∑

j 6=i aijt ≤ λta for all t. Thus,At = (1−λt)I+λtBt, where

Bt is a stochastic matrix whose non-zero elements are uniformly lower bounded by η = min{a, 1−a} ∈
(0, 1), i.e., bijt ≥ η for all t and all i and j such that j ∈ Ni.

Following DeMarzo et al. (2003), let {Λt} denote a sequence of independent Bernoulli random

variables with Λt taking value 1 with probability λt and zero otherwise. Consequently, At = E∗[(1 −
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Λt)I + ΛtBt], where E∗ denotes the expectation operator corresponding to the product measure on

the sequence of random variables Λt. By the dominated convergence theorem,

lim
t→∞

AtAt−1 . . . Aτ = E∗
[

lim
t→∞

t∏
r=τ

(
(1− Λr)I + ΛrBr

)]
= E∗

 ∏
t:Λt=1
t≥τ

Bt

 . (18)

On the other hand, the assumption that limt→∞ tλt = ∞ guarantees that
∑∞

t=τ λt = ∞. Hence, by

the Borel-Cantelli lemma, Λt = 1 infinitely often with probability one, which implies that
∏
t:t≥τ

Λt=1
Bt

is almost surely an infinite product of irreducible matrices whose non-zero elements are uniformly

lower bounded by η.19 Thus, by Theorem 4.19 of Seneta (1981), the matrix sequence {Bt}Λt=1,t≥τ is

strongly ergodic with probability one. Hence, there exists a random probability vector wτ such that,∏
t:Λt=1
t≥τ

Bt = 1w′τ . (19)

Combining the above with (18) results in (17), with vτ = E∗[wτ ]. To show that the vectors in the

sequence vτ are uniformly bounded away from zero, recall that the matrices in the sequence {Bt} are

all irreducible, with non-zero elements that are uniformly lower bounded by η for all t. Therefore,

any product of length n of these matrices is element-wise strictly positive, with all elements lower

bounded by constant ηn. This observation, coupled with the fact thatBt is stochastic, implies that the

infinite product in (19) is lower bounded by matrix ηn11′, thus guaranteeing that viτ = E∗[wiτ ] > ηn.

With (17) in hand, Theorem 4.20 of Seneta (1981) implies that the sequence of vectors vτ in (17)

are the unique sequence of probability vectors that satisfy (16) for all pairs of integers t ≥ τ .

Lemma A.2. For a stochastic matrix A, define π(A) = 1−mini,j
∑n

k=1 min{aik, ajk}.

(a) π(A) ∈ [0, 1] and is convex over its domain.

(b) π(A) ≤ 1−maxj mini aij .

(c) π is submultiplicative, i.e., π(A2A1) ≤ π(A2)π(A1) for any pair of stochastic matrices A1 and A2.

(d) Letw denote an arbitrary vector andAdenote a stochastic matrix. If z = Aw, then maxi zi−mini zi ≤
π(A)(maxiwi −miniwi).

Proof. Statements (a) and (b) are immediate to verify. See Lemma 4.3 of Seneta (1981) for a proof of

statement (c) and Theorem 3.1 of Seneta (1981) for a proof of statement (d).

Proof of Theorem 1

Consider two arbitrary states θ 6= θ̂ and an arbitrary profile of beliefs µ ∈ ∆Θn. Let Θ̄ = {θ, θ̂}. By

definition of conditional probability,

log
fit(µ)(θ)

fit(µ)(θ̂)
= log condΘ̄(fit(µ))(θ)− log condΘ̄(fit(µ))(θ̂),

19The irreducibility of Bt follows from the strong connectivity of the social network and the monotonicity assumption.
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where recall that as a consequence of imperfect recall we can restrict the domain of fit to ∆Θn. On

the other hand, IIA implies that

log
fit(µ)(θ)

fit(µ)(θ̂)
= log fit(condΘ̄(µ))(θ)− log fit(condΘ̄(µ))(θ̂).

Note that condΘ̄(µ) depends on the belief profile µ only through the collection of likelihood ratios

{µj(θ)/µj(θ̂)}nj=1. Consequently, for any given agent i, there exists a continuous function git : Rn → R
such that

log
fit(µ)(θ)

fit(µ)(θ̂)
= git

(
log

µ1(θ)

µ1(θ̂)
, . . . , log

µn(θ)

µn(θ̂)

)
(20)

for all pairs of states θ 6= θ̂ and all profiles of beliefs µ. Furthermore, LN guarantees that function git is

independent of θ and θ̂.

Now, consider three distinct states θ, θ̂ and θ̃. Given that (20) has to be satisfied for any arbitrary

pair of states, we have

git

(
log

µ1(θ)

µ1(θ̂)
, . . . , log

µn(θ)

µn(θ̂)

)
+ git

(
log

µ1(θ̂)

µ1(θ̃)
, . . . , log

µn(θ̂)

µn(θ̃)

)
= log

fit(µ)(θ)

fit(µ)(θ̂)
+ log

fit(µ)(θ̂)

fit(µ)(θ̃)

= git

(
log

µ1(θ)

µ1(θ̃)
, . . . , log

µn(θ)

µn(θ̃)

)
.

Since µ was arbitrary, the above equation implies that for any arbitrary x, y ∈ Rn, it must be the

case that git(x) + git(y) = git(x + y). This equation is nothing but Cauchy’s functional equation,

with linear functions as its single family of continuous solutions. Therefore, there exist constants aijt
such that git(x) =

∑n
j=1 aijtxj . Thus, using (20) one more time implies that log(fit(µ)(θ)/fit(µ)(θ̂)) =∑n

j=1 aijt log(µj(θ)/µj(θ̂)) for all θ, θ̂ ∈ Θ. Finally, monotonicity implies that aijt > 0 for all j ∈ Ni.

Proof of Theorem 2

Separability and imperfect recall imply that, for any given agent i and any time t, there exists a

function git : [0, 1]n → [0, 1] such that fit(µ)(θ) = git(µ1(θ), . . . , µn(θ)) for all belief profiles µ ∈ ∆Θ

and all states θ ∈ Θ. Furthermore, LN guarantees that git is independent of θ. Fix an arbitrary belief

profile µ ∈ ∆Θn and a pair of states θ 6= θ̂. The above equation implies that

git(µ(θ)) + git(µ(θ̂)) = fit(µ)(θ) + fit(µ)(θ̂) = 1−
∑

θ̃ 6∈{θ,θ̂}

fit(µ)(θ̃) = 1−
∑

θ̃ 6∈{θ,θ̂}

git(µ(θ̃)).

Note that changing µ(θ) and µ(θ̂) does not impact the right-hand side of the above equality as long

as µ(θ̃) is kept unchanged for all θ̃ 6∈ {θ, θ̂}. Consequently, git(µ(θ)) + git(µ(θ̂)) = git
(
µ(θ) + µ(θ̂)

)
+

git(0). Given that µ ∈ ∆Θ in the previous equation is arbitrary, we have hit(x) + hit(y) = hit(x + y)

for any arbitrary x, y ∈ Rn such that x, y ≥ 0 and x + y ≤ 1 and with the function hit defined as

hit(z) = git(z) − git(0). Hence, by Cauchy’s functional equation, there exist constants aijt such that

hit(x) =
∑n

j=1 aijtxj . Hence, git(x) = cit +
∑n

j=1 aijtxj for some constant cit, which in turn implies

that fit(µ)(θ) = cit +
∑

j∈Ni aijtµj(θ). Finally, the fact that fit(µ)(θ) has to be non-negative for all belief

profiles µ ensures that cit ≥ 0, while monotonicity guarantees that aijt > 0 for all j ∈ Ni and all t.
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Proof of Theorem 3

As a first step, we show that agent i’s belief dynamic is given by

log
µit+1(θ)

µit+1(θ̂)
= log

`θit(ωit+1)

`θ̂it(ωit+1)
+

t∑
τ=1

∑
j∈Ni

ait+1,jτ log
µjτ (θ)

µjτ (θ̂)
(21)

for a collection of constants ait,jτ that are independent of agents’ beliefs and signal structures. Note

that establishing the relationship immediately implies parts (a) and (c) of the theorem.

For a given pair of (not necessarily neighboring) agents i and j and pair of time instances t, τ ≥ 0,

define constants ait,jτ recursively as

ait,jτ =


−1 if i = j and t = τ,

−
t−1∑
r=τ

∑
k:
d(i,k)≤t−r
d(k,j)≤r−τ

akr,jτ otherwise, (22)

where d(l, k) denotes the length of the shortest directed path from vertex k to vertex l over the social

network. Note that, by construction, ait,jτ = 0 for all t < τ and ait,jt = 0 for all i 6= j, thus indicating

that the above expression defines constants ait,jτ recursively (and hence uniquely).20 Also note that

these constants are independent of agents’ beliefs and signal structures and are solely dependent on

the social network structure.

Our next lemma, which is a consequence of Menger’s theorem (McCuaig, 1984), establishes that,

under Assumption 1, ait,jτ is non-zero only if agent i can observe agent j’s beliefs. The proof is

provided in Online Appendix B.

Lemma A.3. Suppose Assumption 1 is satisfied. If j /∈ Ni, then ait,jτ = 0 for all t, τ ≥ 0.

Lemma A.4. Suppose Assumption 1 is satisfied and that agents’ beliefs follow the dynamics

log
νit+1(θ)

νit+1(θ̂)
= log

`θit+1(ωit+1)

`θ̂it+1(ωit+1)
+

t∑
τ=1

∑
j∈Ni

ait+1,jτ log
νjτ (θ)

νjτ (θ̂)
, (23)

where ait,jτ are defined as in (22). Then the resulting beliefs satisfy νit(θ) = P(θ|Git) for all i ∈ N , t > 0,

and θ ∈ Θ, where Git = σ({ωjτ : d(i, j) ≤ t − τ}) is the σ-field generated by all the signals that could

have potentially reached agent i up to time t.

Proof. By Lemma A.3, equation (23) can be rewritten as

log
νit(θ)

νit(θ̂)
= log

`θit(ωit)

`θ̂it(ωit)
+

t−1∑
τ=1

n∑
j=1

ait,jτ log
νjτ (θ)

νjτ (θ̂)
.

Fix an arbitrary agent k and an arbitrary time instance T ≥ t. The above equation implies that

n∑
i=1

T−d(k,i)∑
t=1

log
νit(θ)

νit(θ̂)
=

n∑
i=1

T−d(k,i)∑
t=1

log
`θit(ωit)

`θ̂it(ωit)
+

n∑
j=1

T−1∑
τ=1

T∑
t=τ+1

∑
i:
d(i,j)≤t−τ
d(k,i)≤T−t

ait,jτ log
νjτ (θ)

νjτ (θ̂)
, (24)

20The constants defined in (22) are closely linked to the Möbius inverse function of summations over partially ordered
sets. See Rota (1964) for more details on Möbius inversion and Eyster and Rabin (2014) for an application in the context of
observational learning models in which agents take actions sequentially.
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where we are using the fact that ait,jτ = 0 if d(i, j) > t− τ . On the other hand, note that

T∑
t=τ+1

∑
i:
d(i,j)≤t−τ
d(k,i)≤T−t

ait,jτ =

T−1∑
t=τ

∑
i:
d(i,j)≤t−τ
d(k,i)≤T−t

ait,jτ + akT,jτ − ajτ,jτ I{d(k,j)≤T−τ},

where I denotes the indicator function. By (22), the first two terms on the right-hand side of the above

expression cancel out, whereas ajτ,jτ = −1. Consequently, equation (24) reduces to

T∑
t=1

∑
i:d(k,i)≤T−t

log
νit(θ)

νit(θ̂)
=

n∑
i=1

T−d(k,i)∑
t=1

log
`θit(ωit)

`θ̂it(ωit)
+

T−1∑
τ=1

∑
j:d(k,j)≤T−τ

log
νjτ (θ)

νjτ (θ̂)
,

and as a result, log(νkT (θ)/νkT (θ̂)) =
∑n

i=1

∑T−d(k,i)
t=1 log(`θit(ωit)/`

θ̂
it(ωit)). In other words, agent k’s

log-likelihood ratio at time T is simply the sum of the log-likelihood ratios of all realized signals

throughout the social network that could have reached her by time T . As such, agent k’s belief on

state θ at time T coincides with P(θ|ωit : d(k, i) ≤ T − t), which completes the proof.

Proof of parts (a) and (c). Suppose agents’ beliefs follow the dynamics in (23) with weights given by

(22). It is sufficient to show that the resulting beliefs coincide with those of Bayesian agents under the

common knowledge of Bayesian rationality.

Recall from Lemma A.4 that if agents’ beliefs satisfy (23), the corresponding beliefs also satisfy

νit(θ) = P(θ|Git), where Git = σ({ωjτ : d(i, j) ≤ t − τ}) is the σ-field generated by all the signals that

could have potentially reached agent i up to time t. On the other hand, under the common knowledge

of Bayesian rationality, the belief that a Bayesian agent i assigns to state θ at time t is, by definition,

given by µit(θ) = P(θ|Fit), where Fit = σ (ωi1, . . . , ωit, {µjτ : j ∈ Ni, τ ≤ t− 1}) is agent i’s information

set at time t, consisting of all her private signals up to time t and her neighbors’ beliefs up to time

t − 1. The proof is therefore complete once we show that µit(θ) = νit(θ) for all i, all θ ∈ Θ, and all

t. We establish this step by relying on strong induction. The statement trivially holds for t = 0, as

both beliefs coincide with agents’ prior beliefs. As the induction hypothesis, assume that µjτ = νjτ

for all τ < t and all agents j and consider the beliefs at time t. Since νit(θ) = P(θ|Git), by definition of

conditional expectations, we have E[(νit(θ)− I{θ})2|Git] ≤ E[(µit(θ)− I{θ})2|Git], where we are using the

fact that µit ∈ Fit ⊆ Git. Therefore,

E[(νit(θ)− I{θ})2|Fit] ≤ E[(µit(θ)− I{θ})2|Fit], (25)

where once again we are using the fact that Fit ⊆ Git. On the other hand, recall from (23) that the

beliefs νit are recursively constructed as a function of the reports of i’s neighbors up to time t − 1.

Consequently, νit ∈ Hit, where Hit = σ (ωi1, . . . , ωit, {νjτ : j ∈ Ni, τ ≤ t− 1}). But by the induction

hypothesis, Hit = Fit, thus guaranteeing that νit ∈ Fit. Consequently, the fact µit(θ) = P(θ|Fit)
implies that

E[(µit(θ)− I{θ})2|Fit] ≤ E[(νit(θ)− I{θ})2|Fit]. (26)

The juxtaposition of inequalities (25) and (26) thus guarantees that νit(θ) = µit(θ).
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Proof of part (b). We already established that agents’ beliefs follow the dynamics in (21) with weights

ait,jτ given by (22). Since these weights are independent of the underlying states, it is immediate that

the corresponding learning rules satisfy LN for all agents i at all time t.

To establish monotonicity, note that, for any i and j such that j ∈ Ni, equation (22) implies that

ait,jt−1 = −
∑

k:
d(i,k)≤1
d(k,j)≤0

akt−1,jt−1 = −ajt−1,jt−1 = 1.

Consequently, the weight ait,jt−1 is strictly positive at all times t.

Finally, to establish IIA, consider an arbitrary subset of states Θ̄ ⊆ Θ and an arbitrary state θ. If

θ 6∈ Θ̄, it is immediate that that both sides of (2) are equal to zero. Hence, it is sufficient to consider

the case in which θ ∈ Θ̄. From (6) and the definition of conditional probability, it is immediate that

log condΘ̄

(
fit(µ

t
i)
)

(θ) =

t∑
τ=1

∑
j∈Ni

ait+1,jτ logµjτ (θ)− log

∑
θ̂∈Θ̄

t∏
τ=1

∏
j∈Ni

(
µjτ (θ̂)

)ait+1,jτ

 , (27)

where note that weights ait,jτ are constants that are independent of the underlying beliefs. On the

other hand, equation (6) also implies that

log fit
(
condΘ̄(µti)

)
=

t∑
τ=1

∑
j∈Ni

ait+1,jτ log condΘ̄(µjτ )(θ)− log

∑
θ̂∈Θ̄

t∏
τ=1

∏
j∈Ni

(
condΘ̄(µjτ )(θ̂)

)ait+1,jτ

 ,

where we are relying on the fact that condΘ̄(µjτ )(θ̂) = 0 for all θ̂ 6∈ Θ̄. Replacing for condΘ̄(µjτ )(θ̂) in the

above expression by the its definition, i.e., condΘ̄(µjτ )(θ) = µjτ (θ)/
∑

θ̂∈Θ̄ µjτ (θ̂), immediately implies

that the right-hand sides of the above equation coincides with (27), thus establishing (2).

Proof of Theorem 4

Let θ denote the underlying state and At = [aijt] denote the matrix of weights in learning rule (3)

that agents assign to their neighbors’ beliefs at time t, with the convention that aijt = 0 if j 6∈ Ni.

Note that when agents’ learning rules are unanimous, At is a stochastic matrix for all t. For any given

state θ̂ 6= θ, equation (4) implies that xt+1 = Atxt + yt+1(ωt+1), where xit = log(µit(θ)/µit(θ̂)) and

yit(ωit) = log(`θi (ωit)/`
θ̂
i (ωit)). Consequently,

xt = yt(ωt) +

t−1∑
τ=1

At−1 . . . Aτ+1Aτyτ (ωτ ), (28)

where we are using the fact that, under uniform prior beliefs, xi0 = 0 for all agents i. By Lemma

A.1, there exists a sequence of uniformly lower-bounded probability vectors vτ that jointly satisfy (16)

for all t ≥ τ . Therefore, pre-multiplying both sides of (28) by v′t and using (16) implies that v′txt =∑t
τ=1 v

′
τyτ (ωτ ). As a result,

lim inf
t→∞

1

t
v′txt = lim

t→∞

1

t

t∑
τ=1

v′τ
(
yτ (ωτ )− h(θ, θ̂)

)
+ lim inf

t→∞

1

t

t∑
τ=1

v′τh(θ, θ̂),
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where hi(θ, θ̂) = Eθ[yit(ωit)]. Since agents’ private signals are independently distributed over time, the

strong law of large numbers guarantees that the first term on the right-hand side above is equal to

zero almost surely, which in turn implies that

lim inf
t→∞

1

t

n∑
i=1

vitxit = lim inf
t→∞

1

t

t∑
τ=1

n∑
i=1

viτhi(θ, θ̂) (29)

almost surely. Note that Lemma A.1 also guarantees that lim inft→∞ vit > 0 for all i. Furthermore, the

assumption that agents do not face an identification problem collectively guarantees that there exists

an agent i such that hi(θ, θ̂) > 0. As a result, with probability one,

lim inf
t→∞

1

t

n∑
i=1

vitxit > 0. (30)

With the above inequality in hand, it is sufficient to establish that, for any pair of agents i and j,

lim
t→∞

1

t
(xit − xjt) = 0 (31)

almost surely. In particular, (30) and (31), together with the fact that vt is a probability vector, imply

that lim inft→∞ xit/t > 0 almost surely for all agents i. Therefore, limt→∞ xit =∞with probability one,

which subsequently guarantees that µit(θ̂) → 0 almost surely for all θ̂ 6= θ. In other words, all agents

learn the underlying state with probability one.

To establish (31), we follow an approach similar to Liu et al. (2014). Applying part (d) of Lemma

A.2 to (28) implies that

max
i
xit −min

i
xit ≤ max

i
yit(ωit)−min

i
yit(ωit) +

t−1∑
τ=1

π(At−1 . . . Aτ+1Aτ )(max
i
yiτ (ωiτ )−min

i
yiτ (ωiτ )).

On the other hand, recall from the proof of Lemma A.1 that At = E∗[ΛtBt], where Λt is a sequence of

independent Bernoulli random variables that take value 1 with probability λt and Bt is a stochastic

matrix whose non-zero elements are uniformly lower bounded by a constant η ∈ (0, 1) for all t. Hence,

max
i
xit −min

i
xit ≤

t∑
τ=1

π

(
E∗

∏
r: Λr=1
τ≤r<t

Br

)
(max

i
yiτ (ωiτ )−min

i
yiτ (ωiτ ))

≤
t∑

τ=1

E∗
[
π

( ∏
r: Λr=1
τ≤r<t

Br

)]
(max

i
yiτ (ωiτ )−min

i
yiτ (ωiτ )),

where the expectation E∗ is over the collection of random variables Λt and the second inequality

follows from the convexity of π, established in Lemma A.2. Since the set of signals S is finite, there

exists a constant c ≥ 0, independent of t, such that

max
i
xit −min

i
xit ≤ cE∗

[ t∑
τ=1

π

( ∏
r: Λr=1
τ≤r<t

Br

)]
.
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Recall that all matrices in the sequence Bt are irreducible, with non-zero elements that are uniformly

lower bounded by η for all t. Therefore, any product of length n of these matrices is element-wise

strictly positive, with elements that are lower bounded by ηn. Dividing the matrix product
∏
r:τ≤r<t

Λr=1
Br

into groups of length n and using parts (b) and (c) of Lemma A.2 therefore implies that

π

( ∏
r: Λr=1
τ≤r<t

Br

)
≤ (1− ηn)b(Λτ+···+Λt−1)/nc, (32)

where bzc denotes the integer part of z. Consequently,

max
i
xit −min

i
xit ≤

c

βn
E∗
[ t∑
τ=1

β(Λτ+···+Λt−1)

]
, (33)

where β = (1− ηn)1/n < 1. Since random variables Λt are independent, we have

lim sup
t→∞

1

t
(max

i
xit −min

i
xit) ≤

c

βn
lim sup
t→∞

1

t

t∑
τ=1

(1− (1− β)λt)
t−τ ,

where λt = min1≤r<t λr and we are using the fact that E∗[βΛt ] = 1− (1− β)λt. As a result,

lim sup
t→∞

1

t
(max

i
xit −min

i
xit) ≤

c

βn
lim sup
t→∞

1− (1− (1− β)λt)
t

(1− β)tλt
≤ c

(1− β)βn
lim sup
t→∞

1

tλt
.

The assumption that limt→∞ tλt =∞ now establishes (31).

Proof of Proposition 1

Let θ denote the underlying state and fix a state θ̂ 6= θ. Consider a pair of agents i and j such

that the directed distance from j to i is equal to the social network’s diameter, δ, and suppose j is

the only agent in the social network with informative signals to distinguish between θ and θ̂, i.e.,

`θk = `θ̂k for all k 6= j. We prove the result by establishing that lim supt→∞ xit < ∞ almost surely,

where xit = log(µit(θ)/µit(θ̂)). Recall from (28) that xt = yt(ωt) +
∑t−1

τ=1At−1 . . . Aτ+1Aτyτ (ωτ ),

where yjt(ωjt) = log(`θj(ωjt)/`
θ̂
j(ωjt)). On the other hand, recall from the proof of Lemma A.1 that

At = E∗[(1 − Λt)I + ΛtBt], where Bt is a stochastic matrix whose non-zero elements are uniformly

lower bounded by some positive constant η and Λt is a Bernoulli random variable that takes value 1

with probability λt. Consequently, xt = yt(ωt) +
∑t−1

τ=1 E∗[Qt,τ ]yτ (ωτ ), where Qt,τ =
∏
r: Λr=1
τ≤r<t

Br. Since

j is the only agent whose signals allow her to tell the two states apart, we have

xit =

t−1∑
τ=1

E∗[(Qt,τ )ij ]yjτ (ωjτ ) ≤ ȳ
t−1∑
τ=1

E∗[(Qt,τ )ij ] (34)

where ȳ = maxω∈S |yjτ (ω)| < ∞. Note that Qt,τ is a product of stochastic matrices, which means that

all its elements are upper bounded by 1. Furthermore, the fact that the (directed) distance from agent

j to agent i is equal to δ means that the (i, j) element of matrix product Qt,τ =
∏
r: Λr=1
τ≤r<t

Br is non-

zero only if the product contains at least δ many matrices, which is equivalent to the condition that
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Λτ + · · ·+ Λt−1 ≥ δ. Consequently,

t−1∑
τ=1

(Qt,τ )ij ≤
t−1∑
τ=1

I{Λτ+···+Λt−1≥δ} ≤ max
{
τ :

∞∑
r=τ

Λr = δ
}
.

Plugging the above inequality into (34) therefore implies that

xit ≤ ȳ E∗
[

max
{
τ :

∞∑
r=τ

Λr = δ
}]

= ȳ

∞∑
τ=1

τλτ P∗
( ∞∑
r=τ+1

Λr = δ − 1

)
. (35)

Since Λt’s are independent Bernoulli random variables, Le Cam’s Theorem (Steele, 1994, p. 48) implies

P∗
( ∞∑
r=τ+1

Λr = δ − 1

)
≤ λ̄δ−1

τ

exp(−λ̄τ )

(δ − 1)!
+ 2

∞∑
r=τ+1

λ2
r ,

where λ̄τ =
∑∞

r=τ+1 λr. In addition, the fact that λt = 1/tα implies that λ̄τ ≤ τ1−α/(α− 1). Hence,

P∗
( ∞∑
r=τ+1

Λr = δ − 1

)
≤ τ (1−α)(δ−1)

(α− 1)δ−1(δ − 1)!
+

2τ1−2α

2α− 1
,

where we are using the fact that
∑∞

r=τ+1 r
−2α ≤ τ1−2α/(2α− 1) for all α > 1. Therefore, (35) leads to

xit ≤
ȳ

(α− 1)δ−1(δ − 1)!

∞∑
τ=1

τ δ(1−α) +
2ȳ

2α− 1

∞∑
τ=1

τ2−3α.

The facts that δ(1−α) < −1 and 2−3α < −1 now guarantee that the right-hand side above is finite.

Proof of Theorem 5

Let θ denote the underlying state and ζit = fit(µ
t
i) be the interim belief of agent i after observing her

neighbors’ time-t reports but before observing her private signal ωit+1. Since µit+1 = BU(ζit;ωit+1), it

is sufficient to show that ζit(θ)→ 1 for all i.

First, we show agent i’s interim belief on the true state is uniformly bounded away from zero, i.e.,

lim inf
t→∞

ζit(θ) > 0 (36)

with Pθ-probability one. To this end, recall from Theorem 2 that ζit(θ̂) =
∑

j∈Ni aijtµjt(θ̂), where∑
j∈Ni aijt = 1 due to the unanimity of i’s learning rule. Therefore, agent i’s interim belief satisfies

ζit+1(θ̂) =

n∑
j=1

aijt+1

ζjt(θ̂)`
θ̂
j(ωjt+1)

mjt(ωjt+1)
(37)

for all θ̂ ∈ Θ, where mjt(ωjt+1) =
∑

θ̃∈Θ ζjt(θ̃)`
θ̃
j(ωjt+1). On the other hand, by Lemma A.1, there exists

a sequence of uniformly lower-bounded probability vectors vτ that jointly satisfy (16) for all t ≥ τ .

Thus, taking logarithms from both sides of (37), multiplying by vit+2, and summing over all i lead to

n∑
i=1

vit+2 log(ζit+1(θ̂)) ≥
n∑
i=1

vit+1 log(ζjt(θ̂)) +

n∑
i=1

vit+1 log

(
`θ̂i (ωit+1)

mit(ωit+1)

)
,
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where we are using the concavity of logarithm and the fact that
∑n

i=1 vit+2aijt+1 = vjt+1 (established

in equation (16)). Evaluate the beliefs at the underlying state θ and take expectations from both sides

of the above equation to obtain

Eθt

[
n∑
i=1

vit+2 log(ζit+1(θ))

]
≥

n∑
i=1

vit+1 log(ζit(θ)),

where note that Eθt log(`θi (ωit+1)/mit(ωit+1)) is the relative entropy of `θi with respect to mit and as a

result is always non-negative. The above inequality implies that
∑n

i=1 vit+1 log(ζit(θ)) is a non-positive

submartingale and hence converges Pθ-almost surely. Since Lemma A.1 also guarantees that vit is

uniformly bounded away from zero for all i, it is immediate that ζit(θ) remains bounded away from

zero for all i with Pθ-probability one.

With inequality (36) in hand, we next establish that, for any arbitrary signal ω ∈ S,

lim
τ→∞

∞∑
t=τ

Eθτ

∑
θ̂∈Θ

ζit(θ̂)
`θ̂i (ω)

`θi (ω)
− 1

2

= 0 (38)

with Pθ-probability one. To this end, multiply both sides of (37) by vit+2, sum over all i, and evaluate

the beliefs at the underlying state θ to obtain
∑n

i=1 vit+2ζit+1(θ) =
∑n

i=1 vit+1ζit(θ)`
θ
i (ωit+1)/mit(ωit+1),

where once again we are relying on (16) to conclude that
∑n

i=1 vit+2aijt+1 = vjt+1. As a result,

Eθt

[
n∑
i=1

vit+2ζit+1(θ)

]
−

n∑
i=1

vit+1ζit(θ) =

n∑
i=1

vit+1ζit(θ)Eθt
[
`θi (ωit+1)

mit(ωit+1)
− 1

]
. (39)

By Jensen’s inequality, Eθt [`θi (ωit+1)/mit(ωit+1)] ≥
(
Eθt [mit(ωit+1)/`θi (ωit+1)]

)−1
= 1, which implies that∑n

i=1 vit+1ζit(θ) is a bounded submartingale and hence converges Pθ-almost surely. This, coupled

with the observation that the right-hand side of (39) is non-negative, thus guarantees that

lim
τ→∞

∞∑
t=τ

Eθτ

[
n∑
i=1

vit+1ζit(θ)Eθt
[
`θi (ωit+1)

mit(ωit+1)
− 1

]]
= 0

with Pθ-probability one. Inequality (36) and Lemma A.1 guarantee, respectively, that ζit(θ) and vit+1

are uniformly bounded away from zero. Therefore,

lim
τ→∞

∞∑
t=τ

EθτEθt
[
`θi (ωit+1)

mit(ωit+1)
− 1

]
= 0 (40)

for all agents i with Pθ-probability one. Furthermore,

Eθt
[
`θi (ωit+1)

mit(ωit+1)
− 1

]
=
∑
ω∈S

(
`θi (ω)

)2
mit(ω)

∑
θ̂∈Θ

ζit(θ̂)
`θ̂i (ω)

`θi (ω)
− 1

2

,

where we are using the fact that, by definition, mit(ωit+1) =
∑

θ̂∈Θ ζit(θ̂)`
θ̂
i (ωit+1). Plugging the above

into (40) and using the fact that `θi is has full support over S establishes (38).
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Lemma A.5. For any given integer k and all collections of signals (ω1, . . . , ωk) ∈ Sk,

lim
τ→∞

∞∑
t=τ

Eθτ

∑
θ̂∈Θ

ζit(θ̂)

k∏
r=1

`θ̂i (ωr)

`θi (ωr)
− 1

2

= 0 Pθ-almost surely. (41)

Proof. Equation (38) establishes the lemma for k = 1. The proof for k > 1 follows an inductive

argument on k and is provided in Online Appendix B.

Lemma A.6. Let Θ̂i = {θ̂ ∈ Θ : `θ̂i 6= `θi }. Then, limτ→∞
∑∞

t=τ Eθτ [
∑

θ̂∈Θ̂i
ζit(θ̂)]

2 = 0 with Pθ-probability

one. Furthermore, limt→∞ ζit(θ̂) = 0 with Pθ-probability one for all θ̂ ∈ Θ̂i.

Proof. By Lemma 4 of Jadbabaie et al. (2012), there exist a constant β ∈ (0, 1), a positive integer k̃, and

a collection of signals (ω̃1, . . . , ω̃k̃) such that
∏k̃
r=1 `

θ̂
i (ω̃r)/`

θ
i (ω̃r) < 1− β for all θ̂ ∈ Θ̂i. Therefore,

lim
τ→∞

∞∑
t=τ

Eθτ

∑
θ̂∈Θ

ζit(θ̂)

k̃∏
r=1

`θ̂i (ω̃r)

`θi (ω̃r)
− 1

2

= lim
τ→∞

∞∑
t=τ

Eθτ

∑
θ̂∈Θ̂i

ζit(θ̂)

 k̃∏
r=1

`θ̂i (ω̃r)

`θi (ω̃r)
− 1

2

≥ β2 lim
τ→∞

∞∑
t=τ

Eθτ

∑
θ̂∈Θ̂i

ζit(θ̂)

2

.

On the other hand, Lemma A.5 guarantees that the left-hand side of the above inequality is equal to

zero with Pθ-probability one. Since β > 0, it is immediate that limτ→∞
∑∞

t=τ Eθτ
[∑

θ̂∈Θ̂i
ζit(θ̂)

]2
= 0.

The second claim then follows as limτ→∞
(∑

θ̂∈Θ̂i
ζiτ (θ̂)

)2 ≤ limτ→∞
∑∞

t=τ Eθτ [
∑

θ̂∈Θ̂i
ζit(θ̂)]

2 = 0.

Lemma A.7.
∑n

i=1 vit+1ζit(θ̂) converges Pθ-almost surely for all θ̂ ∈ Θ.

Proof. Equation (39) guarantees that
∑n

i=1 vit+1ζit(θ) is a bounded submartingale and hence

converges Pθ-almost surely. It is therefore sufficient to establish the lemma for θ̂ 6= θ. Given any

such state, equations (16) and (37) imply that

Eθt

[
n∑
i=1

vit+2ζit+1(θ̂)

]
−

n∑
i=1

vit+1ζit(θ̂) =

n∑
i=1

vit+1ζit(θ̂)Eθt

[
`θ̂i (ωit+1)

mit(ωit+1)
− 1

]
.

Denoting the left-hand side of the above equation by ∆t(θ̂), we have

∆t(θ̂) =
∑
i:θ̂ 6∈Θ̂i

vit+1ζit(θ̂)Eθt
[
`θi (ωit+1)

mit(ωit+1)
− 1

]
+
∑
i:θ̂∈Θ̂i

vit+1ζit(θ̂)Eθt

[
`θ̂i (ωit+1)

mit(ωit+1)
− 1

]
,

where recall that Θ̂i = {θ̂ ∈ Θ : `θ̂i 6= `θi }. Consequently,

∞∑
t=τ

Eθτ |∆t(θ̂)| ≤
∑
i:θ̂ 6∈Θ̂i

∞∑
t=τ

Eθτ
[
`θi (ωit+1)

mit(ωit+1)
− 1

]
+
∑
i:θ̂∈Θ̂i

∞∑
t=τ

Eθτ

∣∣∣∣∣ζit(θ̂)Eθt
[
`θ̂i (ωit+1)

mit(ωit+1)
− 1

]∣∣∣∣∣ , (42)

where we are using the fact that vit+1 ∈ [0, 1] for all i and t and that Eθt [`θi (ωit+1)/mit(ωit+1)] ≥ 1.

Equation (40) guarantees that the first term on the right-hand side above converges to zero Pθ-almost

surely as τ →∞. We show the second term also has a limit of zero. Note that if θ̂ ∈ Θ̂i, then∣∣∣∣∣ζit(θ̂)Eθt
[
`θ̂i (ωit+1)

mit(ωit+1)
− 1

]∣∣∣∣∣ ≤ ζit(θ̂)∑
ω∈S

`θ̂i (ω)

∣∣∣∣ `θi (ω)

mit(ω)
− 1

∣∣∣∣≤∑
ω∈S

ζit(θ̂)
`θ̂i (ω)

mit(ω)

∑
θ̃∈Θ̂i

ζit(θ̃)
∣∣∣`θi (ω)− `θ̃i (ω)

∣∣∣ .
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As a result,

∞∑
t=τ

Eθτ

∣∣∣∣∣ζit(θ̂)Eθt
[
`θ̂i (ωit+1)

mit(ωit+1)
− 1

]∣∣∣∣∣ ≤ c
∞∑
t=τ

Eθτ

∑
θ̃∈Θ̂i

ζit(θ̃)

2

(43)

for some positive constant c, where once again we are using the fact `θ̃i has full support over the

finite set S for all θ̃. By Lemma A.6, the right-hand side of the above inequality converges to zero

Pθ-almost surely as τ → ∞. Therefore, inequality (42) implies that limτ→∞
∑∞

t=τ Eθτ |∆t(θ̂)| = 0 with

Pθ-probability one. This observation implies that

lim
τ→∞

sup
t>τ

∣∣∣∣∣Eθτ
[

n∑
i=1

vit+1ζit(θ̂)

]
−

n∑
i=1

viτ+1ζiτ (θ̂)

∣∣∣∣∣ = lim
τ→∞

sup
t>τ

∣∣∣∣∣Eθτ
t−1∑
r=τ

∆r(θ̂)

∣∣∣∣∣ ≤ lim
τ→∞

sup
t>τ

t−1∑
r=τ

Eθτ
∣∣∣∆r(θ̂)

∣∣∣ = 0.

Hence, by Theorem 1 of Mucci (1976), the sequence
∑n

i=1 vit+1ζit(θ̂) converges Pθ-almost surely.

Lemma A.8. limτ→∞ limt→∞ Eθτ [ζit(θ̂)] = 0 for all θ̂ 6= θ and all i with Pθ-probability one.

Proof. For a given state θ̂ 6= θ, define yit+1(θ̂) =
∑n

j=1 aijt+1ζjt(θ̂)

(
`θ̂j (ωjt+1)

mjt(ωjt+1) − 1

)
. We first show that

lim
τ→∞

∞∑
t=τ

|Eθτ [yit+1]| = 0 (44)

for all agents i with Pθ-probability one. To this end, note that

∞∑
t=τ

Eθτ |Eθt [yit+1]| ≤
∞∑
t=τ

∑
j:θ̂ 6∈Θ̂j

Eθτ

[
`θj(ωjt+1)

mjt(ωjt+1)
− 1

]
+

∞∑
t=τ

∑
j:θ̂∈Θ̂j

Eθτ

∣∣∣∣∣ζjt(θ̂)Eθt
[
`θ̂j(ωjt+1)

mjt(ωjt+1)
− 1

]∣∣∣∣∣.
Equation (40) guarantees that the first term on the right-hand side of the above expression converges

to zero Pθ-almost surely as τ → ∞. Moreover, the juxtaposition of (43) with Lemma A.6 implies that

the second term also vanishes as τ →∞. A simple application of Jensen’s inequality leads to (44).

As our next step, we note that the interim beliefs of agent i satisfy equation (37), which can

be written in matrix form as ζt+1(θ̂) = At+1ζt(θ̂) + yt+1(θ̂). Iterating the belief dynamics equation

forward and taking expectations from both sides implies that Eθτ [ζt(θ̂)] = AtAt−1 . . . Aτ+1ζτ (θ̂) +∑t
r=τ+1AtAt−1 . . . Ar+1Eθτ [yr(θ̂)]. Thus, by part (d) of Lemma A.2,

max
i

Eθτ [ζit(θ̂)]−min
i

Eθτ [ζit(θ̂)] ≤ π(At . . . Aτ+1) +

t∑
r=τ+1

π(At . . . Ar+1)
(
max
i

Eθτ [yir(θ̂)]−min
i

Eθτ [yir(θ̂)]
)

≤ π(At . . . Aτ+1) +

t∑
r=τ+1

(
max
i

Eθτ [yir(θ̂)]−min
i

Eθτ [yir(θ̂)]
)

where in the first inequality we are using the fact that maxi ζiτ (θ̂) − mini ζiτ (θ̂) ≤ 1 and the second

inequality is a consequence of part (a) of Lemma A.2. On the other hand, recall from the proof of

Lemma A.1 that At = E∗[ΛtBt], where Λt is a sequence of independent Bernoulli random variables
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that take value 1 with probability λt and Bt is a stochastic matrix whose non-zero elements are lower

bounded by a constant η ∈ (0, 1) that is independent of t. Consequently,

max
i

Eθτ [ζit(θ̂)]−min
i

Eθτ [ζit(θ̂)] ≤ π
(
E∗

∏
r: Λr=1
τ<r≤t

Br

)
+

t∑
r=τ+1

(
max
i

Eθτ [yir(θ̂)]−min
i

Eθτ [yir(θ̂)]
)

≤ E∗
[
π

( ∏
r: Λr=1
τ<r≤t

Br

)]
+ 2

t∑
r=τ+1

max
i
|Eθτ [yir(θ̂)]|,

where the second inequality relies on the convexity of π, established in Lemma A.2. Following (32)

and (33), the above inequality further reduces to

max
i

Eθτ [ζit(θ̂)]−min
i

Eθτ [ζit(θ̂)] ≤
1

βn
E∗
[
β(Λτ+1+···+Λt)

]
+ 2

t∑
r=τ+1

max
i
|Eθτ [yir(θ̂)]|,

where β = (1− ηn)1/n < 1. Since
∑∞

t=0 λt =∞, the Borel-Cantelli lemma implies that Λt = 1 infinitely

often with probability one. Hence, by the dominated convergence theorem, the limit of the first term

on the right-hand side of the above inequality is equal to zero as t→∞. Consequently,

lim
t→∞

(max
i

Eθτ [ζit(θ̂)]−min
i

Eθτ [ζit(θ̂)]) ≤ 2

∞∑
r=τ+1

max
i
|Eθτ [yir(θ̂)]|

for all τ . Recall that (44) guarantees that the right-hand side of the above inequality converges to zero

with Pθ-probability one as τ → ∞. Therefore, limτ→∞ limt→∞(maxi Eθτ [ζit(θ̂)] − mini Eθτ [ζit(θ̂)]) = 0.

Finally, note that, by assumption, there exists an agent i such that `θi 6= `θ̂i for whom, by Lemma A.6,

limt→∞ ζit(θ̂) = 0 with Pθ-probability one. Hence, limτ→∞ limt→∞ Eθτ [ζit(θ̂)] = 0 for all i.

The juxtaposition of Lemmas A.7 and A.8 completes the proof of Theorem 5. In particular, whereas

the former establishes that
∑n

i=1 vit+1ζit(θ̂) converges to some limit ζ∗(θ̂) with Pθ-probability one for

all θ̂ ∈ Θ, the latter implies that limτ→∞ limt→∞
∑n

i=1 vit+1Eθτ [ζit(θ̂)] = 0 almost surely for all θ̂ 6= θ.

Hence, it must be the case that ζ∗(θ̂) = 0 with Pθ-probability one for all θ̂ 6= θ, which in turn implies

that limt→∞ ζit(θ̂) = 0 for all θ̂ 6= θ and all i.

Proof of Theorem 6

Proof of part (a). For any pair of states θ, θ̂ ∈ Θ, the weak-separability assumption implies that

µit+1(θ)

µit+1(θ̂)
=
`θi (ωit+1)

`θ̂i (ωit+1)

ψi(µt(θ))

ψi(µt(θ̂))
. (45)

Multiplying both sides of the above equation by µit+1(θ̂) and rewriting it in vector form leads to

µt+1(θ) = diag

(
`θi (ωit+1)

`θ̂i (ωit+1)

)
diag

(
ψi(µt(θ))

ψi(µt(θ̂))

)
µt+1(θ̂),
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where diag(z) is a square diagonal matrix whose diagonal elements are given by the elements of vector

z. For a given agent j, applying the mapping ψj to both sides of the above inequality results in

ψj(µt+1(θ)) ≤

(
max
i

`θi (ωit+1)

`θ̂i (ωit+1)

)ρ(
max
i

ψi(µt(θ))

ψi(µt(θ̂))

)ρ
ψj(µt+1(θ̂)),

where ρ is the degree of homogeneity of ψj and we are using the fact that ψj is non-decreasing in all its

arguments (a consequence of monotonicity of j’s learning rule). Dividing both sides of the inequality

by ψj(µt+1(θ̂)) and taking logarithms from both sides implies that

xt+1 ≤ ρxt + ρy(ωt), (46)

where xt = maxj log(ψj(µt(θ))/ψj(µt(θ̂))) and y(ωt) = maxi log(`θi (ωit)/`
θ̂
i (ωit)). Therefore,

xt ≤ ρt−nxn +

t−1∑
τ=n

ρt−τy(ωτ )

for all t ≥ n+ 1, where n denotes the number of agents in the social social network.

Fix an arbitrary time T ≥ n and an arbitrary pair of states θ 6= θ̂ and suppose that xn < 0 with

positive probability — a claim that we prove below. For any t > T , the above inequality implies that

ρ−txt ≤ ρ−nxn +
∑T−1

τ=n ρ
−τy(ωτ ) + ȳ

∑t−1
τ=T 1/ρτ , where ȳ = maxi maxωi log(`θi (ωi)/`

θ̂
i (ωi)). As a result,

lim sup
t→∞

ρ−txt ≤ ρ−nxn +

T−1∑
τ=n

ρ−τy(ωτ ) +
ȳ/ρT

1− 1/ρ
. (47)

On the other hand, note that there exists a signal profile ω̃ = (ω̃1, . . . , ω̃n) such that `θi (ω̃i) ≤ `θ̂i (ω̃i)

for all i, with the inequality holding strictly for at least one agent j.21 It is immediate that for such a

signal profile, y(ω̃) ≤ 0. Furthermore, since ρ > 1 and xn < 0, there exists a finite T large enough

such that ρ−nxn + ȳ/ρT

1−1/ρ < 0. Consequently, there exists a large enough T such that the right-hand

side of (47) is strictly negative on any path on which signal profile ω̃ is realized in every period over

the finite interval between t = n and t = T − 1. This observation, together with the fact that

ρ > 1, subsequently guarantees that limt→∞ log(ψi(µt(θ))/ψi(µt(θ̂))) = −∞with some strictly positive

probability for all i, regardless of the underlying state. Subsequently, equation (45) guarantees that

with positive probability limt→∞ log(µit(θ)/µit(θ̂)) = −∞ for all i and all pairs θ̂ 6= θ. That is, all agents

assign an asymptotic belief of zero to θ with a positive probability, even when θ is the underlying state.

The proof is complete once we show that xn < 0 with strictly positive probability. We rely on a

two-step argument to show that xn < 0 on any path on which the signal profile ω̃ is realized in every

period between t = 1 and t = n.

First, we show inductively that, on any such path, µit(θ) ≤ µit(θ̂) for all i and all t ≤ n and that the

inequality is strict for any agent i with a neighbor j such that µjt−1(θ) < µjt−1(θ̂). Recall that, by the

uniform prior assumption, µi0(θ) ≤ µi0(θ̂) for all i, an inequality that serves as the induction’s base.

As the induction hypothesis, suppose µit−1(θ) ≤ µit−1(θ̂) for all i. By monotonicity, ψi(µt−1(θ)) ≤
ψi(µt−1(θ̂)) for all i and ψi(µt−1(θ)) < ψi(µt−1(θ̂)) if i has a neighbor j such that µjt−1(θ) < µjt−1(θ̂).

Furthermore, recall that `θi (ω̃i) ≤ `θ̂i (ω̃i) for all i. The above claim then follows from (45).

21The existence of such an agent j is a consequence of the assumption that the underlying state is globally identifiable.
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With the above claim in hand, we next show that µin(θ) < µin(θ̂) for all i on any path on which

the signal profile ω̃ is realized in every period between t = 1 and t = n. Once again, recall that the

signal profile ω̃ is such that `θi (ω̃i) ≤ `θ̂i (ω̃i) for all i and that `θj(ω̃j) < `θ̂j(ω̃j) for some agent j. We

show inductively that µit(θ) < µit(θ̂) for all i that are at distance t − 1 or less from agent j on the

social network, where t ≤ n. Given that `θj(ω̃j) < `θ̂j(ω̃j), equation (45) implies that µj1(θ) < µj1(θ̂), an

inequality that will serve as the induction’s base. As the induction hypothesis, suppose that µit(θ) <

µit(θ̂) for all agents i who are at distance t − 1 or less from agent j on the social network. The claim

in the previous paragraph then implies that µit+1(θ) < µit+1(θ̂) for all agents i who are at distance t or

less from agent j, thus completing the inductive argument.

Since the diameter of the social network is at most n, all nodes are at most at distance n − 1 from

agent j. Therefore, µin(θ) < µin(θ̂) for all i. Consequently, xn = maxj log(ψj(µn(θ))/ψj(µn(θ̂))) < 0 on

on all paths on which the signal profile ω̃ is realized in every period between t = 1 and t = n. Noting

the fact that such paths have a strictly positive probability completes the proof.

Proof of part (b). Consider an arbitrary pair of states θ 6= θ̂ and recall from the proof of part (a)

that, under weak separability, agents’ belief dynamics satisfy (45) and (46). Equation (46) implies

that xt+1 ≤ ρxt + ρȳ, where xt = maxj log(ψj(µt(θ))/ψj(µt(θ̂))) and ȳ = maxi maxωi log(`θi (ωi)/`
θ̂
i (ωi)).

Therefore xt ≤ ȳ
∑t

τ=1 ρ
τ . The fact that ρ < 1 implies that

∑t
τ=1 ρ

τ is bounded above, even as t → ∞.

Therefore, lim supt→∞ log(ψi(µt(θ))/ψi(µt(θ̂))) < ∞ for all i. Subsequently, equation (45) guarantees

that lim supt→∞ log(µit(θ)/µit(θ̂)) < ∞ for all i and and all pair of states θ̂ 6= θ. In other words, all

agents remain asymptotically uncertain, regardless of the realization of the underlying state.

Proof of Theorem 7

We prove parts (b) and (c) of Theorem 7 by constructing a social network, a signal structure, and social

learning rules with logarithmic curvatures outside the [−1, 1] interval for which agents fail to learn the

state asymptotically. The details are provided in Online Appendix B.

In what follows, we prove part (a) of the theorem. Throughout, we assume that ψi : [0, 1]n → R
satisfying (10) is such that ψi(1) = 1 for all i, where 1 = (1, . . . , 1) denotes the vector of all ones. Note

that since the social learning rule of agent i can be rewritten as (11), this is a simple normalization and

is without loss of generality. We also extend the domain of ψi to Rn+ by defining ψi(x) for any x ∈ Rn+
as ψi(x) = ψi(εx)/ε, where ε > 0 is sufficiently small to ensure that εx ∈ [0, 1]n.22

We have the following lemmas, the proofs of which are provided in Online Appendix B.

Lemma A.9. Suppose g : (0,∞)n → (0,∞) is smooth, homogeneous of degree 1, weakly increasing, and

satisfies g(1) = 1. If the logarithmic curvature of g is smaller than 1, then g is concave. Furthermore,

g(x) ≤
∑n

j=1 g
(j)(1)xj , where g(j)(x) = ∂g(x)/∂xj .

Lemma A.10. The function φi : (0,∞)n → (0,∞) defined as φi(x) = [ψi (1/x1, . . . , 1/xn)]−1 is concave,

homogeneous of degree 1, strictly increasing in xj for j ∈ Ni, with a logarithmic curvature that is less

than or equal to 1 throughout its domain.
22Note that, since ψi is homogeneous of degree 1, ψi(εx)/ε is independent of the choice ε.
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Lemma A.11. The mapping Φ(x) = limt→∞

t times︷ ︸︸ ︷
φ ◦ φ ◦ · · · ◦ φ(x) is well-defined, element-wise strictly

positive, smooth, homogeneous of degree 1, and concave. Moreover, Φ
(j)
i (x) > 0 for all x > 0 and

all i, j.

Proof. Theorem 3.2 of Nussbaum (1988, p. 93) guarantees that Φ(x) is well-defined, smooth,

homogeneous of degree 1, and element-wise strictly positive for all x > 0. The concavity of Φ is

an immediate consequence of the fact that it is the composition of the non-decreasing and concave

function φ with itself, where both properties were established in Lemma A.10.

We now turn to proving the last statement. By Theorem 3.2 of Nussbaum (1988), there exists a

function q : (0,∞)n → (0,∞) such that Φ(x) = q(x)1. It is therefore sufficient to show that q(j)(x) > 0

for all x > 0. Note that q(φ(x)) = q(x). Therefore, by chain rule, q(j)(x) =
∑n

i=1 q
(i)(φ(x))φ

(j)
i (x). Let

u(x) denote the vector whose i-th element is given by q(i)(x) and let U(x) denote the matrix with the

(i, j) element equal to φ(j)
i (x). Hence,

u(x)′ = u(φ(x))′U(x) (48)

Iterating the above expression thus implies that u(x)′ = u(φt(x))′U(φt−1(x)) · · ·U(φ(x))U(x), where

φt denotes the composition of φ with itself t times. Let x be an element-wise positive vector. The

continuity of U and the fact that limt→∞ φ
t(x) = Φ(x) = q(x)1 imply that limt→∞ U(φt(x)) =

U(q(x)1) = U(1). The last equality is a consequence of the fact that U is homogeneous of degree

0. On the other hand, the monotonicity assumption and the fact that the social network is strongly

connected guarantee that U(1) is an irreducible non-negative matrix, whereas Euler’s theorem and

the assumption that ψ is homogeneous of degree 1 imply that U(1) is row stochastic. Taken together,

the above observations imply that U(φt−1(x)) converges to an irreducible stochastic matrix as t →
∞. Therefore, by Chatterjee and Seneta (1977, p. 93), U(φt−1(x)) · · ·U(φ(x))U(x) converges to an

element-wise strictly positive, rank 1 matrix U∗(x). Consequently, u(x)′ = u(Φ(x))′U∗(x), where

U∗ij(x) > 0. The proof is therefore complete once we show that u(Φ(x)) is element-wise strictly

positive. Note that u(Φ(x)) = u(q(x)1) = u(1). On the other hand, equation (48) implies that

u(1)′ = u(φ(1))′U(1) = u(1)′U(1). That is, u(Φ(x)) = u(1) is the left Perron vector of the irreducible

stochastic matrix U(1) and so is element-wise positive.

Lemma A.12. Let Ψ(x) = [Φ (1/x1, . . . , 1/xn)]−1. Then, limt→∞Ψ(µt(θ)) = Ψ∗ with Pθ-probability one.

Proof. Let νit(θ) = 1/µit(θ). The belief update rule (1) of agent i implies that

νit+1(θ) =

∑
θ̂ `
θ̂
i (ωit+1)fi(µt)(θ̂)

`θi (ωit+1)fi(µt)(θ)
,

and therefore, Eθt [νit+1(θ)] = 1/fi(µt)(θ). Hence, by (11), Eθt [νit+1(θ)] =
∑

θ̂∈Θ ψi(µt(θ̂))/ψi(µt(θ)).

On the other hand, Lemma A.9 guarantees that ψi(µt(θ̂)) ≤
∑n

j=1 ψ
(j)
i (1)µjt(θ̂). As a result,∑

θ̂∈Θ ψi(µt(θ̂)) ≤
∑n

j=1 ψ
(j)
i (1) = 1, where the equality is a consequence of the fact that ψi is

homogeneous of degree 1. Therefore,

Eθt [νit+1(θ)] ≤ 1

ψi(µt(θ))
= φi(νt(θ)). (49)
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Writing the above inequality in vector form, we obtain, Eθt [νt+1(θ)] ≤ φ(νt(θ)). Furthermore, the fact

that Φ is increasing (established in Lemma A.11) guarantees that Φ
(
Eθt [νt+1(θ)]

)
≤ Φ (φ(νt(θ))) =

Φ (νt(θ)), where the equality holds by definition of Φ. Finally, concavity of Φ, also established in

Lemma A.11, alongside Jensen’s inequality, guarantees that EθtΦ (νt+1(θ)) ≤ Φ (νt(θ)). In other words,

each element of the vector Φ (νt(θ)) is a supermartingale. Since Φ is lower bounded, it converges

almost surely, which in turn implies that Ψ (µt(θ)) converges to some Ψ∗ ∈ (0, 1]n almost surely.

Lemma A.13. If θ is the underlying state, then µit(θ) remains bounded away from zero almost surely

for all agents i. Furthermore,

ψi(µt(θ̂))−
n∑
j=1

ψ
(j)
i (1)µjt(θ̂)→ 0 (50)

for all θ̂ ∈ Θ as t→∞with Pθ-probability one.

Proof. To prove the first statement, recall from (49) that Eθt [νit+1(θ)] ≤ φi(νt(θ)). Also recall from

Lemma A.10 that φi is homogeneous of degree 1 and weakly increasing, with a logarithmic curvature

that is less than or equal to 1 throughout its domain. Therefore, Lemma A.9 implies that Eθt [νit+1(θ)] ≤∑n
j=1 φ

(j)
i (1)νjt(θ). On the other hand, recall from the proof of Lemma A.11 that ui(1) = q(i)(1) > 0 for

all agents i. Therefore, multiplying both sides of the inequality by q(i)(1), summing over all agents i,

and using (48) implies that

Eθt

[
n∑
i=1

q(i)(1)νit+1(θ)

]
≤

n∑
j=1

n∑
i=1

q(i)(1)φ
(j)
i (1)νjt(θ) =

n∑
j=1

q(j)(1)νjt(θ).

Thus, by the martingale convergence theorem, the expression
∑n

j=1 q
(j)(1)νjt(θ) converges almost

surely as t → ∞. The fact that q(j)(1) is strictly positive for all j in turn implies that νjt(θ) remains

bounded Pθ-almost surely for all j. As a result, µjt(θ) is bounded away from zero for all j as t→∞.

To establish (50), recall that i’s belief dynamics are given by µit+1 = BU
(
fi(µt);ωit+1

)
. Therefore,

µit+1(θ̂) =
fi(µt)(θ̂)`

θ̂
i (ωit+1)∑

θ̃∈Θ fi(µt)(θ̃)`
θ̃
i (ωit+1)

for all θ̂ ∈ Θ. Since fi belongs to the class of weakly-separable learning rules, there exists a

homogeneous function ψi such that fi(µt)(θ̂)/fi(µt)(θ̃) = ψi(µt(θ̂))/ψi(µt(θ̃)) for all θ̂, θ̃ ∈ Θ. Hence,

µit+1(θ̂) = ψi(µt(θ̂)) +

(
`θ̂i (ωit+1)

mit(ωit+1)
− 1

)
ψi(µt(θ̂)), (51)

where mit(ωit+1) =
∑

θ̃∈Θ `
θ̃
i (ωit+1)ψi(µt(θ̃)). Applying function Ψi defined in Lemma A.12 to both

sides of (51), evaluating the result at the underlying state θ, using the mean value theorem, and noting

that Ψ(ψ(x)) = Ψ(x), we have

Ψi(µt+1(θ)) = Ψi(µt(θ)) +

n∑
j=1

Ψ
(j)
i (zt+1)ψj(µt(θ))

(
`θj(ωjt+1)

mjt(ωjt+1)
− 1

)
,
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where zt+1 is a point on the line segment connecting ψ(µt(θ)) to µt+1(θ). Lemma A.12 guarantees that

Ψi(µt+1(θ))−Ψi(µt(θ))→ 0 for all i as t→∞ almost surely. Therefore,

n∑
j=1

Ψ
(j)
i (zt+1)ψj(µt(θ))

(
`θj(ωjt+1)

mjt(ωjt+1)
− 1

)
→ 0 Pθ-a.s. (52)

On the other hand, the fact that µt(θ) remains bounded away from zero almost surely as t → ∞
guarantees that ψj(µt(θ)) and hence zt+1 — which belongs to the line segment connecting ψ(µt(θ)) to

µt+1(θ) — remain bounded away from zero almost surely as t → ∞. Thus, by Lemma A.11, Ψ
(j)
i (zt+1)

is also bounded away from zero for all j. The juxtaposition of these observations with (52) therefore

implies that `θj(ωjt+1)/mjt(ωjt+1) → 1 almost surely for all j. Hence, by the dominated convergence

theorem for conditional expectation, we have, Eθt |`θj(ωjt+1)/mjt(ωjt+1)− 1| → 0 as t→∞. Expressing

the conditional expectation as a sum and using the assumption that `θi (ω) > 0 for all ω implies that

`θj(ω)−
∑
θ̃∈Θ

`θ̃j(ω)ψj(µt(θ̃))→ 0 Pθ-a.s. (53)

for all ω ∈ S. Summing both sides of the above equation over ω, we obtain∑
ω∈S

∑
θ̃∈Θ

`θ̃i (ω)ψi(µt(θ̃))− 1→ 0. (54)

On the other hand, part (b) of Lemma A.9 guarantees that

ψi(µt(θ̂)) ≤
n∑
j=1

ψ
(j)
i (1)µjt(θ̂). (55)

Multiplying both sides of the above inequality by `θ̂i (ω) and summing over θ̂ ∈ Θ and ω ∈ S leads to

∑
ω∈S

∑
θ̂∈Θ

`θ̂i (ω)ψi(µt(θ̂)) ≤
n∑
j=1

ψ
(j)
i (1)

∑
θ̂∈Θ

µjt(θ̂)
∑
ω∈S

`θ̂i (ω) = 1,

where the last equality is a consequence of the fact that
∑n

j=1 ψ
(j)
i (1) = 1. The juxtaposition of the

above inequality with (54) implies that (55) holds as an equality as t→∞, thus establishing (50).

Lemma A.14. Let θ denote the underlying state. Then,

lim
t→∞

∑
θ̃∈Θ

ψi(µt(θ̃))

k∏
r=1

`θ̃i (ωr)/`
θ
i (ωr) = 1

with Pθ-probability one for all integers k and all collections of signals (ω1, . . . , ωk) ∈ Sk.

Proof. Equation (53) establishes the lemma for k = 1. We prove the statement for k > 1 using an

inductive argument on k, the details of which are provided in Online Appendix B.

Lemma A.15. Let θ denote the underlying state of the world. If θ̂ ∈ Θ is such that `θ̂i 6= `θi , then

lim
t→∞

ψi(µt(θ̂)) = 0 Pθ-almost surely. (56)
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Proof. Let Θ̂i denote the set of states θ̂ 6= θ for which `θ̂i 6= `θi . Recall from Lemma A.14 that∑
θ̂∈Θ̂i

ψi(µt(θ̂))
∏k
r=1 `

θ̂
i (ωr)/`

θ
i (ωr) +

∑
θ̂ /∈Θ̂i

ψi(µt(θ̂)) → 1 with Pθ-probability one for all integers k

and all collections of signals (ω1, . . . , ωk) ∈ Sk. On the other hand, summing both sides of (50) over

θ̂ ∈ Θ implies that
∑

θ̂∈Θ ψi(µt(θ̂))− 1→ 0 almost surely. Hence,

∑
θ̂∈Θ̂i

ψi(µt(θ̂))

(
1−

k∏
r=1

`θ̂i (ωr)

`θi (ωr)

)
→ 0 (57)

Pθ-almost surely for all integers k and all collections of signals (ω1, . . . , ωk) ∈ Sk.

Lemma 4 of Jadbabaie et al. (2012) guarantees that there exist a constant β > 0, a positive integer

k̃, and a collection of signals (ω̃1, . . . , ω̃k̃) such that 1 −
∏k̃
r=1 `

θ̂
i (ω̃r)/`

θ
i (ω̃r) > β for all θ̂ ∈ Θ̂i. This

observation, alongside the fact that (57) has to hold for all integers k and any arbitrary sequence of

signals (ω1, . . . , ωk), therefore implies that ψi(µt(θ̂))→ 0 with Pθ-probability one for all θ̂ ∈ Θ̂i.

Proof of Theorem 7(a). Let θ denote the underlying state and consider an arbitrary θ̂ 6= θ. Since

agents’ information structures are collectively informative, there exists an agent i such that `θ̂i 6= `θi .

Therefore, Lemma A.15 guarantees that the agent-state pair (i, θ̂) satisfies (56). Thus, by equation (50),

limt→∞
∑n

j=1 ψ
(j)
i (1)µjt(θ̂) = 0. Since i’s learning rule satisfies monotonicity, it must be the case that

ψ
(j)
i (1) > 0 for all j ∈ Ni, and as a result limt→∞ µjt(θ̂) = 0 with Pθ-probability one. Subsequently,

(51) implies that limt→∞ ψj(µt(θ̂)) = 0 with P-probability one for all j ∈ Ni. In other words, the fact

that the agent-state pair (i, θ̂) satisfies (56) is sufficient to guarantee that the agent-state pair (j, θ̂) also

satisfies (56) for all j ∈ Ni. Repeating the same argument and using the fact that the social network is

strongly connected guarantees that (56) is satisfied for all agents in the social network, which in turn

— using (50) and monotonicity— implies that µj(θ̂) → 0 with Pθ-probability one as t → ∞ for all j.

Since θ̂ 6= θ was arbitrary, this means that all agents learn the underlying state almost surely.

Proof of Proposition 2

Recall from Lemma A.1 that when limt→∞ tλt = ∞, there exists a unique sequence of probability

vectors vt uniformly lower bounded away from zero such that v′t+1AtAt−1 . . . Aτ = v′τ for all t ≥ τ .

It is immediate that the above equation reduces to (14) when τ = t. Furthermore, the fact that the

sequence vt is uniformly bounded away from zero implies that lim inft→∞ vit > 0 for all agents i.

Proof of Theorem 8

Let θ denote the underlying state and fix an arbitrary θ̂ 6= θ. Also let xit = log(µit(θ)/µit(θ̂)). Equations

(29) and (31) imply that for any agent j, lim inft→∞
1
txjt = lim inft→∞

1
t

∑t
τ=1

∑n
i=1 viτhi(θ, θ̂) almost

surely, where we are using the fact that
∑n

j=1 vit = 1. Moreover, recall from Theorem 4 that all

agents learn the underlying state almost surely, that is, limt→∞ µjt(θ) = 1 with probability one. As

a result, lim inft→∞
1
t logµjt(θ̂) = − lim inft→∞

1
t

∑t
τ=1

∑n
i=1 viτhi(θ, θ̂) with probability one. Finally,

the fact that the sum of the beliefs eθjt =
∑

θ̂ 6=θ µjt(θ̂) that agent j assigns to states other than θ

satisfies maxθ̂ 6=θ µjt(θ̂) ≤ eθjt ≤ (|Θ| − 1) maxθ̂ 6=θ µjt(θ̂) implies that γθi = lim inft→∞
1
t | log eθjt| =

minθ̂ 6=θ lim inft→∞
1
t

∑t
τ=1

∑n
i=1 viτhi(θ, θ̂) almost surely.
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Proof of Proposition 3

We first state a lemma, the proof of which is provided in the Online Appendix.

Lemma A.16. Let bt,τ = 1 −
∏t−1
r=τ (1 − r−α). If α ∈ (1, 2), then limt→∞ t

α−2bt,τ = 0 and

limt→∞ t
α−2

∑t−1
τ=1 bt,τ = 1/(2− α).

Next, we show that agent i learns the underlying state θ. Consider an arbitrary θ̂ 6= θ and let xjt =

log(µjt(θ)/µjt(θ̂)) and yjt(ωjt) = log(`θj(ωjt)/`
θ̂
j(ωjt)). By (28), xt =

∑t−1
τ=1At−1 . . . Aτ+1Aτyτ (ωτ )+yt(ωt),

where At = (1 − t−α)I + (t−α/n)11′. Therefore, xit =
∑t

τ=1(1 − bt,τ )yiτ (ωiτ ) +
∑t−1

τ=1 bt,τ ỹτ (ωτ ), where

ỹτ (ωτ ) = 1
n

∑n
j=1 yjτ (ωjτ ), bt,τ = 1−

∏t−1
r=τ (1− r−α) for t > τ , and bt,t = 0. As a result, by Lemma A.16,

lim
t→∞

tα−2xit = lim
t→∞

tα−2
t∑

τ=1

(1− bt,τ )yiτ (ωiτ ) +
1

2− α
Eθ[ỹτ (ωτ )] + lim

t→∞
tα−2

t−1∑
τ=1

bt,τ (ỹτ (ωτ )− Eθ[ỹτ (ωτ )]).

We next show that the last term on the right-hand side above is equal to zero almost surely. Recall

from Lemma A.16 that limt→∞ t
α−2bt,τ = 0 and limt→∞ t

α−2
∑t−1

τ=1 bt,τ = 1
2−α . Furthermore, note

that maxτ≤t t
α−2bt,τ = tα−2. Thus, Theorem 2 of Pruitt (1966) implies that the weighted sum

tα−2
∑t−1

τ=1 bt,τ (ỹτ (ωτ )−Eθ[ỹτ (ωτ )]) of centered i.i.d. random variables converges to zero almost surely

as t→∞. Similarly, it is immediate that tα−2
∑t−1

τ=1 bt,τ (yiτ (ωiτ )−Eθ[yiτ (ωiτ )]) converges to zero almost

surely. Hence, limt→∞ t
α−2xit = limt→∞ t

α−2
∑t

τ=1 yiτ (ωiτ ) + 1
2−αE

θ[ỹτ (ωτ )] − 1
2−αE

θ[yiτ (ωiτ )]. By the

strong law of large numbers, limt→∞ t
−1
∑t

τ=1 yiτ (ωiτ ) = Eθ[yit(ωit)] = hi(θ, θ̂). Therefore,

lim
t→∞

tα−2 log
µit(θ)

µit(θ̂)
= hi(θ, θ̂) lim

t→∞
tα−1 +

1

n(2− α)

∑
j 6=i

hj(θ, θ̂) (58)

almost surely. The assumption that agents’ signal structures are collectively informative guarantees

that the right-hand side of the above equation is strictly positive, thus guaranteeing that limt→∞ xit =

∞ almost surely, which means that limt→∞ µit(θ̂) = 0. Since θ̂ 6= θ was an arbitrary state, this

establishes that agent i learns the underlying state, i.e., limt→∞ µit(θ) = 1 with probability one.

To determine the rate of learning, note that maxθ̂ 6=θ µit(θ̂) ≤ eθit ≤ (|Θ| − 1) maxθ̂ 6=θ µit(θ̂), which

implies that limt→∞ t
α−2| log eθit| = minθ̂ 6=θ limt→∞ t

α−2| logµit(θ̂)|. This equality, in conjunction with

(58) and the fact that limt→∞ µit(θ) = 1, leads to

lim
t→∞

tα−2| log eθit| = min
θ̂ 6=θ

hi(θ, θ̂) lim
t→∞

tα−1 +
1

n(2− α)

∑
j 6=i

hj(θ, θ̂)

 .

The assumption that agent i faces an identification problem in isolation guarantees that there exists

a state θ̂ 6= θ such that hi(θ, θ̂) = 0, whereas the assumption that agents do not face an identification

problem collectively guarantees that there exists an agent j 6= i such that hj(θ, θ̂) > 0. Taken together,

these observations imply that the right-hand side above is finite and strictly positive almost surely.
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