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Transition metal dichalcogenide (TMD) bilayers have recently emerged as a robust and tunable moiré system
for studying and designing correlated electron physics. In this Rapid Communication, by combining a large-scale
first-principles calculation and continuum model approach, we provide an electronic structure theory that maps
long-period TMD heterobilayer superlattices onto diatomic crystals with cations and anions. We find that the
interplay between the moiré potential and Coulomb interaction leads to filling-dependent charge transfer between
different moiré superlattice regions. We show that the insulating state at half filling found in recent experiments
on WSe2/WS2 is a charge-transfer insulator rather than a Mott-Hubbard insulator. Our work reveals the richness
of simplicity in moiré quantum chemistry.
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Following the recent discovery of correlated insulators and
unconventional superconductivity in twisted bilayer graphene
[1,2] and trilayer graphene-hBN heterostructures [3,4], ar-
tificial moiré superlattices have emerged as a new venue
for realizing and controlling correlated electron phenomena.
The moiré superlattices and natural solids differ greatly in
the magnitude of their characteristic length and energy. In
solids, the average distance between electrons is typically
comparable to atomic spacing in the order of Å and their
kinetic and interaction energies are typically in the order of
eV, while in moiré superlattices a mobile charge is shared by
1000–10 000 atoms so that the characteristic length and
energy scales are in the order of 10 nm and 10–100 meV, re-
spectively. Correspondingly, the quantum chemistry of natural
solids involves complex intra-atomic and long-range interac-
tions, while low-energy charge carriers in moiré superlattices
only feel a long-period potential and interact with each other
predominantly via the long-range Coulomb repulsion. There-
fore, quantum chemistry can be simpler in moiré systems.

In twisted bilayer graphene, the emergence of strong corre-
lation effects requires fine tuning to a magic twist angle, where
the moiré energy bands become flattened [5] and sensitive
to microscopic details such as lattice relaxation [6–11] and
strain [12]. On the other hand, transition metal dichalcogenide
(TMD) bilayers [13–16] have a much simpler moiré band
structure. In TMD heterobilayers such as WSe2/WS2, the
valence moiré bands are simply formed by holes moving
in a periodic moiré potential. Therefore, TMD superlattices
provide a robust platform to study many-body physics with a
highly tunable kinetic energy and local interaction strength.

Very recently, a correlated insulating phase has been ob-
served in WSe2/WS2 at a filling of n = 1 hole per moiré
unit cell or half filling of the topmost valence moiré bands
[15,16], and regarded as a canonical Mott-Hubbard insulator
[17]. In this scenario, the topmost moiré band is well separated
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from the rest; its charge distribution is tightly localized near
the moiré potential minima, forming a triangular lattice. At
fillings n � 1, strong on-site Coulomb repulsion U suppresses
double occupancy, and the resulting correlated ground states
are adequately captured by the triangular lattice Hubbard
model [13].

In this Rapid Communication, we identify an alternate
energy scale associated with charge transfer between regions
with different local stacking configurations in the moiré su-
perlattice. When the energy cost of charge transfer � is
comparable to or smaller than the local Coulomb repulsion
U , the Mott-Hubbard description becomes inadequate at fill-
ings n � 1. Instead, the correlated insulator at n = 1 is a
charge-transfer insulator [18], and doped charges at higher
fillings n > 1 transfer to second potential minima on the moiré
superlattice in order to avoid double occupancy of the pri-
mary minima. Using a large-scale first-principles calculation,
we obtain the parameters � for various TMD heterobilayers
and find that � in a WSe2/WS2 superlattice is comparable
to the experimentally observed charge gap [15,16], whereas
U is much larger. We provide a theoretical description of
the charge-transfer phenomenon by introducing an effective
honeycomb lattice model, in which the MM and MX sub-
lattices correspond to “moiré cations” and “moiré anions”
where charges are locally concentrated. We note that pre-
vious works on twisted bilayer graphene have shown the
interaction-induced charge redistribution within a local moiré
region [19–21]. Here, the charge transfer we predict in TMD
moiré superlattices takes place on the length scale of the moiré
period (∼10 nm) and can be directly observed by scanning
tunneling spectroscopy (STS).

Continuum model. We consider a TMD heterobilayer such
as WSe2/WS2, with a (a′) as the lattice constant of the top
(bottom) layer, and θ as the twist angle. The lattice mismatch
leads to a moiré superlattice in Fig. 1, with a superlattice con-
stant LM = a/

√
δ2 + θ2 where δ = (a − a′)/a′. As illustrated

in Fig. 2(b), the valence bands of two layers have a large band
offset �Eg, which is listed for various TMD heterobilayers
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FIG. 1. (a) Lattice structure of MM, MX , XM spots for AA
stacking heterobilayer (M stands for metal atom and X stands for
chalcogen atom). (b) Real-space moiré pattern of a TMD heter-
obilayer with δ = 4.0%, where MM, MX , XM spots within one
supercell are labeled, and a schematic diagram for the moiré potential
landscape for φ = 0 and φ = π/4, along the path from MM to XM
and MX spots as indicated by the array in the left figure.

at zero-twist angle in Table I. Given the large band offset, the
low-energy moiré bands result from the spatial variation of the
valence-band maximum of WSe2 due to the lattice mismatch
with WS2 [22], which is described by a long-period moiré
potential acting on holes in WSe2.

In this work, we study TMD heterobilayers with a small
twist angle starting from AA stacking, where the metal atom
and chalcogen atom of the top layer are aligned with the metal

FIG. 2. (a) Brillouin zone (BZ) folding in a WSe2/WS2 moiré
superlattice, where aWSe2/aWS2 is taken as 6/5 for the illustrative
purpose. (b) Schematic low-energy band structure from two layers
where ±Kt (b) are two valleys of the top (bottom) layer. (c) DFT
band structure (open circle) and continuum model band structure
(blue lines) at θ = 5.68◦. (d) Continuum model band structures of
WSe2/WS2 at θ = 0◦.

TABLE I. Summary of TMD heterobilayer. Here, δ is the lattice
constant mismatch with respect to the bottom layer, �Eg is the band
offset, V0 and φ are parameters of the moiré potential, and Emin

0 =
δ2/(2ma2) is the moiré kinetic energy at zero twist. All energies are
in units of meV.

System δ �Eg V0 φ Emin
0

WSe2/WS2 4% 640 15 45◦ 1.2
WSe2/MoS2 4% 940 11 40◦ 1.2
MoSe2/MoS2 4% 630 9 42◦ 1.3
MoSe2/WS2 4% 270 7 35◦ 1.3

atom and chalcogen atom at the bottom layer, respectively.1

There are three types of Wykoff positions in a moiré unit
cell—hereafter referred to as MM, XM, MX , depending on
the alignment of the metal atom (M) and chalcogen atom (X ).
As shown in Fig. 1(a), at MM, the metal atoms on top and
bottom layers are aligned, while at MX (XM), the metal atom
on the top (bottom) layer is aligned with the chalcogen atom
on the bottom (top) layer.

In the long moiré wavelength limit LM/a → ∞, the
valence-band maximum varies slowly over the moiré unit
cell, which can be expressed as the first-order harmonics with
moiré wave vectors Gi = 4π√

3
L−1

M (cos i2π
3 , sin i2π

3 ) (i = 1, 2, 3)
[13,22].

This is captured by the continuum model [13] H0 =∫
ψ†(r)Ĥψ (r)d2r with

Ĥ = −∇2

2m
+ V (r), (1)

V (r) = −2V0

3∑
i=1

cos(Gi · r + φ), (2)

where ψ† = (ψ†
↑, ψ

†
↓) creates the holes and m > 0 is the

effective mass. From a first-principles calculation with
relaxed layer spacing, we find the moiré valence bands within
250 meV are formed by ±K pockets in WSe2. Owing to
strong Ising spin-orbit coupling at the valence-band top in
WSe2, spin indices are locked with valley degrees of freedom
[23]. Since ±K valleys are decoupled at the long moiré
wavelength limit, an effective twofold spin degeneracy arises
within this low-energy model. V0 > 0 and φ are the only
parameters associated with the magnitude and overall phase
of the three lowest Fourier components of the moiré potential
[13]. When the moiré period is large, V0, φ are intrinsic mate-
rial properties independent of LM, which we hereafter refer to
as the moiré potential strength and moiré phase, respectively.

To obtain the values of V0, φ, we first use the large-scale
density functional theory (DFT) [24,25] to calculate the moiré
band structure of WSe2/WS2, WSe2/MoS2, MoSe2/MoS2,
and MoSe2/WS2 at the commensurate angle θ = 5.68◦, as
shown in Fig. 2(c). The spin-orbit coupling is included via
DFT as implemented in the Vienna ab initio simulation
package (VASP) [26]. The interaction between electrons and

1Alternatively, AB stacking can be viewed as a 180◦ rotation of the
top layer.
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ionic cores is approximated by the projector augmented-
wave method, and the exchange-correlation potential was
described by the Perdew-Burke-Ernzerhof generalized gra-
dient approximation [27] with the van der Waals (vdW)
correction incorporated by the vdW-DF (optB86) functionals
[28]. We assume a rigid lattice along with in-plane directions
and a relaxed interlayer distance. Depending on the different
vdW correction methods, the interlayer spacing is 6.57–6.77
Å. Throughout this range of interlayer distance, we find the
moiré band structure is nearly identical. At a long moiré wave-
length limit, the interlayer distance has a large spatial variation
[22], which affects the value of V0 and φ. In addition, a DFT
calculation with a fully relaxed moiré superlattice would be
necessary for the accurate determination of model parameters,
especially around the zero-twist angle.

We find the DFT band structure fits nicely with the con-
tinuum model [see Fig. 2(c)], and obtain from this fitting
the material-specific parameters V0 and φ shown in Table I.
For WSe2/WS2, V0 = 15 meV and φ = 1

4π . Importantly, the
moiré phase φ determines the energy landscape of the moiré
potential. This can be seen from V (r) at three C3-symmetric
points (Wyckoff positions) rMM = 0, rMX = 1√

3
LM(1, 0), and

rXM = −rMX , respectively. For 0 < φ < 1
6π , within one su-

percell there is one potential minimum (MM) and two maxima
(MX and XM), while for 1

6π < φ < 1
3π , there are two min-

ima (MM and MX ) and one maximum (XM). The four TMD
heterobilayers listed in Table I, WSe2/WS2, WSe2/MoS2,
MoSe2/MoS2, and MoSe2/WS2, all belong to the parameter
range 1

6π < φ < 1
3π , where the presence of two potential

minima introduces different physics, as we shall show below.2

In the following, we will study the interaction effects in
TMD heterobilayers in various regimes of V0 and φ. We
denote ns = 2 holes per supercell as the full filling and n =
1
2 ns = 1 hole per supercell as the half filling.

Charge-transfer phenomena. In this section, we use the
Hartree approximation to study the effect of the Coulomb
interaction on the charge distribution in a twisted TMD het-
erobilayer with a relatively large bandwidth and demonstrate
the charge-transfer phenomenon.

The Coulomb interaction including the background effect
is

HC =
∫

δρ(r)C(r − r′)δρ(r′)d2rd2r′, (3)

where δρ ≡ ψ†ψ − ρ is the deviation of the local hole density
from the average ρ (which is set by the gate voltage), and
C(r) = e2/(4πε|r|) is the Coulomb potential with a dielec-
tric constant ε, which controls the interaction strength. We
approximate the Coulomb interaction HC by the mean-field
Hatree potential VH self-consistently,

VH (r) = V (r) +
∫

C(r − r′)〈δρ(r′)〉d2r′, (4)

and 〈· · · 〉 denotes the expectation value in the mean-field
ground state. As we assume the Hartree potential preserves

2WS2/MoS2 and WSe2/MoSe2 are discussed in the Supplemental
Material [30].

FIG. 3. (a) Filling factor n/ns as a function of chemical potential
μ in a WSe2/WS2 system at θ = 3◦ with ε = 12, 20, 50. (b) and
(c) are the charge distributions at half filling when ε = 50 and 12.

all symmetries, VH can be written as a Fourier series similar
to Eq. (2), and the Coulomb interaction only renormalizes the
band structure [21,29].

In Fig. 3(a) we plot the renormalized filling factor n/ns

as a function of chemical potential μ in a WSe2/WS2 het-
erobilayer at a twist angle θ = 3◦ with different dielectric
constants. At low fillings, the charge is always localized at the
MM spots. As we increase the filling, more holes will be accu-
mulated and the repulsive interaction renormalizes the charge
distribution to make it more homogeneous. Near half filling
n = 1

2 ns, when the interaction is weak, the charge distribution
remains at the MM spots as shown in Fig. 3(b). When the
interaction is strong, a charge transfer occurs from the MM to
MX spots and the corresponding charge distribution is shown
in Fig. 3(c).

To go beyond the mean-field approximation, in the follow-
ing we provide a theoretical description of the charge-transfer
physics in a TMD heterobilayer with a sufficiently large LM,
where the moiré bandwidth W is small compared to the moiré
potential V0.

Tight-binding limit. We first introduce the moiré kinetic
energy as E0 ≡ (2mL2

M)−1, which increases with the twist
angle as E0 ∝ (θ2 + δ2). When the moiré potential is weak
compared with the kinetic term V0 � E0 (nearly free limit),
the first and second bands have a negative indirect gap [e.g.,
Fig. 2(b)]. When the moiré potential is much stronger than
the kinetic term V0/E0 � 1 (tight-binding limit), the moiré
bands become flat compared with the band gaps W � � [e.g.,
Fig. 2(d)]. All untwisted heterobilayers listed in Table I belong
to the tight-binding limit as shown in Fig. 4(a).

In the tight-binding limit, each potential minimum traps a
set of local Wannier orbitals. The lowest-energy one is an s
orbital, and the next is a (px, py) doublet. The first moiré band
is predominantly formed by s orbitals at the MM spots, which
are global potential minima in the parameter range of interest
φ ∈ (0, 1

3π ). The character of the second moiré band depends
on φ. For φ ∈ (0, 1

6π ), it comes from (px, py) orbitals at the
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FIG. 4. (a) TMD heterobilayers can be described by different
limits and tight-binding models for the first and second moiré bands.
Each colored line denotes a TMD bilayer. The nearly free limit and
tight-binding limit are separated by the dashed line where W = �.
(b) Schematic phase diagram at half filling n = 1. The solid curve
illustrates the landscape of the moiré potential, and the solid and open
circles denote occupied holes at n = 1 and additional holes above
n = 1, respectively. In phases (II) and (III), LHB, UHB, and MX
denote the lower Hubbard band, upper Hubbard band, and MX anion
band, respectively. The densities of states are shown for all phases.

MM spots, and the low-energy physics is well captured by the
triangular lattice model [13]. For φ ∈ ( 1

6π, 1
3π ) and in a wide

range of V0, it comes from s orbitals at the MX spots that
are local potential minima (see Fig. 2). The energy difference
between the s orbitals in the MX and MM spots defines a
charge-transfer gap �0 = εMX − εMM .

By expanding V (r) around a potential minimum, we obtain
the characteristic size of s orbitals in the MM and MX spots
from the harmonic approximation

ψ (r, R) = 1√
πξ

exp

(
−|r − R|2

2ξ 2

)
, (5)

ξMM = (cos φ)−1/4ξ0, ξMX =
[

sin

(
φ − 1

6
π

)]−1/4

ξ0,

ξ0 = (4π2mV0)−1/4√LM, (6)

where ξMX only applies to φ ∈ ( 1
6π, 1

3π ). It is important to
note that for large LM, ξi ∝ √

LM is parametrically smaller
than the moiré period. Therefore, the local Coulomb repulsion
is the largest interaction energy, given by

Ui = e2

4
√

2πεξi

∝ L−1/2
M . (7)

with i = MM, MX . In contrast, the interaction between
nearest neighbors V ′ is proportional to 1/LM and hence para-
metrically smaller than U .

In Fig. S3 of the Supplemental Material [30] we plot the
bandwidth W of the first moiré band and interaction ener-
gies U,V ′ of WSe2/WS2 at different twist angles. While
U,V ′ decrease with LM in a power-law manner, W is ex-
ponentially small in the tight-binding regime. For untwisted
WSe2/WS2, we find LM = 8.2 nm, ξMM = 2.3 nm, ξMX = 3.0
nm, UMM = 764/ε meV, UMX = 594/ε meV, W = 8 meV,
�EK = 18 meV, and V ′ = 302/ε meV.

Depending on the relative strengths of the interaction en-
ergy, bandwidth, and charge-transfer gap, we find three phases
at the filling factor n = 1, as illustrated in Fig. 4(b).

(I) Metal: U � W . The system is gapless. Under doping,
additional charges are mainly localized at the MM spots with
s-orbital symmetry.

(II) Mott insulator: � > U � W . The insulating ground
state has one hole per MM spot, and the charge gap is U .
When doped further, additional charges are mainly localized
around the MM spots. In this case, the triangular lattice
Hubbard model is a good description [13].

(III) Charge-transfer insulator: U > � � W . The insulat-
ing ground state has one hole per MM spot, but the charge
gap is �. When further doped, additional charges are mainly
localized at the MX spots, thus resulting in charge transfer on
the moiré scale as the filling increases.

The insulating gap at half filling inferred from the thermal
activation of resistivity is only around 10 meV [15,16], which
is significantly smaller than the estimated on-site repulsion
U ∼ 128 meV assuming ε = 6. (Note the distance from the
sample to metallic gates is 20 nm so that screening has little
effect on local repulsion U .) However, the measured thermally
activated gap [15] is comparable to the charge-transfer gap
�EK ∼ 18 meV. We thus conclude that the insulating phase at
half filling in untwisted WSe2/WS2 is likely a charge-transfer
insulator, rather than a Mott-Hubbard insulator.

In order to capture the physics of charge transfer between
the MM and MX spots, we introduce an extended Hubbard
model on the honeycomb lattice,

H = �

2

∑
i

(−)ic†
i ci − t

∑
〈i j〉

(c†
i c j + H.c.)

+
∑

i j

Vi jnin j, (8)

where ci = {ci↑, ci↓}T denotes s-orbital holes, (−)i = ± for
i = MX (MM) spots, and t denotes hopping. Vi j is the
Coulomb repulsion between s orbitals at sites i and j. When
there is strong screening from the metallic gates, interactions
decay rapidly with the distance between sites.

At the long-wavelength limit LM = 8.2 nm, the kinetic en-
ergy is vanishing small compared to local repulsion (t/UMM <

1/20 at LM = 8.2 nm) and can be neglected. Within the ex-
tended Hubbard model for filling n = 1, we further calculate
the self-energy of the additional hole filling to the MM site as
EMM = UMM + ∑

j∈MM Vi j with i ∈ MM, and the MX site as
EMX = � + ∑

j∈MM Vi j with i ∈ MX . With moiré wavelength
LM = 8.2 nm and gate distance d = LM [31], we find that
adding a hole to the MX site costs much lower energy than
adding to the MM site (EMM = 145 meV, EMX = 65 meV),
which is the direct evidence for the charge-transfer insulator
in the WSe2/WS2 heterobilayer system.

At temperatures below the charge gap, double occupancy
is strongly suppressed by the on-site repulsion U . For the
triangular lattice Hubbard model, the low-energy physics is
described by the t-J model [32,33] with hopping t and the
antiferromagnetic superexchange interaction J = 4t2/U > 0
between nearest neighbors. Magnetic susceptibility as a func-
tion of doping at various temperatures is shown in the
Supplemental Material [30]. For charge-transfer insulators
such as WSe2/WS2 described by the honeycomb lattice model
in Eq. (8), their magnetic properties call for future study.
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In real space, the interaction-induced, filling-dependent
charge transfer leads to a significant change of charge dis-
tribution on the scale of 10 nm, which can be detected by
scanning tunneling spectroscopy (STS). In the energy domain,
charge transfer affects the band structure on a scale of 10 meV,
which may be detected in angle-resolved photoemission spec-
troscopy and infrared optical conductivity measurements. The
extended Hubbard model in a honeycomb lattice has also
been realized with cold atoms in an optical lattice [34–38].
In a graphene-based system, the kinetic energy and repulsion
are at the eV level, but the tunability is quite limited and
it is not possible to have the potential difference between
two sites, which is essential for the charge-transfer physics
described in this work. However, in cold-atom systems, the
lowest accessible temperature at present is on the order of
hopping t , which is much higher than the exchange interaction
J [39]. In the TMD heterobilayer WSe2/WS2, the exchange
energy is around J ∼ 0.05 meV and can be obtained from the

Curie-Weiss fit of temperature-dependent magnetic suscepti-
bility [15].

In conclusion, we present a theory that maps a long-period
moiré system onto an atomic crystal with a cation and anion
and studies the correlated insulating behavior. We find that the
interplay between the moiré potential and interaction strength
gives rise to a charge-transfer insulator in TMD heterobilay-
ers, and opens the possibility for different electronic states
upon doping [31].
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