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SUMMARY
Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our
understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these
attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell reso-
lution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and
state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we
reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered
TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show
plasticity in culturemodels. Further, we prove that non-genetic modulation of cell state can strongly influence
drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable frame-
work for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity
and manipulating cell state to target associated vulnerabilities.
INTRODUCTION

Recent advances in high-throughput genomic sequencing have

led to a detailed understanding of the genetic alterations that

underlie human tumors (Garraway and Lander, 2013). These

reference maps have driven a ‘‘mutation-centric’’ view of can-

cer that informs our current approach to precision medicine.

In this framework, DNA alterations are used as biomarkers to

guide therapy selection (Hyman et al., 2017), and ex vivo

models are used to validate mutational associations and power

therapeutic discovery efforts. To maintain translational rele-

vance, the fidelity of ex vivo models to in vivo attributes is

paramount.

Driven by the mutation-centric view of cancer, model fidelity is

typically assessed via genomic similarity (Ben-David et al., 2019;
Cell 184, 6119–6137, Decem
This is an open access article under the CC BY-N
Byrne et al., 2017; Drost and Clevers, 2018; Gillet et al., 2013).

Assessment of mutational fidelity is feasible and useful for two

reasons: first, bulk measurements of DNA alterations have favor-

able signal-to-noise profiles (i.e., somatic mutations are present

or absent); and, second, some cancers respond to therapies in a

genotype-directed manner (Garraway and Lander, 2013; Hyman

et al., 2017). However, a growing body of evidence indicates that

using mutations alone to assign therapies has limitations (Nam

et al., 2021; van de Haar et al., 2021). The advent of single-cell

genomic technologies has confirmed extensive mutational het-

erogeneity in human tumors but also revealed that the

complexity of cancer extends to variation in cell transcriptional

state. The relationship between cell state and therapeutic sensi-

tivity represents a new but poorly understood opportunity for

cancer therapeutic development (Hahn et al., 2021).
ber 9, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 6119
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Cell state, as measured by RNA expression, is a complex rep-

resentation of tumor phenotype because it integrates inputs from

cell-intrinsic (e.g., mutational background, epigenetic state) and

cell-extrinsic (e.g., cell-to-cell interactions, tissue architecture)

sources. Although the field has generated high-resolution sin-

gle-cell RNA sequencing (scRNA-seq) maps of cancer cell tran-

scriptional states across diverse contexts (Filbin et al., 2018;

Hovestadt et al., 2019; Kim et al., 2018; Neftel et al., 2019; Patel

et al., 2014; Puram et al., 2017; Sade-Feldman et al., 2019; Suvà

and Tirosh, 2019; Tirosh et al., 2016a; Tirosh et al., 2016b; van

Galen et al., 2019; Venteicher et al., 2017), we have not mapped

their stability or the relative influences of cell-intrinsic and cell-

extrinsic factors in specifying them. Moreover, we have a limited

understanding of the degree to whichmodels accurately recapit-

ulate the distribution of cancer cell states seen in patients.

Despite extensive genomic characterization of pancreatic

ductal adenocarcinoma (PDAC), most cancers do not harbor

therapeutically tractable alterations (Aguirre et al., 2018; Bailey

et al., 2016; Cancer Genome Atlas Research Network, 2017).

However, RNA subtypes (states) derived from bulk measure-

ments have emerged as an important clinical biomarker (Aguirre

et al., 2018; Aung et al., 2018; Bailey et al., 2016; Cancer

Genome Atlas Research Network, 2017; Chan-Seng-Yue et al.,

2020; Collisson et al., 2019; Collisson et al., 2011; Connor

et al., 2019; Hayashi et al., 2020; Moffitt et al., 2015; O’Kane

et al., 2020; Porter et al., 2019; Tiriac et al., 2018). While PDAC

subtyping studies have largely recovered common expression

features, it remains unclear whether these bulk RNA-seq state

measurements mask heterogeneity at the single-cell level, which

features derive from malignant versus non-malignant cells, and

how well they are recapitulated in laboratory models. Moreover,

the PDAC tumor microenvironment (TME) includes numerous

non-malignant immune and stromal cell types (Balachandran

et al., 2019; Bernard et al., 2019; Elyada et al., 2019; Grünwald

et al., 2021; Ligorio et al., 2019), but their variation across

different sites of disease and their effects on malignant cell state

and therapeutic response is not well characterized. Given the

lack of mutational biomarkers for PDAC, understanding how

cell state is shaped by the local TME and whether cell state
6120 Cell 184, 6119–6137, December 9, 2021
can be used as a tractable biomarker for therapy selection re-

mains of critical importance.

To parse the instructive roles of cell-intrinsic and cell-extrinsic

inputs to cancer cell state, we developed and employed an opti-

mized translational workflow to perform both high-resolution

profiling of metastatic PDAC patient tissue using scRNA-seq

(Gierahn et al., 2017; Hughes et al., 2020) and derivation of

matched organoid models (Boj et al., 2015; Tiriac et al., 2018)

from the same core needle biopsy. Using this approach, we

generated a single-cell map of metastatic PDAC and used it as

a reference to benchmark cell states in matched organoid

models. We identify a new intermediate co-expressor (IC)

PDAC cell state, uncover distinct site- and subtype-specific

TMEs, and demonstrate that TME signals are critical regulators

of cancer cell state, plasticity, and response to therapy.

RESULTS

Model systems retain genetic fidelity but lose
expression state heterogeneity
Current precision medicine pipelines focus on preserving muta-

tional fidelity in cancer models; however, it is unclear how well

these samemodels represent prognostic RNA states (Figure 1A).

We compared bulk DNA andRNA-sequencing profiles of primary

and metastatic patient tumors with established cell lines and a

cohort of newly generated patient-derived organoids to under-

stand how each model system represents the distribution of

mutational and RNA phenotypes seen in patients. We observed

no significant difference in driver oncogene alteration fre-

quencies among the groups, suggesting that model systems

are relatively faithful genetic representations of patient cohorts

(Fisher’s exact test; Figure 1B, far right). Next, we assessed

PDAC subtypes derived from several recent bulk RNA-

sequencing studies (Figure 1C) (Bailey et al., 2016; Chan-Seng-

Yue et al., 2020; Collisson et al., 2011; Moffitt et al., 2015).

Subsets of signatures from each study were highly concordant

and separated primarily into classical-like (clade 1) and basal-

like (clade 2) groups. Clade 3 signatures were generally lower in

expression but tended to associate with clade 1, while clade 4
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Figure 1. Assessing transcriptional states in patient tumors and cancer models

(A) Precision medicine pipelines assess model fidelity for genetics but typically do not evaluate RNA states.

(B) Alterations in PDAC driver genes across primary resections (TCGA), metastatic biopsies (Panc-Seq), and organoid and cell line (CCLE) models. Grey indicates

where genomic data were not available. P-values by Fisher’s exact test.

(C) Comparison of PDAC expression signatures from bulk RNA-sequencing in primary and metastatic tumors, cell lines, and organoid models in (B). Rows are

clustered, columns are sorted by average basal-classical score difference. P-values indicate differences between patient tumors, cell lines, and organoids

by ANOVA.

(D) Schematic of contributors to RNA state that may lead to differences between in vivo and ex vivo expression patterns.

(E) Metastatic patient samples were collected via core needle biopsies and dissociated. Biopsy cells were allocated for scRNA-seq, and patient-matched or-

ganoids were developed with downstream serial scRNA-seq sampling.

(F and G) t-distributed stochastic neighbor embedding (t-SNE) for biopsy (F) and matched patient-derived organoid cells (G).

See also Figure S1; Tables S1 and S2.
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signatures represented exocrine pancreas expression patterns

and tended to be expressed only in primary disease, suggesting

that they may be due to contributions from the primary PDAC

TME. Relatedly, the documented low malignant cellularity in

PDAC may obstruct malignant cell-specific signature identifica-

tion in bulk RNA-sequencing datasets (Collisson et al., 2019).
In contrast to the mutational data, we observed significant dif-

ferences for all RNA signatureswhen comparing tumors tomodel

types (Figure 1C). Whereas primary and metastatic samples

include tumors with both classical-like (clade 1) and basal-like

(clade 2) signatures, cell lines exhibited predominantly basal-

like (clade 2) subtypes while organoids were nearly entirely
Cell 184, 6119–6137, December 9, 2021 6121



ll
OPEN ACCESS Article
classical-like (clade 1) with partially overlapping expression of

some clade 3 signatures (Figures 1C and S1A). These observa-

tions demonstrate that despite preservation of genomic alter-

ations, neither PDAC cell lines nor organoids represent the full

repertoire of expression subtypes seen in patient cohorts.

Single-cell profiling of metastatic PDAC and matched
organoid models
These findings highlight a critical need for new approaches to

identify the determinants of cancer cell state both in vivo and in

model systems.Cell state is a complexattribute since it integrates

cell-intrinsic as well as TME-dependent features; therefore, mul-

tiple mechanisms (e.g., clonal selection and/or plasticity) may

contribute to the divergence between in vivo and ex vivo expres-

sion patterns (Figure 1D). We hypothesized that a dataset at sin-

gle-cell resolution allowing for matched comparisons of in vivo

and ex vivo attributes would enable a better understanding of

cell state drivers, stability, and functional relevance. To this end,

we established a pipeline to generate matched scRNA-seq pro-

files and organoid models using core needle biopsies from pa-

tients with metastatic PDAC (n = 23) (Figures 1E and S1B; Table

S1).Mostsampleswereobtained frommetastatic lesions residing

in the liver (19/23), and the majority (21/23) were analyzed by tar-

geted DNA-sequencing, yielding the expected mutational pat-

terns (Figure S1B).

Our pipeline generated approximately 1,000 high-quality sin-

gle cells per biopsy and successful early-passage organoid cul-

tures from 70% of patient samples (16/23 samples reaching at

least passage 2) (Figures 1E, 1F, and S1B–S1D). Consistent

with other studies, we observed patient-specific and admixed

clusters of single cells suggesting the presence of both malig-

nant and non-malignant cells in each biopsy (Figures S1E and

S1F; STAR Methods) (Kim et al., 2018; Puram et al., 2017;

Sade-Feldman et al., 2019; Tirosh et al., 2016a). Inferred copy

number variation (CNV) alteration scores separated putative

cancerous and non-cancerous cells in each biopsy and demon-

strated high concordance with reference targeted DNA-seq (Fig-

ures S1G and S1H) (Patel et al., 2014; Tirosh et al., 2016b). CNV

analysis andmanual inspection of expression patterns for known

markers across single cells supported the identification of malig-

nant cells as well as 11 unique non-malignant cell types (Figures

S1I–S1K; Table S2). Thus, despite the documented low malig-

nant cellularity in PDAC (Aguirre et al., 2018; Cancer Genome

Atlas Research Network, 2017; Chan-Seng-Yue et al., 2020),

we established a robust pipeline that retrieved high-quality ma-

lignant (n = 7,740) and non-malignant (n = 15,302) single-cell

transcriptomes from metastatic PDAC needle biopsies, as well

as those of matched organoids (n = 24,995) (Figures 1E–1G).

Single-cell resolution identifies an IC cancer cell state in
metastatic PDAC
After separating the CNV-confirmed PDAC cells from non-malig-

nant cells (excluding one neuroendocrine sample; Figure S2A;

see STAR Methods), we first interrogated whether previously

described RNA subtypes (Figure 1C) are represented in single

metastatic PDAC cells. Subsets of metastatic cells scored highly

for either classical-like or basal-like signatures derived from in-

dependent bulk studies indicating the general relevance of these
6122 Cell 184, 6119–6137, December 9, 2021
expression programs to in vivo PDAC biology (Figure 2A). The re-

maining literature-derived signatures had low expression in

these metastatic cells, suggesting either specificity for primary

disease or influence from non-malignant expression in bulk

RNA profiles. Interestingly, a large subset of cells showed low

expression for all previously proposed signatures, highlighting

agap in our understanding of PDACexpression states (Figure 2A;

‘‘Low for bulk subtypes’’).

Given this large subset of cells that score weakly for previously

identified signatures, we sought to understand the spectrum of

in vivo expression states through an unbiased analysis of our sin-

gle-cell dataset. Principal component analysis (PCA) on all ma-

lignant cells revealed that genes enriched for signatures of

epithelial/mesenchymal transition (EMT) (PC1) (Gröger et al.,

2012), basal-like and classical PDAC states (PC1 and PC2),

and cell cycle (PC3 and PC8) (Tirosh et al., 2016a) drove the ma-

jor axes of variation in the dataset (Figures S2B and S2C). The

PC1-PC2 score difference was correlated with the basal-clas-

sical signature axis previously identified in bulk studies (r =

0.8). We identified 1,909 genes significantly correlated with

either end of the basal or classical-enriched continuum within

our single-cell cohort (Figure S2D; Table S3; STARMethods). In-

spection of these genes revealed that more basal-like cells are

associated with transforming growth factor beta (TGF-b)

signaling, WNT signaling, EMT, and cell cycle progression.

Epithelial and pancreatic lineage programs are enriched in the

cells with more classical-like attributes (Figures S2E and S2F).

We term the signatures derived from our single-cell cohort as

single-cell basal (scBasal) and single-cell classical (scClassical)

(Figure 2B).

Single-cell analysis enabled a dissection of expression states

that are confounded by contaminating non-malignant cells in

bulk measurements. For example, in bulk RNA-seq studies

(Aguirre et al., 2018; Cancer Genome Atlas Research Network,

2017), EMT programs are strongly correlated with markers of fi-

broblasts (r = 0.9), inversely related to purity metrics (r = �0.5),

and poorly correlated with basal-like expression (r = �0.08). At

single-cell resolution, we observed a subset of cells that express

both scBasal and EMT programs, while other scBasal cells had

low expression of EMT programs (Figure 2C, left). Similarly, the

origin of cytokine response signatures can be difficult to interpret

from bulk studies, as interferon (IFN) response gene signatures

are positively correlated with markers of several cell types

including macrophages (r = 0.6) and T cells (r = 0.4), negatively

associated with purity metrics (r = �0.4), and not associated

with either basal-like or classical scores (r = 0.01 and �0.04,

respectively). In single cells, we observe clear patterns of asso-

ciation between IFN response and a subset of cells with interme-

diate scBasal expression (Figure 2C, right). These findings sug-

gest not all basal-like cells have the same underlying attributes

and highlight the importance of utilizing scRNA-seq to under-

stand howmalignant cells sense and respond to their local TME.

Although some studies suggest that basal and classical pro-

grams exist only in discrete cell populations (Chan-Seng-Yue

et al., 2020), we observed that the scBasal and scClassical pro-

grams were not mutually exclusive. Rather, we identified cells

that are intermediate for scBasal and scClassical geneexpression

signatures, co-expressed features of both programs to varying
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Figure 2. An intermediate co-expressor state bridges basal and classical phenotypes

(A) Signature scores (rows) for bulk derived expression subtypes in malignant cells (columns).

(B) Heatmaps depict the expression of scBasal and scClassical expression programs and highlight a co-expressing cell population.

(C) Variation in EMT and IFN response signature expression within malignant cells that have scBasal expression.

(D) The intermediate co-expressor (‘‘IC’’) expression program is enriched in co-expressing cells. Enrichment adjusted P-values (hypergeometric test) for EMT,

KRAS, and AKT gene sets are indicated at right in (B) and (D).

(E) Gene set enrichment analysis for the 115 genes specific to the intermediate co-expressor program.

(F) Malignant cell state diagram for PDAC. ScBasal-scClassical commitment score (x axis) and IC score (y axis).

(G) Frequency of co-expressing cells is related to increased mixing of scBasal and scClassical cell populations. Log ratio of % scBasal and scClassical cells in

each sample (x axis; dotted line at 0 indicates equal percentages of scBasal and scClassical cells) versus their % IC cells (y axis).

(H) Multiplex immunofluorescence analysis identifies co-expressing cells in matched metastatic samples. White box indicates region for co-expression insets at

bottom. Scale bar represents 10 mm.

See also Figures S2, S3, and S4; Table S3.
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degrees, and were poorly described by previously identified bulk

RNA subtypes (Figures 2B [‘‘Co-expressing cells’’], S3A, and

S3B). We identified 115 genes whose expression was correlated

with scBasal-scClassical co-expression and termed this gene

set the IC state (Figures 2D, S3C, and S3D; Table S3; STAR

Methods).

The IC state is enriched for developmental, RAS signaling,

and inflammation/stress response gene sets (Figure 2E). Signa-

tures of RAS signaling are enriched in the IC state even

compared with scBasal and scClassical programs, and, by

contrast, scClassical states are enriched for AKT-associated
gene sets (Figures 2B, 2D, 2E, and S2F). We also assessed

whether the IC state overlapped with any phenotypes recently

reported in a study of normal pancreas progenitors (Qadir et al.,

2020). We found that both scBasal and scClassical gene

expression signatures are expressed by pro-ductal progenitor

cells, while the IC gene expression program is enriched in an

undifferentiated, stress-responsive progenitor population (Fig-

ure S3E) (Qadir et al., 2020). Although the IC state may not

represent a distinct step along a developmental trajectory, it

may represent a similar stress-induced transition state in a

cancer context.
Cell 184, 6119–6137, December 9, 2021 6123
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We next assessed how this new IC state relates to previously

proposed bulk signatures to clarify potential inter-relationships.

Pairwise correlation of our PDAC single-cell and established

bulk RNA-seq signatures in malignant cells revealed that the IC

state is unique and not well described by prior signatures (Fig-

ure S3F). Our findings suggest that malignant PDAC cells orga-

nize in a tripartite cell state framework that spans committed

basal and classical phenotypes, with considerable signature

co-expression in single cells (Figure 2F). Similar to the variation

in EMT scores observed in scBasal-expressing cancer cells (Fig-

ure 2C), we noted heterogeneity among co-expressing cells for

the IC program (Figure 2F).

Classification of tumors by their malignant pseudo-bulk signa-

ture expression stratified the cohort into those that expressed

predominantly scBasal, scClassical, or IC signatures (Fig-

ure S3G–S3I). Individual patient specimens still exhibited signif-

icant heterogeneity at the cellular level, containing at least two

and sometimes all three malignant cell states (Figure S3J). Sam-

ples with greater malignant cell state diversity (i.e., higher pro-

portions of both scBasal and scClassical cells) also exhibited a

higher proportion of cells expressing the IC state, suggesting

the IC state may serve as a transition between scBasal and

scClassical poles (Figure 2G).

Multiplex immunofluorescence confirms a tripartite cell
state framework in metastatic and primary PDAC
To validate this extensive heterogeneity and the presence of co-

expressing cells in our metastatic cohort, we used a subtype-

specific multiplex immunofluorescence (mIF) panel to categorize

single malignant cells by their patterns of marker detection in 10

matched cases from our single cell study (Figure S4A; Table S3;

STAR Methods). We observed overlap of basal and classical

markers within single cells at the protein level, corroborating

the existence of co-expressing cells (Figures 2H andS4B).More-

over, we observed a significant correlation between malignant

phenotypes assessed by mIF protein detection for samples

from the same RNA subtype (average r = 0.52) compared to

those of different subtypes (average r = 0.06, p < 10�7, Student’s

t test) (Figure S4C, white dots). Deep sampling of each matched

biopsy using mIF (mean = 13,078 cells per sample) also

confirmed the increased fraction of co-expressing cells in tu-

mors with equal basal and classical cell state mixing (Fig-

ure S4D). Finally, we used mIF to identify co-expressing cells

in primary tumor samples, suggesting that the IC state may be

a general feature of PDAC (Figure S4E).

Benchmarking model expression state using matched
in vivo reference maps
With this high-resolution reference map of in vivo malignant cell

states, we next asked whether matched ex vivomodels retained

the cell state distribution of the tissues from which they were

derived. An unbiased comparison of all malignant cells (biopsy

and organoid; 32,073 cells) revealed separation of biopsy and or-

ganoid profiles, while organoid samples from iterative passages

ex vivo clustered together (Figures S5A and S5B). After removing

low-frequency non-malignant cells (Figures S5B–S5D; STAR

Methods), we observed that models attempted from biopsies

with high malignant-cell-averaged scBasal or IC states exhibited
6124 Cell 184, 6119–6137, December 9, 2021
lower rates of long-term propagation than models derived from

scClassical tumors (Figure 3A). When comparing early passage

CNV-confirmed organoid cancer cells to their cognates from pa-

tient tissues, culture in an ex vivo microenvironment caused

greater deviation in cell state than CNV-defined genotype (Fig-

ure 3A; STAR Methods).

We next examined how ex vivo transcriptional states in our or-

ganoid cohort differed from their matched patient samples (Fig-

ure 3B). We observed a striking loss of scBasal gene expression

and to a lesser extent, the IC program. By contrast, aggregate

scClassical gene expression remained largely unchanged in or-

ganoid conditions. This comparative analysis also nominated a

set of upregulated organoid-specific genes that were not pre-

sent in vivo, including markers of epithelial identity, oxidative

stress response pathways (e.g., NRF2 target genes), and amino

acid metabolism (hereafter collectively referred to as ‘‘organoid-

specific’’ gene expression) (Figure 3C, bottom; Table S4). These

findings suggest that changes to microenvironmental growth

conditions significantly alter cellular transcriptional states and

induce culture-specific expression programs, highlighting the

importance of benchmarking ex vivo models using matched

in vivo states as a reference.

Transcriptional state heterogeneity is shaped by the
ex vivo microenvironment
Regardless of the cell state distribution in the original biopsy, indi-

vidual models assumed more scClassical or organoid-specific

cell states over time in culture (Figure 3D), mirroring the results

in our larger bulk RNA-seq cohort (Figures 1B and 3C [top]). To

better understand the drivers of this cell state bias, we first inves-

tigated genetic alterations associated with either the basal or

classical subtypes. Prior work has suggested that KRAS amplifi-

cations associate with basal features (Chan-Seng-Yue et al.,

2020; Miyabayashi et al., 2020), while amplifications of lineage

transcription factors like GATA6 associate with classical sub-

types (Chan-Seng-Yue et al., 2020). In agreement with prior

bulk studies, we observed a significant association between sin-

gle-cell inferredKRAS copy number gain and the scBasal state in

metastatic cells (p < 0.03 Fisher’s exact test) (Figure S5E). Four

KRAS-amplified samples proliferated ex vivo and maintained

this alteration, but their malignant cell state shifted from scBasal

in vivo to scClassical in organoid culture (Figures 3D [black

dots] and S5F), including one sample where the same KRAS-

amplified clone exhibited a similar scBasal (biopsy) to scClassical

(organoid) state shift (Figure 3E). These findings demonstrate that

KRAS amplification alone is not sufficient to lock the scBasal

expression state, PDAC cells are plastic, and the microenviron-

ment can influence cell state independent of genotype in this

context.

We next compared genetic heterogeneity (inferred CNV sub-

clones) and transcriptional states from matched biopsy tissue

and organoid samples from iterative passages. ScClassical tu-

mors tended to maintain their genotype and transcriptional state

both early in culture and at later passages (e.g., PANFR0631)

(Figures 3D and S5G [clone A]). In contrast, most models derived

from scBasal or IC tumors exhibited early cell-state deviation

and cessation of growth within 100 days of initiation (e.g.,

PANFR0552) (Figures 3D and S5H). In some cases, we observed
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Figure 3. Organoid culture selects against the scBasal state with transcriptional evolution over time

(A) Outgrowth and similarity between organoids andmatched biopsy samples. Red fill indicates successful early (Early) and long-term (Estab.) culture. Right gray

scale indicates similarity between each biopsy-early organoid pair for inferred CNVs (genotype, Geno.) or cell state (State). P-value for Geno. versus State

differences determined by Student’s t test.

(B) Schematic for matched in vivo malignant cell and organoid comparison.

(C) Single-cell and average expression of malignant programs (top) and organoid-specific genes (bottom) in biopsy cells and matched, early passage organoid

cells (n = 13 models). P-values determined by Student’s t test. Parenthetical P-values (left) indicate hypergeometric test for pathway enrichments.

(D) Swimmer’s plot depicting organoid state evolution in culture. Pie charts indicate the fraction of cell states at each time point.

(E) Clonal fractions from KRAS-amplified PANFR0575 biopsy (gray) and organoid (red) cells. Clone A (green) is present in both. Heatmap shows expression of

scBasal and scClassical states in clone A from both contexts.

See also Figure S5.
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outgrowth of an scClassical sub-clone in culture. For example,

the in vivo scBasal clones from PANFR0489R rapidly decreased

in abundance while clones with scClassical or organoid-specific
states emerged at later passages (Figures S5I and S5J). By

contrast, in vivo scBasal clones from PANFR0575 were main-

tained initially in culture, but their cell state was highly plastic
Cell 184, 6119–6137, December 9, 2021 6125
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and changed to scClassical when measured as organoids at

passages 2 and 3 (Figures 3E and S5K). After > 100 additional

days in ex vivo culture, PANFR0575 regained scBasal expres-

sion and clones with inferred TP63 amplifications, a squa-

mous-specifying transcription factor (Somerville et al., 2018),

dominated the culture (Figure S5K [clones D and E]). Our detailed

analysis reveals that both plasticity and selection occur in the

same model, where certain clones demonstrate plasticity in

response to microenvironmental signals, and certain genotypes,

though rare, may still exert a strong effect despite opposing cues

from the microenvironment. In sum, these findings underscore

the need to consider both mutational and transcriptional state

to ensure faithful representation of in vivo cancer cell

phenotypes.

Media formulation influences PDAC transcriptional
states ex vivo

Given the evidence for selection and plasticity in standard orga-

noid conditions, we tested whether specific aspects of the

ex vivo culture environment governed cell state determination.

We first evaluated the effects of extracellular matrix dimension-

ality by culturing established 3-dimensional (3D) organoid

models as 2-dimensional (2D) cell lines in the same organoidme-

dium. This did not affect transcriptional subtype across the 4

models tested (Figure S5L). Next, we asked whether culturing

established organoid models in altered media conditions could

rescue expression heterogeneity (Figure 4A). We cultured 4 or-

ganoid models in media without any additives for 6 days (‘‘Min-

imal’’ medium) (Table S5; STARMethods) and observed a robust

increase in scBasal expression, a decrease in organoid-specific

gene expression, and stable CNV profiles (Figures 4B, S5M, and

S5N). With greater time in minimal medium, the distribution of

cell states shifted even further toward IC and scBasal (Figure 4C).

Since minimal medium lacks serum and mitogens to maintain

prolonged cell growth, we tested a reduced organoid media

formulation (‘‘OWRNA’’) (Table S5; STAR Methods) and found

that OWRNA supported proliferation, strengthened scClassical,

and allowed for scBasal expression (Figure S5O).

Given the divergence in cell state for cell line versus organoid

models of PDAC (Figures 1A and 1B), we took an established cell

line and an organoid model and cultured them in the reciprocal

media condition. Organoid cells grown in standard cancer cell

linemedium (‘‘Cell linemedia,’’ RPMI-1640with 10% fetal bovine

serum) (STAR Methods) gained scBasal expression, while

CFPAC1, an established pancreatic cancer cell line, lost scBasal

features when grown in complete organoid media (Figures 4D,

4E, S5P, and S5Q). To understand whether these state changes

are functionally significant, we exposed CFPAC1 cells grown in

basal media conditions (‘‘cell line media’’) or classical conditions

(complete organoid media) to SN-38 and paclitaxel. Strikingly, in

both instances, we observed greater sensitivity among cells

grown in organoid media, suggesting that environmental factors

can shape therapeutic response through state changes (Fig-

ure 4F). These findings demonstrate that even established

models are sensitive to changes in culture conditions and that

a combination of up-front selective pressures and culture me-

dium-imprinting shapes the cell-state biases in extant model

systems, influencing their functional attributes.
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Although maintaining organoids in minimal or cell line media

conditions resulted in partial recovery of scBasal and IC expres-

sion, we failed to observe fully polarized models (Figures S5P

and S5Q), suggesting that these conditions lack critical TME

components to fully specify cell state. We used differential

expression across each biopsy-organoid pair to nominate genes

that were expressed in vivo but missing ex vivo (Figure 3B; STAR

Methods). Genes differentially expressed by malignant cells

in vivo were related to soluble cytokine signaling, cell-cell

communication, and microenvironmental interactions (Fig-

ure 4G). Hierarchical clustering revealed state-dependent

expression patterns for in vivo-specific genes (Figure 4H; Table

S4). For example, IFN response and EMT genes were signifi-

cantly upregulated in scBasal and ICmalignant cells in vivo (clus-

ters 1 and 2), while genes associated with cell-cell interactions

and surface glycoproteins were more strongly expressed in IC

and scClassical cells (cluster 3). Genes related to biological

adhesion were more uniform in their expression across the sub-

types (cluster 4) (Figure 4H). The relative absence of these genes

in organoid culture and their differences in expression across

transcriptional subtypes in vivo suggests that TME signals might

play a role in fully specifying cancer cell transcriptional state and

potentially therapeutic responses.

Composition of the metastatic TME and site-specific
differences in mesenchymal populations
The presence of TME-associated expression patterns in cancer

cells in vivosuggested theremaybesubtype-dependent structure

to, and instructive signaling from, the metastatic TME; however,

relatively little is known about the composition of the metastatic

TME in PDAC. We analyzed the non-malignant cells (n = 14,811)

in themetastaticniche to further subclassify cell typesandprovide

a more complete picture of the immune/stromal composition of

metastatic disease (Figure 5A). Sub-clustering of T cells and nat-

ural killer (NK) cells revealed4cell types (CD4+T,CD8+T,NK, and

CD16+ [FCGR3A+] NK cells) (Figures S6A and S6B; STAR

Methods) Similarly, an unbiased analysis within the monocyte/

macrophage compartment revealed 3 subsets of tumor associ-

ated macrophages (TAMs) (FCN1+ ‘‘monocyte-like’’ TAMs,

C1QC+ TAMs, and SPP1+ TAMs) (Figures S6C and S6D; Table

S2) (Zhang et al., 2020; Zilionis et al., 2019). Marker expression

across all previously described non-malignant cells is summa-

rized in Figure S6E.

Whether the TME differs between primary PDAC and different

metastatic sites is not well understood. Although we found equal

distribution of immune cells across different metastatic sites,

mesenchymal cells clustered by the site of disease (Figures

S6F and S6G). Despite uniform expression of a previously

described myofibroblast signature (Elyada et al., 2019; Ӧhlund

et al., 2017), an unbiased analysis revealed divergent mesen-

chymal states favoring expression of either fibroblast-like or

pericyte-like genes (Figures S6H–S6K; Table S2) (Bartoschek

et al., 2018; Di Carlo and Peduto, 2018; Hosaka et al., 2016; Pe-

lon et al., 2020). While biopsies from each location contained

both subsets, we detected a strong association between liver bi-

opsies and the pericyte-like mesenchymal state (Figures 5B,

S6L, and S6M). We validated this association in larger cohorts

and observed a similar relationship between pericyte-like
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Figure 4. Modulation of the media microenvironment allows recovery of scBasal states

(A) Strategies to recover scBasal expression in different media conditions.

(B) Tied dot plot for sample average scBasal score (left) and organoid-specific score (right) in the indicated conditions. Color outline indicates sample identity. P-

value compares single cell distributions within models and was calculated by Student’s t test.

(C) Cell state diagrams for organoid cells cultured in minimal media. P-values are for that time point versus the complete media condition and compare B/C

commitment (top) and IC scores (right) by ANOVA followed by Tukey’s HSD.

(D and E) Violin plots depict scBasal and organoid-specific expression scores in PANFR0562 organoid cells (D) or CFPAC1 cell line (E) after 6 days in Complete

organoid medium or in ‘‘Cell line’’ medium. P-values for differences were calculated by Student’s t test.

(F) CFPAC1 cell line growth rate-adjusted dose response curves to SN-38 and paclitaxel after culture in standard ‘‘Cell line’’ medium or in Complete organoid

medium. Points are the mean ± SD of 3 technical replicates. Curves are representative of 2 independent experiments.

(G) Significant pathway enrichments (P-value < 10�12) for top in vivo differentially expressed genes (143 genes).

(H) Average expression in biopsy (left) and organoid cells (right) for the 143 top in vivo differentially expressed genes (rows), organized by originating tumor’s

overall transcriptional subtype (colored dots). Parenthetical P-values (left) for enrichment of indicated pathways are by hypergeometric test. Overall biopsy versus

organoid expression difference is determined by Student’s t test (bottom). P-values computed by one-way ANOVA followed by Tukey’s HSD (center) are for

differences in average expression between biopsy transcriptional subtypes (*P-value < 10�8; **P-value < 10�16).

See also Figure S5; Tables S4 and S5.

ll
OPEN ACCESS

Cell 184, 6119–6137, December 9, 2021 6127

Article



A E F

B

C

D

G

H

I

J

Figure 5. Distinct mesenchymal phenotypes and transcriptional state-specific immune heterogeneity exist in the liver metastatic

microenvironment
(A) t-SNE visualization of non-malignant cells identified in themetastatic microenvironment, abbreviations as in Figure S1J (TAM, tumor associatedmacrophage).

(B) Expression of Fibroblast-like (PC2 low) and Pericyte-like (PC2 high) mesenchymal (Mes.) cell programs across different metastatic sites (top).

(C) Density plots for mesenchymal cell phenotype score in single cells from our metastatic cohort (top) or previously published PDAC bulk RNA-seq profiles

(bottom), fill indicates anatomic site. P-value determined by Student’s t test (top) or by ANOVA followed by Tukey’s HSD (bottom).

(D) Summary of mesenchymal phenotypes in primary versus liver metastatic PDAC.

(legend continued on next page)
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expression and liver metastases, while in contrast, tumors in the

pancreas favored fibroblast-like mesenchymal expression (Fig-

ure 5C). Thus, we observed diverse immune and stromal cell

types in the metastatic TME and identified mesenchymal fea-

tures unique to the liver niche compared with primary disease

(Figure 5D).

Transcriptional subtypes associate with distinct
immune microenvironments
We next searched for associations between malignant cell state

and the composition of the TME. Five samples were excluded

from this analysis on the basis of low cell counts (< 200 cells)

or indeterminant transcriptional subtype (Figure S6N). We

applied Simpson’s diversity index to define each tumor’s overall

microenvironmental composition (STAR Methods). Tumors with

higher average malignant scClassical or IC expression harbored

greater TME diversity, while strongly scBasal tumors exhibited

more homogeneous TMEs (Figure 5E). We observed a similar

pattern in bulk samples where we inferred diversity by using

the ‘‘immunogenic’’ signature (Bailey et al., 2016) to indicate

greater immune cell infiltration (Figure 5F). Clustering over the

cell type fractions in each biopsy revealed the non-malignant

cell types driving overall diversity differences (Figures 5G and

5H). C1QC+ TAMs dominated the TME of strongly scBasal tu-

mors, and both CD8+ and CD4+ T cells were significantly

depleted in scBasal contexts compared to the rest of the sam-

ples in the cohort (Figures 5H and 5I). By contrast, T cells were

most often isolated from, and their abundance positively corre-

lated with, higher IC malignant fractions in our cohort (Figures

5I and S6O). We observed similar patterns in bulk RNA-seq

data from The Cancer Genome Atlas (TCGA) (Weinstein et al.,

2013; Vivian et al., 2017), noting reduced levels of immune-

related gene expression in other epithelial tumors with high

basal/squamous gene expression (Figure S6P [cluster 4]).

Together, these findings suggest coordination between cancer

cell states and the local TME, with decreased immune cell diver-

sity in basal contexts (Figure 5J).

State-specific TME signals drive transcriptional
heterogeneity and drug response
Based on these observations, we hypothesized that soluble fac-

tors specific to the TME of each transcriptional subtype may

drive cancer cell states and potentially influence their therapeutic

responses (Figure 6A). In vivo, the secreted factor milieu sur-

rounding cancer cells originates from at least two sources: ma-

lignant cells themselves (‘‘autocrine’’ factors) and non-malignant
(E) Correlation betweenmicroenvironment diversity (Simpson’s index, x axis) and

scRNA-seq sample.

(F) Correlation between TME diversity as inferred by immunogenic signature scor

in primary and metastatic bulk RNA-seq samples.

(G and H) Sample-level (columns) variation in Simpson’s index (G, dot plot), avera

expression, and fraction of non-malignant cell types (H). Samples were clustered

resentation of cell types. Dots indicate top statistically significant cell type freque

correction.

(I) Boxplots compare cell type fractions between the scBasal predominant tumors

Student’s t test.

(J) Summary of associations between microenvironmental diversity, non-maligna

See also Figure S6; Table S2.
cells (‘‘paracrine’’ factors) (Figure 6A).We first identified secreted

factors differentially expressed by cancer cells in each transcrip-

tional state (‘‘autocrine’’ signals) and applied these to rescue IC

and scBasal expression in ex vivo models (Figure 6B; Table S6;

STARMethods). TGFB2was the top differentially expressed fac-

tor shared by malignant cells in both scBasal and IC TMEs (Fig-

ure 6B), and organoids cultured with TGF-b ligands exhibited a

pronounced shift toward IC and scBasal states (Figure 6C).

The reemergence of scBasal transcriptional heterogeneity in

bothminimalmedia (Figure 5C) and TGF-b conditions (Figure 6C)

suggested that different types of microenvironmental pressure

can lead to the basal-like cell state. These experiments also indi-

cate that culture conditions can be tuned to achieve composi-

tional differences spanning scClassical, heterogenous, and

scBasal expression, akin to those seen in vivo.

We next assessed whether TME signals, like media formula-

tion (Figure 4F), could influence drug sensitivity through altering

transcriptional state. In an isogenic organoid system (STAR

Methods), models induced to adopt scBasal expression through

exposure to TGF-b for 3 weeks were less sensitive to several

standard-of-care chemotherapeutic agents including gemcita-

bine, paclitaxel, and SN-38, the active analog of irinotecan (Fig-

ures 6D, S7A, and S7B; Table S7). The duration of exposure to

TGF-b corresponded with the degree of state shift, and these

states were highly plastic, as withdrawal of TGF-b resulted in a

return to scClassical expression (Figure 6E). Drug sensitivity

tracked with cancer cell state, as models were re-sensitized to

chemotherapeutic agents upon shifting back to the scClassical

state (Figures 6E and 6F). These observations agree with recent

clinical trial data showing that patients with basal phenotypes

tend to have poorer outcomes with combination chemotherapy

(Aung et al., 2018; Bailey et al., 2016; Collisson et al., 2011; Con-

nor et al., 2019; Moffitt et al., 2015). Together, these findings

highlight the remarkable phenotypic and functional plasticity

inherent in tumor models.

To assess for state-specific vulnerabilities more broadly, we

tested a 24-drug panel in isogenic organoid systems with the

scBasal state induced via two distinct routes, either by culturing

in minimal or TGF-b-containing medium (Figure 6G; Table S7).

Within the same model, scClassical states were on average

more sensitive to both chemotherapy and agents targeting

DNA-damage repair pathways while scBasal states were more

sensitive to mitogen-activated protein kinase (MAPK) pathway

inhibitors (MEK and ERK inhibitors) (Figures 6G, S7A, and

S7B). These findings provide direct evidence that transcriptional

state can be a major determinant of drug response and that
the average malignant scBasal-scClassical commitment score (y axis) for each

e (x axis) versus average tumor scBasal-scClassical commitment score (y axis)

ge malignant scBasal-scClassical (G, top heat bar) and IC (G, bottom heat bar)

and ordered within metastatic site (liver versus other) by their fractional rep-

ncy differences calculated using a Kruskal-Wallis test with multiple hypothesis

with low diversity (PANFR0593, 575, 545) and all others.P-value determined by

nt cell types, and malignant cell state.
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Figure 6. Tumor state-specific factors rescue malignant transcriptional heterogeneity and reveal state-specific drug sensitivities

(A) Schematic describing microenvironmental inputs to tumor cell state in vivo (left, ‘‘Metastatic environment’’) versus ex vivo (center, ‘‘Organoid environment’’)

and a strategy to recover malignant transcriptional heterogeneity ex vivo (right, ‘‘State-supportive environment’’).

(B) Differential expression (Wilcoxon rank sum test) of secreted factors between in vivo tumor cells scored as scBasal versus scClassical (x axis) and ICmalignant

cells versus the rest (y axis). State-specific genes that pass significance after multiple hypothesis correction (p < 0.05) are colored by their group association.

(C and D) Cell state diagrams with marginal density plots (C) and growth rate-adjusted dose response curves to gemcitabine and SN-38 (D) for organoid model

PANFR0562 cultured for 3 weeks in control medium (OWRNA) or in control medium with TGF-b. P-values in (C) for group differences between B/C commitment

(top) and IC scores (right) were calculated by ANOVA followed by Tukey’s HSD. In (D), points are the mean ± SD of 3 technical replicates. Curves are repre-

sentative of 2 independent experiments.

(legend continued on next page)
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differential targeting of cell states represents an actionable ther-

apeutic paradigm.

Paracrine signals from the local TME direct cancer cell
transcriptional phenotypes
We next searched for paracrine factors differentially expressed

by the non-malignant cells in each subtype. We noted an

increasing number of differentially expressed factors in the IC

and scBasal contexts and mapped each paracrine factor to its

cognate cell type to summarize the overall secreted factor com-

binations that shape subtype-specific TMEs in metastatic PDAC

(Figures 7A and 7B; Table S6; STAR Methods). Interestingly,

IFNG from CD8+ T cells was most highly expressed in the IC

TME, consistent with a higher T cell fraction in IC tumors (Figures

5G and S6O) and the relative increase in IFN-responsive gene

expression in IC and scBasal malignant cells (Figures 4G and

4H). Correspondingly, cells from organoid models exposed to

interferon g (IFNg) showed increased IFN response gene expres-

sion (IFN response score) and a concomitant shift toward the IC

state (Figures 7C, S7C, and S7D).

We next examined two in vivo scenarios for evidence that the

TME can drive cell state variation by analyzing samples from (1)

distinct metastatic sites within the same patient and (2) the same

metastatic site before and after immunotherapy. In the first case

(PANRF0473), a larger fraction of T cells within the liver metasta-

tic niche expressed high levels of IFNG (IFNG expression score)

relative to the lungmetastatic niche. Correspondingly, malignant

cells in the liver showed evidence of IFN response and higher IC

state expression (Figure 7D, S7E,F). Similarly, in serial samples

from the same liver lesion in patient PANFR0489, the post-pro-

gression biopsy harbored a higher fraction of T cells with high

IFNG expression scores, consistent with changes to the TME

stemming from immunotherapy. Post-progression malignant

cells again expressed higher IFN response scores, and their

transcriptional phenotypes were shifted toward the IC and

scBasal states relative to the pre-treatment malignant cells (Fig-

ures 7E, 7F, S7G, and S7H). These paired biopsies allow a win-

dow into the complex interplay between the TME and cancer

cells within the same patient and, consistent with our organoid

studies, illustrate the critical role that TME-supplied cytokines

and immune activation may play in directing cancer cell state.

DISCUSSION

Single-cell atlases of cancer have revolutionized our under-

standing of human malignancies and revealed that mutational

and transcriptional heterogeneity are common. Critical next

steps include understanding what drives cancer cell state and

whether it can be targeted therapeutically. Here, we provide a

systematic framework for assessing cancer cell states, identi-

fying drivers of transcriptional plasticity, and evaluating their

functional significance in model systems. The use of matched
(E) Cell state diagram time series for PANFR0562 organoids cultured with TGF-b

(F) Growth rate-adjusted dose response curves to gemcitabine and paclitaxel fo

(G) State-specific drug sensitivities in isogenic organoid model pairs skewed tow

mean ± SEM of 2–6 biologic replicates for the difference in growth rate-correcte

See also Figure S7; Tables S5, S6, and S7.
in vivo tissue as a reference for culture model state fidelity, an

approach that has been applied in normal organoid systems (Fu-

jii et al., 2018) but not in cancer, enabled a structured dissection

of cell-intrinsic versus TME-induced contributions to malignant

cell state. As the community continues to catalog these tran-

scriptional states in clinical samples at single-cell resolution,

we anticipate this framework will be broadly applicable for un-

derstanding their functional significance across a variety of

cancers.

Single-cell resolution enabled us to appreciate the layering of

malignant states whereby single cells can be unified in their sim-

ilarity for an expression subtype (e.g., scBasal or IC) but differ in

their expression of TME-influenced programs (e.g., IFN

response). Future studies across more patients and different

anatomic disease sites at single-cell resolution will be needed

to fully parse which invariant ‘‘core’’ genes mark archetypal

cell states in PDAC and which expression features are superim-

posed by the TME. Clinically annotated datasets will also aid in

the assessment of these expression states for prognostic value

and their utility in nominating cell state-specific therapeutic

liabilities.

We also uncovered formerly unappreciated relationships be-

tween cancer cell transcriptional states and the local TME.

Similar to the relationship between inflammation and tumorigen-

esis (Alonso-Curbelo et al., 2021; Li et al., 2021), our data

support a model wherein as tumors become inflamed and im-

mune-activated, malignant cells display enhanced state plas-

ticity. These relationships may have implications for PDAC

immunotherapy strategies given that a productive CD8 T cell

response may promote more aggressive basal-like states, as

suggested by our paired pre- and post-immunotherapy sam-

ples. Coordination between basal/mesenchymal malignant cell

states and immune responses may be a broadly relevant phe-

nomenon given our observations in other basal-like tumors and

recent work in glioblastoma (Hara et al., 2021). A recent publica-

tion further supports the idea that local TME variation can influ-

ence clinical outcomes in PDAC (Grünwald et al., 2021), while

our work provides direct evidence that TME signals are critical

drivers of malignant cell state and that cell state dictates drug

sensitivity. Larger cohorts of longitudinal single-cell measure-

ments, both spatially resolved and transcriptome-wide, from in-

dividual patients undergoing therapy are needed to fully assess

variation in the TME, the kinetics of cell state plasticity, and their

consequences for therapeutic response.

While the genetic evolution of ex vivomodels is an established

phenomenon (Ben-David et al., 2019; Ben-David et al., 2018), our

study shows similar ex vivo evolution along a transcriptional axis

that causes discordance between a patient sample and its

matched avatar. For example, biopsies taken fromPANFR0489R

and PANFR0576 establish long-term cultures ex vivo, but they do

not represent the dominant cell state of the correspondingpatient

tissue in vivo (Figure 3D). Given our demonstrated link between
or after TGF-b removal.

r models in (E). Points are the mean ± SD of 3 technical replicates.

ard scBasal or scClassical states by altering media formulation. Points are the

d Area Over the Curve (AOC) between each scBasal-scClassical model pair.
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Figure 7. Malignant transcriptional states respond to TME alterations in organoid models and in vivo

(A) Differential expression (Wilcoxon rank sum test) of secreted factors by non-malignant cells (paracrine) grouped by their sample-averaged malignant cell

expression state in scBasal and scClassical (x axis) tumors and IC biopsies and the rest (y axis). State-specific genes that pass significance after multiple hy-

pothesis correction (p < 0.05) are colored by their group association.

(legend continued on next page)
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cell state and therapeutic response, these findings establish the

necessity for preserving transcriptional fidelity in personalized

medicine pipelines (Hahn et al., 2021). Since models from

different patientsmayalsoharbordifferential plasticity andadapt-

ability, future efforts will need to evaluate models in multiple con-

ditions to account for this latent property, define its drivers (e.g.,

genetics, epigenetics), andaccuratelymap vulnerabilities. Impor-

tantly, manipulating the soluble microenvironment may offer a

more tractable approach for state-specific high-throughput

screening compared to more complex heterotypic co-cultures

or patient-derived xenograft systems.

Within thecontext ofPDAC, clinical studies are ongoing toeval-

uate the efficacy of gemcitabine/nab-paclitaxel and FOLFIRINOX

in patients with basal- versus classical-predominant metastatic

disease (e.g., PASS01 – NCT04469556). Our observations sug-

gest that basal tumors may exhibit broadly decreased sensitivity

to chemotherapy and highlight the need for new strategies to

target this transcriptional subtype of PDAC. Importantly, we

show that the transition to an scBasal statemay render cells sen-

sitive to other classes of inhibitors. Since most PDAC tumors are

heterogenous, combination strategies that suppress distinct cell

states may be necessary for maximal synergistic effect (Palmer

et al., 2019; Palmer and Sorger, 2017). Furthermore, the ability

of the TME to drive malignant cell state transitions suggests that

next generation therapeutic strategies may also need to target

site-specific supportive cells in the TME to control cell-state evo-

lution during therapy.

In sum, we provide a widely applicable framework to bench-

mark cell states in patient-derived model systems, identify the

drivers of malignant transcriptional heterogeneity, and examine

the functional significance of cell state. As efforts to characterize

cell states across malignancies provide new and increasingly

higher resolution maps of patient tissues, an important next

step will be to understand better how to control and target cell

state. We anticipate that our approach will provide a path toward

the systematic evaluation of cell state as a targetable feature in

cancer.

Limitations of the study
We focused on understanding how the TME supports cell state,

and thus we cannot comment directly on the epigenetic mech-

anisms through which these cell state transitions occur. Addi-

tional studies into the regulatory mechanisms underlying

PDAC state transitions will be a critical next step in further

delineating the relationships between cell-intrinsic and extrinsic
(B) Dot plot for state-specific significant differentially expressed paracrine fact

represents that cell type’s fraction within tumors of each subtype, and fill color ind

from each subtype are visualized.

(C) Density plots of IFN response score (top) and IC score (bottom) in control org

Student’s t test.

(D) Biopsy samples from distinct metastatic sites (liver, dark gray; lung, light gr

expression (top), malignant cell IFN response score (middle), and malignant IC sco

t test.

(E) Biopsy samples from the same lesion pre- and post-immunotherapy (checkpo

PANFR0489R, blue) demonstrate coordinated changes with treatment in T cell IFN

IC score (bottom). P-values for density plot differences were calculated by Stude

(F) Heatmap for malignant cell state shifts from samples in (E).

See also Figure S7; Tables S5, S6, and S7.
factors and state. In addition, we tracked CNV alterations to

define genetic clones, but future studies using barcode-based

lineage tracing approaches are needed to confirm whether in-

dividual cells transition between scClassical and scBasal states

via the IC state as our data suggest (Wagner and Klein, 2020).

While we focused predominantly on metastatic biopsies from

the liver, it will be important in future studies to more broadly

analyze how site-specific cues drive state plasticity. Even

with our limited number of samples from outside the liver, we

uncovered site-specific differences in mesenchymal popula-

tions which revealed important differences between metastatic

and primary disease. Given the pivotal role that has been sug-

gested for the fibrotic TME in primary disease (Ho et al., 2020;

Sahai et al., 2020), these findings carry important implications

for targeting the stromal compartment in primary versus meta-

static PDAC. Future studies with larger sample and cell

numbers will be needed to make comparisons across cell types

in primary and metastatic disease to fully understand how the

TME regulates transcriptional phenotypes in these distinct

niches. Here, advances in spatial transcriptomics will likely

empower a deeper understanding of these relationships across

compartments (Longo et al., 2021). Finally, future studies that

broadly map the landscape of RNA state-dependent drug

response across various cancer models will be needed to fully

define the links between malignant cell transcriptional plasticity

and therapeutic response.
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Antibodies

Mouse monoclonal anti-cytokeratin 17,

clone E3

Thermo Fisher Cat# MA5-13539; RRID:AB_10980102

Rabbit monoclonal anti-S100A2, clone

EPR5392

Abcam Cat# ab109494; RRID:AB_10859000

Rabbit monoclonal anti-Claudin18.2, clone

EPR19202-244

Abcam Cat# ab241330

Rabbit monoclonal anti-GATA-6 XP,

clone D61E4

Cell Signaling Technology Cat# 5851; RRID:AB_10705521

Rabbit monoclonal anti-TFF1 (estrogen

inducible protein pS2), clone EPR3972

Abcam Cat# ab92377; RRID:AB_10562112

Mouse monoclonal anti-cytokeratin, clone

AE1/AE3

Agilent/Dako Cat# M3515; RRID:AB_2132885

Mouse monoclonal anti-pan-keratin,

clone C11

Cell Signaling Technology Cat# 4545; RRID:AB_490860

Opal polymer HRP anti-mouse and

anti-rabbit secondary antibody

Akoya Biosciences Cat# ARH1001EA; RRID:AB_2890927

Biological samples

Human PDAC samples This study N/A

Chemicals, peptides, and recombinant proteins

Advanced DMEM/F12 Thermo Fisher Cat# 12634028

RPMI 1640 Corning Cat# 10-040-CV

Fetal bovine serum Sigma Cat# F4135

Penicillin/streptomycin Thermo Fisher Cat# 15140122

Primocin Invivogen Cat# ant-pm-1

HEPES Thermo Fisher Cat# 15630080

GlutaMAX Thermo Fisher Cat# 35050061

A83-01 Tocris Cat# 2939

Recombinant mouse Noggin Peprotech Cat# 250-38E

Recombinant mouse EGF Peprotech Cat# 315-09

Recombinant human FGF10 Peprotech Cat# 100-26

Human [Leu15]-Gastrin I Sigma Cat# G9145

N-acetylcysteine Sigma Cat# A9165

Nicotinamide Sigma Cat# N0636

B-27 supplement Thermo Fisher Cat# 17504044

Recombinant human TGF-b1 Peprotech Cat# 100-21

Recombinant human IFNg Peprotech Cat# 300-02

Growth factor reduced Matrigel Corning Cat# 356231

TrypLE Express Thermo Fisher Cat# 12604054

Trypsin-EDTA (0.25%) Thermo Fisher Cat# 25200056

CellTiterGlo 3D Promega Cat# G9683

Collagenase XI Sigma Cat# C7657

Dnase StemCell Technologies Cat# 07900

Y-27632 Selleck Chemicals Cat# S1049

ACK lysing biffer Thermo Fisher Cat# A1049201

Trypan blue solution, 0.4% Thermo Fisher Cat# 15250061
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Spectral DAPI Akoya Biosciences Cat# FP1490

Opal 520 reagent pack Akoya Biosciences Cat# FP1487001KT

Opal 540 reagent pack Akoya Biosciences Cat# FP1494001KT

Opal 570 reagent pack Akoya Biosciences Cat# FP1488001KT

Opal 620 reagent pack Akoya Biosciences Cat# FP1495001KT

Opal 650 reagent pack Akoya Biosciences Cat# FP1496001KT

Opal 690 reagent pack Akoya Biosciences Cat# FP1497001KT

Xylenes (histological) Fisher Scientific, X3P1GAL Cat# X3P-1GAL

BOND Epitope Retrieval Solution 1 Leica Biosystems Cat# AR9961

BOND Epitope Retrieval Solution 2 Leica Biosystems Cat# AR9640

Antibody diluent/block Akoya Biosciences Cat# ARD1001EA

1x Plus Automation Amplification Diluent Akoya Biosciences Cat# FP1609

ProLong Gold Antifade Mountant Fisher Scientific/Molecular Probes Cat# P36930

Gemcitabine Selleck Chemicals Cat# S1149

Paclitaxel Selleck Chemicals Cat# S1150

SN-38 Selleck Chemicals Cat# S4908

Trametinib Selleck Chemicals Cat# S2673

5-FU Selleck Chemicals Cat# S1209

Afatinib Selleck Chemicals Cat# S1011

AZD6738 (Ceralasertib) Selleck Chemicals Cat# S7693

Binimetinib Selleck Chemicals Cat# S7007

BVD-523 (Ulixertinib) Selleck Chemicals Cat# S7854

Dinaciclib Selleck Chemicals Cat# S2768

Everolimus Selleck Chemicals Cat# S1120

Gedatolisib Selleck Chemicals Cat# S2628

GSK126 Selleck Chemicals Cat# S7061

(+)-JQ1 Selleck Chemicals Cat# S7110

LY3023414 (Samotolisib) Selleck Chemicals Cat# S8322

MK-1775 (Adavosertib) Selleck Chemicals Cat# S1525

Navitoclax Selleck Chemicals Cat# S1001

Olaparib Selleck Chemicals Cat# S1060

Oxaliplatin Selleck Chemicals Cat# S1224

Palbociclib Selleck Chemicals Cat# S4482

Prexasertib Selleck Chemicals Cat# S6385

SHP099 Selleck Chemicals Cat# S8278

Tazemetostat Selleck Chemicals Cat# S7128

YKL-5-124 Selleck Chemicals Cat# S8863

2-mercaptoethanol Sigma Cat# M3148

Buffer RLT QIAGEN Cat# 79216

Buffer RLT Plus QIAGEN Cat# 1053393

Deoxynucleotide (dNTP) solution mix NewEngland BioLabs Cat# N0447L

Superase.In RNase Inhibitor Thermo Fisher Cat# AM2696

Maxima H minus reverse transcriptase Fisher Scientific Cat# EP0753

AMPure XP beads Beckman Coulter Cat# A63881

Guanidinium thiocyanate Thermo Fisher Cat# AM9422

N-Lauroylsarcosine sodium salt solution

(Sarkosyl NL)

Sigma Cat# L7414

Exonuclease l New England BioLabs Cat# M0293S

Klenow Fragment New England BioLabs Cat# M0212L

Polycarbonate membrane filters 62x22 Fisher Scientific/Sterlitech Corporation Cat# NC1421644
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REAGENT or RESOURCE SOURCE IDENTIFIER

MACOSKO-2011-10 mRNA Capture Beads Fisher Scientific/ChemGenes Cat# NC0927472

ERCC RNA spike-in mix Thermo Fisher Cat# 4456740

Critical commercial assays

AllPrep DNA/RNA/miRNA Universal kit QIAGEN Cat# 80224

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

Nextseq 500/550 High output v2.5 kit (75

cycles)

Illumina Cat# 20024906

NovaSeq 6000 S2 kit (100 cycles) Illumina Cat# 20012862

TruSeq Stranded mRNA Library Prep kit Illumina Cat# 20020595

Kapa HiFi HotStart ReadyMix Kapa Biosystems Cat# KK2602

KAPA HyperPrep kit (PCR-free) Kapa Biosystems Cat# KK8505

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA High-Sensitivity kit Thermo Fisher Cat# Q32854

Quant-iT Ribogreen RNA Assay kit Thermo Fisher Cat# R11490

Quant-iT PicoGreen dsDNA Assay kit Thermo Fisher Cat# P11496

Deposited data

Bulk and single-cell transcriptomic data

from PDAC patient samples and organoid

models

This study https://singlecell.broadinstitute.org/

single_cell/study/SCP1644 dbGaP:

phs002712.v1.p1

Primary PDAC genomic and transcriptomic

data (TCGA, Pancreatic Ductal

Adenocarcinoma)

Cancer Genome Atlas Research

Network, 2017

https://portal.gdc.cancer.gov/projects/

TCGA-PAAD

Metastatic PDAC genomic and

transcriptomic data (Panc-Seq)

Aguirre et al., 2018 dbGaP: phs001652.v1.p1

CCLE transcriptomic data Ghandi et al., 2019 https://portals.broadinstitute.org/ccle

TCGA transcriptomic data (other

malignancies)

Vivian et al., 2017 https://toil.xenahubs.net

Experimental models: Cell lines

Human PDAC organoids This study N/A

CFPAC-1 ATCC Cat# CRL-1918; RRID:CVCL_1119

L Wnt-3A cells for Wnt-3A conditioned

medium

ATCC Cat# CRL-2647; RRID:CVCL_0635

Cultrex 293T cells for R-spondin1

conditioned medium

Trevigen Cat# 3710-001-K; RRID:CVCL_RU08

Oligonucleotides

Seq-Well ISPCR: AAG CAG TGG TAT CAA

CGC AGA GT

Integrated DNA Technologies N/A

Custom Read 1 Primer: GCC TGT CCG

CGG AAG CAG TGG TAT CAA CGC AGA

GTA C

Integrated DNA Technologies N/A

Seq-Well 5¢ TSO: AAG CAG TGG TAT CAA

CGC AGA GTG AAT rGrGrG

Integrated DNA Technologies N/A

Seq-Well Custom P5-SMART PCR hybrid

oligo: AAT GAT ACG GCG ACC ACC GAG

ATC TAC ACG CCT GTC CGC GGA AGC

AGT GGT ATC AAC GCA GAG TAC

Integrated DNA Technologies N/A

Seq-Well dN-SMRT oligo: AAG CAG TGG

TAT CAA CGC AGA GTG ANN NGG NNN B

Integrated DNA Technologies N/A

Software and algorithms

R project for statistical computing v3.5.1 R Core Team https://www.r-project.org

R package – Seurat v2.3.4 GitHub https://github.com/satijalab/seurat
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R package – Circlize v0.4.8 CRAN https://CRAN.R-project.org/ package =

circlize

R package – infercnv v0.99.4 GitHub https://github.com/broadinstitute/inferCNV

R package – data.table v1.12.0 GitHub https://github.com/Rdatatable/data.table

R package – ggplot2 v3.2.1 CRAN https://CRAN.R-project.org/ package =

ggplot2

R package – ComplexHeatmap v2.7.3 Bioconductor https://bioconductor.org/packages/

ComplexHeatmap/

R package – dplyr v1.0.7 CRAN https://cran.r-project.org/web/

packages/dplyr/

STAR GitHub https://github.com/alexdobin/STAR

Cumulus Li et al., 2020 https://cumulus.readthedocs.io/

Broad Picard pipeline v1.90 GitHub https://broadinstitute.github.io/picard/

Genome Analysis Toolkit (GATK)

v1.6-5-g557da77 and v.4.1.6.0

Broad Institute https://gatk.broadinstitute.org/hc/en-us

Python Programming Language v3.7.4 Python https://www.python.org

Other

Leica BOND RX Research Stainer Leica Biosystems https://www.leicabiosystems.com/

ihc-ish-fish/fully-automated-ihc-ish-

instruments/bond-rx/

Vectra 3.0 Automated Quantitative Imaging

System

PerkinElmer/Akoya Biosciences https://www.akoyabio.com/phenoptics/

mantra-vectra-instruments/vectra-3-0/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be sent to and will be fulfilled by Dr. Alex K. Shalek (shalek@

mit.edu).

Materials availability
Organoid models generated in this study are available upon request with a materials transfer agreement.

Data and code availability
De-identified single-cell RNA-seq data are publicly available for download and visualization via the Single Cell Portal: https://

singlecell.broadinstitute.org/single_cell/study/SCP1644. Genomic and transcriptomic data will be available at the NCBI Database

of Genotypes and Phenotypes (dbGaP). This paper analyzes existing, publicly available data. The links and accession numbers

for these datasets are listed in the key resources table.

Code is available from the lead contact upon request.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human specimens
Eligible participants were recruited from outpatient clinics and inpatient units at the Dana-Farber Cancer Institute and the Brigham

and Women’s Hospital. Investigators obtained written, informed consent from patients at least 18 years old with pancreatic cancer

for Dana-Farber/Harvard Cancer Center Institutional ReviewBoard (IRB)-approved protocols 11-104, 17-000, 03-189, and/or 14-408

for tissue collection, molecular analysis, and organoid generation. ScRNA-seq samples were collected from 23 patients between

October 2018 and December 2020, both male (n = 13) and female (n = 10). Organoid samples for bulk genomic and transcriptomic

analyses were collected between May 2015 and January 2018. Core needle biopsy specimens were collected and the first core was

sent for pathologic analysis. One or more additional cores were then allocated for scRNA-seq and/or organoid generation. Clinical

features of our patient cohort are included in Table S1.
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Human PDAC patient-derived organoid models
Tissue samples were minced into small portions using a scalpel and then digested at 37�C for 15 min using digest medium that con-

sisted of human complete organoid medium (see below), 1 mg/mL collagenase XI (Sigma Aldrich), 10 mg/mL DNase (Stem Cell Tech-

nologies), and 10 mMY27632 (Selleck) (Tiriac et al., 2018). After dissociation, a portion of the cells from the fresh tumor specimenwere

allocated for scRNA-seq, and the remainder were initiated and maintained as patient-derived organoid cultures as previously

described (Boj et al., 2015; Tiriac et al., 2018). In brief, digested cells were seeded in 3-dimensional (3D) Growth-factor ReducedMa-

trigel (Corning), fed with human complete organoid medium containing Advanced DMEM/F12 (GIBCO), 10 mM HEPES (GIBCO), 1x

GlutaMAX (GIBCO), 500 nMA83-01 (Tocris), 50 ng/mLmEGF (Peprotech), 100 ng/mLmNoggin (Peprotech), 100 ng/mL hFGF10 (Pe-

protech), 10 nM hGastrin I (Sigma), 1.25 mM N-acetylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (GIBCO),

RSPONDIN-1 conditionedmedia 10% final, WNT3A conditionedmedia 50% final, 100 U/mL penicillin/streptomycin (GIBCO), and 1x

Primocin (Invivogen) (Table S5), and maintained at 37�C in 5% CO2. 10 mM Y27632 (Selleck) was included in the culture medium of

newly initiated samples until the first media exchange. For propagation, organoids were dissociated with TrypLE Express (GIBCO)

before re-seeding into fresh Matrigel and culture medium.

After initial processing of fresh tissue specimens,wemonitored samples closely for organoid growth.Wedid not passage organoids

at set time intervals, as therewas significant variability in the time needed to establish relatively robust growth of organoids (Figure 3D).

Instead, we maintained early passage organoids until they reached relative confluence, and then passaged them at low split ratios

(1:1, 1:1.5, or 1:2 dilutions) in complete organoid medium to promote continued growth. In one case, PANFR0489R, cells persisted

as individuals and small organoids after initiation in complete organoid medium, but did not grow and expand cell numbers signifi-

cantly. Approximately 15 weeks after initiation, we switched a portion of the surviving cells to organoid medium without A83-01 or

mNoggin, and observed renewed growth of organoids under these media conditions but not of those that remained in complete or-

ganoid medium. Consequently, we expanded this sample in media without A83-01 or mNoggin, including performing early passage

scRNA-seq. After several additional passages, once the organoids were robustly growing, we were able to transition this model back

to complete organoid mediumwith no apparent change in growth rate, morphology, or transcriptional state. All other serially sampled

organoids were maintained and assessed in complete medium except as indicated when specific media alterations or experimental

perturbations were performed. The identify of organoid models was authenticated by comparison of their inferred CNV profiles with

targeted genomic sequencing andCNVprofiles ofmatched patient tissue andwith inferredCNVprofiles frompatient tissue and earlier

passage models in the case of samples serially assessed with scRNA-seq. The identify of cell line models was authenticated by short

tandem repeat (STR) analysis. Cell line and organoid cultures were routinely tested for mycoplasma contamination.

METHOD DETAILS

Sample preparation for single-cell RNA-sequencing of clinical samples, organoids, and cell lines
Patient specimens were dissociated for paired scRNA-seq and organoid generation as described above. In our initial process opti-

mization for fresh patient specimens, we found that dissociation times below 30min, while not always completely digesting all biopsy

material and potentially affecting the representation of difficult to dissociate cell types (e.g., fibroblasts), resulted in greater cell

viability and improved RNA quality downstream. After tissue dissociation, cells were washed, treated with ACK lysing buffer (Thermo

Fisher) to lyse red blood cells, washed again, and counted using a hemocytometer with 0.4% Trypan blue (Thermo Fisher) added at

1:1 dilution for viability assessment. We allowed residual tissue chunks to settle before selecting a predominance of single cells for

counting and Seq-Well processing. We allocated between 10,000 and 15,000 viable cells per Seq-Well array, and where possible we

prepared two arrays per sample. Most samples were processed and loaded onto Seq-Well arrays within 2-3 h of biopsy acquisition.

Remaining cells and tissue chunks were allocated for patient-matched organoid generation.

For scRNA-seq of organoid samples and cell lines (CFPAC1), we passaged models and allowed them to grow for 6 days before

dissociating to single cells (organoids – TrypLE Express, Thermo Fisher; cell lines – 0.25% Trypsin-EDTA, Thermo Fisher), counting,

and allocating 15,000 viable cells for Seq-Well. By standardizing the collection of organoid scRNA-seq samples at 6 days after

passaging, we tried to minimize bias arising from cell cycle differences in samples at different degrees of confluence.

Assessing organoid and cell line transcriptional states under different matrix and media conditions
For adaptation of patient-derived organoids onto 2-dimensional (2D) culture surfaces as patient-derived cell lines, tissue culture

plates were pre-coated with 100 mg/mL Matrigel dissolved in basal media for 2 h at 37�C before washing with PBS. Established

organoid models were dissociated and seeded onto these Matrigel-coated culture wells in complete organoid media. In parallel,

a portion of these passage-matched organoid cells were re-seeded into Matrigel droplets as above. Cells were cultured in both ma-

trix conditions in complete organoid media until they were confluent, approximately 2-3 weeks. Cells were collected and lysed using

Trizol before snap freezing. RNA was isolated and purified as described below (‘‘Bulk RNA-sequencing of organoids’’ section) using

chloroform extraction, aqueous phase isolation, and processing using the QIAGEN AllPrep DNA/RNA/miRNA Universal kit before

being submitted for sequencing.

For scRNA-seq assessment of organoid cell states when cultured under different media conditions, established organoid models

were passaged as above by dissociating and reseeding into Matrigel droplets. A portion of the cells were cultured with complete

organoid media (‘‘Complete media’’), while a distinct portion of passage-matched cells were cultured in ‘‘Minimal’’ media, which
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consisted of Advanced DMEM/F12 (Thermo Fisher), 10 mM HEPES (Thermo Fisher), 1x GlutaMAX (Thermo Fisher), 100 U/mL peni-

cillin/streptomycin (Thermo Fisher), and 1x Primocin (Invivogen) (Table S5). Cells were cultured for 6 days before being collected,

dissociated, and aliquoted for scRNA-seq. Images were taken with an Olympus XM10 camera mounted to an Olympus CKX41 mi-

croscope 1 day after seeding and again after 11 days in culture to assess organoid growth in both conditions. The portion of cells

cultured in minimal media were maintained in the same conditions for a longer duration and harvested again for scRNA-seq at

27 days and 59 days after the initial introduction of minimal media. To mirror the standard scRNA-seq workflow, the cells harvested

at the 27- and 59-day time points were collected 6 days after passaging.

In addition to theminimal media experiment, organoid cells were also cultured in standard cell linemedia (‘‘RP10’’), which contains

RPMI-1640 (Thermo Fisher) and 100 U/mL penicillin/streptomycin (Thermo Fisher) with 10% fetal bovine serum (Sigma), or in

reduced organoid media ‘‘OWRNA,’’ which consists of Advanced DMEM/F12 (Thermo Fisher), 10 mM HEPES (Thermo Fisher), 1x

GlutaMAX (Thermo Fisher), 50 ng/mLmEGF (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mMN-ace-

tylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Thermo Fisher), 100 U/mL penicillin/streptomycin (Thermo

Fisher), and 1x Primocin (Invivogen) (i.e., complete organoid medium with removal of WNT3A, RSPONDIN-1, NOGGIN, and

A-8301; Table S5). Furthermore, OWRNA reduced organoid medium served as the baseline control medium when assessing the ef-

fect of specific factors (IFNGg and TGF-b1) from the TME on malignant cell states. Cells were cultured for 6 days before being

collected, dissociated, and aliquoted for scRNA-seq in each of the following conditions: RP10, OWRNA, OWRNA with 50 ng/mL

IFNGg (Peprotech), and OWRNA with 5 ng/mL TGF-b1 (Peprotech) (Table S5). The cells cultured under the IFNGg and TGF-b1 con-

ditions weremaintained in culture and harvested again for scRNA-seq 38 days after being introduced to these newmedia conditions.

For these longer duration time points, cells were again passaged 6 days before collecting for scRNA-seq.

For scRNA-seq assessment of transcriptional states of the established pancreatic cancer cell line CFPAC1 under different media

conditions, CFPAC1 cells were cultured in parallel in either standard cell line medium RP10 or complete organoid medium for 6 days

before being collected, dissociated, and aliquoted for scRNA-seq.

Compound sensitivity testing in cell lines and organoid models
Organoids were propagated in their respective media formulations for the indicated times (e.g., 3 weeks, 6 weeks) before performing

drug sensitivity testing. After dissociation, cells were seeded into ultra-low attachment 384-well plates (Corning) at 1000 viable cells

per well with 20 mL of their respective medium containing 10%Matrigel by volume. After 24 h, compounds were added to each well

over 12-point dose curves along with DMSO controls using a Tecan D300e digital dispenser. A parallel untreated plate was harvested

at this 24 h time point for growth rate correction. Drug- or DMSO-treated cells were cultured for 5 days before assessing for viability.

Cell viability was measured by adding 20 uL of CellTiter-Glo 3D (Promega) to each well, incubating for 1 h at room temperature on a

shaker, andmeasuring luminescence using an EnVision plate reader (PerkinElmer). Given plate well randomization, raw luminescence

data were deconvoluted with an in-house Python script (Python v3.7.4). Each condition was tested in triplicate, and each dose point

was normalized to DMSO controls to estimate relative viability. Growth rate correction was performed as previously described, with

growth-rate adjusted dose response curves fit to a 3-parameter sigmoidal curve (Hafner et al., 2016). Each experiment was performed

using cells cultured in paired basal (OWRNA+TGF-b1 or Minimal) and classical (OWRNA) media conditions, and independent exper-

iments were performed as summarized in Figure S7A and Table S7. To quantify the relative sensitivity of basal versus classical models

to a given compound, the difference in growth-rate adjusted areas over the curve (AOC) for organoids cultured in paired media con-

ditions was calculated for each compound within each experiment, as illustrated in Figure 6G and Figure S7A.

CFPAC1 cells were cultured in standard cell linemediumRP10 or in complete organoidmedium for 2 or 5 weeks before seeding for

drug testing. Cells were dissociated and seeded into 384-well tissue culture plates (Greiner Bio-One) at 400 viable cells per well with

20 mL of their respective medium. Addition of compounds and sample harvesting were as above, except cell viability was measured

by adding 20 uL of CellTiter-Glo (Promega) to each well and incubating for 15min at room temperature on a shaker before measuring

luminescence. Data analysis and dose response curve fitting were performed as described above.

Single-cell RNA-seq (scRNA-seq) data library generation, sequencing, and alignment
ScRNA-seq processing followed the Seq-Well protocol, uniquely compatible with low-input samples (Gierahn et al., 2017; Hughes

et al., 2020). Briefly, arrays were preloaded with RNA capture beads (Fisher Scientific/ChemGenes) and stored in quenching buffer

until used. Prior to cell loading, arrays were resuspended in 5 mL RPMI-1640 medium (Thermo Fisher) with 10% fetal bovine serum

(Sigma), hereafter referred to as RP10. After dissociation, single-cell suspensions were manually counted and diluted to 15,000 cells

per 200 mL of RP10when cell numbers allowed. Excess RP10was aspirated from the array and cells were loaded onto arrays. Excess

cells were washed off with PBS (4x5 mL), briefly left in RPMI (5 mL) and cell+bead pairs were sealed for 40 min at 37�C using a poly-

carbonate membrane (Fisher Scientific). Arrays were rocked in lysis buffer for 20 min and RNA was hybridized onto the beads for

40 min. Beads were removed and reverse transcription was performed overnight using Maxima H Minus Reverse Transcriptase

(Fisher Scientific). Prior to sequencing, the beads underwent an exonuclease treatment (New England BioLabs) and second strand

synthesis en masse followed by whole transcriptome amplification (WTA, Kapa Biosystems) in 1,500 bead reactions (50 mL). cDNA

was isolated using Agencourt AMPure XP beads (Beckman Coulter) at 0.6X SPRI (solid-phase reversible immobilization) followed by

a 1X SPRI and quantified using a Qubit dsDNA High Sensitivity assay kit (Thermo Fisher). Library preparation was performed using

Nextera XT DNA tagmentation (Illumina FC-131-1096) and N700 and N500 indices specific to a given sample. Tagmented and
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amplified sequences were purified with a 0.6X SPRI, and cDNA was quantified (Qubit dsDNA High sensitivity assay kit, Thermo

Fisher) and the base pair distributionmeasured (High sensitivity D5000 screen tape, Agilent). cDNAwas loaded onto either an Illumina

Nextseq (75 Cycle NextSeq 500/550 v2.5 kit) or Novaseq (100 Cycle NovaSeq 6000 S2 kit) at 2.4 pM. Regardless of platform, the

paired end read structure was 21 bases (cell barcode and UMI) by 50 bases (transcriptomic information) with an 8 base pair (bp)

custom read one primer. The demultiplex and alignment protocol was followed as previously described (Macosko et al., 2015). While

Novaseq data were directly output as FASTQs, Nextseq BCL files were converted to FASTQs using bcl2fastq2. The resultant Next-

seq and Novaseq FASTQs were demultiplexed by sample based on Nextera N700 and N500 indices. Reads were then aligned to the

hg19 transcriptome using the cumulus/dropseq_tools pipeline on Terra maintained by the Broad Institute using standard settings (Li

et al., 2020).

Bulk RNA- and DNA-sequencing of organoids
RNA was obtained for bulk RNA-sequencing from established organoids using one of two approaches. Dissociated organoids were

resuspended into cold Matrigel, added as droplets to tissue culture plates (Greiner BioOne), and allowed to polymerize for 30 min

before addition of media. Organoids were grown for 14-21 days (until confluent) under these conditions with regular media changes.

At the time of harvest, cells were washed with cold phosphate buffered saline (PBS) at 4�C, then lysed with Trizol (Invitrogen) before

snap-freezing. To isolate RNA, we performed chloroform extraction with isolation of the aqueous phase before processing RNA as

per protocols outlined in the QIAGEN AllPrep DNA/RNA/miRNA Universal kit.

In the second approach, used to obtain both RNA and DNA, dissociated organoids were resuspended in a solution of 10%Matrigel

in complete organoid media (volume/volume) and cultured in ultra-low-attachment culture flasks (Corning). Organoids were grown

for 14-21 days (until confluent) before pelleting, washing with cold PBS at 4�C until most Matrigel was dissipated, and then snap

frozen. Cell pellets were homogenized using buffer RLT Plus (QIAGEN) and a Precellys homogenizer. Samples were then processed

for both DNA extraction and RNA isolation as per the QIAGEN AllPrep DNA/RNA/miRNA Universal kit. Purified RNA and DNA were

then submitted for sequencing by the Broad Institute Genomics Platform.

For bulkRNA-sequencing, total RNAwasquantifiedusing theQuant-iTRiboGreenRNAAssayKit (ThermoFisher) and normalized to

5 ng/mL. Following plating, 2 mL of a 1:1000 dilution of ERCCRNA controls (Thermo Fisher) were spiked into each sample. An aliquot of

200ng foreachsamplewas transferred into librarypreparationwhichusesanautomatedvariantof the IlluminaTruSeqStrandedmRNA

Sample Preparation Kit. Thismethod preserves strand orientation of the RNA transcript, and uses oligo dT beads to selectmRNA from

the totalRNAsample followedbyheat fragmentationandcDNAsynthesis from theRNA template.The resultant 400bpcDNA thengoes

through dual-indexed library preparation: ‘A’ base addition, adaptor ligation using P7 adapters, and PCR enrichment using P5

adapters. After enrichment, the libraries were quantified using Quant-iT PicoGreen (1:200 dilution; Thermo Fisher). After normalizing

samples to 5 ng/mL, the set was pooled and quantified using the KAPA Library Quantification Kit for Illumina Sequencing Platforms.

The entire process was performed in 96-well format and all pipetting was done by either Agilent Bravo or Hamilton Starlet.

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to sequencing. Flowcell cluster amplification and

sequencing were performed according to the manufacturer’s protocols using the NovaSeq 6000. Each run was a 101 bp paired-end

with an eight-base index barcode read. Data were analyzed using the Broad Picard pipeline which includes de-multiplexing and data

aggregation (https://broadinstitute.github.io/picard/). FASTQ files were then processed as described below (see Bulk RNA-

sequencing analysis).

For whole genome sequencing, 350 ng of genomic DNA was fragmented using a Covaris focused-ultrasonicator targeting 385bp

fragments followed by size selection using SPRI cleanup. Library preparation was performed using a KAPAHyperPrep without ampli-

fication kit (KAPA Biosystems) with palindromic forked adapters with unique 8-base index sequences embedded within the adaptor

(Roche). Libraries were then quantified using quantitative PCR (kit purchased from KAPA Biosystems) with probes specific to the

adaptor ends on an Agilent Bravo liquid handling platform. Libraries were normalized to 2.2 nM, pooled into 24-plexes, combined

with NovaSeq Cluster Amp Reagents DPX1, DPX2, and DPX3, and loaded into single lanes of a NovaSeq 6000 S4 flowcell using

a Hamilton Starlet Liquid Handling system. Cluster amplification and sequencing occurred utilizing sequencing-by-synthesis kits

to produce 151bp paired-end reads. Output from Illumina software was processed by the Broad Picard pipeline (https://

broadinstitute.github.io/picard/) to yield BAM files containing demultiplexed, aggregated aligned reads. BAM files were then pro-

cessed as described below (see Mutation and CNV identification from bulk DNA-sequencing).

Multiplex immunofluorescence imaging
A multi-marker panel was developed to characterize malignant cell subtype in formalin-fixed paraffin-embedded (FFPE) 4 mm tissue

sections usingmultiplex immunofluorescence (mIF). The panel comprisesmarkers associatedwith either a basal (Keratin-17: Thermo

Fisher MA513539 and S100A2: Abcam 109494) or classical (CLDN18.2: Abcam 241330, GATA6: Cell Signaling Technology 5851 and

TFF1: Abcam 92377) subtype. Additionally, DAPI (Akoya Biosciences FP1490) was included for identification of nuclei and pan-cy-

tokeratin (AE1/AE3: Dako M3515; C11: Cell Signaling Technology 4545) for identification of epithelial cells. Secondary Opal Polymer

HRP anti-mouse and anti-rabbit antibody (Dako ARH1001EA), Tyramide signal amplification, and Opal fluorophores (Akoya Biosci-

ences) were used to detect primary antibodies (Keratin-17, Opal 520; S100A2, Opal 650; GATA6, Opal 540; CLDN18.2, Opal 570;

TFF1, Opal 690; panCK, Opal 620).
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These specific mIF markers were chosen for several reasons. KRT17, S100A2, and TFF1 are included in the original basal and

classical RNA gene signatures (Moffitt et al., 2015). GATA6 is also a classical marker in an extended RNA gene panel and has

been reported to be a potential driver of the classical phenotype (Brunton et al., 2020; Moffitt et al., 2015; O’Kane et al., 2020).

Single markers of S100A2 and GATA6 have also been used extensively in imaging experiments in past literature to mark cells in

the basal or classical state, respectively (Aung et al., 2018; Chan-Seng-Yue et al., 2020; Miyabayashi et al., 2020; O’Kane et al.,

2020; Somerville et al., 2018). CLDN18.2 has also been associated with classical phenotypes, and antibody-based therapies

targeting CLDN18.2 have been developed and tested in PDAC (Wöll et al., 2014). Furthermore, the markers chosen for the

mIF subtyping panel agreed with those selected as optimal markers to differentiate basal-like versus classical by an international

panel of experts at a workshop on pancreatic cancer subtyping held at Memorial Sloan Kettering in 2019. Here, we used multiple

markers for each state to provide greater confidence in cell state identification and to assess marker heterogeneity across our

mIF cohort.

Prior to use in multiplex staining, primary antibodies were first optimized via immunohistochemistry on control tissue to confirm

contextual specificity. Monoplex immunofluorescence and iterative multiplex fluorescent staining were then used to optimize stain-

ing order, antibody-fluorophore assignments and fluorophore concentrations. Multiplex staining was performed using a Leica BOND

RX Research Stainer (Leica Biosystems, Buffalo, IL) with sequential cycles of antigen retrieval, protein blocking, primary antibody

incubation, secondary antibody incubation, and fluorescent labeling. Overview images of stained slides were acquired at 10Xmagni-

fication using a Vectra 3.0 Automated Quantitative Imaging System (Perkin Elmer, Waltham, MA) and regions of interest (ROIs) were

selected for multispectral image acquisition at 20X. After unmixing using a spectral library of single-color references, each imagewas

inspected to ensure uniform staining quality and adequate tumor representation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutation and CNV identification from bulk DNA-sequencing
For targeted DNA-sequencing of clinical samples, next-generation sequencing using a custom-designed hybrid capture library prep-

aration was performed on an Illumina HiSeq 2500 with 2x100 paired-end reads, as previously described (Garcia et al., 2017; Sholl

et al., 2016). Sequence reads were aligned to reference sequence b37 edition from the Human Genome Reference Consortium using

bwa, and further processed using Picard (version 1.90, http://broadinstitute.github.io/picard/) to remove duplicates and Genome

Analysis Toolkit (GATK, version 1.6-5-g557da77) to perform localized realignment around indel sites. Single nucleotide variants

were called using MuTect v1.1.45, insertions and deletions were called using GATK Indelocator. Copy number variants (CNV) and

structural variants were called using the internally-developed algorithms RobustCNV and BreaKmer followed by manual review

(Abo et al., 2015). RobustCNV calculates copy ratios by performing a robust linear regression against a panel of normal samples.

The data were segmented using circular binary segmentation, and event identification was performed based on the observed vari-

ance of the data points (Bi et al., 2017).

We computed the cytoband-level copy number calls andweighted (by length) average segment means across the covered regions

of each cytoband using ASCETS (Spurr et al., 2021). Briefly, cytobands were considered amplified/deleted if more than 70% of the

covered regions had a log2 copy ratio of greater than 0.2/less than �0.2, and were considered neutral if more than 70% of the

covered regions had a log2 copy ratio between �0.2 and 0.2.

For comparisons of driver mutation frequencies across patient tumors, cell lines, and organoid models, mutation and CNV calls for

KRAS, TP53, CDKN2A, and SMAD4 were either compiled from prior publications for patient samples and CCLE cell lines (Aguirre

et al., 2018; Cancer Genome Atlas Research Network, 2017; Ghandi et al., 2019) or generated from whole genome sequencing of

organoid models. Organoid cohort variants were called from tumor/germline pairs using GATK (v.4.1.6.0, Paired tumor-control

mode). Potential germline variants were additionally filtered using gnomAD (v2.1). Significance of short-nucleotide variants (SNVs)

was determined usingMuSiC2 (v0.2, q-value < 0.1). CNVswere initially called usingGATK (v.4.1.6.0) followed by analysis with GISTIC

(v2.0.23). Genomic alterations in KRAS, TP53, CDKN2A, and SMAD4 were binarized by counting a gene in the given sample as

altered if it contained at least one of the following alterations: missensemutation, nonsensemutation, splice site alteration, frameshift

insertion or deletion, in-frame insertion or deletion, a high amplification, or a homozygous deletion. Statistical significance of alter-

ation occurrence per gene across sample cohorts was determined using a Fisher’s exact test with multiple test correction using

the Benjamini-Hochberg procedure (R v4.0.3).

Bulk RNA-sequencing analysis
FASTQs for bulk RNA expression profiles were downloaded from the relevant repository (TCGA, https://toil.xenahubs.net; PDACCell

lines, https://portals.broadinstitute.org/ccle), available in-house (Panc-Seq, metastatic PDAC), or generated for this study (organoid

cohort) (Aguirre et al., 2018; (Weinstein et al., 2013) Cancer Genome Atlas Research Network, 2017; Ghandi et al., 2019; Vivian et al.,

2017). All were processed using the same pipeline. Briefly, each sample’s sequences were marked for duplicates and then mapped

to hg38 using STAR. After running QC checks using RNaseqQC, gene-level count matrices were generated using RSEM. Instructions

to run the pipeline are given in the Broad CCLE github repository https://github.com/broadinstitute/ccle_processing. Length-normal-

ized values (TPM) were then transformed according to log2(TPM+1) for downstream analysis. The entire dataset was scaled and
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centered to allow relative comparisons across sample types (e.g., tumors, organoids, and cell lines). Signature scores were

computed as below (e.g., basal and classical; see Generation of expression signatures/scores below) (Puram et al., 2017).

Single-cell data quality pre-processing and initial cell type discovery
All single-cell data analysis was performed using the R language for Statistical Computing (v3.5.1). Each biopsy sample’s digital gene

expression (DGE) matrix (cells x genes) was trimmed to exclude low quality cells (< 400 genes detected; < 1,000 UMIs; > 50%mito-

chondrial reads) before being merged together (preserving all unique genes) to create the larger biopsy dataset. The merged dataset

was further trimmed to remove cells with > 8,000 genes which represent outliers and likely doublet cells. We also removed genes that

were not detected in at least 50 cells. The same metrics were applied to the organoid single-cell cohort (see below). On a per cell

basis, UMI count data was divided by total transcripts captured andmultiplied by a scaling factor of 10,000. These normalized values

were then natural log transformed for downstream analysis (i.e., log-normalized cell x gene matrix). Initial exploration of the data was

performed using the R package Seurat (v2.3.4) and followed two steps: 1) SNN-guided quality assessment and 2) cell type compo-

sition determination. In step 1, we intentionally left cells in the DGEmatrix of dubious quality (e.g.,%mitochondrial reads > 25%but <

50%), performed PCA over the variable genes (n = 1,070 genes), and input the first 50 PCs (determined by Jackstraw analysis im-

plemented through Seurat) to build an SNN graph and cluster the cells (res = 1; k.param = 40). The inclusion of poor-quality cells

essentially acts as a variance ‘‘sink’’ for other poor-quality cells and they cluster together based on their shared patterns in qual-

ity-associated gene expression. This method helped to nominate additional low quality (e.g., defined exclusively by mitochondrial

genes) or likely doublet cells (e.g., clusters defined by co-expression of divergent lineage markers) which were removed from the

dataset (n = 1,678 cells). This led to an overall high-quality dataset of single-cells with a low overall fraction of mitochondrial reads

(median = 0.09) for downstream analysis (Figure S1D).

Using the trimmed dataset, we proceeded to step 2 using a very similar workflow as above but with slightly altered input conditions

for defining clusters. Here we used PCs 1-45 and their associated statistically significant genes for building the SNN graph and deter-

mining cluster membership (resolution = 1.2; k.param = 40). This identified the 36 clusters shown (visualized using t-SNE; perplexity,

40; iterations, 2,500) in Figure S1E. The expression of known markers was used to collapse clusters containing shared lineage infor-

mation. For example, clusters 1, 2, and 4 all express high levels of macrophage markers—CD14, FCGR3A (CD16), CD68—and were

accordingly collapsed for this first pass analysis (Figure S1E,I). To aid our cell type identification, we performed an ROC test imple-

mented in Seurat to confirm the specificity (power > 0.6) of the top marker genes used to discern the cell types. Combined with in-

ferred CNV information (see below), this analysis confirmed the presence of 11 broad non-malignant cell types in our biopsy dataset

(Table S2). Variation in the SNN graph parameters above did not strongly affect cell type identification.

Single-cell CNV identification
To confirm the identity of the putative malignant clusters identified in Figure S1F, we estimated single-cell CNVs as previously

described by computing the average expression in a sliding window of 100 genes within each chromosome after sorting the detected

genes by their chromosomal coordinates (Patel et al., 2014; Tirosh et al., 2016b).We used all T/NK, Fib, Hep, and Endo cells identified

above as reference normal populations for this analysis. Complete information on the inferCNVworkflow used for this analysis can be

found here https://github.com/broadinstitute/inferCNV/wiki. To compare with bulk targeted DNA-sequencing, we collapsed individ-

ual probes to cytoband-level information (weighted average of log2 ratios across each cytoband, see above) within each sample.

ScRNA-seq-inferred CNVs showed high concordance across samples with the bulk measurements and suggests that, at least by

this metric, we are likely sampling the same dominant clones within sequential but distinct cores from each needle biopsy procedure

(Figure S1G). For plotting CNV profiles in putative malignant versus normal cells (Figure S1H), we computed the average CNV signal

for the top 5% of altered cells in each biopsy and correlated all cells in that biopsy to the averaged profile as has been previously

described (Tirosh et al., 2016a). Relation of this correlation coefficient to the CNV score (mean square deviation from diploidy) in

the single cells from each biopsy shows consistent separation of malignant from non-malignant cells, and, combined with member-

ship in patient-specific SNN clusters, substantiates the identification of malignant cells in our dataset. One patient sample,

PANFR0604, did not contain any malignant cells within the core biopsy used for scRNA-seq analysis.

Subclonal analysis with single-cell inferred CNVs
The inferCNV workflow can be used to call subclonal genomic variation with high sensitivity and is described at https://github.

com/broadinstitute/inferCNV/wiki (Fan et al., 2018; Patel et al., 2014; Tirosh et al., 2016b). Briefly, we used a six-state Hidden

Markov Model (i6-HMM) to predict relative copy number status (complete loss to > 3x gain) across putative altered regions in

each cell. A Bayesian latent mixture model then evaluated the posterior probability that a given copy number alteration is a

true positive. We set a relatively stringent cutoff for this step (BayesMaxPNormal = 0.2) to only include high probability alterations

for downstream clustering. The results of this filtered i6-HMM output were then used to cluster the single cells using Ward’s

method. We used inferCNV’s ‘‘random trees’’ method to test for statistical significance (p < 0.05, 100 random permutations

for each split) at each tree bifurcation and only retained subclusters that had statistical evidence underlying the presumed het-

erogeneity. To track subclonal heterogeneity between biopsy and matched organoid cells in Figure 3E and Figure S5E-K, the

above workflow was implemented within each biopsy and the relevant matched organoid samples, essentially treating all cells

as the same ‘‘tumor’’ and allowing the CNVs to determine cell sorting agnostic to sample-of-origin. The results of the HMM output
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can be used to infer gene-level information based on which genes are in the affected window. This (like the rest of the HMM work-

flow) is computed over groups of cells (e.g., samples or sub-clones) and used to map KRAS and other alterations to samples or

sub-clones (Figure 3E, Figure S5E-K).

Subclustering of malignant and non-malignant cells
Detailed phenotyping required splitting the dataset intomalignant and non-malignant fractions. After subsetting to only themalignant

cells, we re-scaled the data and ran PCA including the first 35 PCs for SNN clustering and t-SNE visualization. This PCA was used to

determine the PanNET identity for PANFR0580 (Figure S2A). After removing PANFR0580, we repeated the steps above and used this

new PCA for the remainder of PDAC malignant cell analysis. Subsequent phenotyping for malignant cells is discussed below (Gen-

eration of expression signatures/scores). A similar approach was used for calling the non-malignant subsets in Figure 5A. To deter-

mine the specific phenotypes within T/NK, macrophage, and mesenchymal populations, we separately subclustered these groups

using PCs 1-20 and a resolution of 0.6 in each case. Of note, subclustering within themacrophages revealed a distinct cluster of cells

co-expressing markers of both T/NK cells and macrophages (n = 491 cells). We discarded these cells as likely doublets, as have

others, and re-ran the macrophage PCA and clustering (Zhang et al., 2020; Zilionis et al., 2019). These cells are included in the

full dataset in case they are of interest to others. Each unbiased analysis helped to define the non-malignant phenotypes summarized

in Figure 5 and Figure S6.

Generation of expression signatures/scores
All expression scores were computed as previously described by taking a given input set of genes and comparing their average rela-

tive expression to that of a control set (n = 100 genes) randomly sampled tomirror the expression distribution of the genes used for the

input (Tirosh et al., 2016b). While all scores were computed in the same way, choosing the genes for input varied. We have outlined

the relevant approaches below. Where correlations (Pearson’s r) are performed over genes, we used the log-transformed UMI count

data for each case. Unless otherwise noted, we selected the top 30 statistically significant genes for each signature (> 3 SD above the

mean for shuffled data) for visualization and scoring.

Cell cycle

We utilized previously established signatures for G1/S (n = 43 genes) and G2/M (n = 55 genes) to place each cell along this dynamic

process (Tirosh et al., 2016a). After inspecting the distribution of scores in the complete dataset, we considered any cell > 1.5 SD

above the mean for either the G1/S or the G2/M scores to be cycling (van Galen et al., 2019).

PDAC bulk subtype signatures

We scored malignant cells within our single-cell cohort for expression of previously published signatures derived from bulk RNA-

sequencing of primary and metastatic tumors.

scBasal and scClassical programs

We first scored each malignant single cell for the basal-like and classical genes identified by Moffitt et al., 2015 as these were well

described by unbiased analysis in our data (PCA, Figure S2B,C, S3B). To derive refined single-cell basal (scBasal) and single-cell

classical (scClassical) signatures using our malignant cohort and determine programs associated with these cell states, we corre-

lated the aforementioned basal and classical scores to the entire gene expression matrix containing malignant cells and identified

the 1,909 genes significantly associated with either subtype (r > 0.1; > 3 SD above the mean for shuffled data, full data in Table

S3). Biological pathway correlates for scBasal and scClassical are summarized in Figure S2E,F [WNT signaling (Kim et al., 2017);

EMT (Gröger et al., 2012); cell cycle progression (Tirosh et al., 2016a)]. For visualization, we use the scBasal and scClassical genes

(top 30 correlated genes for each). In Figure 2C we score single cells for EMT (Gröger et al., 2012) and the union of Hallmark and

Reactome interferon response gene sets to show their divergence within cells expressing the scBasal state.

Intermediate co-expressor (IC) program

Ordering the cells by their polarization or ‘‘score difference,’’ simply the difference of the two scores, using these basal and classical

scores related to PC1 and PC2 revealed a significant fraction of cells co-expressing intermediate levels of both cell states (Figure 2B,

Figure S3A,B). Co-expressing cells showed associations with features across several additional PCs, but lacked a single dominant

axis. To define a consensus set of genes that are preferentially expressed by coexpressing cells, we computed the Euclidean dis-

tance to the line representing equal basal and classical co-expression for each cell. To limit the influence of cell quality on this analysis

and to specifically identify genes related to co-expression, we used cells from each group (basal, intermediate, and classical) with

fractionally low mitochondrial genes (< 0.2) and non-zero basal or classical expression (basal or classical score > 0) and correlated

their Euclidean distance (Figure S3C) to the entire gene expression matrix of malignant cells. Next, for each gene positively associ-

ated with this co-expressor state (Pearson’s r > 0), we subtracted the second highest correlation coefficient for each subtype-asso-

ciated gene (basal and classical), and then re-ranked the matrix by this corrected value. This enriched for genes more specific to the

co-expressor state by excluding those that were also associated with basal or classical programs. We then selected the 115 genes

with a corrected correlation value > 0.1 (p < 0.00001, shuffled data) as our intermediate co-expressor (IC) signature (Figure S3D, Table

S3). Single cells were classified based on Euclidian distance to co-expression, where cells with Euclidian distance < 0.2 are defined

as intermediate co-expressor and the remainder (Euclidian distance > 0.2) by their maximal of either scBasal or scClassical scores.

We binned each organoid cell (Figure 4C,D) by its maximal expression for one of the 3 in vivo scores (scBasal, scClassical, or IC).

Here a cell must be within 1 SD of the mean expression for a given subtype in vivo, else it was considered ‘‘organoid-specific’’ as
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this programwas superimposed on all organoid cells, regardless of their subtype identity (Figure 4C).We used these classifications to

summarize overall sample malignant cell composition and visualize the groups. Tumor heterogeneity measures were not significantly

affected by changing these cutoffs.

Non-Malignant programs

TAM signatures were determined similar to above and previous work (van Galen et al., 2019; Zhang et al., 2020; Zilionis et al., 2019).

Using PCA as an anchor (Figure S6C), we correlated expression within the TAM compartment to either FCN1, SPP1, or C1QC (top

loaded genes on each relevant PC) and merged the resultant correlation coefficients for every detected gene to the 3 subtypes into

one matrix (i.e., a 16,920 3 3 matrix). For each TAM type (i.e., vector of correlation coeffects to each marker), we first ranked the

matrix by decreasing correlation coefficient, selected only the most significantly associated genes to that type (r > 0.1; > 3 SD above

the mean for shuffled data), subtracted the second highest correlation coefficient for each subtype-associated gene, and then re-

ranked the matrix by this corrected value. We repeated this procedure for each TAM subtype independently. This ensures that

the genes selected are specific to a given TAM subset and do not describe general TAM features. The top 30 genes for each

were used for scoring and visualization (Table S2; Figure S6D).

Mesenchymal phenotypes were determined using a similar workflow. To examine mesenchymal heterogeneity, we removed a

subset of adrenal endocrine cells (cluster 4, 40 cells; Figure 5C) and then performed PCA on the remaining mesenchymal cells.

PC1 was driven by spillover genes (likely contributed from ambient RNA) and lacked any coherent biological program and was

not considered further. PCs 2 and 3 by contrast were consistent with variable mesenchymal (PC2) and inflammatory CAF (PC3) phe-

notypes. All these cells scored highly for previous myCAF gene expression programs so this phenotype did not fully explain the het-

erogeneity in mesenchymal cells. Again, using correlation, we determined the genes driving low PC2 scores (Fibroblast-like), and

high PC2 scores (Pericyte-like), as well as those associated with the high PC3 scores (Inflammatory). As before, we used the top

30 genes within each subset for scoring and visualization. These same genes (Fibroblast-like and Pericyte-like) were used to examine

bulk RNA-seq profiles and their difference in each sample quantifies which phenotype is favored in the bulk averages (Figure 5C).

Analysis of normal pancreas progenitor data
We obtained the genes by cells matrix of normal pancreas progenitors (Qadir et al., 2020) at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE131886. We clustered the original data and excluded a small subset of immune cells (CD45+). We then

collapsed cell types from the original paper into broad categories (Pro-Acinar, Pro-ductal, Undifferentiated, and Mesenchymal)

based on lineage marker expression. For analysis in Figure S3E we averaged the expression for scBasal, scClassical and IC genes

in each group. For use in Figure S3F we generated signatures for each population using differential expression (FindAllMarkers func-

tion in Seurat using the ‘‘wilcox’’ option) and scored our single cells for these normal-derived signatures as above.

Matched organoid clustering and cell-typing
After applying similar quality metrics as above, we performed PCA, SNN clustering, and t-SNE embedding for 32,073 cells including

organoid cells and all malignant cells from primary PDAC biopsies (PCs 1-50; resolution = 1.2; k.param = 45; perplexity = 45; max_

iter = 2,500), and identified 39 total clusters. Organoids clustered separately from their matched biopsies, suggesting expression

and/or CNV related drift in culture. Only two SNN clusters—clusters 4 and 32—were admixed by sample. We determined the specific

gene expression programs in these two clusters via differential expression testing by Wilcoxon rank sum test (p < 0.05, Bonferroni

correction; log(fold change) > 0.5). These comparisons were done in a ‘‘1 versus rest’’ fashion, testing for genes defining each cluster

(4 or 32) compared to the entire dataset. Their expression profiles were consistent with non-malignant cell types, likely fibroblasts

(cluster 32) and epithelial cells (cluster 4; Figure S5B,C).

Correlation distances for genotype and transcriptional cell state
To generate correlation distances for genotype and transcriptional cell state, each single cell in a biopsy-organoid pair was repre-

sented by two vectors of information: (i) a cell state vector containing expression values for scBasal and scClassical genes (n =

60 genes) and (ii) a genotype vector containing the average CNV score for each cytoband. The cell state and genotype distances

between every single cell within a biopsy/early organoid pair was computed from these vectors using a correlation-based (Pearson’s

r) distance metric of the form d = (1-r)/2. This resulted in two distance matrices of n x n dimension where n is the total number of cells

from each biopsy/early organoid sample pair. Values in Figure 3A are computed by averaging the values for d between only early

organoid and matched biopsy cells.

Matched biopsy versus organoid malignant cell comparison
For CNV-confirmed malignant cells from each biopsy and its matched organoid (earliest passage), we used differential expression

(Wilcoxon rank sum test; p < 0.05, Bonferroni correction; log(fold change) > 0.3) to understand the features lost frommalignant cells in

the in vivo setting and gained when transitioning into growth in organoid culture. We required any gene to be significantly differentially

expressed in at least 3 model-biopsy comparisons to summarize the consistent changes. We repeated this same workflow for both

organoid- and biopsy-specific genes (Table S4) outlined in Figure 3C and Figure 4G,H, respectively.
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TME associations
Wedetermined the transcriptional-subtype-dependent composition of the TME (Figure 5E-I) following two steps. First, we computed

the Simpson’s Index (measure of ecological diversity) using the count of each non-malignant cell type captured from each sample as

input (Figure 5E,G) and correlated each biopsy’s diversity score to its scBasal versus scClassical commitment score. Importantly, the

number of non-malignant cells captured from each biopsy was not associated with basal versus classical commitment score (r =

0.09). Next, to understand which cell types drive these differences, we computed the fractional representation for every non-malig-

nant cell type in each core needle biopsy and determined their pairwise correlation distance (Pearson’s r) followed by hierarchical

clustering using Ward’s method (dendrogram in Figure 5G). For both analyses we only used samples with > 200 non-malignant cells

captured (Figure S6N).

Biopsy paracrine and autocrine subtype-specific factor analysis
Factors present in the TMEbut absent fromorganoid culture could originate from at least two sources, themalignant cells themselves

(autocrine) or non-malignant cells in the local microenvironment (paracrine). We examined any gene with gene ontology annotations

related to ‘‘cytokines,’’ ‘‘chemokines,’’ or ‘‘growth factors’’ and took the union of these lists, yielding 321 genes, 218 of which were

detected in our dataset. For ‘‘autocrine’’ factors we performed differential expression betweenmalignant cells binned as scBasal and

scClassical, and then IC versus rest. A gene was considered differentially expressed if it passed a p < 0.05 with Bonferroni correction

and a log(fold change) > 0.2 in one of these comparisons. Genes were then assigned to subtypes based on the log fold change

direction (Figure 6B, Table S6). ‘‘Paracrine’’ factors were determined in a similar manner with slight modifications. We grouped

non-malignant cells into basal, classical or IC based on the average expression and clustering for malignant programs from their

respective tumor samples (Figure S3G). We then assessed for differential expression between all cells from a given group and the

rest using the same cutoffs as above and sorted factors into subtypes based on their log fold change directionality (Figure 7A, Table

S6). We visualized which cell type contributed the highest average expression for each factor among the cell types from each of the

respective cell state-specific TMEs (Figure 7B). We note that our use of ‘‘paracrine’’ and ‘‘autocrine’’ here is somewhat inexact as

these secreted factors could act in either manner depending on the context. We merely use this nomenclature to reflect a ‘‘cancer

cell centric’’ view, i.e., factors secreted by malignant cells are autocrine and those deriving from the TME are paracrine.

Tumor phenotyping from mIF data
Supervised machine learning algorithms were applied for tissue and cell segmentation (inForm 2.4.1, Akoya Biosciences). Single-

cell-level imaging data were exported and further processed and analyzed using R (v3.6.2). To assign phenotypes to individual ma-

lignant epithelial cells, mean expression intensity in the relevant subcellular compartment was first used to classify cells as positive or

negative for each of the 5 markers. Combinatorial expression patterns for the five markers were then used to phenotypically classify

cells as basal, classical, co-expressing / IC or marker negative (3 combinations of 2 basal markers, 7 combinations of 3 classical

markers, 1 pan-marker negative, 21 combinations of co-expression of basal and classical markers, Figure S4A, Table S3). Tumor

subtype composition was assessed by calculating the fraction of total malignant cells positive for each cell phenotype (Figure S4B,

excluding pan-marker negative cells).
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Figure S1. Clinical and genomic features, quality metrics, unsupervised cell type identification, and malignant cell confirmation across the

biopsy cohort, related to Figure 1

(A) Distribution of PDAC patient tumor and cell model phenotypes along the basal-classical spectrum for bulk RNA-seq samples in Figure 1C. P-value for group

differences was calculated by ANOVA.

(B) Clinical and molecular features for all patients included in the dataset (Rx = Therapy; Other = Adrenal (PANFR0637), Omentum (PANFR0635, PANFR0598),

Peritoneum (PANFR0588); Org. at P2 = Organoid measured at passage 2). Mutations were determined by bulk targeted DNA-seq (Red, Altered; White, wild type;

Grey, Data not available). Number of single cells captured per biopsy and their malignant and non-malignant fraction is visualized at the right. The scRNA-seq

biopsy for sample PANFR0604 did not contain any malignant cells.

(C) Distribution of unique molecules and genes captured in quality cells per biopsy, median values are indicated for each metric (dotted line) and violin plots are

colored by patient (top, Log10(UMIs); bottom, number of genes).

(D) Distribution of fraction mitochondrial reads across the entire trimmed biopsy dataset (n = 23,042 cells). Red dotted line denotes the median.

(E) t-SNE visualization of the entire single-cell biopsy dataset colored by the identified SNN clusters (inset numbers).

(F) Distribution of single cells captured per biopsy across the identified and putative malignant and non-malignant SNN clusters.

(G) Heatmaps represent select scRNA-seq-derived copy number profiles where expression across the transcriptome is organized by chromosome (columns) for

each single putative malignant cell (rows) from a given biopsy. Top bar indicates reference bulk targeted DNA-seq for the same patient.

(H) CNV correlation (averaged top 5% of altered cells per biopsy) versus CNV score (mean square of modified expression) for each single putative malignant

(colored points) and reference normal (empty black circles) cell within a given biopsy. One sample, PANFR0604, did not contain any malignant cells.

(I) Overview of cell-typing for all cells in the biopsy dataset. Cells are ordered by SNN cluster and separated by cell types. Top heatmap represents expression

levels for a subset of select markers (n = 73 genes) used to identify cell types. Color bar indicates cell types and binarized cell cycle phenotypes are labeled (black,

cycling; white, not). CNV scores (mean square of alterations per cell) used to parse malignant from non-malignant are shown using T/NK, endothelial, fibroblasts,

and hepatocytes as reference; gray boxes denote normal cell types where we did not compute reference CNV scores. Bottom panel shows biopsy of origin for

each cell. The data are split by non-malignant (n = 15,302) and malignant (7,740) identity.

(J) t-SNE visualization as in S1E but colored by cell types identified. Endo, Endothelial; Mes, Mesenchymal; B, B cell; Hep, Hepatocyte; DC, Dendritic cell; pDC,

Plasmacytoid dendritic cell; Mac, Macrophage; T, T cell; NK, Natural killer cell.

(K) Fraction of each cell type contributed by each biopsy sample (color fill, patient ID as in S1B), cell type totals are noted at the top of each bar.
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Figure S2. Identifying and contextualizing single-cell scBasal and scClassical associated biology, related to Figure 2

(A) Principal component analysis (PCA) and scatterplot for PC1 and PC2 across all malignant cells (n = 7,740, colored by patient ID as in Figure S1B) separates

PANFR0580’s malignant cells (n = 662) from the rest. Heatmap for genes with the strongest negative loading on PC1 (n = 30) denotes a neuroendocrine identity

(TTR, CHGB). This tumor was later classified by histology as a pancreatic neuroendocrine tumor (PanNET).

(B) Principal component analysis (PCA) and scatterplot for PC1 and PC2 across all PDAC malignant cells (n = 7,078, colored by patient ID as in Figure S1B),

excluding PANFR0580’s PanNET malignant cells. Heatmap for genes with the strongest positive and negative loadings on PC2 (n = 30 each) shows overlap with

genes from the Moffitt basal and classical signatures.

(C) Principal component (PC) elbow plot (top) showing the standard deviation for the first 20 components calculated over the verified PDACmalignant cell variable

genes. Line is drawn at the putative ‘‘elbow’’ (black versus gray points) as inclusion of additional PCs described overlapping information or quality metrics. Cross-

correlational analysis (bottom) for each single-cell’s embeddings across first 9 PCs (black points) and scores for literature curated gene sets describing EMT,

classical and basal, and cell cycle phenotypes.

(legend continued on next page)
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(D) Pairwise correlation of genes significantly enriched in scBasal or scClassical expression states within single-cell cohort. Left bar indicates the subtype as-

sociation of each gene (orange, scBasal-enriched; blue, scClassical-enriched).

(E) Tied dot plots depict the correlation coefficient for each gene (points) from select literature-derived gene sets, indicated at the top of each plot, to either

scBasal or scClassical cell states. Dotted lines represent significance threshold (3 SD above the mean of shuffled data), points and lines are colored if that gene

passes the threshold.

(F) GSEA pathway enrichments for the top 100 genes correlated to either scBasal or scClassical expression scores.
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Figure S3. Cellswith co-expression of scBasal and scClassical states express a distinct intermediate co-expressor gene program, related to

Figure 2

(A) Expression of scBasal and scClassical gene programs, with cells ordered by their scBasal-scClassical score difference. Quality metrics, EMT scores and the

binarized cell cycle program are shown for each single cell below the heatmap. P-value for binarized cycling group differences was calculated using Fisher’s

Exact test. P-value for EMT score was calculated by Kruskal-Wallis test with multiple hypothesis correction.

(B) Difference between PC1 and PC2 (top) and scClassical–scBasal score difference (bottom) are shown. Cells with equal scBasal and scClassical expression are

associated with intermediate PC scores and cells are ordered as in S3A. P-values for group differences were calculated by Kruskal-Wallis test with multiple

hypothesis correction.

(legend continued on next page)
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(C) Euclidean distance for each cell to co-expression (y = x) of scBasal (x) and scClassical (y) expression scores. Bottom track indicates the score derived from the

genes specific to the intermediate co-expressor state shown in S3D. P-values for group differences were calculated by Kruskal-Wallis test with multiple hy-

pothesis correction.

(D) Gene correlation to either scBasal or scClassical score (x axis) or the corrected intermediate co-expressor correlation (Euclidean distance in S3C). Green

highlighted genes have corrected intermediate co-expressor correlation > 0.1 (p < 0.00001 above shuffled).

(E) Averaged expression of all three malignant programs in normal pancreatic progenitor niche subsets (Acinar (Pro Ac.), Ductal (Pro Duct.), or Undifferentiated

(Undiff.) and mesenchymal (Mes.) cells defined in Qadir et al., 2020. P-values for each set of genes are computed by Kruskal-Wallis test with multiple hypothesis

correction.

(F) Cross-correlation between new and previously proposed expression signatures in our PDAC single cells. Average expression for each signature (rows) is

shown at the right for cells in the malignant subtypes from our cohort and the normal pancreatic progenitor cells from Qadir et al., 2020. White dot indicates the

subset with the highest average significant expression for each signature (Kruskal-Wallis test); no white dot indicates no significant expression.

(G) Pairwise correlation for biopsies withmalignant cells (n = 22). Data are correlation coefficients for the average expression of all signature genes in themalignant

cells from a given biopsy. Clade identities are at left with the one PanNET tumor (PANFR0580) included for comparison.

(H) Average expression for the 184 genes used for clustering in S3G. Clade identity colors match text color in S3G, and individual samples (columns) are ordered

as in S3G with sample ID numbers provided below.

(I) Scores for the expression of genes in S3H (gray scale heat) across the 4 main cell types found in the pancreatic progenitor niche (Qadir et al., 2020). White dot

indicates the normal subset with the highest average expression for each malignant program (Kruskal-Wallis test), none of the normal subsets significantly

express the neuroendocrine gene signature.

(J) Frequencies of scBasal, scClassical, and IC states in individual tumors demonstrates intratumoral transcriptional heterogeneity.
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Figure S4. Multiplex immunofluorescence is concordant with scRNA-seq and demonstrates intratumoral heterogeneity with the presence of

intermediate co-expressor cells, related to Figure 2

(A) Schematic for comparison of the matched datasets by combinatorial marker phenotypes.

(B) Marker detection in each single cell from the 10 samples in the mIF (top, 130,784 cells) and matched scRNA-seq datasets (bottom, 3,062 cells). Cells are

sorted by their combinatorial phenotype outlined in S4A.

(C) Comparison within and between modalities on matched samples. Samples are sorted by their pseudo-bulk RNA subtype identity (color bar, top; dendrogram

from Figure S3G). Pearson correlations (red to blue heat) were performed over the fractional representation of each marker pattern in S4A for each biopsy using

either modality (scRNA-seq or mIF). The upper left and lower right quadrants cross-compare cell state composition from individual biopsies assessed bymIF and

scRNA-seq, respectively, with both showing agreement with averaged RNA subtype (top color bar). The upper right and lower left quadrants cross-compare

(legend continued on next page)
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modalities (scRNA-seq versus mIF) for each sample (white dots), demonstrating that individual marker patterns for each sample are similar despite being

measured by different methods in different cores from the same patient.

(D) Frequency of co-expressing cells is related to increasedmixing of basal and classical cell populations within patient samples assessed bymIF. Log ratio of %

basal and classical cells in each sample (x axis; dotted line at 0 indicates equal percentages of basal and classical cells) versus their%co-expressing cells (y axis).

(E) mIF images and marker detection in single cells from two primary PDAC samples identifies IC cells in primary specimens also. Scale bar represents 10 mm.
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Figure S5. Quality metrics, cell type identification, serial sampling, and media influences on transcriptional state in patient-matched or-

ganoids, related to Figures 3 and 4

(A) Distribution of unique molecules and genes captured in quality cells per organoid sample, median values are indicated for each metric (dotted line) and violin

plots are colored by patient ID (top, Log10(UMIs); bottom, number of genes).

(B) t-SNE visualization of all biopsy and matched organoid cells from iterative passages, colored by patient ID (left). Dotted circles indicate the only two SNN

clusters (4 and 32) with appreciably admixed clusters and lowCNV scores, the rest were patient-specific. Bar chart shows number of organoid cells recovered per

matched sample (center). On the right t-SNE visualization, cells are organized in the same manner but organoid cells are colored by passage number.

(C) Relative expression for genes defining cluster 4 (top) and cluster 32 (bottom). Cluster 4 had an ambiguous epithelial identity while cluster 32 cells were defined

by canonical fibroblast genes and low to absent detection of CNVs.

(D) Fraction of cluster 4 cells at each passage, demonstrating that these cells did not survive iterative passaging.

(E) Single-cell inferred copy number alterations for each sample in the biopsy cohort. Tumors are grouped by expression of their dominant subtype based on the

clustering in Figure S3G, P-values comparing presence of each alteration among the groups (scBasal, scClassical, IC) are determined by Fisher’s exact test.

(F) Cell state diagram with marginal density plots for all cells with inferred KRAS amplifications (4 biopsy-model pairs) in biopsy (black) and organoid (red) mi-

croenvironments. P-value compares biopsy versus early passage organoid score distributions (top density) and was determined by Student’s t test.

(G-I) Heatmaps show inferred CNV copy number status for every cell in each of three biopsy/early passage organoid pairs. Cells (in rows) are ordered by hi-

erarchical clustering of their CNV profiles and letters on the far left indicate subclones that have significant statistical evidence for tree-splitting (STAR Methods).

Each cell’s origin is also noted (‘‘Source’’ column; biopsy tissue, gray; early passage organoid, red). Right metadata bars indicate if that cell came from an

admixed, likely non-malignant SNN cluster (4 or 32 in S5B).

(J-K) Matched cell state and genotype evolution at each passage in PANFR0489R (S5J) and PANFR0575 (S5K). Frequencies of individual CNV clones at each time

point (y axis) are tied by colored lines. Fill represents the transcriptional cell state fraction for each CNV clone. In sample PANFR0575 (S5K), clones D and E had

inferred TP63 amplifications which expanded over time.

(L) Bulk RNA-seq expression of basal and classical states in 4 organoid models cultured in 3D or adapted to 2D in complete organoid media.

(M) Inferred CNVs for each cell from the PANFR489R samples cultured in either Minimal (gray) or Complete (red) organoid media conditions in Fig. 4B.

(N) Brightfield images of organoids grown in standard organoid media (‘‘Complete’’) or in media without any growth factors (‘‘Minimal’’) at days 1 and 11 after

seeding. Scale bar represents 200 mm.

(O) Expression of scBasal, IC, and scClassical genes (rows) in organoid cells (columns) frommodel PANFR0562 cultured for 6 days in Complete medium, Minimal

medium, or OWRNA medium. P-values for group differences were calculated by ANOVA followed by Tukey’s HSD.

(P) Expression of scBasal, IC, and scClassical genes (rows) in organoid cells (columns) frommodel PANFR0562 cultured for 6 days in Complete organoidmedium

or in ‘‘Cell line’’ medium. P-values for group differences were calculated by ANOVA followed by Tukey’s HSD.

(Q) Expression of scBasal, IC, and scClassical genes (rows) in single cells from the PDAC cell line CFPAC1 (columns) cultured for 6 days in standard ‘‘Cell line’’

medium or in Complete organoid medium. P-values for group differences were calculated by ANOVA followed by Tukey’s HSD.
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Figure S6. Identification of T cell, natural killer cell, macrophage, and mesenchymal heterogeneity and transcriptional state associations in

the metastatic microenvironment, related to Figure 5

(A) t-SNE visualization of sub-clustering (SNN) performed on T/NK cells in the metastatic cohort. Cells are colored by their type identity based on shared SNN

cluster membership.

(B) Select cell type marker expression overlaid on the t-SNE visualization from S6A.

(C) PCA identifies 3 major subsets of TAMs in the metastatic niche. PC1 largely separates FCN1+ monocyte-like TAMs from more committed macrophage

phenotypes. PC2 separates SPP1+ from C1QC+ macrophage phenotypes.

(D) Heatmap visualization of the gene expression programs specific to each TAM subset identified by the PCA and SNN clusters in S6C.

(E) Relative expression for select cell typemarkers and binarized cell cycle program (top bar; black, cycling) with cell type colors (bottom color bar) as in Figure 5A.

(F) t-SNE visualization of sub-clustering (SNN) performed onmesenchymal cells colored by their anatomical site. Cell subsets (1-4) determined by SNN clustering.

(G) Average expression of the indicated mesenchymal/fibroblast and adrenal endocrine marker genes in each of the cell subsets (1-4) identified in S6F. Dot size

indicates fraction of cells expressing a given gene.

(H) PCA overmesenchymal cells in the cohort (excluding Adrenal endocrine cells; subset 4,S6F). Scatterplot of PC2 versus PC3 defines 3 states formesenchymal

cells in our cohort.

(I) Same visualization as in S6H, but cells are colored by previously identifiedmyCAF or iCAF signature scores. myCAF is evenly distributed across PC2 and iCAF

associates with higher PC3 scores.

(J) Expression for select markers overlaid on the PCA from S6H.

(K) Cross-correlation of mesenchymal signatures in single-cells. Fibroblast-like versus pericyte-like signatures provide non-overlapping information. PC3 in-

flammatory phenotypes are similar to the previously reported iCaf phenotype and our PC3-derived inflammatory mesenchymal signature.

(L) Frequency of mesenchymal cells (y axis, cell count) across PC2 scores, colored by site of biopsy tissue. P-value determined by Student’s t test.

(M) Comparison of the distribution of mesenchymal phenotypes across different sites as groups (top) or individual tumors (bottom). Heat indicates the fraction of

mesenchymal cells in that score bin.

(N) Non-malignant cell types (color fill) and counts per biopsy, included samples organized as in Figure 5G. Five biopsies were excluded from the analysis in

Figure 5E,5G-I because they either had low cell capture or were from a tumor with indeterminantmalignant transcriptional subtype due to negligible malignant cell

capture.

(O) Correlation between T cell fraction and malignant IC score.

(P) Cross-TCGA analysis for basal and immune cell type markers in epithelial tumors with known basal subtypes. Clusters were determined by dendrogram

splitting, and disease type for each sample is indicated at bottom.
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Figure S7. State-specific drug responses and TME-associated state shifts in organoid models and patient samples, related to Figures 6
and 7

(A) Independent experiments demonstrating state-specific drug sensitivities in isogenic PANFR0562 organoidmodel pairs skewed toward scBasal or scClassical

states by altering media formulation (scBasal, TGF-b or Minimal media; scClassical, OWRNA media) for different time periods. Bars represent the difference in

growth rate-corrected Area Over the Curve (AOC) between each scBasal-scClassical model pair for each independent experiment depicted in Figure 6G.

(B) Growth rate-adjusted dose response curves for isogenic PANFR0562 organoid model pairs in different media conditions and at different time points. Points

aremean ±SD of 3 technical replicates. Orange curves represent responses inmore scBasal conditions and blue curves represent responses inmore scClassical

conditions.

(C) Cell state diagrams with marginal density plots for the organoid model PANFR0489 depicted in Figure 7C in control medium (OWRNA, reduced organoid

medium) or control mediumwith IFNg.P-values for group differences between B/C commitment (top) and IC scores (right) were calculated by ANOVA followed by

Tukey’s HSD.

(D) Cell state diagramswith marginal density plots for organoidmodel PANFR0562 at 2 time points with exposure to IFNg.P-values for group differences between

B/C commitment (top) and IC scores (right) were calculated by ANOVA followed by Tukey’s HSD.

(E) t-SNE visualization of single cells from metastatic biopsies collected from the same patient (PANFR0473, Figure 7D) but at two different sites (liver, left; lung,

right). All cells from both samples are shown in both t-SNE plots, but cells for each site are labeled red in the corresponding plot.

(F) Cell state diagrams with marginal density plots (top) and expression heatmaps (bottom) depict cell state differences betweenmalignant cells from two distinct

metastatic sites for the samples (PANFR0473) in Figure 7D and S7E. P-values for group differences between B/C commitment (top) and IC scores (right) were

calculated by ANOVA followed by Tukey’s HSD.

(G) t-SNE visualization of single cells frommetastatic biopsies collected from the same site in one patient (PANFR0489, Figure 7E) pre- and post-immunotherapy.

All cells from both samples are shown in both t-SNE plots, but cells for each time point are labeled red in the corresponding plot.

(H) Cell state diagrams with marginal density plots from metastatic samples collected pre- and post-immunotherapy (PANFR0489, Figure 7E,F and S7G). P-

values for group differences between B/C commitment (top) and IC scores (right) were calculated by ANOVA followed by Tukey’s HSD.
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